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ABSTRACT

An Anisotropic Adaptive Method for the Solution of

3-D Inviscid and Viscous Compressible Flows

Anna Tam, Ph.D.
Concordia University, 1998

The solution of complex three-dimensional computational fluid dynamics
(CFD) problems in general necessitates the use of a large number of mesh
points to approximate directional flow features such as shocks, boundary
layers, vortices and wakes. Such large grid sizes have motivated researchers to
investigate methods of introducing very high aspect ratio elements to capture
these features. In this Thesis, an anisotropic adaptive grid method has been
developed for the solution of three-dimensional inviscid and viscous flows
by the finite element method. An edge-based error estimate drives a mesh
movement strategy that allows directional stretching and re-orientation of
the grid with more mesh points introduced along those directions with
rapidly changing gradients. The error estimate is built from a modified
positive-definite form of the Hessian tensor of a selected solution variable or
combination of variables. The resulting metric tensor controls the magnitude
as well as the direction of the grid stretching. The desired directionally
adapted anisotropic mesh is constructed in physical space by a coordinate
transformation based on this tensor. This research thus seeks a near-isotropic
mesh in the transformed metric space and an equidistribution of the error

over the mesh edges. The adaptive strategy can be considered to be the first 3-
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D implementation of an improved spring analogy-based algorithm originally
applied on quadrilateral meshes.

The adaptive methodology has been validated on various benchmark cases
on both hexahedral and tetrahedral meshes. The numerical results obtained
span inviscid and viscous flows, as well as internal and external
aerodynamics. The effectiveness of the adaptive scheme to equidistribute the
interpolation error over the edges of tetrahedral and hexahedral meshes has
been gauged on analytical test cases where near-Gaussian distributions of the
error were obtained. It was further demonstrated that the error estimate

closely follows the true solution error.

In analyzing the solution error of different sized non-adapted and adapted
grids, one could not only achieve the same level of solution error by adapting
and solving on a much coarser grid, but a significant reduction in solution
time as well. All test cases revealed that the flow solver required lower

amounts of artificial dissipation for solution on the final adapted grids.

The current work should convincingly pave the way for its logical extension
to unstructured grids, taking further advantage of refinement, coarsening and
edge-swapping operations. It is strongly anticipated that this approach will
shortly result in "optimal" grids.
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1. Introduction

The appeal of adaptive methods in computational fluid dynamics (CFD) lies
in their potential for optimizing the computational process. Their objective is
to provide optimal or near-optimal numerical approximations to complex
boundary-value problems, satisfying user-specified requirements of accuracy

and cost in terms of memory and CPU time.

The solution of CFD problems involves the use of a large number of mesh
points to approximate directional flow features such as shocks, boundary
layers and wakes. The grids necessary for analyses of such large-scale problems
are generated either through proprietary or commercial codes and often only
reflect the user's engineering sense of where to place and concentrate mesh
points. Furthermore, these grids may also contain undesirable geometrical
properties such as skewness that introduce grid-dependent errors in the flow
solutions. This may result in the unwelcome situation of different flow
solutions being obtained by different users of the same code, on the same flow
problem, using the same overall number of grid points. Hence, emphasis
should be placed on automatically optimizing the grid through an adaptive

solution procedure.

An adaptive grid solution procedure would begin with the computation of an
initial solution on the original grid. An assessment of the quality of this
numerical solution is then obtained by deriving some form of estimate of the
local error in the solution. This estimate would be subsequently used to
modify the grid, whether it be a redistribution of the mesh points (r-method),

a refinement or coarsening of the mesh size (h-method), an increase in the



order of the interpolation polynomials (p-method), edge-swapping or any
combination of the above adaptive strategies, in a systematic manner to
improve the quality of the solution. The initial solution is then interpolated

on the newly created adapted grid and the iteration resumes.

A complete adaptive solution procedure must therefore include modules for

the solution of the governing flow equations, construction of the error

estimates, and adaptation strategies all of which represents a significant

amount of code development for three-dimensional applications. The grid

adaptation method itself may be viewed as comprising two key components:
(1) error estimation

(2) adaptive strategy

1.1 Error Estimation

Grid adaptation requires selective local enrichment or refinement of meshes.
It presupposes some method of post-processing of the solution to determine
the local solution quality. The most common way is to estimate upper bounds
on the discretization errors in the finite element solution. This represents
only a measure of the error introduced by the approximate numerical
solution and no claim is made on the error inherent in modeling a physical

system by a mathematical model.

The quality of the numerical solution is assessed a posteriori, by the local

approximation error in some appropriate norm, that is, after an initial

calculation has been obtained. The error, |e]|=[u-u,|, is given by the
difference between the exact solution # and its approximation %, on a given

mesh. A reliable error estimate drives the adaptive process by serving as the



criterion for improving the quality of the solution, with its reliability, €,
characterized by an effectivity index 1:

€
n=rr (L.D)
el

which ideally should approach one as the mesh size, h, approaches zero or
the order of the piecewise polynomial approximation, p, approaches e~ [1].
Thus, an error estimate with an index close to unity becomes more accurate as
the mesh is refined. Such sharp estimates tend to be difficult to construct and
expensive to compute, with the danger that the error estimations and
implementation time could become of the same order as the solution itself. It
is for this reason that the tendency has been to use less computationally
expensive error estimates which are easier to implement into existing finite

element codes.

In practice, however, the construction of accurate error estimates for solutions
of CFD problems still presents quite a challenge. An exact characterization of
the error requires a knowledge of the solution itself, which is obviously not
possible. While finite-element error estimates have been developed for
simple elliptic problems, the difficulty is compounded for fluid dynamics
problems by the fact that the governing equations represent a coupled system
of non-linear partial differential equations (PDEs). Furthermore, most error
estimates described in the literature are derived from one selected flow
variable, whereas a true characterization of the error would necessarily

require information from all flow variables.



The a posteriori error estimates used in finite element calculations may be
classified into three main groups: interpolation, post-processing and residual

methods.

1.1.1 Interpolation Error Estimates

Economical estimates of the local error over the individual elements are
developed using existing bounds on the interpolation error, which are
available from finite element interpolation theory. These estimates generally
have poor effectivity indices and provide a crude estimate of the local error.
This is related to the fact that the interpolation error is problem-independent
and approximate solutions are needed to estimate higher order derivatives of
the solution over each element. However, the advantage of interpolation

estimates lies in their ease of construction and portability into existing codes

[1].

1.1.2 Post-processing Error Estimates

Post-processing error estimates require the recovery of higher order finite
element approximations from lower order solutions. As an example,
differentiation of a C° continuous Galerkin approximation u, will result in
low order discontinuous derivatives, with inferior accuracy at inter-element
nodes. For many years, nodal averaging and global or local L, projection have
been widely used as derivative (stress) recovery techniques [2,3]. Zienkiewicz
and Zhu [4] have employed a smoothing procedure, due to Oden and
Brauchli, for extracting C° continuous derivatives by employing the same
interpolation as that for u,. The norm of the error in the derivative is
estimated by calculating the norm of the difference between the approximate

derivative and the recovered derivative. More recently, a recovery process



based on a local least-squares projection for superconvergent points have
been presented by the same authors [5]. Several applications of this error

estimate can be found in the literature [6, 7].

1.1.3 Residual Error Estimates

As their name implies, these estimate techniques depend on the computation
of local residuals. These methods estimate the error by solving local
boundary-value problems satisfied by the error function over an element or a
patch of elements of the finite element mesh. The formulation of local
problems for linear elliptic problems has been studied by Bank and Weiser [8].
A comparison of several residual error estimates for the Stokes problem based

on the formulation of local problems has been presented in [9].

Since these schemes depend on the governing equations of the problem, they
are often more accurate than the previously described methods and are
considered among the most robust of error estimate types. However, their

cost and implementation complexity have inhibited their widespread use.

1.2 Adaptive Strategies

Once the error estimate of the solution has been calculated, it is coupled to an
adaptive strategy to improve the accuracy of the initial numerical solution.
Adaptive strategies are classified according to the actual mechanics used to

modify the finite element approximation.

1.2.1 Mesh Movement Methods
These schemes, also called node redistribution or r-methods, adapt the grid by

moving a fixed number of nodes (fig. 1.1). The grid points are relocated so that



the grid density is large in regions of high error and small in regions of low
error. Both the number of degrees of freedom and the order of the
polynomial approximation inside the elements are kept constant. Its ease of
implementation may be attributed to the method's fixed nodal connectivities,
resulting in little change in an existing code's data structure. On the down
side, however, the degree of desired grid adaptation based solely on such a
strategy depends on the initial grid point distribution. An extensive review of

various mesh movement strategies is provided in [10].

1.2.2 Mesh Enrichment Methods

Mesh enrichment methods may be further categorized into h-methods and p-
methods. h-Methods control the local mesh size in the finite element grid by
subdividing the elements when the local error estimate exceeds a user-
specified tolerance (fig. 1.2). Such methods involve a renumbering of nodal
points, elements, and element connectivities as the mesh is refined. The k-
method may also simultaneously incorporate a capability to coarsen or de-
refine a mesh, thereby producing larger mesh cells and reducing the number
of unknowns. p-Methods adapt the approximation by increasing or decreasing
the local order of polynomial basis in elements where the error in the
element exceeds or falls below a user-specified error criterion (fig. 1.3). The
order of polynomials can then range from low order ones all the way to

spectral ones.

1.2.3 Combined Methods
A combination of the above adaptive strategies leads to some very effective
techniques, the most common being h-r and h-p methods. Examples of h-r

methods are described in the works of Kallinderis [11] and Palmerio [12].



Kallinderis introduces an adaptive algorithm for turbulent flows, which
combines both grid embedding and nodal redistribution techniques, in an
effort to efficiently resolve the small scales involved in viscous flows. In this
case, the grid point redistribution is used to better align the grid with the flow
features. Palmerio describes an adaptive method for shock capturing whereby
several cycles of mesh refinement are initially applied. Since the enrichment
steps can not take into account the shock direction, a mesh movement step

was added to stretch the mesh along that direction.

An h-r method, in combination with an edge swapping strategy, has resulted
in an edge-based anisotropic mesh optimization methodology applicable to 2-
D inviscid and viscous unstructured meshes [13]. By applying a judicious
sequence of these three adaptive strategies, a considerable savings in CPU
time can be gained by continuously operating on the original grid, without

any recourse to remeshing.

The h-p method combines a variation in local mesh size h with a local
variation in the spectral order p of the approximation. These methods have
been shown to have the best theoretical convergence rates [14] and thus, for a
given computational cost they can deliver the most accurate solution.
However, before such results can be obtained, several formidable problems in
their effective implementation must be resolved, including new data
structures, equation solvers, and criteria for choosing a distribution of mesh
size and approximation orders. Pioneering work on adaptive h-p finite

element methods has been carried out by Babuska [14] and Oden [15, 16].



1.2.4 Mesh Regeneration Method

Adaptive mesh regeneration or remeshing uses the existing grid and
solution, tightly coupled to a proper error estimate, to generate a mesh that is
more suited to the problem at hand. The new mesh will concentrate nodes in
regions where relatively large discretization errors occur in order to produce a
more suitable discretization. The current mesh becomes the background
mesh for the new adapted grid. A single cycle of adaptive remeshing would
consist of computing the error estimate for each grid point of the current grid,
using this estimate to determine the element size, element stretching and
stretching direction for the new grid, remeshing the computational domain
by using the old grid as the background grid and, finally, interpolating the
solution from the old to the new grid [17].

Stretched or anisotropic adaptive mesh generation methods may be viewed as
a special case of adaptive remeshing. The need to solve the full Navier-Stokes
equations and resolve the boundary layer and wake region characteristics of
viscous flows has spurred on the development of these techniques [18, 19].
Directional flow features require elements with high aspect ratios where the
mesh spacing is several orders of magnitude smaller in the direction normal
to the boundaries than in the streamwise direction. Mavriplis [20] and Vallet
[21] were among the first to generate highly stretched triangular meshes by
using a locally mapped Delaunay triangulation method. The remeshing step
is driven by local stretching vectors or metric tensors defined at each vertex of
the grid. The triangulation is performed in a transformed space, which is
obtained through a local mapping of the physical space, according to the
values of the stretching vector. This creates the desired stretched Delaunay

triangulation in physical space.



A less expensive alternative to global remeshing methods is to locally
regenerate the grid. The current mesh is removed in those regions of the
domain where the discrepancy between the current and desired mesh
resolution is large. New local meshes are generated in these void regions
using an advancing front-type mesh generation method where the initial

front is defined by the boundary between meshed and void regions [22].

1.3 Literature Review

Over the past fifteen years the development of adaptive methodologies for
CFD problems have become an active area of research, particularly for use on
unstructured grids. An unstructured grid is defined as having no restriction
placed on the number of elements which can meet at any vertex of the mesh.
The most common unstructured grids are those consisting of triangular (in 2-
D) and tetrahedral (in 3-D) elements. Much more rarely, however,
hexahedral, prismatic and other grids are also used [23-26]. This is opposed to
structured grids where the pattern and number of elements meeting at the
vertices are specified. Structured grids usually refer to those comprising

quadrilateral (in 2-D) or hexahedral (in 3-D) elements.

One reason for the increased popularity of unstructured grids in recent years
is the relative ease with which flows over arbitrary complex geometries may
be discretized. Even efficient conventional structured grid generation for a
complicated geometry can be very laborious and time-consuming since these
grids must meet certain orthogonality constraints. On the other hand, the

generation of an unstructured tetrahedral mesh to fit a complex geometry



often proceeds with significantly lower turnaround times due to the

geometric flexibility of tetrahedra in "hugging” such a geometry.

Aside from the easier treatment of geometric complexities, another advantage
of unstructured meshes is the straightforward manner in which adaptive
strategies may be implemented. Due to its lack of inherent structure, mesh
refinement, coarsening and edge swapping, which are all adaptive operations
that can alter the nodal connectivities, may be implemented arbitrarily in any
part of the grid. This is not possible with structured meshes where such
operations would lead to a destruction of existing grid structure and create a

need for the manipulation of constrained or hanging nodes [27, 28].

Despite these advantages of unstructured grids, much successful work in
mesh adaptation continues to be pursued on structured grids [15, 29-33]. One
also observes that grid generation packages and flow solvers for structured
grids remain the norm in industry. Reasons for this may be attributed to the
decreased CPU time for numerical integration of PDEs on structured grids
over unstructured counterparts and the need for orthogonality of the wall

layer elements for turbulence modeling.

Implementation of adaptive strategies in earlier work on inviscid flow
simulations sought to improve solution accuracy by "classical” refinement, in
which the elements were subdivided isotropically. Two-dimensional
unstructured meshes are described as isotropic if the two length scales of all
the triangular elements are essentially the same. A triangle marked for
refinement would be subdivided into two or four elements, depending on

the number of desired mid-side nodes to be added [34, 35]. The refined
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element would have a local length h, as determined by the error estimate and
its shape would approach that of an equilateral triangle. Similarly, in the
three-dimensional case, Léhner presented a mesh enrichment strategy in
which a tetrahedron is refined isotropically into two, four or eight elements
[36].

However, these classical enrichment techniques do not consider the
directionality of the flow features to be captured. In typical aerodynamic
computations, regions with rapid changes in flow variables are embedded in
regions where the flow variables vary more smoothly. Examples of
directional flow phenomena possessing large gradients include shocks,
boundary layers, vortices and contact discontinuities. Since the classical
isotropic adaptive methods are optimal only for those situations in which
large gradients of the flow variables occur in all spatial directions, directional
flow characteristics are not necessarily resolved in a cost-effective manner and
the number of elements required rapidly increases with each isotropic

refinement.

Grid generation techniques, based upon the advancing front or Delaunay
triangulation, are most suited to creating elements with aspect ratios of the
order of unity. Although this type of element is optimal for inviscid flow
simulation, the approach is deemed not to be valid for viscous flows,
particularly in three-dimensional applications. In order to resolve boundary
layers with unit aspect ratio elements, the number of grid points for a
complex configuration would be impractically high. These potentially large
grid sizes have motivated researchers to investigate techniques of introducing

or generating very high aspect ratio elements for viscous flow problems.
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Simpson's error studies on optimal triangular mesh generation [37-39] and on
whose pioneering work this thesis is motivated, have led him to observe
that:
"A connection between mesh anisotropy and error behavior of
piecewise polynomial approximations based on the mesh is
certainly to be expected. Consider, for example, a mesh to be used
for piecewise linear approximation of a bivariate function which
changes rapidly, i.e. has a large second derivative, in one direction
but changes slowly, (a small second derivative) in the
perpendicular direction. It is intuitively apparent that, for a fixed
number of vertices, the approximation will be better if the vertices
are spaced more closely in the first direction than in the second,

i.e. if the mesh is anisotropic.”

Peraire et al. [40] were among the first researchers to seek solutions on
stretched or anisotropic meshes. They described an adaptive remeshing
procedure that incorporated directional stretching and refinement for the
steady solution of the 2-D Euler equations. The error estimate, which was a
function of stretching and directional parameters obtained from a computed
flow solution on a previous grid, was coupled to a triangular mesh generator.
This work was later extended by the same group to solve the 3-D inviscid flow
equations, again by mesh regeneration [41]. Palmerio presented a 2-D adaptive
node movement algorithm for the steady Euler calculations. The high degree
of stretching obtained by the node movement scheme was combined with

local isotropic refinement to achieve shock capturing [12].
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While the directional adaptive strategies described in [40, 41] have proven
valuable for inviscid flow simulations, the degree of grid stretching achieved
is still several orders of magnitude smaller than that needed to resolve
viscous flows. To produce the very high aspect ratio elements required for
such flows, two different approaches have been adopted. One solution would
be to define the types of triangular or tetrahedral elements which are desirable
for anisotropic mesh generation and to modify existing methods or devise
new techniques for generating meshes which contain these elements. The
second approach would be to use hybrid grids whereby alternative element
types are introduced only in those parts of the domain requiring a high degree
of stretching.

In applying the first approach, some researchers have chosen to compute the
Navier-Stokes equations on a fully unstructured mesh in which the viscous
region is characterized by strongly anisotropic triangular elements [20, 21, 42-
44]. Mavriplis has shown that a Delaunay triangulation performed in a locally
stretched space yields very high aspect ratio triangles suitable for computing
high Reynolds number flows [20]. In a similar vein, Vallet has described in
her thesis how the desired anisotropy in the mesh can be specified by a
symmetric error metric tensor [21]. Kornhuber and Roitzsch have devised an
anisotropic refinement strategy to efficiently resolve boundary layers based on
directed refinement of pairs of triangles [45]. More recently, other authors
have attempted to generate unstructured viscous meshes by adopting an a
priori adaptation strategy in which the stretched elements generated assume a

particular dominant flow direction [46, 47].
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Since the generation of tetrahedral elements for boundary layers is quite
difficult and structured grids are superior in capturing the directionality of the
flow field, some authors have pursued a hybrid structured-unstructured grid
approach. This involves fitting a thin local mesh of structured (quadrilateral)
or semi-structured (prismatic) high aspect ratio elements in the viscous
regions and generating an unstructured (triangular/tetrahedral) mesh to fill
the remainder of the domain [25, 48-50]. Prismatic grids serve as a
compromise between unstructured and structured grids. They possess the
geometric flexibility of unstructured meshes, as well as the orthogonality and

high aspect ratio features of structured meshes.

Anisotropic meshes for three-dimensional inviscid and viscous flows can
also be created by using an improved edge-based mesh movement or nodal
redistribution scheme which will be described in Chapters Three and Four. It
was Gnoffo who first introduced an adaptive method for grid point
redistribution, based on equidistribution of local flow gradients [51,52]. The
method is analogous to determining the equilibrium position of a system of
springs that connect each node with neighboring nodes and whose spring
constant is proportional to the local error. Nakahashi and Deiwert extended
this method to two and three dimensions using the concept of tension and
torsion springs to control the grid spacing and skewness, respectively [32].
Other applications of mesh movement schemes include work by Palmerio,

Davies, Lohner, Catherall, Diaz and Oden [12, 33, 53-56].

1.4 Objectives and Overview of Thesis
In this thesis an anisotropic adaptive grid method has been developed for the

solution of three-dimensional inviscid and viscous flows by the finite
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element method. An edge-based error estimate drives an improved mesh
movement strategy to allow directional stretching and re-orientation of the
grid such that, effectively, more mesh points are introduced along those
directions with rapidly changing gradients of the selected solution variable.

This method is applicable on both structured and unstructured grids.

The error estimate is evaluated using a bound available from finite element
interpolation theory [55, 57] and is constructed from a matrix of second
derivatives of the selected solution variable [21, 39]. This matrix or symmetric
tensor controls the magnitude as well as the direction of the grid stretching.
The tensor is a function of the space coordinates and is used to define a
measure of error, namely a Riemannian metric. The desired directionally
adapted anisotropic mesh in physical space is constructed by a coordinate
transformation based on this error metric tensor. This results in an isotropic
mesh in the transformed metric space but an anisotropic mesh in physical
space. The resulting error estimate is thus considered edge-based since it is
precisely the length of the edges of the elements with respect to this metric
space. The length of an edge in this metric may be interpreted as the 1-D
interpolation error along this edge. The approach taken in this research seeks
a near-isotropic mesh in the transformed metric space and aims to
equidistribute the error over the edges of the elements of the computational

domain.

This adaptive methodology has been embedded in NS3D, an efficient, three-
dimensional finite element code for the analysis of inviscid and viscous
compressible flows, which has been jointly developed by Pratt & Whitney

Canada with Concordia University.
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The second chapter of the thesis describes the numerical discretization of the
governing flow equations: the Euler and Navier-Stokes equations. The finite
element equations, which are based on a weak Galerkin formulation, are

derived.

The third chapter begins with a discussion of anisotropic grid transformations
which derive from the work of Simpson and D'Azevedo [36-38]. This is then
followed by a detailed description of the construction of the edge-based

interpolation error estimate implemented in this thesis.

The fourth chapter on adaptive strategies focuses primarily on the mesh
movement scheme. The treatment of boundary nodes, control of mesh
quality, interpolation of the error metric and solution on the adapted grid and
optimization of the mesh movement algorithm are all described. The chapter
ends with a brief treatment of other adaptive strategies needed for an
unstructured grid version of this work, such as mesh refinement/coarsening

and edge-swapping.

The fifth chapter on solution procedure provides details of the flow solver
algorithm as well as the coupling of the solver with the grid adaptation

method.

The sixth chapter presents validation test cases for inviscid and viscous flows
on tetrahedral, as well as hexahedral, meshes. For all cases, the non-adapted
and adapted solutions are analyzed and compared to experimental and/or

other numerical results.
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The seventh and final chapter states the major conclusions and proposes the

direction of near-future research work in mesh adaptation.

17



FIGURES

18



D




Figure 1.2 h-Method

20



D -

3 p-Method



2. Governing Flow Equations and
Finite Element Discretization

2.1 Introduction

This chapter describes the governing equations for inviscid and viscous flows
as well as their numerical discretization by the finite element method. The
flow solver used in the present work is NS3D, which is a 3-D
laminar/turbulent, steady/unsteady, compressible Navier-Stokes/Euler code,
developed jointly by Concordia University (CFD Laboratory) and Pratt &
Whitney Canada [58]. In this thesis, steady inviscid and viscous compressible
flow of Newtonian fluids will be considered in the context of 3-D grid
adaptation. NS3D solves for the mass flux components variables pu,pv,pw,

pressure p and temperature T .

2.2 Governing Equations

The fundamental equations of fluid dynamics are developed from the
application of the universal laws of conservation of mass, momentum and
energy to a fluid flow. These governing equations are usually written in non-
dimensional form. The advantage in doing this is that the non-dimensional
flow variables are usually of the order of magnitude of unity - a convenient
means in computational work to minimize numerical roundoff errors
resulting from the different flow variable scales. In NS3D the following non-

dimensionalizing procedure is performed,

. ox U ._ P ._ P T'—T C*=

Cp
C. 2.1)



where the non-dimensional variables are denoted by an asterisk, free stream
conditions are represented by e and L is the reference length used in the

Reynolds number.

2.2.1 Navier-Stokes Equations

The full system of Reynolds-Averaged Navier-Stokes equations provides the
most commonly used description of viscous fluid flow. This system of
equations includes:

Continuity Equation

L+ve(p?)=0 2.2)

Momentum Equations
The body forces are neglected in the following vector form of the viscous

momentum equations:

p— =—Vp+—[éV(uV0 V)+V(I7-uV)—X7VZu]
1 el3 2.3)
+§;[Vux(VxV)—(VoV)Vu—Vx(quV)]

Energy Equation
The energy equation, under the assumption of a variable property perfect gas
and in the absence of heat sources and radiation heat transfer, can be written

as

DT 1 Vv? dp  Ec - (2.4)
C, =L~ Vel kV|T,—— ||=Ec==+—=—Ve(V1,
P~» "Dt " PrRe '[K ( ° ZCPJ] 3t Re ¥+ (V%)



where T; denotes the viscous stress tensor.

It has become common practice to include the continuity equation (2.2) and
the energy equation (2.4) in the set of equations called the Navier-Stokes
equations although, strictly speaking, this term refers only to the components
of the viscous momentum equation (2.3). To close the system of equations,

additional relations are required, namely, the equation of state

p=pRT (2.5)

and empirical equations expressing viscosity |t and thermal conductivity k as

functions of temperature [59].

2.2.2 Euler Equations

The Euler equations are a reduced set of equations strictly valid only in the
nearly inviscid portion of a high-speed flow field. They are derived from the
Navier-Stokes equations by neglecting all shear stresses terms. The system of
Euler equations includes the continuity equation (2.2) as well as the

following:

Inviscid Momentum Equations

DV
—=-V
p Dt P (2.6)
Inviscid Energy Equation
DT, dp 2.7
=FcE
PG, Dt Cat
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Under the assumptions of steady flow, negligible heat transfer and constant
total enthalpy along the inflow boundaries, the energy equation can further

simplify to the constant total enthalpy condition:

Y
H,=—1—

w0

1~ =
+-2-V0V (2.8)

2.3 Galerkin Finite Element Method

2.3.1 Overview of the Finite Element Approximation

In the finite element method, a geometrically complex domain of a given
flow problem is discretized as a collection of simple nonoverlapping
subdomains called elements [60-62]. Within each element a certain number of
points or nodes are defined, which can be located on the edges, faces or inside
the element. The numerical value of the solution unknowns is to be
determined at these nodes. These solution variables are approximated by
polynomials. If 9, is an approximate solution of ®(X), a series expansion of

the form
0, (%)= 6N, (X) 2.9)
T

may be written where the summation extends over all nodes | and N; are the

shape or interpolation functions. The functions N, are chosen to be locally

defined polynomial interpolations within each element, taking on a zero

value outside the particular element. The coefficients ('[5 j in equation (2.9) are

the unknown nodal values of the solution variable. These local interpolation
functions possess the following properties on each element e, where node |

belongs to e:
@) at ¢h(xj,yl,z,)=&)l, the function Nf(e) satisfies
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0 if I#] 2.10)
Nl(xlryi'zl)={1 if I=] (

(il) at any point (x,y,z) within an element,

zNI(e)(x,y,z)=1.0 2.1D)
I

The global function Nj is obtained by assembling the contributions N ,(e) of all

the elements to which node | belongs.

The method of weighted residuals offers a means by which to formulate the
finite element equations. In this work the discretized form of the governing
equations is obtained by minimizing, in a weighted average sense, the
residuals of the system of equations (Navier-Stokes equations (2.2)-(2.4) or
Euler equations (2.2) and (2.6)) over the solution domain. This is carried out
by multiplying each equation by a weight function, which in the Galerkin
finite element method is identical to the shape function, and integrating over
the domain. The weak form is then obtained by integrating by parts the
weighted residual form of the system of equations. Details of the weak
Galerkin formulation for the full Navier-Stokes system of equations are

provided in Appendices A and C.
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2.3.2 Finite Element Discretization

NS3D accommodates isoparametric linear tetrahedral and trilinear
hexahedral elements. Isoparametric elements use the same shape functions to
define both geometry and solution variables. To simplify analytical
expressions for elements of complex shapes, a reference element is defined in
a local non-dimensional space with a simple geometrical shape, as shown for
linear tetrahedral and trilinear hexahedral elements (fig. 2.1-2.2). The
transformation from X‘-space to &°-space makes use of the shape functions in

local coordinates through the geometrical discretization:

ndperl ndperl ndperl

x= Y N/(EnL)% y= Y N;(EnL)F z= Y N, (E.1.8) (2.12)
I I -

where the variable, ndperl, refers to the number of nodes per element.

Similarly, the solution vector U= (pu,pv,pw,p) is approximated as

ndperl

U= ;N,(&,n,C)fJ, 2.13)

In NS3D all the solution variables are interpolated with shape functions of
equal order, be they linear tetrahedral shape functions,

N;=1-&-n-¢ N,=§ N;=n N,=( (2.14)

or trilinear hexahedral shape functions,
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Ny=2(1-8)(1-m)(1-8)  Ny=2(1-E)(1-n)(1+7)

N =5(L+E)1-T)(I-0)  Ny=3(1+8)1-m)(1+0)

N, =L(1+E)I+n)(1-8) N, =Z(1+E)(T+n)(1+)

N,=2(1-8)1+n)(1-0) N,=5(1-E)I+n)(1+)

(2.15)

Such a transformation to local coordinates facilitates the numerical

integration of the stiffness matrix and residual vector equations.

In the Galerkin weighted residual method, the weight functions are chosen to

be identical to their corresponding shape functions, that is,

W[(&/“IC)=N[(§/T]IC) (2.16)

2.4 Artificial Dissipation

In NS3D the discretized form of the governing equations is obtained by
applying the Galerkin finite element method which is equivalent to
approximating the derivative terms by a central finite difference scheme. In
such a centered scheme, the first order derivatives are decoupled leading to
an odd-even point decoupling or checkerboarding effect. The Ladyzenskhaya,
Babuska and Brezzi (LBB) stability condition established that checkerboarding
would occur unless the interpolation functions for velocities are one order
higher than those for pressure [62]. NS3D uses equal order interpolation for
both velocities and pressure variables and to suppress this decoupling,

artificial dissipation terms are added to the governing equations. These terms
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are needed to eliminate unphysical numerical oscillations and should be kept

as small as possible so as not to degrade the approximate solution.

A pressure dissipation term, AV?p, is added to the right-hand side of the
continuity equation, yielding

op 7\ _ 2 o2

_a?+v-(pv)_w p (2.17)
This dissipation term produces an error in mass conservation proportional to

its magnitude. To refine it to second order accuracy, the dissipation term is

reformulated as follows,

Jp 7) = v 2.18
—a?+V0(pV)—?\.Vo(Vp—Vp) (2.18)
where the balancing term, Vp, represents the nodal values of the averaged
gradients of pressure [58, 63]. The user-specified coefficient A must be

sufficiently small to minimize the error in mass conservation but it must also

be large enough to prevent spurious pressure oscillations.

Artificial dissipation terms, denoted as [L,, (see Chapter Five), are also added
to the right-hand side of the momentum equations and consist of both
"crosswind” and "streamwise" components. For example, in the x-

momentum equation, the first order crosswind term takes the form

o (), + () +(82z), | @.19)
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where Ax, Ay, and Az may be viewed as weighting factors for the Laplacian
of the x-component of velocity and [, is the user-specified crosswind
artificial dissipation coefficient. The streamwise artificial dissipation

component for the x-momentum equation is formulated as

a9 " |u|Ax +|v]Ay +|w|Az
o

(wne, +ou, +wu, +P,) (2.20)

where s refers to the streamwise direction and [, represents the user-
specified streamwise artificial dissipation coefficient. As with the pressure
dissipation coefficient A the values of u, and H_, must be minimized so as
not to degrade the solution quality but must also be large enough to prevent
unphysical oscillations. Typical values of W, and W, are such that the
crosswind artificial dissipation coefficient is one order of magnitude smaller
than the streamwise one. In choosing such values, one minimizes the
amount of artificial dissipation introduced into the numerical scheme by
adding dissipation predominantly in the streamwise direction. It is preferable
to keep the crosswind term as small as possible to avoid artificially dissipating
the solution in all directions. Based on experience, the addition of only
streamwise artificial dissipation is not sufficient and a minimum amount of

crosswind dissipation is required for non-oscillatory solutions.

2.5 Time Discretization

A finite difference time integration scheme based on Gear's method has been
implemented in NS3D for the time-accurate solution of the unsteady
compressible Navier-Stokes and Euler equations [64]. Although unsteady

flows are not considered here, the time integration scheme is necessary in the
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present work since the steady-state solution of the governing equations is

obtained by an implicit time-marching technique.

Gear's method consists of a series of implicit time integration schemes which
are characterized by large stability limits. The method is of the backward
differentiation type and possesses a variable order of accuracy in time which

can be controlled by the number of time levels used.

In general, after space discretization one arrives at a set of continuous

ordinary differential equations in time,
MU +KU =F 0<t<T (2:21)

where U represents the global vector of nodal values of the solution variable

U(x, y,z,t), M is the mass matrix, K is the influence matrix, F is the source

vector and T denotes the time span over which U is computed. Applying the

kth order Gear scheme to the time term in equation (2.21) yields:
UY _ 1 LN ,
— | =—| o, U'+ ) o, U™
( ot ) At( ° ; ; (2.22)

where a; (for i=0,1,...,k) and k are the coefficients and required order of time

accuracy of the Gear scheme, respectively. In NS3D's time-marching approach

to a steady-state solution, the first order Gear scheme (k=1,0,=1 and a,=-1),
which is identical to the implicit Euler backward scheme, is applied to the

time-dependent terms of the system of equations, giving

U,=U, ;+AMM[F-KU], (2.23)
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The Euler backward scheme is commonly used as a matrix preconditioner to
augment the diagonal dominance and hence the stability of time-marching
approaches to steady-state problems. Details of the temporal discretization of

the full Navier-Stokes system of equations are given in Appendices B and C.

2.6 Newton Linearization

For reasons of stability and robustness of the numerical scheme, the
continuity and momentum equations (2.2-2.3) will be solved simultaneously
(for details, see Chapter Five). To keep the coefficient matrix to a practical size,
the energy equation (2.4) is solved in a segregated manner. The nonlinear
governing equations are linearized by a Newton method whereby each
variable of the solution vector, U=(pu,pv,pw, p), is expressed in delta form,
AU =U""-U". After neglecting second order terms and substituting
equations (2.13) and (2.16) into the Newton linearized system of equations,
the delta form of the continuity, momentum and energy equations is
assembled, over the elements of the domain, in terms of the nodal
unknowns, A(pu), A(pv), A(pw), Ap and AT,. The discretized equations

may be written compactly as:

nelem| ndperl
Z[Z{[k°“q]PA(pu)i+[k"",-,-]pA(pv)l.+[k""’.~,']pA(pw k5], } —Res (2.24)

=1

MZ[Z{[;@ il Alpu), [kvv.-,-]puA(PU)i+[kW,~,-]puA(pw) +[k75], A( ,] ~Res, (2.25)

Mz |: Z’ {[kpuii]pv A(pu)i + [kpnii ]pu A(pv)i + [kmf'i ]pn A(pw); + [kpii ]p, A I ] =—Res;, (2.26)
mf[nf’{[k”,-j 1, Alow), +[k7s ], A(po), +[ks],, Alow), +[k*s], A(P), } ] =—Res", (2.27)

: nelem| ndperl
Z[E[knff]n A(Ta),.]=—Res;, (2.28)

=)
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where nelem denotes the total number of elements, Res" represents the
residual of the given governing equation at Newton step n, and (i , ]) are the
row and column indices. Details of equations (2.24)-(2.28) may be found in

Appendices B and C.

2.7 Boundary Conditions

2.7.1 Navier-Stokes Equations

Inlet Boundary Condition: pu,pv and pw are specified.

The surface integrals of the continuity equation (A.6) are computed using the
specified inlet mass flux, pV. However, the contribution of the pressure
dissipation term to the continuity contour integral is neglected due to the
small value of A. The momentum equations are not evaluated at the inlet

and are replaced by the imposition of the specified inlet mass flux, pV.

Wall Boundary Condition: u,v,w=0 isimposed as the no-slip condition.

The surface integral of the continuity equation is not evaluated since V=0
and the contribution of the pressure dissipation term to this integral is
neglected due to the small value of A . The momentum equations are

replaced at the wall nodes by the imposition of V=0.

Exit Boundary Condition: p is specified.

The static pressure is specified at all exit points and replaces the continuity
equation. The normal derivatives of V are neglected in the momentum
contour integrals. All artificial dissipation terms in the momentum surface
integrals are also neglected due to the small value of the artificial dissipation

coefficients.
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Symmetry Boundary Condition:

For the continuity equation zero normal mass flux is imposed by neglecting
the surface integrals. In the computation of the momentum surface integrals
the convective terms are assumed small and neglected. The shear stress is
also set to zero as one of the boundary conditions. All artificial dissipation
terms in the momentum surface integrals are neglected due to the small

value of the artificial dissipation coefficients.

2.7.2 Euler Equations
Inlet Boundary Condition: pu,pv and pw are specified.
The inlet boundary conditions are identical to those of the Navier-Stokes

equations.

Wall Boundary Condition: V-fi=0 is specified.

This boundary condition is imposed by not evaluating V-7 in the surface
integral of the continuity equation. The contribution of the pressure
dissipation term to this integral is neglected due to the small A value. The
convective terms in the surface integrals of the momentum equations are
assumed small and neglected. All artificial dissipation terms in the
momentum surface integrals are also neglected due to the small value of the

artificial dissipation coefficients.

Exit Boundary Condition: p is specified.
The static pressure is specified at all exit points and replaces the continuity
equation. All artificial dissipation terms in the momentum surface integrals

are neglected due to the small value of the artificial dissipation coefficients.



Symmetry Boundary Condition:
The symmetry and wall boundary conditions are identical for the Euler

equations.
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3. Error Estimation

3.1 Definition of an Optimal Mesh

A good definition of an optimal mesh, as this relates to the numerical
properties of the solution scheme, is still lacking in the literature. However,
most practitioners of grid adaptation have chosen to define an optimal mesh
criterion depending on whether or not the number of nodes used to mesh the
computational domain remains fixed. If the number of vertices is fixed, as is
the case with an adaptive mesh movement strategy, the optimal mesh would
be one in which the error is minimized. If, however, the number of grid
points are allowed to vary as in the application of mesh enrichment schemes,
the optimal mesh is defined as one which meets a user-specified error
tolerance while employing a minimum number of nodes. Such cases have
been referred in the literature as minimum error and maximum efficiency

mesh problems, respectively [37].

In the present work, a mesh movement strategy, which redistributes the grid
points so the nodal density is large in regions of high error and small in
regions of low error, will be implemented. To extend the above definition of
an optimal mesh criterion, based on a fixed number of nodes, to this work,
the objective of the adaptive strategy will be to equidistribute, as much as

possible, the error over the edges of the elements.
3.2 Accuracy of the Finite Element Approximation

Once a finite element solution to a given flow problem has been computed,

the question of the accuracy of the approximation naturally arises. The quality
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of the finite element approximation and its behaviour as the mesh is refined

are fundamental issues addressed by users of numerical methods.

The quality of the finite element solution is assessed by the local
approximation error e,, which is defined as the difference between the exact

solution u and its finite element approximation u,,

e, =uU—1U, (3.1

where the subscript h represents a mesh length parameter. Since the actual
error can never be calculated unless the exact solution is known, there may
seem to be little reason for computing e,. However, even when u is
unknown, it is possible to build estimates of the approximation error and to
determine if the error decreases as h decreases and the number of elements
grows larger. Such bounds on the approximation error, which are measured
in an appropriate norm and expressed in terms of h, provide useful
information regarding the behaviour of the solution error as the mesh is

modified.

The magnitude of the approximation error and its bound are measured using
the norms and semi-norms associated with the Sobolev spaces [62]. Sobolev
spaces serve as one of the most important examples of normed spaces in the
theory of partial differential equations. In this context, the question of the
accuracy of finite element approximations may be stated as follows: given an
mth Sobolev space H™ and a finite element space V,, how well can a given
solution u€ H™ be approximated for any member of V,? The answer is

detailed in the numerical analysis work of Ciarlet {57]. A result from finite
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element interpolation theory, Céa's Lemma, states that the approximation

error is always bounded by the interpolation error
[ — 4] < Clue— 0,4 (3-2)

where II,u is the interpolate of the solution u in the finite element space and
C is some positive constant. Therefore, the approximation error must exhibit
the same rate of convergence as the interpolation error and determining the
bounds for the interpolation error provides a bound on the approximation

error. Ciarlet has demonstrated that for any u € H*"'(Q) there exists a positive

constant C’ such that

k+1

,h
e~ Hhu"H,,, @ =€ F|”|Hk+,(n) (3.3)

where k is a fixed integer,

m is an integer such that 0<m<k+1,

Hlzm (g is the H™norm,

. k+1 .
I'IHI:H(Q) isthe H semi-norm,

p° is the diameter of the largest sphere contained in element e,

= min (p°
P ISeSnelem(p )’

and h= max (h°).
1<e<nelem
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As an example, consider a collection of finite element spaces consisting of
isoparametric elements on a domain Q cR", n2>1 [62]. One finds for every

ue H?,

e — My o < C717J0d 2 (3.4)
where
12
3.5
"u"Ho(Q) = "u"LZ(Q) = [J- udeJ ( )
Q
12

o2 (3.6)

IuIHZ L[I‘,E'Zl ul x:I

The symbol o denotes o.=(0,..,0,) and D% =9""u/9d%x,d%x, represents
the generalized derivatives of order <2. According to equation (3.4), the
approximation error in the L,-norm is bounded, to within a multiplicative
constant C”, by the product of the second derivatives of the solution variable

u and the square of the mesh parameter h.

Since such estimates (3.3-3.4) require no information from the actual finite
element solution and are known prior to the determination of the solution,
they are termed 4 priori estimates. Other more elaborate estimates of accuracy,
which derive information from the finite element solution itself and may
only be computed after the solution has been obtained, are called a posteriori

estimates and will be used in the work of this thesis.



3.3 Anisotropic Grid Transformations

As described in the previous section, the finite element interpolation error
serves as the upper bound for the approximation error, thus implying that a
control of the interpolation error will result in a control of the solution error
itself. Simpson and D'Azevedo [37, 39] have investigated the use of
coordinate transformations that are derived from error properties in
approximation to generate optimal meshes for linear interpolation. The
distribution of nodes in the optimal mesh is specified by an error estimate in
the form of a symmetric metric tensor, namely, the Hessian or matrix of
second derivatives of the solution being sought. The desired anisotropic
mesh in physical space is constructed by a coordinate transformation based on
this error metric tensor. This results in an isotropic mesh in the transformed
metric space but an anisotropic mesh in physical space. Such anisotropic grid
transformations serve as the motivation for the construction of the edge-
based interpolation error estimate to be described in Section 3.5. A summary
of the results of Simpson's optimal error control studies on triangular
meshes follows. It should be noted that no such studies have been
undertaken for higher order interpolants, but experience has shown that

Simpson's conclusion works very well even for quadratic interpolations.

Simpson sought the "best" triangle shape that minimized the maximum
interpolation error and derived the linear transformation that maps a regular
triangular mesh into an optimal mesh for the interpolation of a quadratic
function, g(X). This transformation is suggested by the simplification of the
exact error function, €(X), obtained in the linear interpolation of g(X). As

described in [39], the error function takes the form



g(X) = (AX)H(AX)" @3.7)

where H represents the 2x2 Hessian matrix of g(x). The isolines of &(X)
consist of concentric ellipses if the determinant of the Hessian matrix is

greater than zero. The symmetric matrix H may be diagonalized as

H=Q" M 0 Q=RT" 1 OR (3.8)
0 A, 0 1 :

where Q is the matrix of eigenvectors, A, and A, are the eigenvalues of H,

and

A
R=[ A 0 |:|Q (3.9)
2

represents the anisotropic grid transformation matrix. By applying a change of

variables, X’T = Rx', the error function can be rewritten as
byt 4 ’ 2 ’7 2 =’
' (X)=(ax") +(ay’) =|ax[ (3.10)

where €(X’) denotes the corresponding function under the transformation
R with its isolines now transformed to concentric circles. If T’ is the
transformed image of the triangle T with vertices [( x1,Y1),(x3,Y3),(x5,y3 )],
the circle circumscribing T* will be the isoline of zero error. The radius of this
circle is thus directly proportional to the maximum error attainable. An
equilateral triangle is the optimal shape being sought since it would cover the

maximal area for a given radius or error level. Simpson concluded that an
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isotropic mesh comprising equilateral triangles over the transformed plane
corresponds to an "optimally efficient" mesh, defined as one that achieves a
specified error tolerance with the fewest elements. The inverse
transformation R’ maps this "optimal” mesh of equilateral triangles into the

desired anisotropic grid in the original plane.

3.4 Euclidean and Riemannian Metrics

The generation of optimal meshes through coordinate transformations has
been demonstrated primarily on triangular meshes for quadratic functions
where the Hessian H is constant [37]. Quadratic functions may be viewed as
local approximations of general functions with varying H(x). The local
coordinate transformations required to construct nearly optimal meshes
therefore become nonlinear. Applying transformations based on variable
H(X) to the original space yields, in general, a Riemannian space with its
metric defined by H(X). These transformations raise the issue of whether the
original space can be mapped to a "flat" space. The transformed space is
characterized as "flat" if its metric tensor can be reduced to the Euclidean

metric.

Two important structures of Euclidean and Riemannian spaces include the

scalar product and metric, which are defined below [65].

1. A scalar product (-,-) on a vector space A is a map (-, ):AxA—>R. In
other words, (-,-) assigns to an ordered pair X,y€A a real number
denoted (X,y) with the following properties. Let X,¥,Z€ A and oceR.
Then
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a. (X,y)=(¥,%)

b (0%,3)=a(%.) -
c. (x+¥,z2)=(x,Z)+(¥,Z) )

4. (%,%)20

2. A Euclidean metric d on A is a map d:AXA — R* with the following

properties. Let X,¥,Z€ A. Then

IR T R~
R
TN S

Kol 2(1
<<

I}

y
- (3.12)
y

13"

_
~—~
3(]

N

3. If {-,-) is a scalar producton A and X,y € A, then

d(x,¥)=(x-3,%-7)" (3.13)

defines a metric on A.

4. In R", a scalar product may take the form (X,¥)=X"My where M is an
nxn symmetric positive-definite matrix. As an example,

(X, 5)=+/(X—F) MEZ~-¥) (3.14)

for all X,§ € R" defines a Euclidean metric on R".

If one considers only metrics which are induced by a scalar product, then a
metric defined on R" may be merely identified by the matrix M which

defines the associated scalar product. For example, a Euclidean metric (3.14)
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on R? will be described by its 2x2 symmetric matrix M ={m,-]-}, for
1<i<j<2.If M is the identity matrix, then equation (3.14) represents the
usual Euclidean measure of length. For example, the length of an edge
between nodes I and | in the Euclidean metric, denoted as dE(SE[,i,), is

defined as

de(%e %) = (% %) (%, ~%) (3.15)
In the general case, M may be diagonalized as

A
M= [P(a)]—l[ 01 fzjl[[’(a)] (3.16)

where 4,>0 for i=1, 2 are the eigenvalues of M and P(a) is a matrix which
rotates the x- and y-axes through an angle «. A unit circle in this metric M
would be an ellipse whose principal axes have lengths inversely proportional
to the square roots of the eigenvalues, \//1_, and \/A—z (fig. 3.1). Similarly,
equilateral triangles with edges of unit length in this metric would have a
characteristic length \/_,1_1 - along the direction of angle & and +/4, " in the
perpendicular direction. It has been demonstrated that if T is a non-
degenerate triangle, there exists a unique metric M, induced by a scalar

product, in which T is an equilateral triangle with edges of unit length [21].
Similarly, in 3-D, a sphere of unit diameter in a 3X3 metric M would

transform to an ellipsoid whose principal axes have lengths inversely

proportional to the square roots of the three eigenvalues of M.
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The above discussion deals with a Euclidean metric M whose entries are all
constant. Now consider a function M(X) whose entries vary with X. In 2-D,

one may diagonalize such a matrix as

Mm(E) 0

=\ _ =\J-1
M@ =[] "

][P(a(i))] G-I

If M(X) is also symmetric, as well as positive-definite for all X, one arrives at
the definition of a Riemannian metric [21, 37]. Given a varying M(X), the arc
length of a curve B in this metric, denoted as d,,(B), would be given by

dy(B) = j: VE(EYTMGR)s(tydt  for  te[0,1] (3.18)

where §(t) is a parametric representation of the curve B. Since M(X) is a
function of the space coordinates, equation (3.18) defines a Riemannian
metric and its evaluation requires numerical integration. For example, the
length of an edge between nodes I and | in the Riemannian metric, denoted as
dy ()'E,,i,), is given by equation (3.18) where s(t) =X, +(5Z, —i,)t for te[0,1].
The importance of equation (3.18) will be evident in the next Section, entitled

"Construction of Interpolation Error Estimate”.

3.5 Construction of Interpolation Error Estimate

3.5.1 Introduction

The edge-based error estimate applied in this thesis may be classified as an
interpolation error estimate. This type of estimate is problem-independent
and, therefore, is relatively simple to build. Its evaluation is not CPU-

intensive and its computation can be written in a post-processing subroutine
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which may be easily added to an existing solver code. Such an error estimate
meets the criteria of efficiency and portability demanded by an established

industrial code.

The edge-based error estimate is constructed using the bound, equation (3.4),
from finite element interpolation theory based on a priori error estimates.
This error bound is in all respects analogous to the Taylor series truncation
error analysis of finite difference approximations of partial differential

equations.

3.5.2 Edge-Based Interpolation Error Estimate

Consider a 1-D problem in which u(x) is approximated by a finite element
solution u,(x) obtained using linear interpolation. The approximation error

over an element of length h, , e,(x), is defined to be

e, (x) = u(x)—u,(x) (3.19)

at a point x where xe[0,h,]. In the following derivation, for the sake of
simplicity, the subscript e will be dropped from the element length h, .
Referring to fig. 3.2, the finite element solution may be written in terms of its

nodal values as

Uu,—~u X X
uh(x)=uo+( Ih °)x=(1——}-{)uo+zu1 (3.20)

Expansion of u,; as a Taylor series about x =0 yields
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hZ
u1=uo+hu{,+?u{,’+... (3.21)

A simplification of equation (3.20) leads to

h uh
u, =%’i—-%+uo (3.22)

which is then substituted into equation (3.21) to give the following

expression:

’ r” xh
U, (x)=uy+ugx+u -—2-+ (3.23)

Similarly, expansion of the exact solution u(x) as a Taylor series about x =0

gives

2
x
u(x)=uy +upx+u” 7+" . (3.24)

Replacing equations (3.23-3.24) into (3.19) and neglecting higher order terms

leads to an expression for the error over an element, that is,

2 2
x xh]d u, (3.25)

eh<")=(7‘7 ar’
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Following the demonstration by Peraire et al. [40], the root-mean-square value

of the error over an element spanning the interval [0,4,] can be evaluated as

h, e.2 y2
ET* = —}:—dx
0 (3.26)

h: \du,
120 | dx?

The interpolation error for this 1-D problem is proportional to the product of
the second derivative of the variable u and the square of the element length.
Knowledge of the second derivatives over an element provides an

interpolation error estimate, €,, taking the form:

3.27)

where C is some multiplicative constant. It should be noted that in the
construction of €;, one is only concerned with the absolute value or
magnitude of the error and not in its change of sign. The approach taken in
this thesis is thus to equidistribute the error over the edges of the element. By
imposing that €; be equal in all elements, the new length h, must satisfy the
condition

%ZE-”- =constant C' (3.28)

2

hZ
¢ ldx

e

In an adaptive nodal redistribution scheme C’ would denote some arbitrary
constant, while in a remeshing or grid refinement/coarsening method C’

would represent a user-specified error tolerance.
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Extending these ideas to the 3-D case, the second derivative of the solution

variable u, in the direction of a unit vector € may be written as

2
o‘u,
de?

=eH(x)e’ (3.29)

where H(X) represents the 3x 3 solution Hessian:

(%, o, )
dx? 9xdy Oxoz

d*u, Ju, Ju, (3.30)
dxdy dy* Jyoz
o*u, du, Ju,

(0xdz dydz 9z°

H(x) = {uh,ii} =

H(X) may be decomposed as

A(R) 0 0
HX)=Q'(X)] 0 A,(X) 0 |Q®)=Q"(X)AX)QX) (3.31)
0 0 A®)

where Q(X) is the matrix of eigenvectors and A(X) is the diagonal matrix
containing the eigenvalues of H(X). Since one is only interested in the
magnitude of the entries of H(X), a modified matrix H(X) will be defined
which possesses the same eigendirections as H(X) and the absolute value of

the corresponding eigenvalues, that is,

&) O 0
HX)=Q'(X) 0 X 0 [Q®=Q"®AXIQEX 3.32)
0 0 |?\.3(5°c)l
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By considering only the absolute value of the eigenvalues, one obtains a

symmetric positive-definite matrix H(X). H(X) may also be written as
H(X)=RT(X)R(X) (3.33)

where R(X) =4/|A(X)|Q(X). The transformation R(X)T of a unit sphere would

be an ellipsoid, rotated through an angle &, whose semi-major and semi-

minor axes are reciprocals of the square roots of the eigenvalues, |Ai(i)|, for
i=1,2, and 3. Thus, one may obtain a directionally stretched grid by mapping a

uniform mesh using the coordinate transformation R(X)”.

It can be seen that the second derivative of the solution variable is bounded

in any direction € as follows:

2
oy,
de’

=[eH(X)e"| < eH(x)e" (3.34)

Following the form of the interpolation error estimate in the 1-D case, the

adaptation criterion for 3-D problems may be written as

g; =Ch%éH(X)e" (3.35)

or

h?éH(x)e" = constant C’ (3.36)

In the adaptive remeshing work carried out by Peraire et al. [40], the elemental
root-mean-square error was distributed along the local principal directions or

eigendirections. Using equation (3.36) as the guideline for the optimal mesh
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criterion, he defined h=39; (i=1,2) to be the two local nodal spacings and € =¢€,
to be the two unit eigenvectors of H(X). Thus, the optimal mesh criterion

(equation 3.36) reduces to
81[Aq|= 83[A,|=C’ (3.37)

and the nodal spacings in the eigendirections are computed according to

5i=(C’/7\.i)1/2. Applying these updated values of nodal spacings and

eigendirections, an adapted mesh is regenerated.

The approach undertaken in this thesis is distinctly different in that the error
estimate is equidistributed over the edges of the elements, whether they be
hexahedra or tetrahedra. The Euclidean length of an edge between nodes I
and | is defined as

h=dg(%;, %) =~/(%; %) (%, %) (3.38)
and the unit vector along the direction of the edge is given by
ey =(x; —x;)/de(X;,X;) (3.39)
Equation (3.36) becomes

(%, —x ) HE&E)N(X, —%,) =C’ (3.40)

In this thesis, a mesh with edges of equal lengths is sought in the transformed
plane R(X where R(X)=/[A(X)|Q(X). An optimal mesh is then defined as
one in which the lengths of all the edges, with respect to the metric H(X), are
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equal to \C’. Therefore, the edge-based error estimate given by equation
(3.40) is precisely the length of the edge [i,,i,] in the Riemannian metric
defined by H(X). The length of an edge in this metric may be interpreted as
the 1-D interpolation error taken along this edge. Since H(X) is a function of

the space coordinates, this length must be integrated numerically according to

1 —
Ay (%, %) = ja VS(tYTHE@®))S(Ydt  for te[0,1] (3.41)

where §(t)=X;+(X; —X;)t parametrically represents the edge. Nodal values
of the second derivatives or the entries of the symmetric solution Hessian are
stored in a background tetrahedral grid and are used for interpolation of
Hessians in the current grid that is being adapted. Only six of the nine entries
of H(X) need to be computed due to the symmetric nature of this 3x3 matrix.
These six entries are stored at the nodes of a background grid and the value of
H(X) at any position of the domain can be interpolated during the adaptive
process on this grid. This raises the question regarding the evaluation of the

nodal values of the second derivatives.

3.5.3 Evaluation of Nodal Values of Second Derivatives

Since u is approximated by a linear interpolation, the first derivative would
be constant over the element and the second derivative would vanish. The
calculation of the second derivatives therefore requires special treatment.
Consider a flow solution variable u(X) which is interpolated by linear

tetrahedral shape functions, N, giving rise to the approximation

nnode

u(x)= Y N, (3.42)

k=1
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One seeks to approximate the first derivative as well as the second derivative

of u(x) in a similar manner using linear shape functions:

au(i) _ nnode éy_
== ZN" » (3.43)
k=1 k
azu(i) nnode aZu
=Y NZZ .
ax’ o Fox? k N

When linear shape functions are used for flow variable as in equation (3.42),
the first derivative of the variable is constant over the tetrahedral element
and the second derivative would be zero. However, one may recover the
nodal values of the first and second derivatives based on linear interpolation
as in equations (3.43) and (3.44). The recovery procedure is similar for the first
and second derivatives and thus, will be demonstrated in detail only for the

first derivative.

Using equation (3.42), the first derivative of the flow variable u(X) can be

approximated by

ox & o9x *

= nnode
au(X) Z aNk (3.45)

Upon equating (3.43) and (3.45), one can compute the nodal values of the first
ou(x)
ox

derivatives. Consider node i to be fixed. To approach the value of at
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node i, both sides of equation (3.43), as well as equation (3.45), are multiplied
by the linear shape function N; in a scalar product sense. After forming the

scalar product, equation (3.43) becomes

nnode nnode
( N, J j aNk w N AW (3.46)

k=1
e

A DL
T k=1

EN.AW (3.47)

TeW keT

Because the shape functions are linear, their first derivative is constant by

element. Since N; =0 in all tetrahedra elements T which do not contain the

node i, equation (3.47) is further simplified to

nnode
(H%I%uk,N,J:z D ka;:’} deW (3.48)

T:ieT keT

Similarly, multiplication in the scalar product sense of equation (3.45) with

the linear shape function N; yields

k,N,.J= j ;NkészidW (3.49)
J e

=y Z% ijNdW (3.50)

_2 zau

T:ieT keT

_[ N, N.dAW (3.51)

Mass lumping at node i would then give the following approximation
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(3.52)

nnode
(S

) TxeT

Since the sum of the shape functions over a tetrahedral element is one, the

keT

above equation further simplifies to

nnode
(ZN,(% ,N,.)z dew (3.53)
k=1 dx k T eT
nnode
YN N, |2 j NAW (3.54)
= oxl ox|; J
supp(i)

where supp(i) denotes the support of node i and is defined as the union of

elements T such that i belongs to T.

Combining equations (3.48) and (3.54) leads to an expression for the desired
quantity, namely, the nodal value of the first derivative based on a linear

interpolation:

sup'[({:[ = T:ze'r keT o ax ‘[Ndw >
Nl [ Naw
du =TZET g’uk T‘I l (3.56)
ox|; J' NAW
supp(i)
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Therefore, one may approximate over an element the first derivative of a
flow variable based on linear interpolation of its nodal values, as in equation

(3.43), where the nodal value of the first derivative is evaluated as in (3.56).

The same procedure may be carried out in the approximation of the nodal
values of the second derivatives of the flow variable. In this case, one would

arrive at the following expression,

> >

azul T:ieT keT
ax?|, j NdW
supp(i)

J' N AW

(3.57)

where the nodal value of the first derivative is given by equation (3.56). Thus,
to evaluate the nodal value of the second derivative by (3.57), one needs to
first compute the nodal values of the first derivatives by (3.56). This two-step
process is rather time-consuming and since the recovery procedure is
approximate, an alternative method would be to rewrite equation (3.57) in a

more compact form as

2
N, % aw
aZ I R ox
e L (3.58)
" [Naw
supp(i)

where the numerator is computed following an integration by parts. The

nodal value of the second derivatives would then reduce to
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du aN INW + J' Jdu N T
2 x ox
ul supp(i) supp(l) (3.59)

x| | Naw

supp(i)

where I';, represents the surface of triangular faces bounding the

tetrahedral elements comprising the support of node i.
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Figure 3.1 Transformation mapping unit circle in metric space
to ellipse in physical space
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Figure 3.2 Finite element approximation of solution u(x)

63




4. Adaptive Strategies

4.1 Introduction

The adaptive strategy modifies the grid under the guidance of the error
estimate to improve the quality of the numerical solution. Having built an
interpolation error estimate to detect changes in the gradients of flow
solution variables, that is (X; —i[)I:I(i)(i, —-X; )T = constant C’, one is now in
a position to couple this error estimate to an adaptive strategy. One of the
objectives in this research is to directionally orient the mesh to more
accurately and cost-effectively capture flow anisotropies such as boundary
layers, shocks, vortices and contact discontinuities. Thus, the use of an
appropriate adaptive strategy is crucial for achieving the desired grid, namely,

a directionally adapted mesh.

One contribution of this thesis has been the development of a 3-D adaptive
mesh movement scheme applicable on both structured and unstructured
grids [66-68]. This proposed adaptive strategy is thought to be the first 3-D
implementation of an improved spring analogy-based algorithm originally

applied on 2-D quadrilateral meshes [69].

An adaptive nodal displacement strategy was the first logical foray into the
field of 3-D grid adaptation due to its ease of portability into existing codes.
However, during the process of validating the mesh movement method on
selected test cases, one realized that there are limitations to applying an
adaptive mesh movement method on the complex 3-D flow problems and
geometries encountered in industry. Using isotropic tetrahedral grid

generation or isotropic refinement, for that matter, to properly capture the
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intricacies of the geometry and the complicated flow phenomena often
associated with these cases would lead to an unrealistically large grid size. An
anisotropic nodal displacement method, as presented in this thesis, is
dependent on the size of the initial non-adapted mesh. If the initial mesh is
too coarse, nodes are moved away from one flow region to another resulting
in poor resolution of certain flow features. It would be impractical to generate
very large sized grids merely to show that mesh movement could eventually
resolve the flow physics of such problems. Furthermore, and contrary to 2-D
experience [13], as the complexity of the geometry increases, the mesh quality
constraints imposed on the node movement strategy limit the possible range
of grid point displacement. It is clear that in the solution of complex 3-D
geometries involving sharp directional flow features, an anisotropic mesh
adaptation procedure which incorporates all strategies such as
refinement/coarsening, nodal displacement and edge swapping, would be a
more practical approach and one which would lead to a reasonable final grid
size. Such a comprehensive mesh adaptation procedure , entitled "MOM-3D"
(Mesh Optimization Method), has been recently developed at Concordia
University's CFD Laboratory in collaboration with ICEM-CFD Engineering
and under the sponsorship of Pratt & Whitney Canada [68]. Its spirit and

mesh movement method is, however, derived from this thesis.

Sections 4.2-4.6 and 4.8 deals exclusively with the mesh movement adaptive
strategy. Section 4.7 devotes a brief discussion to the combined strategies of
mesh refinement/coarsening, mesh movement and edge swapping, which

represents the ongoing and future work of the CFD Laboratory.
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4.2 Nodal Movement Algorithm

The proposed mesh movement scheme progressively redistributes a fixed
number of nodes so as to equidistribute the interpolation error over the edges
of the elements. The mesh may be viewed as a network of springs whose
stiffness constants represent the edge-based error estimate (fig. 4.1).
Accordingly, the position of the nodal points may be interpreted as the

solution of an energy minimization problem, yielding for each node I,

82(5&, -%,)2Ky
] —

9P, _ )

X, ax;

“4.1)

where P, denotes the potential energy of the springs sharing the node I, and
K, represents the stiffness constant for the edge between nodes I and J. The

stiffness constant for a particular edge is defined as

_dy (%, %)) (4.2)

K, =
T A (x,%))

where dy(X;,X;) represents the length of the edge [52,,52,] in the

Riemannian metric defined by equation (3.41), reproduced again below,

e (%, %;) = [ VB(OTE(E () 52 de (3.41)

and dg(X;,X;) is the length of the same edge in the Euclidean metric, that is,

- = = = = = 4.3
dg (X;,%X;) = (x,—x,)T(xl—x,) 4.3)
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By lagging X; and K at the previous iteration m, equation (4.1) becomes:

Y X -X7) K =0 4.4)
I

resulting in a nonlinear problem since the stiffness constant is a function of
coordinates. Upon solving for the change in the position vector, the
following expression

(%" — ™) K™
- ; L 4.5)

R W
I

is obtained and the solution is then updated, node by node, according to the

equation

X =X 4 @ AR, (4.6)
with @ representing a relaxation factor. The convergence of this scheme can
be enhanced by considering a Gauss-Seidel iterative algorithm where the
most recently computed values of X; and Kj; are used in equation (4.5). An
adaptive iteration is defined as a loop sweeping all the nodes of the domain
by this Gauss-Seidel method. Convergence is deemed to be achieved when
the relative metric error over all edges between two consecutive adaptive

iterations is below a user-specified tolerance limit.
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4.3 Treatment of Boundary Nodes

Adapting a mesh involves node displacement not only in the interior of the
solution field but also on the surfaces of the aerodynamic bodies. The mesh
adaptation procedure must at all times respect the original CAD surface
definition. The nodal displacement algorithm, which is applied to boundary
nodes to determine their optimal positions, is the same as that for internal
nodes. However, the coordinates of the optimal position may lie off the curve
or surface to which the node originally belonged. These boundary nodes are

therefore projected back to the nearest corresponding curve or surface.

This is a second and important contribution of this thesis. Realizing the need
to maintain the fidelity of the CAD definition of geometric surfaces, an earlier
decision was made to associate this development with an established
commercial code. An evident choice was ICEM-CFD Engineering's mesh
generation package, ICEM-CFD, one of the most widely used mesh generation
codes in the industry. The adaptive code is thus linked to ICEM-CFD s output
interface library, which provides access to the grid geometry and the capability
to project back to the nearest curve, surface or family. A family is defined as a
set of surfaces, curves, and/or points and, for example, may represent an inlet,
exit, wall or symmetry plane. The initial non-adapted grid is generated using
ICEM CFD's Hexa, Tetra and/or Prism mesh generation modules and the
input to any of these meshers is a set of surfaces, curves and prescribed points.
The curves are necessary since they cause the mesher to follow
discontinuities in surfaces. If no curves are specified at a surface boundary, the
mesher is free to mesh quadrilaterals or triangles over the surface edge.
Similarly, prescribed points are needed to force the mesher to recognize sharp

corners in the prescribed curves. The mesher will approximate the surface
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with quadrilaterals or triangles, the curves with edges, and will place vertices
on the prescribed points [70, 71]. When the initial grid is generated, a file is
created identifying the curve, surface or family to which a boundary node
belongs. This file will be read by an interface routine at the beginning of the
adaptive code and the nodal information will be stored in arrays to be used
each time a boundary node has to be projected back to its respective curve,
surface or family. The identification of prescribed points is important in
preserving the geometric configuration of the aerodynamic body during the
mesh adaptation procedure since these points should remain fixed and not be

subjected to the nodal displacement algorithm.

4.4 Control of Mesh Quality

Before a node can actually be displaced to its new position, tests are performed
to check the quality of all elements connected to this node at its new position.
Due to the geometric flexibility of the tetrahedron, as compared to the
hexahedron or prism, it is not surprising that fewer constraints on elemental
degeneracy need to be imposed. For tetrahedral grids only a geometric "shape

factor" criterion, defined as

l4
geometric shape factor = % 4.7

[i(area){l

i=1

where vol refers to the volume of the tetrahedral element and area represents
the area of each of its six triangular faces, is computed. A geometric shape
factor of 1.0 corresponds to an equilateral tetrahedron and since one aims to
attain highly anisotropic elements in this work, acceptable shape factor values
typically range from 10-10 to 10-1. However, for hexahedral and prismatic

grids, quality assessments are performed based on the values of the
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determinant of the Jacobian at Gauss-Quadrature integration points, the
shape factors of the three/six component tetrahedra of the prism/hexahedron
as well as the minimum and maximum angles of the quadrilateral faces.
Typical minimum and maximum angles range from 10°-20° and 160°-170°,

respectively, at the final adaptation cycle.

4.5 Interpolation of Riemannian Metric on Tetrahedral Mesh

The desire to accurately update the metric error along the edges has led to the
definition of two types of meshes within the adaptive code. For each adaptive
cycle, there exists a background as well as a current mesh. The background
grid remains unchanged throughout the adaptive cycle and is identical to the
current grid at the beginning of the cycle. The background mesh stores the six
entries of the Riemannian metric, H(X), at each node and serves as a
reference table from which the metric error in the current grid can be
interpolated. In contrast, the current mesh is constantly evolving as its grid
points are being redistributed to more optimal positions. As the next adaptive
cycle commences at the next Newton iteration, the last current mesh of the

previous cycle becomes the background grid for the new cycle.

The interpolation of H(X) from the background grid to points in the current
grid is crucial to preserving the accuracy of the error estimate as the
adaptation procedure progresses. Given any point C of the current mesh, with
coordinates X , one seeks to find the element B of the background grid in
which it lies. Since the interpolation operation is called upon many times
during an adaptive iteration, it is important that a very fast and robust search

algorithm be implemented to locate element B.
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A search algorithm is based on the evaluation of the shape functions of C
with respect to the coordinates of the points belonging to B:

Xc= ZNiii (4.8)
For tetrahedral meshes a system of three equations in the three unknowns, &,
1, and (, is obtained,

Xc =N.X, + N,X, + N;X; + N,X,
Ye =Niij + Nyj, + N3ij; + N, 7, (4.9)
zo =Nz, +N,Z, + N;Z; + Nz,

where

N;=1-§-n-¢ (4.10)
N,=¢§
N; =7
N,=¢
The system of equations (4.9) may be simplified to
Xe—% 3 L-% X4L-% X-X%
Y=t |=[Al n where [A]=|1—-01 Js—-%1 Tu—Th| @11
Zc—% g 2,-2, -2 %4,-2

and the four tetrahedral shape functions are determined directly from the

unknowns,
€ Xe—X;
~1 -~
n{=[A]"|yc—# (4.12)
¢ ze—2
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The point C lies inside element B if

0SNS1  for i=14 (4.13)

Since the background grid consists entirely of tetrahedral elements, this is the
only shape function criterion that needs to be applied to see if a current point
lies within a background element. However, the current mesh may be
composed of all element types such as hexahedra, prisms and tetrahedra. So,
at the start of each adaptive cycle, these elements must be subdivided into
tetrahedra to generate the accompanying tetrahedral background mesh
necessary for data interpolation. A hexahedron is subdivided into six
tetrahedra and a prism is split into three tetrahedra. If a current point is found
in any of the element's component tetrahedra using the shape function

criterion, it is considered to be inside the element.

Given that the numerical integration of the Riemannian metric length of an
edge requires that the value of M(X) at each integration point along the edge
be interpolated, a fast "neighbor-to-neighbor" search algorithm for data
interpolation was implemented [72]. This type of search routine assumes that
for any given point in the current mesh to be interpolated, an element of the
background grid that is in the vicinity is known. Such a routine requires that
a nodal array pointing to the nearest element of the background mesh, as well

as an array storing the element-face connectivities, be created.

At the beginning of the adaptive procedure, the nodal array,
PNO2EBG[1:NNODE], pointing to the nearest element of the background
mesh is initialized using the nodal connectivities of the current mesh. If the

current grid contains hexahedra or prisms, these elements must first be
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subdivided into tetrahedra before this array can be initialized. The neighbor-

to-neighbor search algorithm may be summarized as follows:

DO 100 Loop over all edges connected to node being displaced
DO 200 Loop over all points along edge to be interpolated
Obtain a good starting element IEBG to begin search
(note: IEBG = PNO2EBG[end node of edge] )
300 For IEBG, evaluate N, for i=1,4 from equation (4.13)
IF equation (4.13) is satisfied THEN
Exit
ELSE
Set IEBG to neighboring element*
GOTO 300
ENDIF
200 CONTINUE
100 CONTINUE

*The next element in the search path is that adjacent to the face opposite the
node with the minimum shape function value.

The neighbor-to-neighbor search algorithm performs well in the interior of
the domain but is known to have difficulties on the boundary, especially in
situations where the tetrahedral elements are highly stretched. In such cases,
the background element, which is closest to the current point C before the
search failed, is known and a back-up brute force search routine is called
whereby a loop is performed over all its neighboring elements, evaluating
their shape functions with respect to X.. If C is still not found among these

neighbors, the search expands to the adjacent elements of these neighbors.
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4.6 Optimization of Mesh Movement Algorithm

In an effort to reduce the percentage of flow solver CPU time consumed by
grid adaptation, it is not necessary that all the nodes of the domain be swept at
each adaptive iteration. After each iteration, the maximum relative metric
error over the edges connected to a particular node is stored in a nodal array.
Rather than sweeping over all the nodes of the domain, only those nodes
whose stored relative metric error between consecutive adaptive iterations is
greater than the user-specified convergence criterion will be subjected to the
mesh movement process. As the number of adaptive iterations increase,
more nodes will attain this convergence limit and, consequently, a smaller
percentage of the nodes in the domain will undergo the displacement
algorithm. The percentage of solver CPU time taken up by grid adaptation has
thus been significantly reduced with the implementation of this convergence

criterion (see Chapter Six, "Numerical Results").

4.7 Combined Mesh Refinement/Coarsening, Mesh Movement and
Edge-Swapping Strategies

A limitation of any mesh movement strategy is its dependence on the initial

grid point distribution due to the fixed nodal connectivity. The addition of

mesh refinement and/or coarsening, and edge-swapping strategies increases

the flexibility of the grid adaptation procedure by permitting the nodal

connectivity to be modified.

When mesh movement is the only adaptive strategy considered, it may be
considered a minimal error mesh problem [37] in which the number of
vertices in the domain are fixed and one seeks a mesh which minimizes the

maximum interpolation error over the edges. In such a situation, the
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objective is to equidistribute the interpolation error over the edges of the
domain. The inclusion of mesh refinement and coarsening as well as edge
swapping strategies implies that the interpolation error can no longer be
simply equidistributed. It becomes a maximum efficiency mesh problem [37]
in which the maximum interpolation error is specified to meet a target edge

length with respect to the chosen metric.

An edge is refined or split when its metric edge length is too long or above a
specified threshold. An edge is coarsened or collapsed when its metric edge
length is too short or below a set threshold. Edge swapping is a strategy in
which the edges are reconnected in a manner to more equally distribute the
interpolation error along the edges of the associated tetrahedra. To choose
among the possible configurations of tetrahedra resulting from an edge being
swapped, a new criterion has been defined to measure the quality of the
tetrahedral element. This criterion is a 3-D extension of the mesh quality
previously described for triangular elements in [13]. The mesh quality is a
function of the lengths of the tetrahedral edges in the chosen metric and
measures the degree to which the error estimate has been equidistributed
over the edges. Its value ranges from a minimum of zero, which corresponds
to a completely flattened tetrahedron, to a maximum of one, which
corresponds to an equilateral tetrahedron with respect to the chosen metric.
An edge will be swapped if the mesh quality of the resulting configuration of
tetrahedra has improved, where the quality of the configuration is defined by
the tetrahedral element with the poorest quality.

Selecting an appropriate sequence of the adaptive strategies is a key step in

obtaining an efficient adaptive solution. The goal is to decrease the
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interpolation error to the desired level in an optimal manner. This entails
the addition of degrees of freedom in regions of the flow field where errors
are high and deletion of degrees of freedom where errors are low. However,
over-refinement would lead to a mesh with more degrees of freedom than
necessary, which is expensive, and excessive coarsening would not achieve
the desired error tolerance, necessitating further adaptive meshes to drive

down the error.

In practice one begins with a fairly coarse uniform mesh and a complete
adaptive solution typically consists of a series of three or four adaptive
meshes. This tends to offset the described competing effects. An attempt to
achieve the error tolerance in a single adaptive step would result in over-
refinement, since the error on the initial mesh tends to be spread out over the
larger elements. However, to minimize this tendency towards over-
refinement, one may initialize the adaptive procedure by commencing with a
few sweeps of the mesh movement algorithm to more equally distribute the
error and introduce some degree of desired anisotropy. A conservative
strategy which coarsens too much would likewise be inefficient, requiring too
many meshes for sufficient resolution. Hence, this sequencing of adaptive

strategies may be viewed as a highly nonlinear optimization problem.

The main difficulty in choosing an appropriate sequence of adaptive strategies
lies in the optimization of the relative sizes of the elements. If regions with
high errors are over-refined relative to the refinement and/or coarsening of
other areas, then these over-refined elements will possess comparatively
lower errors in the solution of the adapted mesh. These regions of lower

errors will then be coarsened in the subsequent adaptive mesh, in
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conjunction with the over-refinement of the other areas, which now possess
comparatively larger errors. The oscillation between refinement and
coarsening would continue on subsequent adaptive meshes and effectively
impedes the attainment of an optimal solution. This emphasizes the

importance of a sound sequence of adaptive strategies.

The mesh modification algorithm begins with a selected number of iterations
of the mesh movement and edge swapping strategies. This equidistributes the
error over the edges and minimizes the tendency of the initially coarse mesh
to over-refine. The next step is to split those edges with the largest metric edge
lengths and collapse those with the smallest so as to reduce the range of
metric lengths and bring its average value closer to the target error level.
Once all edges have been considered for splitting or collapsing, mesh
movement and edge swapping operations are repeated. After the entire
sequence has been executed a specified number of times, one obtains an

adapted grid.

4.8 Summary of Grid Adaptation Procedure

The incoming grid from the flow solver is termed the current mesh and may
contain tetrahedral, hexahedral or prismatic elements. At the beginning of
each adaptive cycle, an equivalent background grid consisting of purely
tetrahedral elements must be created for interpolatior. purposes. Using the
incoming flow solution on the background grid, nodal values of the Hessian
of the flow variable are recovered and then modified to the corresponding
Riemannian metric values. With these nodal values, the metric lengths of all

edges of the incoming grid are numerically integrated and these will be used



in computing the edge-based error estimate, defined to be the spring constant

for that edge.

The grid adaptation procedure may be summarized as follows:

DO 10 iter = 1, max. no. of adaptive iterations
DO20 inod =1, NNODE
IF relative metric error is > CONVCRIT THEN
DO 30 iedge = 1, NEDGE
Compute spring constant K,
30 CONTINUE
Compute new position of inod from equation (4.6)
IF boundary node THEN
Project back to corresponding curve or surface
Perform tests on quality of elements connected to inod
ELSE
Perform tests on quality of elements connected to inod
ENDIF
Move inod to its new coordinates
Update the metric length of connecting edges of inod
ENDIF
20 CONTINUE
Update nodal array for relative metric error
IF relative metric error for all nodes < CONVCRIT exit loop 10
10 CONTINUE

NEDGE represents the number of edges sharing the node inod and
CONVCRIT is the user-specified convergence criterion for the relative metric

€rror.
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5. Solution Procedure

5.1 Introduction

This chapter describes the flow solver algorithm as well as the coupling of the
solver with the grid adaptation method. The numerical scheme used to
iterate for spatial nonlinearity will be discussed. The strategy of a centered
scheme with artificial dissipation has been implemented for stabilization
purposes. The grid adaptation algorithm has been embedded in the flow
solver procedure and the relationship between the adaptive parameters and

artificial dissipation scheme will be discussed.

5.2 Flow Solver Algorithm

A flowchart outlining the solution procedure of NS3D is given in fig. 5.1. As
detailed in Chapter Two, the nonlinear governing equations are linearized by
the Newton method and spatially discretized by the Galerkin finite element
method. The steady state solution of the equations is obtained by an implicit
time-marching approach based on the first order Gear scheme. The Newton
linearization procedure results in a set of linear equations for pu, pv, pw,p
and T,. The continuity and momentum equations (2.2-2.3) are solved in a
coupled manner for the mass flux components, pu, pv, pw, and pressure p.
To reduce overall memory requirements, the energy equation (2.4) is solved
for the total temperature in a segregated manner. The static temperature field
is updated using the total temperature, mass flux components and pressure

and density is updated using the equation of state (2.5).

A strategy of a centered scheme with artificial dissipation is implemented to

stabilize the convergence of the system of the coupled continuity-momentum
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equations at high Reynolds numbers. The coefficients of these artificial
dissipation terms are represented symbolically as A and p,, in fig. 5.1. One
weakness of the Newton algorithm is that the initial approximation must be
sufficiently close to the final solution in order to obtain convergence. To
partially overcome this weakness, the solution procedure involves a series of
steps in which the amount of artificial dissipation in the numerical scheme is
progressively unloaded or decreased. These unloading steps result in a
successive series of solutions which are obtained at decreasing levels of
artificial dissipation and serve as progressively improved approximations to
initiate the next Newton loop. The unloading is typically carried out in five
steps, yielding four intermediate solutions as well as the desired final
solution which is obtained using the smallest amounts of artificial dissipation

possible. The overall residual is defined in the L,-norm as

n+1

2

II% =\/(Res:;;1)2 +(Res;’,’“)2 and toler refers to the orders of magnitude by

which this overall residual must decrease to attain convergence. Although it
is not necessary to drop the overall residual of intermediate solutions by
more than two orders of magnitude, the residual of the final solution must

satisfy a stricter convergence criterion.

Within a Newton iteration the coupled continuity and momentum
equations as well as the energy equation are solved using iterative solvers
such as GMRES (Generalized Minimum Residual Method) and PCGS
(Preconditioned Conjugate Gradient Squared Method). Since an iterative
solver is used at each Newton iteration to solve the ill-conditioned linear
system coming from the continuity-momentum equations, it has also been
found highly beneficial for the convergence of the iterative scheme to

introduce additional dissipation in the coefficient matrix itself. This
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dissipation, denoted symbolically as 1S and A*, is similar to that appearing
in the residuals of the system of equations. Typically, the values specified for
nk and A* in the iterative scheme are greater than those of the residuals of
the system of equations. This is equivalent to freezing the iterative matrix at a

lower Reynolds number than that at which the residuals are calculated.

NS3D solves the system of steady, compressible flow equations by a time-
marching procedure. The discretized time-dependent terms increase the
diagonal dominance of the coefficient matrix K and hence improve its
condition number. The size of the time step is dynamically chosen, as
determined by the flow problem, and this helps to ensure the convergence of

the linear system.

5.3 Coupling of Flow Solver with Grid Adaptation

The flowchart in fig. 5.2 provides an overview of the coupling of the flow
solver to the grid adaptation scheme. Starting with an initial non-adapted
grid, the adaptive scheme is called at each unloading step when the overall
residual has decreased by the order of magnitude specified by toleradp. After
the grid adaptation algorithm has attained convergence, the output is an
adapted grid and the accompanying interpolated solution. This interpolated
solution is used to begin the next Newton iteration. When the residual
further drops by another specified order of magnitude, toler, the Newton loop
is considered to be converged. Within each unloading step, an improved
solution is computed on the resulting adapted grid. By coupling the grid
adaptation with the flow solver, one obtains not only a less dissipative
solution but a more optimal grid for that particular solution. With each

unloading step, there is not only a progressive decrease in the amounts of
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artificial dissipation but also a relaxation of the adaptive parameters
controlling the quality of the elements. For hexahedral elements the range
spanning the minimum and maximum angles of the quadrilateral faces is
progressively increased with each unloading step. For tetrahedral elements,
the shape factor is decreased with each unloading step, thus allowing a greater
degree of anisotropy to be introduced into the adapted mesh. The loosening of
the constraints on the elemental quality leads to a wider range of nodal

displacement as the unloading steps proceed.

The above approach assumes that no solution is provided on the initial grid.
However, if there existed an accompanying converged solution, one can use
the incoming solution to compute the error estimate and adapt the grid. One
may then compute the finite element solution on the adapted grid using the
same or lower levels of artificial dissipation. It will be shown that with grid
adaptation smaller amounts of artificial dissipation are required for the same

level of convergence.
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6. Numerical Results

6.1 Summary of Test Cases
Numerical results have been obtained on both structured and unstructured
grids. These results span a range of flow regimes and types, including inviscid

and viscous flows, as well as internal and external aerodynamics.

Sections 6.2-6.3 present analytical test cases on tetrahedral and hexahedral
meshes which demonstrate the capability of the mesh movement strategy to
equidistribute the interpolation error of a known function over the edges of

such grids.

Section 6.4 describes the numerical predictions of grid adaptation on the
second stage stator of the UTRC (United Technologies Research Center) Large
Scale Rotating Rig [73]. It should be remarked that the degree of mesh
movement was severely limited in this test case since no nodal displacement

was allowed on boundary curves and surfaces.

Sections 6.5-6.6 examine transonic flow over a 10% circular arc which is a 3-D
extension of an oft used 2D case [74]. This case was chosen to test the capability
of the mesh adaptation procedure to improve the resolution of shocks on

both unstructured and structured meshes.

Section 6.7 considers laminar viscous flow in a square duct with a 90° bend
[75-77]. Six different grid sizes for this geometry were investigated and this
test case was used to study the solution error of non-adapted and adapted

grids as a function of mesh size. One sought to determine the size of the non-
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adapted grid that would be equivalent to that of a given adapted grid for the

same level of solution error.

Section 6.8 presents the results of adaptive mesh movement on laminar non-
reacting flow in a hydrogen fuel can combustor [78]. This case shows that
isotropic unstructured mesh generation may not necessarily be the cure all for
resolving the flow features of a problem. It also convincingly shows that a

converged solution may only be obtained after applying grid adaptation.

Section 6.9 describes inviscid flow over a NASA wing-pylon-nacelle
configuration [79, 80]. It is the only case in this thesis which applies the full
range of adaptive strategies, that is, grid refinement/coarsening, nodal
movement and edge swapping. The reason for this is that the mesh
movement procedure by itself, applied successfully in all previous test cases,
was found not to be sufficient to tackle the complex flow phenomena and
geometry of this configuration. The main difficulty is the exceedingly thin
nacelle leading edge which creates a rapid flow acceleration around the outer
nacelle lip. Properly capturing this acceleration with isotropic tetrahedral grid
generation or isotropic refinement would require an unrealistically large grid
size. An anisotropic nodal displacement method, as presented in this work, is
dependent on the size of the initial non-adapted mesh. If the initial mesh is
too coarse, nodes are moved away from one flow region to another resulting
in poor resolution of certain flow features. It would be impractical to generate
a very large sized grid merely to show that mesh movement could eventually
resolve the flow physics of this problem. It was clear that due to the
directional nature of the nacelle lip acceleration (small gradients in the

circumferential direction), an anisotropic mesh adaptation procedure which
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incorporates all strategies such as refinement/ coarsening, nodal displacement
and edge swapping, would be a more practical approach and one which would

lead to a drastic reduction in the grid size.

The wing-pylon-nacelle test case accentuates the need to apply the full range
of adaptive strategies to complicated 3-D flow problems and geometries. The
development of such a comprehensive mesh adaptation method thus
represents the ongoing and future work of Concordia University's CFD

Laboratory.

6.2 Analytical Test Case on Tetrahedral Grid

To investigate the effectiveness of the adaptive procedure on unstructured
grids, an exact test case is first chosen to demonstrate the capability of the
mesh movement strategy to equidistribute the interpolation error of a known

function over the edges. An analytical function f, possessing strong gradients,

1
_y.,z) = arctan| 1000| x*y* ‘———)] (6.1)
f(x,y,z)=arc an[ (x y'z 256

has been defined over a [0,1]x[0,1]x[0,2] domain which comprises 2739 nodes

and 13,950 tetrahedral elements.

The initial and adapted meshes, along with the corresponding isolines of f
are shown in figures 6.1 and 6.2, respectively. The adapted mesh greatly
improves the resolution of the function in regions where large values of the
second derivatives of f occur. The jagged nature of the contour lines on the
initial grid is almost entirely eliminated on the adapted grid due to a more

optimal placement of the nodes and alignment of the stretched tetrahedral
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elements. The adapted mesh shown in fig. 6.2 was obtained after 250

iterations of the mesh movement algorithm using a relaxation factor of 1.0.

Figure 6.3 shows the convergence history of the mesh movement algorithm.
The average nodal displacement dropped by more than three orders of
magnitude over 175 iterations and, after this point, no further decrease in the

average displacement was observed.

Since equation (6.1) is an analytical function, the second derivatives can be
calculated exactly and used directly in the computation of the edge metric
error. A distribution of the number of edges versus the exact error over these
edges for both the initial and adapted grids is presented in figure 6.4. In the
ideal adapted case, all the edges would possess the same error but, in practice,
a near-Gaussian distribution is attained whereby the maximum edge error

has been reduced three-fold.

6.3 Analytical Test Case on Hexahedral Grid

Isolines of the same analytical function (6.1) were plotted on initial and
adapted hexahedral grids comprising 2541 (11x11x21) nodes (fig. 6.5-6.6). The
adapted grid shown was obtained after 250 iterations of the mesh movement

scheme, using a relaxation factor of 1.0.

In fig. 6.7 the convergence history of the nodal displacement algorithm
reveals that the average displacement decreased by four orders of magnitude
over 700 iterations, beyond which point no important changes in the

positions of the vertices are detected.

91



A distribution of the number of edges versus the exact error over these edges
is presented in fig. 6.8. In the adapted case, the distribution has shifted towards
a near Gaussian one in which the maximum error over an edge has been

reduced by four-fold.

Questions regarding the "quality” of the error estimate often arise in grid
adaptation investigations, i.e. how does it represent the "real error”, were it
known. To address this issue, the number of edges versus the exact and
estimated error were plotted for both initial and adapted hexahedral grids (fig.
6.9-6.10). The exact error over the edges was computed using the exact Hessian
matrix of the analytical function whereas the estimated error was determined
using second derivatives recovered through the weak Galerkin formulation
(Section 3.5.3). The estimated error appears to quite closely follow the exact
error for both the initial and adapted cases. However, a more detailed analysis
of the quality of the error estimate is presented in fig. 6.11(a-c) in which the
exact and estimated error, as well as their absolute difference, are plotted
versus each of the corresponding 7040 edges in the hexahedral grid. Again,
the estimated error displays a very similar trend to that of the exact error over

all the 7040 edges.

6.4 Second Stage Stator of UTRC Large Scale Rotating Rig

The second stage stator of the UTRC (United Technologies Research Center)
Large Scale Rotating Rig has been chosen to validate the adaptive
methodology for turbomachinery flows. Much detailed experimental data [73]
are available for the second stage of this large-scale 2.5 stage compressor (2-
stage axial-flow compressor with inlet guide vanes). It is considered a difficult

test case because of the low Mach number in the flow field, with typical
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relative Mach numbers less than 0.2, and the presence of corner stalls near the
endwalls. Mesh adaptation is expected to alleviate some of the solver's

problems for this particular test case.

As shown in fig. 6.12, the second stator possesses 44 blades with its inlet
located at station 4 and its exit at station 5. Station 4 is found at 19% of the
stator axial chord upstream of the stator leading edge. Station 5 is located at
18% of the stator axial chord downstream of the stator trailing edge. The stator
is solved with imposed experimental inlet and exit boundary conditions. An
H-mesh was used with 14 points upstream of the blade, 57 points on the blade
and 13 points downstream of the blade in the flow direction (fig. 6.13a-6.13c).
Twenty-five and 21 planes were used in the hub-to-shroud and blade-to-blade

directions, respectively.

Three cycles of adaptation were required to produce the adapted grid shown
in fig. 6-14a-6.14c. It should be remarked that in this first validation test case of
the adaptive method, the degree of nodal movement was severely limited by
the fact that no mesh movement was allowed on boundary curves and
surfaces. These curves and surfaces were generated by a non-CAD based in-
house mesh generation code. In fact, since this was a turbulent case, all eight
nodes of the hexahedral wall layer were restricted from moving so as to
preserve the original y+ values. Despite these severe constraints, the adapted
numerical results showed noticeable improvement over the non-adapted
predictions and responded convincingly toward the experimental data (fig.

6.15-6.20).
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Figures 6.15a-6.15d reveal comparisons between experimental and computed
static pressure distributions for suction and pressure surfaces at 3.0%, 45.1%,
73.4% and 95.5% span. In general, the adapted numerical results agree better
with the experimental data than non-adapted results and this holds true from
hub-to-tip. In particular, separation in the flow field in the hub region (3.0%
span) on the suction surface is accurately captured. At 3.0% near the leading
edge the suction surface pressure coefficient is better predicted after
adaptation. At 45.1% and 73.4%, the adapted results are closer to experimental
data on the suction surface. At 95.5%, the static pressure coefficient is over
predicted on suction surface but this is corrected to a certain degree by

adaptation. Separation is over predicted at the shroud.

Figure 6.16 depicts the total pressure coefficient at the inlet versus percentage
span. Total pressure is a computed quantity since mass and momentum
fluxes are imposed. The numerical results for both adapted and non-adapted
cases reveal that the total pressure profile of the experimental data is
respected but the adapted solution more closely matches the experimental

data.

The spanwise distribution of the total pressure coefficient at the exit is shown
in fig. 6.17. The adapted results represent a significant improvement over the
non-adapted predictions, particularly from the hub to 25% span region, and

convincingly matches the experimental data.

Figure 6.18 compares the radial distributions of numerical and experimental
values of exit flow angle. The flow angles, after adaptation, are well predicted

between 10-90% span. The adaptive procedure improves the solution in the
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regions of 10-40% and 70-90% span. However, between the hub to 10% span
and 90% span to shroud, the observed discrepancy may be attributed to the

fact that the nodes associated with wall elements are not allowed to move.

The spanwise distribution of loss, computed as the difference between total
pressure coefficient at inlet and exit, is shown in figure 6.19. The prediction of
loss, particularly in the vicinity of the hub and shroud, is much improved

with grid adaptation.

A plot of blockage versus percentage span is given in fig. 6.20. The blockage
factor distribution represents the departure of the actual flow field from
axisymmetry assumed in the through-flow analysis [81]. The blockage relates
the results computed in the through-flow analysis, which represent
circumferentially mass-averaged quantities, to the mass flow, which is related
to the area-averaged axial velocity. Details regarding the calculation of the
blockage factor is described in [81]. The adapted blockage distribution

represents a concrete improvement over the non-adapted results.

Mach number was the scalar variable chosen to build the driving edge-based
error estimate in the adaptation case. In each of the three adaptive cycles, a
given level of artificial dissipation was specified and the L-norm of the
solution residual was required to decrease by three orders of magnitude before
the nodes were displaced 200 times. This number of iterations may seen
rather small for a 3-D case but, since the displacement algorithm is applied
only to the volume nodes, it was observed that any further increase in the
number of sweeps over the nodes would not result in any noticeable change

of the nodal positions. As indicated in the convergence history of the mesh
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movement scheme (fig. 6.21), the greatest change in the grid point positions
occurred in the first adaptive cycle where the average displacement drops
from 3x10-3 to 5x10-5 over the first 200 iterations. The leveling of the
displacement curve in each cycle may be attributed to the low value specified
for the allowable maximum edge length. A low limit was necessary to ensure
that the resulting hexahedral elements in the adapted grid were not highly
skewed. The final adapted solution was obtained using 20% less artificial
dissipation than in the non-adapted case. A relaxation factor of 0.9 was
employed in the movement scheme in all three cycles. Figure 6.22 provides
the error distribution over the edges for the non-adapted and adapted grids. It

is clear that the error is more equidistributed over the edges of the adapted

grid.

6.5 Transonic Flow over 10% Circular Arc on Tetrahedral Grid

An interesting feature of an adaptive methodology is its ability to capture
shocks with high accuracy. To prove this point, inviscid transonic flow in a
channel with a 10% circular arc is considered on an unstructured grid
comprising 8,885 nodes and 45,873 tetrahedral elements. The length of the
channel is 3, its height 1 and its width 0.5. This case is a 3-D simulation of a 2-
D flow [74].

The initial and adapted grids, with their corresponding Mach contours for an
inlet Mach number of 0.675, are displayed in fig. 6.23-6.24. The observed
oscillations in the contour lines on the non-adapted grid disappear in the
adapted case as the stretched tetrahedral elements become properly aligned
with the shock. An error estimate based on Mach number was used to drive

the mesh movement algorithm. The adapted mesh reveals that more nodes
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have moved to the flow field regions with strong changes in gradients of
Mach number such as the shock and leading and trailing edges. Such a mesh
leads to a much sharper shock (fig. 6.25(a-b)) and a better resolution of the

flow variables in the regions of leading and trailing edges.

The adapted grid shown in fig. 6.24 was created after six cycles of adaptation. A
converged solution on the non-adapted grid was used to initiate the adaptive
process. The solution procedure included three steps in which the artificial
dissipation was progressively lowered and, at each given level of dissipation,
two grid adaptations were performed. The flow residual was required to
decrease two orders of magnitude between each adaptation at a given level of
artificial dissipation and three orders of magnitude between unloading steps
of artificial dissipation. After the sixth grid adaptation, the flow residual
required a drop of five orders of magnitude for the solution to be considered
converged. It can be observed that as the adaptive cycles progressed and the
ensuing adapted grid became more stretched, the number of solver iterations
increased. Over the six adaptive cycles, the amount of artificial dissipation
applied decreased by 33%. Each adaptation procedure was considered to be
converged when the relative metric error was below the specified limit of
0.25%. A relaxation factor of 0.9 was used in the mesh movement scheme.
The convergence histories of the flow solver and adaptation procedures are

shown in fig. 6.26-6.27.

In an effort to optimize the mesh movement algorithm in terms of CPU
time, at each adaptive iteration only those nodes that did not meet the
relative metric error convergence criterion were subjected to the

displacement scheme. As illustrated in fig. 6.28, at the beginning of each of the
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six adaptive cycles, 100% of the nodes in the domain are swept and undergo
the displacement algorithm. However, as the iterations progress, an
increasing number of nodes have attained the relative metric error limit and
are no longer included in the sweep of the nodes. This pattern becomes more
pronounced with each subsequent adaptive cycle and, towards the end of the
final adaptive cycle, it is found that the adaptive algorithm is executed for
only 10% of the total nodes. The percentage of total CPU time (solution and
adaptation) taken by the adaptive procedure, consisting of six adaptive cycles,
progressively decreased as the adaptive cycles increased. The first and second
adaptive cycles occupied 36% of the total CPU time, the third and fourth cycles
took up 14% and the fifth and sixth cycles used only 5% of the total CPU time.

Fig. 6.29 compares the error distribution for the non-adapted and adapted
grids. The adaptive process has resulted in the error over the edges becoming
more equidistributed as indicated by a shift towards a more Gaussian

distribution in the adapted case.

6.6 Transonic Flow over 10% Circular Arc on Hexahedral Grid

The previous test case was repeated on an 8,840 noded (65x17x8) hexahedral
grid to demonstrate the independence of the mesh adaptation procedure of
element type. The initial and adapted grids are displayed in fig. 6.30-6.31,
along with their corresponding Mach number contours. The adapted surface
mach distribution on the lower wall of the channel reveals a much sharper
shock structure as well as improved resolution at the leading and trailing
edges of the arc (fig. 6.32). The flow solver and adaptation procedure
convergence histories are presented in fig. 6.33-6.34. The solution on the final

adapted grid was obtained with 30% less artificial dissipation. A relaxation
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factor of 0.9 was applied in all six nodal displacement cycles and adaptive
procedure was deemed converged when the relative metric error fell below
0.135%. Figure 6.35 shows that the effort to optimize the mesh adaptation in
terms of CPU time has resulted in a significant reduction in the percentage of
nodes being subjected to the mesh movement strategy at each adaptive
iteration. At the end of the first adaptive cycle, approximately 55% of the
nodes of the domain were swept whereas only 5% of the nodes had not met
the relative metric error limit at the end of the sixth adaptive cycle. The first
and second adaptive cycles used 60% of total CPU time and this value
decreased to 17% for the fifth and sixth cycles. A plot of the number of edges

versus the metric error is shown in fig. 6.36.

6.7 Viscous Flow in a Square Duct with 90° Bend

The ability of the mesh movement method to accurately capture secondary
flow features using a low number of optimally placed grid points is
demonstrated for laminar viscous flow in a square duct with a 90° bend. This

geometry was first studied experimentally by Humphrey et al. in 1977 [75].

The problem was non-dimensionalized using the square root of the inlet area
as the unit length and the average inflow velocity as the unit velocity. The
test case was solved at a Reynolds number of 790 based on the unit length and
velocity. The computational domain begins with a straight inflow section of
five units of length upstream of the bend and ends with an outflow section of
similar length downstream of the bend. The curved surfaces have inner and
outer radii of 1.8 and 2.8 units of length, respectively. A fully developed
velocity profile was prescribed at the inlet using the analytical solution given

by White [82].
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The aim of this test case was to investigate the relationship between some
error properties of non-adapted and adapted grids. Six different grids were
used in a non-adaptive setting and possessed the following dimensions:
11x11x31 (3,751 nodes), 21x21x61 (26,901 nodes), 31x31x91 (87,451 nodes),
36x36x106 (137,376 nodes), 41x41x121 (203,401 nodes), and 51x51x151 (392,751
nodes). Among these grids, four of them were also subjected to grid
adaptation: 11x11x31, 2x21x61, 31x31x91 and 41x41x121. Figure 6.37 presents the
initial and adapted surface meshes of a 21x21x61 grid of the square duct while
figure 6.38 provides a mid y-plane cut of the same geometry.

Each of the four grids studied in the adaptive setting underwent five cycles of
adaptation. When the flow residual dropped by three orders of magnitude,
the nodes were displaced 400 times. However, on the final adaptive cycle, the
solution was considered converged only when the residual had decreased by
five orders of magnitude. As the adaptive cycles proceeded, the amount of
artificial dissipation was progressively decreased. The reduction in the level
of artificial dissipation required for the final adapted solution ranged from 50-
80% less than for the initial non-adapted solution. The nodal displacement
convergence history, plot of the nodal percentage undergoing the adaptive
algorithm and the error distribution between the non-adapted and adapted
grids are quite similar in pattern and trend for all the four adapted cases and,
therefore, fig. 6.39-6.41 displays these plots only for the 31x31x91 (87,451 nodes)

grid.

Figure 6.42(a-b) shows the effect of mesh movement on increasingly finer

grids in terms of the streamwise velocity profiles plotted along radial lines
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taken at 60° and 90° cross-sections. The 60° velocity profile is measured at
y=0.25 which is half-way between the x-z plane wall and the x-z symmetry
plane. The 90° profile is taken at y=0.5 or the x-z symmetry plane.

Figure 6.43(a-b) compares the streamwise velocity profiles at 60° and 90° cross-
sections on the 21x21x61 adapted grid with the experimental data of
Humphrey [75] as well as the results of Yeo et al. [77] and Lin et al. [76], which
are obtained with different numerical schemes. The adapted results agree
very well with Yeo's and Lin's predictions which were obtained on
significantly finer grids. As noted by Lin et al. [76], the discrepancies between
the experimental and numerical data would tend to suggest that the flow
conditions in Humphrey's experiment do not correspond to those used for

the calculations.

One objective of this study was to determine the size of a non-adapted grid
that would be equivalent to that of a given adapted grid for the same level of
solution error. It is assumed that the finest adapted grid (41x41x121) would
provide the best solution. The difference between the solutions obtained on
each of the six non-adapted grids and the adapted 41x41x121 grid is calculated
as an error in the Ly-norm and plotted as the top curve in fig. 6.44. The lower
curve in the figure is obtained by computing the Ly-norm error between the
solutions on each of the four adapted grids and the adapted 41x41x121 grid.
For this purpose, the Ly-norm error between nodal solutions ul and #2 on

the two concerned grids has been defined as

nnode

3 (u1,-u2)

i=1 (6-2)
nnode
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Referring to fig. 6.44, one observes that, for the same level of error (for
example, error=0.535), the adapted 21x21x61 (26,901 nodes) grid is equivalent
to a non-adapted grid of approximately 270,000 nodes. It is interesting to note
that the solution on the adapted 26,901 node grid required a total solution and
adaptation time of 7.1x10% CPU seconds whereas the non-adapted cases of
203,401 nodes (41x41x121) and 392,751 nodes (51x51x151) needed 3.7x105 and
2.5x105 CPU seconds for solution time, respectively. Thus, one can achieve
not only the same level of solution error by solving and adapting on a
significantly coarser grid but, more importantly, the time required to obtain
the solution on the adapted grid was approximately four to five times faster.
A comparison of the streamwise velocity profiles at 60° and 90° cross-sections
obtained on the adapted 21x21x61 and non-adapted 41x41x121 and 51x51x151

grids is shown in fig. 6.45(a-b).

Up to this point, all the grids considered for the square duct have been
composed of hexahedral elements. It has been observed that, for the same
number of nodes, a tetrahedral grid will give a less accurate solution than a
hexahedral grid. However, one advantage of the tetrahedral element is that it
possesses a geometric flexibility which is more conducive to grid adaptation. It
is for these reasons that non-adapted and adapted solutions were obtained on
a tetrahedral mesh consisting of 26,991 nodes and 144,939 elements. This grid
size was selected so that comparisons could be made with the 21x21x61 (26,901
nodes) hexahedral grid. The error between the solutions on the non-adapted
tetrahedral mesh and the adapted 41x41x121 grid was calculated to be higher
than that of the similar sized hexahedral grid. This is the expected result and,
as the data points labeled ‘Tetra. Unadapted’ and 'Hexa. Unadapted’ in fig.
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6.44 indicate, the non-adapted tetrahedral grid had a difference in solution
error of 0.972 while the non-adapted 21x21x61 hexahedral grid had a lower
value of 0.875. However, the adapted hexahedral grid had a higher error than
the adapted tetrahedral mesh, that is, 0.535 versus 0.374 as shown by the labels
"Hexa. Adapted’ and 'Tetra. Adapted’. The lower solution error in the adapted
unstructured grid may be attributed to the flexibility of the tetrahedral
element, thus allowing grid points to move with less constraints to more
optimal positions as dictated by the error estimate. If one draws a horizontal
line across the curves in fig. 6.44, one can say that, for the same level of
solution error, the adapted 26,991 noded tetrahedral grid is equivalent to an
adapted hexahedral of about 50,000 nodes or a non-adapted hexahedral grid of
approximately 400,000 nodes. Figure 6.46 compares the streamwise velocity
profiles along radial lines at 60° cross-section for the adapted hexahedral and
tetrahedral grids and the unstructured grid provides a better prediction of the
two velocity maxima. It should be noted that the tetrahedral case underwent

the same grid adaptation protocol as the hexahedral one.

6.8 Laminar Non-Reacting Flow in Hydrogen Fuel Can Combustor

Combustor analysis offers one of the most promising applications of
unstructured grids in gas turbine engines. Due to their geometrical
complexity, they do not lend themselves well to multi-block grid generation.
In addition, grid adaptation may play a very important role in resolving the

complicated nature of combustor flow.

A high shear direct injection experimental can combustor was chosen for its

relative geometric simplicity compared to gas turbine combustors while
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keeping the flow complexity level nearly the same [78]. The hydrogen fuel is
injected radially into a swirling air flow and the mixture undergoes a sudden
expansion at the entry to the combustor can. This is a non-trivial test case
involving swirling flow, multiple inlets, severe temperature gradients and

complex flow features at the hydrogen jets and the combustor backstep region.

The current analysis has been performed on the full 360° geometry for non-
reacting flow and shows the advantages of automatic tetrahedral meshing
coupled with an adaptive nodal displacement scheme. This test case is also
meant to demonstrate the still important improvements of mesh adaptation
even if its use is restricted to a post-processing application. The original ICEM-
TETRA unstructured grid is shown in fig. 6.47.

The flow solution on the initial non-adapted grid was quite stable during the
first four of the five unloading steps of artificial dissipation. However, after 40
iterations of the final step where the artificial dissipation was the lowest, the
solution became unstable and quickly diverged. This indicates that the grid is
not suitable for resolving the flow features. The traditional approach to
ensure convergence is to increase the artificial dissipation, which is known to

degrade the solution quality.

The appropriate approach is to generate an adapted grid from the last stable
solution. By using only one mesh adaptation cycle, which consisted of 200
iterations of the nodal displacement scheme at a relaxation factor of 0.9, and
restarting the analysis from an interpolated solution on the newly adapted

grid, a converged solution is attained after less than 100 iterations. This
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solution was obtained using the same level of dissipation as requested in the

final unloading step. Figure 6.48 displays the flow solver convergence history.

Figure 6.49 shows the adapted surface mesh of the combustor geometry.
Comparisons of the adapted grid with the original grid at axial and mid-
longitudinal sections of the can combustor are provided in fig. 6.50-51. It is
clear that the grid adaptation algorithm has no difficulty resolving multiple
"hot spots" in the solution. The hydrogen fuel jets, the swirler walls and the
combustor entry backstep are all well refined in the new grid. The amount of
nodal movement is quite significant considering that only 200 sweeps over all
the nodes were requested. The coarseness of the mesh on the axis sheds light
on the nature of the flow field in this region as grid points are moved away
from this low activity region. Figure 6.52 displays an axial cross-section

showing the velocity vectors at the injection location.

6.9 Inviscid Flow over a Wing-Pylon-Nacelle Configuration

The NASA wing-pylon-nacelle configuration was chosen to validate the
adaptive scheme due to the availability of extensive experimental data [79, 80].
The development of CFD codes to simulate complex interactions and physical
flow phenomena associated with engine-nacelle integration is a very
challenging task and this experimental setup provides a simplified version of

the problem on which computational techniques may first be developed.

As described in [79], the wing-pylon-nacelle interaction was isolated by
removing the wing-body and nacelle-body interactions and removing the
effects due to sweep, taper and twist of the wing. The experimental

configuration consists of a long duct, flow-through nacelle mounted on a
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swept pylon under an unswept wing. The wing has a supercritical cross-
section, constant in the spanwise direction. The nacelle is axisymmetric with
a NACA inlet section followed by a cylindrical section and circular-arc boat
tail. The nacelle axis is parallel to the wing chord. The leading edge is straight
and is swept at 75°. A horizontal cut through the pylon comprises a leading
edge section, a section of constant thickness, and a boattail section. The
leading edge section and boattail sections are the same on each horizontal cut
while the length of the constant thickness section varies due to the difference
in sweep angle between the leading and trailing edge. Inviscid analysis was

performed for a subsonic case at Mach number 0.6 and zero angle of attack.

The main difficulty presented by this configuration is the exceedingly thin
nacelle leading edge which creates a rapid flow acceleration around the outer
nacelle lip. To properly capture this acceleration with isotropic tetrahedral
grid generation or isotropic refinement would lead to an unrealistically large
grid size. It is obvious that due to the directional nature of the nacelle lip
acceleration (small gradients in the circumferential direction), anisotropic

mesh adaptation would drastically reduce the grid size.

Unlike the previous test cases discussed where only mesh movement was
used, the full gamut of adaptive strategies - mesh movement, refinement,
coarsening and edge swapping - has been applied to generate the adapted grid.
It should be noted that only one cycle of the mesh adaptation procedure has
been performed for this test case. Although further adaptation cycles should
be carried out, the results of the first adaptation cycle show the tremendous

potential of the methodology.
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The non-adapted grid has been created using the ICEM-CFD Tetra automatic
unstructured isotropic grid generator and consists of 265,136 nodes and
1,416,022 elements (fig. 6.53). The element size and growth rate of the
elements can be specified on the different CAD entities (curves and surfaces).
A solution was obtained on the non-adapted grid using the lowest amount of
artificial dissipation possible (|L.,=0.0 and n_,=0.3). Figures 6.54-6.55 compare
the experimental and numerical Cp distributions along the wing, away from
the nacelle, and along the nacelle body at two locations, 22.5° and 180° from
the top dead center position, respectively. It can be observed that the
acceleration at the leading edge is not well resolved for either the wing or
nacelle. This grid clearly does not resolve the flow features around the
leading edges accurately. To improve the resolution at the leading edges,
anisotropic mesh adaptation (mesh movement, mesh refinement/coarsening
and edge swapping) was applied. An edge-based error estimate using the
Mach number solution on the non-adapted grid was used to drive the

adaptive cycle.

In this particular test case, the objective was to apply the adaptive scheme to
improve the grid while reducing the grid size. This is made possible due to
the anisotropic nature of the adaptive procedure and the resulting optimal
placement of grid points. It results in a very coarse grid approximately half the
size of the non-adapted grid (132,531 nodes and 709,012 elements) but with a
much better resolution at the wing and nacelle leading edges. This grid was
generated by specifying a minimum aspect ratio of 0.001. It should be
remarked that the majority of elements of the non-adapted grid possessed an
aspect ratio between 0.8-1.0. The aspect ratio histogram of the adapted grid (fig.
6.56) clearly depicts that the specified degree of anisotropy has been achieved.
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A solution was obtained on the adapted grid using the smallest amount of
artificial dissipation possible (l,,=0.0 and p_,=0.3). This is the same level of
dissipation that was used in obtaining the non-adapted solution. Figures 6.57-
6.58 reveal that the leading edge acceleration at the nacelle and wing is better
captured. On the wing lower surface, however, the solution does not exhibit
the degree of acceleration indicated by the experimental data. This is not
surprising since the non-adapted grid solution, which is used to adapt the
grid, has the same deficiency. It is expected that multiple adaptive cycles,
accompanied by a gradual lowering of the amounts of artificial dissipation,
will further improve the quality of the grid and solution. Views of the
adapted and original grids are presented in fig. 6.59-6.61 The stretching of the
elements and the fineness of the grid at the leading edges are quite noticeable
on the adapted grid. The results of the first adaptation cycle have been
presented here to show the tremendous potential of the methodology and

further work on this test case is continuing at the CFD Laboratory and P&WC.
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Figure 6.1 Initial non-adapted tetrahedral grid and corresponding isolines
of analytical function
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Figure 6.21 UTRC stator: convergence of nodal displacement scheme
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Figure 6.23 Transonic flow over 10% circular arc: original tetrahedral
grid (8,885 nodes and 45,873 elements) and Mach contours
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Figure 6.24 Transonic flow over 10% circular arc: adapted tetrahedral grid
and corresponding Mach contours
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Figure 6.25(a) Surface Mach distribution for original and adapted
tetrahedral grids
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Figure 6.28 Percentage of nodes subjected to nodal displacement strategy
for transonic flow over 10% circular arc using tetrahedral grid
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Figure 6.37 (a) Surface mesh of original
21x21x61 square duct grid
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plane (y=0.5)

137




SQ. DUCT $0-DEG. BEND: 31Xx31%81 01.‘316:400:5
COMVERGENCE OF MESH MOVEMENT SCHEME
t MEIN MOVZMINT GONVCROTHCE

o
=
o
3
=
M
[
2
3
M
3

) 30 [15) 1600 2000 2400

vino
ITERATION

Figure 6.39 Adaptive algorithm convergence history
st over six adgptive cycles for 90-deg bend

Sa. pucTt 9‘%-‘253. BEND:
1 £ NODES SUBJECTEZOD TO MESN NOVINENT AT ZA. ITERATION

100

00

PLRCENTAGE NOOLS

.
e

40

o «bo sdo

1200 1s00 1000 2400
ITERATION

Figure 6.40 Percentage of nodes subjected to nodal
displacement strategy for 90-deg bend

50. DUCT 90-~-DEG. BEND: 31X31x91 (87 4513 NODES
ERROR DISTRIBUTION: NO. OF EDGES VvS. ERRO A

18— opLaA SRR

4000

NEDGES
QO?OO

20000

° K 11 T.

Figure 6.41 Error distribution over edges for origin
and adapted grids for 90-deg bend

138




0.25

Y=

SIZED ADAPTED G?RIDS

DEG. BEND
IUS AT 60—-DEG.

ALIDOT3A V13HL

RADIUS

!

ALIJOTI3A VI3HL

¥

RADIUS

ds of
plane

i

T
20
w..y
g3
B
S~
a2l
Ho
e g
A,

23

se velo
different sizes at (a) 60° & y=0.

amwi

igure 6.42 Comparison of stre

F

139



DUCT
Y¥=0.25

NTAL DATA FQR_SO.
ILES AT 60—DEG. &

RADIUS

ME
OF

ALID013A YI3IHL

[=]=]

ENTAL DATA F
FILES AT 90—

3O

pted

file on 21x21x61 ada

city pro
tal and other numerical cases at

RADIUS
e velo

140

amwis

xperimen

and y=0.25 plane and (b) 90° and y=0.50 plane

with that of e

d

@

a) 60°

ALIDOTIA YI3HL

Figure 6.43 Comparison of stre




AD
SIUHISH ERRSE £8R MEhAbsrrse onid
% I\}AL N1E°N8N—A§° § 1D si

A IZA 5““ §§ 26,991 g’ones)

SO. DUCT SOLUTIO% ERROR VS. NUMBE

RID (26,987 NODE

etra. Unadapted

Figure 6.44 Plot of solution error versus grid size for non-adapted and

adapted grids for square duct with 90° bend.

o--
=
e
z 4
=]
-
g 'KHexa Adapted \
nt |
Cy - N E
adapted i = 270,000 nodes
Tetra. Adapted™—._____ :
° T —
e r =R : )
o ' NNGDE > s

141




O
-
<
-0
n ||
33
-
Vg
g
-
no
-1
»O
-0
s
e
-
+
n
Ol
W
aoooa
<Q0c0o
OTIZ
P
Z7 oon
Swesn
Zponn
=NO®
N
VMI}(
~i800
O ek
Xﬂceo
N -
u:e:s
Tx-lql
byt TY e
b
X
o= rxX
w N
= "
a0
As oo
o
< &
San
=T
N
422
a0
«Zz

o~

ALID0T3A Vi3HL

RADIUS

[

A
A
N=ABag
A

Ng
NON-—-4A

= =

i
ALIDOTIA VIIHL

T Ty
.2

RADIUS

ted

o}
g &
T % e
&
cN§
0X1m..
g5
X
-aﬂo
o] 1
33>
> o3
v &5
€85,
EiSt

oal
U o~—n,
898
T B
ERb:
Egi &
g P
HYQo
S e ton
Uaihe
<

Figure 6

142




HEX. VS TETRA. GRID: ADAPTED (APPRQOX. 26,900 N DES%
g pAETER SRV R A IR YELOETES AT S0-EC & Y=0.2
=8 ABARTER PERAITESAL XA LA TL NaAES)
o~
T
//{2'\\.\\
%
g ".5
,c,/'/ 3
pars 3
> _},/ Ll{
= ~7 3
Q L e 0
S ‘ ~";‘_\ -7 :ll
- / b N A 1
- R4 J
= ] 7 I il i
(] g W
! d
£ # ]
/f i
» j
/,/ ]
Ry
. !
7
&
S [
a4
!
&4 ¢
] ::l' }
g S — — S —
.0 .2 -4 N3 .8
RADIUS

Figure 6.46 Comparison of streamwise velocities at 60° and y=0.25 on
adapted hexahedral (26,901 nodes) and tetrahedral (26,991
nodes) grids

143



)

a

(

AL TAW A A
\VAYAYAYAR AN Avons

(b)

AR R
ANAVAVARVAVAY: N
SAVAVANVARNS -
AVANNYIRAVARNN
.M”Wﬂﬂhaﬂ<bﬂ%w.

N

REE

AYA
ﬂfﬂﬂ
WS

A«»ﬂﬂ..,..

Pt

AN S

AVAN X :
NN RN
SSASRTRREEAR)
ASARRASAS
Aﬂﬂﬂ‘»ﬂ‘»"""
[ D

VV\

en can combustor

urfgce mesh of swirler

dro
S

144

Figure 6.47 (a) Original surface mesh of h
B (b) Magnmiﬁed view of originaly




b o

YBROGEN CA
SOLVER CONVERGENCE

w
18 EUHPESNTT SHURIBAGNE SAEF

1.0000

1

1000

dd d

0100

non-adapted

NAVIER STOKE

P

Q0

0001

T T | DAL JEL A S S I S S BN S S S B S =TT T =TT

-] 40 B0 120 160 200 240
ITERATION

Figure 6.48 Flow solver convergence history with and without adaptive
mesh movement for hydrogen can combustor test case

145




)

(a

FRS

CAVATART Lw o

SAAANTAR I Y

VAVANVAN, N

e \.v" .
T

B N
QROVSANN

= . )
NS

SN A==
[~ S5

N

ogen can combustor
ace mesh of swirler

Figure 6.49 (a) Adapted surface mesh of 1'37
(b) Magnified view of adapted s

146



Axial Slices

..»\r..mw , et
q...‘;..p“k .um\.l R
g ‘Mm_wn W &.Angu_.ﬁ_
SO, o
*EEWZQJSmY_
R SNy

S MY ANANS

UDG
R SARUR o4
Y ViR T

R

At thejets

JXRA
3 OZOZOZO 5
R DXDXDXIX DX 06N
XPDADPDDKIXE

LOZOZOTON.

4 ROZOZOZOX

:
H
8.

=t
m
0
>E
0
w
Q
S
Uy
(o]

ately u

Immedi

| FOTOOTOXITOT &

N

DX
DAXIDAXDAXDE

X DADXEXXLX

Zf the

Immediatel
combustor entry

downstream

b
s

DA

-—

FOIoXIN
- o/

Figure 6.50 Comparison of original and adapted grids at various axial
positions

147



(b)

Figure 6.51 Longitudinal view of (a) original and (b) adapted grids of
hydrogen combustor
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Figure 6.52 Axial view of velocity vectors at the injector location of
hydrogen combustor
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Figure 6.53 Wing-Pylon-Nacelle original

150



1.2

.== NS3D solution |

poy L

(0 Exp. solution: upper surface

& Exp. solution: lower surface

- b= 3
1y P L %
(-] ’l: =ll A"'4> <> !
9 |l |‘ "/ "-
< — q__g_a_$ h N Q ,-""'
] H 2} S _l-___-_— - __M_..__-- a8
A
« I, O ™
('I'. lll 1"'
=2 L4
'.o" 1 2 5 .4 R .8 .7 5 o 1.0
Span
Figure 6.54 Cp distribution on wing far from nacelle using original grid
@ =

«==NS3D solution: 22.5° from TDC
< == NS3D solution: 180° from TDC

£ Exp. solution: 180° from TDC
& Exp. solution: 22.5° from TDC

’

-1.0

R _ --'3_\;@’
<F% B % I G S :C/c@
-3

T e
Span
Figure 6.55 Cp distribution on nacelle using original grid

151




Aspect Ratio
41743 Total = 709012 —
38532 Min=0.001
Max =1
Mean = 0.260699

e

0
0.001 0.14 0.28 042 0.56 0.7 0.84 0.98

Figure 6.56 Aspect ratio histogram of adapted grid for wing-pylon-
nagelle (specified minimum aspect ratio = 0.00% P

152




- :== NS3D solution !
- () Exp. solution: upper surface
6" '|l & Exp. solution: lower surface
-yl a=="N
. ' - o
Ell '.0'0-- > “‘
= ll <> 'o'
all! #
RH a___f
h n'\
l .0 1 .2 .5 .4 .5 8 7 .8 ) .Q
Span

Figure 6.57 Cp distribution on wing far from nacelle using adapted grid

o P

== NS3D solution: 22.5° from TDC !
== NS3D solution: 180° from TDC
&} Exp. solution: 180° from TDC

O & Exp. solution: 22.5° from TDC

[~~~ -

-1.0 = =.3 -

-8 ST

Span

T a2 R ) il

Figure 6.58 Cp distribution on nacelle using adapted grid

R T ..

153




(b)

Figure 6.59 Views of (a) oriéi‘.sna.l and (b) adapted grids with corresponding
istributions at pylon cutting plane

Mach number

Figure 6.60 Views of (a) original and (b) adapted grids with corresponding
Mach number distributions at wing cutting plane
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Figure 6.61 Views of (a) original and (b) adapted grids and correspondin
& Mach number gil.:‘tributions at w}i)ng leg:cliing edge pe &
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7. Discussion

7.1 Conclusions

An anisotropic adaptive grid method has been described for the solution of
three-dimensional inviscid and viscous flows by the finite element method.
The adaptive procedure has been validated on both tetrahedral and
hexahedral grids. The method consists of an edge-based error estimate and an
improved mesh movement strategy. The interpolation error of the
numerical solution at each point in the domain is a function of its Hessian
matrix. The error estimate is built from a modified positive-definite form of
the Hessian tensor. The resulting error (Riemannian) metric tensor controls
the magnitude as well as the direction of the grid stretching. The desired
anisotropic mesh is constructed as the transform of an isotropic mesh by a
coordinate transformation based on this tensor. In fact, the edge-based error
estimate is the precisely the length of the edge in the Riemannian metric and
may be interpreted as a 1-D interpolation error estimate projected on the edge.
The approach taken in this research seeks a near isotropic mesh in the
transformed metric space and an equidistribution of the error over the
elemental edges. The adaptive strategy is believed to be the first 3-D
implementation of an improved spring analogy-based algorithm originally

applied on 2-D quadrilateral meshes.

This effort represents the CFD Laboratory's/P&WC's first foray into 3-D grid
adaptation and the reasons for choosing a mesh movement scheme over
mesh enrichment methods was its portability into an existing code (NS3D)
with relatively little change in data structure. However, some difficulties

were encountered in making the extension to three-dimensions. One was the
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need for a robust search algorithm for interpolation of the metric tensor from
the background to current meshes as well as for interpolation of the old
solution on the newly adapted grid. Another challenge was presented in
making the mesh movement applicable to both hexahedral and tetrahedral
elements. Unlike quadrilateral grids in two-dimensions, it was observed that
control of the mesh quality had to be much tighter. A narrower range of
adaptive parameters had to be applied, thus limiting the range of nodal

displacement permitted.

The effectiveness of the adaptive scheme to equidistribute the interpolation
error over the edges of tetrahedral and hexahedral meshes has been shown
on an analytical test case where near Gaussian distributions of the error were
obtained. It was further demonstrated on non-adapted and adapted

hexahedral grids that the estimated error closely follows the exact error.

The UTRC second stator validation case in which only volume nodes were
moved showed that with very limited mesh adaptation by three-dimensional
standards (3 adaptive cycles, each consisting of 200 iterations of the
movement scheme), one can still obtain significantly improved results in

comparison to experimental and non-adapted results.

The adapted tetrahedral and hexahedral grids for the transonic 10% circular
arc case clearly contained elements which were highly stretched and aligned
along the shock. Sharper shock structures were also obtained compared to

other numerical results using other schemes.
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The aim of the test case involving laminar viscous flow through a square
duct with a 90° bend was to determine the size of a non-adapted grid that
would be equivalent to that of a given adapted grid for the same level of
solution error. Based on the assumption that the finest adapted grid studied
would provide the best solution, it was determined that for the same level of
error, that adapted 21x21x61 (26,901 nodes) hexahedral grid was equivalent to
a non-adapted grid of approximately 270,000 nodes. One achieved not only the
same level of solution error by solving and adapting on a much coarser grid,

but also a four to five-fold reduction in solution time.

The can combustor test case exemplifies the necessity of coupling an adaptive
mesh movement scheme to automatic tetrahedral mesh generator. The
initial non-adapted grid, generated with isotropic elements, was not suitable
for resolving the flow features. By applying only one mesh adaptation cycle, a
converged solution was reached using the same amount of artificial
dissipation as applied on the original grid, but for which no converged

solution could be obtained.

It is worth remarking on a few observations common to the results of most of
the test cases. All test cases except the final one revealed that the flow solver
required lower amounts of artificial dissipation for solution on the final
adapted grids. The convergence histories for the nodal displacement
algorithm for all cases showed that an error threshold is reached below which
the error can no longer be decreased. This is to be expected of minimum error
mesh problems. However, with full mesh adaptation, which includes all

strategies, one has the capability of possibly lowering this error threshold.
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7.2 Future Work

The error estimate in this work is based only on one selected solution
variable. Yet, a true characterization of the error would necessarily require
information from all implicated flow variables. Future work on extending
the error estimate to encompass several flow variables would have to account

for the varying orders of magnitude and dimensions.

The present adaptive method can improve its applicability by considering
turbulent flows. In such a scenario, the mesh movement strategy could be
modified to move nodes normal to the wall to maintain a user-specified y+
value. Along the same lines of thought, the adaptive procedure should be
extended to operate on prismatic elements which would be beneficial for
turbulence modeling. The node redistribution scheme for prismatic layers
would permit the clustering of nodes in the normal direction to better resolve
the viscous stresses and a certain y+ value specified by the user could be

maintained.

As demonstrated by the final test case involving the wing-pylon-nacelle
. configuration, there are limitations to applying this scheme on complex 3-D
flow problems and geometries. Using isotropic tetrahedral grid generation to
properly capture the complexity of the geometry and flow phenomena often
associated with these cases would lead to an unrealistically large grid size. The
anisotropic nodal displacement method, as presented in this work, is
dependent on the size of the initial non-adapted mesh. If the initial mesh is
too coarse, nodes are moved away from one flow region to another resulting
in poor resolution of certain flow features. Furthermore, as the complexity of

the geometry increases, the mesh quality constraints imposed on the node
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movement strategy limit the possible range of grid point displacement. It is
clear that in the solution of complex 3-D geometries involving sharp
directional flow features an anisotropic mesh adaptation procedure which
incorporates all strategies such as refinement/coarsening, nodal displacement
and edge swapping, would be a more practical approach and one which would
lead to a reasonable grid size. This enhancement of strategies would eliminate
the dependence of the final adapted solution on the choice of an initial mesh

and allow the possibility of lowering the error threshold.
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Appendix A
Weak Galerkin Formulation of the Navier-Stokes Equations

The weak Galerkin formulation of the system of equations consisting of the
continuity (2.2) and the Navier-Stokes momentum equations (2.3) in
Cartesian coordinates will be demonstrated. Each equation is multiplied by a
weight function, W, which is identical to the shape function, and integrated

over the volume:

|W[C,+D,+E,+F, gV =0 (A.1)
v
where
o
c=|P* (A2)
pv
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Subsequent integration by parts yields the weak Galerkin form of the system

of equations
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where the surface integral term, G, is of the form:
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Appendix B
Time Discretization and Newton Linearization
of the

Navier-Stokes Equations

B.1 Time Discretization
The weak Galerkin form of the Navier-Stokes system of equations (A.6-A.7) is

discretized in time using a first order Euler backward scheme as follows:

[[wei+w. D+ W E + W F' gV - [weras=0 B1.1)
v S

where
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B.2 Newton Linearization

The terms of the discretized matrix and residual equations (2.24-2.27) will be

written in detail below:

177

(B1.4)

(B1.5)

(B1.6)



element influence matrices and residual from x-momentum equation:
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po+p+ 3Re (ax az) 3Re ay] }ny S

I dul dw |
-puv—%a] }n,d5+£w,- [pvw—%g:l }nzds

+IW

+IW,—

r..—&_\r__%

(B2.10)

element influence matrices and residual from z-momentum equation:

. N, oN;
[k""q]w =_J‘[Niw,, oW,  _H (2 oW, olN; W, I)de (B2.11)
1’4

dx Rep;\3 dz dx ox oz
w (29wW,9N; ow, oN,
kp [/ = V .
d I[ ay Rep,(s 3z ay dy oz ‘ (52.12)
I[ (Zw oW, +u" oW, +0" BWi)
v At 0z ox oz (B213)
_p (43w, 9N, 3w, N, LW, oN; v
Rep, 3 dz 0z ox ax dy dy
oW,
[kvii]pw=_I[N, az']dV (B2.14)
v
& oW 2u (., 0w Ju dv ow | oW,
R "o n i 2 _ e gw_gue _Y¥i_ anR YV |} OV
© Sow Z‘-‘[{p o [p 3Re (2 dz ox ay) az} oz

p(u ) e W, [ (% dw)  adw| W,
[puw (az+ax) . ax] ox +[pzrw Re(az+8y) " dy | dy av
2u (3 ) _u sl
+!W {[pw +p+ (ax ay) 3Re az] }nzds
v [ouo 2 2 e [ [ oo L 22 s
L Re oz * ) Re Jz v

(B2.15)
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Appendix C
Numerical Discretization of the Energy Equation

The weak Galerkin formulation, time discretization, and Newton
linearization of the energy equation (2.4) will be demonstrated. Equation (2.4)
is first multiplied by a weight function, W, which is identical to the

interpolation function, and then integrated over the domain:

v P

DT, 1 V2 )| _..9p  Ec - 3
J {"CP Dt ‘ereV‘[“V(TD‘?EH‘ECE*EW(V%)}WdV—O (€1

After integration by parts, the weak Galerkin form of eq. (C.1) can be written

as:
T, & op K V2| Ecg
C,| =2+VeVT, |-Ec== W+ VIiT,—— |+—=—V71,; [¢e VW :dV
“[{[p ”( a " ") Cat} [PrRe [ ° ch] Re Tu} }
K Ec - ~
—J {[ BrRe VT, +T{Z V’c,-,-] . n}WdS =0 (C.2)
s
The viscous dissipation term may be explicitly expressed as:
= d d d (C.3)
V’VT,-]- =5-x-61 +-5;92+$93

where

8, =ut, +ut, +wT, c
= (C.4)
8,=ut, +vT, +twT,

8; =ut, +ut, +wr,

The weak Galerkin form of the energy equation can be expanded as:
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| {p a;" W +C,[puT,, +pvT,, +pwT,, [W
14

K
PrRe [ 0"y e L ]st

., ~, ~, X
=_[ EciaEW+ L v W, + v W, + v W, |+dV (C.5
ot PrRe|\ 2C, . 2C, , ¥l 2C, .

+%£ [Glnx +0,n, +0;n, ]WdS

T, W, ++T, W, +T, W }dV+j[
< PrR

The time-dependent term of equation (C.5) is then discretized using a first
order Gear scheme (Euler backward) as follows:

j {(pc,, )‘ é[rof ~T," [W +C,[puT,, +poT,, + prOz]'w

1’4

t
+[PrR (ToeW, ++Tp W, + T, W )] }dV+J'[ 2o Tn ]st

b3

"HAt E_ f-lw—lb;—[ew +6,W, +0,W, |

=t
K V2 \& V2
+ W+ — | W+ =— | W. | lav (C.6)
PrRe[[ZCp)x g (zc,,l y+[zc) :

+-§—ZI [Olnjr +0,n,+6 3nz]thS
s

The Newton method is applied whereby the total temperature is expressed in

delta form, AT, =T,"'~T,", and the second order terms are neglected. Upon
substitution of equation (2.16) into the Newton linearized equation, the delta

form of the energy equation is assembled, over the elements of the domain,

in terms of the nodal unknown, AT:
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ndperl
S 2 [K"4] A(T,) }—R‘fsn, .7
e=1| j=1

where the element influence matrices and residual vectors from the energy

equation take the form:

k] =[{=pC,NW,+C, N 00 1 oy N
[ IJ]TD‘V{ P pu ox P
x (3N,aw, 3N, aw, N, aw,
3 1 1 dV

+PrRe( x ax dy dy NS dz

Resy = j { puT{,x +pvTy, +pwTy, ]"W

oy" 'y

+[ (T W, ++T, W, +T,,W )]
PrRe

Ec[ew +0,W +ew]

72 x72 72 i
N w | D w+ | w, | lav 9
PrRe|(2G, )"\ 2¢, ) "\ 2G|,

n E n
+-!‘I:P:;{e Tn] wds +R%-s[[61nx +8,n, +63nz] wds
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