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ABSTRACT

Adaptive Control of a Multizone Fan-Coil Heating System

Gurinder Singh

The application of adaptive control to a multizone fan-coil heating (MFCH)
systemn is studied. A two-zone fan-coil heating system is considered. The system
consists of two-zones, a fan-coil unit for each zone, a boiler, and distribution piping.
A nonlinear mode] of the two-zone fan-coil heating system is developed. The thermal
dynamic effect of the enclosure elements is described by two fifth-order models, one
for each zone. The environmental zones are acted upon by multipledisturbances such
as changes in outdoor temperature, solar radiation fluxes, and dynamic disturbances
due to the thermal inertia of the enclosure elements.

An adaptive controller is designed using pole placement and LQR theory. A
proof of stability of the closed-loop system is given. Simulation results showing
the closed-loop response of the system to changes in operating points, external
disturbances, changes in system parameters, and unmodeled dynamics are presented.

It is shown that the adaptive controller is able to adapt to a wide range of
operating conditions and maintain the zone and boiler temperatures close to their

respective setpoints.
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Chapter 1

Introduction

1.1 General

Designing good control strategies for the operation of a Heating, Ventilating, and
Air-Conditioning (HVAC) system are most important from the viewpoint of saving,
energy and improving human comfort in indoor environmental spaces. This problem
is very challenging because even simple HVAC systems are nonlinear and there exists
a strong coupling between the zone models. fan-coil models, and boiler model. In
this thesis, a sy'stem’s approach is used to design controllers for an HVAC system.

Since a central HVAC system consists of several subsystems, the control system
must coordinate the operation of the subsystems to produce the desired ontputs 1
this sense, more than one control input is to be regulated to hold the outputs at the
desired levels.

In this study. we have used adaptive gains derived from lincar control theory
to control the nonlinear multi-input muiti-output (MIMO) multi-zone fan-coil heat.-

ing (MFCH) system. It is very hard to represent the MFCH system exactly by a




nonlinear dynamical model because there are some dynamics which cannot be mod-
cled exactly such as valve dynamics. damper dynamics etc. There may also be some
dynamical units of the plant whose operation will deteriorate after some time and as
such analytical models of those units will not represent them exactly. If we use these
analytical models to design control strategies. the systems performance may not be
satisfactory. During the operation of the plant. if we want to include some dynami-
cal components into the plant, even then we have to re-compute the control laws. To
overcome these uncertainties in the model dynamics, we use adaptive gains which
will compensate for all unmodeled dynamics. Even if the environment in which the
system is working changes, adaptive gains will attempt to adapt themselves to make

the system performance satisfactory.

1.2 Introduction to Adaptive Control

One of the fundamental principles of modern control theory is that a plant cannot
be well controlled until it can be modeled in quantitative terms. and its states are
observed or reconstructed in a deterministic or stochastic sense. This has resulted
in such notions as identification, parameter and state estimation, filtering and ob-
servers. One of fundamental implicit concerns in the field of control theory is the
notion of “learning and self-adaptive control”. Using some of these concepts and
notions the field of adaptive control has evolved over the past three decades from
primitive hill-climbing methods to advanced adaptive control techniques.

Today, adaptive control has potential applications for control of almost all

technological systems in which the inherent complexities associated with explicit

[8V]




identification and parameter estimation do not permit the applications of conven-
tional control tools. It is a fascinating field for research. The word “adapt™ means to
change the behavior of a system to conform to new conditions. The adaptive control
field has matured due to research in recent years. and a wide spectrum of problems
has emerged. Intuitively. an adaptive controller is a controller that can modify its
behavior according to changes in the dynamics of a process and disturbances acting
on it [1]. In contrast to conventional control, adaptive control refers to the control
of partially known systems. The characteristics of the process can be time varying
due to a variety of reasons. There may be changes in the environment such as un-
foreseen changes in the statistics of external inputs and disturbances acting on the
system. The use of conventional control theory will not give satisfactory response
under time-varying conditions [2]. As is well known feedback was also introduced
to give satisfactory response when there are parameter variations by increasing the
loop gain of the system [4]. The main drawback of the high-gain controllers is that
the magnitude of control signal may become large which could ultimately saturate
the control inputs and cause instability.

Drenick and Shabender 3] introduced the term adaptive system in control the-
ory to represent control systems that monitor their own performance and adjust their
parameters in the direction of better performance. By viewing different character-
istics of systems, different control actions were planned and hence different coutrol
systems were designed. This resulted in a profusion of definitions, each containing
some property that its proponent considered peculiar to adaptive systems.

Aseltine et al. [5] has categorized adaptive systems into the following fonr

classes depending on the manner in which adaptation takes place:

1. Passive adaptation.



2. Input-ontput adaptation.
3. System-variable adaptation.
4. System-characteristic adaptation.

Although these techniques are not commonly used these days. they are nevertheless
of historical interest because research in adaptive control has led to similar ideas. A

brief summary of the above mentioned adaptation methods is as follows.

Passive adaptation

It results in those systems in which the clever design of a time-invariant controller
results in satisfactory performance over wide variations in the environment. An
example of passive adaptation is given in Figure 1.1. The damping characteristics
of a second-order servomechanism problem are improved by nonlinear feedback. The

overall system shown in Figure 1.1 can be described by a nonlinear scalar differential

equation of the form

)

-

d*z dr

Although the system in (1.1) is nonlinear, the aim here is to determine a controller
of fixed structure and known parameters to improve its performance. According to

present usage. such controller would be described as robust rather than adaptive.

Input-output adaptation

In this adaptation scheme, input signal characteristics are used to adjust the param-
eters of the controller. The assumption here is that the performance of the overall
svstem depends on some characteristics of the signal and that the optimal parame-

ter values can be determined once these characteristics are known. Automatic gain




control systems can be cousidered as using this type of adaptation scheme. In these
systems. a gain parameter is adjusted to maintain the average output amplitude con-
stant when there are large variations in the amplitude of input signals. Assuming
that optimal parameter values have been computed off-line for each class of input
signals. they can be chosen on-line by referring to a look-up table. This method is
called gain scheduling. Gain scheduling has been employed successfully in a variety

of applications including process control and control of aircraft systems.

System-variable adaptation

In this adaptation scheme, the control input is adjusted based on the measurements
of the system variables while the system is in operation. For example, the control
input is adjusted based on variables such as system outputs, tracking errors and/or

their derivatives, which can be measured.

System-characteristics adaptation

Adjustment of the control parameters or control input is done based on system
characteristics, such as its impulse response or step response, or frequency response.
For example, from the measured impulse response of a given plant, the damping
ratio can be computed which can then be used to generate a fecdback control signal.

More than two decades after the term adaptation was introduced, the definition
of an adaptive system continues to be multifaceted and cannot be compressed into
a single statement without loss of vital content. Different rescarchers have tried Lo
define adaptive control in different ways, out of which the following definitions have

T

largely evolved (6], [7]:
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Definition 1.1 An adaptive system is one which is provided with a means of con-
tinuously monitoring its own performance in relation to a given figure of merit or
optimal condition and a means of modifying its own parameters by a closed-loop
action so as to approach this action.

Definition 1.2 An adaptive control system is defined as a feedback control system
that is intelligent enough to adjust its characteristics in a changing environment so
as to operate in an optimum manner according to some specified criterion.
Definition 1.3 An adaptive control system is one that is defined from an adaptive
viewpoint.

The definitions cited above reveal that not only a variety of personal visions
of adaptation are encountered in the field. but also that feedback together with
estimation and control is an integral part of an adaptive control strategy. The
complexity of adaptation increases as a parameter in an existing system is adjusted
to cope with a new uncertainty, and hence becomes a state variable at the next level.
According to Zadeh [8], any system can be defined as being adaptive by the proper

choice of the uncertainty and the acceptance level of performance.

1.3 PID Control for HVAC Systems

HVAC( systems waste energy and do not provide a comfortable environment if they
are not controlled properly and are not well maintained [9]. This energy waste is
primarily due to several undetected malfunctions in HVAC control systerns. Detec-
tion of these malfunctions require skilled manpower for operation and maintenance.
Furthermore, a high priority is given to the initial cost of control systems which

results in poor performance of control components due to lack of quality.

o




To maintain space comfort conditions. HVAC control systems have mainly used
feedback control in conjunction with thermostatic sensing devices [10]. Typically the
proportional control action is taken on the output error. Such proportional control

action is described as

where
V, = output of the proportional controller
K, = proportional gain
e = error signal or offset

The drawback of this control scheme is that the HVA( s:ystcm's output and
space temperature continually oscillate above and below their setpoints because of
lag times between the space, sensor, and the system response. This offset causes
system inefficiency when steady state operating conditions are much needed.

To reduce the offset, proportional, integral. and derivative (PID) control se-
quencing is used. The mathematical rep-esentation of this control schemeis given

by

de
dt

V, = i,e + I, / edt + Ity
where
V, = output of the PID controller
K, = proportional gain
e = error signal or offset

K, = integral gain

! = time

-1




K, = derivative gain of the controller

This control action results in faster response anfd greater stability than simple pro-
portional controls []1].

Although PID control reduces or eliminates offset. improper selection of pro-
portional and integral gains can cause system instability. Also the derivative term
may cause the controller to be very sensitive to noisy signals. HVAC systems com-
prise of a large number of subsystems, each of which may exhibit time-varying and/or
nonlinear characteristics {12]. For example, a detailed mathematical description of
a five-zone commercial HVAC system requires about 1000 differential and algebraic
equations. Furthermore, the parameters of HVAC systems generally vary with load.
weather, and building occupancy. In these situations, Pl or PID control techniques
do not give satisfactory performance [13]. The need for an alternative to classical
fixed gain Pl or PID control in those loops where the dynamical characterization of
the components (sensor, coil etc.) vary significantly during operation was identified
as a main reason for adaptive control [14].

There are a number of advantages in using adaptive controllers in HVAC sys-
tems. Commissioning costs would be less since the commissioning period would
be shorter and the procedure would demand the attention of less skilled personnel.
Since adaptive controllers might be better able to cope with nonlinear. dynamic be-
havior of the plant, it would be possible to simplify the control scheme and reduce
installation costs by eliminating some of the cascaded control loops. The overall
performance of the controllers would be better than that of conventional controllers
since they would be able to adapt to the long-term, seasonal changes in the oper-
ation of the plant, thus improving comfort control. lowering energy consumption.

and reducing maintenance costs.

o




Motivated by these considerations. we are interested. in this thesis, in exploring
the design of a multivariable adaptive controller for a multi-zoue fan-coil heating
system (MFCH) system. To this end, this thesis is divided into six chapters. In the
first chapter, an introduction to an adaptive control is given. The disadvantages
of using constant-gain controllers in HVAC systems and the advantages of using
adaptive controllers are also discussed. In Chapter 2. a review of the previons worl
on adaptive control implementation in HVAC systems is given, and the objectives
of the proposed research are outlined. Physical and analytical models are deseribed
in Chapter 3. Open-loop response of the MFCH system is studied and controller
design techniques using robust servomechanism principles, are explained. Stability
which is a basic requirement in any control system, is discussed in Chapter 1. This
is followed by a discussion of implementation issues of the robust controller for the
MFCH system. Simulation results for various operating conditions are given in

Chapter 5. Conclusions and suggestions for further work are given in Chapter 6.

1.4 Summary

In this chapter, a brief introduction to adaptive control has been given. The reasons
for the ineffectiveness of PI and PID controllers, and the advantages of using adaptive

control for HVAC systems are also outlined.



Figure 1.1: A nonlinear feedback system.
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Chapter 2

Literature Survey

2.1 Introduction

As explained in the previous chapter, there are some drawbacks to the use of
constant-gain controllers for controlling HVAC systems. These can be overcome
by using adaptive control. During the last decade, several different schemes for
automatic tuning of controllers have been suggested [15], [24]. Several commereial
controllers with automatic tuning facilities based on these ideas have also appeared
on the market. However, these products have so far been directed toward industrial
process control applications. It is only recently that adaptive control has started to
appear in building management systems.

This chapter is organized as follows. In section 2.2. the previous work on
adaptive control implementation for HVAC systems is given. Dilflicultics in using
these adaptive control methods are identified. In order to overcome these diffienlties,
it is necessary to design multivariable adaptive controllers for HVAC systems. To

this end. the objectives of the thesis are stated in section 2.3.

11



2.2 Adaptive Control for HVAC Systems:

A Survey

In this section a survey of the published literature on the application of adaptive
control techniques to HVAC systems is presented. The papers which are surveyed
are given in |16]-[27]. In reference [16], Nesler has used self-tuning techniques for
controlling a first-order lincar thermal process. This process consists of an air han-
dling unit which is used for comiort conditioning The whole set up consists of 5
blocks: A set of automatic tuning routines to establish initial parameter estimates: a
recursive least-squares estimator for estimating process parameters on-line; a control
design block which computes the control input; a proportional-integral controller:
and a performance monitor which supervises the self-tuning controller operation.

System flexibility and robustness have been increased by the use of the per-
formance monitor. It determines when retuning of the controller is required. The
process parameters are estimated on-line using the recursive least-squares (RLS)
method described in [30], [31]. Open-loop tests are used for estimating the pro-
cess gain, the effective deadtime, and the time constant. Proportional and integral
control input is derived by minimizing the integrated absolute error for setpoint
changes. A forgetting factor is also used to discount the old data and thus track
parameter changes.

The main drawback of the control technique mentioned in [16] is that some
times seli-tuners fail to give proper estimates under certain conditions such as when
there are large and unmodeled load disturbances acting on a process. In that event.
self-tuning control loop will become unstable. These types of disturbances are com-

mon in HVAC processes.




Wallonborg [17] has used pole placement techniques based on input-output
models to control a process whose discrete-time transfer function is calculated from
wave forms of a periodic oscillation obtained with a relay feedback tuning exper-
iment. An important feature of this technique is the automatic selection of the
sampling interval and desired closed-loop poles with respect to the process dvnam-
ics. In the tuning experiment, three different discrete-time models are identified. A
number of model validation tests are carried out to select the best process model
from three possible alternatives. When an appropriate discrete-time model has been
selected, the corresponding continuous-time model parameters are used to select a
suitable new sampling interval.

In the desired closed-loop system. the denominator polynomial is selected so
that two dominant poles are obtained, corresponding to a continuous-time system
with a relative damping of 0.7 and a natural frequency, w. The selection of the
desired natural frequency is related to the oscillation frequency obtained from the
tuning experiment. The observer poles are at the origin. The control input is
calculated by solving the Diophantine equation.

This new algorithm is tested on an HVAC plant in which an air-handling unit,
is used for heating the outdoor air before it is distributed to the interior of the
building. The air is heated in two steps. First. the incoming air is pre-heated by a
rotary heat exchanger that recovers excess heat energy from the return air before it,
leaves the building. Then the supply air is heated to the desired level with a heating,
coil. In the second experimental application. an auto-tuner is used to control the
static pressure in a VAV system. Experimental results reveal the validity of the
proposed control scheme.

[ts main drawbacks are that in some cases it may be difficult to obtain the

13



necessary steady-state conditions in a tuning experiment. One such example is the
control of hot water supply system where the consumption of water exhibits large
fluctuations during normal operation. In many HVAC systems. there is a close
interaction between different control loops. Thus, when using an auto-tuner, it is
important to select the order in which the loops are tuned so the interaction is
minimized.

In reference [18], Pinnella and others have used integral control action with
self-tuning capability which critically damps the system response to step inputs. A
real-time control algorithm is developed and tested on two different HVAC control
systems: (1) static pressure control of a variable air volume fan system, and (2)
supply-water temperature control of an experimental steam-to-hot-water converter
system. The reason for using integral control action only, as given in [18], is to get
good steady-state performance, and only the integral gain has to be adjusted during
the tuning process.

The control input is a function of the system gain, time delay, and time con-
stant which are determined from two open-loop experiments. In the first experiment,
the system gain is determined, and in the second experiment, the time delay and
time constant of the system are determined. The time required for tuning the con-
troller i.e. to conduct the two open-loop experiments is certainly less than the time
taken by an operator. After computing the control input by means of open-loop
tests. the controller is put into the closed-loop mode and satisfactory results are ob-
tained. The sell-tuning procedure produces a gain which provides a nearly critically
damped response to a set point change. Results show that the self-tuning controller
is effective for systems with slow or fast responses.

The control scheme described in [18] is not fully adaptive. For example. when

4




the disturbance acting on the system changes then the open-loop experiments have
to be repeated for computing the system gain. time delay. and time constant.

Nesler [19] has reported the application of a computer-assisted controller tun-
ing program. an automated tuning controller. and a self-tuning controller to HVAC
processes. A process model is estimated for calculating proportional-integral (P1)
controller parameters.

An open-loop experiment is done on a mixed-air temperature process to de-
termine the process deadtime. time constant. and process gain. These parameters
are then used in computing the tuning constants for PI controllers in model-based
controller tuning. Since this tuning method may not provide satisfactory results
over a wide range of operation, the author has devised automated controller tuning
methods which are summarized in the next few paragraphs.

The first method described is computer-assisted controller tuning. In this
method, an operator is assisted by means of a personal computer in tuning DDC
controllers by an open-loop step-test method. Pre-processing and numerical analysis
of the data by computer are the main factors in reducing the time required to
properly tune PI controllers.

The next step in automating controller tuning is to adapt the open-loop step-
test method for direct use in the DDC controller. This is called automatic controller
tuning. Unlike PC-based methods, the automatic tuning controller requires little
operator involvement while tuning. The user specifies a step input size, sampling
interval, and high/low alarm values before initiating the tuning routine. Automatic
tuning on a regular basis adapts control parameters to changing process conditions.
An experiment is performed on a steam-heating coil during set point changes af-

ter automatic tuning. Despite a short process time constant, all of the controlled




responses are shown to be within an acceptable region.

A self-tuning controller is also developed after automatic controller tuning. In
this. the process model is continnously estimated in real-time using closed-loop con-
trol data. Automatic tuning routine is used to establish initial process parameter
estimates. Parameters of a Pl controller are calculated based on estimated process
parameters. A performance monitor is also used to supervise the operation of the
self-tuning controller. Testing of the sell-tuning controller is performed on an air-
handling unit used in comfort conditioning. Experimental results revealed that the
self-tuning controller tries to regulate the output variable under different load con-
ditions. The drawback of these techniques is that they cannot be used for nonlinear
multi-input, multi-output systems.

Townsend et al. [20] have used optimization in terms of appropriate costs and
performance functions subject to practical limits using the Pontryagin maximum
principle. First the cost function is specified in which different weights are given
on the various control inputs. startup conditions. and the deviations of controlled
states from their desired steady-state values. The Hamiltonian used in the maximum
principle, is maximized using bang-bang control. interior maximization, and singular
conditions. It is shown that singular and interior controls cannot be optimal for the
given system. Simulation results show the effectiveness of optimal control using
bang-bang control theory. Its main drawback is that the controller computations
are based oun actual process parameters, i.e. it assumes that the process is fully
known. which may not be true in a real sense.

In reference [21]. Curtiss et al. have used neural networks to implement a
predictive controller on an HVAC system. The back-propagation learning rule is

applied on a neural network to learn the dynamic behavior of the coil model. A
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wide range of coil operating data is used to train the network. The proposed scheme
involves two neural network controllers: one to perform the actual prediction of the
output, and the other to find the correct controller output based upon the error
driven by the first network. The results of this method are compared with PID
control strategies. It is shown that with a proper choice of the learning rate, the
performance of the predictive neural network controller may be better than that of
the PID controller. However experimental results show that this technique works
fine for simple single order HVA(C' processes. Several problems can arise when the
same neural network is trained using data obtained from a multi-input. multi-output
HVAC system.

In [22], a self-tuning start control scheme is developed. The control algorithms
are based on a semi-empirically derived relationship between pre-heat time and the
measured variables. The behavior of the control scheme is first investigated using
a hybrid control simulation of the building and a heating plant. Its performance
is evaluated experimentally using a simplified form of the control algorithm which
is implemented on a microprocessor-based controller. Results verify the validity of
the self-tuning concepts for starting operations of a thermal plant. This scheme
is not fully adaptive in the sense that self-tuning is applied only during the start-
up operation. The system under consideration is assumed to he completely known
which in a real sense is very difficult.

In reference [23], practical considerations are discussed for the implementation
of an adaptive controller for a typical HVA( system. In reference [24], PID contiol
parameters are calculated automatically. First the process response to a test signal
is sampled and then characteristic values of the process are estimated from the

sampled data. By using a performance index. optimal values of the PID control
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parameters are calculated. Pole-zero cancellations and root locus techniques are used
to control a first-order HVAC process in {25]. In [26]. a multi-loop self tuning control
scheme to control the air-handling unit is discussed. The use of cascaded loops is
proposed to improve the reliability of the self-tuning control. A simplified parameter
estimator which incorporates exponential weighting of the past data and a two level
forgetting factor is used in [27]. Implementation of this stochastic-approximation-
like algorithm is recommended because it is algebraically much simpler than a full
recursive least-squares estimator, though, the parameters take longer to converge.
From the above literature review, we note that several adaptive control tech-
niques exist for controlling HVAC systems. However, as pointed out in the review,
they also have some limitations. To overcome these limitations, we propose a new

control technique which uses servomechanism control strategies along with adaptive

gains.

—
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2.3 Objectives of the Thesis

The objectives of the thesis are:

1. To design an adaptive controller for a multivariable, nonlincar MEFCH sy stem
which will have following properties:
(a) Regulation against static and dynamic disturbances.
(b) Continuous adaptation to changing system operating conditions.

(c) Robustness in the sense that the performance of the controlled dynamic
system should be insensitive to changes in its environment and/or its

parameters and modeling errors.

(d) Robust performance to unknown system dynamics. If there are changes
in the plant dynamics due to prolonged operation, the controller should

adjust itself to compensate for these changes.
2. To prove stability of the closed-loop system.

3. To examine the closed-loop response of the system to realistic changes in op-
erating conditions and external disturbances: also verify the robustness prop-

erties and system response to unmodeled dynamics.

In the chapters that follow. we have designed and implemented a controller

which satisfies the above mentioned objectives.
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Chapter 3

Modeling and Controller Design

3.1 Introduction

In this chapter, physical and analytical models of the MFCH system are given and
a controller is designed based on solving the robust servomechanism problem. This
chapter is organized as follows: A physical model of the MFCH plant is given in
section 3.2. The non-linear dynamic equations describing the physical model are
given in section 3.3. From this model, we can see the coupling between different
units of the MFCH system. Open-loop simulation results are presented in section
3.4 which show that, in dynamic model, the different components of the MFCH
svstem are properly integrated and respond well to changes in all control inputs. In
section 3.5, a robust controller is designed by solving the servomechanism problem.
(‘ontrol techniques used in linear control theory. i.e.. pole placement and LQR. are

used to obtain the gain matrices. The chapter is summarized in section 3.6




3.2 Physical Model

In northern climates. heating of indoor environmental spaces or zones in buildines
is accomplished with several different types of HVAC svstems. In this thesis, we
consider one specific HVAC system known as a multi-zone fan-coil heating, (MFCH)
system. Schematic diagram of the MFCH plant is shown in Figure 3.1. The major

elements of the system are:

1. Two environmental zones

o

Fan-Coil Units

3. Boiler

4. Ductwork

5. Control Valves

6. Pump

~1

. Feedback control system.

The operation of the MFCH system can be understood by tracing the path of
water around the loop. The boiler heats the water which returns from the individual
fan-coil units through the return pipe. The inpui to the bhoiler is natural gas which
is burnt inside a combustion chamber. The valve C3 controls the rate of flow of
natural gas. The rate of flow of hot water to the fan-coil units is regulated via the
control valves C1 and C2. A fan is used to circulate air across the fan-coil unit,.
Thus the air is heated in the coil and delivered to the zones to satisfy the heating

load requirements. For thermal comfort. the air leaving the coil must he at an
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“igure 3.1: Schematic diagram of a multi-zone fan-coil heating (MFCH) system.




appropriate temperature. Furthermore, for good control of zone temperature, the
rate of supply water must be continuousiy modulated.

As shown in the Figure 3.1. there are three control variables w,y. . and
ums which are the mass flow rates of hot water to zones 1 and 2. and the normalized
input energy to the boiler respectively. These three contrel variables are continuously
modified to improve the overall response. For example. the mass tlow rate of hot
water to zones 1 and 2 is controlled by appropriately opening/closing control valves
C1 and (2 respectively. The third control input wu,3 regulates the input energy
required to heat the water to the appropriate temperature.

All three control actions require feedback signals from the two zones and the
boiler. When the zone temperature decreases because of an increase in heating load,
the difference between the set-point and the actual value of the output increases.
This output error is fed back via the controllers in order to initiate the control action.
Control action includes the modulation of the valves C1 and (2 such that the mass
flow rate of the hot water to the fan-coil units is increased, and control of the valve C3
such that the low rate of natural gas is increased sufficiently to meet the increased
heating load. It must be noted that all the control actions are coupled in the sense
that the action of one influences the other. Therefore the cffects of a changing load
on the overall performance of the system must be carefully incorporated into the

control strategy.

3.3 Analytical Model

By applying the energy conservation principle and assuming that the zone tempera

tures and the boiler temperature remain uniform. the lumped capacity method was



applied to describe the dynamics of the MFCH system (Figure 3.1) by the following

nonlinear equations.

(lT_-_]

(v: —(lt—_ = umlf:(Tb - T:]) - a:l(T:l - Ta) - a:l‘Z(T:] - T:z) +
hAq, (T4, - T,) (3.1)
, dT:,
C: (l_/ = um‘ZE:(Tb - T:Z) - 022(T:2 = Ta) + a:l?(Tzl - :2) +
hAg, (Ta, — Tea) (3.2)
(T, T,
Gt = uma(l = “Tbmb,,, )= ao(Ty = Tp) = tm&(To = Tr) —
um?f:(Tb - T:?) (33)

where uy, = wu,,,,,t = 1, 2, 3, is the control input through the ith control valve;
and uy, uy, and uz are normalized with respect to their maximum values uy,,,,,
u,,,,., and us, ., respectively. The design parameters of the MFCH system used in
this thesis are given in Table 3.1. The physical parameters of the boiler and the
zones were chosen by applying the steady-state sizing methods described in [28].
In developing the model equations, we have also assumed that the heat transfer
coefficients such as k, £. and the heat loss coefficients a.;, a.2, a:2 etc. remain
constant. However. in actual systems, these parameters are likely to change. To
address this issue, we are interested in designing robust controllers which give good
tracking performance even when the systein parameters change.

Equations (3.1) and (3.2) describe the energy balance for the respective en-
vironmental zones. For example. for zone 1. the rate of energy stored in the air
mass of zone 1 is equated to the energy input to the zone via the fan-coil unit, the
heat loss to the outdoor environment through the enclosure, heat loss or gain to the
adjacent zone. and the interactions in terms of heat loss or gain between the zone

air and the thick walls of the enclosure (the last term in equations (3.1) and (3.2)).
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Similarly an energy balance on the boiler. equation (3.3), was written by equat-

ing the rate of energy stored in the boiler to the energy input from the combustion

chamber. heat loss from the exterior surfaces to the boiler room. and heat delivered

to the fan-coil units.

The state equations described in equations (3.1)-(3.3) can be written in the

following form.

where

Ty
dt

dT:2

dt

dT,

dt

uC(Ty —Toy) — Co(Toy = T,) = Cs(Toy = T22) +

fl(Tdn — Tll) (31"

U, Cy(Tp — Tz2) — Cs(Tzp — T} + Co(Toy — 1)+

fo(Tay, — T2) (3.5)
T

u3Cr(1 _GTbb ) = Cs(Ty = Tp) — wi Co(Ty — T2y) —

u2C10(Ty — T22) (1.6)

Ci = Wn.l:/Ca
Cy = a,y/Cy

C3 = a12/Cy

Cs = u2,..6:/C
Cs = a./C.

Cs = a.12/C.,

. = "3"...,/("7
Cy = ab/(-'b

Co = uy,, & /00
vy = Uzml.,f:/("f

25




.[l = h.'ld]/C:]

i = hiy/Cey

Most building enclosure elements (such as walls. floor etc.) store energy and release it
to the indoor environment. In other words. they introduce thermal lag effects. It has
been shown in a previous study [29] that this behavior of the walls can be described
by a fifth-order linear model. We have adopted this model. in this thesis so that the
environmental zones can be represented by equations (3.1) and (3.2). together with
a fifth-order dynamic disturbance model representing the storage fluxes released by
the enclosure walls. The solar gains entering the zones strike the interior surfaces of
the enclosure walls. This is modeled by the term @Qq,w and Qg,w in equations (3.7)
and (3.8). This process is dvnamic in nature. In other words, the solar gains striking
the interior surfaces are absorbed by the walls and later released to the indoor air
in zones | and 2. Thus, these storage fluxes released by the walls act as slow, time
varying disturbances on zone 1 and 2. It is for this reason they are referred to as
dynamic disturbances in this thesis. The dynamic disturbance models for zones 1

and 2 are given by

Td = Pdl le + Qi] w+ Rd] T:l
T'in = Stilel (37)
Tdo = sz sz + QdQ w + Rd; T:Z

-7111: = Sl{}’rdz (3'8)



where

-5.724 3112 0.6228
1.43 -2.86 143
0 143 =236
0 0 1.43
0 0 0
- 0.6228 -
0
Ry, = 0
0
0 J

0 0 EXL
0 0 0
1.43 0 Q= 0 .
—2.86  1.43 0
5.0112 =35.112 | 0

,Sd,=[1 000 0}.

Py, = Py, Qu, = Qd1. Ry, = Ray, Su, = Sy,

As we can see from the dynamic equations (3.4), (3.5), and (3.6), the normal-

ized control inputs are u,, uz, and uz. Thus the system outputs of interest such as

the temperature of zone 1 (7%;), the temperature of zone 2 (7%;), and the tempera-

ture of the boiler (T3), are maintained at their desired set-points by controlling one

or all of the following control inputs.

1. Normalized mass flow rate of water through control valve C1, i.c. u;.

[$]

Normalized mass flow rate of water through control valve €2, i.c. w,.

3. Normalized mass flow rate of natural gas through control valve C3, i.e. us.

The important question is ho.. to determine the feedback control algorithms for uy,

u;, and uj. But before we go further in designing control strategies, it is instrue-

tive to look at the open-loop characteristics of the MFCH system. The open-loop
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responses will provide the adequacy of the overall MFCH system and also give an

indication of the time required by the states to reach their steady values.

3.4 Open-Loop Simulation Results

Figure 3.2 shows the open-loop response of the MFCH system. The control inputs
uy, up, and uz are held constant at 0.5, 0.4. and 0.4 respectively and the outdoor
temperature was assumed to remain constant at —10.0deg C. Under this constant
inputs and disturbances the zone temperature T%;, after starting from an initial
temperature of 20 deg C, increases exponentially and reaches a steady-state value of
23.26 deg C in about 40,000 minutes (650 hours). Similarly T%; and T, also increase
exponentially from initial conditions of 20 deg C and 70deg C and reach steady-state
values of 21.27deg C' and 57.98 deg C respectively in about same time, i.e. 40,000
minutes.

If there are step changes in the control inputs. say, u; = 0.6, u; = 0.3. and
wy = 0.5, even then the MFCH system output reaches steady state as shown in
Figure 3.3. Since we have increased the control inputs, the steady-state values of
T, T:2. and Ty are higher than the steady-state values shown in the Figure 3.2.

Thus the results shown in the Figures 3.2 and 3.3 give an indication that the
component models are properly integrated and the responses from the integrated
model are satisfactory. However. the important thing to note at this point is that
the MFC'H system responds to changes in the control inputs uy, uz, and us.

Also shown in Figure 3.4 are the open-loop, responses of the system when
the initial conditions are perturbed by 1.0 deg C from their operating point (steady-
state values in Figure 3.2) while the states describing the dynamic disturbances were
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Figure 3.2: Open-loop response of the MFCIH system.
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held at the operating values. The system’s response in this case is fast. The zone
temperatures Ty, T., take about three hours and the boiler temperature Ty takes
about 5 hours to reach steady state. In other words, when the initial conditions of
the dynamic disturbance model are far away from the steady-state values (for the
results shown in Figure 3.2 the initial conditions of states describing the dynamic
disturbance model were Tq, (0) = 20deg C'. Tq,(0) = 20deg C which are about
—J.0deg (" away from their respective steady state values) the system takes longer
time to reach steady state.

Now the main task is to develop an algorithm for controlling u;, u,, and
ug such that Ty, T, and Ty are maintained at the desired set-points. Thus we
are interested in seeking methods by which the control inputs u;, uz, and u3 are

automatically adjusted through feedback control.

3.5 Controller Design

In this section. a robust controller has been developed based on solving the ro-
bust servomechanism problem for the MFCH system given by equations (3.4) -

The desired performance of the closed-loop system includes asymptotic track-
ing/regulation in the presence of input disturbances and arbitrary perturbations in
the plant parameters of the system. The MFCH plant is assumed to be unknown.
The continuous-time least square (CTLS) algorithm is used to estimate the linear
model of the nonlinear MFCH system at each operating point. The estimated pa-
rameters are used in the design of the controller. The controller consists of three
parts: 1) a servocompensator, 2) a stabilizing compensator. and 3) an estimation-

errot compensator. The servocompensator is a feedback compensator with error




inputs and consists of a number of unstable subsystems (equal to the number of the
outputs to be regulated) with identical dvnamics which depend on the disturbances
and reference inputs to the system. Servocompensator corresponds to the generaliza-
tion of the integral controller of classical control theory. The stabilizing compensator
stabilizes the resultant system obtained by applying the servocompensator to the
plant. The sole purpose of the estimation-error compensator iz to provide compen-
sation for the estimation error resulting from the use of a linear estimator to obtain
a model for the nonlinear MFCH system at each operating point.

The nonlinear equations (3.4)-(3.6) can be written in the following form:
X = Fa(x(t),u(t), ds(t),da(t)) (3.9)

where x € ", u € ®™, ds € R, and dq € R are the state vector, the control
input vector, the static disturbance vector, and the dynamic disturbance vector of
lengths n, m, l,, and I; respectively.

We have developed control strategies for the MFCH system defined by equation
(3.9) using LOR and pole placement theory. To this end, we first assume that the
nonlinear system described by equation (3.9) is piecewise linear and its linear model

about some operating point (Xo,ue, ds,,dd, ) is given by
Ax = AAX(t) + BAu(t) + F,Ads(t) + FuAdg(t) (3.10)

where Ax(¢), Au(t). Ads(t). and Adg are deviations from the operating point vidlues
of the state vector, the control input vector, the static disturbance vector, and the
dynamic disturbance vector. The matrices F, and Fy can be put in one matrix as

F =[F, : F4. Equation (3.10) can then be written as

Ax = AAx(¢) + BAu(t)+ FAd(t) (3.11)
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where

Ads(t)
Adg(t)

Ad(t) =

The linear system described by equation (3.11) is obtained by linearizing the
nonlinear system (3.9) using a Taylor series expansion. Equation (3.11) is a linear
approximation of the nonlinear system (3.9) about some operating point, and is
likely to change from its nominal value during continuous operation of the plant.
Therefore, it can be concluded that the system (3.11) may not exactly represent the
nonlinear system at different operating points. Thus, while designing a controller
for such a system, the designer should take into account the effect of perturbations

in the linear model. In other words, the resulting controller should be robust.

3.5.1 Problem Statement

The linear model of the MFCH system about an operating point is described by the

following equations.

AX(1) = AMx(t)+ BAu(t) + FAd(1)
Ay(t) = Ax(t) (3.12)

e(t) = Ay(t) — Ay:(2)

where Ay(t) € ®* is the output vector of the linear model, Ay, (t) € R? is the
reference vector and e(t) € R is the vector of the tracking error.

The servocompensator is used in series with the actual system. The servocom-
pensator contains the dynamics of the reference signal Ay, (t) and the disturbance
vector Ad(f) [32], [33]. This aspect of the design is called the internal model princi-

ple. The servocompensator's main function is to make the error e(t) asymptotically
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approach zero. It is assumed that the disturbance vector Ad(t) satisties the {ollowing

equations.

Ad(t) = Cydzg(t) (3. 130
Azg(t) = Agdzg(t) (3.1:1)
where Azy(t) € R". The pair (Cy, Aq) is observable. The initial conditions Azg(t0)

may be known or unknown. For a step disturbance, i.e. s = 0. equations (3.13) and

(3.14) can be written as:

Ad(t) = Azql(f) (3.15)

Azg(t) = 0 (3.16)

where Ay = 0, Cy = 1, and Azq(to) = My My is the magnitude of the step
disturbance.
For a sinusoidal disturbance. i.e. s? + w?} = 0, equations (3.13) and (3.11) can

be written as:

Ad(t) = [ LG ]Azd(t) (3.17)
. 0 1
Azy(t) = Azg(t) (3.18)
-w? 0
0 1 0
where A; = , Cy = | w, 0], and Azy(ty) = . M, is the
1
—w§ 0 1”,4

amplitude of the sinusoidal disturbance.

The reference signal vector Ay,(t) satisfies the following equations:
Aye(t) = C.Az(t) (3.19)
Az(t) = A, Az(1) (3.20)
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where Azq(t) € R*. The pair (Cy, A,) is observable. Az(to) is the known initial
condition. We assume that all the outputs are available for measurements. For a

step reference signal. i.e. s = 0. equations (3.19) and (3.20) can be written as:

Aye(t) = Azg(t) (3.21)

Aze(t) = 0 (3.22)

where A, = 0. C, = 1. and Azr(to) = M.. M, is the magnitude of the step reference
signal.
For a sinusoidal reference signal, i.e. s* + w? = 0, equations (3.19) and (3.20)

can be written as:

Ave(t)=[1 0]z (3.23)
!
—w? 0
0 1 0 _
where A, = . C, = [wr 0 ] and Azg(ty) = . M, is the
_uv3 0 ."Ir

amplitude of the sinusoidal reference signal.

As it is already stated, servocompensator consisting of the nature of the outside
world is used in series with the actual system. The constraint that the overall
augmented system be stable might require the use of the stabilizing compensator.
The stabilizing compensator will be designed using linear control theory in next
section.

Now the control problem can be defined as follows: Construct a controller
for the nonlinear system (3.9) using adaptive gains for the stabilizing controller

derived from linear control theory (pole placement and LQR) and using the available
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measurements X(¢) such that the resulting closed-loop system is stable, and the ervor
e(t) — 0 as t — oc for all x(tg) € R" and for all disturbances and reference inputs

satisfving (3.13). (3.14). (3.19). and (3.20).

3.5.2 Controller Structure

Let gq4(s) and ¢.(s) be the minimal polynomials of A; and A, respectively. Let
q(s) = s"+qs"" ! 4+ .- - + ¢, be the monic least common multiple of qu(s) and ¢, (s).
The necessary and sufficient conditions for solving the robust servomechanism

problem are summarized as follows [32], [33].
1. (A. B) is a stabilizing pair,
2. (C,A)is a detectable pair,

3. The number of inputs is greater than or equal to the number of outputs, i.c.

m > p, and

A-M\l B ,
4. rank =n+p =1,23..,r

C D

When conditivns 1-4 are satisfied then a robust controller can be constructed.
As shown in the Figure 3.5, such a controller consists of two parts (i) a servocom-
pensator, and (11) a stabilizing compensator. The servocompensator’s main function
is to cancel the effect in the steady-state of the disturbances acting on the system,
and to provide asymptotic tracking. The stabilizing compensator provides overall
stability of the closed-loop system and improves the systemn’s transient behavior,
As stated earlier. we are interested in designing a robust controller for the nonlin-

car system. while assuming that the model parameters are unknown. By using the
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Variable Name

Description

Numerical Value

T Temperature of zone 1 -
T., Temperature of zone 2 -
1y Temperature of boiler -
C. Thermal capacity of air in zone 1 3714 KJ/degC
C2 Thermal capacity of air in zone 2 250 K.J/degC
Cy Boiler thermal capacity 836 NJ/degC
- Heat loss coefficient of zone 1 740 KJ/(h— deg(C)
s Heat loss coefficient of zone 2 540 N.J/(h — degC)
ay Heat loss coefficient of boiler surfaces 34 KJ/(h—deg(C)
12 Inter zone heat loss coefficient 27 KJ/(h —deg(C)
¢ Heat transfer coeflicient 0.6 KJ/(KNg—degC)
o Boiler fuel loss parameter 0.12
Ul o Max. mass flow rate of water through valve 1 1850 (Kg/h)
U Max. mass flow rate of water through valve 2 1350 (Ng/h)
U, os Max. capacity of burner 90000 (Aj/h)
7, Boiler room temperature 20.0 degC
T, Outdoor temperature —10.0 degC
Ty.... Max. temperature of the boiler 90.0 degC
Table 3.1: List of symbols with their nominal values.
r @ ° Servo § Stabihzing u Plant y
\/ Compensator Compensator

Figure 3.3: A robust controller for the servomechanism problem




continuous-time least squares (CTLS) algorithm [39]. {40]. we estimate the matrices
A and B of the linear system (3.11) at each instant of time. and then use the esti
mated 4 and B for the design of the robust controller. The estimates of .4 and £

are represented by 4 and B respectively. The estimated model is given by
p A A ! \

. . Ax(t)
Ax = [A B } (3.25)
Au(t)
Ax(t) : :
where € ™™ is the input vector to the estimator. The estimation erro
Au(t)
is given as
es(t) = AX(t) — Ak(t) (3.26)
Or in other words.
A%(1) = AX(t) + edt) (3.27)

Linear models of the nonlinear system (3.9) are estimated at cach instant of the time
by the CTLS algorithm, and Ax and Au are used in the estimator. The control law
is then given by

Au = —-K{Aé -~ K, Ax - Kaey (3.25)

where A¢ € RP" is the output of servocompensator [41], [33] defined by:

AE(t) = QAE(E) +0e(t) (3.29)
Q°(t) = 7 blockdiag(Q. Q.-+, Q) et ™ (3.30)
0=(t) = 70 (3.31)

where 7 is a non-singular real matrix and 4 is chosen so that (7.0 is a contiollable
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pair; Qr < r) is a matrix in companion form, and is computed as follows:

r0 1 0 e 0

0 0 1 e 0

—qr —Qr—1 —Gr-2 " —(qr

By combining equations (3.25), (3.27) and (3.29), the open-loop augmented

system can be formed as:

Ax A D Ax B I o]
. + Au + e; -+ e (3.32)
A€ 0 0 || A 0 0 9

Since the desired reference vector, Ayy, is zero, output error in equation (3.32) can

he written as:

e = Ay-—Ay: (3.33)
= Ay (3.34)
= Ax (3.35)

Hence equation (3.32) can written as:
Ak A 0 || Ax B i

) + Au + es (3.36)

A¢ - Q* AL 0 0

Since the pair (02°,8%) is controllable. it is clear that the pair

A0 B
. is stabilizable. Hence stabilizing compensator can be de-
- 0|

signed or in other wurds matrices Ky and A, can be designed using linear control

theory such that the augmented system described by (3.36) is stable.
By substituting for Au from equation (3.28) into (3.36). we obtain the follow-

ing closed-loop system:
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A% A-BK, -BK, || Xx I - BR,
| = + e, (3.37)
Aé - o Aé 0
The matrices A} and A, are obtained by solving the LQR or pole placement
problem and A3 is computed using Lyapunov theory such that the overall closed-
loop systern given by (3.37) is stable. The pole placement and LQR design are given

in the following sections. The computation of A3 and the proof of stability of the

closed-loop system are given in Chapter 4.

3.5.3 Pole Placement Problem

Since all the states of the augmented open-loop system (3.36) are available for mea-
surement, the pole placement technique has been used to move the poles of the
open-loop system (3.36) to a specified set of locations in the s-plane.

The control law given in equation (3.28) can be written as

Au(t) = —K1AE1L) - KAx(t) — Kiegs(t)
Ax(t) )
= - [ K, K, ] — Kiey(t) (3.38)
A¢(t)
= —KAz(t) — Kjes(t) (3.39)
= Augn(t) + Aues(t) (3.10)
. Ax(t)
where K = [ K, K ]; Az(t) = . Augn(t) = — K Az(1); and
Ag(t)

Augs(t) = — Kseq(t)

The open-loop augmented system given by equation (3.36) can be written as

Az(t) = ANz{l) + OAu(t) + O eylt) (3.41)
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A 0 B
where A = 10 = ;and O =
0 Q- 0 0
By substituting (3.39) in (3.41), we get the following closed-loop system:

Moty = [ A- 0K |Aa(t)+ | 0, - 0K |eult (3.42)
Now we determine the gain matrix A such that the [ A—OK ] has a desired set of
cigenvalues A;; 7 = 1.2..-- (pr 4+ n). This problem has been investigated by several
researchers and many algorithms already exist for solving the problem by state
feedback [34],[36],[37],[38]). Conventional technique [38] of solving pole placement
problem require a reduction of a system to a canonical form. The coefficients of
the characteristic polynomial of the open-loop and desired closed-loop systems are
compared to obtain the feedback vector. This approach is numerically unreliable
because the roots of the polynomial are sensitive to perturbations in its coeficients
and ill-conditioning is associated with the reduction of the system to its canonical
form. An accurate and efficient approach to solve the pole placement problem is
developed by Patel and Misra [34]. This algorithm can be regarded as the inverse of
the implicitly QR algorithm for eigenvector determination. More details concerning

this algorithm are given in [35].

3.5.4 LQR Problem
The equation (3.41) can be written as
AZ(I‘) = ‘\Az(t) + (')Ausm(t) + eAues(t) + 9les(t) (3-43)

The gain matrix A" for this system can be designed by minimizing a quadratic cost
function of the state Az(/) and the control input Augy(t). The quadratic cost

function is defined as
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J= /(]‘(AZT(t)QAz(t) + Aul (D RN ugm (M)dt (311

where the matrices @ and R denote the weighting on system’s state Az(t) and the
control input Augy(t) respectively: and @ is a positive semi-definite matrix and I
is a positive definite matrix. These matrices are chosen according to the relative
importance of the cost of control and the cost of deviations from the desired state.

The solution to equation (3.44) is given in [33.45] as

Ausm(t) = —-R'OTPAz(t) (3.45)
= KAz(t) (3.16)
where K = —R™'OTP, and P is a (pr + n) x (pr + n) symmetric matrix which is

the unique positive semi-definite solution of the algebraic Riccati equation

ATP+ PA-POR1'OTP+Q =0 (3.47)

The gain matrix, K i.e. matrices /'y and I\,, are determined at cach operating,
point. We have used both pole placement and LQR design for this purpose. The

open-loop augmented system (3.36) is also updated at each instant of time.

3.6 Summary

Physical and analytical models of the M FCH system have been described. Open-loop
tests were made to check the proper integration of different components. A controller
has been designed by assuming the system’s dvnamics as completely unknown. A
linear model estimator has been used to identify the lincar model of the nonlinear

system at each operating point. Pole placement and LQR control design methods
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have beeu propused for computing the gain matrices K and A’ at each operating

point.
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Chapter 4

Stability and Implementation

4.1 Introduction

In the previous chapter, a quantitative analysis of the MFCH dynamical system
has been done by formulating a set of mathematical equations that deseribe its
behavior. Even though the open-loop system is stable. the performance of the
resulting closed-loop system (with the designed controller) may not be satisfactory
[42]. The implication is that the closed-loop system should not only give good
performance but also be stable. The concept of stability has been investigated
extensively in the literature [47], [48]. The stability theory of Lyapunov [19]. and
input-output stability theory based on functional analysis technirques, are the two
general approaches that are used most widely. Here we use the direct method of
Lyapunov to give a mathematical proof of stability of the closed-loop system.

This chapter is organized as follows. In section 4.2, an analytical proof of
the stability of the closed-loop system is given. Implementation of the controller is

discussed in section 4.3. A short summary of the chapter is given in section 1.1,




4.2 Stability

4.2.1 Lyapunov’s Stability Criterion

The general state equation for a nonlinear system can be expressed as
X = f(X(t).U(t),t) (4.1)

An analytical solution of equation (4.1) is in general difficult to obtain. If a
numerical solution is tried then the question of stability cannot be fully answered as
solutions to an infinite set of initial conditions are needed. Therefore, a number of
methods have been devised which yield information about stability without resorting
to its complete solution. Lyapunov’s direct method is one such method.

Lyapunov’s direct method is based on the concept of energy and the relation
of stored energy with system stability. Consider an autonomous physical system
described by

i = f(a(t)) (1.2)
and let r(.r(tg),t) be a solution corresponding to an initial condition x(¢¢). Further.
let V'(r) be the total energy associated with the system. If the derivative V(x)
is negative for all x(r(#).t) except at its equilibrium points, then it follows that
the energy of the system decreases as ¢ increases and finally the systemn will reach
an equilibrium point. This holds because energy is a non-negative function of the
system states. The energy reaches a minimum only when the system reaches steady-
state. These ideas are used to derive a mathematical proof of stability for the MFC'H
system.

Equation (3.37) can be written as:
Az(t) = dAz(t) + pyes(t) (4.3)
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where

AX A-BK, -Bk, [ - BK,
Az(t) = P = coand gy o= (LD
Al 0- 0 0

Since (Q*,8%) is a controllable pair and A’y and A", are chosen with LQR or
p
pole placement theory we can conclude that matrix @ is asymptotically stable. .\

lvapunov function candidate V' is chosen as
V(z) = Az PAz (1.5)

where the matrix P is symmetric and positive definite. For stability of system (-1.3),

we have to ensure that V < 0. It follows from equation (4.5) that
V = AzTPAz+ AZTPAz (1.6)
By substituting equation (4.3) in (4.6), we get the following.

V = (dAz+ e )TPAZ + AzT P(OAZ + pyes)
= AzT0TPAZ +e,TuT PAz + A2" PO Az + AT Ppye,
= AzT(OTP + Pd)Az + 2A27 Py,e, (4.7)
Since ¢ is an asymptotically stable matrix, so for any positive definite matrix (Q,

there exists a positive definite matrix P which satisfies the following Lyapunov

equation.

TP + PO = —( (1.8)

Since for stability V should be less then or equal to zero, by substituting (1.8)

in (4.7), we require

V= —A2TQAz + 2027 Prjes < 0 (4.9)
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Since =AzT(QAz < 0. for stability, it is sufficient that

QAZTPp] e, <0

te. AzTPues <0
. T I— B[\’:;
e, Az’ P ey <0
0

which will be satisfied if

K= B! (4.10)
Since e, is bounded (because of the estimation mechanism). it follows that the

closed-loop system remains stable if K3 is chosen as in equation 4.10 and K. K

are chosen by either pole placement or LQR theory.

4.3 Implementation

Before we describe the details of the robust controller implementation. first we
compute the linear model of the MFCH system at the following operating point:
Xo = [23.26 21.27 57.98]T, u, = [0.50.40.4]T. T, = —~10.0. Tdy;,, = 24.81, and
T'dy;, = 22.68. The linear model was obtained by a Taylor’s series expansion about

this operating point. The matrices A,. B,. Fs,. and Fy, of linear model (3.10) are

1289 0.07 1.48 103.0 0 0

Ao=1 010 -1756 129 {. B, = 0 118.9 0
0.66 038 —1.17 | —16.09 -35.57 99.33




It should be noted here that the linear model given above is used only for the
initial guess of the matrices A and B required for the estimator. In the simulation,
an initial guess of the matrices A and B was also taken 60-80 % away from the
values shown above.

The servocompensator given by equation (3.29) is rewritten as

AE(t) QT AE(L) + 07e(t)

= Q" AL(t) + 0" Ax(t) (4.11)

Since Ay, (t) = Ax,(t) € R™ is a zero vector as explained in the previous chapter.

1

From equation (3.20) we have A, =0 and C; = | |

1

For each output ¢, = s. Also each state is acted upon by a constant step
disturbance i.e. s = 0, and a dynamic disturbance, i.e. s+ « = 0. Thus from

equation 3.14, Ay and Cy can be written as

with unkown z4(tp).
Therefore, for each output, gq(s) = s(s + a). Since ¢(s) is the monic least
common multiple polynomial of ¢,(s) and q4(s). it can be written as
g(s) = s(s + «) (1.12)
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Thus the companion matrix Q can be written as

N =

Let 0 = block diag(é, ¢+, @)p umes Where

0

0 -—nj

1
0
0
]

| 0

If 7 is chosen as identity matrix, i.e

0-

r000

0

0
0

. lgxe, we can get 0~ and 6~ as

0
0
0
0

L]

¢ =0 1.

S O o o

(4.13)



In equation (4.13), @ is the most dominant pole of the dvnamic disturbance
model given by (3.7) and (3.8). This model is assumed to be unknown. Henee,
we estimate a by applying the CTLS algorithm [39]. [10] to obtain a first order
approximation of (3.7) or (3.8) (since dynamics of (3.7) and (3.3) are the same)
using the C'TLS algorithm [39j. [40].

The augmented matrix shown in equation (3.36) can be written as

Ax fi3x3 t Osxe Ax B:}x.'} I3x3
= + Au + Aey, (L1

A& eéxs : Q§x6 Al Osxa Osxa

The matrices ;. i» are chosen first using pole placement theory, and then
using LQR design, and as explained in the previous section A is chosen as B-'.
The gain matrices K,, K,, and K3 are computed at each instant of time, based on
the present values of the estimates A, and B.

The schematic diagram in Figure 4.1 shows the closed-loop operation of the
plant. From the diagram, it is clear that the gain matrices Ky, K,, and K, are
updated at each instant of time. The error vector e(t) goes asymptotically to zero
as t approaches infinity.

For the MFCH system.n =3, m =3, ,=1,;, =2, p=3. ny = 2, n, = 1,
and r = 2. the variables used in the model with their dimensions are given in Table

4.1

4.4 Summary

Lyapunov’s direct method has been used to provide the proof of stability of the

closed-loop system. With a proper choice of the gain matrix A5 along with the
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gain matrices A, and A; obtained using pole placement or LQR design, it has
been shown that closed-loop asymptotic stability and tracking can be achieved.
The implementation of the closed-loop scheme for the MFCH system has also been

discussed,



Symbolic Representation of the variable

Size

X. u 3 x 1 each
dg 1 x1
dd 2 x1
F,, F; 3 x 1.3 x 2 respectively
A A 3 x 3 each
B. B 3 x 3 each
F 3 x3
Z4. 2r 2x 1.1 x 1 respectively
Ag A, 2x 2,1 x 1 respectively
Ayr 3 x1
ey 3 x1
Q- 0" 6 x 6.6 x 3 respectively
e. Af 3 x 1.6 x 1 respectively
KNi. Ko, K5 3 x6.3 x3.3 x 3 respectively
o, . 9 x 9.9 x 3 respectively

Table 4.1: List of symbolic representation of the variables and their sizes




Chapter 5

Results and Discussion

5.1 Introduction

In this chapter, the results of the closed-loop system after controller implementation
are presented and discussed. The performance of the system has been studied under
realistic operating conditions. This chapter is organized as follows: Section 5.2 con

tains the effects of step changes in the states of the system, the outdoor temperature,
and the dvnamic disturbance, on the closed-loop performance of the systemn when
the controller is designed using pole placement and LQR techniques. In section 5.3
the effect of variations in the system parameters such as heat-loss coeflicients, eifec-
tiveness of the fan-coil units. on the closed-loop system’s performance are discissed.
and it is shown that the designed controller is robust. The effect of introducting
estimation-error feedback is given in section 3.4. In section 5.5, effects of adding
some nonlinear dynamics such as valve dynamics on the system’s behavior are given.

It is shown that the system is insensitive to unmodeled dynamics. In section 35 6.

the adaptive controller is tested for new setpoiuts. and the comparison is made with

't
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fixed-gain controller.

5.2 Effects of Step Changes in Initial Conditions

and Disturbances

In this section. the performance of the controller is examined under different oper-

ating conditions. In the following simulated test cases, the effects of
1. changing the initial conditions of the system from the operating point,
2. a step change in outdoor temperature (static disturbance), and

3. a step change in the dynamic disturbance due to thermal lag effects of the

building (described by the two dynamic disturbance models).

are studied.

The zone temperatures are affected by changes in initial conditions and exter-
nal disturbances such as outdoor temperature (static disturbance) and solar radia-
tion fluxes striking the inside surfaces of the enclosure walls (dynamic disturbances).
These changes can occur concurrently or in several combinations. To simulate these

cases, we first cousider the following scenario.

Case 1: Initial conditions: perturbed; no static or dynamic disturbances

We consider a cold-day in winter in Montreal with an outdoor temperature equal
to —10.0deg C (operating point). We also assume that it is an overcast day and
therefore the effect of solar gain is negligible. In other words., the solar gain in the

dynamie disturbance model is set to zero. Under these conditions. we assume that

Hb




due to opening of the door (people entering or leaving the zone) cold-air enters the
zone and consequently the zone temperature decreases by =05 deg € from its op-
erating conditions. Furthermore. we have also assumed that the boiler temperature
is —0.5deg C' away from its operating value. Thus initial conditions of the zoue
temperatures and the boiler temperature are Xy = [22.76 20.77 57 18] ' How the
controller restores the zone temperature back to their desired setpoints is depicted
in Figure 5.1 and Figure 5.2. The results shown were obtained with the designed
controller using the pole placement technique (Figure 5.1) and the LQR method
(Figure 5.2).

The results shown in Figure 5.1 correspond to the following pole locations
which were chosen arbitrarily: —13.0. — 9.0, —10.5. ~12.0, —13.5, =111, —
12.6, —11.0, —9.6. As we see from Figure 5.1, all the outputs reach their respective
reference values in about 40 minutes. The control inputs also reach their operating
point values in about 20 minutes. The overshoot in zone temperatures is within
acceptable limits, i.e. it is within 10 % of the reference values.

The @ and R matrices chosen for the LQR method were as:

- W, 06 0 0 0 0 0 0 o
0 W, 0 0 0 0 0 0 0
0 0 W, 0 0 0 0 0 0
0 0 0 W, 0 0 0 0 0
Q=10 0 0 0 W, 0 0 0 0 (5.1)
0 0 0 0 0 W, 0 o0 0
0 0 0 0 0 0 W 0 0
0 0 0 0 0 0 0 W o0
o 0 0o 0o 0o 0 0 0 2sW;
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Figure 5.1: Closed-loop response showing the effect of perturbations in the initial
conditions for the controller designed using pole placement theory




2055 0 0

0 0 5075
where W7 = 0.005 and 1 = 1.25 x 10*. As shown in Figure 5.2, the response of the
system is quite fast as compared to the pole placement design, and all the outputs
reach their corresponding setpoints in about 7 minutes.
In all the simulations that follow. when the controller is designed using the

LQR method, the matrices ) and R given in equation (5.1) and (5.2), are used.

Case 2: Initial conditions: perturbed; static disturbance; no dynamic

disturbances

In this simulation, we consider a —5.0 deg (" step change in outdoor air temperature
(static disturbance), while all other conditions remain the same as those used in
the previous case. The outdoor response of the system to the above changes are
depicted in Figures 3.3 (pole placement design) and 5.4 (LQR design). As we see
in Figure 5.3. all the outputs go to their corresponding reference values in about 10
minutes and in 7 minutes in Figure 5.4. Note that at steady state, the magnitudes
of the control inputs are higher than their nominal values. This increase in the
control inputs is the energy required to offset the effect of & —5.0deg (7 change in
the outdoor temperature. It may be noted that the system responses in Figure 5.

are faster than those in Figure 5.3.
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Figure 5.2: Closed-loop response showing the effect of perturbations in the initial
conditions for the controller designed using LQR theory.
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Figure 5.3: Closed-loop response showing the effect of perturbations in initial condi-
tions and static disturbance for the controller designed using pole placement theory
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Figure 5.4: Closed-loop response showing the effect of perturbations in initial con-
ditions and static disturbance for the controller designed using LQR theory.

62




Case 3: Initial conditions: perturbed; static disturbance; no dynamic

disturbances; improved response

The output responses of the system shown in Figure 3.3 (pole placement design)
can be improved by searching for new pole locations which give near optimal re-
sponse. By a process of trial and error, it was found that the following pole locations
-25.0.-26.25 -31.25 -21.87 -27.5, -25.0, -16.25. -13.1, and -11.25 resulted in improved
responses. These are shown in Figure 5.5. Also note that the improvement in the
outdoor responses was achieved while not exceeding the maximum capacity of the
control inputs. In the following cases. the pole locations obtained in this case will

be used unless otherwise stated.

Case 4: Initial conditions: perturbed; static and dynamic disturbances

During the heating season. it is reasonable to expect cold days with sunshine. The
solar radiations entering the zones through windows are useful heat gains although
variable in nature. In order to simulate a cold day with solar heat gain. we consider
the following conditions: a step change in initial conditions and outdoor tempera-
ture. The magnitudes of these changes remain the same as those used in case 3.
Furthermore, consider a step change w = 0.5 A'W/m? in solar heat gains entering
the zones. Under these conditions. the output responses obtained are shown in
Figure 5.6 (pole placement design) and Figure 3.7 (LQR design).

As shown in Figure 3.6. all the outputs go to their respective reference values
in about 22 minutes. The effect of adding a Jdvnamic disturbance can be seen from
the control input curves shown in the same Figure. The control inputs continne

to decrease even though the outputs have reached their desired values. The reason
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Figure 5.5: Closed-loop response showing the effect of perturbations in initial condi-
tions and static disturbances for the controller designed using pole placement theory:
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is that since the dynamie disturbance is continuously changing, the controller out-
puts are also change continuonsly in order to hold the outputs at their respective
h('tpuillts.

Figure 5.7 shows the responses of the closed-loop system obtained with LQR

design. It is apparent that the controller is able to regulate the system’s outputs to

their respective setpoints.

Case 5: Initial conditions: perturbed; dynamic disturbance only

The effect of a step change in the solar heat gain (dynamic disturbance). i.e.. w =
0.5 KW/m? only. is shown in Figure 5.8 (pole placement design) and Figure 5.9
(LQR design). The initial conditions and the outdoor temperature were held at
their respective operating point values.

The effect of solar heat gains on the magnitude of the control inputs can be
seen by comparing the magnitudes of the steady-state control inputs in Figure 5.9
and Figure 5.2 (without solar gains). It is apparent that the solar heat gains are

useful in that the auxiliary energy required to heat the zones is decreased.

5.3 Robustness

Several parameters of the MFCH system can change during continuous operation.
Most importantly, parameters such as the zone heat-loss coefficient and the effec-
tiveness of the fan-coil units are likely to vary by as much as 30 %. To test the
coutroller responses to changes in such system parameters, several simulation runs
were carried out. The results are shown in Figures 5.10-3.13 (pole placement design)

and Figures 5.14-5.17 (LQR design). These results are compared with those shown
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theory.
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Figure 3.9: Closed-loop respouse showing the effect of perturbations i initial con
ditions and dynamic disturbance for the controller designed using LQR theory
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in Figure 5.5, The effect of decrease in zone-1 heat loss coefficient a.y by 30 % from
its nominal value is shown in Figure 5.10. Only the transient response of zone-1
temperature T4 1s affected. The magnitude of the control input u; (in steady state)
has decreased to cope with this change. All system outputs go to their desired
steady state values. The effect of changing the heat loss coefficient of zone-1 and

zone-2 1.e.azy, @zy. by 30 % each. on the output responses are shown in Figure 5.11.

On the other hand Figure 3.12 shows the effect of decreasing the effectiveness of the
fan-coil unit €. by 20 %. The output responses shown in Figure 5.13 correspond to
the case when all three parameters i.e. a., a.,. and £, were changed simultaneously
by 30 %, 30 %, and 20 % respectively. The results depicted in Figure 5.13 show that
the system outputs go to the reference values in spite of the changes in the system
parameters. Hence it shows that the controller is robust.

The corresponding sets of results obtained with the LQR design are depicted
.

in Figures 5.14-5.17 The results show that the zone temperatures and the boiler

temperature are regulated to their respective setpoints.

5.4 Effect of Introducing Estimation-Error Feed-

back

Figure 5.18 shows the response of the system when there is no feedback of estimation-
error ¢ to the controller. The controller was designed using LQR design technique.

We use control law given in equation (3.28) as:

Au = —1\’1 ..lf - I\'_!AX (33)
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Figure 53.10: Closed-loop response showing the robustness properties when the con
troller is designed using pole placement theory: asy is changed by 30
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Figure 5.12: Closed-loop response showing the tobustness properties when the caon
troller is designed using pole placement theorv: €. is changed by 20 %
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Figure 5.13: Closed-loop response showing the robustness properties when the con-
troller is designed using pole placement theory: a.;. a.y. and €, are changed by 30
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Figure 5.15: Closed-loop response showing the robustness properties when the con-
troller is designed using LQR theory: «.; and a., are changed by 30 % each.
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Figure 5.16: Closed-loop response showing the robustness properties when the con
troller is designed using LQR theory: &. is changed by 20 %.
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We compare the results shown in Figure 5.18 with Figure 5.1 and it is shown in
Figure 3.18 that the response of the system is slower as compared to the system’s
response in Figure 5.4. Thus a controller takes longer time to cancel the effects of
static disturbance acting on the system when there is no feedback of estimation etion

es to the controller.

5.5 Effect of Adding Extra Dynamics

In the model equations (3.4)-(3.6). the characteristics of the control valve ate as
sumed to be linear. In a majority of the cases. the valve lift verses flow rate char-
acteristics are nonlinear. To test how the proposed controller design responds to
such nonlinear unmodeled dynamics. we introduced exponential characteristics to
describe the control valves. The system equations with exponential valve dynamies

in u; and u, controls are described by the following equations.

é‘dz;:—l = uyyCW(T, = Ta) = CoToy = T,) = Cy(Toy — T2) 4

SilTy,, = Ta) (5.1)
dgf = W CVa(Ty = Tay) = C(Toy = T) + Cal Ty = Tos)

foTay, = T:2) (5.5)
%Tf—& = uyCa(l —"7;,7,1!)— CWT = T,) =y Col Ty = Ty ) -

uzCrolTy — T) (5.0

where Vi =1 —¢e 9 V, =1 —c¢% and J=1.
The output responses of the systen with nonlinear valve dynamnics ate shown
in Figure 5.19 (pole placement design) and Figure 520 (LQR Design). [t is appatent

that the addition of exponential valve dynamics to the actual plant does not affeat

9
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Figure 5.18: Closed-loop response when there is no estimation-error feedback to the

controller.




the performance of the closed-loop system. The vutput responses are smooth and

good regulation of the zone temperatures and the boiler temperature is achieved

5.6 Comparison of Adaptive Controller with Fixed-
Gain Controller

Usually the zone temperature setpoints in buildings are setback during unoccupied
hours and setforward during occupied hours. The magnitude of this change is usually
between 3—5deg C. In order to simulate this case, we considered a 3deg (7 change in
the operating point of the system. How the system with adaptive controller reacts
to these changes is depicted in Figure 5.21. All the outputs go to their desired
steady-state values while control inputs remain bounded between 0) and 1. Figure
5.22 shows the response of the system with fixed controller, i.e. matrices 'y and
K, were non-varying, to the step changes in the operating point. It is shown in
Figure 5.22 that all the outputs do not go to their desired steady-state values. Thns
it shows that the implementation of the adaptive controller to the MFCH s stem
provides better response while keeping all the control inputs with m bonnds. 1.
between 0 and 1. The results shown in Figure 3.21 and Figure 5.22 were obtamed

when the controller was designed using pole placement, theory.
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Figure 5.19: Closed-loop response showing the effect of adding extra valve dynamies
when the controller is designed using pole placement.
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Chapter 6

Conclusions and Extensions

The adaptive control methods examined in HVA(C applications are limited to single-
input/single-output systems. Another problem is that in practice, the HVAC sys
tems, which are MIMO svstems. are tuned by considering one controller at a time.
This leads to severe controller interaction problems. In this thesis, we have con-
sidered a three-input/three-output MFCH system and shown how an adaptive con-
troller can be designed for such systems which include both robust and tracking
properties.

From the results obtained from the adaptive control implementation of a robust
servomechanism controller on a given MFCH system. the following conclusions can

be drawn.

1. The simulation results show that the designed adaptive controller is stable
under a wide range of operating conditions and changes in the system param

eters.

2. It has been shown that the closed-loop sy<tem is stable for all operating cond

tions as long as Ay = B~'. and Ky and N, are obtained using pole placement

%6




or LQR theory.

3. The simulation results show that controller is able to reject the effects of both

static and dynamic disturbances rapidly.

Some specific conclusions about the performance of the closed-loop system

with the designed controller are follows:

1. The effect of a step change of —5.0deg C in outdoor temperature. T,. was

rejected in less than 10 minutes.

2. The controller is able to restore the system from one operating condition to

another (a 3deg C step change) in about 100 minutes.

3. The maximum percentage overshoot in zone temperatures was found to be

0.52 %, which is well within acceptable limits.

4. Tests for robustness show that changes in system parameters a.;. a.;. and &
) 1 §

by 30 %. 30 %, and 20 % respectively, from their nominal values did not effect

the performance of the closed-loop system.

5. The controller is able to adapt to extra or more accurate/complex valve dy-

namics of exponential form.
The work described in this thesis can be extended further in the following way:

. Experimental work is needed to validate the control system design.

-
~

. A better approach should be developed to obtain the desired set of pole loca-
tions (when pole placement theory is used) e.g. from input-output data. or

by conducting open-loop tests.



While computing matrices Q and R. the constraints ou control input could be
2 ¥ 1

given.

Comparison with other adaptive control approaches. e.g. adaptive pole place

ment. model reference adaptive control ete. could be done.
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