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ABSTRACT

Development of Partial Hybrid Finite Elements

for 3-D Global/Local Analysis of Laminated Composite Structures

Wei Feng, Ph. D.

Concordia University, 1998

The purpose of this work is to develop global/local finite element models using partial
hybrid stress finite elements for stress analysis of laminated composite structures. Based
on the composite variational principle, the general formulations of partial hybrid single-
layer finite element and multilayer finite element are presented. These formulations can
be used to develop a series of partial hybrid finite elements. A 4-node degenerated plate
element, an 8-node degenerated plate element, a 3-D, 8-node solid element, a 3-D, 20-
node solid element, a 6-node transition element, a 15-node transition element, a multilayer
solid element, and a multilayer transition element are presented. The elements developed
in this thesis are examined by the eigenvalue test to detect zero-energy deformation modes

and the absence of rigid-body motion capability. The results show that the elements do
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not have any kinematic deformation modes, and they have a desired capability for rigid-
body displacement. In addition, the non-zero eigenvalues of the element stiffness matrices

are real and positive.

In order to determine the optimal partial stress fields for the partial hybrid elements, a
classification method of stress modes is presented. The method can be used to classify
stress modes, select optimal stress modes, and set up an assumed stress matrix for a
hybrid element. Also, the necessary and sufficient condition for avoiding spurious
kinematic deformation mode is proposed and the optimal condition of an assumed stress

field is presented.

A computer program COMSA is developed to implement the partial hybrid finite element
method. The Global/Local finite element models are established using plate element, solid
element, and transition element. In the thesis, a few numerical examples are presented to
verify the accuracy and efficiency of the finite element models. It has been shown that
the global/local models using partial hybrid element are efficient and accurate for stress
analysis of laminated composites due to the fact that they take advantage of the capacity

of both 3-D elements and 2-D elements.
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Chapter 1

INTRODUCTION

The finite element method has become an important and practical numerical analysis tool.
It has found application in almost all areas of engineering [1-7]. In the area of composite
structure, it has been widely used due to the power of the technique to be able to model
the laminated composite structures not only in the planar dimensions, but also in the
thickness direction [8-10]. It is also due to the availability of many commercial finite
element codes such as ABAQUS, ALGOR, ANSYS, COSMOS/M, MSC/NASTRAN,
PATRANS3, and so on [11-14]. Application of the finite element method in the analysis

of laminated composite structures involves the following three disciplines [15]:

1. Composite structure theory, for the correct formulation of mathematical models;

2. Numerical analysis, for the elaboration of algorithmic solutions of the discretized
equations;

3. Computer programming, for the development of parametrized codes applicable to

various problems.

Therefore, first of all, one must understand the behaviour of laminated composite

1



structures for developing the best finite element models. The laminated composites are
made of a stack of bonded laminae which are manufactured in the form of thin sheets
using long continuous fibres and isotropic matrix (see Figure 1-1). The analysis of
laminated composite structures presents more complication than others made of isotropic
materials due to the fact that the laminated composite structures contain inherent
discontinuities. At the micromechanics level, there are discontinuities in material
properties as one moves from fibre to matrix or vice versa. At the macroscopic level,
although the individual laminae are treated as homogeneous orthotropic materials, there
are discontinuities in stresses along the thickness of laminated composites due to the
variation in fibre orientation from lamina to lamina. Laminated composite structures also
contain discontinuities, such as open holes, ply drop-offs, free edges, or delamination, all
of which are common in practice. The behaviour of laminated composite structures such
as anisotropy and lamination result in large requirements in the computer storage space

and CPU time if one wants to accurately analyze laminated composite structures.

In most applications, the thickness of a laminated composite structure is small compared
to the planar dimensions and the 2-D theories, such as the classical lamination theory [16-
22], are used to analyze a laminated composite structure for stresses. The 3-D stress
analysis of a laminated composite structure is often required in the local regions near
discontinuities. For example, the delamination in a laminated composite structure has been
recognized as the most common failure mode. To predict the delamination failure of a

composite structure, the stress state at the location of the delamination has to be carefully



investigated and the interlaminar stresses must be accurately determined using 3-D

analysis method.

Structural analysis ‘ '

@ Structare

Figure 1-1 Characteristics of laminated composites

For 3-D stress analysis of laminated composite structures, there are many commercial

finite element codes available. However, to provide accurate stress and strain, it is still



necessary to improve existing finite elements and to develop new finite elements that

represent the true laminated composite material behaviour.

Taig evaluated the eight commercial finite element codes, I-DEAS, PATRAN, ANSYS,
NISA, COSMOS/M, MSC/NASTRAN, PAFEC, and MICROFIELD, in 1991 [14]. In the
report of the evaluation, Taig indicated that most FEA systems studied provide Kirchhoff
and Mindlin-type plate and shell formulations with no attempt to improve the through-
thickness modelling to represent the true laminated material behaviour. The only way to
achieve such modelling is to use stackable solid elements, but this becomes impossibly
cumbersome for large structures. Half of the systems studied do not recover interlaminar
shear stresses although others do provide layer shear stresses. Through-thickness shear
stresses in general are recovered in different ways. Most of the higher-functionality
systems use an equilibrium based post-analysis calculation. It has been shown that the
plate and shell models cannot recover meaningful stresses in the place where they are
important: at the edges and near discontinuities. Composites analysis is limited to the
solution of equivalent homogeneous plate and shell models and, on an occasional and
local basis, to 3-D models either layer-by-layer or in stacked layer blocks or point-by-

point through a 3-D material volume.

It is clear that the most important deficiencies are in through-thickness modelling for finite

element analysis of laminated composite structures.



1.1 Three Finite Elements Classified by the Variational Principles

The common finite elements can be divided into three types: single-field finite elements
(displacement elements and stress elements), hybrid finite elements (conventional hybrid
element and partial hybrid stress elements), and mixed finite elements according to the
character of the variational principle and the nature of the resulting discrete algebraic
equations. For analysis of laminated composite structures, displacement elements [23-30],
conventional hybrid stress elements [31-35], and partial hybrid stress elements [36-50] are
often used. These three finite elements are formulated using three different variational

principles.

1.1.1 Displacement Element

The majority of finite elements used for stress analysis of laminated composites is based
on the displacement formulation. This is due to its simple approach to the element

formulation.

Assumed Displacement Field

For the displacement finite elements, the principle of the stationary potential energy is

often used to derive the element formulation and the displacement functions are assumed

a priori. Although a number of mathematical functions such as trigonometric series and



exponential functions can be used as the displacement functions, orthogonal polynomials
are more appropriate as the displacement functions because of the ease and simplification

they provide in the finite element formulation.

In the regular finite element method in solid mechanics, the nodal displacement
components of an element are often used as the dependent variables. In this case, for a
compatible element, the number of terms in the displacement polynomial is determined
by the element type and must be equa’ to the total number of degrees of freedom
associated with the element. Otherwise, the polynomial may not be unique. In addition,
the polynomial series must satisfy the continuity and completeness conditions to ensure

convergence to the correct result.

Continuity means that these functions and their derivatives, where required, must be
continuous within the element domain and across the interface between adjacent elements.
For example, a linear function (a, + a,x) is indeed continuous within the elements. For
compatibility and continuity condition across the interface between adjacent elements, it
is necessary that the coordinates and displacements of the elements at the interface be the
same. Because the coordinates and displacements of an element at the interface are
determined only by nodes and nodal degrees of freedom at that interface, compatibility
is satisfied if the adjacent elements have the same nodes at the interface and the
coordinates and displacements at the interface are defined in each element by the same

polynomial functions.



Completeness means that the polynomial functions must contain the constant and linear
terms so that the element nodes can be given rigid body displacements without producing
strain within the element and can always recover state of constant strain. For instance, the
linear approximation contains the‘ constant term a, which allows for the rigid body
displacement mode. Also, the linear approximation contains linear term a,x which
guarantees that the element is able to recover the state of constant strain. This condition
implies that, when the element becomes smaller and smaller, the strain in the element
approaches a constant value. The necessary terms for a complete polynomial are presented
by Pascal’s triangle. It indicates that the displacement polynomials must use the least-order

terms in the displacement functions.
A Major Deficiency of Displacement Elements

The displacement elements have a major deficiency: the transverse stresses are computed

from displacements, and the continuity of these stresses can not be satisfied well.

In the displacement finite element method, the finite element process first calculates the
displacements (primary variables) at the nodes of the elements. The dispiacement field is
then determined by these nodal displacements. The strains and stresses (second quantities),
which are more important for design purposes, are calculated by numerically
differentiating the approximate solutions. For stress analysis of homogeneous materials,

the displacement finite element method can provide accurate results efficiently. However,



for laminated composites, the "from the top” and "from the bottom" values of transverse
stresses at interfaces will be discontinuous if the stress-strain relation is used to calculate
these stresses. This is due to the change of fibre orientation in adjacent layers between the
interfaces. From this point of view, any improvement in the displacement finiie element
models, namely, use of additional discretization or higher order polynomials, can only
minimize the jumps of transverse stresses at the interfaces, but not ensure the continuity
of these stresses. Any displacement approximation that possesses a continuous first
derivative (with respect to the thickness coordinate) at the interfaces is in contradiction
with the continuity of transverse stresses. Any attempt to develop as smooth displacement
approximation as possible by enforcing continuity of the displacement derivatives (with
respect to the thickness coordinate) at the interfaces, something very natural in the
traditional analysis of homogeneous structures, leads to wrong results when applied to the
laminated composite structures. The continuity of transverse stresses can be satisfied only
if transverse strains are discontinuous at the interfaces between distinct layers, as follows
from the stress-strain relation. This means, in turn, that the first derivatives of
displacement must be discontinuous with respect to the thickness coordinate at interfaces.
Although such a discontinuity is the necessary requirement for the correct solution, it is

not a sufficient one [51].

In order to overcome this deficiency, a good alternate, the hybrid element, has drawn

more and more attention from engineers and designers of laminated composite structures.



1.1.2 Conventional Hybrid Stress Element

Since 1964, a great number of multifield finite elements have been presented [31-50,52-
61]. The hybrid stress finite element formulation assumes the stresses as the independent
variables at the outset. Therefore, the degree of accuracy of the stress is the same as the
degree of accuracy of the displacement. This is due to the fact that the stresses are
obtained directly from the process of minimization and without having to go through the
differentiation of the displacements. This is the inherent advantage of the hybrid finite

element method.

Originally, the hybrid stress finite elemehts were formulated based on the principle of the
minimum complementary energy and the introduction of Lagrange multipliers to enforce
the constraint conditions along the inter-element boundary [52]. In this element
formulation, the assumed stress field in the element must satisfy equilibrium equations a
priori. This causes difficulty to assume an optimal stress field for the hybrid elements.
Later on, it was realized that the equilibrium conditions can be relaxed if the hybrid
element formulation is based on the generalized variational principles such as Hellinger-
Reissner variational principle. The stress field may satisfy the equilibrium equations only
in a variational sense. Thus, the stress field can be described in the isoparametric co-
ordinate system of the element, which would make the element less sensitive to mesh

distortion.



Assumed Stress Field

For the hybrid stress element, the physical fields that must be independently assumed
within the element at the beginning are not only displacement field, but also stress field.
An assumed stress field consists of a set of stress modes and a set of the corresponding
stress parameters. Although a number of mathematical functions such as trigonometric
series and exponential functions can be used as stress mode functions, orthogonal
polynomials are more appropriate as stress mode functions due to their ease and
simplification. It is similar to the displacement functions in the assumed displacement
field. However, while the displacement polynomial is constrained by the number of
displacement nodal degrees of freedom associated with an element, the stress polynomials
have no such constraint. If an assumed stress field does not contain enough stress modes,
the rank of the element stiffness matrix will be less than the total degrees of deformation
freedom and the numerical solution of the finite element model will be unstable. In that
case, there may be too many kinematic deformation modes. It is possible to suppress
kinematic deformation modes by adding stress modes of higher order terms, but this can
not guarantee that all kinematic deformation modes are suppressed. Moreover, each extra
term will add more stiffness[62] and overuse of stress modes will cost more computational
time because the calculation of element stiffness matrix requires inversion of the flexibility
matrix. The lack of a rational way for deriving the optimal assumed stress modes has

obstructed the development of the hybrid finite element method.
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Some mathematical basis for the stability of the numerical solution of the hybrid finite
element model has been established and a number of approaches for obtaining the optimal
stress modes have been proposed. A necessary condition to avoid kinematic deformation
modes [54, 63] is
The total number of stress modes in an assumed stress
field must be equal to or larger than the total number of nodal
displacements minus the number of rigid body modes in an
element.
or
mz=2n-r (1-1)
in which, m is the total number of stress modes in an assumed stress field, n is the total

number of nodal displacements, and r is the number of rigid body modes in an element.

Brezzi [64], Babuska, Oden and Lee [65] presented necessary and sufficient conditions
for stability and convergence of a hybrid element by means of functional analysis.
However, this can be used only as a posteriori check on a formulation. Fraeijs de Veubeke
[66] presented a limitation principle for hybrid elements based on the Hellinger-Reissner
variational principle. This work was extended to the hybrid stress/strain elements based
on the Hu-Washizu variational principle [67]. The limitation principle [66] states that a
hybrid element would be equivalent to its displacement counterpart if a stress space
consisted of all the displacement-derived stress modes as a subspace of the assumed

stress. This means that the eigenvalues of a hybrid element would be no different from
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those of a displacement element when the assumed stress field contains all stress modes

derived from the assumed displacement field.

There are a few approaches for determining an assumed stress field. Using group theory,
Punch, Rubinstein, and Atluri [68-69] established a set of least-order stable invariant stress
selections for three-dimensional brick elements and two-dimensional rectangular elements.
Pian and Chen [70] used the product {c}" (e}, the deformation energy due to the
assumed stresses and displacements, to determine the necessary assumed stress modes.
Pian and Tong [71] introduced the internal displacement parameters to relax the stress
equilibrium condition and used isoparametric interpolation to construct hybrid element.
Pian, Wu, and Cheung [72-73] introduced incompatible displacements to maintain
completeness of the polynomials. The initial stress terms chosen are unconstrained and
form complete polynomials. The additional displacements are used as Lagrange multipliers
to enforce the stress equilibrium constraint. Chen et al [74-75] constrained the stress by
setting the inner product of the non-constant stress modes with the deformation derived
from the incompatible displacement to zero. Huang [41] introduced the concept of natural
deformation mode and natural stress mode and developed a model analysis technique to
find natural stress modes for hybrid elements. Sze [76-78] used orthogonal lower- and
higher-order stress modes to construct hybrid element. It allows the partition of the
element stiffness matrix into a lower- and a higher-order stiffness matrix. When the lcwer-
order stiffness turns out to be identical to the sub-integrated element, the higher-order

stiffness matrix plays the role of stabilization matrix. Han [43] presented an iso-function
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method to derive stress modes directly from the assumed displacement field.

Difficulties with Conventional Hybrid Finite Elements

The conventional hybrid elements introduce an assumed stress field which includes all six
stress components from the beginning. The elements satisfy the continuity condition of
the interlaminar stresses exactly. This can greatly improve the accuracy of computing
transverse stresses. However, the hybrid stress element has two important disadvantages:
the presence of spurious kinematic deformation modes and the inversion of the flexibility

matrix [H]} whose expression will be given later.

Because the assumed stress field of the conventional hybrid elements contains six stress
components, there always exist a large number of stress parameters in the stress field. So,
the inversion of the flexibility matrix is the most costly operation. For instance, an
assumed stress field may contain more £han fifty stress parameters for the stress analysis
of 3-D structures and hundreds of stress parameters for the analysis of composite structure
[33]. This usually requires much computer CPU time for solving a practical problem. If
the CPU time for calculating the element stiffness matrix [K] of 3-D, 20-node
displacement element is assumed as 1, in general, it is 1.48 for corresponding
conventional hybrid element by using minimum number (m=54) of stress parameters. This
suggests poor performance in terms of computing time when compared with the single-

field displacement models. However, this limitation can be overcome by reducing the

13



number of stress components in the assumed stress field of conventional hybrid elements
for the analysis of composite structures. Therefore, the partial hybrid elements [36-50] are

proposed.

In addition, the number of the stress parameters (or stress modes) in assumed stress field
should be reduced to as small as possible. According to the necessary condition (1-1), the
minimum number of stress parameters (or stress modes) may equal m (= n - r). However,
in the practice, there are many examples Aindicating that there are spurious kinematic
deformation modes in the hybrid elements when the requirement (1-1) is satisfied. In order
to suppress these kinematic deformation modes, it is proposed to add stress modes of high
order terms in the assumed stress field. This means to increase the number of stress
parameters in the stress field. Therefore, the question arises as to how many and what
kind of stress modes must be introduced into the assumed stress field. An ideal situation
is that an assumed stress field contains m (=n-r) least-order stress modes and its resulting
element is free from kinematic deformation modes. This kind of assumed stress fields is
considered to be best and is optimal with respect to computer resources. The procedure

to derive this optimal stress field is presented in Chapter 3 of this thesis.

1.1.3 Partial Hybrid Stress Element

For analysis of composite structures, in fact, it is not necessary to introduce all

components of stresses into an assumed stress field. Although all components of
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displacement, strain and stress must be continuous within each layer of a laminated
composite, only the in-plane derivatives €, , €, , Y,, and transverse stresses G, , T,; .Ty,
must be continuous at the interfaces between distinct layers with prefect bonding.
Therefore, the main requirement in developing finite elements is to satisfy all of the
continuity conditions on displacements and transverse stresses at the interfaces and
traction-free condition on the upper and lower surfaces. In order to enforce the transverse
stress continuity, it is needed only to introduce three transverse stresses into the assumed

stress field [40-41].

To formulate the partial hybrid stress element, a new variational principle is required.
Reissner [79-80] suggested a mixed variational principle and it was derived independently
by Moriya [81]. Huang [41] presented a combined energy variational principle by means
of weighted residual method. Based on the modified variational principles, Hoa and his
students proposed a series of partial hybrid stress elements [39-50, 82]. Pian and Li [36]
developed two types of mixed form hybrid stress element for 2-D and 3-D problem. Wang
and Ching [38] presented several modified partial stress finite elements which are 3-D

elements or layer-wise elements.

A partial hybrid stress element only includes three transverse stresses in its assumed stress
field and still satisfies the continuity condition of the interlaminar stresses. The element
is computationally more efficient than the conventional hybrid element. For example, the

CPU time to calculate the element stiffness matrix [K] is 1.29 for 3-D, 20-node partial
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hybrid element by using minimum number (m=23) of stress parameters. It saves more
20% CPU time than conventional hybrid element on calculation of element stiffness

matrix and still provide more accurate stresses than conventional displacement element.

1.2 Three Finite Elements Classified by Composite Structure Theories

The power of a finite element program not only depends on the variational principle
formulating the element, but also on the composite structure theory used in the element
formulation. In general, composite structures are modelled using one of the following
three classes of theories[25, 83]:

1. Equivalent single-layer 2-D theories[17-23], in which deformable models are
based on global through-the-thickness displacement, strain and stress approximations;

2. Layer-wise theories [24-25, 84-86], in which displacement models are based on
piecewise approximations of the response quantities in the thickness direction.

3. 3-D continuum theories[87-89], in which each of the individual layers of a

composite structure is treated as a three-dimensional continuum.

Corresponding to three classes of theories above, the finite elements can be classified into
three classes: the laminated elements based on the equivalent single-layer 2-D theories;
the multilayer elements based on the layer-wise theories, and the 3-D solid elements based

on the 3-D continuum theories.
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1.2.1 Laminated Element

In the laminated elements [17-23], the variation in orientations and properties across the
thickness is integrated to obtain a single property across the thickness. The laminated
elements can be used to model the overall behaviour of composite structures. In the finite
element model using this element, the number of unknowns through the thickness of a
structure is independent of the number of layers in the composite. For this type of
element, the lower-order elements have locking’ problems due to inconsistencies in the
modelling of transverse shear energy and membrane energy. Although the higher-order
elements are less sensitive to locking, the continuity condition of transverse stresses can
not be satisfied. These elements can be used for problems such as vibration or buckling

but these do not accurately predict interlaminar stresses.

1.2.2 Multilayer Element

The multilayer elements are capable of providing interlaminar stresses with the same level
of accuracy as the 3-D solid elements. There are two types of multilayer elements: one
is based on the layer-wise theories; another is based on the 3-D continuum theories. In
the multilayer elements based on the layer-wise theories [24-25, 84-86], the individual
laminae are taken as 2-D layers. These layers are then assembled through the thickness.
Their aspect ratio is restricted to only 2-D (in-plane) consideration because they separate

3-D discretization into 2-D (in-plane) discretization and 1-D (thickness) discretization.
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However the number of degrees of freedom is still dependent on the number of layers in
composite structures. Therefore, it is still expensive to compute interlaminar stresses near
the free edge of composite structures in order to satisfy the continuity of interlaminar

stresses.

In the multilayer elements based on the 3-D continuum theories [42-43], the individual
laminae are modeled using one or more 3-D sub-elements. These sub-elements are then
assembled through the thi_ckness accordirig to the continuity conditions on displacements
and stresses. In order to minimise the problemn of large aspect ratios, the planar
dimensions of the elements should be kept to be not too large compared to the thickness
of the element. Because composite laminae are very thin and a typical laminated
composite may contain many laminae, this usually results in an excessively large number

of elements which means large requirements in computer space and time.

1.2.3 Solid Element

In 3-D solid elements [87-89], no specific kinematic assumptions are introduced regarding
the behaviour of a laminate. It takes the behaviour of the individual laminae into
consideration. However, since the composite laminae are very thin and the composite
structures have discontinuities, a fine finite element mesh is usually needed. It will quickly

exhaust the computer storage.
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In general, the 3-D solid elements are used to accurately determine stresses in composite
structures near discontinuities. However each layer in composites needs at least one
element along the thickness of the structure. The number of unknowns in a finite element
model will depend on the number of layers. Near the free edge of composite structures,

three or more elements will be needed within a layer along the thickness. In addition, 3-D
solid elements show numerical instability under bending deformation when the aspect ratio
is large. The aspect ratio is the ratio between the in-plane dimension and thickness
dimension of the elements. Usually, the thickness of a layer in composite structures is
very small. So this type of modelling is computationally expensive because it needs to

maintain the aspect ratio.

1.3 Global/Local Analysis

The accurate determination of layer level stresses in laminated composite structures
containing large numbers of distinct materiai plies remains a formidable computational
problem. For example, free edges and rivet holes always result in interlaminar stresses and
initiate delamination. In general, it is not possible to account for this phenomenon
adequately through laminated elements. The use of 3-D solid elements and multilayer
elements becomes unavoidable. But the use of 3-D finite element scheme is not always
practical because it traditionally requires that each distinct layer be discretized in order
to assign the correct ply-dependent material response. It usually needs fine finite element
mesh. This increases drastically the number of elements and result in the large
requirement on the computer resource. So complete three dimensional analysis is
prohibitive. In order to solve such problems, some more efficient means of conducting
three-dimensional analysis of laminated composites structures are required, although there

exist a great variety of finite elements (see Table 1-1).
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Table 1-1 Various Finite Element Models in Composite Structures

Type Through-the-thickness Number of nodal
variable assumptions variables
m,
y = u’+ M uk 3+m,+m,+m;
laminated
element The number of nodal unknowns is independent on the number of layers.
(1971) The computing time is less than other elements. The higher-order
elements do not satisfy continuity condition of interlaminar stresses
m;
multilayer u; = ul+ ) v ¢ (2) 3+n,+n,+n,
element
(1973) ¢, (z) is piecewise continuous functions. The number of nodal
unknowns depends on the number of layers and the degree of
interpolation used.
I;
3-D solid y=2 uf* 34+, +1,+,
element
(1971) Every layer needs at least one element along the thickness.
It is computationally expensive.
m;
y; = ul+ > uk 2 3+n,+n,+n,
hybrid {c}=[P] {B}
element
(1972) There are six stress components in assumed stress field.
Transverse stresses satisfy continuity exactly.
my
partial u; = ul+ > ur 2 3+n,+n,+n,
hybrid {o,) =[P, 1{B}
element
(1989) There are three stress components in assumed stress field.
Transverse stresses satisfy continuity exactly.
global/local Different combinations of different elements on requirement.
models It takes advantage of the properties of different elements.
(1984)

Note: 1, m;, n; are the number of polynomial terms.
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There is a growing body of literature on global/local finite element analysis[90-95]. The
phrase global/local analysis has a lot of definitions among analysts. The concept of global
and local may change with every analysis level, and also from one analyst to another. The
advantage of applying the global/local approach is that accurate analyses are performed

with considerably reduced computer resource requirements.

O\\e\a

L Local reglon

2. Transttion reglon
3. Global region

Figure 1-2 Global/Local Finite Element Model

The global/local finite element analysis includes such meihods as substructuring [96],
variable kinematic element [26,97], domain decomposition [98], s version [99], zooming
[100], and Domain division [101-104]. In general, global/local models can be classified
into sequential global/local model and simultaneous global/local model. The main

difficulty with the sequential model is the maintenance of displacement continuity along
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boundaries separating incompatible subregions. In this model, the iterative methods are
used to establish equilibrium along the global/local boundaries. It requires much
computing time. For the simultaneous model, the domain of the structure to be analyzed
is divided into three areas: local region, global region, and transition region as shown in
Fig. 1-2. This model saves computing time but a special transition element is required in

the transition region.

1.4 Thesis Work

This thesis is to develop the global/local finite element models using partial hybrid stress
finite elements for stress analysis of laminated composite structures. In. order to determine
optimal stress polynomials for hybrid stress elements, a classification method of stress
modes is presented. A series of partial hybrid stress elements are developed for the
global/local finite element models, a computer program COMSA is introduced, and a few

numerical examples are presented.

Chapter 2 of this thesis will review a few basic concepts such as the basic variables, the
combined constitutive relation, and composite energy for stress analysis of laminated
composites; describe the elastic problem of laminated composite structures; derive the
composite variational principle again to reveal the relationship between the Hellinger-
Reissner principle and the composite variational principle; and present the general

formulation of single-layer finite element and multilayer finite element.
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Chapter 3 of this thesis will present a classification method to determine optimal stress
polynomials for an assumed stress field. A few basic concepts are defined firstly, and then
classification condition is presented. The procedure to classify stress modes, select optimal
stress modes, and set up an assumed stress matrix is described in detail. In addition, the
optimal condition of assumed stress field is presented. Thus, by means of iso-function
method [43] and classification method, the stress polynomials are constrained by the
number of degrees of freedom associated with a hybrid stress element. Following this
process, both the displacement polynomials and the stress polynomials are constrained by

the number of degrees of freedom of the hybrid elements .

Chapter 4 will formulate 3-D, 8-node partial hybrid solid element and 3-D, 20-node partial
hybrid solid element using the general formulation of single-layer element in Chapter 2.
The two elements are isoparametric compatible elements. Therefore, the displacement
functions are the same as the shape functions of the elements. The stress polynomials are
derived by the classification method. The eigenvalue test is used to detect zero-energy

deformation modes and the absence of rigid-body motion capability.

Similarly, Chapter 5 will present 4-node partial hybrid degenerated plate element and 8-

node partial hybrid degenerated plate element.

Chapter 6 will present 6-node partial hybrid transition element and 15-node partial hybrid

transition element. The two elements are used to smoothly connect the 3-D solid elements
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with the degenerated plate elements. In order to enforce the compatibility at the interfaces
between different elements, the shape functions of 3-D solid element and degenerated
plate element are carefully investigated. Then, new shape functions are derived for the

transition elements.

Chapter 7 will formulate multilayer solid element and multilayer transition element using
the general formulation of multilayer element in Chapter 2. They consist of a stack of 3-
D, 8-node partial hybrid solid element and 6-node partial hybrid transition element,

respectively.

Chapter 8 will apply the new elements to solve a few problems of laminated composite

structures, and present two global/local finite element models using these new elements.

Chapter 9 will sum the contribution of the current research work and give a few

suggestion for future work.

In the appendix, the general procedure of finite element analysis using the computer

program COMSA, the basic variables and arrays in COMSA, and the input data files are

introduced.
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Chapter 2
PARTIAL HYBRID STRESS

FINITE ELEMENT FORMULATION

In order to develop new hybrid finite elements for laminated composites, it is necessary
to understand the behaviour of laminated composite structures. As mentioned in Chapter
1, the laminated composites are made of a stack of bonded laminae which are
manufactured in the form of thin sheets using long continuous fibres and isotropic matrix
(see Figure 1-1). In analysis of laminated composite structures, the laminae are assumed
to be bonded perfectly and the individual laminae are treated as homogeneous orthotropic
materials. Therefore, the lamination and anisotropy are the instinct behaviours of the
laminated composite structures. They lead to the conjunction conditions at interfaces
between different layers in laminated composite structures. The conjunction conditions

refer to the continuity conditions of partial stresses and strains at interfaces.

In order to satisfy conjunction conditions, the first task is the identification of globally

continuous variables and locally continuous variables. Usually, the lamina plane is denoted
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by the Cartesian co-ordinates x, y, and the thickness direction by z (shown in figure 2-1).

Figure 2-1 Composite structure and its co-ordinate systemn

In the laminated composites, all components of displacement, strain, and stress are
continuous within each layer due to the fact that the individual laminae are treated as
homogeneous orthotropic materials. At the layer interface with perfect bonding, the
displacements are also continuous due to the compatibility condition. As a result, the in-
plane derivatives (three inplane strains) €,, €,, €,, are continuous across the thickness.
Meanwhile, the reaction forces give rise to transverse stresses (interlaminar stresses) G,,
O, O, and they are also continuous across the thickness because of the equilibrium
condition. This means, along the thickness of composites, the in-plane strains ( €,, €, &,,)
and transverse stresses ( G,, G,,, G,,) are globally continuous variables. On the other hand,

the transverse strains €, €, €, and in-plane stresses O,, ©,., O,, are not necessarily
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continuous across the interfaces between different layers, although they must be
continuous within each layer. So, they are locally continuous variables. Thus, the globally
continuous variables are those that are continuous not only within the plane of the
laminate but also across the interface from one layer to the next. This is the result of
consideration for compatibility and equilibrium. The locally continuous variables are those
that are continuous only within the plane of the lamina but are not necessarily continuous

across the interface from one lamina to the next.
2.1 Basic Varables

By classifying the variables into globally continuous variables and locally coatinuous
variables, the stress ¢ and strain e can be divided into the following two parts,
oo=[c,0,7,]' ad o, =[0, 7,1,
gg =le, e, v, 1" and e =[e %I (2-1)
Combining the globally continuous variables in composites, the globally continuous vector

is defined as

e
o4

Similarly, combining the locally continuous variables, the locally continuous vector is

defined as
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P {-%} 2-3)

in which the negative sign is introduced to ensure the symmetry of the combined
constitutive relation which is

p=[R]1lgq (2-4)
or

R, R,
Ry R,

Coter ol
~€r Og 24y

where [ R ] is called the combined constitutive matrix. Because the constitutive relation

can be expressed in the form,

c, C
g=[Cle or {g"}=[ o

& @-5)

where [C] is the stiffness matrix of materials, and

S; S
e=[Sle or {:i} =[S':T Sz {gz} -5y
3

where [S] is the compliance matrix of materials, the matrix [R] can be expressed as

g |&f ¢
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R, Ry |c,-c,6G c,65t
R1< . “|{ 7~ 277 *7 (2-6)
Ry Ry GG -G
and
R, R, Sy * -Sl- 's. ’
[R] = T - Ta-l oTa-1 J (2-6)
Ry R3] |-8,5; S; 5 S,-S;

Due to the fact that the matrices [C] and [S] are symmetric matrices, the matrix [R] can
be proven to be a symmetric matrix. It can be shown that
2-7

[R]T=[R] 27
To satisfy continuity condition at layer interfaces (or interlaminar surfaces), the six
globally continuous variables should be taken as basic variables in the problem of
laminated composite structures. The basic variables, in the partial hybrid stress elements,
are displacements u, v, and w and transverse stresses G,, T,,, and T,,. Thus, an elasticity

problem for composite structures can be adequately described.

2.2 EHlasticity Problem for Composite Structures

Consider a linear anisotropic elastic body under static loading. The body occupies the

volume V and is bounded by the surface S, which is decomposed into S: S,US,. Boundary
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displacements are prescribed on S; , whereas surface tractions are prescribed on S,. The
outward unit normal on S is denoted by n. The following relations between three fields:
globally continuous vector q, locally continuous vector p, and displacement u in the
volume have to be satisfied.

1. the in-plane strain-displacement equations:

1 .
e;:==(u; ;+u; ;) i,j7=1,2
-ij 2 ilj Jel '7 (2'8)
or
e,~Du (2-8)°
2. the transverse strain-displacement relations:
81-1:1(111 j+uj i) i=1,2,3 j=3
2 - ’ (2-9)
or
e, =0 u (295
3. the stress-strain equations (constitutive equations):
p=[R]q (2-10)
4. the equilibrium equations:
(2-11)

O15,5+F:=0
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in which, F is the body force in V.

Moreover, there are three sets of boundary conditions for the displacement field and

stress field.

a. the traction boundary conditions:

o-n=1T, and T,=T (2-12)
or
0,;0;=T,;, and T, ;=T, on S, (2-12)
in which, T is the prescribed surface force on S,.
b. the displacement boundary conditions:
u=d (2-13)
or
u;=d;, on S, (2-13)
in which, d is the prescribed displacement on S,.
c. the conjunction conditions at interlayer surfaces:
uf=us? i=1,2,3
xe (2-14)
0:3=043 k=1,2,...,N
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where N is the number of layers along the thickness of composite structures.
2.3 Composite Variational Principle

To present the composite variational principle, the composite energy has to be defined and

the composite variational functional has to be derived.

2.3.1 Composite Energy

For a linear elastic body, the potential energy can be expressed as a quadratic form of
strains,
-1l
A(u) -38 [Cle
(2-15)
and the complementary energy can be expressed as a quadratic form of stress,
B(u)=1e7[Sl o
2 (2-16)
Similarly, one can define a new energy, named composite energy, as a quadratic form of
the globally continuous variables due to the fact that the constitutive matrix [R] is
symmetric matrix (2-7),
2-17)

E(@) =—;—q"[R] q

or
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6 6
Y Y Riq:idy (2-18)

i=1 =1

E=

M=

Thus, the constitutive equations (2-10) can be written in the form,

OE(q) _..
oq; Pr (2-10)°

2.3.2 Composite Energy Functional

The variational functional based on the composite energy can be derived through different
ways. Huang [41] established the variational functional by weighted residual method,
Reissner [79-80] developed it using Lagrange multiplier and ‘partial’ Legendre
transformation method, and Moriya [81] developed it through the Hu-Washizu variational
principle. Lately, Pian [36] used the Hellinger-Reissner variational principle to obtain the
functional. In view of simplicity, the variational functional, termed composite energy
Sfunctional, is derived again by means of the Hellinger-Reissner variational principle in

order to reveal their difference.

The Hellinger-Reissner variational principle contains two fields: displacement field and
stress field. The constraint conditions are constitutive equations (2-10) and displacement

boundary conditions (2-13) only. The strain-displacement equations (2-8) and (2-9),
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equilibrium equations (2-11), and traction boundary conditions (2-12) are only satisfied
a posteriori. Satisfying the displacement boundary conditions (2-13) a priori, the Hellinger-

Reissner variational functional can be expressed as follows,
II=f [~ a”[S] o+67 (Du) -F 7u] dV—f TTy ds (2-19)
v 2 Se
in which,

o et e e

Substituting them into the (2-19), the functional is written in the form,

II=fV[-—;- [0z ozl [S] {g:}+[o§ agl {gﬁ} (2-21)

-FTu] dv- f TTu ds
Se

Using the constitutive equations (2-4) to eliminate the in-plane stress G, , the first term

in the functional becomes
[ -3 1of of1 1s] {:;}dv= (-2eflR e 2ai[RIo) AV (2-22)

and the second term becomes after adding and subtracting G~ €,
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fv[og ogl gﬁ}dV=fv(c:[R1] Te+ag[R,] Te, (2-23)

+0z (D;u-e,) +o;Du) dV
Substituting them into the functional (2-21), it is modified to

= [5q7 (K] g+of (Dyu-e,) ~o;D;u (2-24)

~-FTu] dv- f TTy ds
Se

If the in-plane strain-displacement equations (2-8) are satisfied a priori, a new functional
is obtained as follows [41],

o= f JE@ +a5Du-F Tul dv- sgrfu ds 2-25)
In this new variational functional, there are two fields: displacement field and partial stress
field. The constraint conditions are the constitutive equations (2-10), the in-plane strain-
displacement equations (2-8), and displacement boundary conditions (2-13). This new
variational functional is named by composite energy functional. It is different from the
Hellinger-Reissner variational functional because the in-plane strain-displacement

equations (2-8) become constraint conditions in the new functional [9].
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2.3.3 Composite Variational Principle

In order to present variational principle, it is assumed that the composite energy function
E is a positive definite function of the components of globally continuous vector, and the
body forces and surface forces are derivable from potential functions £2(u) and ¥ (u) such

that

-86Q (u) =FTu
-8% (u) =T%0u

(2-26)
Thus, the composite variational principle states

Among all the admissible displacement fields and partial stress (transverse stress)
fields, which satisfy the in-plane strain-displacement equations (2-8), constitutive equations
(2-10), and prescribed displacement boundary conditions (2-13), the actual displacement
field and partial stress field make the total composite energy

(2-25)

o= f . [E(q) +ozDu-FTul dv- s T'u ds

an absolute minimum OI1;,=0.

In this principle, the transverse strain-displacement equations (2-9) and equilibrium
equations (2-11) are Euler equations; prescribed traction boundary conditions (2-12) are

the natural boundary conditions. For composites, the conjunction conditions at interlayer
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surface (2-14) must be satisfied a priori.

2.4 General Formulation of Partial Hybrid Stress Finite Element

In chapter 1, finite elements are classified in view of the composite structure theories
(laminated element, multilayer element, and solid element) and the variational principles
(displacement element, hybrid element, and mixed element). Furthermore, finite elements
for laminated composites can also be classified in view of the assumption of the
displacement and stress fields along the thickness direction. From this point, finite
elements can be divided into two categories: single-layer elements and multi-layer

elements [49-50].

The single-layer element assumes a displacement field and/or a stress field over the
element along the thickness direction. The number of degrees of freedom associated with
the element is independent of the number of material layers within the element. If the
element contains only one material layer, it is a 3-D solid element; if the element contains
more than one material layer along the thickness direction, the equivalent single-layer two-
dimensional model must be used to obtain single properties across the thickness of the

element, and it becomes a laminated element.

On the other hand, the multi-layer element assumes many displacement fields and/or stress

fields within the element. Each displacement/stress field is related to a layer along the
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thickness of a laminated composite structure. The element matrices are assembled through
the thickness by means of continuity conditions at the interfaces between different layers.
The number of degrees of freedom in the element depends on the number of material

layers in the laminated composite structure.

In this chapter, the general formulation of the partial hybrid element is presented. They

will be used to formulate a few special elements in the next chapters.
2.4.1 Formulation of Partial Hybrid Single-Layer Element

The composite variational functional has been obtained in the form,

o= f [E(q) +o3D,u-F Tul dV- < TTu ds
i (2-25)

in which, the composite energy is

E(Q) =%q’[R] q
2-17)

and the vector of global variables includes in-plane strains and transverse stresses,

4
9‘{0;} 2-2)

and the layer material matrix [R] is
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R, R st -Sts.
(RIS . |4 : 1o (2-6)

R Ry |-8fs;* sfsits,-s,

where [S] is the compliance matrix of layer materials. Substituting equations (2-17), (2-2)

and (2-6) into equation (2-25), the functional becomes

o=f,[5e5R] e+ S 07 R, ] 05407 [R;1 e,
(2-27)
+azD,u-F Tu] dv-  Truds

Within a single-layer finite element (see figure 2-2), a displacement field is assumed along
the thickness of the element. Using isoparametric shape functions, the displacement field

is described by the nodal displacement J as follows,

u={§/}= (V] 8 (2-28)

where [N] is the matrix of shape functions. Thus, the partial strains are

e,
=p [ OU Ov Jdu_ Odv 2-29
"{:}D'u[ax 3 3 a] [B,18 (2-29)

and the partial derivatives are

(2-30)
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N Material Layers

Figure 2-2 A Single-layer element

in which, [B,] is a partial geometry matrix and [B, ] is a partial derivative matrix. Along

the thickness of the laminates, a partial stress field is also assumed independently as

B.
o, B, (2-31)
(L gyz = [Pg] = (641052 - -O5lY.
= B

where [P,] is an assumed stress matrix, G, are the partial stress modes, and B,- are the
corresponding stress parameters. If the composite structure consists of N material layers,
substituting equations (2-28)-(2-31) into the'composite variational functional (2-27), the

functional becomes
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N
=\ {1lsr i
=3 (58%[, (B7IR (B,ldV 8
+28%[ [21TIR] [P)aV B (2-32)
+B*[  [P1T((B]+[R17[B,1)aAV 8}

-87( [N TFidv -aff [N TTids
v S

Denote

N
(5] =-Y [,[P17[Ry] [P,) dV
i=1

N
[G] =§_,: [y[B1T([B.]+[R17[B,]) dV

. (2-33)
(K] =;: [ B, TRl (B, dV
=1

N
f=1$=_‘I [, mTFiav «f (M TTids

Note that, when the number of material layers is more than one, the variation in fibre

orientations and material properties across the thickness of the element is integrated to

obtain a single property across the thickness. Therefore, the size of the element matrices

does not depend on the number of material layers in the element. Then, the functional can

be expressed as

=Llar 5-1Lpr T -8TF
o, 26 [K,] 25 (H] B+B*(G) 6-8 (2-34)
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In this variational functional, there are two independent variables subject to variation.

From the two partial stationary conditions with respect to 3 and & as follows,

aL, oL,
B and 5% 0 (2-35)

the relation between stress parameters 3 and nodal displacements & is obtained,

(H]1 =[G &
(2-36)
and
(2-37)
[k, 8+[G] TB=£f
The equation (2-36) can be expressed in the form,
p=[H]1*[G]1 &
(2-38)

At this point, one can say that, as nodal displacements are prescribed, the partial stress
field within the element has been obtained by finding the value of [ that define the best

stress field (2-31). Eliminating [ in equation (2-37) using (2-38), one obtains

([K4 +[GIT[H] *[G])8=£
(2-39)

Denote
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(K] =[G T[H] *[G]

(K] = [K,] + [K,] (2-40)

in which, the semi-stiffness matrix [K,] is a displacement-formulated stiffness matrix
based on the globally continuous strains, and the semi-stiffness matrix [K,] is a hybrid-
formulated stiffness matrix based on the globally continuous stresses. Then, the governing
equation of the element is obtained,

[K]18=£f

(2-41)

where [K] is the element stiffness matrix. For the partial hybrid element, the element
stiffness matrix consists of a displacement-formulated stiffness matrix [K,] and a hybrid-
formulated stiffness matrix [K,]. In the single-layer element, the size of the element matrix
[K1] is not related to the number of material layers within the element. If there are more
than one material layer, the single-layer element is a laminated element; if there is only

one layer in the element, the element becomes a 3-D solid element.

After obtaining the nodal displacement & in a finite element model, the displacement field,

stress field, and strain field can be obtained using the following equations:
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1. Displacement field

u={§= [ (2-28)

2. Partial globally continuous strains

8x
e ={8 ,,}=Dgu= [B,18 (2-29)

3: Partial globally continuous stresses

B=[H]*[G]8
(2-38)
and
02
0,=19yzt =[P B=[P,) [H1 *[G] & (2-31)
OZX
4. Partial locally continuous stresses within i-th layer
o, '
0:={ 0, t=[Rl e+ [R] o,
Oxy.
(2-42)

=([R] [B,] +[R;] [P,] [H] *[G]}®

=[] Bl + (G [G172 [P, [H] 2 [G1)8

44



5. Partial locally continuous strains within i-th layer

€z
e:’{eyz}=— [Rzi] Teg“ [R3i] o,

ezx
={- [RS1T[B,] - [R'] [P,] [H1*[G]]®
={1817 (5172 [B,] +[G51 2 [2,] [H] [G]}8

For convenience, all element matrices are given here again,

[K] = [K,] +[K,]
N I3

[k =Y [, [B,1 T(R] [B,) dV
1=1

[Ky] =[G] T[H] *[G]

N
[H] ==Y [, [P,] T[RS] [Pl dV

1=1

N 3
(61 =3 Jy (21 " [B,] + [R{] 71B,1) aV
=1

f=§; fv [N] TFidV + fs [N] TTids

(2-43)

(2-44)

These general equations of the single-layer elements will be used to develop two

degenerated plate elements in Chapter 4, two 3-D solid elements in Chapter 5, and two

transition elements in Chapter 6.
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2.4.2 Formulation of Partial Hybrid Multilayer Element

Usually, a multilayer element consists of a stack of sub-elements. According to the
distribution of the material layers, a composite structure is divided into many sub-layers
along the thickness and each sub-layer is modeled by a sub-element. The matrices of sub-
elements are firstly formulated, and they are assembled through the thickness using
continuity conditions at the interfaces between different sub-elements to form the
multilayer element matrices. Therefore, there are two steps to obtain a multilayer element
matrix: the first is to formulate the sub-element matrices and the second is to assemble

them to form a multilayer element matrix.

In the above section, the composite variational functional has been expressed in the form,

.| v[-;‘-e:[Rll e,+%a:[R3] 0, +01[R,]1 e,
2-27)
+0 Du-FTul dv-|_ TTu ds
If a composite structure contains N different material layers, the multilayer element will
consist of N sub-elements (see figure 2-3). Therefore, the variational functional becomes

N
= 1 i 1 i i
Lo} [ e Rl e 3o R ool (R0 ) s

+ol’Dyut-Frui] dv- fsr Tyl ds
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Sub-Element Matrices

In multilayer element, the displacement field and the partial stress field must be assumed
within each sub-element. Suppose the displacement fields in different sub-elements have
the same expression form, and the partial stress field in different sub-elements have the

same expression form. Thus, for the i-th sub-element, the displacement field can be

assumed as

/ 7

’ 7/ 2nd sub-element
K 1st sub—element

Figure 2-3 A multilayer element

ui
ui= Vi}__. [N] 34 (2'46)

wi

where [N] is the matrix of shape functions. Then, the partial strains are
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1_) il _p 1 [Oul vi dui dvi]T_ 1 (2-47)
Dgu [ ox ' oy ' 9y * 0x (418

and the partial derivatives are

ow!l owl dvi owi duil”

1 = 1
Dyu [az "dy 9z ' ox Oz (5,18 (2-48)

in which, [B,] is a partial geometry matrix and [B, ] is a partial derivative matrix. Along

the thickness of the sub-element, a partial stress field is also assumed independently as

H
i

ai= :iz =[P 1B*=[0o_, @ c ]*Bé
gz g g1 Yg2° - *Ygll]. (2-49)

0 zx

1
Py
where [P,] is an assumed stress matrix, {C,} are partial stress modes, and Bj‘ are stress

parameters. Substituting equations (2-46)-(2-49) into the composite energy functional (2-

45), the functional becomes

N .
I, (3847, (317 (%{1 (B,) Qv &

+2847[ [P17[R] [B,}dV Pt
+p47[ [P1T([B] +(R/17(B,]) dV 8¢

-a!f_{v (N] TFdV -aiffs [N]Trds }

(2-50)
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Denote

[ =-I, [P T[R") [PldV

[G11 =/, [P T([B.]+[R17[B.])dV

(K41 =[BT [R] [B,)dV (2-51)

f’=fv [N] TPV +f$ [N Trds

The matrices in the equation (2-51) are the sub-element matrices. They will be assembled

using continuity conditions at the interfaces between different sub-elements.
Multilayer Element Matrices

Using the expression (2-51), the variational functional (2-50) can be expressed as

N
= 1aiTrpi 1 8i-LgiTrg11 84

+BiT[G 1) $i-B4T£ L)
In this variation functional, the stress parameters Bji in equation (2-49) are internal
parameters, called layer stress parameters. They are not independent and the sub-element
matrices can not be assembled based on these layer stress parameters. Therefore, they
must be replaced by independent parameters. There are two ways to formulate multilayer
matrices: one is to introduce a group of laminated stress parameters [33,105], and another
is to introduce a group of surface stress parameters[42-43]. Laminated stress parameters

or surface stress parameters are a group of independent parameters. By means of the
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continuity conditions at interfaces between different sub-elements, the layer stress
parameters ' can be replaced by the laminate stress parameter B or the surface stress
parameters O. Then, the sub-element matrices can be assembled to form multilayer
matrices. The operations to assemble the sub-element matrices are analogous to element
’assembly’ operations; a set of layer-to-laminate stress parameter ‘pointers’ and nodal
displacement ‘pointers’ are used to locate (and add in) sub-element matrix contributions

in the multilayer element matrices.

In the two approaches above, it is necessary to transfer internal stress parameters (or layer
stress parameters) to surface stress parameters (or laminate stress parameters). However,
if surface stress parameters are used directly in the assumed partial stress field (2-49), the
transformation will be not necessary. One can assume a partial stress field in the following
form,

05=[P1¢1=[P] 2{(1+0) af+ (1-0) e} 253
where o' and 0’ are the surface stress parameters corresponding to upper and lower
surfaces of the i-th sub-element, respectively. In this expression, a stress mode ¢; in the
matrix [P] is related to both of upper and lower surfaces o' and o' and corresponds to
two stress modes 0.5*(1-*{)*0’j and 0.5*(1{)*0’1- in the assumed stress matrix [P,]. The
matrix [P] is determined by displacement polynomials, iso-function method, and
classification method. At the interface between the sub-element i and i+l, the surface

i+l

stress parameters O is the same as 0™ . This means:
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2-54
at=ai" (2-34)

Furthermore, the continuity condition at interface of the laminated structure can be

expressed as:

i I+l
Oglemy =05 lgaracy
(2-55)

Thus, one can obtain the condition

[P] [¢tary=[P] |paoray (2-56)

Therefore, the matrix [P] must be a function consisted of even order terms of the
coordinate L. In order to assemble all the sub-elements in the multilayer element, define

the assembling rule as

N
8=Y 8i=[d* 4% ... d¥1]T (2-57)

i=1

where d* is the nodal displacement vector at the k-th surface, and

N
=Y ai=[a* a® ... a¥i]T (2-58)

I=l

Applying these assembling rules, the multilayer element matrices are obtained by

51



N N
k=Y (k51 [HI =Y [H1]

i=1 I=] (2’59)
N N
[G]1=3 [67] £=y £t
i=1 i=1

Summations indicate assembly of sub-element matrices by addition of overlapping terms.
Thus, the variational functional (2-52) becomes
nm=%artxd] 6-%QT[H] e+9T[G]18-87F
(2-60)
Similar to single-layer element, the stiffness matrix of the multilayer element can be

derived using the variational principle of composite energy,

[K] = [Kd] + [Kh]

[&,] =[G T[H] " [G] (2-61)

in which, [K] is the element stiffness matrix, the semi-stiffness matrix [K,] is a
displacement-formulated stiffness matrix based on the globally continuous strains, and the
semi-stiffness matrix [K,] is a hybrid-formulated stiffness matrix based on the globally
continuous stresses. Then, the governing equation of the multilayer element is
[K] 8=F
(2-62)
After obtaining the nodal displacement 3 by means of system equations, the displacement

field, stress field, and strain field can be obtained using the following equations:
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1. Displacement field

" 1={3§}= — (2-46)
W.i

2. Partial globally continuous strains

1
€x
e;={e; t=Dou=[B_] & (247)

F
Exy,

3. Partial globally continuous stresses

o=[H] *[G] &
(2-63)
oz 'z
og- o,,z =[P ]d)‘ (2-53)
oZX
4. Partial locally continuous stresses within i-th layer
° 264
oz={ols=[R 1 e+ (Rl o} (2-64)
i
Oxy,
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5. Partial locally continuous strains within i-th layer

e:
ez={el,t=—[R)] Tel- [R]] o} (2-65)
i
ezx
For convenience, all element matrices are given here again,
(K] = [Kd] + [Kh]

[K,) =[G1T[H] *[G]

N i N .
(K1Y (K] (=) (8]

1=]1 2=1
N N
(6<% [e] £y £+
1=]1 =1

(2-66)
[H1] =-[,[B,1T[R] [P]dV

(641 =/,[B]17([B,] + [R1T[By]) dV
(k41 =/,[B,1 TIR] [B,]dV

£i= f L [N TFAV + fsc [N] TTds

These general equations of the multilayer elements will be used to develop two multilayer

elements in Chapter 7.
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Chapter 3

CLASSIFICATION METHOD

For hybﬁd stress elements, the displacement interpolation functions are determined by the
number of degrees of freedom associated with the elements. However, the stress
interpolation functions are not constrained by it. It is possible to present many stress
interpolation functions for a type of hybrid stress element. In order to find optimal stress
polynomials, this chapter presents a classification method to determine stress polynomials.
For the purpose of a clear presentation, it is useful to give the definitions of the stress
field, stress mode, stress matrix, natural deformation mode, rigid body mode, zero-energy
stress mode, kinematic deformation mode, and stress mode group at the beginning of the

chapter.

Stress field:

In the hybrid formulation, a stress field is assumed independently from the beginning,
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G-
c=[P]P

It can be expressed in the form

g=[g,0,..0,1. (3-2)
B

In which, the parameters §; are the stress parameters.

Stress modes:
Stress modes are vectors which are functions of the coordinates. For example, vectors {c;}

in equation (3-2) are stress modes.

Stress matrix:
An assumed stress matrix consists of several stress modes. In equation (3-1), the matrix

[P] is a stress matrix.

Natural deformation modes:
Deformation modes in an element that are independent from each other. In this thesis, the
eigenvectors of an element stiffness matrix are regarded as the natural deformation modes

of the element.
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Rigid body modes:
Rigid body modes are displacement modes in an element that do not produce deformation

energy.

Zero-energy stress modes:
Stress modes in the stress matrix of a hybrid element that do not produce deformation
energy. The eigenvalues of the element stiffness matrix corresponding to these stress

modes equal zero. These zero-energy stress modes correspond to rigid body modes.

Kinematic deformation modes:

Deformation modes in an element corresponding to spurious zero stiffness may be caused
by unsuitable numerical integration technique or unsuitable assumed stress fields. In this
work, it is assumed that suitable numerical integration technique is used. Even though
zero-energy stress modes may not appear in the stress matrix, spurious zero stiffness mode
can occur. This happens when more than one stress mode is picked from one eligible
stress mode group. This zero stiffness mode is called kinematic deformation mode in this
work. The exception for this case is when the stress modes are interchangeable between

different stress mode groups. This exception is discussed in section 3.5 of this chapter.

Stress mode group:
A stress mode group contains many stress modes that are interchangeable in the stress

matrix [P] and does not cause kinematic deformation modes. The m stress mode groups
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correspond to m natural deformation modes and the zero-energy stress mode group

corresponds to rigid body modes.

If an element has n degrees of freedom, its nodal displacement vector must consist of n
components. The displacement distribution in the element can be represented by m (=n-r)
natural deformation modes and r rigid body modes. In this work, it will be shown that the
m natural deformation modes can be used to classify stress modes in various assumed
stress fields for a hybrid element. All existing stress modes are classified into m (=n-r)
stress mode groups corresponding to m natural deformation modes and a zero-energy

stress mode group corresponding to rigid body modes in the element.
3.1 Hybrid Stress Element
The Hellinger-Reissner variational principle contains two fields: displacement field and

stress field. Satisfying the displacement boundary conditions (2-13) a priori, the variational

functional (2-19) is,

- fv[-%af[SJomT(Du)-F Taldv- [ T7u dS (2-19)

in which, [S] is the material properties matrix relating stresses to strains. Within the

element, an assumed displacement field is assumed,
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61.
u =[N, N, ...N, ] 62 (3-3)
']

n

=[N13

where [N] is the shape functions and J is a nodal displacement vector. At the same time,
a stress field is also assumed independently in the form of equation (3-2). Thus, the

derivatives of the displacements are
Du=[B]% 3-4)

where [B] is the geometry matrix relating strains to displacements. Substituting equations

(3-2)-(3-4) into the functional (2-19), it is transformed to

I=-2p7(/ [PVISIEPIaV) B+ B[ [PILBIINS

~87([ INI'F dv+ | [NI'T dS) (3-5)

Denote
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[H]= [PYISIPIdV
[Gl=] [PI'[BldV (3-6)

f=[ INI'F av+ [ INT'T dS

where [H] is the flexibility matrix, [G] is the leverage matrix, and f is the equivalent nodal
force vector. Thus, the functional (3-5) can be rewritten in the form,

I--_p*[H1B+B7(GI8 -8

2 G-7

In this variational functional, there are two independent variables B and & subject to

variation. From the partial stationary condition with respect to B,

A

op (3-8)

the relation between stress parameters [ and nodal displacements J is obtained,

=[G]&
[H]B=IG] (3-9)
By means of this relation, then, the functionai (3-7) becomes
=2 S™(GT (AT (DB -8
(3-10)

It can be rewritten as
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-1 87(k]8-87F
2 (3-11)

in which, [K] is the element stiffness matrix. It can be expressed in the form,
[K1=[GI"TH]'[G]
(3-12)
From the partial stationary condition with respect to 8, the governing equation of the
element is obtained,
[K] 8= 3-13)

When the element equations are obtained, the system equations of the finite element
model for analysis of structures can be established. After solving the system equation, the
displacement field is obtained by finding the value of J that define the best displacement
field (3-3). And then, the stress field is also obtained by finding the value of B that define

the best stress field (3-2) within the elements.
3.2 C(lassification Method

The hybrid formulation based on the Hellinger-Reissner principle relaxes the stress
equilibrium condition. The stress field would satisfy the equilibrium equations only in a
variational sense. Since 1964, many assumed stress fields have been proposed for 2-D,

4-node hybrid stress plane element and 3-D, 8-node hybrid stress solid element. For
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example, Pian [70] proposed an assumed stress field for 2-D, 4-node plane element and
another for 3-D, 8-node solid element. Punch and Atluri [68-69] gave two assumed stress
fields for 2-D, 4-node plane element, and eight assumed stress fields for 3-D, 8-node solid
element. Huang [41] presented an assumed stress field for 3-D, 8-node solid element.
Although each of these assumed stress fields may contain the same number of stress
modes, the stress modes in these fields are different. In order to study the relationship

between different stress modes, the concept of natural deformation modes is used.

A finite element has a finite number of degrees of freedom. For instance, a 2-D, 4-node
displacement element has (n=) 8 degrees of freedom, and a 3-D, 8-node displacement
element has (n=) 24 degrees of freedom. In an element, there exist (n-r) natural
deformation modes and r rigid body modes. The displacement distribution in the element
can be represented by them. The equilibrium equation of a displacement element is

[K13= f
(3-14)

If the nodal force vector is proportional to the nodal displacement vector, the equilibrium

equation becomes a eigenvalue equation. It can be expressed as follows

( [K]-A[1])3=0
(3-15)

[K] is an nxn element stiffness matrix. This equation will give (n-r) non-zero eigenvalues

and r zero eigenvalues, and (n-r) eigenvectors corresponding to the (n-r) non-zero
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eigenvalues. The (n-r) eigenvectors &; (i=1,2,3, ... m) depend only on the geometry and
material properties of the element, and they are unique. If vectors §, (i=1,2,...m) are the
eigenvectors of the stiffness matrix [K], they must satisfy the condition:

6T6 =0 P ai
$ g (3-16)

876.=1 i=j

In this work, these eigenvectors are considered to be the natural deformation modes of the

element. They can represent the deformation in the element.

In the hybrid element, the eigenvectors and eigenvalues of the stiffness matrix will be
sensitive to the assumed stress modes. The eigenvalue examination will give r zero
eigenvalues corresponding to rigid body mode and m (= n-r) non-zero eigenvalues
corresponding to natural deformation modes if the assumed stress field is suitable. For a
hybrid element, if stress modes can be classified, there exist at least m stress mode groups
because the stiffness matrix of hybrid element must have m non-zero eigenvalues, except
zero-energy stress mode group. Otherwise, the hybrid element will contain kinematic
deformation modes. On the other hand, no matter how many stress modes there are in a
stress matrix [P], the maximum number of non-zero eigenvalues of an element stiffness
matrix is always equal to or less than m. Therefore, the number of stress mode groups is
équal to or less than m. Thus, it can be considered that there exist and only exist m stress
mode groups except zero-energy modes. All stress modes in various assumed stress

matrices can be classified into the m stress mode groups corresponding to m natural
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deformation modes and the zero-energy stress mode group corresponding to rigid body

modes [106].

Postulate:

There exist and only exist m (=n-r) natural deformation modes in a hybrid

element. All stress modes in assumed stress matrices can be classified into m

stress mode groups corresponding to m natural deformation modes and a zero

energy mode group corresponding to rigid body modes of the element which

has n degrees of freedom and r rigid body modes.

Based on this postulate, it can be considered that an assumed stress field can be

represented by stress modes in the m stress mode groups related to m natural deformation

modes, except zero-energy stress modes. This can be expressed as follows,

¢ = [P]B=[ o, ,0,, ..

3G 1 5

B,)
B2

=Y [P1B,
#=1 (3-17)

B

~ L,

where G, is the representative stress mode of the i-th stress mode group, and [P;] and f3;

(i=1,2,...m) are the stress matrices and stress-coefficient vectors related to the i-th stress

mode group which corresponds to the i-th natural deformation mode. They are

[P]=[0 .. 0, o,, 0 ... 0]

(3-18)



and

B,=[0..06,0..0/"
(3-19)

The stress mode which belongs to the i-th stress mode group can be expressed in the
form,
o, = [P]B,
(3-20)
Therefore, the vector 3, can be used to identify the i-th stress mode group which
corresponds to the natural deformation mode §; (i=1,2,..m). Using equation (3-9), one has
[H] B~[G] 3,
(3-21)
If the stress matrix [P] does not contain any stress mode which belongs to the i-th stress
mode group, the value of B; in the vector [3; should be equal to zero. Then, one can add
a new stress mode into the stress matrix [P]. The new stress mode will be classified by
m natural deformation modes. Corresponding to the i-th natural deformation mode §,, the
condition to check whether the new stress mode belongs to the i-th stress mode group can
be expressed in the form,
B;=0 if new stress mode does not belong to i-th stress mode group
B;#0 if new stress mode belongs to i-th stress mode group
Using equations (3-15), (3-16), and (3-21), the eigenvalues are obtained as follows,

1,=8;[K18,~; [H1B, (3-22)
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Because the flexibility matrix [H] is symmetric and positive, all of the diagonal elements

in the matrix [H] may not be equal to zero. Thus, the classification condition above

becomes
A=0 if new stress mode does not belong to i-th stress mode group
A=0 if new stress mode belongs to i-th stress mode group

Before classifying stress modes, one can find a number of initial stress modes since there
are many ways to derive assumed stress matrices for a hybrid element. For example, Pian
and Chen {70] used the product {c}T{e} to determine the necessary assumed stress
modes, and gave an assumed stress matrix for 2-D, 4-node plane element and another for
3-D, 8-node solid element. Punch and Atluri [68-69] used group theory to obtain two
assumed stress matrices for 2-D, 4-node hybrid element, eight assumed stress matrices for
3-D, 8-node hybrid element, and three hundred.¢ighty four assumed stress matrices for
3-D, 20-node hybrid element. One can also derive an assumed stress matrix using iso-
function method[43]. However, the number of the' stress modes is large in the iso-function
stress matrix which is derived directly from displacement field using iso-function method.
According to the limitation principle [66] in Chapter 1, a hybrid stress element constructed
by the iso-function stress matrix is equivalent to its displacement counterpart due to the

fact that the iso-function stress field is a displacement-derived stress field.

In order to present a systematic procedure for classifying stress modes and constructing
assumed stress fields, the iso-function method[43] is used to derive initial stress modes

to be classified in this work. This is because the hybrid element constructed by the iso-
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function stress matrix has the same eigenvalues and eigenvectors as its displacement
counterpart. Also, the method using iso-function is straightforward and can be followed
easily. After obtaining initial stress modes, one can use eigenvalue examination to find
m representative stress modes that represent m stress mode groups corresponding to m
natural deformation modes. The stress matrix consisted of the m representative stress
modes is an optimal stress matrix. Then, all existing stress modes can be classified into

m+1 stress mode groups. This procedure is presented in the following text [106].

3.2.1 Determination of optimal stress matrix from the iso-function stress matrix

Step I:
Derive an initial stress matrix [P],, by iso-function method. The number of initial stress
modes in the matrix is always larger than m (=n-r). In order to select m necessary stress

modes, these initial stress modes have to be classified into (n-r) stress mode groups.

Step 2:

Select stress modes in the order from low order term to high order term. Now select a
stress mode from the existing stress matrix [P],, and form an assumed stress matrix [P,].
The element stiffness matrix [K] corresponding to stress matrix [P,] can be obtained by
using equations (3-12) and (3-6). If the eigenvalue examination gives a non-zero
eigenvalue, the stress mode is a non-zero-energy stress mode; otherwise, it is a zero-

energy stress mode. Repeating the eigenvalue examination to check whether a stress mode
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is a zero-energy stress mode for all stress modes in the existing stress matrix [Pl

Take all zero-energy stress modes out and keep non-zero-energy stress modes in the

matrix [P],. All zero-energy stress modes form a zero-energy stress mode group.

Step 3:
Take a non-zero-energy stress mode from the existing stress matrix [P];,, and form an
assumed stress matrix [P,]. The stress mode {o,} is the representative stress mode which

represents group 1 of stress modes.

Step 4:
Add another stress mode selected in the existing stress matrix [Pl into the assumed
stress matrix [P,] and form a new stress matrix [P,],

[P,] = [o} {0,

(3-23)

Step S: |
The eigenvalue examination gives the eigenvalues of the stiffness matrix. If there is only
one non-zero eigenvalue, continue to step 6. If there are two non-zero eigenvalues, go to

step 7.

Step 6:

In this case, the added stress mode belongs to group 1 of stress modes. Take the second
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stress mode out and put it in group 1 of stress modes. Then, go back to step 4.

Step 7:
The two stress modes belong to two different groups of stress modes. The second stress

mode {G,} is the representative stress mode which represents group 2 of stress modes.

Step 8:
Add another stress mode selected from the matrix [P],, into the assumed stress matrix
[P,] and form a new stress matrix [P,],

[P,] = [o,} {a;} {0,]]
(3-24)

Step 9:
The element stiffness matrix [K] and its eigenvalues are calculated. If there are only two
non-zero eigenvalues, continue to step 10. If there are three non-zero eigenvalues, go to

step 11.

Step 10:
In this case, the new stress mode {c;} belongs to one of the two stress mode groups.

Construct the matrices [P’] and [P”,] as follows,

[pz’] = o} {o,]] or [Pzﬂ] = [{o,;} {a,]] (3-25)
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If the stiffness matrix corresponding to the stress matrix [P,”] has two non-zero
eigenvalues, the stress mode {G;} belongs to the group 2 of stress modes. Otherwise, the
stress mode {G,} belongs to the group 1 of stress modes. Put the stress mode {c;} into

the corresponding stress mode group, and go back to step 8.

Step 11:
In this case, the three stress modes belong to three different stress mode groups. The
added stress mode {o,} is the representative stress mode which represents group 3 of

stress modes.

Step 12:
Add one more stress mode selected from the matrix [P],, into the matrix [P,] and form
a new stress matrix [P,],

[P] = [a} {o,} {o,} {0 )]

(3-26)
and so on. Repeating the same process until m representative stress modes that represent
m stress mode groups are obtained. The m(=n-r) representative stress modes correspond
to m natural deformation modes and form a optimal stress matrix [P],, from the existing

stress matrix [P],.
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3.2.2 C(lassification of other stress modes

Step 13:

After m representative stress modes are obtained, other initial stress modes that remain
in the existing stress matrix [P],, can be classified into the m stress mode groups. Many
other stress modes derived by different methods also can be classified into the m stress
mode groups corresponding to m natural deformation modes and the zero-energy stress

mode group corresponding to rigid body modes.

Based on the optimal stress matrix [P],,, any remaining stress mode in [P],, can be
classified by using it to replace each and every stress mode in the matrix [P}, in order.
Once the eigenvalue examination results in m non-zero eigenvalues, the representative
stress mode which is replaced and the remaining stress mode which replaces the stress
mode in [P],, belong to the same stress mode group. Put the remaining stress mode into
the corresponding stress mode group and recover the optimal stress matrix [P],,. Then,

classify another remaining stress mode.

Step 14:

Repeating the same process until all remaining stress modes are classified. Thus, all
existing stress modes are classified into m+1 different mode groups. Every stress mode
group contains many interchangeable stress modes. For a stress mode derived by other

method, if eigenvalue examination always give m-1 non-zero eigenvalues when this stress
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mode replaces each and every stress mode in the matrix [Pl this stress mode is a zero-

energy stress mode.

3.3 INustration for the Classification of Stress Modes

As an illustration for the above procedure, the stress modes presented in ref. [41, 68-70]

and those derived by iso-function method are classified.

3.3.1 2-D, 4-node plane hybrid element

Determination of optimal stress matrix from the existing stress matrix derived by iso-

Junction method

The 2-D, 4-node plane element has (n=) 8 degrees of freedom and (r=) 3 rigid body
modes. So it has (m=n-r=) 5 natural deformation modes. Firstly, an assumed stress matrix
can be derived from the assumed displacement field of the element by the iso-function

method [43],

100xy0000
[P1=]01000xy00
0010000xy (3-27)

The number of stress modes in the stress matrix is larger than m (=5). The eigenvalue

examination indicates that the eigenvalues and eigenvectors of the hybrid element stiffness
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matrix constructed by the assumed stress matrix [P,] are the same as that of displacement
element stiffness matrix. Here, one takes the stress modes in the stress matrix as initial

stress modes to be classified. There are nine stress modes in the matrix [P],

ol o
oh o o o
o o

The stress matrix derived by iso-function method contains a few unnecessary stress
modes. It will save computation time for calculating element stiffness matrix if the
number of the stress modes can be reduced to m (=n-1). In order to do it, the initial stress
modes in the existing stress matrix have to be classified into m stress mode groups. First
of all, one must find m representative stress modes comresponding to m natural
deformation modes. Following step 2 - step 12 in the procedure of the classification
method given in the above section, one can obtain 5 representative stress modes {G, G,
O3 O 05} corresponding to (m=)of 5 natural deformation modes and the zero-energy stress

modes {0, } and {G;} corresponding to rigid body modes. The eigenvalues of the stiffness
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matrix related to {0, G, G; 05 G;} are not equal to zero, and the eigenvalue of stiffness
matrix related to {6,} or {o;} is equal to zero. The 5 representative stress modes form

an optimal stress matrix [P] from the existing stress matrix [Py],

100y0
[Pu]=[°1°z°3°5°s]=0100x
00100

(3-29)

The stress matrix is the same as that given by Pian [70].

Classification of other stress modes

After obtaining the optimal stress matrix, one can classify stress modes in the existing

stress matrix [Py] into (m+1=) 6 stress mode groups by following step 13 - step 14 in the

procedure,
Tension mode (Group 1): {o,}
Tension mode (Group 2): {o,}
Shear mode (Group 3): {o;}
Bending mode (Group 4): {os},{c:}
Bending mode (Group 5): {os}, {0}
Zero-energy stress mode (Group 6): {o,}, {0y}

The first 5 stress mode groups correspond to 5 natural deformation modes and the zero-
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energy stress mode group corresponds to rigid body modes.

There are many methods to derive initial stress modes. For example, in the two assumed
stress matrices derived by means of group theory[68-69] for the same finite element, there

are 4 stress modes that are different from stress modes {c,}-{c,}:

1 1 o -
{o,qt=i1 {o,}=4-1 {o,}=1- {o,,}={0 (3-30)
0 x y

Moreover, one may want to introduce some stress modes of high order term into the
assurned stress matrix [P] in order to describe special stress distribution in a local region

of a structure to be solved. For example,

2 ] 0

{o, =10 {o,5}=1x2 {0,410

0 0 2

2 ] 0
{o,,}=10 {ogt=y? {o,t=10 (3-31)

0 0 2

o

According to the steps 13-14 in the procedure of classification method, these new stress

modes {0,,}-{0} can also be classified into the 6 stress mode groups above,
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Tension mode (Group 1): {ohb{op}l, {os}, {0y}

Tension mode (Group 2): {oohb{ouh{os). {op}
Shear mode (Group 3): {osh{oes), {op!

Bending mode (Group 4): {os},{ozs}, {0}

Bending mode (Group 5): {os},{o, },{os])

Zero-energy stress mode (Group 6): {o.},{o;}, {0} {0}, {0n ]

More high-order stress modes can be classified into the 6 stress mode groups above by
using the classification method. If the flexibility matrix [H] is a diagonal matrix, the

classification of the stress modes is unique (see section 3.5).

3.3.2 3-D, 8-node solid hybrid element

Determination of optimal stress matrix from the existing stress matrix derived by iso-

Sfunction method

The 3-D, 8-node solid element has (n=) 24 degrees of freedom and (r=) 6 rigid body
modes. So it has (m=n-r=) 18 natural deformation modes. By means of iso-function
method [43], an initial stress matrix [P] can be derived from the assumed displacement

field of the element as follows
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100000x00000y00000z00000

0100000x00000y00000z20000

00100000x00000y000002z000
[P]’m:000100000x00000y00000z00

0000100000x00000y00000z0

00000100000x00000y00000 z

x 0 000y 000 O0zZ0O0O0 O]

Oxxy 0 00 O0y000O0zO0O0O0

0O 0xx 00 003y0000z==O00O0

0O 00O0O0OOGOyy0O0OOZO (3-32)

0 00xx000O0O0O0O0GO OGO O =z

0 00 0xx00O0O0Oy000O0UO

There are 39 stress modes to be classified in the stress matrix. The number of stress
modes is larger than m (=18). The eigenvalue examination shows that the eigenvalues and
eigenvectors of the hybrid element stiffness matrix constructed by the assumed stress
matrix [P];s, are the same as its displacement counterpart. One takes the stress modes in
the matrix [P];, as initial stress modes to be classified. The 39 stress modes in the matrix

{Pliso are numbered as follows:

0000
1000
0100
0010
0001
00000 1]

{0, 0, 0, 0, 05 0 = - > (3-33)

~ O O O 0 O

©O O O © © =
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{o; 65 05 04y 0 0} =

{3 0,4 045 015 047 Oyt =

{°19 Oz O21 O3 Oy3 Ty

O O © ©

= <

‘©c 0o 0 0 o«
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(x 0 0

x 0
0 x
00
00
00

O O O O« ©

©C O O O n ©

O © O~ O O
©C O O O ©
O <Y O O O o
“ O O O O O

©C O O N OO

000
000
000
x00
0x 0
00«x

©C O N O O O
O N O O O O
N O O O O O

L

(3-34)

(3-35)

(3-36)



x»p 00 00
0O xx 000
0 0xx 0O
lo,5 055 037 0y Og5} = 0000 O g (3-37)
0 0 0 xx 0
0000 x
(yz 0 0 0 0
0z 000
00y 00 i
{045 031 03, Gy3 O} = 00 0 yz0 ( (3-38)
0O 0 000
| 0 0 0 0 yz
(zx 0 0 0 0 |
Oz 0 00O
0 0xx 00
{ = 4 \ (3-39)
O35 O3 037 Ozg Ol 0 0 0 z 0
0 0 0 0 =
L 00000

In order to reduce the number of stress modes in the assumed stress matrix [P];s,, these
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stress modes have to be classified one by one in the order from low order term to high
order term. Following the steps 2 - step 12 in the procedure of the classification, one can
obtain (m=) 18 representative stress modes { G, G, 6; G, G5 G5 Og Gy O}; Oj3 C}5 O3 Oy
G,g Oy Oy O3 O3 } corresponding to 18 natural deformation modes. These representative
stress modes form an optimal stress matrix [P,] from the existing stress matrix [P];, as

follows:

[Pl=[0, 0, 65 04 O5 05 O3 Oy Oy 019 Og O Gy Oy Oyg Gz O35 Oy

100000y00z00000yz 0 O]
0100000z00x00000z=xO0
_[00100000x00y0000 0 (340)
000100000000z000 0 O
0000100000000x000 O
00000100000000y 0 O O]

This stress matrix is the same as that proposed by Pian [70].

Classification of other stress modes

Following the steps 13-14 in the procedure, other stress modes that remain in the existing
stress matrix [P],, can be classified into m+1 (=19) stress mode groups as follows:
Tension and compressive modes (3 groups): [{o, }o1» {02 }e2» {03 }asl

Pure shear modes (3 groups): [{0s Yo {Os}ass {06 }asl

Bending modes (6 groups): [{G; Oislg»» {09 Oulces {O13 Ciolcoe

{O1s Gaalgio (1o Tialeis (G20 17 }ai2l
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Torsion modes (3 groups): [{G,}a13» {Tislo {Tnlais]

Saddle modes (3 groups):  [{Ga O3y Osglcier (G2 Os3 Ol {27 O O }ausl
Zero-energy stress modes (1 group): [{G7, Cus G215 Oass Oags G310 Oa25 O35, Oa7)giol
The first 18 stress mode groups cormrespond to (m=n-r=) 18 natural deformation modes and
the last group corresponds to rigid body modes. There are many other ways to derive
initial stress modes. For example, in the assumed stress matrix presented in ref. [41], there
are 12 stress modes that are different from stress modes {o,}-{G5,}. These stress modes

can be expressed as follows,

Tension and compressive modes,

(1) (1 (-1
1 -1 -1
G={ot log={ 01  log= 5t
0 0 0 (3-41)
~OJ . 0 / 0 4
Symmetric bending modes,
(z . r 0 ry -
z x 0 (3-42)
logt={ g ¢ lod={ o t {045}=43 >
0 0 0
50 J LO J ;0 J
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Anti-symmetric bending modes,

r z 9 0 r y 3
2z * 0 (3-43)
{046t =4 o | {g}=4 o { {o,g}=3 Oy >
0 0 0
- 0 o . 0 . 0 P
Torsion modes,
r 0 R r 0 3 e 0
o 0 0 (3-44)
{049}=< z ( {050}= z [ {051}=< z [
x -x x
LY 0 | [ =2y |

In the stress matrices derived by means of the symmetric group theory[68-69], there are
eleven stress modes that are different from stress modes {G,}-{c5}. They can be

expressed in the form,

Tension and compressive mode,

-0

(3-45)

|
Pt

{052}=J

(=N e N o)



Torsion modes,

1 0 3
1)
{og;t= g
-x
L Y )
Bending modes,
2x 0 0
0 2y O
0 0 2z
{og, 055 054= 5 = 0 >  and
0 -z -y
-2 0 —x
Saddle modes,
[0
0
{ } °
Gon Ogy O pnf=S
60 Y61 V62 -2xz
y2+z2

log; 055 055t

0 0

0 0

0 0
2yz x%+y?
2xy -2xz

| -2y x%+2% -2yz |

0 0 O
0O 00
0 0O
y x O
0 -z -y
-z 0 x |

(3-46)

(3-47)

(3-48)

Other stress modes may be also needed in an assumed stress matrix in order to describe

special stress distribution in a local region of a structure to be analyzed. For instance,
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Bending modes,

rz 9 rx 9 ry 9
zZ >4 Yy
{og;t=5 g S {og}=4 J(; s {ost=4 {) ) (3-49)
0 0 0
50 P &0 s LO ’
Saddle modes,
ryz 1 ru p r'xy N
yz = Xy
{066 =4 )62 > {067 =4 g: > {068}=4 f)y > (3-50)
0 0 0
\ 0 J \ 0 J \ O J
Tension and compressive mode,
r 22 \
22
=L 0 (3-51)
{og=S 0
0
\ 0 J

According to the steps 13 -14 in the proposed procedure of classification, the 30 new
stress modes {G,,}-{C¢} can be classified into different stress mode groups above as

follows,
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Tension and compressive modes (3 groups): f{C1» Cuw Ownler {02 Gulga
{03, O, Os3} 3l

Pure shear modes (3 groups): [{os tois {Oskass {Ts lael

Bending modes (6 groups): [{G;, Oy Oy Osss Ggalgrs {G9s Gaar Gazs Osylaas
{013, O10: Ous» Tsss Ogslass {Oiss O3 Ougs Osglion
{G19: O12, Oz, Tsgy Ozlus (G200 Oy 0';& Gsslgial

Torsion modes (3 groups): [{G,;» Culais» {Gig Osolgias (O Osis Osstars]

Saddle modes (3 groups):  [{Gu, Gsg, sz Oess Oeolgis » {Ores 33 O3 Oer» O bgimr
{G27, G, O3y, Ogs, Gl sl

Zero-energy stress modes (1 group): [{G;, G4 Gsyy Oass Gagr Os31s Os25 Osse G370l

More stress modes can be classified into the stress mode groups above. If the flexibility
matrix [H] is a diagonal matrix, the stress modes are uncoupled and the classification of
the stress modes is unique (see section 6). Otherwise, some stress modes may appear in

more than one group.

3.4 Construction of Assumed Stress Matrices

As shown above, by means of the proposed procedure for the classification of stress
mode, stress modes can be classified into m (=n-1) stress mode groups corresponding to
m natural deformation modes and a zero energy mode group corresponding to rigid body

modes. Each natural deformation mode is related to a stress mode group except zero
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energy mode group, and each stress mode group may contain many different stress modes

that are interchangeable in the stress matrix [P].

The classification of stress modes reveals the relationship among the different stress
modes that are used in the different stress matrices for any type of a hybrid element
proposed by different researchers. In order to avoid kinematic deformation mode, the
stress matrix [P] must contain m stress modes at least. No matter how many stress modes
there are in the stress matrix [P], the order of the stiffness matrix is equal to or less than
m. Therefore, m stress modes is necessary and sufficient to form a stress matrix for
avoiding kinematic deformation modes in the hybrid element. Moreover, in view of the
classification of stress modes, the m stress modes in the stress matrix [P] must come from
m different stress mode groups except zero energy mode group. Thus, for a hybrid

element to be free from kinematic deformation mode, we have

The necessary and sufficient condition:
The number of stress modes in an assumed stress matrix must be equal to or
more than m (= n-r) and at least m stress modes in the stress matrix [P] must
be chosen from m different stress mode groups corresponding to m natural
deformation modes of an element which has n degrees of freedom and r rigid

body modes.

In this statement, the necessary condition is that the number of stress modes for a hybrid
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element must be equal to or more than m (=n-r). It was presented by F. Veubeke [63] and
Pian [S54]. The sufficient condition is that the stress matrix [P] must contain m stress
modes chosen from m different stress mode groups corresponding to m natural
deformation modes. This condition explains why in some examples there exist kinematic
deformation modes even when the necessary condition (m’ > n-r) is satisfied. In these
examples, the stress modes in the stress matrix [P] do not come from m different stress

mode groups except the zero energy mode group.

For a hybrid element, overuse of stress modes will result in over-rigid element [62], and
will cost more computational time because the calculation of element stiffness matrix
requires an inversion of the flexibility matrix [H]. Therefore, an assumed stress field, its
stress matrix contains m (=n-r) least-order stress modes and its resulting finite element
is free from kinematic deformation modes, is considered to be best and is optimal with
respect to computer resources [62,68]. By means of the m classified stress mode groups
and the necessary and sufficient condition, this kind of stress matrices can be constructed.
Furthermore, it is convenient to construct an assumed stress matrix according to the
problem to be solved because there are many stress modes in every stress mode group for

choice. The procedure of constructing stress matrix is presented as follows,

Step 1: Using the iso-function method[43], one can derive a number of iniiial stress

modes to be classified.
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Step 2: One may put the initial stress modes one by one into stress matrix [P] in the
order from low order term to high order term. By means of the classification method, one
can obtain m representative stress modes corresponding to m natural deformation modes.
These representative stress modes form an optimal stress matrix [Pl from the existing

stress matrix [P],,.

Step 3: One may obtain other initial stress modes derived by different methods.
Following the step 13 - 14 in the procedure of the classification, one can classify all initial

stress modes into m+1 different stress mode groups.

Step 4: By means of the m+] classified stress mode groups and the necessary and
sufficient condition above, many stress matrices [P] can be constructed according to the
problem to be solved. It is necessary to choose one stress mode at least from each group

except the zero energy mode group in order to avoid kinematic deformation modes.

The necessary steps have been illustrated in the section above. The following gives some
examples to illustrate the procedure for constructing a stress matrix [P] which has

minimum number of stress modes.

3.4.1 2-D, 4-node Plane Hybrid Element

By means of the m+1 stress mode groups classified above and the necessary and sufficient
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condition for avoiding kinematic deformation modes, one can choose one stress mode

from each/every stress mode group except zero energy mode group to form a stress

matrix. For example,

1 1 00 —x
(3-52)
[Pyl = [00,, 0,0,0,.0=|1 -10-y 0
0 01 x y
and
11 0y0
(3-53)
[Pl =[0,50,,05;0,00= |1 -1 00 «x
0 0100

Five stress modes in each stress matrix come from five different stress mode groups
corresponding to five natural deformation modes. The two stress matrices are the same

as that proposed by Atluri [68-69]. More stress matrices can be constructed on purpose.

For example,

110y -x
(3-54)
[P = [0,y0,, 00,0, ={1 -100 0
0 010y
and
21 00 —x
(3-55)

[Pyl = [0y 0y, 030, 0,1 =|0 -1 0 -y 0
0 01 x y

The eigenvalue examination shows that the hybrid element constructed by [P,] - [Py,] are
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free from kinematic deformation modes as shown in Table 3-1. In the last column of the
table, the eigenvalues of its displacement counterpart are given. If stress modes in a stress
matrix [P] come from m; (<m) stress mode groups, the hybrid element will have
kinematic deformation modes even if the number of stress modes is larger than m. This
is why a hybrid element contains kinematic deformation modes when the necessary
condition (m’ > n-r) is satisfied. A stress matrix [P] must have m stress modes

corresponding to m natural deformation modes of an element.

Table 3-1 Eigenvalues of stiffness matrices (4-node plane element, v=0.3)

%—_——————_.—_
[Pyl [Pl [P Py] [Pyl Disp.

Iv. V.

0.3333 0.09259 0.3333 0.09259 0.09259 0.4945

0.3333 0.09259 0.3333 0.3333 0.09259 0.4945

0.7692 0.7692 0.7692 0.7692 0.7692 0.7692

0.7692 0.7692 0.7692 0.7692 0.7692 0.7692

1.4290 1.4290 1.4290 1.4290 1.4290 1.4290

3.4.2 3-D, 8-node Solid Hybrid Element

Using the same way as 2-D case, one can choose m stress modes from m classified stress
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mode groups except zero energy mode group above to form the eight stress matrices [P.] -

[P,] proposed by Atluri et al [68-69] as follows,

[P)] = [04 T4y 9z T4 O5 O 049 Ogy Ogy Ogy G5 Ogg Oy Ogg Oy Ty Oy Tl

1 1 000000 020 0 0 0 O (¢} 0 0
1-1100000 0 O2p0 0 0 O 0 0 0
1 0 -100000 0 0 0220 0 O 0 0 0
“lo 0o 0100z 2z O -y x 0 y x 0 -2z -2yz x%+y? (3-56)
00 0010x-x-x0 -z~ 0 -z -y y*z?® -2xy -2xz
0 0 0001y 0 y -z 0 -x -z 0 x -2xy x%+z%> -2yz]
[P;] = [94g Oy Oz 04 O5 O 049 Ogy Osy O5y G5 Osg Osy Ogy Tgg Ty Gz Ol
11 000000 0220 0 0 0 0 0 O yz
1-1100000 0 0200 0 O0 0=zxz0
|10 -100000 000200000 (3-57)
00 0100z2z 0 -yx0y x 0 00O
00 0010x-x-=xx0 -z-y0 -z-y0oO0O
0 0 0001y 0 y -z0 x-z0 x 000

and
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P = [0, 04 0g
[Pl = [04 04 9
[Pg = [0, 94 O
[P}l = [0, o, 0,
[Pgl = [0 04 Op

[Pyl = [0y 04 0

Og O4

Os 049

O T49

Os O4g

Og Oy

Os O49

Os3 Ugy Oss Osg Tyg

Os3 Ogy Oss Oss Oyg

Us3 O45 O4g O3 Og7

Os3 J45 O4q Og3 Ogy

Og3 O45 Ouy T3 Ouq

Os3 O4s Tyq T43 Oyg

O47 O4s

O47 O4s

Osg Tsy

Osg T

O47 T4

O47 4

%60 %1 el
O29 O35 Oyl
%0 %61 %l
07 O3 Tagl
960 %1 Ogl

Oz O35 O3l

(3-58)

The assumed stress matrix given by Huang [41] also can be formed by means of the same

way,

[Pl = [04 04 0 04 05 0 Oy

1 1 -1
1 -1 -1
to 2
oo o
00 O
0 0 0

o O = 0 0 O
(=T = = I = I =
- 0 O ©O O ©
©C O © © N N

©C O O " & ©

O4s O4s O45 O47 O4g T4 Osg G5y O O3 Tyl

y
0
y
0
o
0

z 0 y 00
-z x 000
0 -xy0 0
0 0 0 z z
¢ 0 0 x ~x
0 0 0 yoO

0 yz
0 0
0 0
z 0
-=x 0
-2y 0

g oo

0
zx
0
0
0
0

[ = J = R =)

!

(3-59)

Moreover, many stress matrices [P] can be constructed on purpose. Three new stress

matrices are given as follows,
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P11 = [0 04 0y Of 05 O Og; T, Ogs G4 O47 J4g O49 Osg Os1 Ogs Og7 Ogsl

|
-

2

O O O =
o o 0o o

0
0
0

[P;]1 = [04 04 0 O, 05 05 G4y O,

-10
-1000 2z

0

1
0
0

00 z

00z
000
100
0fo

xy z 0 y O

xy
x Yy
00
0o
0o

[100000z0y
010000zx0
0010000=xy
000100000
000010000
000001000

-z
0
0
0
0

Oy Os7 Osg Tsg O Oy; Ty Tag Oz Oyl

0
0
0
y
0

x4

x 00
-x -y 0
0 0 z
0 0 x =
0O 0y O

N ©O O ©

0 0000O
0 0000
0 000OC
x 0 z00
-z y0x0
0 x 00y
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2y 0 0 O]

0 yz xz xy
0 » xxxy
0 yz xx xy
z 00O
-x 0 0 0

© oo o o %
cooofl o
©cod oo

At
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The results of eigenvalue examination are given in Table 3-2. It shows that each of the
stiffness matrices constructed by the assumed stress matrices [P,] - [Pl [P*], [P,*], and
[P;*] has m non-zero eigenvalues. The resulting hybrid elements do not have any

kinematic deformation modes.

More assumed stress matrices can also be constructed by means of this method. If one
stress mode group is missed except the zero emergy mode group in the process of
choosing stress modes, the hybrid element will contain kinematic deformation modes. In
the previous work, it is proposed to suppress kinematic deformation modes by adding
stress modes of high order term. Actually, it can not guarantee that all kinematic
deformation modes are suppressed. If the high order stress modes do not belong to the
stress mode groups which are missed in the construction of the assumed stress matrix

except the zero energy mode group, adding stress modes of high order term can not
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Table 3-2  Eigenvalues of stiffness matrices (8-node solid element, v=0.3)

LA (P\1.P).[P] [P;1, [Pz*]_ P,*] B [P;*]
0.07123 0.07123 0.1111 0.1111 0.09259 0.09259
0.07123 0.07123 0.1111 0.1111 0.09259 0.09259
0.07123 0.07123 0.1111 0.1111 0.09259 0.09259
0.1282 0.2564 0.2564 0.1282 0.2564 0.2564
0.1282 0.2564 0.2564 0.1282 0.2564 0.2564
0.1282 0.2564 0.2564 0.1282 0.2564 0.2564
0.1282 0.1282 0.1282 0.1282 0.1282 0.1282
0.1282 0.1282 0.1282 0.1282 0.1282 0.1282
0.07246 0.07264 0.4762 04762 05556 0.5556
0.07246 0.07264 0.4762 0.4762 0.5556 0.5556
0.07246 0.07264 0.4762 04762 0.5556 0.5556
0.5128 0.5128 0.5128 05128 05128 05128
0.7692 0.7692 0.7692 0.7692 0.7692 0.7692
0.7692 0.7692 0.7692 0.7692 0.7692 0.7692
0.7692 0.7692 0.7692 0.7692 0.7692 0.7692
0.7692 0.7692 0.7692 0.7692 0.7692 "
0.7692 0.7692 0.7692 0.7692 0.7692
2.5000 2.5000 2.5000 2.5000 0.8065
I———

improve the hybrid element any more. Moreover, overuse of stress modes will result in
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over-rigid elements. Therefore, an ideal situation is to choose m (=n-r) least-order stress
modes, but with the suppression of all kinematic deformation modes. Thus, an assumed
stress matrix [P] can be constructed by choosing m stress modes from m stress mode

groups that correspond to m natural deformation modes.

3.5 Uniqueness of Stress Mode Groups

When stress modes are classified, it is observed that if the flexibility matrix [H] is a
diagonal matrix, the classification of stress modes is unique; otherwise, some stress modes
may be interchangeable between two stress mode groups. For example, the stress modes
{c,} and {c,} for 2-D, 4-node plane hybrid element may be interchanged between group
1 and group 2. This makes the flexibility matrix [H] not diagonal when the stress matrix
[P] consists of ({o,}, {6,}, {03}, {05}, {Gs}). Therefore, the first two stress mode groups

for 4-node plane element may become

Tension mode (Group 1): {o}(or{o}) {0} {on}. { o)

Tension mode (Group 2): {o,}(or{oy} ) {o, ), {os}). {0}

However, the stress modes {0,,} and {G,,} for the plane element can not be interchanged
between the two groups because the matrix [H] is diagonal when the stress matrix [P]
consists of ({6}, {G,,}, {03}, {Ts}, {Ts}). In fact, if the flexibility matrix [H] is a

diagonal matrix, the stress modes that form the stress matrix [P] are a set of uncoupled
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stress modes. It has been proved by Huang [14] that if the matrix [H] is a diagonal

matrix, the stiffness matrix satisfies the superposition principle:
m
[K1=Y [K] (3-63)
i=1

where

[K1=[GYH]'(G]
[H]1=/,[P)(SIP)dV

3-64
[G]=/[P)(BlaV 69

and

[K1=[GI"[H] '[G]
[H1=/ [PI[SI[PldV
[GI=/,[PI[BldV

(3-65)

in which

[Pl=f{o} {o,} {0} ...... {o,} 1
[P]=[0} {0} ... {0} ... 1O} ]

G, (3-66)

612
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Therefore, the elastic energy of the element is decomposable if the flexibility matrix [H]

is a diagonal matrix.

3.5.1 Classification condition of stress modes

A hybrid element stiffness matrix [K] can be formulated using equations (3-65) and (3-
66). Its eigenvalues and eigenvectors are calculated from equation (3-15). The
eigenvectors {§;} (i=1,2,...m) satisfy the condition (3-16). Using equations (3-15) and (3-
16), the eigenvalue equation is changed to

}.i={6,}T[K]{6‘} 3-67)
For any stress mode {c;} among m stress modes {5}, G, ..., O}, the stiffness matrix K]
can be derived using equations (3-64) and (3-66). Corresponding to the i-th natural
deformation mode, one has

li={6i}T[Kj]{6,} 3-68)
~ According to the classification condition of stress modes, if the stress mode {o;} belongs
to the i-th stress mode group corresponding to the natural deformation mode {8}, the
eigenvalue A, is a non-zero value; otherwise, the eigenvalue A, equals zero. This condition

can be expressed in the form,
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{6 JIK {8 .}=0 i#i
FIRI, ! (3-69)

BYIKI8 =1, i=f
If the stress mode {o; } is a zero-energy stress mode, all eigenvalue A, (i=1,2,...,m) equal
zero.

3.5.2 Theorem

Theorem 1
If and only if the flexibility matrix [H] is a diagonal matrix, the eigenvalues

obtained from separate mode equations

(IK]1-Ais1=0, i=1,2,3.....,m
(3-70)
are equal to the eigenvalues obtained from the total equation
(IK]-A[)i8}=0
(3-71)

In which, the matrices [K;] and [K] are defined in equations (3-64) and (3-65). This was

stated as a postulate in ref [14].
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Proof:

From the equations (3-67), (3-65) and (3-21), one has

A={5 JT[KI(5 }=(B F"[H]{B }
(3-72)

Because the matrix [H] is a diagonal matrix, one has

[H]=3_ [H] (3-73)

J=1

Thus, using equations (3-18), (3-19) and (3-64), the eigenvalue of the matrix [K] is
A=Y {BFTHYB =B I TH B} (3-74)
j=1

Furthermore, using equations (3-21) and (3-69), one obtains

A=(B M THXB =6 K }o }=A, (3-75)

End of proof.
Theorem 2

If the flexibility matrix [H] is a diagonal matrix, the classification of m stress

modes is unique.
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Proof:
If a stress mode among m stress modes that form the stress matrix [P] appears in more
than one stress mode group, one of the m stress mode groups must contain two stress
modes. Assume that the stress modes {c;} and {c;} belong to the i-th stress mode group
{B;} corresponding to the natural deformation modes {6;}. Thus, one bas

lii:{bi}r [K]8} and A.U={6i}r [Kj]{bi} (3.76)
Corresponding to the natural deformation mode {0;}, one can obtain the eigenvalue of the
stiffness~matrix [K] formulated by m stress modes as follows,

A={6i}r [KN3}
3-77)

Because the flexibility matrix [H] is diagonal, the stiffness matrix satisfies the

superposition principle. From equations (3-63) and (3-76), one obtains
m
).={6‘}T [KI{6}=E {6,}1 [Kk]{5}=la+ly (3-78)
k=1

using theorem 1, one has

A=A (3-79)
From the equation (3-78) and (3-79), one obtains

Ay =0 (3-80)
According to the condition of classification, the stress modes {G;} does not belong to the

i-th stress mode group. The stress mode group {f;} only contains {c;}. Therefore, the
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stress modes {o;} can not appear in two stress mode groups {B;} and {B;}. Thus, if the
matrix [H] is diagonal, the classification of m stress modes is unique.

End of proof

3.6 Optimal Stress Matiix for Partial Hybrid Element

The classification method can be used to determine an optimal stress matrix for a hybrid
element. It is also available to determine an optimal partial stress matrix for a partial
hybrid element. The difference is the number of stress mode groups. For partial hybrid
element, the number of stress modes groups is equal to
m=n-r-n,;
(3-81)

Where n and r is the same as that in conventional hybrid elements. In section 2.4 of
Chapter 2, it has been shown that the stiffness matrix of a partial hybrid element (2-44)
or (2-66) consists of two parts: the displacement-formulated stiffness matrix and the
hybrid-formulated stiffness matrix. In equation (3-81), n, is the rank of the displacement-
formulated stiffness matrix. Therefore, it is necessary to calculate the rank of the
displacement-formulated stiffness matrix to determine an optimal stress matrix for a partial
hybrid element. The necessary and sufficient condition for partial hybrid elements

becomes
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The necessary and sufficient condition.

The number of stress modes in an assumed partial stress matrix must be equal
to or more than m (= n-r-n;) and at least m stress modes in the partial stress
matrix [P] must be chosen from m different stress mode groups corresponding
to m natural deformation modes of an element which has n degrees of freedom,

r rigid body modes, and n, order displacement-formulated stiffness matrix .

The procedure to construct an optimal partial stress matrix for a partial hybrid

element becomes

Step 1:
Examine the rank of the displacement-formulated stiffness matrix of a partial hybrid

element.

Step 2:
Using the iso-function method, one can derive a number of initial stress modes to be

classified.

Step 3:
One may put the initial stress modes one by one into partial stress matrix [P] in the order

from low order term to high order term. By means of the classification method, one can
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obtain m representative stress modes comresponding to m natural deformation modes.
These representative stress modes form an optimal partial stress matrix [P,],, from the

existing partial stress matrix [P,J;,-

Following this procedure, an optimal assumed partial stress field can be determined. Some

examples will be given in the next chapters.

3.7 Conclusion

A new method for classifying stress modes in assumned stress matrices is presented. It is
assumed that there are m (=n-r) natural deformation modes of an element which has n
degrees of freedom and r rigid body modes. For any type of hybrid element, all stress
modes in various stress matrices derived by different methods can be classified into m
stress mode groups corresponding to m natural deformation modes and a zero energy
mode group corresponding to rigid body modes. If the flexibility matrix [H] is diagonal,
the deformation energy of the element is decomposable and the classification of stress
modes is unique. The necessary and sufficient condition for avoiding kinematic
deformation modes is that an assumed stress matrix [P] must contain m stress modes
chosen from m different stress mode groups, except zero energy mode group. The reason
of the existence of kinematic deformation modes when the criterion (m’ > n-r) is satisfied
is that the stress modes in the assumed stress matrix [P] are not chosen from m different

stress mode groups corresponding to m natural deformation modes.
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The classification method can be applied to any type of hybrid elements and be used for

two purposes:

L. to determine the optimal stress matrix from the existing stress matrix [P],, or any
other stress matrix [P] derived using other method, and classify stress modes into m

different stress mode groups;

2. to construct many new assumed stress matrices by using minimum number of
stress modes according to the problems to be analyzed. These stress matrices are without
zero-energy stress modes, and the resulting element stiffness matrices are free from

kinematic deformation modes.

The classification of stress modes reveals the relationship among the different assumed
stress fields for any type of hybrid element proposed by different researchers. An assumed
stress matrix [P], which consists of m (=n-r) least-order stress modes and results in the
element stiffness matrix without kinematic deformation modes, is considered to be best
and is optimal with respect to computer resources because overuse of stress modes will

result in over-rigid element and cost more computational time.
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Chapter 4
3-D PARTIAL HYBRID SOLID

ELEMENTS

In Chapter 2, a general formation of the single-layer element is presented. In the element
formulation, when N=1, the single-layer element becomes a 3-D solid element because
the element only contains a material layer. Many 3-D solid elements can be derived using
the general formulation. In this chapter, 3-D, 8-node and 20-node solid elements are

presented.
4.1 3-D, 8-node Partial Hybrid Solid Element
The 3-D, 8-node element (shown in figure 4-1) is the simplest finite element for 3-D

analysis of structures. Therefore, it is presented first to show the formulation procedure

of partial hybrid finite elements [9].
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Figure 4-1 3-D, 8-node partial hybrid element
4.1.1 Geometry of Element

To formulate a finite element, the first task is to approximate the element geometry. For
an isoparametric element, the element geometric shape is required to be mapped from the
global coordinate system to the parametric coordinate system. To map the element
geometric shape of a 3-D, 8-node solid element, the global co-ordinates (x,y,z) of any
point within the element can be written to interpolate the local co-ordinates (€, n, £) as

follows:

8 8 8
x=§_: N;x4 y=; Nyy; 2z=Y Nz (4-1)
=) =]

=1
where (x; y; z; ) are the global co-ordinates of the i-th node (i=l1,2,...,8), and N; are the
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shape functions which can be expressed as follows:

Ny=3 (1+E) (1+15) (1+{,) (4-2)

in which,
£o=8:& Mo=mim §o=(il
@-3)

where &;, 1; and {; are the local co-ordinates of node i in the element parametric space.
4.1.2 Displacement Field

For an isoparametric element, both the geometry and the displacement field are defined
by the same interpolation polynomial. Therefore, within the element, a displacement field

is assumed independently as follows:

8 8 8
u=Yy N;u, V=; Nyv; w=Yy Nywy (4-4)
=1 =1 =1
where (u; v; w; ) are the i-th nodal displacements in the global co-ordinate system
(i=1,2,...,8), and N, are still the shape functions which are the same as that in the
geometry formulation of the element (4-2)-(4-3). In the matrix form, the displacement

field can be expressed as
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5,

u=[N] 8=[NI N,T ... NI .6.2 (4-5)

5y

in which, [I] is a 3x3 unit matrix and the nodal displacement vector is

Uy
61= Vi i=l,2,...,8 (4'6)

4.1.3 Partial Strain Field and Partial Derivatives of the Displacement Field

After assuming the displacement field, one can derive a partial strain field directly from

the displacement field as follows,

du
e, gx
c,-{ey}=Dgu=< 5 (B8
Cr ou , ov| @7
| dy  Ox
in which,
BJl=[B,; B, ... B
(Be]5[Baz B 48] @8
and
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N;x 0 O
[Bgi]= 0] Ni'y o
N;, o N; . O

(4-9)

Due to the fact that the transverse strain-displacement relation (2-9) is satisfied a
posteriori, the locally continuous strains can not be derived directly and will be calculated
using equation (2-43) after the nodal displacements having been obtained. Also the partial

derivatives of displacement field can be obtained as follows,

[ ow ]
oz
ov, owl| _ (4-10)
DLu=4 —(.E*-—a;»-[BL]G
ow,, Ju
| 0x Oz]
in which,
(Be]fBes Bz - - Bue]
4-11)
and
0 0 Ni.z
[Bes]s| © Ni,z Nyy (4-12)

where i=1,2,....,8. In order to perform the evaluation of isoparametric element matrices,
a coordinate transformation of derivatives is required because the displacements are

described in terms of parametric coordinates. To map the derivatives from global co-
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ordinate system to local co-ordinate system, one can write

N, g %8 Y.e ZEyng Ni o
Nial5X.a Y.a %9 Ny, p|=[J) ¥s, 5 (4-13)

Nid) |x¢ vo 2,V %= 12

where

8 8
X =Y Ny eXyr oo Z,=3 NpoZ; (4-14)

i=1 i=1
The equation (4-13) can be rewritten
xz,x . fvﬁ,e
1,y |=I]7 M, .
y N n (4-15)
in which

N1,5=%Ei(l+ﬂo) (1+4,)
Ni,q=%ﬂi(1+50) (l+c0) (4‘16)

N11C=% ci (l'*'Eo) (l+ﬂ0)

For mapping the derivatives, it is convenient to introduce a radius vector and its

derivatives:
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X X,E
z=(y) S=r €=[y, 5] 4-17)

X,q X,¢
=r' = y’ =r' = ylc
"\, ‘= @18)

Then, the Jacobian matrix is

=S T V7 “-19)
Furthermore, one has
(=8 TxV 4-20)
and

[T =[TXV VxS SxTIAT 2D

4.1.4 Partial Stress Field

Within the element, a partial stress field is also assumed independently as follows,
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: 3
c f{oyzz}: [Pl B=[04404. . .04l .2 (4-22)

O 2x .
B,

Using iso-function method [43], an iso-function partial stress matrix can be derived

directly from the displacement field as follows,

100E00n00C00Ekn 0 0w 0 EC O
[P]5{0100E00n00C0O0E& 0 0 0 0§ (4-23)
00100E00n00¢ 0 0 Enoonloo

In this partial stress matrix, there are 19 stress modes and some of them are not necessary.
According to the necessary and sufficient condition presented in section 3.6 of Chapter
3, the number of stress modes in the stress matrix is
n, 2 n-r-ny (4-24)

For the 3-D, 8-node solid element, there are (n=) 24 degrees of freedom and (r=) 6
degrees of the rigid body motion because each node has three components of
displacements. Thus, the element has (n-r=) 18 natural deformation modes. By means of
eigenvalue examination of the element, the rank of the partial stiffness matrix [K,] can
be determined and it is (n,=) 10. In order to avoid any kinematic deformation modes, the
number of necessary stress modes is equal to 8. Using the classification method, the

optimal partial stress matrix 1is
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100En 0 0 &n
(Pl =j01000¢& - O (4-25)
00100n n O

This partial stress matrix only contains minimum number of stress modes.

4.1.5 Examination of Partial Hybrid Element

After one determines the interpolation functions of the geometry, displacements and partial
stress field, the element matrices can be calculated using equations (2-44) in Chapter 2.

Then, the new hybrid element has to be examined.

The element quality can be examined by the eigenvalue test which is one of several
common tests. The test can detect spurious zero stiffness and absence of rigid-body
displacement capability. In testing an element, it must be examined if the element stiffness
matrix [K] has as many zero eigenvalues (A= 0) as expected. Too few suggests that the
element lacks a desired capability for rigid-body displacement. Too many suggests the
presence of spurious zero stiffness mode. Moreover, nonzero eigenvalues must be real and
positive due to that fact that the element stiffness matrix [K] is symmetric and positive

semidefinite [6].

The stiffness matrix of a partial hybrid element is in the form,
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(K= (K] + (K] (4-26)

There are two parts: a displacement-formulated stiffness matrix and a hybrid-formulated
stiffness matrix. The examination of element shows that there is not any kinematic

deformation modes, and it has a desired capability for rigid-body displacement.
4.2 3-D, 20-node Partial Hybrid Solid Element

A 3-D, 20-node element [46] is shown in figure 4-2. It also can be obtained using the

general formulation of single-layer partial hybrid element in Chapter 2.
4.2.1 Geometry of Element

Firstly, the geometry of the element must be approximated. The global co-ordinates (X,y,z)

of any point within the element can be expressed in the form as follows:
20 20 20
x=y N;x; y=) N,y z=)» N,z -
Z; X ; f3 g Z_,: 144 (4-26)

where (x; y; z; ) are the global co-ordinates of the i-th node (i=1,2,...,20), and N; are the

shape functions which are the functions of the local co-ordinates (&, 1, {) as follows:
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8 15 7
L
16 )59_ _11 14 139
5 12 4.3 6
17 184/ 10
—t)-
1 9 2

Figure 4-2 3-D, 20-node partial hybrid element

Ni=—]8;(1+50) (l+n°) (1+cq) (Eo+n0+Co-2) Eiﬂi i
+2 (1-82) (141,) (1+,) (1-EDniL3 (4-28)
+% (1-n2) (1+{,) (1+E,) (1-n2) {2E2

4% (1-2) (1+8,) (1+n,) (1-83) Edn?

in which,

§o=8:& mo=mm (=0
(4-29)

where &;, m; and {; are the local co-ordinates of node i in the element parametric space.
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4.2.2 Displacement Field

The element is also an isoparametric element and the interpolation functions of the
displacement field are the same as that of the element geometry. Within the element, a

displacement field is assumed independently as follows:

20 20 20
u=y Nju; v=y N;v; w=Y N;w; (4-30)
i=1 i=] i=1 .

where (u; v; w; ) are the i-th nodal displacements in the global co-ordinates system
(i=1,2,...,20), and N; are the shape functions. In the matrix form, the displacement field

can be expressed as

3,

u=[N 8=[N,IT N,T ... Ny,I] .f:. 4-31)

820

in which, [I] is a 3x3 unit matrix and the nodal displacement vector is

uy
5,={v; i=1,2,...,20 4-32)

4.2.3 Partial Strain Field and Partial Derivatives of the Displacement Field

Within the partial hybrid element, similar to the 8-node element above, a partial strain
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field can be derived directly from the displacement field. It is

du
e gx
x v
3g—{eey}=pgu=< —a; ’=[Bg]5
. ou, 8v] (4-33)
| dy dx]
in which,
[Bg]*[Bgz Bgz -+ -+ Bgao] @30
and
N;oe 0 O
’ (4-35)
[Bgi]= 0 N;,, 0
N;y Nyx O

Because the transverse strain-displacement relation is satisfied a posteriori, only the partial

derivatives of displacement field can be derived from the displacement field as follows,

¢ Q—W_ 3
oz
ov , ow (4-36)
D u=< 3z "‘—a-—y'>=[BL]5
o, du
| Ox 0z

in which,

[Br)<[Brz Brz - - - Brao)
4-37)
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and

0 0 Ny, .
[BL_{] = 0 N;. N.i,y (4-38)
Nijz 0 Nj,

where i=1,2.....,20. To map the derivatives from global co-ordinate system to local co-

ordinate system, the following equations are used,

NIIE X:E Y,E Z'E Ni,x Ni,x
Nil'l =x:7| yl“ z'“ Ni:Y =[‘J] Ni'y (4-39)
i,§ X.C Y.C Z-C 1,z 1,z
where
20 20
x"iz; Nygxe  oe 2o} NigZs (4-40)

The equation (4-39) can be rewritten as
xi,x . ZI,E
Ni,y =[J] Ni.n (4-41)

where
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Ni,e=%5i(1*’“o) (1+8) (2Eg+no+Lo-1) EN3L3
—%E(1+1’|0) (1+8,) (1-E3) 3l
+284(1-02) (1+{o) (1-n}) (38

+3E:(1-0) (14m) (1D Elnd

(4-42)

Ni,,,=%ni(1+fo) (1+{,) (Eg+2M0+L,-1) E2n3C3
+%n1(1‘52) (1+,) (1-E2) 032
-%’q (1+,) (1+8,) (1-1%) {%E2
+%m(l-cz) (1+E,) (1-{2) E3n?

(4-43)

Ni,C=%ci(l+Eo) (1+n,) (Eo+no+28,-1) Enil3
+ 204 (1-82) (1+n) (1-ED miC]
+285(1-02) (1+E,) (1-n}) (3]

.._23;;(14-50) (1+n,) (1-¢3) Ein?

(4-44)

For mapping the derivatives, a radius vector and its derivatives defined by equations (4-

17)-(4-21) are also used.
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4.2.4 Partial Stress Field

Within the element, a partial stress field is assumed independently as follows,

B,
o, B
= B

Using iso-function method, an iso-function partial stress matrix can be derived from the

displacement field as follows,

100E00nN00C00Efn 0 0 EC O O
(pl={0 100E00nN00{0 0 &4 0 0 E O
00100E00nR00( 0 O En o0 0 E
n{ 0 0 &n{ 0 0 %0 0m1n20 02¢ 0 0 &n
onl 0O O Enl O G E 0 0n2o 0¢O0 O (4-46)
0O 0n, O O En{ 0 0E 0 0920 02¢2 0

0 0 §3¢ 0 En® 0o o0 n*¢ o §{* 0o ni{* o
B2y 0 0 E2 O En2 0 0 O 0 E{2 0 O
0 8n 0 0O O O &2 0 ¢ 0 0 O n¢°

In this partial stress matrix, there are 47 stress modes. In this element, there are 20 nodes
and each node has three components of displacements. Therefore, the element has (n=)
60 degrees of freedom. The degrees of the rigid displacement are equal to (r=) 6. Thus,
the element has (n-r=) 54 natural deformation modes. The examination of the partial

stiffness matrix [K,] gives 31 non-zero eigenvalues. So the rank of the partial stiffness
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matrix [K,] is (n;=) 31. The minimum number of necessary stress modes in the stress

matrix [P] is (m=) 23 in order to avoid any kinematic deformation modes mode.

In the iso-function stress matrix (4-46), there are 47 stress modes. It is more than double
the number of necessary stress modes. The stress matrix (4-46) can be expressed in the
form
(Pl=[l0, 0,0, ... 0; ... 041
- (4-47)
Based on this iso-function stress matrix, the classification method gives an optimal stress

matrix as follows,

IOOEOOnOOCOOEnOOECOO
[Pg]=01005001100(0051'|0OECO
OOIOOEOOnOOCOOEnOOEC
n 0 én{ 0o o
0 n{ 0 En¢ oO (4-48)
0 0 0 0 &ng
or

[Pl=[0, 0, 05 ... 0y 0y, ... Gy ]
(4-49)
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4.2.5 Examination of Partial Hybrid Element

After determining the interpolation functions of the geometry, displacements and partial
stress field, the element matrices can be calculated using equations (2-44) in Chapter 2.
The element quality is also examined by the eigenvalue test. The two stiffness matrices
of the 3-D, 20-node partial hybrid elements are examined. One is for isotropic material

(see table 4-1); another is for anisotropic material (see table 4-2). In the tables,

L v (4-50)

where A,; is the eigenvalue of the partial hybrid element; and A is the eigenvalue of its
displacement counterpart. In tables 4-1 and 4-2, there are not any spurious zero
eigenvalues. So the elements do not have any spurious kinematic deformation modes.
From the results in tables 4-1 and 4-2, it can be concluded that if an assumed partial stress
field can be used to construct a partial hybrid element without kinematic deformation
modes for the isotropic materials, it also can be used to construct the elements for

anisotropic materials.
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Table 4-1 Eigenvalues of stiffness matrix for the 20-node solid element with
23 stress modes and isotropic materials: E=1100 GPa, v=0.1

No A No. A No. A
1 0.3822 19 0.9066 37
2 0.3822 20 0.9106 38
3 0.4759 21 0.9235 39
4 0.5549 22 0.9272 40
5 0.6403 23 0.9277 41
6 0.6445 24 0.9296 42
7 0.6846 25 0.9296 43
8 0.7257 26 0.9366 44
9 0.7257 27 0.9366 45
10 0.7293 28 0.9376 46
11 0.7679 29 0.9376 47
12 0.7858 30 0.9389 48
13 0.8467 31 0.9559 49
14 0.8550 32 0.9559 50
15 0.8657 33 0.9568 51
16 0.8801 34 0.9573 52
17 0.9001 35 0.9575 53
18 09011 | 36 0.9575 54
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Table 4-2 Eigenvalues of stiffness matrix for the 20-node solid element with
23 stress modes and anisotropic materials: E,=174.6 GPa,
E=7.0 GPa, G 1=3.5 GPa, G=14 GPa, v;=V,3=V,,=0.25

No. A No. A No. A

1 0.5357 19 0.9641 37 0.9314

2 0.5888 20 0.9675 38 0.9994

3 0.5497 21 0.9206 39 0.9729

4 0.5013 22 0.9511 40 0.9593

5 0.6031 23 0.9316 41 0.9631
t 6 0.8726 24 0.8770 42 0.9807

7 0.7696 25 0.9044 43 0.9931

8 0.8002 26 | 09672 | 44 09442 |
{ 9 0.9358 27 0.9759 45 1.0000 “

10 0.8494 28 0.9371 46 1.0000

11 0.5934 29 0.8017 47 0.9971

12 0.8294 30 0.8755 48 0.9975

13 0.8994 31 0.9618 49 0.9996 fi

14 0.8053 32 0.9837 50 0.9961

15 0.8532 33 0.9952 51 0.9958

16 0.7674 34 0.9972 52 0.9975

17 0.7128 35 0.9974 53 0.9992

18 0.8763 36 0.9991 54 I.OOL |

In order to study the effect of extra stress modes on the stiffness of elements, the assumed
partial stress field consisted of the first 33 stress modes in iso-function stress matrix is

examined. The results of the eigenvalue analysis are presented in table 4-3. Comparing
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the A, in the table 4-1 and the table 4-3, it is shown that the eigenvalue A, of the element
using 33 stress modes is larger than that using 23 stress modes. Therefore, the added
stress modes stiffen the elements. One can examine a series of partial hybrid elements
using different number of stress modes in the assumed stress matrix. The examination will
show that the more stress modes there are, the more stiffening the element is. If there are
sufficient added stress modes in the assumed stress matrix, the stiffness of the partial
hybrid element will be equal to its displacement counterpart. Such partial hybrid element

has been presented by Han [43].

The examination of element shows that there is not any kinematic deformation modes, and

it has a desired capability for rigid-body displacement.
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Table 4-3 Eigenvalues of stiffness matrix for the 20-node solid element with
33 stress modes and isotropic materials: E=1100 GPa, v=0.1

No. A No. A No. A
1 0.4685 19 0.9971 37 1.0000
2 0.4685 20 0.9971 38 1.0000
" 3 0.7293 21 0.9981 39 1.0000
4 0.8803 22 0.9983 40 1.0000
5 0.9014 23 0.9983 41 1.0000
6 0.9014 24 0.9988 42 1.0000
7 0.9277 25 1.0000 43 1.0000
8 0.9296 26 1.0000 44 1.0000
l} 9 0.9296 27 1.0000 45 1.0000
10 0.9389 28 1.0000 46 1.0000
"7 11 0.9497 29 1.0000 47 1.0000
12 0.9556 30 1.0000 48 1.0000
" 13 0.9573 31 1.0000 49 1.0000
14 0.9575 32 1.0000 50 1.0000
15 0.9575 33 1.0000 51 1.0000
16 0.9730 34 1.0000 52 1.0000
17 0.9782 35 1.0000 53 1.0000
18 0.9878 36 1.0000 54 1.0000
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Chapter 5
PARTIAL HYBRID LAMINATED

ELEMENTS

The degenerated plate element was originally introduced by Ahmed, Irons and
Zienkiewicz [107] for the linear analysis of moderately thick and thin shells. Chao and
Reddy [23] presented a degenerated element based on the total Lagrangian description of
the motion of a layered anisotropic composite medium. But similar to the plate/shell
elements based on the 2-D plate/shell theories, for analysis of composites, the degenerated
plate/shell elements using displacement element formulation suffer from a common
deficiency: constitutive equations lead to discontinuous interlaminar stresses. Equilibrium
equations have been often used in recovering the interlaminar stresses. Regardless of the
controversy and complexity, the use of equilibrium equations will reduce the accuracy of
the stresses owing to the numerical differentiation. However, partial hybrid elements
formulation can overcome the stress continuity limitations of single-layer models due to

the fact that a partial stress field is assumed independently. Here, the 4-node and 8-node
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degenerated plate elements [44,45] are presented using partial hybrid element formulation.

Their number of degrees of freedom per node is independent from the number of layers

in a composite structure.

5.1 4-node Partial Hybrid Degenerated Plate Element

5.1.1 Geometry of Element

Firstly, consider a typical thick plate element in figure 5-1. The co-ordinates of a typical

point in the element can be written as

(a) (b)

Figure 5-1 A 4-node degenerated plate element
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¢ £ 4 4
=Y N, (8, q) L€ N (g, q) =X
E} ;1 ! E Tl 2 Ei}:op*g ’ E n 2 Zj bottom (5-1)

where N;(€.1) are shape functions, & and 1} are the normalized curvilinear co-ordinates in
the middle plane of the plate, £ is a linear co-ordinate in the thickness direction and only
approximately normal to the middle surface, and (x,, y;, ;) are the global co-ordinates at

node i. The shape functions are

_ 1
Ni"z (1+§5) (1+n,) (5-2)

in which,
Eo=EjE Ne=N3iN (i=11213r4)
(5-3)
This equation can be rewritten in the form specified by the 'vector’ connecting the upper

and lower points (shown in figure 5-1) and the mid-surface co-ordinates as

4 il 4
{;Z}=EN1(E.1])E1}+Z N;(§,m) By %Vu G4

1=1 i 1=]1

where
wepit A
=M e=—|4V 1 -
ai :i hi z; 3 > . (5 5)
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and

A=/ (%) 2+ (Vi Vig) *+ (230~ Z5) *
i\/ 1T~ Xip Yir~Yis it~ Zis (5-6)

5.1.2 Displacement Field

In the element, the displacement field is assumed as a continuous field through the entire
thickness of a composite structure. Although there are numerous plate theories which
include transverse shear deformations in the literature, the transverse normal stress is
always not taken into account. Actually, the hypothesis €, = O (or an equivalent
hypothesis) should not be used [108] in order to construct the consistent high-order theory.
For analysis of composite structures, the first-order shear deformation theory has to be

improved. For this element, the following displacement field is assumed [44-45],

u=uy,+za,
V=v,+2Za, 5-7)

wW=W,+za,

In this displacement field, it is assumed that a line that is straight and normal to the
middle surface before deformation is still straight, but not necessarily ‘normal’ to the
middle surface after deformation. Thus, the displacement throughout the element will be

uniquely defined by three Cartesian components (#, v; and w; ) of the displacement at
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the mid-surface node i, two rotations (a,; and a,; ) of the nodal vector V; about orthogonal
directions normal to it, and one transverse normal deformation ( @; ) in the thickness

direction. Based on this assumption, the i-th nodal displacement can be expressed as

u; h- i 0 .
u;=4vi +7‘C[V11 -V,4 0] i +—C [0 0 V,,] } (5-8)
W3 0] Qzi

in which, V,;, V,; and V,; are the unit vectors of the local co-ordinate (€, 1, {) at node

i. They can be calculated as follows:

ll.i ixv 121:
Vu:&i}ﬂi—xvﬁ Var=latf =VarVas e
1

If i x V3; =0, i can be replaced by j. Thus, the displacement field is

1ys ~1py 1as @, ;
ceR E R = I
,; ~Ip; I3y i

They can be rewritten in the form

a..i 4
{V1}+c [b; ]{ H =y, [ ;84 (5-11)

.i azi 1=1

4

PIL

=1

.§<E

where
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'bll.i blZJ: b13i 5 12
[b;] ={b21; Pazi Dbas; =—2-i- [Vis —Voy Va4l (5-12)
by1; Byp; by

8;=[u; v; w; a,; a,; a,l T (5-13)

N; 0 0 Ni{by; Ni{bi,; Ni{by3; 514
[N ;s{0 N; O Nilby; N {bypy NiC{Dyy (5-14)
0 O N; Ni{by; Ni{bsy; N;{bsa;

5.1.3 Partial Strain Field and Partial Derivatives of the Displacement Field

The partial globally continuous strains can be derived from the displacement field as

follows,
du
e, gx
e‘={ey}=D’u=< a_;’r =[B4]8
Pl |aulev -19
Oy Ox]
in which,
B_1=[B_, B B
[B4)=[ 2 9] (5-16)
and
5=(8,8,8,8,° -17)
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The partial geometric matrix at the i-th node is,

Nix 0 O by;;Cis
[Byl=| 0 N;, O byi1iCiy
Ni,y Ni,x O bllici}'_+b21.icix (5-18)
byo5Cix b,y35C1x
b,21C1y ba3iCyy

B131C1y*Dp21Cix D131C1,+D;31Cx

where

Cix=Ni, XL *N;§ x
Ciy=Ni,  §+N;C (5-19)
ciz=1vi,zc+N.ic,z
Because the transverse strain-displacement relation is satisfied a posteriori, the locally

continuous strains can not be derived directly from the displacement field. Only the partial

derivatives of displacement field can be derived as follows,

D u=9 ?z""a—y [
_a_W @ (5-20)

in which,

[Bo)=[Brz Brz - - - Bz
(5-21)

and
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0 0 N;. by, 5C4s

[Bu] = 0 Ni,z lvi,y b21iciz+b3uciy
Nij,: O Nj, By1:Cix*b115Cs, (5-22)
by;Ciz b33:Ciz

bypiCiz+D33:Cy Dy sC1+D33:Csy
by 1CixtDy12:Ci, By3:C1xtD13:Cs,

In order to perform the evaluation of isoparametric element matrices, a coordinate

transformation of derivatives is required. For calculating N;,, N; ,,

Ni.z and C.x’ c.y’ C.z » the

following vectors are introduced:

£ & il h
i) o
A & i hy
={y o b= o 5-24
pe A i

L[4 ‘ ra
V=«Fv(, }= Ni%v,, (5-25)

then, the Jacobian matrix is
[J1=[S T V] (5 -26)

and then,
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[JT'=[TxV VxS SxT]1/| 7| 5 -27)
and
| 1] =8sxT-V (5 - 28)

Because

i, e Ve 2 i,x i,x (5-29)
‘i"‘ =x:"l yl'l zlﬂ iay =[‘7] .i,y
S Y 4 Xe Y 2. i,z i,z

the derivatives of shape function with respect to global co-ordinates are

§.x N,x C,x
1, 2% lex Cexi(N g i,k 3
&i:}’}=51y nuy C,Y i:‘l}= [‘7] -lﬁit“} (5 30)
1,z E,z n,. c,z i.¢ i,¢

Due to N;, = 0, the expression (5-30) can be rewritten as

2ol O N;,e :
{gﬁjﬁ} [TxV Vx8] /M{I\G.n} (5-31)
and
Xl _ 8xT
=== 5-32
{E} 2 5-32)

The geometric matrix [B7] in the local co-ordinate system can be obtained by means of

transformation matrix [T],
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and
12 mf 1m n? mn,
12 o ILm, n; @ mm
(7.1 42211, 2mm, Lim+lm 20,0, mm+myny myl,+n,1,
B

17 m 1ym, n M1,

21,1y 2mymy lmy+1ym, 2n,n; mny+myn, mly+n,l,
2131, 2mymy lym+1,my 2030, myny+mng n3l)+n, 1;)

(5-33)

(5-34)

[Ts] is the transformation matrix for the derivatives of displacements from global co-

ordinate (X, y, z) to local co-ordinate. The direction cosines of the local co-ordinates are

4
1] Y NiVay
V3= 3 =.2=r
3

4 .
N;V,

=1

and

1, 1
IxvV, 2
"f{zi}:px—v,’, ‘3={:’:}=V3"V1
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5.1.4 Partial Stress Field

In the element, the partial stress field is assumed independently as continuous functions

along the thickness of a composite structure.

Ba
oz
o‘-—'{tyz}:[Pg] p=[Tl] [P] B= [I'] [ol 02' * 'al] _p.z_ (5-37)
B

zZX

where, B is the stress parameter vector. The matrix [T] is a multiplying matrix and is
determined by the traction conditions on the top and bottom surfaces of the structure. For
example, if there is a distributed normal load on the upper surface, the transverse shear
stresses must be equal to zero on both surfaces of top and bottom, and the transverse
normal stress must be equal to zero on the bottom surface and be equal to the distributed
load on the top surface. Therefore, the multiplying matrix has to be assumed as
1+ O 0
(71 0 1-{* O (5-38)
0 0 1-{°
The matrix [P] consists of a group of stress modes which can be derived directly from the
assumed displacement field using the iso-function method. The iso-function partial stress

matrix of the element is
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In the element, there are (n=) 24 degrees of freedom and (r=) 6 degrees of the rigid
displacement. The element has (n-r=) 18 natural deformation modes. The eigenvalue
examination of the semi-stiffness matrix [K,] gives 10 non-zero eigenvalues. So the rank
of the partial stiffness matrix [K;] is (ng=) 10. Thus, the minimum number of necessary
stress modes in the stress matrix [P] equals (n-r-n,=) 8 according to the condition (3-81)in

section 3.6 of Chapter 3.

Based on the iso-function partial stress matrix (5-38), when the multiplying matrix [T] is

an unit matrix [I], the classification method gives an optimal stress matrix as follows,

&

0 (5-40)
0

.—.
3,
i
o o P
oro
P o o
o o m
mo o
o O 3
o3 o

5.1.5 Examination of Partial Hybrid Element

After determining the interpolation functions of the geometry, displacements and partial
stress field, the element matrices can be calculated using equations (2-44) in Chapter 2.
The element quality is examined by the eigenvalue test. Using the assumed partial stress
matrix (5-40), the partial hybrid degenerated plate element is examined. The results of
eigenvalue examination are given in Table 5-1. In the table, A; is the eigenvalue of the

elements.
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Table 5-1 Eigenvalues of stiffness matrix for 4-node degenerated plate element with
8 stress modes and E=1100 GPa, v=0.3

No. A(*10%) No. A(*¥10%) No. A (*10%)

1 0.2821 7 0.6822 13 1.6920

2 0.2821 8 0.6822 14 1.6920

3 0.3291 9 1.0480 15 1.6920

“ 4 0.3626 10 1.1280 16 1.6920
5 0.3626 11 1.5740 17 1.6920

6 0.5641 12 1.5740 18 5.5000

On the free-traction surface, the transverse stresses must be zero in order to satisfy the
boundary condition. In this case, the multiplying matrix is not a unit matrix. For example,
if free traction condition is applied on both top and bottom surfaces, the multiplying
matrix is
1-¢2 0 0
[Tl 0 1-¢¢ O (5-41)
0 0 1-{2
The eigenvalues of the element are given in table 5-2. If the free traction condition is only

applied on bottom surface, then the multiplying matrix becomes
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1+ O 0
[T2]=% 0 1+ © (5-42)

0 0 1+

The results of eigenvalue examination are given in Table 5-3.

Table 5-2 Eigenvalues of stiffness matrix for 4-node degenerated plate element with
multiplying matrix [T,] and E=1100 GPa, v=0.3

No. | A(*10% | No. A(*10 | No. | A(*10%)
1 0.2350 7 0.6214 13 1.4100
2 0.2637 8 0.6214 14 1.4100
3 0.2742 9 1.0060 15 1.5670
4 0.3626 10 1.0480 16 1.6920
5 0.3626 11 1.4100 17 1.6920
6 0.5641 12 1.4100 18 4.9510
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Table 5-3 Eigenvalues of stiffness matrix for 4-node degenerated plate element with
multiplying matrix [T,] and E=1100 GPa, v=0.3

No. A(*10% No. A (¥10%) No. A (*10%)
1 0.1838 7 0.5668 13 1.5220
0.2115 8 0.5668 14 1.5220

0.3262 9 0.9530 15 1.6160

0.3441 10 0.9826 16 1.6920

0.3441 11 1.2480 17 1.6920

0.5641 12 1.2480 18 4.7500

The examination of the element shows that there is not any kinematic deformation modes,
and it has a desired capability for rigid-body displacement. Moreover, the non-zero

eigenvalues in the tables are real and positive.

5.2 8-node Partial Hybrid Degenerated Plate Element

An 8-node degenerated plate element [44-45] is also presented here using partial hybrid

element formulation.
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5.2.1 Geometry of Element

Firstly, the element geometry is approximated using the parametric coordinate system. The
global co-ordinates (x,y,z) of any point within the element are expressed in the form
specified by the 'vector’ connecting the upper and lower points (see figure 5-2) and the

mid-surface co-ordinates as

8 { 8
= > + C
E}lz.l""'“'"){gf} 2 N EmA 3V (5-43)

where (x;, y;, z; ) are the global co-ordinates of the i-th node. The shape functions Ni(&,n)

arec

(a) (b)

Figure 5-2 An 8-node degenerated plate element
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Ni=%(1+50) (1+T|°) (E°+no-l) Eiﬂi
+%(1-52) (1+n,) (1-ED) n}
+% (1-n2) (1+E,) (1-n2) &2
in which,
8o=k& mo=mm  (i=1,2,...,8)

The vector connecting the upper and lower points is

)

and the parameter h, is

hy=f (X;r=%;5) *+ (V7Y 18) *+ (247-235)

5.2.2 Displacement Field

(5-44)

(5-45)

(5-46)

(5-47)

Similar to the 4-node degenerated element, it is assumed that a line that is straight and

normal to the middle surface of the element before deformation is still straight, but not

necessarily ‘normal’ to the middle surface after deformation. Therefore, a displacement
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field is assumed as

ul 8 U ; ¢ @ i
{:}zz-zz. N; ;i +3hi (Vi Voy Vo] {iﬁ}

in which, V,;, V,; and V;; are the unit vectors of the local co-ordinate (&, n, £) at node

(5-48)

i. They can be calculated as follows:

ll.i lzi
Vo=dmat=2XVas g =V, XV, (5-49)

- lixvul ;

11 -3

The displacement field can be rewritten in the same form as that for the 4-node

degenerated plate element,

ul 8 u; Ay s 8 '
{ﬂi: NfVie+{ [b;148yer|=Y ) (M 8, (5-50)
1=1 Wi azi PASN

where
byy; biag byay
[bi] =| bzu b22.i b23.i =_2_j; [Vll "'Vu Vu] (5-51)
b:ui bzzi basi
and
(5-52)

— T
8,=[u; v; w; ay; a,; azyl
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N; O 0 Nbyy; Ni{b,p; Ni(byy; 55
[N]1;5{0 N; O Ny{by; Ni{bgy; Ni{byy; (>-53)
0 O N; Ni{by; Nil{bj; Ni{Dy3;

5.2.3 Partial Strain Field and Partial Derivatives of the Displacement Field

The partial globally continuous strains can be derived from the displacement field by

means of partial strain-displacement relation as follows,

r @ 3
€x 3%
eg={8y}=Dgu=< e =[Bg]®
Ex. du, v (5-54)
| dy Ox
in which,
B={B,; B, ... B
[Bg]5[Baz Be 8] (5-55)
and
8=[8,8, ... 8,17 (-56)

The expression of the partial geometric matrix at the i-th node [B,] is the same as that
of the 4-node degenerated plate element (5-18)-(5-19). The partial derivatives of

displacement field can be also derived from the displacement field as follows,

147



Dyu={ 5=+ >=[BL]5
dw , du (5-57)

in which,

[Be]=[Be: Bz - - - Big]
(5-58)
The expression of the partial geometric matrix at the i-th node [By;] is the same as that

of the 4-node degenerated plate element (5-22). In order to calculate N;,, N; ., N;, and C,,

€, G ., the following vectors are introduced:

E| 8 il B,
8= =} N, b +—=={ V. 5-59
E:i} > [{5} c] (5:59)
n| 8 i R
o 5w s
F,C}
V=, ¢r=
Z.¢

Thus, the Jacobian matrix, the derivatives of the shape functions, and the geometric matrix

8
;: Ni%vu (5-61)

1

[B7 in the local co-ordinate system can be obtained using equations (5-26)-(5-36).
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5.2.4 Partial Stress Field

In the element, the partial stress field is assumed independently as continuous functions

across the thickness of a composite structure.

Czx

OZ
a,={ryz}= (2,1 B=[T1 [P B (5-62)

where the multiplying matrix [T] is assigned by the traction conditions on the top and
bottom surfaces of the structure. The matrix [P] is derived directly from the assumed
displacement field using the iso-function method. The iso-function partial stress matrix of

the element is

100§00n00¢00%n 0 0 Ef 0 0
[Plsj01 005 00n00¢f0 O0C &n 0 0 E%{ O
0cooi100f00n00¢f 0 0E&n 0 0 &

n{ 0 0 §n{ 0 0 0 0 1n* 0 0 §3q
on{ 0o O &t{ 0 0% 0 0mn20 O (5-63)
0 onf 0 o0 En{ 0O 0E20 0Nz 0

0 O §¥ o0 &n*> ¢ o0 n*¢ o
E2n 0 O E{ 0 En2 0 o0 O
0 29 0 0 O 0 En%2 o0 n¥%¢

- There are 40 stress modes in the iso-function partial stress matrix.

In the element, there are 8 nodes and each node has six components of displacements.

Therefore, the element has (n=) 48 degrees of freedom. For a 3-D elastic body, the
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degrees of the rigid displacement are equal to (r=) 6. Thus, the element has (n-r=) 42
natural deformation modes. The eigenvalue examination indicates that the partial stiffness
matrix [K,] has 26 non-zero eigenvalues. So the rank of the partial stiffness matrix [K]

is (n,=) 26. Thus, the minimum number of necessary stress modes equals 16.

Based on the iso-function partial stress matrix (5-63), when the multiplying matrix [T] is

a unit matrix [I], the classification method gives an optimal stress matrix as follows,

100£00n00Ep O 0O 0 0 0 O
[P1=5f0 L00OEOONOC O En 0 §¢ 0 &n{ O (5-64)
00100E00Nn 0 O En 0 n 0 Eng

5.2.5 Examination of Partial Hybrid Element

The degenerated plate elements with three types of materials are examined. The first is
for isotropic material (see Table 5-4); the second is for anisotropic material (see Table 5-
5); The third is for the composite structure with fibre orientation [90, 0, 90] (see Table

5-6). In the tables,
A; = T (5-65)

where A;; is the eigenvalue of the hybrid element; A, is the eigenvalue of its displacement

counterpart.
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Table 5-4 Eigenvalues of stiffness matrix for the degenerated plate element
with 16 stress modes and isotropic materials: E=1100 GPa, v=0.3

No. A No. A No. A
1 0.7355 15 0.9253 29 0.9276
2 0.9392 16 0.9253 30 0.8042
3 0.7040 17 0.9241 31 1.0000
4 0.6753 18 0.7388 32 0.9966
5 0.8229 19 0.9190 33 0.9994
6 0.5870 20 0.9762 34 0.9994
7 0.6636 21 0.9790 35 0.9817
8 0.6092 22 0.8131 36 0.9841
9 0.7219 23 0.7528 37 0.8384

10 0.8699 24 0.7375 | 38 0.8432
11 0.8197 25 0.8694 39 0.9995
12 0.8974 26 0.8120 40 09114
13 0.8793 27 0.8195 41 1.0000
14 0.8793 28 0.8195 42 | 1.0000
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Table 5-5 Eigenvalues of stiffness matrix for the degenerated plate element
with 16 stress modes and anisotropic materials: E;=174.6 GPa,
E=7.0 GPa, G ;=3.5 GPa, G=1.4 GPa, v ,=v;;=V,,=0.25

No. A No. A No. A
1 0.9474 15 0.9094 29 0.9766
2 0.4623 16 0.8548 30 1.0000
3 0.5917 17 0.7773 31 0.9993
4 0.7961 18 0.7797 32 0.8925
5 0.8069 19 0.9696 33 0.9897
6 0.7233 20 0.8894 34 0.9968
7 0.7416 21 0.9453 35 0.9998
8 0.7526 22 0.9086 36 1.0000
9 0.8614 23 0.9842 37 0.9940

10 0.8387 24 0.8846 38 0.9918

11 0.8810 25 0.9896 39 0.9995

12 0.8917 26 0.9820 40 1.0000

13 0.9025 27 0.9996 41 0.9916

14 0.9138 28 0.9496 42 1.0000
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Table 5-6 Eigenvalues of stiffness matrix for the degenerated plate element
with fibre orientation [90, 0,90], 16 stress modes and materials:
E,=174.6 GPa, E.=7.0 GPa, G =3.5 GPa, G{=1.4 GPa, v =V ;=v,,=0.25

No. A No. A No. A

1 0.6746 15 0.8201 29 0.9094

2 0.5697 16 0.7790 30 0.9506

3 0.5951 17 0.7862 31 0.9982

4 0.7661 18 0.9046 32 1.0000

5 0.8326 19 0.9080 33 0.9999

6 0.7248 20 0.8470 34 0.9899

7 0.6863 21 0.8440 35 0.9915

8 0.6293 22 0.7805 36 0.9986

9 0.7808 23 0.9788 37 1.0000

10 0.8043 24 1.0000 38 0.9993

“ 11 0.8668 25 0.9470 39 1.0000
12 0.7016 26 0.9717 40 0.9896

13 0.8314 27 0.8866 41 0.9998
l:'m 0.8170 28 0.8840 | 42 0.9999

The examination of the element shows that the element does not have any kinematic
deformation mode, and it has a desired capability for rigid-body displacement. Moreover,
the non-zero eigenvalues in the tables are real and positive
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Chapter 6
PARTIAL HYBRID TRANSITION

ELEMENTS

In the global-local analysis, the treatment of interfaces between global and local regions
is one of the key elements [91]. One of the commonly-used approaches for maintaining
displacement compatibility and traction equilibrium at the interfaces is a special transition
element. The major advantage of the transition element is to eliminate the constraint
equations at these transition regions[7, 109-110]. Two partial hybrid transition elements
are presented here [47-48, 101-104]. They will be used to connect the 3-D partial hybrid
solid elements in local region with the partial hybrid degenerated plate elements in global

region for the global/local analysis of composite structures in Chapter 8.
6.1 6-node Partial Hybrid Transition Element

The transition elements will be used to connect the partial hybrid degenerated plate
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elements and the 3-D partial hybrid solid elements in a global/local finite element model.
In order to ensure that the finite element model converges to the correct result, as
mentioned in Chapter 1, the continuity condition of displacements across the interface
between adjacent elements must be satisfied. Therefore, the interpolation functions of the
displacement field have to be first investigated. For an isoparametric eleme;nt, the
displacement interpolation functions are the same as the shape functions which are used

to approximate element geometry. So the shape functions are first discussed here.

The transition element has two line-of-nodes [111] where it meets the degenerated plate
element and four point nodes on the remaining boundaries where it meets the 3-D solid

element (see Figure 6-1). The line-of-nodes can accommodate any function across the

Figure 6-1 6-node partial hybrid transition element
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thickness, allowing it to admit the any-order polynomials over the entire thickness from
degenerated plate element, while the point nodes have the same polynomial shape
functions as those used for the 3-D solid element. Once the shape functions of the
transition element are established, the definitions of geometry and displacements for the

element follow a similar path to those of the hybrid elements.

6.1.1 The Shape Functions of Different Elements

In the formulation of a typical 3-D element as shown in figure 6-2(a), shape functions
dictate the form of a displacement field. It is clear that if two adjacent elements have
identical shape functions and nodal locations on the interface, the continuity of the
displacement field between the elements is achieved and the elements are compatible.

Otherwise, the compatibility of elements will not be satisfied.

Suppose that a transition element in Figure 6-2(b) is used to connect a solid element (Fig.
6-2a) to a plate element (Fig. 6-2c) in the transition region of a global/local finite element
model. On the left side, it meets with a solid element; on the right side, it meets a plate
element. Thus, the transition element must have the same shape functions and nodal
locations on its left side as that of solid element, and on its right side as that of plate/shell

element.

Take a solid element as an "original" element for developing the transition element.
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Obviously, the shape functions on the left side do not need to be modified. But, on the
right side, new shape functions for satisfying continuity are required. For a general case,
this amounts to developing a set of shape functions which can accommodate any arbitrary
curve specified by the adjacent right-side element along the { axis (thickness) on the
interface between elements. Before attempting to generate such shape functions, it is

instructive to examine shape functions for a solid element.

’
4
)
| 3
(a) solid element (b) transition element (c) plate element

Figure 6-2 Three types of element

In figure 6-2(a), a typical linear solid element is shown with the local curvilinear co-
ordinates &, 1 and . Its shape functions can be found elsewhere[112]. For developing a
transition element, of particular interest are the shape functions for the nodes on the right

side of this element, node 5-8:
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Ni=L (1+£.8) (1engm) (140,0) 6-1)

The transition element in Fig. 6-2(b) is similar to the solid element in Fig 6-2(a) except
for the nodes on its right face (5,6,7,8). Special treatment has to be done to these nodes
so that their displacements can be compatible to those of the plate element in figure 6-
2(c). Consider a function,
Q(E,m,0)=Q,(&,n,0)+Q,(E,n.{)
(6-2)
in which,
Q,.(&.,1n.,{) =0 N;+a N

Q. (§,1,{) =aN,+a,N, (6-3)

where o is the value of Q at the node i of the solid element. Note that the function €2 can
have the meaning of displacement function for the right face of the transition element in
Fig. 6-2(b). Functions Q, and €, can be of any degree (linear, quadratic etc.) between
the two nodes 5-8 or 6-7 respectively. For a regular brick element, ot and o would
represent the displacements at the node 5 and 8 respectively. Normally, the displacements
at node S and 8 are independent of each other. However, if the displacements at nodes
5 and 8 are constrained such that each of them is equal to a specific value of a function

B(”), then one can write:
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o5 = BEs
o = B(g’s)

where {5 and C; are the global coordinates in the thickness direction of nodes 5 and 8

6-4)

respectively.

Now consider the shape functions of the degenerated plate element. A middle surface of
a degenerated plate element is shown with the local curvilinear co-ordinates & and 7y (in
Figure 6-2(c)). The shape functions for the nodes on the left boundary of this element,

nodes 1 and 4 are:

N/ =(1-§) (1-1) /4

6-5)
N/ =(1-E) (1+n) /4 (
Consider another function meantime,
H(EITI 'CI) =I[1 (EITII C') +H4 (E:Tl: C')
(6-6)
in ;vhich
]11 (8, L (I) =A1B1 (C') Nll
(6-7)

o,(&,n, ¢ =A,B, () Nlc.

and IT represents the displacements at the left face of the plate element. Note that the

function IT can be considered to be the displacements of points lying on a plane normal
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to the middle surface of the plate element at edge 1-4. I, can be considered to be the
displacements at all points on a line normal to the initial middle surface of the
undeformed plate element at node 1 and IT, can be considered likewise to be the
displacements at all points on a line normal to the initial middle surface of the
undeformed plate element at node 4. Now consider the composition of I, in detail. The

composition of IT, follows.

In II, , N, represents the shape function in the plane &-1. A, represents the nodal
displacement at the node 1 on the middle surface of the plate element. B,({’) represents
the variation of the displacement in the undeformed state of any point initially lying on
the line normal to the middle surface of the plate element. If only one plate element is

used for the whole laminate thickness, B({) is a linear function of £’

6.1.2 Matching the Two Shape Functions

From figure 6-2(b), Q represents the displacement of the transition element at the
interface. From figure 6-2(c), Il represents the displacement of the plate element at the
interface. In order to satisfy the compatibility of displacement fields at the interface

between the transition element and plate element, €2 and ITmust be the same.

Function £ consists of two functions Q, and €,, and function IT consists of another two

functions IT, and II,. At the interface, 2, and Q, will need to match Il, and II,,
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respectively. If Q, and IT; can be matched exactly, compatibility of displacement fields at
the interface will be satisfied. At the interface, {’is a function of £. In the interval {e [-

1,1] which corresponds to {’ € [{}, {},,], one has

~1-¢ 1+(
cl_ 3 C/1+ 3 /l+l (6.8)

Note that £’ is the global thickness coordinate for the plate element while { is the smaller

thickness coordinate for the solid or transition element. Using equation (6-1), the function
€2, in equation (6-3) can be rewritten as follows:

Q,=L (1+8) (1-1) [(1-0) ag+ (1+]) &gl

a 8 11 S c 8 ( 6-9)

In this expression, the function €, is split into two parts N () and 0,(C) that are

1
N (E,m)==(1 1~
(8. 1) 4( +£) (1-1) (6-10)

€, (L) =X [(1-0) ag+(1+0) ag)
2

Thus,
Q= a,N,
(6-11)
In order to accommodate any arbitrary curve B,({’) specified by the adjoining plate
element, a line of nodes connecting nodes 5-8 and a moving node which moves along this
line are defined. At every point {’ occupied by the moving node, the nodal value o, is

made to be equal to the value of the specified curve at the point, A 3,({). Thus,
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@ ,=2,B, ()
(6-12)

Q.= 4,8, ()N, (E,m)

Because the contribution of line 5-8 to the displacement field of the transition element is
represented by the function €2, , this line is called as line of nodes "a" in order to use the
standard word "node” in finite element method. Now, comparing functions €2, and I, (6-
7) and (6-12) at the interface, one can see that the functions €2, and I, are the same (note
that N,=N’, at the interface). The Q, and I, are matched exactly. In the same way as the
functions €, and IT, , The Q, and I, can also be matched. The new shape functions and
nodal values are defined by

a,=A,B8,({)
(6-13)

Nb=(l+5) (1+m) /4

Thus
Q,=a N,=2,8, (YN, (E,n)
(6-14)
The functions €2, and €2, of two lines of nodes "a" and "b" determine the displacements
of the transition element at interface. Similarly, the functions I1, and Il of two nodes 1
and 4 determine the displacements of the plate element at the interface. Because the
functions €2, and £, are the same as the functions I, and I, at the interface respectively,

the function 2 is subsequently same as the function I1. Therefore, the displacements are
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compatible at the interface between the transition element and plate element.

These two new shape functions N, and N, along with the other four shape functions as
given in Reference [112] form a complete set of shape functions for the transition
element. Thus, the approximation of the geometry and the displacement field of the

element are determined
6.1.3 Geometry of the Element

A transition element is shown in Figure 6-3. The global co-ordinate (x, y, z) of any point

in the element may be related to the non-dimensional co-ordinates by

{;z:} =2:: Ni{%} +§ w. iEE} (6-15)

In which, x; , y; and z; are the co-ordinates of node i. Because the point nodes 5-8 are

replaced by two lines of node a and b as follows,

0
8 i b 1 i
P ILAZ S I AC S| SE SRS (6-16)

where, x°, y and z? (i=a,b) are the co-ordinates of the line "a" and "b" at the middle

surface of the composite structure, one has
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0
b 1
F}=iNi j; +EN1:( 9 +g Ayi ) (6-17)

Moreover, it can be rewritten in the form,
0
4 i b ﬁ C /
=Z Ngysp+y Ny ({vi +7bivu) (6-18)
Z 1 z;| a = f
where

b4
=Haip==—IV1 i -1
u :1 By Zi) . |%i) 5 (6-19)

and

hy=f(Xp=%5) “+ (V17 Vi8) “* (Z10~2Z45) ©
i \/ iT “~iB it 7iB IT <iB (6-20)
The shape function N; can be expressed as follows:
1
N,==(1+ 1 1+
f 8( §o) (14m4) (1+{,) 6-21)

in which
Eo=E:E mo=mm  (o=C{  i=1-4 (6-22)
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and

N,=(1+8) (1-n) /4

Ny=(1+E) (1+1) /4 (6-23)

Note that coordinate {’ is the global thickness coordinate for the plate element and
coordinate { is the smaller thickness coordinate for the transition element. The
relationship between coordinate £’ and coordinate C is expressed in equation (6-8). The
values () and {’,, represent the values of co-ordinate £’ at the lower and upper surfaces

of a layer while {=-1 and {=+1, respectively.
6.1.4 Displacement Field

In the element, the displacements (see figure 6-3) are expressed as follows:

0
ul 4 U;l b U W,
{x}=z NVip+Y Nyive e+{/ [b;] ¥y (6-24)
1wy e w? e
where
by1s Dias biag

h
[bi] =b211 bzzi bzsi =—2"i‘ [Vu ~Vai Vu] (6-25)
byy; byyy %Y,
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and

Ly; Y
IxV, 21 6-26
Vu=£:u}= | ixVi j Vu=&'zi_}=vuxvu (6-26)
1

Figure 6-3 Nodal displacements in a transition element

in which, the displacement components u; , v; and w; are the nodal displacements at point
nodes 1,2,3 and 4. The displacement components u,’, v;° and w;? are the displacements of
the line "a" and "b" at the middle surface of the composite structure, y,; and y; are two
rotations of the nodal vector V,; about orthogonal directions normal to it, and y; is a

transverse normal deformation in the thickness direction.
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6.1.5 Partial Strain Field and Partial Derivatives of the Displacement Field

Due to the fact that

globally continuous s

the in-plane strain-displacement relation is satisfied a priori, the

trains can be derived directly from the displacement field. Therefore,

the partial strain field is

) \
& 8,
{eg=1 -gl >=[Bg]6=[Bngg2 ..... Bgg] 6.2
ou , v/ 5 (€-27)
oy ox 6

where 8; = 9, and &

= J, . However, the locally continuous strains can not be derived

directly from the displacement field. Only the partial derivatives of the displacement can

be obtained as follows,

L0z, 2
v, Owl 2
Du= 5z * ay( Beld={BrBrz- - - - - B -
ow  ou . (6-28)
ow,ou 8
ox 0z §
For nodes i = | - 4, the geometric matrices are
N;» 0 0
Bgdd 0 Ny 0 (6-29)
N;y N O
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and

0 0 N,
[Bei]= 0 Ni . Nip (6-30)

and the nodal displacements are

af{ﬁi} (6-31)
Wi

For nodes i = a and b, the geometric matrices are

N;x 0 O By1181e biyiaix by3i@y
(Byyl=sf 0 Ngy O byyiay, byyiay, b3y (6-32)
Ny, Nix 0 byyj85,+b5y 185, Diay@y,+Bo2i@1x Dy3s@iy*Da35815
and
0 0 Ng. byysay, byyia;, byyia,
(B 1= O Ny g Ny bayj@:,+Dy; 435, Dogi@4p+bapi@s, Daygdi.%by33484y,
Nir O Np, Dys@5,tByy585, Dygy@ie+Di2:852 Dy3p@ixtbiasay;
and the nodal displacements are
(6-34)

7.0 0 0
8,=[u; vi wi U,y ¥ 5 $;,17
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and

a5,=Ny, L' +N {7/
a;,=N; R'+N, (6-35)
aiz=N.i, zCI+Ni c/' z

In order to calculate N;,, N; , N;, and §’,, T, L', , the following vectors are introduced:

(6-36)
xlfl Xr
T=r (y,., v=r =|¥.¢
Al Z:
Then,
[J]=[8 T V)T and |J=8TxV (6-37)
and
(6-38)

[J]=[T<xV VxS SxT|AJ]

One can obtain

i,x 1,8
%i,y}= [TxV VxS SxT] /IJI{%:L,.} (6-39)
i,z 1,§
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and

{é I§}= Sz (6-40)

s Z

6.1.6 Partial Stress Field

In the element, the partial stress field is assumed independently,

g Z
c,={r,,,}= [P,1B (6-41)

©zx

where the stress parameters [3, are the internal parameters. In some cases, it is convenient
to use surface stress parameters o. For example, an assumed stress field can be assumed
in the form,

0= [P,] B=[P] Z{(1+{) @y+ (1-0) @y} 642
where o and Oy are the surface stress parameters corresponding to upper and lower
surfaces of the element, respectively. In this expression, a stress mode ©; in the matrix [P]
is related to both surface parameters (upper and lower surface parameters O and (4 ) and
corresponds two stress modes 0.5*%(1+{)*c; and 0.5*%(1-{)*c; in the assumed stress matrix
[P.]. The stress matrix [P] can be derived directly from the assumed displacement field

using the iso-function method. The iso-function partial stress matrix of the element is
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100E00n00(C00En 0 0 nf{ 0 E{ O
(P10 L0 0E0O0NO000O R 0 0 0 O EL (6-43)
00100E007M00¢( 0 0 Eno0nf{ O O

There are 19 stress modes in the stress matrix.

In this element, there are four point nodes and two lines of node. Each point node has
three components of displacements and each line of nodes has six components. Therefore,
the element has (n=) 24 degrees of freedom. Because the degrees of the rigid body motion
are equal to (r=) 6, the element has (n-r=) 18 natural deformation modes. The eigenvalue
examination indicates that the rank of the partial stiffness matrix [K;] is (ngs=) 10.
Therefore, the minimum number of necessary stress modes in the stress matrix [P,] is
equal to 8. Because a stress mode in the matrix [P] corresponds two stress modes in the

assumed stress matrix [P,], the stress matrix [P] must have at least 4 stress modes.

Based on the iso-function partial stress matrix (6-43), the classification method gives an

optimal stress matrix as follows,

[P] (6-44)

soF
o = o
H o o
O ™M O
3 o o
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6.1.7 Examination of Partial Hybrid Transition Element

The element is examined by using the eigenvalue test. The results of eigenvalue
examination are given in Table 6-1. In the table, A; are the eigenvalues of the element.
The results show that the element does not have any kinematic deformation modes, and
it has a desired capability for rigid-body displacement. In addition, the non-zero

eigenvalues in the table are real and positive

Table 6-1 Eigenvalues of stiffness matrix for hybrid transition element
with 10 stress modes and isotropic materials: E=1100 GPa, v=0.3

No. | A (*10%) No. A (*10%) No. A (*10%)

1 0.1088 7 0.2923 13 1.282

2 0.1621 8 0.4328 14 1.373

3 0.1850 9 0.6554 15 1.398

I 4 0.2115 10 0.7126 16 1.398
5 0.2209 11 0.7264 17 1.418

6 0.2438 12 09706 | 18 4.171

6.2 15-node Partial Hybrid Transition Element

In order to connect 8-node partial hybrid degenerated plate elements and 3-D, 20-node
partial hybrid solid elements, a 15-node transition element is presented [47]. It has three
lines of nodes [111] where they meet the degenerated plate/shell element and four point

nodes on the remaining boundaries (see Figure 6-4). The line of nodes can accommodate
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any function along the thickness, allowing it to admit the any-order polynomials over the
entire thickness from degenerated plate element, while the point nodes have the same

polynomial shape functions as those used for the 3-D solid element.

X

Point nodes Ly

'S

\ !

Lines of nodes

Figure 6-4 15-node partial hybrid transition element

6.2.1 The Shape Functions of Different Elements

Suppose that the 15-node transition element in Figure 6-5(b) is used to connect a 20-node
solid sub-element (Fig. 6-5a) to an 8-node plate element (Fig. 6-5c) in the transition
region of a global/local finite element model. On the left side, it meets with a solid

element; on the right side, it meets a plate element.
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Similar to the case in developing 6-node transition element, take a solid element as an
"original” element for developing the transition element. Obviously, the shape functions
on the left side do not need to be modified. But, on the right side, new shape functions

for satisfying continuity are required.

 Moving nodes 9,12,13,14

Lines of nodes a,b,c

(a) solid element (b) transition element (c) plate element

Figure 6-5 Three types of element

In Figure 6-5(a), a typical quadratic solid element is shown with the local curvilinear co-
ordinates £, 1| and {. Its shape functions can be found elsewhere[112]. For developing a
transition element, of particular interest are the shape functions for the nodes on the right

side of this element, node 1-4, 9, 12-14:
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Nf% (1+Eo) (1+1g) (1+,) (Eg+mo+lo-2) EIN3(3
+3 (1-82) (1+1) (1+4,) (1-ED niE (6.45)
+3 (1-12) (1+4y) (1+8,) (1-nD) {33

+% (1-¢2) (1+E,) (1+n,) (1-{D) E3n?

in which,
Eo‘:EiE N =N ;M C0=C1C
(6-46)

where &;, 1; and {; are the local co-ordinates of node i in the element parametric space.

The transition element in Fig. 6-5(b) is similar to the solid element in Fig 6-5(a) except
for the nodes on its right face (1,2,3,4,9,12,13,14). Special treatment has to be done to
these nodes so that their displacements can be compatible to those of the plate element
in figure 6-5(c). Consider a function,
QE,n.0)=02,(8.,1,0)+Q,(8,n,{) +Q (E,n.,()
' 647
in which,
Q,(8.1n,0) =a; N +a, N, +ay N,

(6-48)
Q,(8,n,0) =3 Ny +ot, Ny,

Q.(8,n,Q) =a;Ny+a, N, +a,,N,,
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where ¢ is the value of Q at the node i of the solid element. Note that the function € can
have the meaning of displacement function for the right face of the transition element in
Fig. 6-5(b). Functions Q,, Q, and _ can be of any degree (linear, quadratic etc.) between
the two nodes 1-2, 13-14, or 34 respectively. For a regular solid element, o, 0 and o,
would represent the displacements at the node 1, 9 and 2 respectively. Normally, the
displacements at node 1, 9 and 2 are independent of each other. However, if the
displacements at nodes 1, 9 and 2 are constrained such that each of them is equal to a

specific value of a function B({), then one can write:

o, = BED
o = BEY (6 - 49)
a, = P&

where ('}, £ and {’, are the global coordinates in the thickness direction of nodes 1, 9

and 2 respectively.

Now consider the shape functions of the degenerated plate element. A middle surface of
a degenerated plate element is shown with the local curvilinear co-ordinates & and 1 (in
Figure 6-5(c)). The shape functions for the nodes on the left boundary of this element,
nodes 3, 7 and 4 are:

N’i=%(1+50) (1+n4) (Eg+no-1) Ein?

+2 (1-§2) (1+m,) (1-EDn}

(6-50)
+§§(1-n2)(1+&°)(1-n§)55
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in which,

£o=8:8 TMo=miM

(6-51)
Consider another function meantime,
M(E,n, () =00, (E,n, () +IL, (E,n, L)+, (§,n, ()
(6-52)
in which
I, (E,n.,C) =4,B, (T N/
3 n 3P3 3 (6-53)

I, (E,q,¢) =4,8, ()N,
o, (&, n, ¢h =48, (9] N’4

Note that the function IT can be considered to be the displacements of points lying on a
plane normal to the middle plane of the plate/shell element at edge 3-4. I1, can be
considered to be the displacements at all points on a line normal to the initial mid surface
of the undeformed plate element at node 3. IT, and I, also can be considered likewise to
be the displacements at all points on the lines normal to the initial middle surface of the
undeformed plate element at node 7 and 4 respectively. Now consider the composition of

I, in detail. The compositions of II; and IT, follow.

In IT, , N’, represents the shape function in the plane &m. A, represents the nodal
displacement at the node 3 on the middle surface of the plate element. B;({) represents

the variation of the displacement in the undeformed state of any point initially lying on

178



the line normal to the middle surface of the plate element. If only one plate element is

used for the whole laminate thickness, B({) is a linear function of §'.
6.2.2 Matching the Two Shape Functions

From figure 6-5(b), Q represents the displacement of the transition element at the
interface. From figure 6-5(c), IT represents the displacement of the plate element at the
interface. In order to satisfy the compatibility of displacement fields at the interface

between the transition element and plate element, €2 and IT must be the same.

Function Q consists of three functions 2, , Q, and Q_, and function ITconsists of another
three functions IT,, IT, and I1,. At the interface, Q, , Q, and Q_ will need to match IL;, IT,
and I, , respectively. If Q; and IT, can be matched exactly, compatibility of displacement
fields at the interface will be satisfied. At the interface, {’ is a function of . In the

interval e [-1,1] which corresponds to ' € [£), (%], one has

0= 1;( ¢+ l;( <

(6-54)
Note that £’ is the global thickness coordinate for the plate element while { is the smaller

thickness coordinate for the solid or transition element.

Without losing generality, the function , is examined as an example along the line '@’

of nodes 1, 2 and 9. It can be rewritten as follows:
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Q,=a, (1+E) (1+7) (1-¢) (§+n-1)/8
+, (1+E) (1L+7) (1+{) (§+n-1)/8 (6-55)

“1;“2) (1+E) (1+7) (1-02) /4

+ (ag—

It shows that the function Q, may be separated into two parts: (1) the contribution of the
corner nodes which varies linearly along the { direction and quadratically along the § and
1| directions; and (2) the contribution of the mid-side node which is quadratic in the §

direction and linear along £ and 1} shown in figure 6-6(a). If the quadratic function

(ag-“lT‘”"Z) (1-32)

(6-56)
can be replaced by a arbitrary function
(1-Q) e, +(1+{)
(AP 1 2
3P (C) 2 6-57)

shown in figure 6-6(b), then Q, will be exactly equal to the IT;

In order to accommodate any arbitrary curve B,({) specified by the adjoining plate
element, a line of nodes connecting nodes 1-2 and a moving node 9 which moves along
this line are defined (see figure 6-5). At every point {’ occupied by the moving node, the
nodal value oy is made to be equal to the value of the specified curve at the point,
A;B5(C) (see equation (6-53). Taking o, and o, as A,By(5(-1)) and ARy (E(+1)),

respectively, the new shape functions and the nodal value are defined by
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a  4850)-05[(1-t)a #(1+0day)

Figure 6-6 Variation of physical field on the line ‘a’ of nodes

N',=(1+E) (1+m) (1-{) (§+n-1)/8
N”,=(1+E) (1+7) (1+{) (§+n-1)/8 (6-58)
N =(1+E) (1+n) /4

a’y=2,85({) - (1-0) “1‘2’(1"’() L

Thus

(6-59)
Qa=“1N”1+¢2N”z +¢”9N”9

The equations (6-58) and (6-59) above can be transformed into the most convenient form

as follows:
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N =(1+E) (1+1) (1-{) (E+n-2) /8
N",=(1+E) (1+n) (1+{) (E+n-2) /8
N =(1+E) (1+n) /4

aé”=A3 BS (cl)
nm

Qa=¢1N”/1+¢2Nl”2 +0g N”lg

(6-60)

and

Q,=4,[B,({'}) N (E,n, ) +B, (T',.,) N, (E,n.8)+B3 (LN (E,n) ]
A, [By (¢, 1 | 336241 2 3 3 n (6-61)

Thus, the €2, and IT, are matched exactly at the interface. Notes that the nodes 1, 2 and
9 are not independent nodes. They become sub-nodes on the line of node ’a’. Because the
contribution of line 1-9-2 to the displacement field of the transition element is represented

by the function £, , this line is called as line of nodes "a".

In the same way as the functions Q, and IT,, the €, and Q_ can also be converted to

match [T, and II,. The new shape functions and nodal values are defined by

N =N =(1+E) (1-9%) /4
@y3=a1,=4,B, ({)

_ " 1
Q= N +a, N

(6-62)

and

Q,=2, [, ({V Ny (E,m) +B, ({) N (E,m)] (6-63)
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and

N, =(1+E) (1-1) (1+{) (§-n-2) /8
N =(1+E) (1-n) (1-{) (§-n-2) /8
N ,=(1+E) (1-1)/4

“% =A,B,( )

- 117 " M arttl
Q =0, N +a N7, +a 2N,

(6-64)

and
Q=2 (B (TN (E,,0) +Be(C10y) N (B0, {) +B (EY N5 (B, ) ]
(6-65)

The functions Q, , &, and Q, of three lines of nodes "a", "b"and "c" determine the
displacements of the transition element at interface. Similarly, the functions I1;, IT, and
I1, of three nodes 3, 7 and 4 determine the displacements of the plate element at the
interface. Because the functions Q,, Q, and Q, are the same as the functions I1;, II; and
IT, at the interface respectively, the function L is subsequently same as the function II.
Therefore, the displacements are compatible at the interface between the transition element

and plate element.

These eight new shape functions (6-60), (6-62) and (6-64) along with the other twelve

shape functions as given in Reference [112] form a complete set of shape functions for

the transition element.

183



6.2.3 Geometry of the Element

Renumbering the nodes, a transition element is shown in Figure 6-7. The global co-

ordinate (X, y, z) of any point in the element may be related to the non-dimensional co-

ordinates by
! /
12 1] 18,20 X1l 17,19 X'z
= " ! 1" !
YN+ 3 NG yiar 3 N4y (6-66)
Z 1 Z,] 13.15 z! 14,16 =z!
I 1 moving

in which, the expression of (x’, y’, z) is dependent on the assumptions used in the

adjoining plate element.

Moving nodes 14,18,17,19

-

Figure 6-7 Transition element
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When the adjoining element is a degenerated plate element, the equation is written as

12 i| 18,20 % o, x% 17,13 ? o Ax.g
=Y N{Var+ ¥, Nil{yip+—551AYi + Yy, N f*-é'AYx
z] T z;| 13735 29 Az9|| 1-is 2 Az?

in which, x, , y; and z (i=1,2,..12) are the co-ordinates of node i. x’, y and z?

(6-67)

(i=13,14,..20) are the co-ordinates of the lines of node “a", "b", and "c" at the middle

surface of the composite structure. The expression (6-67) can be rewritten as follows,

(¢} (1]
A X,

12 i a / NII + INII +CI N/l a

?}: 2 NJ»F‘{}" (Nllla +N”19 +N”20) a0 + c 18 18 c 5 19 20 20 A}’g

Zj 1 Z 0 0

1 Z Az,

0 (]
2 s
+(N"g+N"\5) Qypp+2A¥s¢)
28 2 Az (6-68)
0 AXO
* (N 4N N, E . sl + U+ LN J AYE
22 2 Az
In the simplified form,
[} 0
12 1 c 7 N ij
Y Nty (Nayi e+ ZHAs) (6-69)
g 1 gy e z; Az

Note that coordinate {’ is the global thickness coordinate for the plate/shell element and

coordinate § is the smaller thickness coordinate for the transition element. Ncte that the
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co-ordinate {’ of the moving node varies along the line as follow

T L.
=ty e 8, 6.70)

where the values { and {’,, represent the values of global co-ordinate £’ at the lower and

upper surfaces of a layer while {=-1 and {=+1, respectively. One can obtain

N, =N"_ +N"  +N",
W=l N o + I o + Ll N, =N
N, =N"l, +N""
Ny={ (N 4N ) = NG/ (6-71)
N =N"_ +N"'  +N"

N,

_rl il Ingil! I oAt —np 7!
=0/ N+ N+ N =N

Thus, the co-ordinates can be expressed as in simple form,

12 { [~ .79 Ax;

SN (0t S Ay
1341 E Wit yit) (6-72)

Z 1 Z.i a,b Z‘? AZ__(})

where N;is the shape function which can be expressed as follows:

Nﬁ% (L+E,) (1+n,) (1+8,) (Eg+mo+C,—2) Eiil3
+71-<1—52) (1+n,) (1+{y) (1-£3) 033
+7}:(1-n2) (1+{,) (1+Ey) (1-n2) (3E3

+% (1-¢2) (1+E,) (1+n4) (1-02) E3n2

(6-73)
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in which

§o=E:;& mo=nm  §o=CiC i=1-12 (6-74)

and

N,=(1+E) (L+7m) (§+n-1) /4
N,=(1+E) (1-12) /2 :
No=(1+E) (1-1) (E-n-1) /4 (6-75)

It can be seen that N,, N, and N, are same as the shape functions used in the degenerated

plate element. Furthermore, The expression (6-72) can be rewritten in the form,

12 1 [~ jo CI
=Y Vi o+ Ny (32 ByVay) (6-76)
Z 1 Zi a,b o]

]

and

w21
Iy B3I(T VY TV 6-77
3 at hj Zj ) Zj N ( )

and

hy= (Xp=%5) 2+ (Vi0~Vi5) + (247 Z45) *
5=y (Xyr=X5p 7 Y38 37~ 238 678)
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6.2.4 Displacement Field

In the element, the displacements (see figure 6-8) are expressed as follows:

{ , Mid-surface of laminate
Y
b .0
Transition element l LU
ti 9
] 3 LY

LA z Yyi
L I Y )
Y  Mid-point of the i-th line of nodes
Point node i )

Figure 6-8  Nodal displacements in a transition element

0
ul 12 Uy c uji xi
{L’} =3 Nfvire 3 HivE el 10 b (6-79)
T Wy 2 w? W21
where
bll.i blz.i b13i

h
(b1 =ba1s bazy D23y =71 (Vg ~Vas Va4l (6-80)

b31.i b321 b33:[
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and

1,5 1.,
AxV. 2 6-81
"*fkij}:uxvij "*f&%}“’u""u e

in which, the displacement components u; , v; and w; are the nodal displacements at point
nodes 1-12. The components v, v and w;’ are the displacements of the line "a", "b" and
“c" at the middle surface of the composite structure, y,; and y; are two rotations of the

nodal vector V,; about orthogonal directions normal to it, and y; is a transverse normal

deformation in the thickness direction.
6.2.5 Partial Strain Field and Partial Derivatives of the Displacement Field

The globally continuous strains are derived directly from the displacement field. They are

ou |

F %,
) ov {_ 5= 5
(&g} = £ t =[Bg] =[Bg1Bgz+ - - - - Bg:s]
@ + _a_\’_/' 6'

| ay a}(‘ 15

(6-82)

where 8,,= §,, §,,= 3, and 8,,= &, . The partial derivatives of the displacement are

[ ow )
%, 5
v, owl _ =
D u= o +—a;} _[BL]B—{BLIBLZ ----- Bp14] (6-83)
ow, 9yl 8
| Ox 0z "
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For nodes i = 1 - 12, the geometric matrices are

N; ., O O
[Ba]| © Niy O (6-84)
N.i,y N.i.x 0
and
0 0 Ni,z
[BLi]= 0 N, N, (6-85)

Ni,z 0 N.i,x

51={3j} (6-86)
Wi

For nodes i = a, b and c, the geometric matrices are

N;x 0 O Dyys8ie D218y by3s@ix
[Bg;(] 0 IV!, y 0 bzuaxy bzziaxy bz:.taly (6_87)
Ny, Nix O byyja;,+by 3850 Dagy@yy*Do2181x Di3s81y* 031844
and
6 0 N, byiia;, by 185, by3ia4,
(Bl 0 Ny Npy byyg8y,4Dy,,85, DPags@ir+Dspi85y, Dyasi,tba3s8yy (6-88)
Ny . O N, byy@5,thy 585, bygi@r,tbigi@ie Di3gdyetbizsdy,

and the nodal displacements are
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61=[uf V:(:J Wg Yy Wys ¥17
(6-89)

and

aix=Ni,xcl+N 1 cl,x
aiy=N_i’ ycl"’Ni c/’ y (6°90)
aiz=N1, zcl+Nic/, z

In order to calculate N;,, N;

1y?

N, and {’,, §’,, §’, , the equation (6-36)-(6-40) for the 6-

node transition element are also used.
6.2.6 Partial Stress Field

In the element, the partial stress field is independently assumed in the form,

g z
o,={r,.z}= [(P,1B (691)

(© 2x

where the stress matrix [P,] is derived directly from the assumed displacement field using

the iso-function method. The iso-function partial stress matrix of the element is
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r O O
O Om
O MmO
Mo O O
o o3
o3 O

[B,]=

o o P
o r O
- O O
O O Y
O N O
™~ O O

n 0 0 Enl 0 O E20 0mn20 O
6cn{ 0 O Etn{ O O0E 0 0 n% 0
6 onl 0 O Enl{ O O E 0 0

2 0 0 &
0 ¢o 0 (6-92)
0

0O O § 0 En* 0 0 n3¢ 0 §&# o0 ni® o
E2q 0 O B 0 tn* 0 0O O O E{* o o
0O E2n 0 0 0 O &n® 0 3¢ 0o o0 O 1

There are 47 stress modes in the stress matrix.

In the element, there are twelve point nodes and three lines of nodes. The total degrees
of freedom equals (n=) 54. The degrees of the rigid displacement are equal to (=) 6.
Thus, the element has 48 natural deformation modes. Because the rank of the partial
stiffness matrix [K,] equals (n=) 30, the minimum number of necessary stress modes is
18. Based on the iso-function partial stress matrix (6-92), the classification method gives

an optimal stress matrix as follows,

100E800nq00¢fEfnR 0 0 0 0 0 O
[PJ=j0 100§00n00 0 & 0 0 6 n{inl O (6-93)
00100E00n0O0 O EnE O O O En{
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6.2.7 Examination of Partial Hybrid Transition Element

The element is examined by using the eigenvalue test. Three groups of materials are
examined. The first is for isotropic material (see Table 6-2); the second is for anisotropic
material (see Table 6-3); The third is for the composite structure with fibre orientation

[90, 0, 90] (see Table 6-4). In the tables,

T A (6-94)
where A,; is the eigenvalue of the hybrid element; A, is the eigenvalue of its displacement
counterpart. The results of the element test show that the element does not have any
kinematic deformation modes, and it has a desired capability for rigid-body displacement.

In addition, the non-zero eigenvalues in the table are real and positive
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Table 6-2 Eigenvalue of the transition element with 18 stress modes
and isotropic materials: E=1100 GPa, v=0.1

l[ No. A No.- A No. A
1 | 0207 17 | 08250 33 {08731
2 | 04803 18 | 07449 34 | 08561
3 | 05921 19 | 08366 35 | 0.9672
4 | o6132 | 20 | 0s215 36 | 09512
5 | 04749 | 21 | 08065 37 | 09352
6 | os130| 22 | 07871 38 | 0.9484
| 7| o7m02| 23 | os7s 39 | 0.8896
" 8 | 0.6885 24 | 09215 40 | 09528
9 | 0.6687 25 | 0.7803 41 |0.9070
10 | o614 26 | 0.7887 42 | 09457
11 | 06351 27 | 08238 43 | 09157
12 | 07420 28 | 08160 44 | 09341
13 | 0.6695 29 | 08189 45 | 09163
14 | 0.6840 30 | 08569 46 | 09117
15 | 07370 31 | 07724 47 | 09821
16 | 09066 32 | 07999 48 | 0.9937
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Table 6-3 Eigenvalue of the transition element with 18 stress modes and

anisotropic materials: E;=174.6 GPa, E;=7.0 GPa, G, =3.5 GPa,

G=1.4 GPa, V;=V,3=V,=0.25

No. A No. A No.
1 | 05415 17 | o2 | 33 | 09141 “
2 | 05238 18 | 09127 | 34 | 09506
| 3| o500 19 | ososa | 35 | 09509 |
| 4| oem 20 | 07824 | 36 | 08810
| s | o6oss 21 | 0ssos | 37 | 0.8568 “
l{ 6 | 0.6149 2 | o0s40 | 38 | 08714
7 | 07558 23 | 09131 | 39 | 09966 |
| 8 | osss 24 | 08118 | 40 | 09768 |
| o | oeoss 25 | 09484 | 41 | 09976 |
| 10 | oss2s 26 | 0820 | 42 | 0997 |
| 11 | oewr 27 | ossor | 43 | oot |
|+ 12 | 07881 28 | 08674 | 44 | 09961 “
13 | 08234 29 | 10000 | 45 | 09907
| 14 | 08774 30 | 09756 | 46 | 09993 |
15 | 09520 31 | 09746 | 47 | 09959 |
16 | 08757 2 [osa0 | 458 | 09993 |
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Table 6-4 Eigenvalue of the transition element with fibre orientation
[90°, 0°,90%], 18 stress modes and materials: E;=174.6 GPa,
E.=7.0 GPa, G;1=3.5 GPa, G;=1.4 GPa, v ,=V,;=v;=0.25

No. r No A No. A,
1 0.1828 17 0.7402 33 0.9464
2 0.4224 18 0.8149 34 0.8900
3 0.3981 19 0.7365 35 0.8766
4 0.4885 20 0.8655 36 0.9078
5 0.3759 21 0.7400 37 0.9665
6 0.5307 22 0.7757 38 0.9945
7 0.5726 23 0.7921 39 0.9928
" 8 0.8220 24 0.8156 40 0.9990
" 9 0.5805 25 0.7856 41 0.9913
10 0.6928 26 0.8156 42 0.9991
11 0.6623 27 0.8038 43 0.9951
12 0.7036 28 0.9790 44 0.9989
13 0.6086 29 0.9930 45 0.9961
14 0.5536 30 0.9130 46 0.9987
15 0.8042 31 0.9350 47 0.9937
16 0.8358 32 0.8143 48 0.9996
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Chapter 7
PARTIAL HYBRID MULTILAYER

ELEMENTS

In general, a multilayer element consists of a stack of sub-elements. According to the
distribution of the material layers, a laminated composite structure is divided into many
sub-layers along the thickness and each sub-layer is modeled by a sub-element. After
formulating the matrices of sub-elements, they are assembled through the thickness using
continuity conditions at the interfaces between different sub-elements, and then the
multilayer element matrices are obtained. Therefore, there are two steps to obtain a
multilayer element matrix: the first is to formulate the sub-element matrices and the
second is to assemble them to form a multilayer element matrix. The general formulation
of the multilayer element has been presented in Chapter 2. In this section, two multilayer

elements [48,82] are presented.
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7.1 Multilayer Solid Element

Partial hybrid multilayer elements consist of a stack of partial hybrid sub-elements. So the
elements formulated by the composite variational principle can be used as sub-elements.
For examples, 3-D, 8-node partial hybrid solid element and 3-D, 20-node partial hybrid
solid element can be used to construct partial hybrid multilayer solid elements. For

simplicity, a multilayer element based on 3-D, 8-node solid elements is presented [32].

7.1.1 Sub-Element Matrices

The multilayer solid element consists of a stack of 3-D, 8-node solid elements (see figure
7-1). For the i-th sub-element, the assumed displacement field is the same as that for 3-D,

8-node solid element in section 4.1 of Chapter 4. It is in the form,

4°N+4 4°N+3
/;_____.....____»_._ 4*(N-1)+3
4*N+1 7/ * 4*N+2 / 4443
4(N-1)+1 s, N-th sub-element / 49(i-1)+3
/ I 8 : -
4 -~
,‘ t+1 /7{ i-th sub-element
4*(i-1)+1 »- - 3
s 4 : 6
S 1st sub-element
1 2

Figure 7-1 Multilayer solid element
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3;
61
ui=[N]$*=[NI NI ... N XI{ 92

6{ (7-1)

in which, [I} is a 3x3 unit matrix, N, is the shape functions, and the nodal displacement

vector is

1

8i={v} §=1,2,....8 (7-2)

Wj‘i

The nodal displacement vector of the i-th sub-element can be written in another form,

8i=[d? d***] (7-3)
= [dj_i 41 dzi d‘i dit+1 é‘*’. dsi"’l d‘i‘ﬂ.]
where d is the nodal displacement vectors related to the lower surface of the sub-element,
and d"*! is the nodal displacement vectors related to the upper surface of the sub-element.

Within the sub-element, the partial stress field is assumed in the form

1
Oz

0;: og,z =[P,] $i=[P) %{(1+() ai+ (1-0) aé} (74)
o”

where o' and o' are the surface stress parameters corresponding to upper and lower

surfaces of the i-th sub-element, respectively. When the matrix [P] is a function consisted
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of even order terms of the coordinate {, the continuity condition at interfaces will be
automatically satisfied (see Chapter 2). Using the equations (2-51) or (2-66) in Chapter

2, the sub-element matrices can be obtained as follows,

[#1] ==, [P,1 T[R;'] [P, 1dV

(G4 =fy, [P17([B,] +[RS17[B,]) dV
. . (7-5)
(k31 =l [BIT[R] [B,]1dV

£i= f [N TFav +[ [N1TTdsS
Vi

Sei

7.1.2 Multilayer Matrices

In order to assemble the sub-elements, the assembling rules (2-57) and (5-58) are used,

N
= i_ 4
a-i):‘{ 3i=[d* d? ... d"]T (7-6)
and
& 1
= = 1 2 N+11 T
’12-;“ (! a2 ... a™?] -7

the sub-element matrices from the 1st layer to N-th layer are added to form the multilayer

matrices,
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N N
[K14=Y (K51 [HI=Y [H]

&= &= (7-8)
il I =l 1
(&) =§ [G1] f=§ £

Then, the stiffness matrix of the multilayer element can be calculated using equation (2-

61) or (2-66),

(K] = [K4] + [K]

[K,]=[G]T[H] * [G] (7-9)

7.1.3 Examination of the Element

For a single-layer element, a necessary and sufficient condition for guaranteeing the
absence of kinematic deformation modes at the element level is,

ny=n-r-n, (7-10)
However, for a multilayer element, the minimum number of necessary stress modes in an
assumed stress matrix varies with the number of sub-elements in the multilayer elements.
Using eigenvalue examination of matrices, the rank n, of the displacement-formulated
stiffness matrix [K,] can be calculated for different multilayer elements with different

number of sub-elements. The minimum number n, of stress modes in an assumed partial
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stress matrix is given in table 7-1. In the table, N is the total number of sub-elements in
the multilayer element; n is the total degrees of freedom of the multilayer element; r is

the number of rigid body motions.

Table 7-1 Minimum number of necessary stress modes in the matrix [P,]

N n r ny n, |
1 24 6 10 8

2 36 6 15 15

3 48 6 20 22

10 132 6 55 71

From table 7-1, it is observed that the rank of semi-stiffness matrix [K,] increases by 5
when the multilayer element increases a surface. For example, there are two surfaces (top
and bottom surfaces) in a fundamental multilayer element consisting of one sub-element,
and the rank of semi-stiffness matrix equals 10. There is one increased surface in the
multilayer element consisting of two sub-elements, and the rank of matrix [K,] equals 15.
Furthermore, there are eleven surfaces in the multilayer element consisting of ten sub-
elements, and the rank of matrix [K,] is equal to 55. Thus, each increased surface in a

multilayer element corresponds to 5 deformation modes related to semi-stiffness matrix
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[K,]. Meanwhile, each added surface will increase four point nodes which correspond 12
degrees of freedom in the multilayer element. Thus, if a multilayer element contains N
layers, it will have N+1 surfaces and one has
n=12 * N+1) ny,=35* (N+1) r=6 (7-11)
Define that m’ is the number of stress modes in matrix [P] related to a surface. Thus, the
total number of stress modes for the multilayer element is
m=N+1) m’ (7-12)
The necessary and sufficient condition (7-10) for avoiding kinematic deformation modes
is
(N+1) m’ = 12*¥(N+1) -5*¥(N+1) - 6 (7-13)
Therefore, one obtains minimum number of necessary stress modes in the matrix [P]

related to each surface for the multilayer element as follows,

m =7--2 (7-14)

Using this formulation, one can calculate the number of stress modes related to each

surface for multilayer element consisted of different number of sub-elements.

N = m=4
N=2 m=35
N=3 m’ =6
N=4 m’'=6
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....................

N =100 m’=7
Therefore, the number of stress modes needed in the stress matrix [P] is different for a

multilayer element in order to avoid kinematic deformation modes.
Sub-Element Stiffness Matrix and Kinematic Deformation Modes

When N=1, the multilayer element becomes a sub-element. The sub-element has (n=) 24
degrees of freedom and (r=) 6 degrees of the rigid displacement. Thus, the sub-element
has 18 natural deformation modes. The eigenvalue examination indicates that the rank of
the partial stiffness matrix [K,] for the sub-element is (n;=) 10. Therefore, the minimum
number of necessary stress modes in the assumed stress field [P,] is equal to 8. Due to
a stress mode ©; in the stress matrix [P] representing two stress modes 0.5"‘(1+§)*0‘j and
0.5*%(1-0)*c; in the stress matrix [P,], the minimum number of stress modes in stress
matrix [P] is equal to (n,/2=) 4. Using iso-function method, the initial stress matrix [P]
is derived directly from the assumed displacement field. It is

§n 0 0 n{ 0o &{ O

0 0

0 fn 0 0 0 & (7-15)
0 0 & 0 0 O

[F]

1]
o O
(=2 =]
»r O O
O O™
O MmO
™ O O
coo3
o3 o
S oo
O O Yy
[« 2 o =]
~N O O

n{

=

Then, by means of the classification method of stress modes, one obtains
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[P]

s o
o R o
P OO
O dw O

0
0 (7-16)
1

In the stress matrix [P], there are 5 stress modes. The results of the eigenvalue test of the
element are presented in the table 7-2. In the table, all non-zero eigenvalues are real and

positive. The number of zero eigenvalues is the same as that to be expected.

Table 7-2 Eigenvalue of Stiffness Matrix for the 3-D, 8-node Hybrid Element
with 10 stress modes and isotropic materials: E=1100 GPa, v=0.3

A(*10°)

No. A (*10%) No. A (*10%)

1 0.09402 7 0.1813 13 0.8462

" 2 0.1410 8 0.2821 14 0.8462

3 0.1410 9 0.5440 15 0.8462

4 0.1410 10 0.5440 16 0.8462

5 0.1410 11 0.5641 17 0.8462

[ 6 0.1813 12 0.7051 18 2.7500

Multilayer Element Stiffness Matrix

When N>2, the stress matrix [P] (7-16) can not be used to formulate the multilayer

205



element because it does not contain enough stress modes. According to equation (7-14),
a stress matrix [P] should contain 7 stress modes at least for a general multilayer element.
In this case, the iso-function partial stress matrix (7-15) does not contain enough necessary
stress modes. Therefore, more polynomial terms have to be added into the stress matrix
for examining. For instance, the quadratic terms should be included. Using the

classification method, the following stress matrix [P] is obtained

10000Eq 0 O
[Pl=f0 1 0E 0 06 (%20
0010n 0 0 (2

(7-17)

Using this stress matrix, the examination of the element indicates that the multilayer
element, which consists of different sub-elements from N=1 to N=50, does not have any

kinematic deformation modes.

7.2 Multilayer Transition Element

The 6-node partial hybrid transition elements also can be used to formulate a multilayer
transition element which may connect a multilayer solid element with a degenerated plate

element.

7.2.1 Sub-Element Matrices

The multilayer transition element consists of a stack of 6-node transition element (see
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figure 7-2). For the i-th sub-element, the assumed displacement field is the same as that

for 6-node transition element in section 6.1 of Chapter 6. It is in the form,

i 0
ufl « 4| » Uy xF
vir=Y" Nivio+Y Nj{vir+/ [b;] (b, (7-18)
wi 1 Wi a WO z5
7 J
2°N+2
*EZ(E‘_‘).‘.*"_ ________ N-th sub-element
2*N+1 R
N-ls1 S /-/| i~th sub-element
-1 )4 s
2N-1) {f',‘{ 4 /1— Mid-surface
2%+l 1 7.’.,.“ ...................... y st sub—element
2%(i-1)+1 X—pr—p
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Figure 7-2 Multilayer transition element

The nodal displacement vector of the i-th sub-element can be written in the form,

8i=[d* di** 4] (7-19)
=[d &' & &t d &)

where d and d*! are the nodal displacement vectors related to the lower and upper
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surfaces of the sub-element, and d® is the nodal displacement vector related to the line of

node. Within the sub-element, the partial stress field is assumed in the form,

oz
oi= a,i,z =[P 1¢*=[F] %{(14-() at+(1-() aﬁ} (7-20)
ozx

where the stress matrix [P] is a function consisted of even order terms of the coordinate

§. Using the equations (2-66), the sub-element matrices can be obtained as follows,

[(E1] =~I, [P,17[R;'] [B,]dV
[G11=l,, [P1T([B,] +[R;'17[B,]) dV

4 3 (7-21)
(kg1 =l, [BJTIR] [Bg]ldAV

£i= fv [N]TPdV + f [N]TTdS

Sey

7.2.2 Muiltilayer Matrices

The assembling rules (2-57) and (2-58) are used to assemble the element matrices,

N
5=§ 8i=[dr 42 ... d¥1]T (7-22)
and
N
o=) al=[a*a® ... a7 (7-23)

i=1
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the sub-element matrices from the 1st layer to N-th layer are added into the multilayer

matrices,

N N
[K1=Y [Kd]  [H]1=) [HY]

= = (7-24)
N N

(61 =Y [61] £-3 £4
i=1 i=1

Then, the stiffness matrix of the multilayer element can be calculated using equation (2-

61),

(K] =[K4] + [K,]

[K,] =[] T[H] (€] (7-25)

7.2.3 Examination of the Element

Similar to the multilayer solid element, the minimum number of stress modes in an
assumed stress matrix for a multilayer transition element varies with the number of sub-
elements in the multilayer elements. Using eigenvalue examination method, the rank of
the displacement-formulated stiffness matrix [K;] is obtained for different multilayer
elements with different number of sub-elements. The minimum number of stress modes

in an assumed partial stress matrix is given in table 7-3.
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Table 7-3 Minimum number of stress modes in the matrix [P,]

r n, , u
6 10 8

6 14 10
6 18 12 "
6 46 26

The results of eigenvalue examination shows that the rank of semi-stiffness matrix [K,]
increases by 4 when the multilayer element increases a surface. For example, there are
two surfaces in a fundamental multilayer element consisted of a sub-element, and the rank
of semi-stiffness matrix equals 10. There is 'one increased surface in the multilayer
element consisted of two sub-elements, and the rank of matrix [K;] equals 14.
Furthermore, there are eleven surfaces in the multilayer element consisting of ten sub-
elements, and the rank of matrix [K,] is equal to 46. Thus, each increased surface in a
multilayer element corresponds 4 deformation modes related to semi-stiffness matrix [K,].
Meanwhile, each added surface will increase two point nodes which correspond 6 degrees

of freedom in the muitilayer element. Thus, if a multilayer element contains N layers, it

will have N+1 surfaces and one has
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n = 1246 * (N+1) n, = 2+4 * (N+1) r=6 (7-26)
Define that m’ is the number of stress modes in matrix [P] related to a surface. Thus, the
total number of stress modes is
m= N+1) m’ (7-27)
The necessary and sufficient condition (7-10) for avoiding kinematic deformation modes
is
(N+1) m’ = 12+6*(N+1) -2 4*(N+1) - 6 (7-28)
Thus, one obtains minimum number of stress modes in the matrix [P] related to each

surface for the multilayer element as follows,

m = 2+ N‘;‘j - (7-29)

Using this formulation, one can calculate the number of stress modes in the stress matrix

[P] related to each surface for multilayer element consisting of different number of sub-

elements.
N = m =4
N=2 m =4
N=3 m=3
N=4 m =3
N=5 m =3
N=6 m =3
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Therefore, the number of stress modes needed in a sub-element is different in order to

avoid kinematic deformation modes.

Sub-Element Stiffness Matrix and Kinematic Deformation Modes

When N=1, the multilayer element becomes a sub-element. The sub-element is a 6-node
partial hybrid transition element. The examination of the element has been given in
section 6.1.7 of Chapter 6. For completeness, the analysis is given here again. The sub-
element has (n=) 24 degrees of freedom and (r=) 6 degrees of rigid motion. Thus, the sub-
element has 18 natural deformation modes. The eigenvalue examination indicates that the
rank of the partial stiffness matrix [K,] is 10. Therefore, the minimum number of the
stress modes in the assumed stress field [P,] is equal to 8. Due to the fact that a stress
mode ¢, in the stress matrix [P] represents two stress modes in the stress muatrix [P,], the
minimum number of stress modes in stress matrix [P] is equal to (n,/2=) 4. Using iso-
function method, the initial stress matrix [P] is derived directly from the assumed

displacement field. It is
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Then, by means of the classification method of stress modes, one obtains an optimal stress

matrix,

94!

soT
o P O
= O O
O ™ O

0
0 (7-31)
n

In the stress matrix [P], there are 5 stress modes. The result of eigenvalue examination

show that there are not any kinematic deformation modes.
Multilayer Element Stiffness Matrix and Locking Phenomenon

When N=2, the stress matrix [P] (7-31) can be used to formulate the multilayer element.
But when N>3, the stress matrices [P] can not be used to formulate a multilayer transition

element due to the fact that the locking phenomenon appears.

The locking means that the solution becomes zero when the plate element becomes thin.
This phenomenon appears in C° finite element because the Kirchhoff constraint can not
be satisfied when plate element becomes thin. In the multilayer transition element, the

sub-element will become thin when their number within a fixed thickness multilayer
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element increases. For the multilayer transition element, equal order interpolation is used
for lines of nodes which are used to meet with plate elements. Therefore, when sub-
element becomes thinner and thinner, two spurious constraints produce the locking action
on ¥; and ‘¥, . The locking phenomenon stands out. In order to remove it, several
methods can be used such as unequal order interpolation, reduced integration, assumed
strain approach, additional incompatible modes, field-redistribution, and so on [4]. In this
work, the advantage of hybrid stress finite element is used to overcome locking

phenomenon in the element.

By calculating m’ (7-29), it has been shown that the minimum number of stress modes in
the stress matrix [P] decreases to 3. Therefore, there are unnecessary stress modes in the
matrix [P] (7-31) for multilayer transition elements (N 2= 3) and the extra stress modes in
the stress matrix [P] results in over-stiffness and lead to locking phenomenon. The
classification method gives following stress matrix that can be used to avoid locking

phenomenon

[P] (7-32)

1
© O L
o R O
»r o o

The results of the eigenvalue examination for the multilayer element with 3 sub-elements

are given in the table 7-4.

Other multilayer elements with different number of sub-elements are also examined. The
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examination of the multilayer elements shows that there is no spurious constraints in the
multilayer element when the stress matrix [P] (7-32) is used. In addition, the non-zero

eigenvalues are real and positive.

Table 74 Eigenvalue of stiffness matrix for hybrid multilayer element with 3 sub-

elements and isotropic materials: E=1100 GPa, v=0.3

| o T A, (*10%) N:= A, (*10%) No. | A(*10%
1 0.00060 11 0.1602 21 | 0.9849 "

| 2 | 0.00141 12 0.2971 22 | 1.0190
3 0.00186 13 0.3059 23 | 1.1640

" 4 | 0.00239 14 0.4109 24 | 1.2140
5 | 0.00967 15 0.5011 25 | 1.3130 "
6 | 0.03671 16 0.5534 26 | 1.5580
7 | 0.04086 17 0.6002 27 | 16150 "
8 0.08544 18 0.6734 28 | 2.0050 "

“ 9 | 0.1077 19 0.7466 29 | 2.9820 "
10 | 0.1393 20 0.8111 30 | 4.2070 H
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Chapter 8
APPLICATIONS OF
PARTIAL HYBRID FINITE ELEMENTS AND

GLOBAL/LOCAL ANALYSIS

8.1 Introduction

The finite element method has been widely used for stress analysis of laminated
composite structures [115]. A variety of element types are available today. The analyst
or designer can mix elément types to solve one problem. It should be noted that the
choice of element types and element mesh is problem-dependent. The number of nodes
and the type of elements to be used in a finite element model is a matter of engineering
judgment. As a general rule, the larger is the number of nodes and elements, the more
accurate is the finite element solution, but also the more expensive the solution is. More
memory space is needed to store the finite element model, and more computer time is
needed to obtain the solution. Recently, a lot of global/local approaches [90-104,116-122]
are proposed to improve the efficiency of the finite element method.
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In practice, most laminated composite structures contain local regions where thick
conditions prevail throughout. In order to obtain the stress fields in these localities, a
detail 3-D finite element analysis is required. However, a detailed full 3-D analysis of
these structures to obtain accurate stresses may require a huge number of nodes and

elements. They may exhaust the computer resources.

In order to keep the number of nodes and elements down, one way is to classify the
domain of the structure to be analyzed into different regions. Each region uses an
appropriate type of element for modelling the structure. This model is called as the

simultaneous global/local model. It does not require reanalysis and saves computer time.

In this chapter, the simultaneous global/local finite element models will be established to
analyze laminated composite structures using partial hybrid elements that are presented
in Chapter 4-7. Firstly, the partial hybrid elements will be individually used to perform

the finite element analysis for verifying the accuracy of these elements.

8.2 Application of the 3-D 20-node Hybrid Solid Element

In order to verify the accuracy of the 3-D, 20-node solid element, a long laminated strip

subjected to bending loads is investigated [46] since closed-form elasticity solution

available for this structure.
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A long laminated strip with three layers of equal thickness and fibre orientation [0,90,0]
is supposed to be infinitely long in the y direction and simply supported along the two
edges x=0 and L (see figure 8-1). On the top surface, it is subjected to sinusoidal
transverse load of intensity q,. The loading function is given in equation (8-1).

g(x) =qosin(—"Li‘ )
8-

2 qosin(a’z/L)

L

o>
N W e
}

g

L

Figure 8-1 The cross section of infinitely long laminated strip [0,90,0]

The lamina material properties in the principal material direction are

E;=174.6 GPa E=7 GPa VL =0=0.25

G=3.5 GPa G=1.4 GPa 8-2)
Because the laminate is quite long in y direction, the displacement gradients can be
neglected with respect to the y coordinate. Hence, a slice was taken out from the

laminated strip for establishing the finite element model. Because of symmetry, finite
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element analysis is carried out over half of the slice and there are four uniform elements
in the half along the x-direction, one element in the y direction, and one element in each
layer. This problem has been solved by using 432 3-D, 20-node displacement elements
[123]. It also has the elasticity solution [124] and the CLT (Classical Lamination Theory)
solution. The numerical results are presented in terms of normalized values which are
defined as

5= 9x(1/2,2)

x

S:._I'..

Q, h

- 100EH°w(L/2, 2) (5-3)

g,l®

The results are presented in Table 8-1 and Figure 8-2. The excellent agreement between

the partial hybrid finite element solution and the exact solution is shown.

Table 8-1 Maximum central deflection ( S=10)

Surface No. | Exact Solution | Hybrid FE Disp. FE i CLT ]
1 Bottom 0.929 0.929 0.927 0.5096
2 0.931 0.931 0.931 0.5096
3 0.933 0.933 0.932 0.5096
| 4 Top 0.934 0.934 0933 0.5096
Element No. 12 elements 432 elements
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Figure 8-2 Normalized in-plane stress o, obtained from partial hybrid element model

8.3 Application of the Degenerated Plate Element

The accuracy of the finite element model using partial hybrid degenerated plate elements
is demonstrated by studying the behaviour of a square laminated plate and a long
laminated strip [44-45]. The two laminates are used to verify the degenerated element

since closed-form elasticity solutions are available.

8.3.1 Deflection of a Square Laminate Subjected to Uniform Loading

A three-ply square laminate with identical top and bottom plies is analyzed by using the

221



8-node degenerated element. Each layer in the laminate is idealized as a homogeneous
orthotropic material. The relative values of the moduli in the principal material coordinate

system are the same in all the plies as follows,

E, / E, = 0.525000 E, / E, = 0.569399
G,,/ E,= 0292813 G, / E, = 0.297133 8 - 4)
G,/ E, = 0.178088 v, = 0.440462

v,; = 0.180666 V3= -0.061321

An uniform loading q, acts on the top of the simply supported laminate. The dimensions
of the plate are a, b (=a) and thickness H (= 0.1a). The thickness of the top and bottom
plies h, is equal to 0.1H, and the thickness of the middle ply h, is equal to 0.8H. By
means of the symmetry of the problem, only one quadrant of the plate is modeled
(O<x<al2, O<y<b/2, 0<z<H). The computational domain is modeled using 2x2 uniform
meshes (see figure 8-3). For this particular problem, a 3-D elasticity solution was
presented by Srinivas and Rao [125]. The results of the deflection w at the centre of the
laminate are given in the Table 9-2. In the Table, E,, is the modulus of the top and bottom
plies and E,, is the modulus of the middle ply. E,, is a parameter which can be calculated
from the material constants of the middle ply. In the calculation, E, is equal to
0.8979495x10%, and then E_, is equal to 10°. The present solutions of the centre deflection

are close to the 3-D elasticity solutions.
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Figure 8-3 2x2 uniform mesh of a quadrant of the laminate

Table 8-2 Deflection of the simply supported laminate subjected to uniform loading
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8.3.2 Bending of a Square Laminate

The 8-node degenerated element is also used to solve a square, simply supported,
laminated plate with the [0,90,0] layers of equal thickness. Each layer of the laminated
plate is also idealized as a homogeneous orthotropic material with the following material

coefficients in the principal material coordinate system:

E,=172.4 GPa  E;=6.90 GPa V=07=0.25
G=345GPa  Gp=1.38 GPa 8 -5)

The upward transverse load is distributed on the top surface,

qi(x,y) =q°sin(l‘é’—‘) sin("—g’) 6

The dimensions of the plate are a, b and thickness H. The ratio S is defined as a/H. Due
to the symmetry of the problem, only one quadrant of the plate is modeled (O<x<a/2,
O<y<b/2, O<z<H). The computational domain is modeled using 2x2 uniform meshes. For
this particular problem, the solution exists using 3-D elasticity theory[126] and classical
laminate theory (denoted CLT). The CLT solution for T,, was found by the equations of
equilibrium as discussed in [124]. The solutions for thick plate S=4 are given in figures
8-4 and 8-5. Each function is plotted along the vertical line on which it assumes its

maximum value. The following normalized quantities are defined,

_ _— — 100E,w -
‘txy=——l 5 Ty Toe—t1,, w=—= "I ®-7)
QS g, HS*
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Figure 8-4 Normalized transverse shear stress T,, distribution (a=b)
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Figure 8-5 Normalized in-plane shear stress T,, distribution (a=b)
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The performance of finite element analysis only takes 2.03 seconds CPU time on VAX
6510 computer by using the degenerated element. The degenerated finite element solutions
are close to the exact three-dimensional elasticity solutions shown in figures 8-4 and 8-5

for the shear stresses.

8.3.3 Cylindrical Bending of A Laminated Strip

Two infinitely long laminated strips with layers of equal thickness are analyzed. The
laminated strips are simply supported along the two edges and are subjected to sinusoidal
transverse load of intensity q,

X
(ZX) 55)

g(x) =qg,sin
The lamina material properties are given by equation (8-5) in section 8.3.2. Because the
laminate is quite long in y direction, the displacement gradients can be neglected with
respect to the y coordinate. Hence, a slice which is taken out from the structure was
modeled. Because of symmetry, numerical analysis is carried out over one half of the slice
and it is subdivided into 2 equal elements. This problem has an elasticity solution[124]
and a CLT solution. Pian and Li[36] also calculated stresses for this problem using a 14
DOF, 2-D partial hybrid element. For 3-layer laminate [0,90,0], the maximum central
deflection as a function of span-to-depth ratio is plotted in figure 8-6. The result is in
agreement with the elasticity solution. It takes 1.55 seconds CPU time to solve the
problem on the VAX 6510 computer. For the 20-layer laminate [90,0],,;, the result of the
transverse shear stress which is normalized by the applied load g, is also in agreement

with the elasticity solution as shown in figure 8-7.
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Figure 8-6 Maximum central deflection as function of span-to-depth ratio
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Figure 8-7 Shear stress distribution at edge of 20-layer [90,0],,r laminate

227



In the examples, it has been shown that finite models using the degenerated element is
computationally most efficient for the stress analysis of composite laminates. It can
provide accurate solutions for the deflection of laminates. It also can predict stresses
accurately in the laminates with large number of layers. However it can not be used to
evaluate stress concentration because of the limitations of assumed displacement field over

the whole thickness.
8.4 Application of the Multilayer Solid Element

In order to verify the efficiency and accuracy of the multilayer element, the interlaminar
stresses in the laminated strip (shown in Figure 8-8) with three layers [0/90/0] is
investigated again [82]. The laminated strip is infinitely long in the y-direction and simply
supported at the ends x = 0 and x = 1. The ratio of length 1 to thickness h is of I/h = 4.

The material properties on material axis are

E, = 171 GPa E; = 3.42 GPa
G;=342GPa G =137GPa (8-9)

Vir = Ve = 0.25

By means of symmetry, only half the length of the laminated strip is modelled. The finite
element model contains ten uniform multilayer elements in half the length and one
element in the width. Each multilayer element is composed of 24 sub-elements along the
thickness of the laminated strip. On the top surface, there is a sinusoidally distributed

transverse loading,

q(x) =qysin(EE (8-10)
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Figure 8-8 The laminated strip with three layers [0,90,0]

The problem also was solved by using 3-D displacement element [123], which modelled
the laminated strip with 432 3-D, 20-node displacement elements. Furthermore, there is
an elasticity solution for this problem [124]. The finite element results of shear stress 1,,
are given in figure 8-9, compared with the result of Pagano’s elasticity solution [124]. In

the figure, the results is presented in the terms of normalized values which are defined as

z=z/h (8-11)
In Figure 8-9, it is shown that the multilayer element solution is in better agreement with

the Pagano’s elasticity solution, although it using less elements and take less computer
CPU time.
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8.5 Global/local Analysis of Laminated Composites

As mentioned above, the analysis of a laminated composite structure may require a detail
3-D finite element analysis. However, a detailed full 3-D finite element analysis of these
structures may require huge computer resources. One way to solve these problems is to
set up a global/llocal finite element model using different element types in different

regions. It will take advantage of the properties of different elements and keep the

computer storage requirement down.

In this section, the effectiveness of the global/local finite element model using different
element types is demonstrated by obtaining the interlaminar stresses for a laminated strip
with free edges and a laminated plate with a hole. All numerical studies were performed
on a VAX 6510 computer. The computational effort of each analysis is quantified by the
number of degree of freedom used in the finite element model and the computational time

required to perform a stress analysis. The computational time is measured in central
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processing unit (CPU) time.
8.5.1 Global/local Analysis of A Laminated Strip with Free Edges

Free edge effect is an important problem in the analysis of laminated composite structures.
The interlaminar stresses generated around the free edges and interlaminar surfaces are
recognized to be the primary sources of delamination of laminated composite structures
initiated at the free edges. Many approaches have been proposed to solve this problem.
It is an ideal example to verify the efficiency and accuracy of various approaches due to
the existence of high stress gradient near free edges. In this section, the global/local finite
element models built by three types of elements are presented to solve this problem [101-
104].

Model 1 - Using 20-node Solid Elements and 15-node Transition Elements and 8-node

Degenerated Elements

The laminated strip with free edges to be analyzed is an angle-ply laminated strip with
the [45/-45/-45/45] sequence subjected to uniaxial extension (X-direction). The strip
(shown in figure 8-10) has length of 2L (X-direction), width 2b (Y-direction), and
thickness 4h, (W=8h,). Each layer in the laminate is also idealized as a homogeneous
orthotropic material. The material properties are

E, = 137.93 GPa E; = 1448 GPa
Gy =G = 5.86 GPa Vi = Vo = 0.25 (8-12)

Because the strip is infinitely long in x direction, the displacement gradient with respect
to x coordinate can be neglected and stress and strain states are independent of x
coordinate. Therefore, the length of the sample to be analyzed in x direction does not
affect the results of stress analysis. Thus, a slice can be taken out from the strip to

establish a finite element model. Furthermore, it can be assumed that stress distributions
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are symmetric about the mid-plane because the geometry, material properties, and loading

are symmetric. Thus, a quarter of the slice only is needed to be analyzed.

Figure 8-10 The laminated strip subjected to axial loading

The domain of the strip to be analyzed is divided into three areas: local region, global
region, and transition region. The finite element mesh used for analysis is shown in figure
8-11. In the local model, the high stress gradient is expected. Forty eight 3-D, 20-node
solid elements are used: 8 elements in thickness direction, 6 elements in y direction, and
1 element in x direction. In the central region of the laminate, five 8-node degenerated
elements are used: 1 element in the thickness direction, 5 elements in y direction, and 1
element in x direction. At the transition region, eight transition elements are used to
connect eight solid elements with one degenerated element. The width of the elements
decreases as the free edge is approached. The problem is also analyzed by the layerwise
model [24] and conventional 3-D displacement model. The mesh on the X-Y plane for

the two finite element models is same as that for the global/local model.
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Figure 8-11 Global/local finite element mesh for study of free edge

The results of interlaminar stresses &, and t,, are shown in figures 8-12 and 8-13. The
stresses in the figures has been non-dimensionalized by multiplying it by the factor

0/(g,*10°), where &, is the nominal applied axial strain of uy/(2L). The global/local model
only takes 62.09 seconds CPU time on VAX 6510 Computer to solve the problem. The
layerwise finite element model takes 204.40 seconds CPU time and the 3-D conventional
displacement element model takes 287.06 seconds CPU time on the same computer. For
the analysis, the present global/local model uses 1154 active degrees of freedom totally,
the layerwise model uses 2441 active degrees of freedom, and 3-D model uses 2849
active degrees of freedom. It shows that the present global/local model takes less time and
uses less active degrees of freedom than other models to solve the same problem and to

get the same degree of accuracy.
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Figure 8-13 Interlaminar stress T,, along interlaminar surface
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Model 2 - Using Multilayer Elements and Multilayer Transition Elements and 4-node

Degenerated Elements

A global/local model built by 3-D solid element, transition element, and degenerated
element can predict interlaminar stresses accurately. However, it is a labour intensive task
to make 3-D element mesh in the local region. In the new global/local model, 3-D solid
element and 3-D transition element are replaced by multilayer elements. The model built
by multilayer element, multilayer transition element, and 4-node degenerated element is

used to analyze the free edge problem again.

The problem to be solved is same as that above in this section. The domain of the strip
along the Y-direction is also divided into three regions: local, global, and transition
regions. The element mesh used for analysis is shown in figure 8-14. In the vicinity of
free edge (local region), twelve multilayer elements are used along the Y-direction and
each multilayer element contains 16 8-node sub-elements in the thickness of the strip. In
the central part (global region), ten 4-node degenerated elements are used in y direction.
In the transition region, one multilayer transition element is used to connect the multilayer
element with the degenerated element. Along the X-direction, the strip is modelled by
using two elements and all elements have the same length (=L). The results of
interlaminar stresses G, and 7,, are shown in figures 8-15 and 8-16. The stresses in the
figures have been non-dimensionalized by multiplying it by the factor o/(g,*10°), where
&, is the nominal applied axial strain of uy/(2L).

235



Transition region
4 |

” —a J

(dobal region ocal region

Figure 8-14 Model -2: Element mesh for free edge problem

The problem is also analyzed by a full 3-D finite element model using 3-D, 20-node solid
displacement element and a previous global/local finite element model using 20-node solid
elements, 8-node degenerated elements, and transition solid elements. The results of
interlaminar stresses ¢, and T, calculated by the two models are also shown in figure 8-15
and 8-16. In the figures, the "previous global/local model" indicates the model 1 above,
and the "current global/local model"” indicates the model 2. The difference of the results
obtained from three finite element models is not significant. However, the computer CPU

time required by three models for performance is quite different.
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For the performance of the finite element analysis, the current global/local model takes
100.45 seconds CPU time, the previous global/local finite element model takes 62.09
seconds CPU time, and the full 3-D finite element model takes 287.06 seconds CPU time
on VAX 6510 Computer. Therefore, the current global/local model takes about one-third
computer CPU time used by the full 3-D finite element model, and the previous
global/local finite element model takes about one-fifth computer CPU time used by the
full 3-D finite element model. The current global/local model takes more CPU time than
the previous global/local model for calculation due to the fact that during the calculation
of element stiffness matrix, the current global/local model using multilayer elements must
inverse the matrix [H] whose size is larger than that of solid element used in the previous
global/local model. In spite of that, the current global/local model is still more efficient
than the full 3-D finite element model. Furthermore, the current global/local model has
2-D data structure in the finite element mesh. This is extremely beneficial to set up a
global/local finite element model.

8.5.2 Global/local Analysis of A Square Laminate with an Open Hole

A square laminate [45,45], with an open hole is also an ideal structure to verify the
efficiency of the global/local model. The stress analysis of the laminate is performed
under uniaxial loading (Y-direction). The radius of the hole is R. The laminate (shown in
figure 8-17) has length of 2L (=8R) and thickness 2h (=R). The material constants in the

principal material coordinate system are given in equation (8-12).
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Figure 8-17 An angle-ply laminate with an open hole

Due to symmetry of geometry and loading in this problem, the domain to be analyzed
may be reduced to one eighth portion of the laminate. In the global/local model, the
domain is divided into three areas: local region, global region, and transition region
(shown in Figure 8-18). In the local region, forty 3-D, 20-node elements are used as there
is high stress gradient near the hole edge. Each layer is modeled by two 3-D, 20-node
elements along the thickness. In the global region, a few degenerated elements are used.
One element is used along the thickness. Between them, twenty transition elements are
used to connect them. Along the thickness of the laminate, four transition elements are
used to connect four 3-D solid elements with one degenerated element. The problem is
also calculated by the layerwise model based on layerwise theory [24] and conventional
3-D displacement element model. The mesh on the X-Y plane in the two models is same

as that in the global/local model.
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Figure 8-18 Finite Element Mesh for Analysis

The results of interlaminar stresses G, , T, and T,, are shown in figures 8-19, 8-20, and
8-21. The stress in the figures has been non-dimensionalized by multiplying it by the
factor 6/G,, where G, is the applied axial stress. The global/local model only takes 61.29
seconds CPU time on VAX 6510 Computer to solve the problem. The layerwise model
takes 198.31 seconds CPU time and the 3-D model takes 291.17 seconds CPU time on
the same computer. For the analysis, the global/local model uses 1051 active degrees of
freedom totally, the layerwise model uses 2298 active degrees of freedom, and 3-D
model uses 2948 active degrees of freedom. It shows that the global/local model takes less
time and uses less active degrees of freedom than other models to solve the same problem

and to get the same degree of accuracy.
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8.6 Conclusion

In this chapter, the accuracy and efficiency of the finite element models built by partial
hybrid elements have been verified. The global/local model built by 3-D, 20-node solid
elements, 15-node transition elements, and 8-node degenerated plate elements is also used
by Zhao [127] to analyze the stress field of the composite laminates with delamination
crack under out-of-plane loading. The results of the examples studied show that partial
hybrid elements can predict more accurate stresses than displacement elements for
composite laminates. The global/local finite element approach using partial hybrid
elements is more efficient than other finite element models. Once the accuracy of the

finite element models built by partial hybrid elements is established, they can be applied

to more general problems.
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Chapter 9
CONTRIBUTION OF THE THESIS AND

SUGGESTION FOR FUTURE RESEARCH

9.1 Contribution of Current Work
The contributions of this thesis are:

1. The general formulations of the partial hybrid single-layer finite element and
multilayer finite element have been presented using the composite variational principle.

They can be used to develop various new partial hybrid finite elements.

2. In order to determine optimal stress polynomials for hybrid stress elements, a
classification method of stress modes has been presented. The method can be used to
classify stress modes, select optimal stress modes, and set up an assumed stress matrix
for a hybrid element. In addition, the optimal condition of assumed stress field is
presented. Using the classification method, the stress polynomials are constrained by the

number of degrees of freedom associated with a hybrid stress element. The method is also
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extended to determine the partial hybrid stress field for partial hybrid elements.

3. Two degenerated plate elements based on the composite variational principle and the
equivalent single-layer model have been presented using the general formulation of single-
layer elements. The continuities of interlaminar stresses are satisfied at the interlaminar
surface and the number of degrees of freedom per node is independent from the number
of layers. The traction free conditions are also satisfied on the upper and lower surfaces
of a laminated composite structure by assuming the transverse siress components
independently. The transverse normal strain is taken into account in order to consider the
full 3-D effect in a laminated composite structure. The results of the element eigenvalue
test show that the elements have the capability of rigid-body motion to be expected and

are without any zero-energy deformation modes.

4. Two 3-D solid elements have been developed by means of the general formulation of
the single-layer element. The classification method has been used to determine the optimal
stress matrix which contains minimum number of necessary stress modes. The elements
are examined by the eigenvalue test. The results of examination show that the elements
have the capability of rigid-body motion to be expected and are without any zero-energy

deformation modes.

5. Two transition elements have been proposed by means of the concept of moving node.

The two elements can be used to smoothly connect the 3-D solid elements with the
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degenerated plate elements. In order to enforce the compatibility at the interfaces between
different elements, new shape functions are derived for the shape functions of 3-D solid
elements. The new shape functions can fit any functions of degenerated plate elements
along the thickness. By means of the transition elements, one can establish global/local

finite element models using three different types of elements.

6. The multilayer solid element and multilayer transition element are formulated using
the general formulation of multilayer elements. They consist of a stack of 3-D, 8-node
partial hybrid solid element and 6-node partial hybrid transition element, respectively. The
surface stress parameters are directly used to assume partial stress fields and the transfer

between layer stress parameters and laminate stress parameters is avoided.

7. The Global/Local finite element models have been established using the new partial
hybrid finite elements for the analysis of laminated composite structures. A square
laminate with a hole and a laminated strip with free edge are investigated by using the
global/local finite element models. It has been shown that the present global/local models
using partial hybrid element is efficient and accurate for stress analysis of laminated
composites. They take advantage of the capacity of both 3-D solid elements and 2-D
degenerated plate elements. The global/local model can be used to predict local stress
distribution such as the interlaminar stresses near the discontinuities of composite

structures, with low requirement on computer storage size.
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8. A computer program COMSA has been developed using the partial hybrid finite

elements. The introduction of the program COMSA will be given in the appendix.

9.2 Suggestion for Future Research

1. Combining with the failure criteria of laminates composite structures, the finite element

models could be used to simulate the failure process of composite structures.

2. The partial hybrid finite elements could be extended to dynamic problems of laminated

composite structures.

3. The partial hybrid finite elements could also be extended to non-linear problems of

laminated composite structures.
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Appendix
IMPLEMENTATION OF
PARTIAL HYBRID FINITE ELEMENTS

-======  COMPUTER PROGRAM COMSA

A.1 Introduction

In the previous chapters, a series of finite elements have been established. They can be
used to analyze laminatéd composite structures. However, the actual application of finite
element procedure requires extensive programming effort. Usually, a finite element
computer code includes the following functional blocks [15]:

1. Input, generation and verification of all the information required to define the problem
to be solved and to dimension the working space to be used;

2. Construction of element matrices and element vectors by using numerical integration,
followed by an assembly process to set up the overall system equations and load vectors;
3. Application of displacement boundary conditions and solution of the system equations;
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4. Computations of strains and stresses depending on the solution of the system equations

and post-processing of results.

In this Chapter, the finite element computer code COMSA will be briefly introduced

according to the functional blocks.

A.2 General Procedure of Finite Element Analysis using COMSA

To perform a finite element analysis using COMSA, first of all is to divide a continuum,
problem domain, into a finite number of quasi-disjoint non-overlapping subregions, called
finite elements, using imaginary lines or surfaces. These elements are connected by using
a set of key points, called nodes. Thus, approximations of element geometry, displacement
field, and partial stress field can be introduced by means of the equations in the previous

chapters.

In order to solve an established finite element model using the computer program
COMSA, the nodes have to be assigned identifying integer numbers (node numbers)
beginning with unity and ranging to some maximum value, say NODT. A number of
degrees of freedom, say NNFM, will be associated with each and every node. In the
partial hybrid stress element, the nodal displacements are chosen as unknown nodal
parameters. Thus, the total number (NNFMT) of degrees of freedom (DOF) in the system

is the product of the number of nodes (NODT) and the number (NNFM) of nodal
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displacements per node, NNFMT=NODTxNNFM. If there are different nodes (point nodes
in 3-D solid element and lines of nodes in transition element), the total number (NNFMT)
of DOF in the system is equal to the sum of the number of DOF per node. For instance,
if there are NPO point nodes NNFM=3) and NPL lines of nodes (NNFM=6), the total
number (NNFMT) of DOF in the system equals 3xXNPO+6xNPL. Similarly, the elements
must be assigned identifying integer numbers (element numbers). They also begin with
unity and extend to a maximum value, say NELT. If there are a number (NEG) of
different elements in a finite element model, the total number (NELT) of elements is equal
to the sum of the numbers (NEN) of different elements. For example, in a global/local
finite element model consisting of three types elements: NEN(1) 8-node plate element,
NEN(2) 20-node solid element, and NEN(3) 15-nod transition element, the total number
(NELT) of elements equals the sum of NEN(1), NEN(2), and NEN(3). These numbers
will be used to define the dimension of the storage space. In the COMSA, a number of
control parameters is determined firstly to define three common vectors of a size large
enough to contain a number of matrices needed in a typical problem. A set of pointers is
defined to locate the position, in the storage vector, of the first coefficient of each matrix
of interest [113, 114]. The three common arrays and the pointers will be described in

detail in the next section.

It is necessary to supply data XYZ which define the coordinates of nodes and determine
the geometry of the finite element model to be analyzed. Also, data JKG which list the

global node numbers attached to an element has to be supplied. These data JKG must be
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input to formulate element matrices and assemble elements. In addition, an array of data
BC must be given to indicate which, if any, of the nodal displacements have boundary
constraints specified by means of the node number. Moreover, a number of material data
E&, V&, and G& must be assigned to every element. The data to be input in COMSA

will be shown in detail later.

After discretizing a structure into a number of nodes and elements, the interpolation
functions for element geometry, displacement field, and partial stress field have to be
assumed in terms of the values of the nodal displacements and stress parameters that are
connected to that particular element. In the COMSA, isoparametric elements are used.
Therefore, the displacement interpolation functions are the same as the geometric shape
interpolation functions. Stress interpolation functions are determined by classification
method. After the element behaviour has been assumed, the element stiffness matrices and
load vector can be established. The element formulation has been presented in Chapter
2-8. Due to using isoparametric element, it is impossible to integrate the expression of the
element matrices in closed form. The numerical integration must be utilized to perform
the evaluation of element matrices. Therefore, the Gauss quadrature formula is used in the

integration of the element matrices.

Once the element equations have been established, the contribution of each element is
added to form the system equations:

(A-1)
[a] ixt={LR}
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From consideration of the technique used to approximate the element behaviour, the
maximum half-bandwidth, say NBAND, is calculated. The quantity NBAND is one of the
important quantities which govern the storage requirements and solution time of the
system equations. Because the maximum half-bandwidth NBAND is directly proportional
to the value of the maximum difference in node numbers of the nodes within an element,
in practice, it should be tried to minimize the maximum difference in node numbers
associated with an element, although the assignment of node numbers is arbitrary in the

mathematical point of view.

After the system equations have been established, it is necessary to apply the boundary
constraints before solving for the unknown nodal displacements. In the computer program
COMSA, the penalty modifications are used to treat the prescribed boundary
displacements. Let " denote the degree of freedom to be assigned a given value D. The
procedure to apply the constraint is to modify two terms of the system matrix and column

vector, i.e. A; and LR;. These terms are redefined to be

(A-2)
where o is a very large number. This yields the i-th system equation
(A-3)

which is a good approximation of the boundary condition X; = D if o is sufficiently large.

Then, the unknown nodal displacements can be solved. In the COMSA, the solution
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algorithm is the Gauss elimination. From the standpoint of calculation efficiency, it has
been proven that no algorithm for equation solving can involve fewer calculations than
Gauss elimination. After nodal displacements are obtained, the displacement field and
partial stress field can be determined. The quantities of interest can be output in a

practical form.

The flowchart of main program of finite element code COMSA is presented in Figure

A-1. Tt illustrates the major steps that fall under the control of the main program,
COMSA. The first half of the steps, down to point 1, deal with initializing the system,
determining the input options, reading and printing the input data, and assigning storage

location that will hold the information to be generated in later phases.

The steps from points 1 to 2, in Figure A-1, deal with the generation of element matrices,
assembling the system matrices, and applying the essential boundary conditions. The steps
between point 2 and 3 are to solve system equations, obtain the values of known nodal

displacements, calculate the stresses within the elements.
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Figure A-1 The flowchart of main program COMSA (to be continued)
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Figure A-1 The flowchart of main program COMSA (continued)
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A.3 Common Amays and Pointers in Program COMSA

In the COMSA, three large arrays A, B, and IB are dimensioned to store various matrices.
A set of pointers is defined to locate the position of the initial address of each matrix of
interest in the storage arrays. The three common arrays are dimensioned as follows,

COMMON /AARRAY/ A(1000000)

COMMON /BARRAY/ B(10000)

COMMON /IBARRAY/ IB(10000)
in which, the sizes of array A is 1,000,000, B is 10,000, and IB is 10,000. These sizes can
be extended to the size to be expected. The COMMON statements are used to allow
various subroutines to use them. The three arrays are divided by a set of pointers to store

various element matrices and vectors. The pointers are defined as follows,

For array A(1000000):

LAK: the pointer of the global stiffness matrix in array A.

For array IB(10000):

LLD: the initial address of the pointer array LD(INEQ) of the diagonal elements of total
stiffness matrix

LID: the initial address of the array ID(INNFM,NODT) storing the effective degree
number of freedom for each degree of freedom in the model.

LADJK: the initial address of the pointer array ADJK(NEG) of node number arrays of
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different elements.

LADGP: the initial address of the pointer array ADGP(NEG) of material constant arrays
of different elements.

LADPM: the initial address of the pointer array ADPM(INEG,NLC) of the information
array of different distribution loading.

LJKG: the initial address of the node number array JKG(INEG) of elements.

LOAD: the initial address of the array OAD(NLC) storing the number of nodes subjected
to concentration force.

LMOAD: the initial address of the array MOADMNEG,NLC) storing the number of
elements subjected to distribution loading.

LSTRESI: initial address of the array STRESS1 (NLC) storing the information of stress
calculation.

LSTRES2: initial address of the array STRES2(NEG,NLC) storing the number of
elements in which the stresses are output. |

LSTRES3: initial address of the array storing the element number for stress calculation.

LLM: initial address of the working array for degree index of freedom of elements.

For array B(10000):

LBC: the initial address of the constraint information array BC(2,NBC).
LXYZ: the initial address of the nodal coordinate array XYZ(NCOR,NODT).
LGPH: the initial address of the material constant array GPHINGPHC,NGPH).

LRFG: the initial address of the concentration force array RFG(2, ).
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LRFM: the initial address of the distribution loading array RFMI(L,J).
LR: the initial address of the working array storing loading vector or nodal displacement
vector

LEK: the initial address of the working array storing the element stiffness matrix.

This storage procedure allows for the semi-dynamic allocation of storage for the various

matrices. It saves computer space and is easy to change the storage size available to

different problems.
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A.4 The Basic Variables and the Input Data Files

In the computer program COMSA, there are four input files: Finput.dat, Input3.dat,
Input4.dat, and Input 5.dat for supplying original data to set up a finite element model.

The details are given in the following pages.

A.4.1 File 1 --- Finput.dat

System Parameters:
Card 1
NPROBL, NCHE, NPUT
NPROBL -— Number of Problems
NCHE -— 0 Calculation

1 Check input data
NPUT - 0 Not print input data

1 Print input data
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Card 2

NCTYPE, NODT, NLC, NEG, NNFM, NCOR, NBC, NPO, IUNI

NCTYPE

NODT

NCOR

1 Deformation analysis

2 Stress analysis

Total number of nodes in structures (<= 600)

Total number of loading cases (<= 2)

Number of element types in structures (<= 3)
Maximum number of D.O.F. per node in structures
6 Degenerated element and Transition element
3 Solid element only in structures

-— Maximum number of nodal coordinates

6 Line nodes

3 Point nodes

Total number of constrain conditions

Number of point nodes

xxx  Transition elements used and point nodes firstly
0 No transition element

Type of loading

1 qo, uniform loading

2 gosin(rtx/a)sin(my/b)

3 gosin(mx/a)
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Card 3

NETYP, NEN, NOD, NNF, NGPHC, NGPH (NEG LINES)

NETYP

NOD

NGPHC

NGPH

Type of elements

3 Degenerated element
4 Solid element
5 Transition element

Number of this element

Number of nodes in this element
8 Degenerated element

20 Solid element

15 Transition element

Number of nodal D.O.F.

6 Degenerated element
3 Solid element

4 Transition element

0

0
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Card 4

APL, BPL
APL — a
BPL -— b

Used in loading qgsin(ntx/a)sin(rty/b)
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Node Number Amay:

Card 5 (Solid element)
Element 1
Node 1, Node 2, ... , Node 10

Node 11, Node 12, ... , Node 20, MATG

Element NEN
Node 1, Node 2, ... , Node 10

Node 11, Node 12, ... , Node 20, MATG

Node 1 -— Node Number of the first node

Node 2 -— Node Number of the second node
Node 20 _— Node Number of the twentieth node
MATG - Group number of the materials (lay-up)
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Card 5 (Transition element)
Element 1
Node 1, Node 2, ... , ..., Node 10

Node 11, Node 12, .. , Node 15, MATG

Element NEN
Node 1, Node 2, ... , ..., Node 10

Node 11, Node 12, .. , Node 15, MATG

Node 1 —— Node Number of the first node

Node 2 -— Node Number of the second node
Node 15 —_ Node Number of the fifteenth node
MATG — Group number of the materials (lay-up)
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Card 5 (Degenerated element)

Element 1

Node 1, Node 2, ... , Node 8, MATG

Element NEN

Node 1, Node 2, ... , Node 8, MATG

Node 1 - Node Number of the first node

Node 2 -- Node Number of the second node

Node 8 — Node Number of the eighth node
MATG - Group number of the materials constants
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Information amray for concentration forces:

Card 6

OAD()

OAD(2)

OADNLCO)

OAD() — Number of points subjected to loading

I=1,2,..,NLC

NLC is the number of loading cases.
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Information amray for distribution loadings:

Card 7

MOAD(,1), MOAD(1,2), ..., MOAD(1,NEG),

MOAD(2,1), MOAD(2,2), ..., MOAD(2,NEG),

MOAD(NLC,1), MOAD(NLC,2), ..., MOAD(NLC,NEG),

MOAD(,J) -— Number of element in the j-th element
under the i-th loading case
I=1,2,..,NLC

IJ=1,2,..,NEG
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Information amay for stress calculation:

Card 8

IST(1,1), IST(1,2), ..., IST(1,NEG),

IST(2,1), IST(2,2), ..., IST(2,NEG),

IST(NLC,1), IST(NLG,2), ..., ISTINLCNEG),

ISTA)) -— Number of element in the j-th element type
under the i-th loading case for stress
calculation
I=1,2,..,NLC

J=1,2, .., NEG
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Element number for stress calculation:

Card 9
ISNQ1)
ISN(Q2)
ISN(N)
ISNQ) -— Element number for stress calculation
I=12,..,N
NLC NEG

N = E E IST(I,J)

I=1 dJ=1
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Constraint condition:

Card 10

BOUN.DIR(1), DISN (1)

BOUN.DIR(2), DISN (2)

BOUN.DIR(NBC), DISN(NBO)
BOUN -— Node number of the node subjected to prescribed
displacement
DIR — Direction of the prescribed displacement
1 X
2 Y
3 y4
4 ¥,
5 ¥,
6 ¥,
DISN -— The value of the prescribed displacements
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Nodal coordinates:

Card 11
XB(1), YB(1), ZB(1), XT(1), YI(1), ZI(1)

XB(2), YB(2), ZB(2), XT(2), YT(2), ZT(2)

XB(NODT), YB(NODT), ZB(NODT), XT(NODT), YIT(NODT), ZT(NODT)

For point nodes:

XB(D) = X(I) -— the value of coordinate X of node I
YB(ID) =Y{) — the value of coordinate Y of node I
ZB(D) =ZQ) - the value of coordinate Z of node I
XT@) =00
YT{I) =0.0
ZTI) = 0.0

For line nodes:
XB({) --- the value of coordinate X of node I on the bottom of laminates

YB() —- the value of coordinate Y of node I on the bottom of laminates
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ZB(I) -- the value of coordinate Z of node I on the bottom of laminates

XTMD - the value of coordinate X of node I on the top of laminates
Yra -— the value of coordinate Y of node I on the top of laminates
ZTd@y -— the value of coordinate Z of node I on the top of laminates
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Card 12

RFG(1,1), RFG(1,2)
RFG(2,1), RFG(2,2)

RFG(N,1), RFG(N,2)

RFG(L,1) —

RFG(I,2) -—

Concentration forces:

FORCE.DIR

FORCE -— Node number of the node subjected
to loading

DIR - Direction of the loading

value of the loadings

NLC
N = E OAD(I)
I=1
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Card 13

RFM(1,1), RFM(1,2)

RFM(2,1), RFM(2,2)

RFM(N,1), RFM(N,2)

RFM(L 1) —

RFM(,2) -

Distribution forces:

Element number of the element

distribution loading

value of the loadings q,

NLC NEG

N=Y Y MoaD(I,d

I=1 J=1
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A.4.2 File 2 --- Input3.dat (degenerated element)

Information about stress field

Card 1
MODMAX
MODMAX -— The number of stress modes
Information about material
Card 2
NMAT
NMAT - The number of material constant groups
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Matenal constants

Card 3

E1(1), V12(1), G12(1)
E2(1), V23(1), G23(1)
E3(1), V13(1), G31(1)
E1(2), V12(2), G12(2)
E2(2), V23(2), G23(2)

E3(2), V13(2), G31(2)

E1(NMAT), VI2(NMAT), G12(NMAT)
E2(NMAT), V23(NMAT), G23(NMAT)
E3(NMAT), V1I3(NMAT), G31(NMAT)

E1(D) — E,
VI12(D) — Vi
G12(D) -— G,
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E2() — E

v23() — Va3
G23(D -— G,;
E3(D — E

v13{) — Vi3
G31(D) — G;,

I=1,.2, .., NMAT
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Information about lay-up

Card 4

NLAT

NLAT - The number of layers in laminates

Card 5

MLAY(), CTA(D)

MLAY(2), CTA(2)

MLAY(NLAT), CTA(NLAT)

MLAY(D) - Group number of material constants for the I-th layer

CTA() -- The orientation of the fibre in the I-th layer
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Card 6

For o,
N
C, 1, m;, k;

G lpym, Kk,

Co Iy m, Kk,
0

0

For t,,

0

N

C, 1, m, K

Gy L, my kK,

Co I, my, k,

0

Stress modes
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For 1,,

0

0

N

C, 1, m,, k,

Cplpymy, k,

Co 1, m, k,

Zfi(Elnlc)
o .i;l
{Eyz} = 9 ;QI(E,TI,C) ¢
zx ;1
Y B0, 0
L 11 J
f_il gy hi _____ C.i 511 nﬂu ckz
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A.4.3 File 3 -- Inputd.dat (solid element)

Card 1

MODMAX

MODMAX

Card 2

NMAT

NMAT

Information about stress field

— The number of stress modes

Information about material

-— The number of material constant groups
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Material constants

Card 3

E1(1), V12(1), G12(1)
E2(1), V23(1), G23(1)
E3(1), V13(1), G31(1)
E1(2), V12(2), G12(2)
E2(2), V23(2), G23(2)

E3(2), V13(2), G31(2)

E1(NMAT), VI2(NMAT), G12(NMAT)
E2(NMAT), V23(NMAT), G23(NMAT)
E3(NMAT), VI3(NMAT), G31(NMAT)

E1(D — E

vi2Q) _— Yy

G12(D — Gy
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E2(D) — g

v23(D) — Vi3
G23(D)- -— Gy
E3(D) — E

V13 - Vi3
G31(D -— G,

I=1,2, .., NMAT
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Information about lay-up

Card 4

NLAT

NLAT -— The number of different lay-up in laminates

Card 5

MLAY(1), CTAQ1)

MLAY(2), CTA(2)

MLAY(NLAT), CTA(NLAT)
MLAY(D) -— Group number of material constants for the I-th layer
CTA(D) -- The orientation of the fibre in the I-th layer
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Card 6

NLAY

NLAY -— The number of different type of element

Card 7

NLAYN()

NLCT(1,1), NLCI(1,2), ..., NLCT(1,NLAYN(1))

NLAYN(2)

NLCT(2,1), NLCT(2,2), ..., NLCT(2,NLAYN(2))

NLAYN(NILIAY)

NLCT(NLAY,1), NLCT(NLAY,2), ..., NLCT(NLAY,NLAYN(NLAY))

NLAYN(®) - Number of layers in the I-th type element

NLCT(1,J) - Group number of the lay-up within the j-th

layer in I-th type element
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Card 8

For o,
N
Cy, L, my, ky

Cy L, my k,

Co I, m,, K,
0

0

For 1.,

0

N

C, 1,, m, k,

G, L,my k,

Cp Iy my, kK,
0

Stress modes

301



For 1,

0

0

N

C, L, m, kK

Clymyk

Cp I my, Kk

o, n
{:yz} = 9 ;gi(ElnlC)

f 9

éfiw,n,m

~v

Y (80,0

L =1

s
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A.4.4 File 4 -- InputS.dat (transition element)

The data format is the same as that in input4.dat (solid element)
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A.4.5 Node number in different elements

Degenerated Element
4N
3 [ 2
T 5 g
B g
Solid Element

1S 1o z
3 0f 5 18 N
2e pt [\4 3

I
{ 12 3/‘—' ey 2
z 3
i th '
Transition Element
S W
u /i
3 T
3 f o
L3 I ) S—— c ’ : f
/ 12 1
W 5
{ 1 3
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A.5 Discussion

For simplicity, the 4-node degenerated plate element and multilayer elements are installed
into another program COMSA-1 which has the same control structure and main program

as the COMSA.
For generation of the mesh, ANSYS program is used to generate the coordinates of nodes,
the node numbers of elements. Then, the data format in the ANSYS file is converted to

that in the Finput file.

For presentation of results, Matlab program is used to show the displacement field and

the stress field in the structures.
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