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This

Algebraic extensions of commutative semiprime rings are

ABSTRACT

N

Algebraic Closures for Commutative Rings

w4

Ruth Rebekka Macégsh

thesis is a study of the paper [18] by R. Raphael.

’

introduced

and discussed leading to a characterization of algebraically

closed regular rings. The equivalence of algebraically closed

rings, totally integrally closed rings [8) and semiprime saturably

cloded rings [2] is establbﬁheg.\

¢

As applications, algebraic closures obtained in [18) for

~some rings of continuous functions and for some group rings are

presented.
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INTRODUCTION
1.
3

An algebraic extension of a commutative ring R 1s defined in [18]

to be a ring extension that' is integral and essential over R . These

a——

extensions coincide in fields. Algebraic extensions of comutative
semiprime rings were studied independently by E. Enochs [8] and

R. Raphael [18), proceeding from different points of view. The

i
)

resulting equivalent closures are unique up to isomorphism,"and have a

universal property. The ringsl that are regular '1n "\the‘ sense of
von Neumann are of main interest in [18] where they are showm to
play the same role with respect to semiprime rings as do fields with
respect to integral domains.

A further investigation of algebraic extensions was undertaken by -
W. Borho [2], ylelding a closure for arbitrary commutative rings xh;t

5

agrees with the algeﬁtaic closure whenever the ground ring is semiprime

8

but is not unique in general. \

In this thesis we study the paper [18] by R. Raphael. The totally

integrally closed rings (8] due to Enochs are bresented as are the

saturably closed rir;gs defined by Borho in [2]. To make this work

"
»

self contained othet: results from commutative algebra are proved. We
have féken ﬁie'libe)rty to expand some of the proofs. Lecturesh on Ringe
and Modules [14} by J. Lambek was used as' the main reference.

In what follows all rings are assumed to be commutatdve with 1

and all homomorphisms are l-preserving.

"
> >

A
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CHAPTER 1 -

ESSENTIAL EXTENSIONS OF RINGS

4

l. Essential extensions. . !

1.1 Definition. Let R and S be rings and'let R beasubrin'g of

S . If every non-zero ideal of S intersects R 1in a non-zero ideal

weshall say that S 1s an essential extension of K , or that § is

essential over R . An eml;edding of rings m: R+ S will be called

essential 1f S 1is essential over m(R)

/

...1.2 Proposition. Let R and S be rings and let R be a subring of
. o 4 i

S + Then the following statements are equivalent:

(1) S 1is an essential extension of R ;

(2) every non-zero principal ideal of S intersects R in a non-zero

, -1deal; e

y 4
&3) for any' s ¥ 0 in S there is 8 t € S. such that st € R. and .

i)

st ¥ 0 ; - )
.I ’ - -
(4) a ring homomorphism with domain S 1is a ‘monomorphism if and only

if its restriction to R 1is a monomorphism.

Proof. Clearly‘(l) implies (2). Suppose (2) holds, and .that sS is a
non-zero principal ideal in S . By (2) 85 N R 1is a non-zero ideal
of R, hence there is a t € S such that st € sSN R and st * 0 .
Therefore (2) implies (3). -

A Assume (3). Let f be a ring homomorphism with domain S -and
£' 1its restriction to R . Suppose f' 1is a monomorphism. If f

has non-zero kemel there is an s€ S , s % 0 , which is mapped by

f 1into zero. -By (3) .\'there is a t€S such that st € R and

- [



st + 0. But f(st) =10, 1hence f'(st) = 0 .and sirdce f' is a
monomorphism it follows thay- st = 0 , a contradiction. Tﬁerefore f
is a monomorphism. Conversely, 1f f 1s a u;onomorphism and r belongs
to Ker(f:) » then f(r) = £'(rJ =0, hence r=0 . Thus f' 1is a
monomorphism and so (3) 'impliels (4).

Finaliy assume (4). Let I be a non-zero ideal of . &, and
h: § + 8/1I the p;'ojection from S onto S/I . The restrictionof h
to R ~1s the homomorphism r+ ¢+ 1 of R into S/I with kernel
RN I . Since Ker(h) = 1 & <6> it follows from (4) that the kernel
of the restriction is a non-zero ideal whence RN I # <0> . Thus

(4) = (1) and the proof is complete.

P!

1.3 Example. The essential extensions of a field are precisely its

overfields.

‘6
5

Proof. Every homomgor;;hism o‘f a field ':f:x.lt"é a non-zero ring is a mono- -
morphism. Thus any0 overfield of a field - F‘ )is essential over F by
condition (4) above. 0;1 the other hand, if S: is an essential ring
extension of a field F , condition (4) implies that every homomorphiem

with domain S 1into a non-zero ring is a monomorphism. Hence S isg

a field.

-

1.4 Lemma (Transitivity). Let R, S and T be rings, R;C_ scT,

"let S be an essential extension of R , and let T be an essential

extension of S . Then T is essential over R .

w

Proof._Leg I be an ideal of T . If 1 ¢ <0$ then I NS 41s a
non-gero ideal of S . Now INR=IN (SNR)'=(INS)NR# <0> .

Thpa T 1s an essential extension of R .

LI ._\ - ' 3]
i
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2. Essential extensions of a semiprime X1irg.

P g s .

1.5 Definition. The prime radical of a ring R , denoted -¥ad R,

&
> o

is the intersection of all prime ideals of R . A ring is called \ 4
semiprimeif its prime radical <s <0> .

o
1.6 Definition. An element r of a ring R is called nilpotent

if rn\=‘0 for’ some’ positive .integer = .

. P N

1.7 Proposition. The pgime~}adical of a ring R _consists of all

nilpotent elements of R .

1
-

Proof ([14)). Let R be a ring, r-E R . If r 1is nilpotent then

=0 for some positive integer n . Conéequently rn belongs to

each prime ideal P din R . It follows that r € P and therefore ( . Y

r € fad R . Conversely suppose r 1is not nilpotent. Set
T= {1, r,.r2, ...} , this is a ;ultiplicatively closed set which does
not contain 0 . Let P be an ideal of R maximal with respect to

the broperty that it does not meet T and let a and b be elements

of R outside P ; then P is properly contained in P + aR and

in P + bR . By the maximality of P there are elements r, r® € T

such that ;m € P+ aR and r" € P + bR , hence rm+n € (P +.aR)(P + bR)

C P+ abR . Then ab ¢ P, for otherwise P P , a contradiction,
Hence P 1is prime and so there i1s a prime ideal of R which does not

e

contain r . Thus r does not lie in the prime radical.
‘ =

1.8 Corgllary. A semiprime ring has no non-zero nilpotent elements.

. °

<

L} ° .
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1.9 Definition., Let I be an ideal of<the ring R . The radical of
nae - *. B

.1, aenoted r:ad I, 18 the set of all elpmentis of R having some °

Sppositive poﬁgt in I . It follows from the proof of (1.7) .that rad I

. 18 the intersection of all prime \{deals of R which contain I ; it

is therefore an ideal. An ideal /K _jis said to be semigrime‘" if 1=
rad 1. - : ‘o

1.10 Progosition/./ The radical of an ideal I is a.semiprime ideal.
- . . ’ -

Proof ((16]). It is'clear that rad I C rad (rad I). Conversely let

“r € rad (r d I). ThEQN " € rad I for some positive integer n ,

N

hence thereNis a positive integer m such that S

€ I . Accordingly

.
r€rad I .

1.11 Proposition. Let R .be a éﬁbring of the ring S. If R is
semiprime, thenl S 1s essential over R if-ever} non-zero semiprime

ideal of S has non-zero intersection with R .

Proof. Let I be a non-zero ideal of S . Then rad I ¥ <0> since

it contains 1 , hence it is a non-zero semiprime ideal of . S . If now
rad I has non-zero intersection with"R then there is a non-zero
r € (rad I) " R and therefore "€ INR for some positive integer

n . Furthermore r" # 0 sindfe r 1is a non-zero element of the

) .
semiprime ring R . o
. . . « o N

1.12 Lemma. Let R be a semdprime ring ané let S be essential over
R. Then S 1s semiprime. ™'

: . ¥

Proof. Clearly (rad 8) "R =rad R . Now, rad R = <0> , hence by

the esser®tia)lity of § over .R , rad S = <0> . Thus' S 1is semiprime.

\
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5.- The complete ring of quotients of a commutative ring.

The complete rinéuof q\'xotieh_t:s will be referred ‘to many times over

. ‘and is therefore presented in detail. The proofs for this are taken :
= f.x'om [14) » Section 2.3. y . .
) : _‘1313 Definition. An ideal D 4n a ring & vill be called dense if,
. : T . o o

“for all 'r € R-, rD = <0> implies r = 0 . For example all non-zero
o~ ideals of the ring Z of integers ar#iense. On the other hand any

ideal .generated by a non-zero nilpoteht eléme:tt of a ring R 18 not

-d;.nge'. ‘ o S
- ‘ | ., 1,14 Progosi'tgty\. The following a’re properties o’f‘ dense ideals: |
’ (1) Aring R is dense. ) . | ' - . .
() Itf“D; is a dense ideal and D C D' , then D' is dense. -
(3) 1f D'J and D' are dense ideals, then 86 are DD' and DO D' .
A ‘ (lo) ~If R7¥ <0> th»en. <0>  is not a denac;. ideal.
. | . , - . A ,
gz_'g;_f_.\ (1) For all r €R, rR=<0> implies r =r1=0. ‘
’ (2) aIf’ D' ~is'“x;ot dense then rD' = <0> for some r€ R . Therefore
. ‘rDR <0> .
" (}) Let D and\ D; bt; dense ideals and riﬁ;R suct’\ that DD’ : <0>.
Then rdD' = <0> for any .d € D -and therefore rd = O . Thus
v D = <6; and he(nce 'r= 0. It follows ghpt DD" is a dense . ’
‘ ideal and since DD"C BN D' the latter is al\ao dense by (2). \
{4) 1f R # <0> there e‘:xi;tg.:a non-zero r in R such- that .
: r<g> = <0> ., ° ' : S
) | . : ‘r» V] - ’ .
. \ .



1.15 Defin{Fion. Let R be a ring. By a fraction is meant anww
element f € HomR(D, R)~, the set of R-module homqmorphisms‘of D to

R , where- D 1is any dense ideal. Thus f is a group homomorphism of
D 1into R such that f{dr) = (fd)r for any d€ D and r €R . dThe,

zero fraction and the identity fraction will be given so as to admit

as domains the ring R 1itself, that is , b,l € Hng(R, R) are

fntroduced by writing \Pr =0, lr=r1r, for all r €R .

Addition and multiplication of fractions fi € HomR(Di, R) ,
.1 = 1,2 , are defined thus: '

+ = .
R) , (f1 fz)d fld + £ .d ,

+ N

£+ £, E/l\iomR(Dl D, )
. . -1 = 3%

\\le € HomR(f2 DY R) , (flfz)d fl(fzd)

Here f;lnl = {r € R |-f2r € Dl} . This is a dense ideal since

-1
C '
£,(D,0,) € D, , that is. DD, C f, rﬁl

The set of fracrions associated with a ring R thus form a system

(F,0,1,-,+,-) where (F,0,+) 1is an Abelian se@igroup with fidentity
element 0 and (F,1,°) 1s a semigroup Qith identity element 1 . If
f 1s an element of F having domﬁin D# R, then [f+ (-f)] 1s not
identically the 0 fraction sinée [f + (-f)] has domain D and O
has domain R . Thus f does not have ‘an inverse relative’to addition
and therefore . (F,0,1,-,%+,*) 1is not'a ring. It will be shown that an
equivalence telation can be defined on F ° so that the set of ,all

vt

equivalence classes forms a ring:

1.16 Definition. Let C be the class of all systems sharing the set

of operations and safisfying the set of identities of (F,0,1,~,+,°) .
An equivalence relation 6 on a system F belonging to C is called

a congruence relatfon if f 6 8 and £2 8 8, imply (-fl) 6 (-81) ’

1

o



!
’

+ + "
A congruence relation 6 on F partitions F 1into a set F/O of
disjoint equivalence classes. The equivalence class of f € F 41s the

subset Bf = {f™ F | £' 0 £} . ¥

1.17 Proposition. If 6 is a congruence relatign on a system F

belonging to C , then F/8® ﬁelongs to C. \

Proof. Suppose ey'is a congruence relation on F . Define O = 60 ,
1=61, 6f +0g= 6(f+g) , 0feg= 6B(fg) and -(8f) = 6(-f) =
{frer | 0 (¢-H} .

It then follows from the definition of a cong;uence relation that
thetresults of these operations depend only on the equivalence classes
9% and Bg' and are 1ndependenénof the choice of representatives f
and g . Clearly © preserves all operations defined on F » hence

F/6 satisfies the set of identities that F satisfies. Thus F/6 € C.

!

1‘K§ Definition. Let D1 and D2 be dense ideals and fl € HomR(Dl,R),

f2 € HomR(Dz, R) . By f1 ) f2 is meant that f1 and f2 agree on

_ the intersection of their domains, that 1is fld = féd for all

€ n i
d D1 D

v

2 "
\\\ ) .
1.19 L?ggg. f1 6 fz if and only if fl and f2 agree on some -
(4 ) B 0 .
1 .

dense ideal.

Proof. 1f f1 0 f2~ then f1 and f2 agree on the dense ideal

D, N D

1 2" Conversely suppose fl and fz agree on the dense ideal
D' . Let dE€ Dl ﬁ\D2 and d' € D' . Then (fld)d' = fl(dd') =
fz(dd') = ﬁzd)d' . Hence (fld -_f2d)D‘ = <0> and therefore
= A N .
.fld fzd since D is dense. Thus fl and f2 agree on Dl D2



L.
£,

g
Shaiy

| Hom ¢ (D3 nopo

9!

1.20 Lemma. 0 1is a congruence relﬁgion on the system (F,0,1,-,+,°)

— —

Proof. It is clear that £ 6 f holds'for any £ € F and that £ 6 f,

a

implies fz 8 f, for fractions £, and f2 . Hence 6 1s refleXxive

and symmetric. To show 6 is transitive suppose fl &) f2 and

]

f N
f2 e f3 . Then‘ fl agrees with fz on D1 D2 and f2 agrees with
] = € N N
f3 on D2 D3 ,» hence fld f3d for any d D1 D2 D3 . This
is a dense ideal consequently f1 e} f3 . Thus 8 1is an'equivalence
relation.

~ -Now assume -fl 8 f3 and f2 ] fz . Then fld = f3d “Jl?/fﬁﬂva

hence (-fl)d = -(fld) = —(f3d) f (-f3)d , therefore (-f,)

1
er + € N + €
Furthermore (f1 f2) HomR(Dl D2’ R) and (f3 fa)

1
= + =
d fld fzd

4 R) are both defined. Let d belong to D N 02 N D3 N Dq,
= = 2 ‘ + L3
then fld f3d and fzd féd hence (fl fz)

+ .
f3d + fhd (f3” f4)d and therefore (f1 + f2) e,(f3 + fA) . Finélly

-1 -1 .
flf2 € HomR(f2 Dl’ R) and f_f,6 € HomR(fa D3, R) are both defined.

]

374

-1 -1 : '
€ N €
Choose d fZ D1 f& D3 , then fzd.’ D1 . féd € D3 .

= : mn . -
f2 6 f& we have fzd fbd in D1 D3 and from fl 8 f3 it follows

that (flfz)d = fl(fzd) = f3(f4d) = (f3f4)d . Hence Elf

Since

gnd f3f4

agree on the intersection of their domains and so ~(flf2)?9 (f3f4) .

2

Thus 6 1s a congruence relation by (1.16). ) 7

1.21 Proposition. If R 1is a commutative ring, the system
(F;0,1,-,+,:)/86 = Q(R) is also a commutative ring. It extends R and

vill be called its éomplete ring of quotients.

1

Proof. By (1.17) any equation valid in F remains valid in F/6 .
It therefore needs to be shown that the equivalence classes form a group

under addition and that the distributive and commutative laws are
-

-

2
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satisfied. To this end suppose f 1s a fraction with domain D and “

n- v t

dE€ED . Then [f+ (5£)]d= fd - £d= 0d , hence [f H (-f)] agrees

with 0 on D . Thus 6f +6(-f) = ¢§f + (-f)] = 60 , that is,

0 (~-f) 1s the additive inverse of O6f in Q(R) . Now let

Y
fi € HomR(Di, R) , 1= 1,2,3, and let d € DIDZ D3 . Then

€ K (S C N
f2d D1 , f3d D1 , and since D1D2D3._ D2 D3

(f2 + f3)d = (fzd + f3d) €D

3
we have

1

fl[fzd_t f3d] = fl(fzd) + fl(f3d) = (flfz)d + (f1f3)d . Hence

+ = A
‘ e[fl.(f2 f3)] 9[(f1f2) + (flf3)] . Also .f1f2 and fzfl agree on

2
Y

D.D. . This follows from commutativity in R , for if

172
n
1 N ]
12,,1 d,d} € DD, , (d; € D), d} € D)) then i
j b - 3 e,
£.0£,(d,d))) = Ye(£.d)(F,d)) = ) (£,d])(f,d.9 =- ) £ [£,(d d})] .
L R A A SO S Sk i AT Mt At U SORRPE N it R A

1

y
Finally, with every r € R one may associate the fraction r/l with

domain R which sends any s.€ R oﬁto rs . Thefi the mapping

r +08(r/l) of R into Q(R) 1is a homomorphism since operationé on

B3

fractions are preserved in Q(R) . It is actually a monomorphism,-

y
"t

for r/16 0/1 only if r/l and 0/1 agree on some dense ideal D ,

’

that is, only when rD = 0, that is r = 0 . The mapping r =+ 6(r/l)

wi}l‘ge ?alled the canonical monomorphism of R into Q{(R) . This

A2

completes the proof.
R
\'«" hY o

1.22 Dé}initiaﬁz A fraction is called irreducible 1f it canﬂbE be

extended to a larger domain.

1.23 Proposition. Every equivalence class of fractions contains

exactly one irreducible fraction, and this extends all fragtions‘ip

.
e
LA

the class.

. Then~ lfl(f2 + fé)]d = fll(f2 + f3)d] =

A
-

S
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i W

. Before proving this we state Zorn's lemma: If every simply
ordered subset of a nonempty ordered set (S, <) "has an‘upper bound
in 5, then S has at least one maximal element m , maximal in the
sense that m < s 1Implies m= s for all ‘s € S . Recall that
iS,’f)? }s an ordetLd set if < satisfies the reflexive, transitive L.
aﬂdﬁanti-éymﬁéxric laws. An ordered set (S, j_f is cali;d simply

ordered if a <b or b < a for any two elements a and b in S .
b

Proof. Set S to be the set of fractions in an equivalence class and

define a relation < on S by f‘1 < f2 if D1 E.Dz . Consider a

simply ordered family of fractions’ {f1 | 1 € 1} 1in the equivalence

class and let D= U, D . This is an ideal, for if x,y € D then

x€D, and y € D, , where D, g_ﬁ » D

i ] b
is simpiy ordered in R both X and y , and hence their sum, are

€D . sinee {p, |1€1)

in D, or in Dj . Therefore (x +y) € D. Define f € Hom§4D, R)

by fd=fd when 4 €D

\
g 3 then fid = f d since

(If d € Di nD
fi 8 fj)' Theﬁ‘ f 4is an upper bound to the simply ordered family

g

{f1 f 1 €1} . By Zorn's lemma the equivalence class contains at least
/

one irreducible fraction. Now suppose.. fl and f2 witﬁ’domains D1

2 'régpectively are both irreducible fractions in an equivalence

. »J' E + *
claqf Define f HomR(Dl Dys 14 29

R) by £(d; +d,) = f,d, +£,d
One need only verify that f mébe the zero element into zero,'

-

all other conditions for £ to be a fraction being clearly satisfied.

But if. d1 = =d

2 € D1 n D2 then fldl = fzd1 = fz(-dz) = ~f2d2 . Thus

f 1is a fraction and so fl and f2 have a common extension in the

equivalence class, contrary to the assumption that they are irreducible.

e -

h| /

T
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3’24 Progosition.‘ The following statements concerning tﬁg ring R

are eqhivalent.

(1) Every irreducible fraction has domain R .

(2) For every fraction f there exists an element s € R such that o

ﬁfd = s8d for all 4&¢€ D, the domain of f .

(3) Q) =R canonically {

Under any of these conditions R will be called ratigﬁallx

[l
Ly

complete.

© ‘
Proof. (1) = (2). Suppose every irreducible fraction has domain R .

Let f ;Le any fraction, f' {its irreducible extension: Since f',‘f

has domaingR put f£'1=§ . Then f£d= £'d = f'(ld) = (f'1)d = sd

;.. for all d &€ D .

(2) =¢3). Consider anyéélﬁwent 8f of Q(RY . By (2) there exists
an element s € R such tha; fd= sd = (s/1)d for all d € D, the
domain of ;‘. Thus f 6 s/1 and therefore’ af = 8(s/l) , the
canonical image of s in Q(Ry.. It follgés that the canonical

-l

monomorphism of R into Q(R) 1is surjective.

(3) = (1). Assume Q(R) = R canonically. Let f be any irreducible

fraction, then 6f 1is the image of some s € R under the canonical

isomorphiém, that 1s 6f = 6(s/1) . Now s/l {is irreduciblgksince

it hés.domain R ,lhéhbg by (1.23) £ =s/1 and so f has domain R .

Pollowing (1.21) R wilf now be identified with 1ts canonical

16889 in Q(R) . Thus we write 6(r/1l) = r . - a -y

i



1.25"f3emma. Let q € Q(R):‘ . Then . q-lR = {r € R ' qr € R} is a. "I{:’@'!”

e

L. dense 1deal. ‘ X
') o

] K . o
w

Proof. Suppose q = 6f ;, f a fraction with domain%* D and d € D .
Then‘the‘v‘fractioﬁs [£(d/1)} and (fd)/1 agree on' R , for [£(d/1)]

'has domain {r € R | (4/1)5 € D} = R = domatn” (£d)/1 \and if r€R

then [f(d/1)lr = f(dr) = (fd)r= (£d/1)r . It now follows that
= 6£8(d/1) = 6[f(d/1) = 6(fd/1) = fd for all d € D . Hence

qD C R and therefore 'D C q-lR . Thus q-lR contains a dense ideal.

s
]

1.26 Corollary. An element of Q(R) which annihilates a dense ideal

«

M oft R 1is zero. y

Proof. Suppose q 1s a non-zero elément of Q(R) and qD= <0> for

I \

ot some dense ideal f) of R7,. As shown 1n (1.25) there is an r € R

such that qr € R and qr 4 0 . Therefore qrD # <0> , a contradiction.

T 5

.\‘ W “
.1.27 Proposition.” Q(R) is rationally complete.

't

Proof. Let ¢ be aﬁy fraction gver Q(R) » K 1its domain. If k 1is
a non-zero element in K then <0> # k(k R.) C KNR. Set °
D" {r€ex nR | ¢r € R} and define f € HomR(D, R) by fd-— d)d
, >It will be shown that a) D 1is a dense ideal and b) for any k€K,
‘ ¢k = (8f)k . The result will thep follow by (1.24), condition 2.
(a) Suppose rD = <0> for some r € R. Let k be any elemer;n: of
. K., then ¢k € Q(R) . Put D'= kIR n (¢k)"'-lR . This is a dense ideal
"since both k-lR and (¢k)_1R are dense by (1.25). Now a
W' € k(IR S KNR and ($k)D' 'C ¢k[(¢k)™IR] C R , therefbre

D ¢(kD'), C R and so kD' &-D . Thus (rk)D' = r(kD%) C rD = <0> ,

#
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. /
hence rk =0, since D' 1is dense, and therefore rK = 0 . But ‘K is

dense, hence r = 0 .

~

lR n (¢k)-lR . Because kD' C D we

(b) Let k€K and d''€ D' = Kk~
have ¢(kd') = £(kd') . Then (¢k)d' = ¢(kd') = £(kd') = (Bf)kd' as
in (1.25). Therefore ¢k - (ff)k ,annihilates the dense ideal D' of

R and so ¢k = (6f)k by (1.26).

)

i

1.28 Definition. Let S phe a ring. ‘A subgroup D of .S may be
. .
called dense even if it is not an ideal of §.+ provided sD = Q

implies s =0, forall s€ S ., If R 1is a subring of S, then §

15 called a ring of quotients of R 1if and ‘only if, for all s € S ,
-1

8 R= {r€R| sr €R} is dense in 'S . Thus S 1is a ring of

quotients of° R 1if and only if, for all s and t€ S , t $ 0

’

-1
implies t(s "R) # <0> .

1.29 Proposition. let R be a subring of the ring S . Then the
following ‘\statement:s are equivatent: ‘ DA
(1) s is .a~_ring of quotients of R .
€2) Fo“r all 0% s €S , s-lR is a dense ideal .of R andA

s(s1R) + <0>
.(3) There exists a monomorphism of § into Q(R) which induces the

¥

canonical monomorphiém of R into

Proof: (1) (2). Follows from (1.28).
—_I—.K

A -
(2) = (3). Let 8 €S and define 8 € HomR(s lR, R) by j‘id = gd

for all d € s-l 8-1

R . By (2) R 1s dense in R , hence & 1is a:

fraction. The mapping s -+ 68 is clearly a homomorphism which induces

the canonical monomorphism r + 6f = 6(r/1) . 1Its kernel consists of

. B



_ shown in the proof of part (3) above.

15
L

n

all 8 € S for which 68 60 , that is those s for which

a(s-IR) = <0> , %hat is 8=0 by (2). Thus s -+ 88 1s a monomorphism -

"of § 1into Q(R) . | ' ,

/’

(3) % (1). By (3) one may assume RC SC Q(R) . Let s=06f €S8

1

and D the domain of f . Then D C s "R as in (1.25). Suppose

£ €S and t(é-lR)'= <0> . Then tD =0 . If Of' 4is the image of "’
t under the monomorphism of° S into Q(R) then (0f')D=0 and - 7"
£': D + (Bf')D , defined by f'd= (8f')d , d € D, is a fraction.

P

Now f'D =0, hence £'80 since D 1is dense, henc’é t = 6f'w= 0.

~

1.30 Corollary. 1If $ is, a ring of quotients of the ring R and

D 1is a dense ideal of R then D 1is dense in S .

Proof. 1f 8= O0f €S and 8D = <0> , then O6f = 60 as was just

1~

4
~

1.31 Definition. Let S be an extension of a ring R and let
0: R+ T be an embedding of rings. An embedding T of S in T

will be said to he over:g if the restriction of T to R 1is equal to -

R

-0 .. We also say that T extends O . An embeddip} T: S+ T 1is
1

called over R 1f it induces the identity on R . By (1.29), Q(R)

contains a copy over R of any ring of quotients of R . 2o

! ?'-F
’ KRG »

1.32 Proposition.  Up to isom’orphfarm oveﬂ R, Q(R) 1is the only

rationally compiete ring of quotients of a ring R .

» \ ~
.,

Proof. Let S be any ring of quotients of R . 1In view of thel last

proposition one may write RC SC Q(R) . Let q € Q(R). and

D={s€S | q8 € S} . This is a dense ideal of S since it contains

¥

]

N
PRt
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4

‘1deals ‘eR and (l-e)R . since :'= ex-+ (l—e)y implies

s

16
{re R | qre R} = q IR, which 1s dense in S by (1.30). Thus the T
mapping d + qd € Homs(D, S) 1is a fraction f . Now supposev S 1is
rationally completes” By (1.24) there exists an s € S such that ; ﬁi’

qd = fd = sd for 411.>d € D , hence (q-8)D = <0> and so

-,

”(q;s)q'lg = <0> ., But q-IR is dense in Q(R) by {(1.26) hence
X

q= 8 . Therefore Q(R) =
coase,

1.33 Example. Any ring of quotients of a commutative ring R 1is

essential over R .

Proof. Let S be a ring of quotients of R . Then for all 0% s ,

o -

s(s_lR) ¥ <0> . Hence for any 8% 0 in S there is an r € R -

.y

such that sr € R and sr #+ O . Therefore S 1is essential over- R

by (1.2), condition 3.

4. Baer rings.

——

1.34 Definition. A sum J .. K, of subgroups K, of an additive

k, €K, ,

Abelian group will be called dire@g'if 0= {161k1 » Ky "

implies ki = 0 for all 1 .

1.35 Definitionw(llﬁl). An element e 1in a ring R s said to be

idempotent if- g? =e . If e 1s any idempotent i R then any

element” T of?:R ,can be written''in the form r = er +.(l-e)r ,

o

..where er E eR and “(1- é)r € (1-e)R.. Moreover,~this is the only =~ .~

P

!‘way in which r can be written as a sum: of elements of the principal

~ ‘ \ ¢

-

i . AL A A
Sy ) o’
Vi 7L

er = ezx + e(l-e)y ex and (1-e)r = Xl-e)ex + (l-e) y (1-e)y/. ”‘ - .

[ -
1 n

li; follows that 0 caﬁndt be, written nontrivially as a aum of elenenta ' N

- Y
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of eR and (l—e)!( . Thus R = eR + (1-e)R is a direct sum. An I
ideal K'of R 1s a direct summand 1f K = eR for some idempotent S
e of R . e .
'/:‘—\ }
1.36 Definition ([l4]). Let K be a subset of a ring R . The
annihilator of K , denoted K* , i8. an ideal of R consisting of all .
r € R such that K= <0> ., (K*)* will be written K¥** ., The
) ideals of the form .K* are called annihilator ideals; thus J is am '
annihilator ideal if and only if J = K* for some subset K of R .7
3
If*”Kl and K2 are subgroups of. R then clearly (Kl + KZ)* =
i KI‘“ K; . If e=e’€R then (eR)* = (1-e)R ; for if s 1is an
" element of R such that es= 0, then s= es + (l-e)s = -
S
N (1-e)s € (1-e)R . The second inclusion is trivial.
L] - . " ~
*1.37 Lemma ([14]). Let K and J be ideals in a wing R . Then
(1) KC J=JkC Kk .
. »
) (2) KC R#t . : L, )
) R (3) Khkk = Kt | . ' o
) Proof. (1) 18 clear.
(2)- Since KK* = <0> , K 1s contained in the annihilator of K+ .
(3) From (2) and (1) K% C K* ., On the other hand K¥ C (K*)** by
(2). It follows that J** = J whenever J 1is an annihilator
o 7 fdeal.
¢« 1,38 Lemma ({14]). If K “1s any ideal in.a semiprime ring, then
Q) x nij(* = <0> . ' ’
\ ‘ ' - -
L (2) K+ K* ' is dense. ‘ ' L
») r i V ( = )\‘
.oh - ! L4
f ) .‘ -
SR \ .

pes



x*= (1-e)R , therefore x = ex and so

18

e

Proof: (1) (KN K*)2C KK = <0> . Hence KN K#= <0> since R

L]

1s set'niprime\.

(2) (K +K*)*X=Rt N Kk = <0> by part (1).

1.39 Definition. A ripng is Baer if all its annihilator ideals are
=20 2aer :

2

direct summands.

1.40 Proposition., “A Baer ring is semiprime. ', i
{ K )

€

Proof . Let R be a Baer ;:ing and suppose R 1is" not semiprime, Thén ,

there exists an % € R and an integer n > 1 such that x" = 0 and

- ’ -1 %
x" 1 # 0., Thug x € <xn l> = eR for some idempotent e in R ,

since the annihila;or ideals in R are direct summands. Now x € eR ,
' L]

1

0= ex" T = (ex)xn_2 = x"1

X ’

a contradi )ion.
T .
N : e . .
1.41 Proposition ((14]).  If R 1is semiprime and rationally complete,

then R 1is Baer.

Proof. Let K be' an annihilator ideal in R . By (1.38)

KN Kk = <0> , hence there‘is a mapp{ng, f € HomR‘(K"* K*, R) defined
by f(a+b) = a, where a €K, b EKr . Now K + K* is dense,.
therefore f is a fractio;x, and since R 1s rationally complete there

ed for all d € K+ K+ ,

]

exists an element e € R such that fd

it

Thus 'a = f(a +b) = e(a+ b) .’ Then el(a +b) = e(a) = f(a) = a &

i

e(a + b) , hence 82 - ¢ annihilates the dense ideal” K + K* -and so
4 .

2
e = e . Moreover K

fKk = eK C eR and since eK* = fK* = <0> we
\\ N

(1-e)R . Hence eR = [(1-e)R] *,S Kk = K |

also have K* C (eR)*



Thus K= eR 1s a direct summand. Accordingly R Nis Baer.:

1.42 Proposition. If R 18 a semipri:me ring, then R has an

eggential Baer extension.

Proof. From (1.21) we have the  cannonical momomorphism of R" into

Q(R) . Horeovét Q(R) is rationally complete and is essential ovér R
by (1.33). Since R 18‘,‘s_etqiprime Q(R) 1is semiprime by (1.12) and it

"follows from (1.41) fhst Q(R) 1s Baer. e

;.43 Lemma. Let R be'a‘Baer‘ ring and let 'S be essential over R ?
Then S\R = {a € 5 | s § R} contains no idempotents. '

.~

Proof. By contradiction. Let e= e’ €S\R .° ‘Then e # 0 and
L+l \»

eS, (l—e)S have non-zero ‘intersect /n with R . e% is the annihilator .

“

ST

oﬁ (1-e)S fn S . Therefore (¢5 N R) [(1-e)S N R] |= <0> , _wiieldm§

eS n RC [(l-e)s N R}* , the ann/hil)/or being taken| in t:he ring R \\
!

‘Suppose now that x € R- "and t%t’ X 1is concained 1 the annihilator-/ oy

T e

. . f\ - ™
f (1-e)SN R . Then x(l-e)Ké 0 ; for if x(l-e) $ O\t\}len by th
h

@ is a y € S such that (l-e)xy {is’
N .

in (1- e)S N R dnd is different ftbxﬂ 0 . ‘But x annihilates .

- ‘ essential‘ity of S over R 't

(1~e)s N R and so x(1- e)xy 0. "I’her;fore l(i-e)xy]2 = 0 and
.hem‘:e (1-e)xy- since R 1is s‘emiprime, a%ontradiction. Thus
x(l-e) = 0 and x = ex € eS N R . Accordingly the annihilator of
(l-e)SN" R in R is eSO R and, because "R 1s Baer,'there is an
idempotent £ € R 6uch that eS NR= [(1-e)S N RI* = fR . It follows
that f(l-e) = 0 , hence f-'-’lef €ER . Siﬂ e € S\R assume e‘f ef .
Then .e(l-f) + 0 , and by essentiality there exist r € R and t € 9
a\:ch that. 0 ¥ r = e(l-f)t . Now r € eS n R= fR- and (fR)*= (f -f)R,
henc;e (lc-f)r = Q0 . 'l'hua r=fr = fe(l-f)t = 0 , a contradiction.

, Thei'refore e=ef = fER .
L Co |

=
. S
e @ . "
w1 g R . - '
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CHAPTER ¥ : -
! ’ ’

REGULAR RINGS *

1. Regular rings. L e

2.1 Definition. The Jacobson radical of a ring R , denoted Rad R ,

is the intersection of all maximal ideals of R :

3

@

2.2 Proposition. The Jacobson radical of R cénsists of all elements -

r € R such that 1 - rx 1s a unit for all x €R .

-]

Proof ([14], (1]). If the element r belongs to Rad R then for every

maximal ideal M and for every element x , rx€ M . It follows that
1 - rx belongs to no maximal ideal, that is 1 - rx is a unit. ‘
Conversely suppose there is a maximal ideal M whi¢ch does not

contain r . Then rx +m= 1 for some x € R and some m€E€ M .

Hence 1 - rx € M and is therefore not a unit.

2.3 Definition. A'ring R is called semiprimitive if its Jacobson
. ) :
radical is <0> . Thus R 1is semiprimﬁaigé if r#*+ 0 implies 1 - rx

is not a unit for some x € R .

2.4 Definition. A ring R is regular in the sense of von Neumann {f
for every r € R there is at least ont element r' € R such that
1

r= rzr' . 1 1is called a quasi-invérse for r , after the case wh

R 18 a field.

2.5 Progosition; Every regularﬁring is semiprimitive.

"t
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Proof. Suppose R ‘is”a regular ring and r € Rad R . Then
' r(l - rr') = 0 for some r' €R and 1 - rr' 4s a unit. Therefore’

S

r=0.

2.6 Proposition. Let R be a regular ring. Then

(1) Every non-unit is a zero-divisor, N

(2) Every prime ideal is maximal.

o

N (3) Every principal ideal-is a direct summand.

R

(4) ° (von Neumann). Every finitely,generatéd ideal is peincipal.

’

Proof  ([14]). (1) For every r € R there is an r' € R such that

4

. = r(l -rr')=0 . If r {s a non-zero-divisor then rr' =1 , hence .

r 1is a unit. ' v
(2) Let P be any prime ideal, € P . Then r(l - rr')=0€ P,
hence f‘-,rr' € P and therefore 1€ rr' + P . Thus r 1is invertible

. . / .
modulo P , that is R/P 1is a field. Accordingly P is a maximal

ideal. ° . m , W

3) If r=rr'r, then( rr: =.(rr')2 is idempotent. Set rf' = e .

Then e € rR and r = er € eé . Thus rR = eR 1is a direct sudiand.

(4) bonsider the ideal aR f bR (a,b € B) . By (3) above aR = eR .
_where e = e , and'by (1.35) bR C ebR + (l-e)bR . Therefore

aR + bR = eR + (1-e)bR = eR + ER , where f2 = f and ef = 0 . Set

g = f(l-e) . Then cleéarly gf = f , 32 = g and eg = 0 . Moreover

A s e - <
e g€ fR and f € gR hence fR=gR and so aR + bR = eR + gk . Now
(etg)R C eR + gR . On the other hand er + gr' = "
» efer) + (eg)(r+r') + g(gr') = (e¥g)(er + ér') for any r,r' € R,

hence eR + gR € (etg)R .and therefore . aR + bR'= eR + gk = (e+tg)R is




»n

Proof. Let x belong to a minimal prime ideal P and let’

°

a principal ideal. It follows that any finitely generated ideal in a

regular ring is principal.

2.7 Lemma. Let R be a semiprime ring and let T be an eséential
exténsion of R . If S is a ring between R and T and {f S {is

regular, then S 1s essential over R .

Proof. Let x be a non-zero element of § . For some ye s,

ot

X = x2y and xy 1s a non-zero idempotent. By essentiality there
exists t € T such that xyt € R and is non-zero. But

Xyt = (xy)zt = xly(xyt)] . Since y(xyt) 1is in S , the proof is
p ,

, )
complete. ) "

2.8 Definition. A ring R 1is T-regular if for each r € R there is

an x € R and a positive integer n such that " = (rn)zx

e ~.

2.9 Definition. A prime ideal P of a rfng R 1is a minimal prime

ideal "if it is minimai.in the set of prime ideals bf R ordered b}

'

inclusion.

%2.10 Proposition ([4]). Every- element of a minimal prime ideal is a

e e —
zero-divisor. 4

1
A

S = {sg | s € R\P} , k a positive integer. Clearly S is a
multiplicative subset of R . Suppose O € S . Then, as in the
proof of (1.7), there exists a pr}me ideal Q uhféﬂ is maximal in
the get of idéals of R not meeting S . Moreover QC P for if,
qE QN R\P then x€QNs whiéﬁaiskimpossible. But x € P\Q ,

hence Q is properly contained in P , a contradiction. Therefore

22
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x 1is a zero-divisor.

2.11 Lemma ([19]). Let R be a ring all whose prime ideals are

maximal. Then R 18 7T-regular.

Proof. If every prime ideal of R 1s maximal, then clearly every

«

prime ideal of R 1is also a minimal prime ideal and this holds in
every homomorphic image R of R . It then follows from (2.10) that
tﬁe maximal ideals of any homomorphic image R of R consist solely

of zero-divisors, hence each element of R is either a zero~divisor or

a unit.

Now suppose R 1s not m-regular. Then there exists an r € R

n

such that rznx + r for any x € R and any positive integer n . If

r is a unit there exists an 8 € R such that rs = 1 , heunce

n_n N o 2nn n
rs =1 and therefore r gl = ¢ , 8 contradiction. Thus assume r

is a zero-divisor.

Let <r>*C <r2?* c...c <rox €. bea chain of annihilator

ideals agd let their union be the ideal I . Then r 1is a non-zero-
o,
divisor modulo I , because 1f rs € I then 18 € <t">* for some n ’

+ +
therefore srn\l =0, that is s € <" %>* and so 8 € 1 . Moreover

2

r is not invertible modulo I , for if (rt - 1) € 1 , then

Iy

€r+lt = for a suitable m . But then
T
mt2 2 -
= rm+1t= r t =0 = r2mtm , 8 contradiction. Thus .r 1is neither

a zero-divisor nor a unit, again a contradiction. This completes

1, '
’

the proof.

Lo i . ) <
2.12 Corofiarz. A ‘seniprime ring is regular if and only if each of

9
its .prime ideals is a maximal ideal.

&



Proof. A semiprime m-regular ring R 1s regular, for if r € R and

-

pngl - rnx) = 0 for some x € R, then [r(1 - rnx)]n = 0 whence

r(l - rnx) = 0. Thus r= rz(r?-lx) . The opposite implication was
proved in (2.6). « S

2. Integrally dependent rings. ‘

2.&3 Deffﬁi;ion. Let R be a ring and let S be an over-ring of R .
An' element x € S 1is said to be integral over' R (or 1ntegraliy
dependent on R ), if there exists a finite set {ro,...,rn_l} of
elements of R such that x" + rn_lx“'1 * ...t =0, that is if

x 1is a root of a monic polynomial with coefficients in R . This
/ééaation is called an equation of integral dependence satisfied b; x
over R . |

2.14 Proposition. Let S be an over-ring of R and x € S . Then
the following are equivalent: - .

(1) x 1is integral over R . ” -
(2) The r}?g R[x] 1is a finitely generated R-module. .
(3{ The ring R[x] 1is contained in a subring T of S which is a |

finitely generated R-module.
(4) There exists a finitely generated R-module M in S such th;t
xM C M and the annihilator of M in Rix] is zero. )
Proof ([}, {201). (1) = (2). By induction on q . 1f x.1is integral
over R , thﬁ X" =nil rixi for some positive integer n and r, €ER,
- ;

i=0,1,...,n-1 , hezcg for any positive intéger q we have xn:q =
.rn_lxn+q-1 + ...+ goxq . By induction on q assume e ::o Rx' ’

et

24
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\
n"l " N
, +q+
* . tth: since x" belongs to | Rx! so0 does xnratl . Therefore
: i=0
R[x] viewed as an R-module is generated by l,x,...,xn-l . £
(2) = (3). Take T = R[x] .
(3) = (4). "Take M= T . Then M -is an R[x] -module, thus xM CHM.
Moreover 1.€ M, hence if y € M* for some Y€ R[x] then y= 0.
(4) = (1). Suppose M 1is generated over R by ml""’mn . 'Since
n .
xM C M we have xm, = ng rij my s Tyy €R, %t= l,...,n . This is
a system of n linear homogeneous equations in the m, . It can be
. n | ‘
® yritten jzl (Gijx - rij)mj = 0 where the‘ 61j are the KFonecker -
symbols. Let d € R[x] = det(Gin - rij) , 1,3 =1,...,n . 1If the
matrix (Gijx - rij)’ is multiplied by "its adjoint this yields the

matrix dI . It follows that dm1 = % for every 1 whence dM = <0>
/ and therefore d = 0, since a € R(x] . Expanding the determinant then

gives an equation that shows x 1s integral over R .

»

2.5 Lemma. Let S be a ring, R a subring of S and let
XpreeesXy be elements of .S , each integral over R . Then the ring

Rn = R[xl,...,xn] is a finitely generated R-module. 5.

.

. Proofﬂ(Tl]). By induction on n . When n =1 the lemma is true
~ ‘ N

-by (2.14). By induction on n assume Rn_1 = R{xlf""xn—ll is a

. fiq}tely gene?ated R-module. Then Rn== R[*};...,xn] f Rn_llxn] is a

-

=~

fihitely generated Rn_l-module by'the case n =1 since X, o being
integral over \ﬁv, is clearly iﬁtegral over R _, . Now

. “ ]
C C H € °
RCR _, CR ; suppose {a, | 1-€ I} generate R over R _, and

.

{bj | 1€ 3} generate% R,y over R. Then R 1is finitely geﬁerated

by :
5 : . as an R-module by the g;n products. a,b, and the proof is complete.

173
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2.16 Corollary. Let: S be a ring, R a subring of S . .Then the

_elements of S integral over R form a subring of S containing R .

-«
.

Proof ([1], {20]). 1If x and y are elements.of § . integral over R
then RI[x,y] 1is a finitely generated R-module by (2.15) and it is a
subring of S , hence by (2.1&),,§artl3,. x~y and xy are Integral

AN . A
over R . The elements of R are integral over ! R since each

r € R 1is a root of the polynomial X - r € R{X]
2.17 Definition. Let S baa ring, R a subring of S, The ring

of all elements of S which are integral over R 1is called tﬂ’ —_—

integral closure of R in S . When the integral closureof R in §

‘is R itself then R 1s said to be integrally closed in, § . If
L ‘,:-: ] .

every element of S is integral over R then S 1s said to be integral

. . . o

over R . R . o :

Al

2.18 Proposition (Transitivity). Let R, S and T be rings,

RCTSCT . Let S be an integral extension'of R and let T .be an

integral extensfon of S . Then T is integral .over R .

‘ n n-1 ¢ T Lo

Proof ([20]). Let x € T and let x + s X, bt t 8,=0, 5, €8,
be an equation of integral dependence for X over S . Then the ring
' = R[so,...,sn_ll is a finitely generated R-nbduig by (2.15). Since

x 1s integral o%sr S' by the above equation of iﬁtegral dependehce,
S'[x] 1is a finitely generated S'-module. It follows from the proof

of (2.15) that S'[x] 1is a finitely generated R-module and therefore

LY

<

x 1s iﬁtegral over R by part 3 of (2.14).
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/2.19 Corollary. Let S bea ring, R a subring of S-°and let T

‘be the integral.closure of R in S . Then T is integr'ally closed

Y

'1“ Sn

.

Proof ({1]). Let s € S be integral over T . By (2.18) s is
integral over R , hence s €. . - - J' '

2.20 Proposition. Let R CS be rings. 5 integral over R , and

let I be an ideal of S . Then S/I 1is integral over R/RN I .

Proof ([20]). We recall that R/li;‘ff;‘\pl can be identified with the
subring RFI/I of S/I .  Now let s € S/I , s a preiuiage of s in
S , and lgt ~13()() € R[X] be a monic polynomial with s as a root. For
each coefficlent r of P(X) we have the canponicai m;\p r=>r+ I‘

of R into S/I , hence the image of P(X) under the reduction

¥

homomorphism modulo I of R([X] into S/II[X} will be a fnoni‘c

“w

" polynomial with s as a root. -

.

4

R. Then R is a field if and only if S 1is a field.

- “ .

Pfoof. ([1)). Suppose nR\ igs a field and s a non-zero element of S .
- <

3 .
We recall that the polynomial ring R[X] 1s a principal ideal domain

whenever R 1s a field, '(hence the set of polynomials in RI[X] with

8 as a root form a prihcipal ideal. Let 5+ rn__lxn_l + ... + ro

...+r0=0 is an

<

(r, € R) be its generator; that is, s" + r "l 4
i n-1

L3

equation of integral dependence for, s of smallest possible-degree.

Now ro + 0, :'fo.r otherwise 8 1is a zero-divisor, contrary to the

&

assumption that S 1s an integral domain. Hence I, is invertible

-

A

7.

-

2.2] Proposition. Let R C S be integral domains, S ‘’integral over

\g]\
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and therefore [-ral(sn-l + r sn‘-2 T rl)ls = 1. Hence s 1is

n-1
invertible in S and s0 S 1is a field. Conver'?ely let S be a field

and y a nonzero element of R . Then 95:18 igvertible ipn s , Lenqe
y.‘1 is integral ove® R . anh there is an equation of integral
dependence\ﬂy—m + rly_m+1 + ...+ r = 0 (ri € R) . Multiplying
through by y" yields / -7 L
ERRE a . Y s
l= }[-(hl + r,y + ...+ rmfm-l)] . l o

Hence y 1is invertible in R and gagrefore R is a field.

«e v:f',s'\:
: 3,
2.22 Corollary. Let, RC S be rings, S integral over R, and let

Q be a prime ideal of S . Then Q 1is a maximal ideal of S 1if and

only if QN R 1is a maximal ideal of R .

Proof ({1}, [16}). If Q 4is a prime ideal of S then QNR s a
prime ideal in R . -Fer if x and y are elements of R such that
Xy €EQNR and y € QN R then :§§y@ Q and y € Q . It follows that
x € Q and hén;e: x€ QNR . Now S/d is integral over R/Q N R

by (2.20) and both these rings are integral domains. By (2.21) S/Q

is a field if and on1§ if R/QNR 1is a field, that is, Q s maximalx

0

if and only i1f QN R is maximal.

2.23 Lemma. Let R be a regular ring and let S be an-over-ring of

R which 1s semiprime and is integrally dependent on R . Then § 1is

a regular xing.

-

&

Proof. Suppose Q 1is a prime ideal of S and P= QN R . Then P
is a prime ideal of R » a8 was shown in (2.22). Because R 1is

regular it is a maximal ideal, hence Q 1is a maximal ideal Lo,

A
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“u

by Corollary 2.22 and since S . is semiprime it follows from (2.12) "

&
that § 18 regular. '

-
'\r ‘I

¢ h . .
2,24 Corollary. If 'R 1s a regular ring and § 1is an over-ring of

R which 18 both integral and essential over R , then S 1is regular.

»

Proof. A regular ring is semiprime by (2.5) and an essential extension
of a semiprime ring is again semiprime by ‘(1.12). Thus .S is ;émi—
ph;?lme and integrally dependent on R , hence reg;xlgr by the result

jus.t proved. . -

N I ¢

3. The Boolean ring 6f idempotents of a ring. i

v

The Boolean 'algebra of idempotents of a regular ring has a bearing

upon the structure of the ring and that of its extensions: We shall

therefore review Boolean algebras in some detail. The reference for

-

this 1is [l14, Section 1.1].

-

1

)

2.25 Definition. An ordered set (or partially ordered sg}) is a

system (S, f_')’, wvhere S 1s aset and '< is a relationon S , s

satisfyfng the reflexive, transitive and symmetric laws:
1) a <a . 41) (a <b and b<c) = &< c

‘411) (4<b and b <a)=*a=b , for all a,b,ce €S .

A semilattice is an ordered set in which any two elements a and
b have a greates't lower bound or inf a A b . Thus a semilattice is

a_'hys“t:em (S, <, A)>~ where (S, <) 1is an ordered set and A 1is a

e o
1

binary operation satisfying the law:

c<aAb * (c<a and c <b) . -

4
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2.26 Prgposition. If (Sv, <, A): 1is a s;emildttice. the system (S, A)
is a semigroup éatisfy}ng the idempotent and commutative laws:
ana=a, aAb=baAaa. Convefsely any semigroup (S, -) w_hicl;
safisfies the idempot:.en_t and commutative laws 1is a semilatticg relative

to a suitable definition of < .

<

i

Proof. Let (5, X<, A)’ be a gsemilattice. Then A 1is associative since

for any s€ S s < (aAb) Ac*™ (s<a and 8 <b and s < c) =
s <aan(bac). This.shows that (a /I\b)l\ci‘a/\(b A ¢c) and

aAn(bAac)<(aab) Ac, hence (a Ab) Ac=a A (b Ac) and so
(S, A)  is a semigroup. Now a < a=(a<a and a<a)=a<aaAaa
'f(a:_‘%/\a and a Aa<a)=™a=aAa. Also

[(a Ab<b and a Ab<a) and (b Aa<a and b Aa.<b)] =

Bl

[(a ab<d Aa)‘:\and (b Aac< a Ab)] aAb=bA a.
Furthermore a < b * a A b=a, for clearly aAb=a=ac<b,
and on‘thelother hand a < b= (a<a ar;d_ a<b)=ac<anb=
(a<aanb. and aabsgsa)=anb=a. Hence if (s, ) 1is a
semigroup which satisfies the idempotent and commutative laws one
defines a relation < on § by a<be*ab=a . We have
i) aa= a=a < a (reflexive law);
i1) (a<b and b <c) = (ab= a. and bc = b) =
(a= ab = a(bcy = (ab)c = ac) = z; < ¢ (transitive law);
ii1) (a < b and b <a) = (ab= a and ba = b) = (a = ab = ba = b)
= a =) (antisMetric law).
Finally [ab = (aa)b = a(ab) -and ab = a(bb) = (ab)b] - (ab < a and
ab < b) and for any sé S, s <ab< [g= g(ab) = (sb)a = (sa)Ab]

e [g = (sb)(aa) = sa and s = (sa)(bb) = sb} e s <a and 8 <D .

* )

Ce

L
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"0 v.(a*o./\a')= (a' Aa) v (a' A ak) = ' Akava*)= a' Al=a'.

31

Thus a and b have an inf, ab ,ﬁso the elements of (%, *)

form a semilattice.

2.27 Definition. A lattice is a system (S, <, A, V)  in which any

two'elements a and b have an inf a A b and a least upper bound or

sup av b, where v 1is the binary operation satisfying the law
avb<ce* (a<c an%gf_c)

A lattice with @ and 1 {1s a lattice with elements so designated

such that 0<a, a<1l, for each a€ 5 . An element a' 1is

called,a complement of a if aaa'=0, ava'=1. If every

element of S has a coqxplément, the lattice is called complemented.

A lattice 1is called distributive if identically

Jai\(bvc)=(aAb)v(aAc), .

avi{bac)=(avbd) A (avec)

2.28 Remark. In a distributive lattice the complement of an element
a , if it exists, is uniquely determined. For if_» a¥ ,and’ g* are
both \complements of a&ﬁgy

ak = ak A 1= a* A (ava')= (ak Aa) vV (a*x Aa') =

o~
\ , ? o

-

2.29 Dciafiniti"gn. ‘Let (S, <) be an ordered set. The element s

of °S 1s called an upper bound of the subset T of £ 15 ¢ <8 for
all t€ T ; ;.c is called a sup q\least upper bound of T 1f

8 < 8' for every upper bound 8' of T . If both s and 8 are
least upper bounds of T then ;; <s8' and s' _<_g , hence 8 = 8' |,

therefore the sup of a subset T of S 18 uniquely determined, if it

exists at-all. Lower bound and inf of a subset are defined dually. -




A

AN
i \

An ordered set (S, <) 1is called a ‘complete lattice if every

subset of S has both an inf and a sup. It suffices to assume an inf f

for each subset of S ; for the sup of any subset may then be defined as

the inf of all its upper bounds. In particular, the sup of the empty

gset’ is inf S .

»

.2.30 Def}nition. A Booléan ring is a ring which satisfies the 1&em-

potent law “aa = a. A Boolean §1gebra4is a system l(S, 0, ', A)

where (S, A) 1is a semiiattice, 0 is an elément of S and " ': {s’a
4 . "

o

unary operatfion such that

aAb' =0 = aab=a (i.e., a<b)

' 4

2.31 Lemma ([14], p.4). In any Boolean algebra a" = (a')' = a .

N\

The following two propositions show that complementea distributive ,

»

lattices, Boolean algebras and Boolean rings are all the same objec:s.

2.32 P;Lgositfon ({14}, p.4). A Boolemn algebra becomes a compiemgqted
distributive lattice by defining avb= (a" Ab"')', 1=0".
é%nversely, any complemented distributive lattice is’a Boolean algebra

in which thgge equations are provable identities.

2.33 ‘Coroliarz. 1f (S, 0, ', A) 1s a Boolean algebra, then 80 is

@

(sshlo vy . ¢

2

9

Proof. avb=Db % a<bh * aab=a = a' vb= (a Ab')' =

o' =1 . ) . .

.2.34 Propdsition. A Boolean algebra (S, 0, ', A) can be turned Into

a Boolean ring (S, 0, 1, -, +, <) by defining 1) a - b=aAb
- .

" . . ’
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\',5 ’u) 1=0' 'ﬁi) e = a iv). a+b=(aab')v (baa'), where

e
=t

avb=(a'abd'") u as in (2.32). Conversely any Boole3;p ring can be

.‘r'egl’rdeg.! as a Boolean algebra with a'= 1 - a , and the above

definitions ;>f 1, -, and + then Secome prmiaple identities.

sy

’ : ’u ° . .’ p
Proof. 1If (S, 0,”", A) 1is a Bpolean algebra then (S, A) is a

semilattice, hence by (2.26) (S, ) 1s a semigroup satisfying the
< v ' o

commutative and idempotent laws. Alsc a A0 =0 *=*.a AQ"= 0 ==’ »

“ L3

¢ » , ¥ . Py
aAO''*a and s8o (S, 1, *) is a semigroup with identity element
1= 0' . The 'operation + 1s clearlyﬁasﬁmutative and from

» : F

-a~+ b= (aanb') v'(b'/\ a') ve have (a* 'i)).‘i - (a' v'b) AMD' va)=

AN

[€a' v b) Ab'} v [(a' VD) Aa) = (ﬂ':" ') v (b Aa) . Then .. T

(34 B) +c=li@aab) vdaal Acl vica (@ Ab) Y (b A sl

-(aAb'Ac')v(bn‘&'nc')V(cAa'Ab')\;(cAbAa)

=(aAab'Ac')v(aacAab) Vv(bAac' Aaa') v (cAab' aa'

la AT A L) v (A B VII( AC) YV (c Ab)] Aall

a+ (b+c). That is, +. is associative. Moreover

a+0=(an0')v(dAaa')=a,and a+a= (aAra') Vv(a Aa)=0:

Therefore 0 1is the identity element relative to addition and

A

“ a* -3 , the Jadfdicive inverge of a . Thus (S, 0, -, +) {is an

Abelian group. ' N
Now ac*+bc= f[(aAac)Ar (bac)']l vIibac)a (anAc)']
= [(aanc)a® ve)l vibac) a(a ve")l
= (8Aacab)v(aancac')vibacaa) vibacac)
= (aAab' Ac)v(baa ac)= [(aab') vibaa')l aAc= (a+ b)c .
Therefore the system (S, 0; 1, -, ;. .) satiafi;s both distributive

lavs and so it is a Boolean ring. T T,

¢ . ¢

-~ . i
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Convefsely suppose (S, 0, 1, -, +, ) is a Boolean ring. Then

(S, ) 1is a semilattice by (2.26) and O is an element of S . Now

define a',

2] . -
l~-a, then a(l -b)=0 ** a= ab » hence_

(s, 0, ', ) 1is a Boolean algebra.

¥

It c&h now be seen that ) 4

1) 1=1-0=0"

(-a)(1 - a) = -a + az =0 anq

LR

2) (-a) A a"

[(-a)' Aal'=1-[(1 - (-a))al =1 - (a+ a®)

(-a) v a'

[
L
1
©

= ] - (a+ a) =1 . Therefore ;a
3) a+b=1-{1'-a(l -b)][1 -b(1 - a)] =

[ta A B')'A(baa')']"=(aab') v (baa')

2.35 Proposition. Tﬁé“set of idempotents of a ring R form a
Boolean ring. .
Proof ([14]). Let' R be a rfhg and, B(R) the set of gdembotents of
R. If e and f € B(R) taen clearly ef € B(R) . Hence r(B(R); )
is a gemigroup satisfying the commutative and idempotent laws, wﬁere

denotes multiplication in R . By (2.26) it is a semilattice in
which e < f == ef = e . Moreover 0 € B(R) and if e € B(R) then
so i 1 - e . Setting e' =1 - e 'ylelds ef' = 0 = e(l-f) = 0 ==
ef = e+ Thus (B(R), O, ', *) 1is a Boolean glgebfa by (2.30), and it
follows £rom (2.34) that i; can be turned into a Bool?on ring.

As shown abo&e: multiplication'in B(R) coincides with that of

. R, but addition differs in generalp for if e and f € B(R) .‘their
sum in B(R) 18 ef' v fe' = [(ef')'(fe")']' =
'-[1-e@-0JMH-£Q - e)]:‘—['e +f - 2ef . Here + denotes

~

addition in R .



Proof. Let s *# 0 be an element of S , 's—li.= {r € R | sr € R}

'r(as)= (ra)s € R and (ra)s #+ 0 . Thus ra € s

.Since R 1is regular there is an r' € R such that r= r’r' and

35

~

We recall that an over-ring S of a ring R 1is a ring of
quotients of R if and only if, for all s € S , s"IR = {r € R|sr € R}

~

1;~dense in S . These rings will now be applied to Boolean algebras.

Oy

2.36 Lemma ([14], p.46, Exercise 5). If R 1is a semiprime ring and

S an over-ring of R, then S 1is a ring of quotients of R if

vs(s-IR) + <0> for all non-zero elements s of S .

and s(s-lk) ¥+ <0> . By (1.29), part 2, S will be a ring of quotients
/ +

:of R 1if s_IR is dense in R . Suppose a(s—lR) = <0> for some

a€ R . Then a[s(s-IR)] = as(s-lk) = <0>, If as € R
fhen a€ s‘lR n (s-lk)* = <0> and the proof is complete. Assqu"”
a* 0. Wehave as € R, hence as € S\R , therefore

qs[(as)-lR] + <0> , that is there is8 an r € R such that

1z n'(s'lxj* = <Q>

and so ras = 0‘, as contradiction.

s
2

2.37 Proposition. Let R be a regular ring, and let S be a regular

over-ring of R . Then § 1is an essential extension of R 1if and

only if B(S) 1is a ring of quotients of B(R)

Proof. Assume S 1s essential over R and let e € B(S) . By

es§ent1ality there exist 8 € S and 0 %# r € R such that es = r .
Y

rr' € B(R) . Let rr'= f . Then clearly £ %+ 0 and

f=rr'= (es)r' = e(esr') = ef . Hente ef € B(R) and ef *+ 0 .

It now follows from (2.36) that B(S) 1s a ring of quotients of B(R) .

—

",
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+

&
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8 be a non~zero element of S , =8

‘as above ss' ¥ 0 and.ss' € B(S) . Because B(S) is a ring of

Convegseiy suppose B(S) 1s a ring of quotieﬂts of B(R) . Let
' a quasi-inverse for s . Then

" s "‘Q]‘ J
quotients of B(R) it is essential over B(R) . Hevce there is an

e€ B(S) and fE€ B(R) , f£* 0, such that f = (ss')e = s(s'e) .

-«

Accordingly S 1is essential over R . ' . A
2.38 Definition. A Boolean algebra is called complete 1if it is a

complete lattice. .

2.39° Lemma ([14]). The annihilator ideals in a semiprime ring form

a complete Boolean algebra. ;ﬁh

Proof. Clearly the annihilator ideals in a semiprime ring R form a’
semilattice when ordered by inclusion and with intersection as 1inf ,

s *_ * ’

since niél Ki = (;iEI Ki) , where K1 » 1 €1 are subsets of R . §
"Now suppose J and K are annihilator ideals. Then

JOKk=<0> > JCK; for if JCK then JNKXCKNKK= <0>

and conversely, 1f J N K* = <0> then JK* = <0> , hence JC Kttt =K ,

It follows that with * as complementation the annihilator ideals in

R form a Boolean algebra. It is complete by (2.29). -
2.40 Lemma. A regular ring is Baer if and only if its Boolean ring

of idempotents is complete. .

Proof. In a regular ring principal ideals are direct summands. Hence

if r dis an element of a regular ring R and TR=eR , e € B(R) ,

then r# = (1 -~ e)R . Thus the annihilators of individual elenen;sA ’
are also direct summands. By (2.39) the annihilator ideals in R .

gorm a complete Boolean algebra. Therefore R will be Baer if and

3 '.,:\*
5 —_— ‘,:,22.‘%
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only if any i;tersect;on of direct summands is again a direct summand,
. &7 N
that is, if and only if B(R) is a complete Boolean algebra.
: 7 . '
. - 2.41 Corollary. Let R be a regular Baer ring and let S be a
regular essential extension of R . Then S 1is Baer.
. Proof. By (1.43) S\R contains no idempotents. Therefore
B(S) = B(R) , a complete Boolean algebra.
4. Extended and contracted ideals. ) >
., + +_ 2,42 Definition. Let R be a ring, S an over-ring’of R 'and‘;gt w

! J be an ideal of S . The ideal J N R 1is called the contraction

\
»

of \J to R . An ideal of R 1is contpacted (withlrespegt‘go 'S )

Af it is the contraction ofpn ideal of S . If I 4is an ideal of

ko ' T
R., then IS- is its extension to S and an ideal of S 1s extended

P ¥y ' '

if 1t 1is the extengion of an ideal of R . An extension IS coﬂsists

of all elements of S of the form - 8,8, o +‘ansn » where n 1is

o ‘ . I
a positive integer, a8, €1, 8, €8, j=1,2,...,n . Thus IS

b 3
is an ideal of S and I C ISN R . The set of extended ideals in =

S 1is closed under sum and product. On the other hand (JN R)S C J'.
and the set of contracted ideals in R 18 closed undgf intereectibn,

radical formation and quotient formation.

— R

2.43 Lemma. Let Rés be rings, J an ideal of S and I an
ideal of R . Denote by E the set of all ldeals in S extended

) ] vith respect to R and C the set of all ideals in R contracted
with respect to S . Then J+JNR and I + IS are '1-1 and

o are inverse mappings of E onto C and C onto E .

L
L
3
£
‘
i
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Proof ([20]). We have I C IS nNR, @n R)S CJ . Therefore
Jnng@ixnmsnnl_c_uwn and (IS NR)S C IS C (IS N R)S .
Thus JNR= (JNR)SNR and IS = (ISMNR)S . Now if, I is a

' ~
contracted ideal there is an ideal “)J in S such that

4
I=JNR= (JNRSNR=ISN R, that is 1 1is the contraction of
its extension. Similarly when J 1is an extended ideal in S there

s an ideal I 4in R such that J= IS = (ISOR)S = (J N R)S and

therefore J 1is the extension of its contraction.

2.44 Lemma. Let R be a regular ring and ,let S be an over-ring of

R . Then any ideal.of ‘R 1is the contraction of an ideal of § .

Proof. A factor ripg. R of a regular ring R 1is clearly regular
hence by (2.5) the zero ideal of R 18 the intersection of all the
maximal ideals.‘ Thus any ideal of ; regular ring is the intersection
of the maximal ideals containing it. Since the contracted ideals of .
R are closed under intersection it suffices to establish the result
for maximal ideals. Let M be a maximal ideal in R and assumte

MS = S . Then for suitable m

+
151 ..
CMS=S. Now S= (mlR + ...+ mkR)S . Since R 1s regular, by

(2.6) there exists an e € M such that el= e and

1 €M and 8y €s, 1=1,2,...,k,

= i = ’ = +
l=m .+ mksk- Thus S IS_C_(mlR)S+...+(mkR)S (mlR+... mkR)S

mlk + .;. + mkR = eR . Thus' S = (eR)S = eRS = eS . Hénce 1= es

for some 8. € S and therefore 1 -e= (1 -~ e)l= (1 - eies =0.
*

Thus 1 = e € M which contradicts the fact that M 1s a proper ideal

of R . Therefore ‘us is propét in S and 80 MSNR 18 a proper

ideal in R . Since MCMSNR and M 1is maximal, M= MS NR.

% | @



2.45 Progoﬁition. Let R be a regular ring and let S be a regular .

essential extension of R . Then all ideals of .S are extensions of

o
-~ b

ideals of R 1f and only if .B(R) = B(S) .

Proof. If B(R) =_B(S)' and x € g (J an arbitrary ideal in S ),
then by regularity of S ; X = x(x;) foHapome y €S . Hence x = ex, A
— where e = xy 1is an idempotent in the ideal J , hence in JNR .
Thus x € (J N R)S . Therefore, JC (J NR)S . The opposite inclusion
is clear and so J 18 the extension of +J N R .
Suppose B(R) # B(S) but tﬁat the ideal generated by
3 e € ﬁ(S)\B(R) is the extension of an ideal A of R , so that
esS = ASLJ fhen as in (2.44; eS = (alR'*...-+ anR)S ,y 8y € A,
i=1,2,...,n . Then there is an idempotent f € R such that
eS = fRS = fS . This implies that e = ef = f’, contradicting the

fact that f is in R and e 18 not. Thus e generates an ideal

that is not extended with respect to R .

2.46 Rema;k5  If R 1is regular and Baér and S 1is a regular essential
_— extension of R , we ?ave by (1.45) that B(R) = B(S? . ﬁence by

(2.44) and (2.45) tha; all ideals of -R }are.contracced wifﬁ respect

to S and that all ideals of S are ‘extended with respect to R .

It then follows from (2.43) that the operations of contradtion and

extension define an 1sdhorphism between the latticerf ideals of R

3 .
., .
and the lattice of idea;s of S . > .

2.47 . frogosition ([14]). Let R be a ring and Q(R) 1its complete

ring of‘ﬁuotients. Then Q(R) is }egular 1f and only if R is

" semiprime. - <//
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Proof. If Q(R) 1is regular then it is semiprime by (2.5). Then R
is semipfime since rad R = [rad.Q(R)] MR = <0> . Now suppose R is

semiprime. Q(R) will bé regular if for each fraction f over R

there is a fraction f' such that Of = 6(ff'f) . Let f be a
fraction with domain D aﬁd kernel KC D . Then <0> % K*D C D N K%
and the restriction of £ to DN %* 1s a monomorphism since it has.
kei‘nelDﬂK*r\K=’<0> . Let E= f(DNKX) . Then E N E*x= <0> ,
thus define f' € Hom  (E + E*, R) by puttifig f'(fd) = d for all:,
fd € E and f'r=0 for all r € E*x . Then £'[£(D N K*)] = D N K*
hence ff'fd = fd when dE€ DNEKrFk ., Now f[K + (D.ﬁ k*)] =.

fK + £(D N K*) = f£'f[K + (D N K*)] and, because KC D ,

Kd+ (DO K*) = DN (K + K¥*) byuthe modulér law., Tgis is an inter-~

section of two dense ideals, hence dense. Thus ff'f - £ annihilates

a dense ideal and therefore ff'f 0 f . ’

2.48 Proposition. Let R. be a regular Baer ring and let § be

essential over R . Then the minimal prime ideals of S are ’
. .’

precisely the ideals which are extensions of maximal ideals in R .

&~

ggggfj. Consider the embeddings R + S -+ Q(S) where Q(S) 1is the
complete ring of quotients of S . By kl.é) Q(S) 1is essential over
R, and by (1.12) and (2.47), Q(S)n is regular. Let M be a
maximal ideal in R and MQ(S) its exténsion in Q(S) . By (2.46)
MQ(S) 1is a maximal ideal in Q(S) . Suppose that x € MQ(S) N S ;
then xQ(S) = eQ(S) C MQ(S) for some idempotent e € BQ(S) = B(R) ,

since R 1s Baer. Thus e € MQ(S) "R = M and because

xQ(S) =" eQ(S) , x = ex € MS, Therefore MQ(S) N S C MS which implies

Vi

that MQ(S) ng=Ms , the second 18c1d§ion being trivial. Furthermore

~

by
N
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MS 4is a prime ideal in § as w‘; shown in (2.22). Now suppose that "
P 18 a prime ideal in S contained in MS . Then PORCMSNR=M.

But PNR 18 a prime ideal in R , a regular ring, and so it is a

-

maximal ideal and PN R =M, Therefore P=PSD (PNR)S=MSDP .

"

Therefore MS 1is a minimal prime ideal of S .

) Now let L be a minimal prime ideal in S . Then

L= LS 2.(£\ﬁ R)S . LNR 1is a prime ideal in R , thus a maximal _
ideal, hence. (L M R)S is a minimal prime ideal in 5 , as was just

shown. Therefore L= (L N R)S" and L° is of the claimed form. This

completes the proof. E

)
2.49 Remark. It is_interesting to observe that the ring S , as

described above, has the property that each priﬁe ideal of S contains

a unique minimal prime ideal. ) J

B

2.50 Definition. A ring is Bézout if all its finitely generated

iy
I

ideals are principal.

2.51 Proposition. Let R be a regular Baer ring and let S be an
essential extension of R . Then the follo&ing are equivalent:
(1) S 1is regular ;

(2) S is Bézqut and all non-zero divisors in S are units.

Proof. (1) = (2). This is true by (2.@), parts 1 and 4.

(2) = (1). By (2.48) we can write gg arbitrary minimal prime.ideal of

AL . '
3 Wnaximal ideal of R . Let' N be an
R A

"v...w .

ideal of S such that NDMS . Let Q(S) be the complete ring of

S in the form MS , where M

quotients of S . Then NQ(S) D MSQ(S) = MQ(S) . But by (2.46)

—-MQ(S) 1is a maximal ideal in Q(S) , since Q(S) 1is a regular
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essential extension extension‘of R . Therefore MNQ(S) = Q(S) or
NQ(S) = MQ(s) .
Suppose that NQ(S) = Q(S) . Then for suitable n1 €N, °
9y € Q(s) , ‘}/= l,2,...,k » we have nlql et nag, = 1~. Thus

Q(s) = (nls + ... + "kS)Q(S) ,» as in (2.44). Since’ 5 1is Bézout,

e

th%re exists x € S, such that xS = ny S+ ... + m S .

Ciearly x € N, and Q(8) = (x5)Q(S) ‘\\Q(S) . Thus xq = 1 for
some q € Q(S) , hence” x 1s a unit in the ring Q(S):. Clearly it'is
not at the same time a zero~-divisor in S , and so it‘must be a unit )
in S. But x€ N ; thus N=S ‘

'Suppose thagv NQ(S) = MQ(S; . Then N= NN SCNQ(S)NS=
MQ(S) NS = MS as in (2.48). Therefore N= MS . Thus the minimal -

prime ideals of S are maximal ideals, and so all primeTideals of 3

are maximal. S 4s also semiprime by (1.12), and hence.it is regular

| ——
h

by (2.12).

wn
. \ -
Q

the space of prime ideals of a tegﬁlér ring.

AN

Y

2.52 'Progosition. Let R be a ring and let ]I be the set of all

prime ideals of R . Then Il hay be made' into a topological space -

v

by taking as open sets all sets of the form viA) = {[Pem | At P}\.

wvhere A 1s any subset of R . One notes that V(A) = VY V(a)
‘ n a€A

thus the sets V(a) férd'a basis of the-open sets of I .

I

Proof ([14)})e It is eas&xto seeithat for an; subset A of R,

VA= V(A') , where A' 1s the intefsection of all prime ideals of I
c;ntaining A, hence an ideal. Now let {A/} .
subsets of R . Then Y }

be .a family of



4
A
7
o
ir
\
\ »

S vw) = {pen.)rR¢ P="T

-
-

= ‘ ) € ‘
(p, Uier VA {pe n | A ¢ P for so t 1}

N

pem | A ¢ P for some 1i € I}

={remn|z: A;litp} _
' i€1 ‘ ,
= V(L A") . "U
—161 i N D " n ®
(2) V(A NV(A)) = {r e n 1A ¢ P and A, ¢ p}.. R
={p€.q |~A1AJ ¢ p) , .
= Y(AiAj) . :

~

"

“y(ohy ={pen | (oY Eri= ¢ SR

Thus- 1 with the family of all sets V(a) = {P € IIJ a§ P} as

a basis fgr the open sets becomes a topological space. This space ig
N »

_called the prime spectrum of " R and is ﬁrit;en Spec R . Its

- )

topology .is attributed by some authors to Stone and by others to

h

‘Zariski. . - L

\.‘1‘\ .

2.53 Proposition. If Spec R contains all maximal 1deéls, then

b

¢ . “ .
) -
oo

Proof ({14]). Suppose Spec R= U V(A,) = V(L A) . Then

SN ‘ JI€1 1€1 o
N Ki *is contained in no maximal ideal and thus ‘contains 1.
1€1- )
Therefore there is a finite subset F of I 'so that 1 € [ Ai s

' . . i€F
hence Spec R= V(I A) = U V@A) . -
- 1EF 1EF . ‘
. %
B

" ‘ O

Spec R 1is compact.
e
r

v

.2.54 Definition. The union of ail open sets contained in a subset

Y

i

E of a topological space is called the interior of E . ThusH'E is
L L -

Ll - it
. . )
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open 1f and only if the interior of E 1is E .

2.55 Proposition. For any subset E of LSpec R, V(N P) 18 the
. : 5 1 4 EE
interior ‘of the complement of E .

Proof ({14]). P' € V(N P) = (N P) ¢ P
‘ FEE FEE

»

== there exists r € R such that r € P

for all PEE and r ¢ P

v

- there\exists r € R such that

V'P' € V(r) and P¢ V(r) for all

L& y,
' »”

i [

1
Thus there is a basic open set V(r) containing P' and nog’.

©
1 H

meeting E , that i’is P' belongs to the interior of the‘complemé{\t of -

E - N

» . -
o

2.56 - Proposition. Let R be semiprime. Then for any subset} A of

: /
R, 0N P ,is the annihilator A%*:-of A . - /
PEV(a) - . . . ' b )
, | ¥ ,
Proof ([14])). Suppose r€ 'N P . Then r belongs to all prime

' PEV(A) A
ideals of Spec R not containing A and therefore rA belongs to

each pr’it;ie ideal of R . Thus fA.= <0> since R 1is ‘semiprime.

>( ’ o

2.57 Proposition. If R 1is semiprime then the closed-open subsets

of Spec R are precisely thpse of the, form V(e) =. (P € Spec R|e € P},

e an idempotent of R .

*



Proof.. Suppoée the subset E of Spec R 1is both closed and 'open in
- - Spec R . Since E 18 open there is a subset A of R such that
E= V(A) = {P€ SpecR | A¢ P} . Since V(A) 1is also clbsed',‘

?ﬁec RV(A) 1s open and thus coincides with its interior. Then by

(2.55) and (2.56) Spec&?R\V(A) = y( N P)= V(A*) and so
C . PEV(A) .

V(R).= Spec R= V(A) U V(A*) = V(A + A%) ., Now there are elements'

e€ A, f €At with e + f=1 , and becauser ef = 0 we havg
- .
e = ¢ and ,8= ea for each a € A . Hence
V(A) ='V(eA) = V(e) NV(A) CV(e) and therefore V(A) = V(e) . The

opposite implication is o&wious.

2/;; Definition. A space X is a Hausdorff space if and oni); if
whenevef x and y are distinct polnts of ‘X , there are disjpint

! open sets ‘U and V in X with x€U and y €V,

.A subset Y of X 1is connected 1f and only if the only 'subsets

of Y  which are both open and closed in Y are Y and the void set.

.. A space X 1is totall& disconnected 1f ana oniy if. the only
nonemi:,ty connected subsets of X are the one-point sets.
A compacbt totally-disconnected space has a base of Open-aﬁd:

- closed sets ([10), p.247). ; N
) - | ” .
2.59 Proposition ([12, p.32). If R is a regular ring, then Spec’ R

. ' ) ’ ‘
. ) is-a compact, Hauscfbrff. totally disconnected space.

i

2,60 Definition. A compact space X 1is called projective when 'the
L follfming property holds: If ’i' X+ 2 1is continuous and g: Y + 2
f s o - . .

is continuous snd onto, then there exists a continuous map h: X -+ Y

g
a . ’
%«— i Y such that. f = gh . ' . - W
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—

. 2.61 Definition (lll]:)p.484). A gpate X is éktreﬁally’discoﬁnehted ’

if the closure of every open set in VX is open. In the category of !
compact sbaces‘gnd continuous maps, the qxojective Hausdorff spaces

are precisely the extremally disconnected spaces.

1]

2.62 Lemma. If S 1is a regular Baer ring-then Spec S {is éxtremally
_ disconnected.
\‘_.\\ —/4.)
. Proof\\Let V(A) = M € Spec s | A ¢ M} be an open set in Spec S

n

Then the i$¥ersection of all the maximal ideals in/)H#) is A®

- by (2.56) and.\;IEZZ"“E“‘IEx aer, .there is an idefipotent e € S~ .
. such that A% = eS§ " Now the clo -e of V(A) s
\
' ‘_\____
{N € spec S | W(A) C'N} = {NE€ SpecS |eS C N} = {NESpec S|1-e ¢ N} .

This is an opeii set, hence Spec S 1is extremally disconnected and

is -therefore projective by ()2.61) .

2.63 Definition ([l1], p.486). Let X be a compact Hausdorff space.

The projective cover of X 1is a compact Hausdorff extremally

l disconnected space G(X) , together with a continuous mapping of

. G(X) onto X having the property that no closed subset of G(X)..

maps onto X .

»

2.64 Proposition. Let R~ be rqgularJand let S be alfegular Baer
ring which is essential over R (Q(R) for example). Then
(Spec S, f) 1is the projective cover aof Spec R, where f is

defined by contracting the prime ideals of § to those.of R . . v

—_ S
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Proof. Since R. and S are 'léegular, both spaces in quest'ioq are

y
- 3

compact and Hausdorff and Spec S is extremally dié::.onne,cted by (2.62). -
Furthermore f 1is continuous (see for example {1}, p. 13, Exercise 21),

and (2.44) shows that it is onto. Now let C be a proper cioped

subset of Spec S . By the qdefinition of the Stone topology,

Ce= {"1)161 , where {H{} is the set of all maximal ideals of §
containing the ideal J'="01*Ni~ . J 1s a non-zero ideal, as otherwisé ‘

we would have C = Spec S contradicting° the fact that it is proper.

»

Then f(C) = in N R} ," the closed set in Spec R defined by the .
‘ideal JN R . Since S 4is essential over 'R, JN R $ <0> . Thus

there exists a maximal ifdeal tn R which do;as not contain J N R and

1 "

f(C) 1is #roper.

' -
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/ CHAPTER 3

ALGEBRAIC EXTENSIONS

1. Algebraic extensions.

s

3.1 Definition. Let R be a ring and let S be an over-ring of R .

We shall call S an algebraic extension of R 1f it is both essential

and integral over R . The following exampl es show that the two

properties are independent,

&
3.2 Example. If F 1is a field and x 1is an indeterminate, then

F(x) 1s essential but not integral over R . - . \ /

[T

Proof. The quotient field F(x) of the polynomial ring F{x] is

1

essential over F by (1.3) but F(x) 1is well known to be a

' transcerdental field extension of F , hence is not integral over F a

. '3.3" Example. The complete Boolearn algebra on a two-element set is

5
. integral but not essential over the copy of the two-element field-

which it contains.

-y

Proof. By (2.34) the complete Boolean algebra on the set of subsets

o o s P
of a two-elgment set {a, b} may be regarded as a Boolean ring S

with 0=¢ and 1 = {a, b} . We recall that a Boolran ring is a

t

fiéid if and only if it has exactly two elements: 0 and” 1 . Thus
S 1s not a field and it follows from (1.3) that it is not essent&gl

over the copy of éhé two-element field which it contains. It.is an

«

‘integral extension since’ 52 -g=0 for each BE S .
<
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3.4 ?rogosition. Let R be a semiprime ring and let S be an over-
ring of R . Then S is algebraic over, R 4f and only if for each

s8€S, 8% 0, there exist L €ER,1=0,1,...,n-1, r

ees T r,s + ro = 0 .,

0*0':

such that s" + r "1 4+

n-1

“ Proof. Let S be algebraic over R and let s €S, s#% 0 . Since

S 1is integral over R we have (5

n n-1’
- + ...+ + =
1 s +r s . rs rov 0

fpr gome T €R, 1=0,1,...,n"1 . if L $+ 0 , then the proof is

i
complete.’ . f
Suppose that Ty = 0. Since S 1is essential over R , there -
exists t € S such that st = a€R , a#+ 0. If airi = 0 for

i=0,1,...,n-1 then multiplication of (1) by " yields: .

nn n-1 2
= +
0 ‘t s + trn_la t rn_za

Bécause R 1is semiprime this implies that a = O ;’a contradictibn.:

Hence there exists a positive integer m < n such that amrm *# 0 and

air1=0 forall 1<m. Thus a’r,= 0 forall {<um .
b
Multiplication of (1) by t™ yields: - : : ¢
m n-m m n-m-1 .. m m
; + ve. * =0.
”,(2) as ar _, ¥ 8°r 418 + a r 0

It is easy to see that addition of equations (1) and (2) yields an

‘equation of the desired form. b

Conversely suppose that the condition holds. Cleaff&, S is
. / ! .\
integral over "R . Let s€ S, s#% 0. Then for appropriate’

r, €R; 1= 0,1,...,n-1 ; one has . - \

3

-



-

s

4 + + ...+
0 o = s(r1 . T,8 ﬁn

showingiihat S 1s essential over -R .-

3.5 Proposition. Let’' B be a regular ring and let S be a regular

essential extension of R . The following are equivalent:

©
-

(1) S 1is an algebraic extension of R ; -

(2) all between rings of R and S are regular;
*(3) R[s] 1is a regular ring for all s € S ; n
‘,(6) Rlu] 1is a'regular ring, u any unit of S ;

(5) all units of S are integral over R .

-

Proof. Clearly (2) = (3) = (4).

v

. \ -
(1) = ﬂZ). Since S 18 regular, it is semiprime and so are all the

between rings of R and S . Moreover, the latter are integral over

-

‘R, since S is. Now (2) follows from (2.23).

(4) = (5). Let u be a unit in S . R[u—l] is regular, and so its

-1

" nop-zero-divisors are units by (2.6). Therefore u is a unit in

R[u-{! . Thus there exist r, €ER, {=0,1,.,.,m such 5hat

-n I e Y - . .
(rnu + ... rlﬁ\w“+:§o) .
lu“2 + z’ou“1 .

o -

r w0t T 'S
n

1Y

Tqaﬁspositian and multiplication of both sides of the equation by
ntl '
u

A

yield

- “.-.‘t u-~-7r -0
u Fo! n-1 n -

"

50
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(5) = (1). It is pointed out ([14), p.36, Exercise 4) that in a“
commutative regular ring the quasi-inverse of an element may be choégn
to be a unit. (If 8' is a quasi-invefae for s then
8= g8s's = s(a's)2 = szs'ss' + 82 -‘s ss's ==82(s'88' 4'1 - 8's) = szu ,
where u_I =g+1-88'). If s € S and u 1s both a quasi—inv;rse
for s and a unit; then 8; = e ; an idempotent, and s = eu-l H thaé
is every element of S‘ is the p{od;ct of an idempotent and a unit.
Clearly Ehe idempotents of S are integral over R ; thus if the

units are integral as well, S is 1ﬁ;egra1 over R by (2.16).

n

3.6 Lempa (Transitivity). Let R, S and T be rings, RCSCT.

Suppose that S 1is an algebraic extension of R and that T 1is

an algebraic extension of S . Then T is an algebraic extension of

R . o

©

Proof. The transitivity of essentiality was pointed out in (1.4) and

the transitivity of integral depéndence in (2.18).

3.7 Lemma. Let R be a semiprime ring. Then' R has a Baer algebraic

-

extension.

Proof. From (1.42) we know that R can be embedded into Q(R) , a

s

Baer ring. Let T be the integral closure of R in' Q(R) . If

t=0f is a non-zero element of T , then as in (1.25),

1

t R= {r€ R| tr € R} contains D, the domain of f , and there

is a d €D such that. td 1is a nen-zero element of R ;,hence T is

-

essential and 1n£egra1 over R . Moreover B(T) = B(Q(R)), for 1if

e= ez € B(Q(R)) then e 1is integral over R , that i8 e € B(T) . .-

Now let ¢t ., be a zero-divisor in T .” Since Q(R) 1is Baer, there
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exists e € B(T) such that eQ(R) = (t)* 1n‘~Q(Rf’. Therefore

eT - eQ(R} N Tug_(t)*i. On "the othef\hand if;;gé = 0, for some st T,
then 8 € eQ(R) N T = eT . Therefore eT = (;)* +m T . This shows
that the annihilators of. elements aré direct -summands. But B(T) ;s,

coﬁpleée by (2.40) and so all annihilators in T are direct summands,-

and T 1is Baer. ‘ - } ‘ oo v
i

~

2. Algebraically closed rings.

t

. 3.8 Definition. Let 'R, be.a ring. ‘Then .R 1s.algebraically closed
ifvit has no prpper algebraic extensions. 1In terms of maps' this means

that 4f m: R+ S 1is a.monomorphism.aucﬁ that S is-algebraic over

m(R) , then .m is onto. For ‘example, an algebraically closed field

is an algebraically closed'ring since it possesses no proper integral
R - ‘ w— - - ,
extensions. -

5 >

3.9 Ptopositiod. Let R be a regular ring. Then the following are
. ) £ .
equivalent: . o C

(1) R is algebraically closed;

(2) R {is Baer and every monic polynomial equation over R “has a .

g

. . . . -
Tre o

root in R ; = o

'2(3)‘ R 1s Baer and all the faclor fields of R are algebraically

(S

3

"+ closed.

.Ptoof. {1).= (2). If R 1is not Baer, then the egbeddihg‘givenjin '
(3.75 is proper an&xaléebraic; hence R is ot élgebraica;ly closed.
i l ) n-1' |

oot rx o) ) -
_lx r :lx ro 19 a monig

" Now suppose that f(x) = x" + T
pol&nomia; over R with the propérty that no element of R is a

s
- 1 “

” ‘0

e
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zero of it. One notes that T, $ 0 , as otherwise £(0) = 0 . A root

. will now be "adjoined". Embed .R into R(x] , where x 1is an -

indeterminate and consider the ideal I = ?f(x)> . Then JINR = <0> .

For a typical element of I 1is of the form f(x) - g(;) , where g(x).

is a polynomial in . x over R . If the highest non-zero coefficient
’Qﬁbearing in g 1s b , as the coefficient of X . say, %hen

f(x) - g(x) 1is a polynomial_gith_ 1'- b _as the coefficient of

xm+n . Because 1 1s a non-zero-divisor and x 1s an indeterminate

such’ a polynomial is not in: R . | : \§

In the family of ideals of R(x] which contains -I and have

trivial intersection with R , every simply ordered subget of ideals

.~

is bounded above by its union.. Hence, in view of Zorn's lemma, thefe
[

exists an ;deél J , which is maximal in the family. Let p be the

o r

projection from R(x] to R{x]/J =S , say. Then

P
~ R =+Rlx] »5 )
. “ ’ . . . /

’
H

and le' is a monomorphism since 'JN R = <0> ., By the choice of J

every non-zero ideal of S intersects PIR 1in a non-zero idealj;

thus( S' is essential over .p|R . Also since J containg\.l we
have x"+ ?n_;in'l + ..+ nX+r =0 and.it.‘“foll‘o‘ws that p(x)
is integral over the image of R in S . But" P(x) and p(R)
geﬁeratg the ring S . .Therefore ‘S 'is integral ;nd esgential over
p(R) , that is p|R' is an algebraic embédding of. R into § ;
Furthermore, the‘eﬁbeddiﬁé_is ;;Aper since p(x) s;tisfiésl;he
equation‘ﬂka) =0 , as does no element'of‘ R . Thus there is a

proper algebraic extension of R, a ring which is given by assumption

to bg,algebraically closed; a,contradictiong' Therefore all monic

P
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polynomials over R have %zeros in R . o

(2) = (3). The field R/M w\ill be algebraica'lly closed if it has &
root for every monic polynomial equation over iteelf Choose such
a monic over R/M and lift each of the coefficients back to one of its

preimages under the cannonical map from R to R/M . Then the preimage

'

\

. of the fi"rpgt coefficient can be taken to be the 1 imn R . By (2),
‘the resulting monic over- R has a root in R . Then the image of this

root under the cannoriical map above is a root for the monic over R/M .

Since the question of being Baer is not at issue, this part of the :

b —

proof is complete. )
‘(3) = (1). Before proving this we make some preliminary remarks. If
a ring §  is regular then there is a homeomorphism of Spec S onto

Spec B(S) defined by M > M0B(S) ([12], p.91). For M€ Spec s ,

= (MN B(s))S= {es | e €M N B(S), s €5} . By (2.57) the closed-

. ¥ open BUBSets of Spec S are those of the form V(e) = {M € Spec S | e § M},

N

. e’ an 1dempotent of. S . Let {V(ei)} », 1E€E1 , be a cove‘i:r of

‘Spec § by‘closed—Open sets-’ Bgcause :a:pec';S is awcompact space there
e:;i'.lsca asf‘inite subfamily V(el), ceey V(en) that cover Spec S ang
which are, i'n general, not pairwise disjoint. A disjoint partit"ion.

Y.
AN

of Spec S can then be found in the following ﬁay: Since ; LY R
n n ‘

i" V(e ) we write 1= i 1 (e d- (1 e )) . Eannding the ‘

m , ol
rfght hand side yields 1 = i fj , wvhere m < 2" - 1 , that is

‘there are at most - 2'1,—- 1 qqn—zero terms in the expansion since _ A 3

;§pec S =

] ~

Hl (l -e,)= O‘W whén\ Spec S = V(e ) . Eab‘n f . 3= 1.2L,...,m . ’

1) 1 21 3
is a product of n factors, the kth factor being either ek or

i,

1 - e, It 1is 91ear‘that {f 3, j =1 2,...,m are orthogonal R " %

¥ . - T

; ) \}‘( x »
¢ ! T 4
, . o EA o -
. .o

2 o
“ ~



idempotents and therefore V(fi) N V(fj) =¢ 4if 1% 3 . Also: for
each, j f_m, }here is an 1 < n such that V(fj) C V(ei) . Finall&,
every maximal ideel M of S belongs to a subset V(fj) for some
3 <m as therwisg 1 € M. Therefore j§l V(fjs {? a disjoint .

cover of Spec S by closed-open sets.

Now assume (3) and suppose there is an algebraic embedding of R

into S . We may write R C S . Then B(S) = B(R) by (1.43) and S

~ 1s a regular ‘Baer ring by (2.24) and (2.41). /

AT .
"Since S is integral over R we have, from (2.20) and (1.3),
an alggbraic embedding R/M N R + S/M at each maximal ideal of §
amd it follows from (3) that each embedding is onto.

Let 8 € S be an arbitrary element of S and suppose that M 1is

»

a maximal ideal of S . In view of the isomorphism between S/M and

: :R/M O R there exists an element 1, € R such that -s +'M = ry M
AN N o v \
. .

% in S/M . It is shown in ({17], p.16) that there is then an .

A

~

e € B(S) with M€ V(e) such that 8 + N = Ty + N at all N € V(e) .
:'. L

For if s + M= Ty + M then s - Ty €EM . Thus s - T = gt where.

. g8EMNB(S) and t€S . Let e =‘1 - é . Then ‘M€ V(e) . If

~

N€ V(e) then g€ N so that s - Ty € N . Hence 5 + N= Ty + N .

Thus for any maximal ideal M of S there is an rMAE R and a

“? closed-open set V(eM) containing M 8o that Ty and s agree on

V(eM) . Clearly {V(eH) | M € Spec S} 18 a cover of Spec S. By

’

~

“ compactness there exists a finite subfamily V(eM ) ...G, V(eﬁ )
1 n

$
- L o

that cover Spec S and elements 1 r‘ in R 8o that

9 v 'Y
Ml 'Mn Mi

and 8 agreeon V(e,) , 1=1,2,,..,n . As in the remark above

M
i
we then have a cover of Spec S by pairwise disjoint closed-open sets

V(fl). ceny V(fm) s m< 2" -1 » and for each j < m there is an

c’ﬁ‘) ’.

L

Fe3

'L
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.

i < n such that V(f
a suitable element Ty to be chosen from the subfamily Ty seoeesly
\ i , 1
so that Ty and s agree on V(fj) . For j=1,2,...,m we shallk
1 4 ~

write r, = r to denote the element r so chosen. It is clear
ioM | M, :

that rl, r2, esey T need not all be distinct. —

m
: o
Now set r = jgl rjfj . Then r € R since B(S) = B(R)

Fprthermore rfj = rjfj gince flt*fz, ey fm ‘are orthogonal )
idempotents. If M is a maximalf ideal of S: we have M € V(fj) for
some j <m , hence s - rj € M ‘and so (s‘-._rj)fj € M. But

(s - Ej)fj = Sfj - rjf§“= sf, - rf, = (s - )f

] 3 ]

Thus' s - r belongs to MNSpec S = <0> and so the algebraic embedding

of R into S 1is pnto‘and R 1is algebraically closed.

3.10 Corollary. If R 1is regular and algebraicallj”closed and 1
4
is an ideal of R , then R/I 1is algebraically clesed if and only

if it is Baer.

Proof. Clearly R/I 1s rgéular. The factor fields of R/I are of

the form (R/I)/(M/I) Z R/M, M .a maximal ideal of R containing

4

I . Thus the factor fields of R/I are algebraically closed

(-2

whenever R 1is. The {iiy&t now follows from the eﬁuivalence of (1)

and (3) im (3.9).
3.11 Proposition. A broaucc of algebraically closed regular rings

W

1s &lso algebraically closed.

Proof. Let R = ﬂRivﬂ where {Ri}iEI is a family of algebraically,

closed regular rings. It is easily seen that R 1s regular. Also

B(R) = nn(ni), for if e € B(R) we have e: 1+ U and

e1 My

N
v

—
“An -~

) C Ve, ) . There is therefore for each j < m

, theréfore s -~ r €M . -



P

“o(i) - ezki) = e(:l)2 € B(Ri) for all 1 €1 . Thus B'(l:(‘) is a
“’oroduct of complete Boolean algebras. Furthermore by (1.33) and (1.43)
. B(Ri) -Q(B(Ri)) for each 1€ 1 , and cherefore
i(k) & MQ(B(R,)) s '6(HB(R )) by ([14), p.4l, Proposition 8). Hence

B(R) is mtionally comple:e (see 1.24) and is a complete Boolean

algebra by (1.41) and so R 1is Baer by-(2.40) . To demonstrate a
root for a maonic polynomial" one notes ihat the polynomial gives a

_‘monic over each R under the projecbion R[x] + R, [x] . onto the

. i
ith component. Thus one can solve locally to artive at the sought

S

., root. ‘ ’ : \

:
ALY
~ N N s

3.  The algebraic closuté of a semiprine ring'_;

e

£ : The existence of .an algebraic” extension for a semiptime ring was
’ptoved in (3.7). It will further be shown that, givex} a semiprime rir{g
R , there exists an algebraic extension of R uhieh is algebi'aically
L- : cloaed. These algebraically closed rings coincide with the :otally

) integrally closed tings of Enochs [B] which will now be introduced

4

3. 12 Definition ([8]). A ring D is said to be t otallx integrallx

- £ g].g_;__é if for any ring homomorphism o: B -+ D and any integral

a

~axtension C of B there i8 a homomorphism C=-+D extending aqg..

-

3.13 Proposition. If A 1s the direct product of a family of rings

: --"{Ai l i€1} vith projections w,: A+ A, then for évery ring B

i i
Y and for every family of homomorphisms ¢1: B~ Ai there exists a:
_ . “ . unique homomorphism of rings \Q:.‘g + A such that 1 i « b= g
::‘ R ’b
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N L
Proof ([14]). We recall that if a € A, that is a: I + (p Ay vith
a(i) € Ai for all 1 € I , then the projection LPE A~ Ai is defined

© by T.a =‘§(i) . Now let ¢1: B +A bea family of ring

3

QQQmomorpﬁisms and define ¢: B - A by (¢b)(1) = ¢1b . It 18 clear
that ¢ -is a ring homomorphism and that

(M, ¢ ¢)b = ‘ni(cpb) = (¢b)(1) = ¢,b . Thus m.d= ¢ 1f also

.
T, o ¥= ¢/ then (¥b)(1) = T T (me b= agb = b))

hence Y = ¢ . ‘ .

3.14 Proposition. If {Ai}iEI is a family of rings, then

o '

A= HiEI Ai is totally integrally closed if and only if each ring

Ai is totally integrally closed.

Proof. Assume A is totally integrally closed. Let B be a ring

and for each 1 €I let ¢i: B+ A, be a ring homomorphism. Then

i
by (3.13) :there exists a uynique homomorphism of rings ¢: B -+ A

such that ni¢ = ¢i where ni: A+ Ai is the projection onto the

ith coordinate. If C is an integral extension of B and
k: B+ C a.monomorphism.rthen there is a homomorphism ¢: C + A
- extending ¢ , since A is totally integrally closed. Thus yx = ¢ .
" - Therefore ¢i = ni¢ = niwxl.and 8o wiw is a homomorphism - C ~+ A1

1 is t&tally #ntegrally'closed.
»&\. ~

extending ¢t and A
‘ Conversely, as in ([14), p.82, Proposition 3), assume each ring

A, ' 1s totally integrally closed and suppose ¢: B - A 1s a ring

-~ * homomorphism. There is a family of projections T,: A~ Ai » 1 € I‘-

,hence there exists for each 1 € I a homomorphism ﬂi¢: B+ Ai .

: ' s
J, Let k: B+ C be an embedding of B into an integral extemsion C .

@
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L 3
Since the Ai are totally integrally closed there is for each {1 € I
A . - . - -
‘a -homomorphism \p1: c - Ai extending 114? and by (3.13)° ¢: B + A
. - . \2
i 1s now the unique homomorphism so that ﬂidt - wilc .. Furthermore there .

- exists a unique homomorphism ¢: C + A with the property that
‘ﬂ’iw = Y, . Therefore ﬂiw = 'wix = ﬂi¢ and by the uniqueness of ¢

we have yx =, _¢'-. Thus |y extends ¢ and A 1is totally integrally

. closed. i .o . . d

H

*3.15, Proposition. If A 1s a subring of a ring D and A is a
retract of, D (i.e. there is a homomorphism r: D + A with
r|a = lA) ,» then if "D is éotally integrally cloééﬂ, A 1is totally -

‘ihtegrally closed.

: ‘ Proof. Suppose A ‘\is a subring of a totally integrally closed ring
D. and r: D+ A is a retracticn. Let' 0: B+ A be a ring
homomorphism and let C be an integral extension.of B . Since D
N - is totally ingegrally closed there 18 a honyg,moxtphism $: C+D
extending (rIA)-l 0: B ‘+ D and therefore“ r!‘A, ¢: C + A extends O .

[ o ' i £,
Before showing further results on :o:aily inéegrally closed rings

» 1t will be convenient to recall some properties of the localization
.i'+. .of a8 ring at a nulciplicniiw;e set and the particular case of passing_

N from an integral domain to its quotient field. ' \

o ~

s

. .
3.16 Definition. Let R be a ring and let S be a multiplicative

I 4

\nt of R, that is S is multiplicatively closed and ]° belongs to

S . We also assume that 0§ S . A relation 6 will be defined on
RXS by (r,s) 8 (r', 8') = (rs8'-8r')t = 0 fof some t €S . ~a
we o ’ -

NG, "E:J Gl
b
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3.18° Proposition. Let RC T be rings, chintegral over R . If

\ ' o 60
\ > '
This is easily seen to be an equivaleyce relationﬂ Denote by r/s the
equivalence class of (r, 8) and byl RS’ the set of equiva;ence

classes. It is trivially verified that RS can then be made into a

ring with addition and multiplication given by the rule

a

r/s + r'/s'" = (rs' + r's)/ss', (r/s)(r'/s') = rx'/ss' , having unit

Ny

element 1/1 and 0/1 the identity element under addition. There is
also a ring homomorphism h: R - Rsa defined by h(r)'= r/1 for each

r € R, with the property that every element of h(S) |{is fnvertible

in Rs . One notes that h 1is injective whenever § consists of §é
non-zero~divisors of- R .J For ¥l = 0/1 only {f there is an 8 € §
such that sr = 0. and it follows that r = 0 if 8 1is a non-zero-

o

divisor. The process of passing from R -+ RS will be called the

7

localization of R at the multiplicative set S.

3}17 Progoéition’(ll). p-37). Let R, RS and h: R ~ RS be as in

(3.16) and let f: R+ T be a ring homomorphism such that f(s8) is a

‘unit in T for all s € S . Then there exists a unique ring

homomorphism g: RS + T such that f = gh .

S is a multiﬁlicacive set of R then TS is integ;al over RS .

-

Proof ([1])). Clearly S 1is a multiplicative set of T . Now suppoée

t/s 1is an element of T t€ET,s€ES. Then t satisfies an

s 1]
equation of integral dependence S S rt + L o, T, € R,

§=0,1,...,n-1 . Therefore "(t/8)" + (r__ /8)(e/9)" " + .., + r /s"=0.

-
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',3.'19 Definition. Let A ‘be an integrai domain and let S = A - {0}

Then =S 13 a multiplicattve set and AS 1s then a field called the

T; - v
N 3

quotient field of A . - , o0,
4 . '

. . | : » ’
3.20 Propbsitions Let A C B be integral domains, B integral over

44

4 4 o —~
*A*. 1f S = Al- {0)i.then B, 1is a quotient field of B .

) $

¥ ? h‘ - ) :‘ L P LT
Proof. , It fLo«).lows from (3.18) and‘(2.21)"that BS is' a field. If-
T < - R Fe

T=B - {0} chen by (3.17) there exists“-a hou;omorphiem 8: By *By

T

extending f: B + BS i Now" g is 1 homomo‘rphism of fields, thus a
' ] 13

monomorphism and since S{_C_‘ T we have Bs c B,r . Hence g 1s onto .
> ¢ .

and therefore B, is a quotient field of B .. ' ,

S . ' ‘

3.21 Frg&sition ((8)). An integral domain A is totally integrally

Ld

closed if and only if it is integrally closed in an algebraic closure

+
a C
»

. 1 of its quotient field. ’ A

7 ]

Proof. Suppose A 18 integrally closed 1“11. a . I/,gt o: B +A ' be

a ring homomorphism and let C be an integral extension of B . Then

Ker 0 = P 1is a prime ldeal of P because A -is an 1ntegraY domain,
Pl 4“ C ‘o ) ' L
and since C -is ingegral over B the Lying-overl theorem (Cohen gpd .

Seidenberg) establishes the existence,of a prlme ideal Q of C such

that, QN B =P .‘ Pl:tl‘ C= C/Q and B= B/P ."* It.then follows from
(2.20)' that C 18 an integral extension of B . S%lnce ‘A may be

’ ;dentified with its image An Q the injective homomorphism B+ A

induced by o- %Wes 5Lse to aﬁhomomorphism tb B + Q with ¢(B) = 0(B).

¥
Let L be the quotient field of B . By (3.18) and‘ (3.20) there
! ¢ * s ¥
exutn a quotient field /H of C such that M 'is an integral -
¢ ! 4 N ' E

dxten:ion.o'f L., hience’ M is an algebraic field extension of L . *’

LA S ¢ f, ¢

e

“

&
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Iid

; Now ¢: B + R can be extended to ¢': L -~ Q by (3.17) and because ! i{s an

?

algebraically closed field there is in turn an extension of ¢' to an

¢ [ where WIE'- ¢:'E'+ 1 . Therefore there is a homoworphism 71: C +

[ with T(C) = Y(C) and T|B= 0 . It follows from the fact that C is

. an integral extension of , B that the elements of T(C) are integral

: . over T(B) = g(B) CA and hence belong to A since A' is integrally
. * ' %

closed in Q. Thus T(C) CA and so 0: B - A has an extension
‘- C+A .

. ' ‘ - Convefaely assume A 1s totally irtegrally closed. If B 1s

Y

the integral closure of A -in N then the 1dentit§ iapping on A has
. L 1
én‘eifenslon "¢: B+ A and Ker ¢ " A= <0> ., But then Ker ¢ = <0> ;

For. 1f >b is a non-zZero element of B contained in Ker ¢ there is

N

' an equation of integral dependence of smallest possible degree

bn + ... +3a1b + ao =0, a, €A, 1=20,1,...,n~1 . Because B 1is

an integral domain a is different from zero, as otherwise there

0

would exist an-equation of integral dependence having degree n -~ 1 ..

-

'ﬁénce a, = b+ ...+ alb € Ker ¢ and therefore b = 0 .: Accordingly

¢ 1is an iaomorpﬁism and "B = A .
e ' 3.22 Theorem ([8]). A ring A is a aubfigg of a totaily integrally
closed ring if and-only 1f A is semiprfme.

o
) r

. Proof. We first recall that a ring’ A . is a subdirect product of a

family of rings (S, |4 € 1} 4f there is a monomorphisa

€1 % such that 21

‘, &i: $~+5, cannonically; 1if and only if 5, & A/

. o v . ¢

k: A+S=1 . K 1s onto for all 1 € 1 ; vhere,

g J1 an idesl of

4

embedding ' of M in Q . By restriction we have y'|C = ¢: C - Q,



[

w*= (a, 2 a:x,) is an olcaymt of AX'H’ such that 121 aixi*o

A\

A , and Ji =.<0> . (See {14)', p.30). Now suppose A 18’

n
1€1

semiprime and let {Pi | 1€ 1} be the set of all prime iden\ls{{)k{.

Then A 1is a subdirect product of the rings A/Pi and so there is
s wonomorphism x: A ~+ niEI A/Pi . Because each A/Pi is an integral
domain it is a subring of a totally integrally closed ring by (3.21),

hence ]I / is a subring of a totally integrally closed ring by

1€1

" (3.14) and therefore A 1is a 'subring of a totally integrally closed

ring.

The proof of the opposite mplgcatibn is due to. Borho and

Weber ([3]). Assume A 4s not semiprime. . There exists a non-zero ’

olncﬁant’ s of A with 32- 0. Let .T be its annihilator s*

t‘n‘“d consider the free A/T-module M with :n basel’ {xi}iEI » where

1 is any set. M becomes an A-module by defining am = @m for all

&

a € A, m€ M, and one then forms the direct product LA X M of the

/

A-modules A ':ud M . Nov let multiplication .be given in A X H 80

that xg -

{ lforall 1€1 and x,x, =0 1{if 1*j,thatis-

1y

- (0, :xi)(o. -t;xi) - (lbs.-’ 0, a,b € A . To verify that this

operation is well defined suppose a = a' and F‘- 5' . Then

A S

a~-a'"€T and b ~b' €T, therefore (a - a')bf*- a'(b -b') =

3

63"

ab - a'b’ €T ; thus s(ab - a'p') = O whence (sdb, 0) = (aa"b'. 0):.

The product in AX M of elements (a, 1 i x,) + (b, j" jj s

then (ab + s Zj .1bj' a E bjxj b g '1 1) It is oysily

seen that with mltipliuuon 80 defined lnd unit element (1, 0.

" AX M becomes a ring. It externds A under the embedding a + (a, 0)

for each a € A and Eurzhcn:n}e the embedding if.llgcbr'aic . For if,

¥

gy M5

r

.
AN
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" then w”# 2aw+ a” -8 E a’'= 0 . Thus each element of A X M

X 1=1 1
ncisfies an equation of integral dependence over A . To see that

. ”AX M 18 essential over the 1uge of A that it contains we first

_assume 8 € A\T . Then (s, 0) (a, 1 x,) = (sa, 0) and
0+t sa€ A . If a belongs to T ‘then “1- O‘. 1= 1,2,...,n,
Bus ‘since Z aixi +0 there is an .a ~ ,] 1 _<_{1 , which does not
beiong to o Hpnce aia ‘13 a non-zero element of A and-

$0 . -
1 11)(0 lx) (a R 0) 0 \

Now auppose A 18 a subring of a totally integrally closed ring

(a, |

§

D Let 1. be a set having cardinalicy acrictly greater than that

of' D md let {"1}161

Clearly card(I) < card(A)( H) . There is a mohbnorphism o: A=D

be the basis for the free A-module " M !

and because AX M 13 an integul extension of A there 18 a

homomorphism &f ‘tings ¢: AX M+D exunding g . Horeover

e

Ker ¢ 0N A= <O » hence Ker ¢ = <0> by essen}ia@icy and therefore

@ is an mbedding. But

]

card(D) < card(I§ l_<_ catci(A)( M) ,

r

a

a contradiction. Thus A 1lies in no totally integrally closed ring.

4

3.23t Progrositionu _1f a semiprime ring A 1is a subring of a totiily

integrally closed ring D , then the integral closure C of A {n

'D 1is totally integrally closed. . k ' >

/

. Proof. Let G: R“# C be any ring homomorphism and J.le't‘ S be an

integral extension of R . Since C'C D ‘thgrc is a homomorphisa of
rings ¢: S -+ D extending 0o , con‘uqucn&y é(S) “is integral over
¢(R) = G(R) € C . But C 1is integrally closed in D hence ¢(S) C C

and so C 1is totally integrally closed.

Fid
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. is an 1nt~egtal eictepsion of A' . Let J be an ideal of B such

/

3.24 Theorem ([8]). If A 1is a semiprime ring there is a totally

J.ntegta],ly closed algebraic extension A' of A . iIf A" is any

e

other such extension then any homomorphism A' -+ A" over A 1is an*
+ . : 0B i A 0
isomorphism. . ' ) ’

5

M. Let A be a éemiprime ring contained in a totally intejrally

closed ring B . In view of (3.23) we shall asgume ‘t’:hat B 1is

integral over A . If al'so B 1is egssential over A Jit is a totally ‘.
integrally .closed algebraic extension of A and the first part <;f the ,
theorem is proved. Thus suppose B is n‘gt essential over A and let

{n,} be the family of rings such that A CA CB and A~A 1.9_

essentlziil. Then {Au) is r;ot empty because it containsl A . Le{t

(CY} be a aimply'r ordered subset of {Aa] and let - C = U(:Y . As in SR
the proof of (1.23) C 1is a ring and furthermore C\ is an essential .‘
extension of A . Foé if x€¢C, x + 0, tlhen x € CY for some

Y » heuce there is a vy E,cY CC such that xy € A and xy # 0.

zherefore ACCCB and C is an upper bound for {CY }\ . By ,Zorn'al

lemma one now has an essential extension A' of A in B such that

if A" s essential over A' , A"C B, then A' = A" . Clear;yK B

that A' ﬁ.J = :<0> and J {s maximal with respect to this property.

Then Q" A'+J/JC B/J . Moreover B/J‘ s an integral extension of

A' by (2.20) and is essential c;irer the copy of A' it contains by L

the maximality of J . Because B ‘18 totally integrally closed the

sembedding A' + B can be extended to a homomorphism ¢: B/J + B with

Ker ¢ N A' = <0> . Consequently Ker ¢ = <0>x"by egsentiality. One

thus assumes A' C B/J.C B and by the choice of A' this implies

ke



., that B/J=A' = A' + J/J . It follows that B - A' CJ, that is .

o

BEA'+J, hence B=A'+ J . We recall that also A' N J= <0> ,
‘therefore the préjection p: B+ B/J = A' will map the elements of
B\A' .into zero while plA' = l'A. . Thus p |1is

(3.15) A' 1is totally integrally closed.

Ker c N A = <6> hence Ker 0 = <0> by esse ality and therefore

there is an isomorphism of A' with O(A'fi; thus O(A')' is a totally
. 1n£ggrally closed extension of A . Sincg A" is integralfover A’
it is integral over o(A') , consehﬁéncly there is a homomorphism

r: A" » 0(A') over J(A') . Since Kerr 0O o(A') = <0> we have

Ker r " A= <0> and so Ker r = <0> . Accordingly O(A') = A" .

3.25 Corollary. A semiprime ring is totally integrally closed- if

and only if it is algebraically closed.

Proof. Let A be a.sem;prime ring. As was just éhdun in (3.24) A i
has a totally integrally closed algebraic extension. If ;ou A 1is PR
algebraically closed the; any such extension will pe isomorphic with -
A by (3.8) and therefore A 1is totally inteérally closed. Conversely
assume A is totally integrally closed. By (3.7) there exists an &
algebraignéxtension D of A and sox§e have a bomomgrphigm &:}D “+ A
extending the identity map on A . This is obviously a monomorphism.

It follows that the glgebraic embedding A + D 1s‘onto and A s

algebraically closed-by (3.8). . s oL 6 . . .
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"3.26 Corollag, . If R ig a semiprihe ring there exists an algebraic
a’xtcnni_on fI(R) which is algebx{aically closed. "Furthermoye R(R)
¢ is unique up to isomorphism over R and contains a copy over R of
‘ | every algebraic’ extension of- R . We call {(R) the algebraic

closure of R . It is clear from (2.24) that the algebraic closure

" of a regular ring is regular.

*.3.27 Proposition. Lct:‘ R be a semiprime ring. Then §(R) can be
realized as: the 1ntdg‘fal closure of R in the algebraic clo‘sufe of

its complete ring of quotients.

~

Proof. 1f R 1is semiprime and Q(R) 1its complete ring of quotients ”
there exiati an algebraic closure N(Q(R)) of Q(R) which is 'euen\tial‘} -
over R by transitivity. Le‘t T be the integral closure of R An

Q(Q(R)) and let t€ T, t#+ 0. Since T is integral over R -ome .

has an equation of integral dep'endence ’

re

=l L+t

t 1 0

uo,tIERt

n
(1)‘ ' LI Y

"rh'e proof will be complete if ro # 0, for then T 1is

‘algebraic over R by (3.4). Suppose r,= 0 . Since QQ(R)) 1s

o essential over R there exists w € {I(Q(R)) such that tw=™ a ER,
'‘a® 0. As in the proof of (3.4) there exists a positive lhtcicg
a < u such that l-r-t 0 and l'tii 0 for all { <m, hence
-ulti’plicacion of (1) by W™ yields: |

Al

<

.ltn-,’_ .Ir } n-m~-1 LW a‘r

m
nlt .‘11:4-;:.-0.,

n sow-l, m  n-m-2, B e
Therefore 0 # -a'r_ = t(a't +ar gt + ... + ar 1) € tINR,

3




4

'n
-of 1_I__IISZ(Ri) « For each { = 1,2,.:.,n 8

ta

A - - °

. . T
- ~ ’ ’ a . - « . A
showing thatt T is essential over R . Thus the intégral closure of
7

R 1n Q(Q(R)) is an algebraic extension of R which is algebraically N
t "

closed by (3 23). ¢ =,

il

3.28 Proposition. § commutes with finite Cartesian products.

> LA

Proof. Let iﬁl R, be a semiprime ring and Q(R) its algebraic

Gfbsure.. By (3.26) ,there is an algebraic closure Q(Ri) for each

of the rings ‘Ri » 1 <n, and it follows from (3.14) that HQ(ki) is
algebraically closed. Let s==(sl,82, ,..,sn) ) be a non-zero element

) =

{
i satisfies the equational

condition of (3.4) with respect to the corresponding R, since Q(R,)

i 1 N

. 1s algebraic over '31 . Suppose m ,is the degree of the equation

a

*Jalgebgaic'closure; chen f1(R) . 13;Baer. : -

-there is, by (3.24). an 1somorphism over R of Q(R ) onto

(R)

having highest degree. Then multiplication of each equation of lesser ‘

degree by a suitable power of the. respective sj will yield monic )
# »

equations of degree m and under componentwise operations one

m-~1
. = €
n-15 +...+r0 0 , where rj ﬂ Ri ,

# 0 because r (1) is®a non zero elemenra

~

. 1
. o
obtains an equation s +r

j=0,1,...,m-1 , and. L

- H n n ,
of Ri for some 1 < n . Hence’ ﬂ Q(R ) is algebraic over 21 R1 4

n
by (3.4). But 1§l Q(Ri) is algebraically closed and thcrefore

[
-

3

3

3.29 Proposition. Let R be a'semiprime ring and let {(R) :beﬂ%;g

"ff.'

Proof. 1f- Q(R) were not Baer, then by (3.7) it wouldfhave an

_ algebraic extension uhich, being Baer, would be a proper extension.

@
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4. Localizations of an algebraically closed regular ring.

3.30 Lemma. Let R be a regular ring and let I be an ideal in R .
= . ! )
Then idempotents can be lifted modulo I; that is, an element of R/I

is an idempotent if and only if it is the image under factoring by I ,
' 3

of an idempotent of R . .

Proof. - The images of idempotents Ate again idempotents. Conversely,

2 in R/I . Then x2 ~-x € I . By regularity there exists

y € R such that x = x2y = xe where e = e2 = Xy . Since x2 - X

let x =;/‘;

~
=

is in 1, so is y(x2 - x)=x -e . Thus the idempotent e 1is" mapped
. "’..

HE o
-

onto x' in R/I .
A '

B 3
“ay .
"

¢

S 3.31 - Lemma., Let R 'be a regular ring and let B(R) be its ring of

RN

o

idempotents. Then: ‘ ' ' i

[

(1) If 1 is any ideal of R , then“the ring of idempotents of - R/I

#-\\\\ ' is isomorphic to ﬁ(R)[I N B(R) . :

{2) Any ideal of B(R) is extended by an ideal of R .
:\ ‘x : " L

.v- (L

Proof. (1) From.(2.35) multiplication-in B(R) ocoincides with that

in R, and if e€ B(R) , f € B(R) , their sum in B(R) is_

ef' v fe' ; which becomes e + f - 2ef when + denotes addition in

R . Let h be the projection from R onto~ +R/I . 1t is easily seen

R that h|B(R) "+ B(R/I). 1s a ring tromomorphism. Furthermore, its

kernel 1s I N B(R) and (3.30)'en§:?é§ that it 1s onto.

r

PR - (2) Let’ J be any ideal in B(R) . Let I = {er | e € J, F:ELR}"

It 1 shown'in ([17], p.7, Lemda 1.6) that if eyr, and 25251

Z‘“‘ ». + - ‘ . . N .
: then elr1 ezr2 (e1 + gz ?lez)(elr1 + ezrz) T
' t_eyt = (s o

= (elez) (elr1 + ezrz) (c1 v'gz)(elr1 + ezrz) .

5

\ [}
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EN »

I\ A
-Therefore e,r. +e.r, €1 and so 1 1is an ideal of R . If b

111 272
er € I NB(R) then e € J, hence e(er) = er € J . Thus

J=INBER . -~

3.32 Definition. Let R' be a ring. An R-module M 1s called
irreducible if. it has exactly\two submodules. That is, M #% 0

and M has no proper submodules. If J 1is an ideal of RQ then J
is 1r£éduc1ble as an R-module if and only if J is a minimél ndfi-zero
ideal.

An R-module M is said to be completely reducible if it is’

isomorphic to'a direct sum of irreducible modules. The ring R will

be called completely reducible if it is completely reducible as an

R-module. .(Such a ring is also called "semisimple'').

3.33 Proposition ([14}, p.65). A commutative ring R 1is completely

Pl

reducible if and only if it is isomorphic to a finite direct product

of fields.

A

3.34 Proposition (f14), p.68). A ring R {s completely reducible

if and only if i; is Noetherian and regular. ’

' s
A

3.35 Corollégx. A completely }educible ring R 1is regular Baer.
) "

Proof. Since R 1s Noetherian every ideal islflnitely generaggdﬂﬁf

3
\

LN
It then follows from (2.6) that every ideal is a direct summand.

3.36 Lemma. Let R be a regular Baq} ring with ring of idempoﬁents

. . - i ;:v {j;‘
B(R) . Then R is completely reducible if and only if B(R) 18"
finite. “) - =+ i

i ’ .. hal

k



Cartesian i:roducc of finitely many fields.

. (3.31), part 1, the ring of idempotents of R/I 1s not complete. ’

w7

i
-~

Proof. If R is completely reduciblenthen it is isomorphic to a

direct product of fields 1ﬂ1 F, having idempotents ) RN
n , :
er {1 2,...,0} + &1 Fi such that e(i) € F, » 1%1,2,...,n, and

e(1) = 0 or e(l) = 1. Therefore B(R) 13 finice,

The converse can be dstdblished by induction on the order of
B(K) . If IB(R)] = 2 then R is a field. If |B(R)| =n > 2, let

eE.,B(R)\{O,‘l} . Then eR 1is a ring with identity element e . It

?
~ 13 not a subring of R since e € B(R)\\{0,1} . Now R = eR X (1-e)R

"By (1.35) and IB(eR)I <n, |B(l-e)R| <n . Thus R 1is the

3.37 Theorem ([7), p.456, Theorem 4.3). A Boolean algebra has the
p;o;)/erty that all of its quotient algebras are complete if and only

if it is finite.

3.38 Proposition. If R is semiprime and rational‘ly" complete then

.all quotient rings are rationally complete if and only 1f R 18’

'+, completely reducible.

AN
* ~

Proof. If R 1is semiprime and rationally complete then it is Baer

by (1.41) and regular by (1.24) and (2.47). Supp;:se that R 1s not
completely reducible. By {3.36) B(R) is infinite. By (3.37) .there

exists an ideal J 1in B(R) such tﬁac B(R)/J 1is not complete.

By (3.31), part 2, J is extended by at ideal say 1 of R, and by

.

" Thus R/I is not rationally complete. Thus if all quotient objac:s

of R are to be codplete. :hen B(R) must be finite and R must

be conplct:ely reducible. The opposite implication is straightforward.“

i ' .

k]

.
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3.39 Proposition. ;f R 1is regular and algebraicélly closed then all "

duotient objects of R are algeb;aically closed if and only‘if R is

‘gfmpletely reducible.

A

Proof. A fegular algebraicallf closed ring is Baer by (3.9). The

quotient rings of R are always regﬁTE?‘iﬁﬁqSﬁ;I; factor fields are

algebraically closed as shown in the proof of (3.10). Thus the only .
pfoperty at issue is that of beiné Baer and this argument proceeds as

in (3.3é).

3.40 Definition. We/recallﬂfrom (3.16) that R is an extension of

S
a ring R provided 'S .is a multiplicative set of _R consisting of

. ‘non~zero—divisors. Now'aésﬁme that S 1is a mhltjg}icattvé set 1in
R with O ¢ S and that S contains a divisor of zero. As shown in

({20), p.221) a localization R -+ R is then defined thus: Consider

S
a homomorphism f of R into a ring T such that f(s) is a unit

EN

for eJery s €8S - If x 41s an element of R such that sx = 0
for some .s € S° then .0 = f(xs) = f(x)f(s) , and since f(s) is a

unit in T this implies f(x) =0 . Thus the gérnel of f must

contain the set 1 .of all elements— x in R for which there exists

T

an element s 4in S 'suclr that sx = Q0 . The set ﬂ is a proper

ideal of R.. For if Xy }2 €1 qbéﬁl 81% =0, szx2 =0,

€ ‘ % + _ =
81’>52 S , whence 8 32(x1 Xo) ’0 . Furthermore 164 1 as

otherwise s =1 - 8= 0.for some s € S . Now the cannonical image

\
’ N

' §=8+ I/T of S 1in ﬁ/I-Fis ébviously closed under muliipli;ation -
and if xs=0, Xx€R/I, 8€S , then xs €1, xss' =0 for
a suitag}F s' € S, and since 88' € S this implies that x € I and\

X =0 . Therefore S 1is a multiplicative set containing no zero-

on



»

divisors. As in (3.16) one has a ring (R/I)—S- which will be called

A - .
the localization of R at the multiplicative set S and denoted Ry . \

We shall write .r/s - to denote the equivalencé class of (r, s) in - N

R. . The homomorphism h: R + R, will be given by h = y¢ , where ¢

S S

is the cannonical homomorphism of R onto R/I and ¥ 1is the

monomorphism of R/I into R. defined by r +r/l . The kernel

S
I of h 18 then the set of alél elements x in R for which there

exists s in S Buch that xs = 0 . Furthermore, following (3.16),

every element of h(S) 1is invertible in Rg . We note that the

mnomorphfsm R/I - RS will be onto whenever S consists of units of

R/T . ' :

3/41 Lemma. Let R be a regular ring and l'et I be an ideal of R .

Then I 1is .the kernel of a localization of R , and the localization
i

is R/I . : B
Proof. Sdnce R is regular I =10 M, vhere {Mi} is the family &f
maximal ideals ;)f R containing I . The set S = f‘i (R - Mi) is

multiplicative and I 1is the kernel of the localization with respect
to S For if r 1s in the kernel, rs = 0 for some s € § .

Since 8 1is in no M1 » ¥ 1s°in each Mi » and therefore in I .

Conversely, if r € I , then by the regularity of R rR= eR for

some idempotent e of R . Since e 18 in each M l - e is in

1 ’
40 i.e. in S . Since r(l-e) = 0 , one concludes that
/ .

r 1s in the kernel of the localization with respect to S . The

each R - M

localization RS will be R/I because the image of** S in R/I

1

‘ /.
‘consists of non-zero-divisors as was just shown in (3.40). Therefore




<

f\\\

Axrs Y o

4 . a r [y
“the' elements of S are units by (2.6) and so the mnomrp’his& e

« . !

:. )
R/I =+ Rs is onto. . » :

ge
x

\
H

ES -

4
3.42 Proposjtion. Let R be an algebraically closed regular ring.

R is completely reducible, i.e. Lf and only if R is a finite

'Cart:es’ian product of algebraically closed fields.

Proof. (3.39) and (3.41).

L]

3.43 Remark. If R = H“OI:‘ “ F an algebraically closed field,
then R 1is ar; algebraically closed regilar ring by (3.11). &‘h:;s “
every monic polyqomial over R h;s a root in R and the field
images of R ‘are algebraically clos'éd. But R is ‘not completely
reducible, hence there exists a locaiization" R/J of R ‘that is not
'aigebraiﬁaily closed~. R/J "has a root for every pc;‘;lynqmial eduat}on
over itself, as wgs'shown in the proof of (3.9), and furthermore its
quociept fields arc algebraically closed because they lle: among

those of R . Therefore R/J 1is not Baer and it is now clear that

»

the demands that the ring be Baer in (3.9) are not superfluous.

Then every lbcalization of R 1is al’gebraically.closed' if and only‘ if
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. APPLICATIONS TO' GROUP RINGS - \ , .
e ' ' ' X '
L ¢ * » < t\_ 'l' \
\ .
1. thug Rings. - ’ \\
Vs PRAN

gy

“3(2.1 Definition. Given a multiplicative group G and a ring \A ,

<which may be not commutative,; the group ring R:.= AG consists of all

e

. . 4 -
functions r: G * A with finite support. .The support of r |is

{2€ G| r(g) *+ 0) . R’ 18 endowed with ring operations by defining

’ ' ! 1} i
\0(8) = Q '! .o / .

D 1@ =1 if g=1, =0 4f g+,

(-r)g = -r(g) , o € ,
(r+r)8=r(g)+r(g)' l o ‘
(rr )s"' f%,hh. r\(h)r (h' ) v o

It is easy to see that these operations sétisfy the associative and

. }‘ 1% N
distributive laws and so R 1is in fact a ring. It contaings A as a
subr-ing under che identification of a € & with a function &% G -+ A

i v b
{ .

s'hmby , S o .

n(h)w{if h#l. h€G ., -, : , N

.(1) . a N , . ‘ ‘! .f' LY
Similarly for any g € € pur v “
' L
g(h) = 0 if ht g, hEG, : .
i . | SN

glg) =1 . ; ,
Then G Tmay be identified with a wbnvl%o,up of ﬁhe multiplicative ° ,

ssmigroup of .R apd* R has unit €lement 1 = 1, - It follows that

o

for any r € R

/
< N o

a

F o lge TWIE " Lo ar(®)

.
1

£
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Thus' R, 18 a conmuihtiye't{pg if A {8 commutative and .G 4is an

- -

Aﬁeiianlgtoup. Furthermore R is a free Aiuodule’generated by the

i

. set of .elements of G . 'For 1if. §~ r(g;)g, = 0 then
. ) {= 1 i i $

Ia

n . ' = | ", . P'
i (izlt(Bi?Bi]‘(gj? = 121[1‘(8‘1)(1) . 81'(33)] =0, j§=1,2,...,n,

~ -

and;since gi(gj)\'\o for all J+ 1 we havgf
7z . — — \
r(g) () - g, (8) = r(g)(1) - L =-r(g,) = 0, 1=1,2,...0n .

/
‘

There 1is'also a mapping &: R + A défined‘by (T r(g)g) =L r(y) .
This 18 clearly a ring homomorphism of R onto A .

4

4.2 Lemma ([6), p.651). Let R = AG . "There 15 a mapping w from
' the lattice of subgroups of AG to the lattice of right ideals of

R . For any subgroup H of G, wH 1s defined to be the right
. \ .
ideal generated by the set {1 ~-h | h€ H} . If H 1is a normal

subgroup wH 13 an ideal. In fact it is the kernel ofilhe LT

- . ¢

honginorphisn AG * A(G/

$

g ‘ n
H) given by “2 r(g,)g, =~ ¥ r(g,)g,H .
N ' =1 ,1 i =1 1°%4

* 4.3 Corollary. If\\u = AG then R/wG & A . " ’ ’

Proof. R/wG = A(G/G) = A . , ~ N

4.6 Definition. Let A be a ring and let n€ Z . Then n is said

to be invertible in A 4f n - 1 is a unit of A .

A

5
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4.5 Theorem (6], p.660). The group ring R = AG is regular if and

only 1if
(1) A 1is regular,
(2) every finitely generated subgroup of G 1is finite,

(3) the order of any finite adﬁgroup of G 1is invertible in A .

T

& 3
4.6 Proposition (6], p.659). If R = AG then g€ G has finite

order if and only 1f 1 - g 1is a zero~divisor. When g has order

n—l)

n the right annihilator of 1 - g 1is (1"+ gt ... +¢g R .

024

4.7 ' Theorem ([6}, p.667). Let A be commutative. Then R = AG is
semiprime if and only if A 1s semiprime and the order of any finite

>

normal subd up of G 1is a non-zero-divisor in A .

s

It will henceforward be assumed that R = AG 1is a commutative

s
ring. , i - ,

4.8 Proposition. If R = AG is Baer, then A .is Baer and the

orders of tﬁé elements of G are invertible in A .

. Proof. Let R be Baer and let J be an ideal of A . 'Then

JR= {r € R | for all g € G, r(g) € J} is an ideal of R,
consequently (JR)* = eR , e ;n idempotent of R . If 1 4s the
annihilacor of J 4in A then I = 6(e)A . For IRC (JR)* = eR
and therefore I = IA = S(I)8(R) = G(IR)jE S(eR) = §(2)A .- On the.
other hand wve have eJR = <0> , henép §(eJR) = §(e)J = <0> and so
6{(e) € I . Furthermore i = 6(e)A 18 a direct summand of A.

because {(e) = 6(e2) - [6(e)]2 . Thus A 1is Baér.

!



: In view of (4.3) the image of 6(e)A in R/wG is a diregi

v

summand of R/wWG whosc preimage in R is ek . Therefore

wG C eR and since this implies that (l - e)R C (wG)* 1t follows ="
“from (4.6) that the eléments of G have finite o;der. To see that

the order of g € G 1is invertible in A suppose gn =1 ., If

-
e /

\.,l)
. i

(1 -g)*= fR , f:>an idempotent in R , then

(L+g+ ...+ gn-l)R = fR by (4.6), hence (n-1)A = §(f)A and by

(4.7) 1 - 6(f) = 0 . Accordingly (n-1)A = A .

- N
s

- ’

e

2. - Algebraically closed group rings.

/ ’ » )

/ o ,' 4.9 Lemma. Let R = AG, R, A both regular. Then the quotient
*.fields of R are algebraically closed if and only {f the quotient

-

fields of A are algebraically closed. -

. . b $
: Proof. By (4.3) A = R/WG and therefore the maximal ideals of A
are the ideals M/wG , M a maximal ideal of R :couctaining wG .
If now R/M 1is aléegraical}y cloged then so is (R/wG)/(M/wG) = R/M .
Conversely assume the'quotdgnt fields of A are algebraically

closed. We recall from (2.44) that every maximal ideal of A |is

the contraction of an ideal of R , therefore it is the contraction X N
of a maximal ideal of R . Let M be a maximal ideal in R and

- consider the field embedding A= A/MOA -+ R/M=R . Let g be

any element of G . By (4.5) gn = 1  for some p;sit1Ve integer' n

and so E‘ in R is 1nteéral over A . Thus R is integral over Kﬁ

and by (1.3) the field embedding is algebraic. Since A is

algebraically closed the embedding is an 1somorphism by (3.8).
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4.10 Proposition. Let R = AG be regular. Then £f R is
‘algebraically closed, 83’:8 A -
A Proof. 4.5, 4.8, 4.9, 3.9. ’”/// o
. o a.il Lemma. Let G be a finite group, and R = AG , a regular group -

ring, where A 1is regular, algebraically closed and of prime v

characteristic. Then R 1is algebraically closed.

~»

) Proof. By (4.9) and (3.9), it sufffbes to show that R is Baer. g

>

Q(R) = Q(A)G by (5], 3.6). “Let e be an idempotent in Q(R) , say

n
. e= [ 9,84 ,'q1 € Q(A) , 8y €EGC, 1i=1,2,...,n.
i=1 »

Let p be the characteristic of A . By the binomial theorem
a a a ) ’

e=ef - gl qg gg . h' any positive integer, because the binomial

- 1'3 . hd
a h . L . %

coefficients (: 0 < k < p are multiples of p’. Thus

>

exponentiation by pa acts as a permutation on the support of e .
Let By be an element in the support of e . By the above ,

remarks

¥

- o0 & p a “-ba
0+ e(g] ) = e (8] )= le(g))? = Le(g)1™Ne(s)?
and.-it follows thdt for any positﬁ'ﬁxinteger a e(gza) + 0 and
a ~—. C ’
e(g: -m) 4 0. Now‘lhe- set {821 l j = 0,1,2,---} 1128 in'the
(finite) support of é and therefore there exist positive integers

m, n, m > n, such that sgm = gg“ . Reading off its coefficients

in the equation ™ = P yields the equation qgm = qqn » since
' ’ ’ |
. o . Q(A)G is a free Q(A)-module, Thus"%'q.1 is integral over A . _But



80

A 1g algebraically closed and so by (1.33) it coincides with its
integral closure in Q(A) . Thus AG contains all idempotents of

“Q(X)C and is consequently Baer by (1.41) and (2.40)

4.12 Proposition. Partial converse to (4.10). Let R = AG be a

0

regulaé group ring. Then R {s algebraically closed provided that

C 1is finite and A 1is algebraically closed and of non-zero

characteristic.

Proof. A is regular and so it has no non-trivial nilpotent plemedts;’
in particular the characteristic of A must be square-free, say

n= 1ﬁ1 Py - It follows from (2.6) that there exists for each Py

an idegpotent 1 - e € A such that (1 - pi)A = (1 - ei)A and if

A= {a€ A | p,a = 0} 1t is easy to see that A = e A . Thus, A

is & ring with unit element e, and since Py is prime it is of f

characteristic pi . Furthermore hi is a regular ring. For if

ae€ A1 there is ¢ € A su%p that a = azc . If cza.= d then “

aZdJ hence d € A1 is a quasi-inverse for a .

Because Ai is of characteristic Py the rings AI.A

a= azc = (azc)éc.

2,....Am
y

are pairwise disjoint, hence LD YERRTL are orthogonal

idempotents and therefore

4

4

1- (e1 + e2 t'... + em) = ( el)(l - ez) ees (1 - fm) = 0.

By (1.55) A ='A1 + Az + ... ¢+ Am is a direct sum, consequently there

is an isomorp of A onto the finire direct product of the rings
Ai . Since the ideals of ﬂAi are direct products of ideals of

the rings A, 1t follows Qfom the fact that A 1is Baer that each .

1,' -/ r

.

e




°
Wt
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-

Y3,
Ai is Baer. Then by @.35) Ai = e

algebraically closed by 3.10. Now R = AWic . By'%.l1), each

v

A= A/(l-ei)A ‘whence 1t is

AGC is a gebraically closed. By (3.11) R 1s algebraically closed.
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APPLICATIONS TO RINGS OF CONTINUOUS 'FUNCTIONS

[

v "‘2;

1. The complete ring of_guoiients.of c(X).

w

5.1 Definition. The set qf all conﬁinugﬁs reai-valugd functions on a
topqlogicﬁl space X isidenoted by cC(X) . A ring at;uc:ure is
given to C(X) by defining .
(f +g)(x) = f(x) +g(x) , (£8)(x) = £(x)g(x) ,
(-E)(x) & -£(x) . IR
-TEF unilgglegent of 3§(x) is the cbnstagi function 1 whose ‘constant
value is the real number 1 and the zero element 1§othe constant
function bfﬁ The uﬁltiplicative 1qvgrsg f-l , when it exists, is
" characterized by.the’formula f’l(x) = %%%3-. It is obvious that with
operations thus defined C(XS is a comiutative semiprime ring. The
- complet; ring of‘quotients o£?‘C(x) , denoted QR(X) , is then a
regular ring by 2.47.
Following ([10}, 3.1) it willybe assumed that the ;pace X is
'1completel1kgggglar.’i.e. it 18 a Hausdorff space such thac’uhenever,
F 18 a closed set and x 1is a point in its complement, there. exists
a functién £ € c(X) shéh that f(x) =1 and £(F) = {0} .
5.2 Definition. The zero-set of f € C(X) 1s the set
z(f) = {xﬂe X | £(x) = 0} . Every zero-set is closed because it 1is
the preimage of a point in R . The complement of a zero-set is the
.cozero-get of. £ , denoted coz £ . . : ! ,
‘/‘ , E

R

& ;
et



‘For any ideal I in C(X) & 1

Z(1) = nfex z(f),
coz I =:,UfEI coz f .
A n

5.3 Definition. The closure of a subset V of a topological space
X 1is the intersection of ‘the members of the family of all closed
sets containing V . The closure of V in X will Be denoted cl V

A set V 18 dense in X if and only if the closure of V is X .

5.4 Lemma. If V 1is dense in X then the ring homomorphism

S\
f +£|V from C(X) into C(V) is _amonomo:{'bhism.

-~

Proof. Let 0+ f € C(X) . Then 2Z(f) DV since 2(f) is closed
and V 1is dense in X . Thus £lv 4 0 . One may then write ._.

C(X) € ¢c(v)

\
An ideal 1 in a ring R may, of course, be regarded as an

R-module. The set of all R-module homomorphisms from I into R

will now be denoted Hom I ; it is well known that Hom I is itself
. ' i \

an R-module. We recall from (1.13) that an ideal D of R 1s said

s

to be (rationally) dense if its only annihilator in R 1is <0> .

5.5 Lemma ([9]). If D and D' are dense ideals with D D D'

then the restriction homomorphigm ¢ + ¢|D' from Hom D into.

Hom D' 13 a monomorphism of R-modules.

Proof. If 0% ¢ € Hom D , then ¢(d) # 0 from some d € D‘; since
J

D'. 18 dense, there exists d' € D' such that O % ¢(d) - d' = ¢(dd")

+ [ 3
therefore ¢|D' ¢+ 0 . One may then write Hom D C Hom D' .

83
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5.6 Theorem ([9)). Antideal D in TC(X) is (rationally) dense if

and only if coz D 1is (topologically) dense in X . ‘ 2
w .

Proof. D 1is dense if and only if for all g€ C(X) , gD = <0>

n

implies g Q ; if and only if for all g € C(X) , Z(g) 2 coz D

0 ." If now cl(coz D) = F# X there is an x € X - F

a

implies g
‘and by complete regularity there exists g € C(XY such that g(x) #+ 0

and g(F) = {0} . Then Z(g) DF D coz D and so g=0, a

 contradiction. Thus coz D 1s dense. ¢

Conversely suppose F =X . 1f 2(g) D coz D for any g € C(X)

then cleagly' 2(g) = X hence g= 0.

i

5.7 Lemma ([9)). Every open set U ‘in X 1is of the form coz I

-

for some ideal I 1iIn C(X) .

-

Proof. Define® I = {f € C(X) | coz £ ¢ U} . Then 0 € I since

coz0=¢ . If f, g€ 1 and h € C(X) then

. coz f +g= {x € X | £(x) + g(x) + 0} C coz fU coz g CU and

coz hf = {x € X | h(x)f(x) + 0} = cozhNcoz £ C U . Thus I 1{s an
ideal and coz I C U .

Cpnve£se1y assume y € v.. Because U‘\is oéen it is- a neighourhood
of y and by complete regularity there exists f € C(X) such that
£(y) ¥+ 0 and f(X - U) = {0} . Théh fE 1 and |

i

y€coz fCUV coz f = coz I .

f€1

5.8 Corollary. The dense open sets of X are precisely the sets

coz D, D a dense ideal of C(X) .

s ‘
Proof. (5.6), (5.7). .

a ) {S‘("Et{ﬁt._v
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5.9 Proposition ([9)). If V is a dense open set in X then C(V)

-

d L is a ring of quotients of C(X) .
: . . ' e

(44
Proof. C(V) D C(X) by (5.4). Now consider any h € C(V) and let

B 21

vEV . By compi}te regularity there -exists £ € C(X) that vanishes
on X -V but not at v , hence v€ coz f. If h %+ 0 choose
’ o N

Y€ cozh , then v€coz hNcoz f= cozhf and hf # 0 . Further-

more Z(hf) = Z(h) U Z(£) D Z(f) D X - V', therefore hf € C(X)

Thus h(h 1C(X)) * O and, since C(X) s semiprime, C(V) is a ring:

of quotients of C(X) 'by (2.36). v

5.10 Definition. A filter F in a set X is a family of non-empty

subsets of X such that
(1) The intersection of two members of F belg%gs to F .

(2) If F,€F and F, C F, then F, € F. 1In view of (5.6) and

1 1 2 2
(1.14) the family of-dense open sets of-a cgmpletely regular .
space X forms a filter. ’ 7

5.1 Proposition. QR(X) can be realized as the set of all continuous
real-valued functions defined on dense open sets of X , modulo the
gelafiqn which identifies functions that agree on the iﬁtersection

of their domaf:g.

]

Proof. Let V be a dense open subset of X and let fe c() .
Then f may be identified with the mapping d + fd, d € f-lc(x) :
A “1 )
2 \\\\\ as fech ft belongs to  Hom £ "C(X) . Now suppose Vl and%V2 are
N l ‘\ dense open sets, f1
C(V111 V2) is a ring of quotients of C(X) and there are restriction

€ C(V,) and £, € C(Vz) . Then by (5.10)

;
fa .
B

monomorphisms £, ~+ f, | VNV, ,4=1,2; thus T e

N

Pl



. )
g fz) € C(V1 N V2) . If f, and f, agree on v, n V, then )

f1d= f,d forall d€ (f, + (-£,)77C(X) and by (1.19) we have

- f, = Bf, . !

Conversely, as in ({9}, 2.5) ésqume D 1is a dense ideal of
_€(X) and let ¢ € Hom D be given. For x € coz D , choose d € D 4

for which d(x) + 0 and define

-

t" = 1(—-21—r d ﬂx)
8(x) d(x) ° N
L . : . 1

: 7 ' ' '
Since ¢(d)d' = ¢(d')d it follows that ¢§g) = ¢§? ) if
co;.d = coz d' , theréfore this definition is independent of d . 4
Furthermore ¢(d) € C(X) € &(coz D) by (5.6) and (5.4). Thus for

each x € coz D there is a continuous function that agrees with g.

on a’neighbouqhood cozd of x and so g 1is continuous on its

domain c¢oz D . Now consider any d € D . For each x € coz D a
|
suitable d' can be found so that ¢(d)(x) = Q-%—.—‘%){l)‘l-d(x)"s(x)d(x) . '

hence ¢(d) = g - d and therefore 8¢ = Og .

5.12 Definition k[lo]). A totally ordered field F 1is said to be
real-closed if it satisfies the following conditions which are known
to be equivalent:

- (1) §Very positive element is.a square, and every polynonlel over F
of odd degree-has a zero in F .

(2) F(/-1) 1is algebraically closed.

~(3) f;$bas no proper algebraic extension to a totally ordered field.

H
a
et
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5.13 Lesma. The factor fields of QR(X) are real-closed,

"

Proof. It is established in ((10), 5.5) that the residue class rings
C(X)/P are totally ordered whenever P 1is a prime 1dea} in C(X) ;
1;; paiticulat. if f € C(X) 1is positiye on somé zero-set of P then
£>0, fE€C(X)/P . Therefore the factor fields of QR(X) are
totally order;d;; For if q € QR(X) /M, q a preimage in QR(X) .
let q denote ’thg representative function defined on a dense open '
set V in X . Then Q€ C(V)/MN C(V) and if q is positive on

some zero-set of the prime ideal M N C(V) .then q >0 .

“To see that the factor fields of Qn(x). are resl-closed one

,observes that the proof of the theorem for the ring C(X) , given in

({10} , 13.4), goes ovar entirely; the coefficients .ql.’qz, ceer @
in a polynomial of odd degree P(\) = \" + qlln‘l + ...+ q over
QR(X) may be vieved as representative functions defined on dense
open sets Vl. Vz,‘ ey Vn of X-. Since V= g Vk is a dense

open set in X by (5.10) one now argues on V .

5.14 “Theorem. Let Qc(x) dencte the ring of all complex-valued
functions defined on dense open ‘subsets of X » 0odulo the relation
which identifies functions that sgree on the intersection of their

dosains. Then (g, (X)) = Q(X) .

Proof. The natural embedding in algebraic., Take f € Qc(X) s £%0.
Let a and b denote the purely real and purely complex parts o,£~

£ ; 1t Py Py are the projections from € to R then as= plt ,
b= pzf » Are sach tl,\.' composition of continuous naps, therefore they

are continuous real-valued functions on the A’clo-‘-m of £ . Wow

| ’



"4n I such'that 4 <4 let .

2

f=a+ib and fz - 2af + (az + bz) = 0 identically on the domain
of f . This is a monic equatidn in £ with coefficients from

QR(X) ; furthermore, the absolute term in not zero because f 1s not

!
-

the zero function.
It follows from (2.24) and (2.41) that Qc(x) is a regular Baer
\fing. Therefore by (2.46) there is a one-one correspondence between

the maximal ideals of. QR(X) and those of JQé(x) and so the factor
y A

fields of Q.(X) are llgebr@)over the real-closod factor fields of

, 0. ‘
QR(X) by (1.3) and (2.20). Since they contain the image of the

function which has constant value { chey are algebraically closed

v

by (5.12) and the result follows from (3.9). .

-

2. The Dedekind completion of Qa(x). ) °

.5.15 Definition ((15]). A partially ordered set I is called a
directed set if given 1,§ € I , there exists k € I such :hagg 1<k
and § <k . Assume 1 1is directed. Let A be a category and

(Ai) a family of objects in A indexed by:'1 . For each pair 1,3 "

uuhf - AJ be a morphism sstisfying

13°-74
the conditions: " S FIoA
: ¥ J o ) &
(1% 'tti is the identity morphism of A1 for all L €1 ; \
2 t, = fjk .7g§j vhenever 1 < § < k . | o
Then the objaects- A and morphisms” f are said to form a direct v

i
Y .

13
systes Q(Aif fij

et B 'be the category whose otjects are the pairs (A, (fi)) '

”

v

vhere A€ Ob(A) and’.(fi) is a faully‘P! sorphisms f‘: A, - A‘,

i
Phov Py \ ‘ " / ‘-
£€'1 . such that ’ti - ‘J . [11 uhcncvor‘\l <3 . A direct limic
o . - N , 4 . .
p o l ’
, u L
. [ 4 ! ~ !, \

v o~ L / '

~ ¢

, - ‘ N e

o . '
"\g\/ <

-

L~ ASIEN



' for the family {f } » vritten 1lim ii 7 1s an object (A, (f ))
*« in B auch that for every object in B there exists a unique morphism

: : - g
of (A, (fi)) into’thfs object.\J

, y A )
5.16 Proposition. Let S(X) bqgijﬁilter se consisting of dense

. e
" subsets of a completely regular space X . Then S 1is a‘Lirected set

indekxing the family {C($)}SES and limgeg C(S) may be realized as
-
«the set of all continuous real-valued functions define¥ on subsets of
o I -‘ . :
§:, modulo the relation which identifies functions that agree on the

,,intgrsectiog of their domains.

Proof. S 1is closed under finite intersection, consequently (S, D) is
| -

d directed set. Furthermore the restriction homomorphiéms

¢ 2 £ +Q_184 , when f € C(S) and S 2 S' , are one-one by (5 4)

and therefqre satisfy conditions (1) and (2) abovs Now denote by

. vy
“ C[S] the ring of equivalence classes with respect to the relation on

?% USES C(S) that identifies functions which agree on the intersection
of their domains, and let ‘¢8: c(s) + cls] 'be/defineg as follows:
' ¢ (f ) = f whenever fs is a representative function f;r |
Clearly {¢ } S€S is a family of ring homomorphisms such that
¢ ¢ , ¢ss' whenever S 2 §'
It temain§ to show that CI(S] ; lipsés ¢c(s) . Thug suppose
(T, {ws}) is a pair consisting of a ring T and a family of
homomorphisms Y i C(S) + T , S €S, such that -y, = ¥y, * b0
/VheéeverJ S 2,8',. Define @: C[S] + T—by W(f) = w8(£8) , where
f8 is any representative fungtioé for f . Then it is easily seen

that U «is a homomorphism of rings. If also y' -‘¢8 = ws tﬁen

WD) = ber 0 (E) = U () = U ¢ () = ¥'(E) , hence ¥' = ¥ .

’ V4
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subsets of X . Then C[V_(X)] = limVEVO C(V).‘-= Qp (K

5.18 Remark. As shown in ([10], 1.2), C(X) {s 4 lattice ordered

-

ring 2g?er the partial order given bf%
~ o
f <g 1if and only if f(x) < g(x) for all x € X .

Fo define an ordering on .CI[S] suppose_ f,g € C[S] and let fl' 8y

be any of their representative functions defined respectively on

. dense subsets 51> T, .in S . By f < g will then be meant that

1

A . €
f1 < g, on S1 T1 I1f also f2 € C(SZ) -2 C(TZ{ are

representative functions for f and g then cleégly f2 j_gz on
o .
= N N
S “Sl S2 T1
(8, = £5) - Igz - f2| G"C(S2 N Té) agrees with th& constant function

0 on S , and because S 1is a dense subset of X this means that

N T2 , therefore the function (32 - f2) AQ=

(g2 - f2) A0=0 . Thus the ordering is well defined and so each

ring C[S] 1is a lattice with respect to the pointwise definition of
~N
order. '

+

" 5.19 Dpefinition ([9)). Let C= C[S] be as in (5.16). If every

Y

nonvoid subset with an upper hound in C has a supremum in C ,

. . "
then C 1is Dedekind - complete. If C»is Dedekind - complete,

BCC , and every element of C is the supremum of some subset of B ,

then C 1is the Dedekind completion of B .

L
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Q' 5420 Definition. The subring of bounded functions in C(X) 1is

IS \

. denoted by C*(X) . It is shown in ([ 9], Theorem 2.3) that C(X) \
is a ring of quotients of C*(X) and that therefore QR(X) is

the maximal! gine’ of quotignts of C*(X) .
)

)

a

'5.21 .Definition. A compactification 6f a completely regular space

X ds a compact space in which X 1is dense. Any completely regular

-~ 4

space X has a compactification BX called the Stone - Cech
k“V

compactification of X iﬁthich X 1is C*-embedded, that is every
function in C*(X) can be extended to one in C(BX) . Moreover

« BAX 1is completely regular and Hausdorff (SgeXIlO], 3.14 and 6.5).
- [al

5.22 Lemma. QR(BX) ='QR(X) . ’

Proof. We recall that a continuous real-valued function on a compact
space 1s bounded, thus C(BX) = C*(BX) . Since X 1s dense in BX
it follows from (5.4) that the embedding of C*(X) into C(BX) is

onto, hence C*(BX) = C*(X) and therefore QR(BX) = QR(X) by (5.20).

A

5.23 Definition. A subset of a space X 1is a Gg 1f it is a
countable intersection of open sets.

By the B;ire'category theorem a countable .intersection of dense
open sets Oqu compact Hausdorff space X 1is d;nse in X , therefore
the family G;(BX) of all dense Gé's in BX 1is closed under
- Eountaﬁle intersection and Eny finite intersection of G5's contains
a member of Gd . Thus Go (BX) 1is a filter base of dense subsets
of BX and by (5.16) C[GO(BX)] is the ring of afl continuous real-

valued functions defined on dense Gé's of BX modulo the usual

relation. As is proved in ([9], 4.6 and 4.9) C[GO(BX)] is the ring

!
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ak(X) presented in ([9), 4.1) and 6;(X) is the Dedekind completion

of Qu(X) . We denote by aé(x)s the ring of all complex-valued

tontinuous functions defined by the same filter, modulo the same

relation.
Y

5. 24 Theorem. Q(GRQ;)) = Ec(x) .

Y

Proof. The fact that 66(¥) has algebraically closed factor fields

and that the embedding is algebraic proceeds as in (5.14). Gb(x)

is Baer because Ek(x) is rationally complete ([9], 4.8) and therefore

Baer by (1.41). | ‘ ‘

3. Locally constant functions in QR(X).

1]
5.25 Definition ([9]). Let V E_Vo(x) . The function £ € C(V)

is locally constant provided that {x l f(x) = r} 1is opeg in V

for each r € R . Define L(V) to be the ring of locally constant

functions in C(V), and RQL(X) = livaUB(x)L(V) » those functions

in QR(X) which are locally constant on their domain of definition.

.

5.26 Theoren. Q[RQL(X)]‘ = Q0 .

©

-

Proof. It 1s easily seen that the composition of a locally constant

complex-valued function with either projection to the reals 1s still

<

locally constant. Thus the natural embedding is algebraic as in

(5.14). Also, since RQL

g (X) and .Q (X) are regular Baer rings.

* Now a monic polynomial: over CQL(X) is one over QC(X) , therefore

it has a root in Qc(x) since this ring is algebraically closed by

1 L4

.
e, -

(X) 1is rationally completel([9], 4.3), both

o
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(5.14); In fact the root lies in cQL(X) . For suppose .g € Qc(x)
n n-1 L
+ + ... + + = ' . Q.
satisfies g fq_lg £.8 fo o, fi‘?;cQL(X) ,
and D }9 a dense open set in X , common to the domains of definition
of the n+1 functioné appearing in the equation. We use, the same
letters to denote members of Q and their representative functions

defined on D . ‘Assume g(d) = z , z some complex number. Then

2z 1s a root of the equation

n n-1 =
1) x + fn_l(d)x + ...+ fl(d)x + fo(d) 0.

Since each fi is locally constant, there exist Ui y, 1 =0,1,...,n-1,

open neighbourhoods of d in D such that fi is fixed on U1 .

1 Ui . Then each fi is f&xed on the open set® U and it
follows that each element of g(U) is a root of the equation (1),

Let U=0nN

that 1s g assumes on U only values among the finitely many roots

of (1). Because € 1s Hausdorff there exists-an open set W in C
-

containing 2z and excluding all other roots of (1), hence g 1is

l(W) of d and so

constant on the open neighbourhood U N g-
g € L(D) . Thus all monics- over cQL(X) ha ve roots in CQL(X)

and by (3.9) CQL(X)' is alg;braically closed.

4. Rings of functions into a finite fleld.

5.27f Definition. The ring of continuous functions ftom'a topological
space X into a finite field F , topologically discrete, is denoted
by C(X, F). /

We apply the proof of ([10], Theorem 3.9) to show that compact

Hausdorff totally disconnected spaces suffice for the ‘study of functions

to F , just as completely regular spaces suffice for the study of
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real-valued functions. ~" «

5.28 Proposition. For every to?élogiéal space X , there exists a
comp;ct Hausdorff totélly disconnected‘space Y , such that the
mapping g * g o T 18 ag‘i;omorphism of C(Y, F) onto C(X, F) . \

. e

Proof. Let X be a topological space ang“let Y be the set of all
equivalence classes with respect t6 thg relation on X given by
‘x = x' if f(x) = £(x') for every f € C(X, F) . We define a .

mapping T of X onto Y thus:\.T;Zfis the equivalence class that
contains x .

_With each f € C(X, F). associate a function g: Y + F such that
g(y) 1is the common value*of ‘f(x) at every point x € y . Then
f=g »T. Let C' denote the family of all such functions, that
is, g € C' 1if -and only if g « T € C(X, F) . Now endowing. Y with
the weak topology induced by C' , we find that every function in ('
is continuous ony Y , hence C' C C(Y, F;‘. Furthermoré T X'+ Y
1s continuous by ([10], 3.8). ,

« Since F is‘finite and topologicaily discrete the weak topo}ogy\
generated by C' has a subbase consisting of finitgly many closed-
and-open sets. Therefore Y 1s compact and totally discoﬁgqctedn
([10], 16.37). It is Hau;dorfé because 1if ;y féhd y' are distinct
points of Y there evidently exists g € C' éugh‘fhat g(y) ¥ g(y")

Finally consider any function h'€ C(Y, F) : Since T is
’;ontinuous, h o T 1is continuous on ‘X”. ~This implie; that h€ C' ,

consequently C' D C(Y, F) . Thus C' = C(Y, F) ; and 1t is clear that

the mapping g > g » T 1is an isomorphism.

.



5.29 Proposition. Let X be compact, Hausdorff, and totally /[oo--

5

discpnnected. Then Q(C(X, F))

~

C(G(X), F) , where G(X) 1is tj?

projective cover of X , due to Gleason. /

/

./

/

Proof. From (2.63) there is' a surjection t: G(X) + X with the
/

property that t maps any proper closed subset of G(X) onﬁg a

A

proper subset of X . As well, G(X) 1is compact, T2 an%/extremally

disconnected. It is clear that t 1induces a ring monomoféhism
/

/

tx: C(X, F) » C(G(X), F) defined by t*(g) = g ot . /

By ([17], p. 104, 24.2), C(G(X), F) 1is self injéctive (see

-

[14] , p. 46, exercise 6), therefore it is rationally/éomplete by (1.24).
One claims that C(G(X), F) 1is a ring of quotients/of ‘C(X, F)
\\\\}ake f'e c(6(X), », f + 0, then f defines ﬁ partition of G(X)
/ [

into disjoint clopen sets Al,Az,...;An . whereléhe Ai are the
/
/

inverse images under f of the different elements of F . Since f

/
is non~-zero, we assume, without loss of generality, that f(Al) =d*0
/

. .in F . The set B = U2=2 Ai is a proper; closed set in G(X) .+ Thus

t(B) 1is a préper closed set in X . L%;/ p = X\t(B) . Then D 'is
open and because X has a base of clopgn sets @t contains a non-void
clopen set, say c . Clearly t-l(C)/C A1 . Consider the function
h € C(X, F) defined as follows: PéC) =1, and h(X\C) = 0 . Since

/ -
each x € C is the image t{(y) /bf some y € t 1(C) we have @3

h(x) = h(ty) = h out(y) = t(h)(y) , thus t*(n) € C(G(X), F) is

- / "
1 on.the clopen set t l(C) /in Al’ and zero elsewhere. Thus E

/ N
ft*(h) is the function which is d on t 1(C) . But
/

-1 _ /-1 _ -1 _ -1 '
ftx(h)(t ~(C)) = ad - h(t//t (€)) = dh o t(t ~(C)) = t*(dh)(t “(C)) .

Therefore ft*(h) = t*(dh) + 0 .
/

/

/

/

.
-
-
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A

5.30 Remark. Q(C(X, Fi) ﬁs an algebraic extension of C(X, F) .
For 1f n 1is the order of 'F then rn(x) = r(x)? = r(x) , hence

" =1 for all r € CéX, F) . If q € Q(C(X, F)) , thén by-(1.25)
there is a dense ideal D in C(X, F) Buchsthat qD C Cc(X, ?) . If

d € D, then qnd = qndn = (qd)n = gqd . Therefore (qn - &)D = <>

4 “
and q" - q= 0, an equation of integral dependé:%é.
Thus by (3.27) one can restrict the study of the algebraic

closure of C(X, F) to the case where X 1is extremally disconnected.

5.31 Theorem. Let X be compact, Hausdorff, and extremally discon-
nected. Then RC(X, F) = C(X, QF) , where Q(F) 1is given the discrete ,

topology.

Proof. It is clear that C(X, F) , under pointwise addition and
multiplication, is a commutative semiprime ring with 1 the constant

function whose constant value is the identity element of Q(F) .~ As

‘well, C(X, QF) extends C(X, F) . To see that C(X, QF) is regular

we first observe that becauéeI X 1s compaét there 1s for each

f € C(X, F) a finite cover of X by disjointnclopen sets

f+(al), f*(az), vees f+(an) , the preimages of'points al,az,...,§n € Q(F). ‘
This ipplies that f has a quasi-inverse ’é € C(X, QF) defined thus:

g(x) = 0 for x € f«(0) and g(x) = for x € f«(a) , a$ 0 .

_1_
f(x)

Now C(X, OF) is essential over C(X, F) . For if f # 0 then
fg is defined on a finite partition of X and is O- or 1- valued.
Since f #+ 0 it follows -that 0 # fg € C(X, F) establishing
essentiality.

C(X, SIF) 1is.integral over C(X, F) . Consider an arbitrary finite

(clopen) partition of X -, say X = U;=1 Ai . Let kl be the function

LR
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A
defined as follows: ki(Ai) = x, , an arbitrary element of Q(F) ,

<

ki(x\Ai) =0 . Since the element x, satisfies an integral equation

i

ov¥r F , it follows that k, does as well. (As coefficients in the

i

equation for ki choose functions from C(X, F) , defined so as to

>

Fake on Ar the appropriate value in F and 0 elsewhere). But
the sum of integrally dependé;t elements 1is aggin integrally dependent,
Qnd so the function which has arbitrary values of $(F) assigned to
the elements of an arbitrary finite partition of X 1is integral over
C(X, ?) . The set of these functions is precisely' c(x, QF)

Since C(X, F) 1is self—injective it is Baer by (1:41) and

therefore C(X, QF) is Baer by S}{43). One claims that every monic

equation over C(X, QF) has a root in C(X, QF) . Let

x +x g + ...t xg, + 8y = o, 8, € C(X, OF) ,

t

be such a monic equation for which one seeks a root. Each g1 is
constant on the elements of a finite clopen partition of X . Let

I be the common refinement of all these partitions. I 1is clearly,

itself, a finite clopen partition, say X = Uj Dj . Since each gy
is constant on each Dj , and since Q(Fs is an algebraically closed
field, it follows that there is a root, say yj in f(F) for the .
equation " R i

T

)) xgi(Dj)=0.

=0

. . N . ¢
The function y: X + Q(F) which has value yj on Dj is in C(X, QF) ,

and it satisfies the equation in question. By'(3.9) c(X, OF) 1is

algebraically(cloééd and the proof of the theorem is complete.

p.t
\2
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5. The algebraic closure of a Boolean "ri_g.‘ 1

5.32 Defindition. A topological space is said to be .a Boolean space

if 4t 18 compact Hausdorff and totally disconnected. A Boolean space
is complete 1f the closure of every open set is open, that is, 1f
it 1is extremglly disconnected.

The algebra of all clopen sets in a Boolean.gpace X 1is called
the dualyalgebra of X . . ‘ d

5.33 Theorem ((13], p.92). The dual algebra A of a Boolean space

X 1s complete if and only if X is complete.

5.34 Definition. Following [}3] the two-element field will be denoted

~by 2. It isshown in ([13], Section 17 and Lemma 2, Section 18)

that the family of a&l functions from .an arbitrary topological gpace
into the ;topologically discrete space 3, is a Boolean space and go is
the family of all homomorphisms from an arbitrary Boole”an algebra to
the Boolean a‘i‘gebra 2. ¢

Y .
3 "
The set X of all 2-valued homomorphisms on a Boolean algebra A

’

is called the dual ‘space q A .
) ' )

[

5.35 _Lemma ({13}, p.77). For every non-zero element a of every
Boolean algebra A there is a 2-valued homomorphism x on A such
that x(a) =1. “ C , .

N B
Proof. Since a Boolean ring is semiprimitive the conclusion can be

- réphrased as follows: ,there exists a8 maximal ideal M in A such

that a¢}M.v > i
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5.36 Theorem (Stone representation theorem,[lﬁ], p.78). The second

dual of every Boolean algebra A 1is isomorphic to A . More ei;iicitly,
Af B is the dual algebra of the dual space X of A, and if

f(a) = {x € X I x(a) = 1} for each a in A, then f is an .

isomorphism from A onto B .

5.37 .Corollafz. If A 1is a complete Boolean ring then Spec A is an ’

extremally disconn;cted éooleag space by (2.59) and (2.62), and it

follows- from (5.33) that the Boolean algebra /B of all sets

V(a) - M€ épec A | ag M} (see 2.57) is complete. We have ,

V(a v b) =V(a) UV(b) , V(a Ab) =V(a) N V(b) and V(a') = B\V(a)

Furthermore V 1is onto by (2.57) and one-one by (5.35). It is

therefore a Boo%ean isomctphism,from-‘A onto B anq by (5.36) this N
‘implies that A is isomorégic to the second dual C of B . One ¢

notes that ev;iy fJnction in C 1is continuous on Spec A because 1t

is continuous on\V(a) and on B\ V(a) '

5.38/5Remark. In view of Stone duality, any compleie Boolean alngra o

can be represented as the ring of continuous functions from its
spectrum to the two-element field. Thus (5.31) contains as a special
case’a representation for the algebraic closure of a complete Boolean
ring. Since the complete ring of quotients of a Boolean ring is a
'Boolean ring ( [14] p.44{, the embedding of any Boolean ring into {ts
complete ring of quotients is an algebraic embedding into a complete
Boolean ring; and it follows from (3.6) thét this disposes of the

algebraic closure of all Boolean rings.
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CHAPTER 6 . %

: SATURABLY CLOSED RINGS

The saturable closure of a commutétive ring R was defined by
W. Borho ([21). As is Q(R) , the saturable closure of R‘ is a ring
essential andfintegral over R ,'coinciding in fields with its
algebraic closure. ’

It should be pointed out that extensions of the ring R are
viewed in [2] as R-algebras. A homomorphism of extensions of R

*thus induces the identity on R an{/ﬁny homomorphism of essential

extensions is then a monomorphism by (1.2).

1. Essential F-extensions.

s
6.1 Definition ([2])). Let R ‘be a ring, F C R[x] a subset of
monic polynomials and let f € F . A ring S extending R will bé
called an f-extension of Ri if S 1s generated as an R-algebra by
roots of f . We say a ring S 18 an F-extension of R whenever S
1s generated by f-extensions Sf » € F.

The class of F-extensions of a ring R 1is closed under direct

-

linits (see 5.15). For suppose (S, ¢,) 1is the direct limit of a
. i .

family {Si} » 1 €1 of F-extensions of R indexed by a directed set
¢

I . We recalfJ;hat S 1is an—R—algebré each of whose elements can be

written in the form ¢i Bi) for some {1 €'I and some 84 € Si .

Since each Si is an F-extension so is § .



N Lo
<3

6.2 Lemma. A djrect limit of essential extensions of a ring R 1is

essential over R .
. . ,
gD . .
Proof. Let {Si} i1 €1 be a family of essenttal extensions of R

indexed by a directed set I and let! (s, ¢i) be its direct limit.
Any non-zero s € § can then be written as s =’¢ifsi) for some { € 1

and for some non-zero Vsi € Si . Now Si is essential'over~/3 and so

there 1is a t; € Si such that 0 # Siti 5 r € R . Therefore

¢i(si)¢i(ti) = ¢i(r) = ¢1(1)r = r

-

6.3 Lemma ([2]’). Let R be a ring and let S be any extension of

- e
R . Then there is a homomorphism , 0: S - T onto an essential extension

T of R.

’ 1

Proof. aSupp e S 1s not essential over R . :As,in the proof of

(3.24) there exists an ideal I pf S that is maximal with respect

]
ne

to the property I M. R = <0> , hence R I+R/ITCS/IT=T. Now

g: § T is onto and it folloas from the maximality of 1 that T

Pl

is essential over R .

6%4 Definition ([2]). Let R be a ring and let F C R[x] be a

n

subset of monic polynomials. By an F-split extension of R will be

meant a ring S extending R such that each’ f in F splits into

linear factors in S . An F-split F-extension of R will be called

an'F-sEiicting ring.

T
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6.5 Lemma ({2]). If . F C R{x] is a subset of monic polynonfials.ﬂ

thén there ‘exists an F-sjlittli)zg ring that is essential over R .

¢ A M
Proof. Let f(x) = x" + rn_lxn-l + ...+ Xy be a monic polynomial—in

F . As shown in thé proof of ('3.9) there is an embedding

R > Rlx]/<f(x)> such ¢t aé Rlx) /<f(x)> contains a root of r ,

fhus assﬁﬁe ihegg exist:\:;\fktension Rfa] of R generated over R
b)} aroot of f . Then x - a divides f(x) , hence f(x)= (x-a)g(x)
;rhere\ g(’f) € Rla] [x] i.;, a nj:onic polynomial an® any root .of gkx) is

a root of f(x) . Since no monic polynomial is_g_zero-divisot it

« follows that repeatéd applications of the division algorithm vield an

L4

\extension Rlcil,...,anl of R generated over R by roots of f such

\ .
that £ splits in R[al,,..,an] into linear factors (x-al),..‘.,‘(x-an).

Therefore there is for any f € F an f-splitting ring Sf‘ .
T &

For each’finite.Subset' G of F let SG dencte the tensor

4
. product over R of the S. for £€ G . If G' is another finite

subset of F and G C G' then there ate R-algebra homomorphisms

S¢ > Sz and Sg ~ 8.,

homomorphism ¢’GG': SG -+ SC' (See [15], p.I;ZO). It is easily seen ——
. v . * Le

that the finite subsets of F form a 'd,u:acted set indexing the family

for f € G, consequently there 'is an R-algebra

.7 R
{SG] and that (S;, ¢‘GG') is -a direct system (5.15). Let S denote

its djrect limit._ Then S 1is ah F-splitting ring betause each SG

is a'G-splitting ring &nd the result follows from (6.3).

6.6 Definition. Let R be a ring, let F C R[x] be a subset of monic

polynomials and denote by K t'hewclass of essential F-extensions of

»

R. An e:lgtena/i“on. S € K will be called K-maximal if from T € K and

-

<
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SCT follows .S= T . A K-maximal extemsion of R 1is not unique in

' general gs will now be shown. We consider the following cases:

~
I’
(1) ~There exists a cardinal number Y such that card S <y for all
SEK . ﬂ . o B
. . -— ) ' ¢
(2) Any pair/sl €K, ' S, € K, can be embedded into sgme T € K .

2

J

6.7 Theorem ([2]). ('a)~ w{)lj K 1s a class of essential F-extensions of

R satisfying condition (1) then for each S‘E K there is a T&£ K

such that T is K-maximal and S CT. ’

4

(b) Aring R has a,buni.que K-maximal extension (up to isomorphism)
. . -~ " )

if and only 1f conditions (1) .and (2) are both satisfied.

&
-

Proof. (a) Assumk~there’is a cardinal ‘number Y such that
card S <y for all S&€ K . Let M be a set with card M= y and let
R[)LMl be the ning of polynomials over R whose indeterminates are in

1-1 correspondence with the elements of M . Then RIXMI is the free

L}
1

R-alpebra generated by the set of indeterminates Xy and therefore
card R[XM] = y (when M 1is an infinite set). We recall that the free
Q

R-algebra R[XM] has the property that for any mapping ¢: XM + S

into an R-algebra S there exists a homornforphism ‘l“. R[XM] -+ S which

. extends ¢ . Since"each SE€K 1s an" éja}gebra with card S <y

define 9: )S" + S by mapping the elements. of XM to the generators of
S , then each § € K is 'a homomorphic image of R[)LH] . If now T(S)

is the isomorphism type of S then T= {T(S)}, S€ K, i‘s,ha set

~

Y

because card T < card H _<_ 2Y , where H 1is the set of homomorphic /

images of RIXM] . &

Let K, be the set obtained by choosing from each T(S) in T

a representative element S € T(S) . l%i can be partially ordered if

A\

&

L ] ﬁw—»—l



104

~

t;y S1 _<_ Sz is meant that Sl -+ SZ is a monomorphism over R , and |
it follows from (6.1) and (6.2) thar'. under this order:{ng every simply
ordered subset in KM has a;n upper.bound in K . But if TE€E K

’ais an upp?r bougd for a chain in KM}we have card T< y and so T
can be viewed as the representative element of ‘TL(T) in KM . Thus
KH «;ontains a mdximal element T' l;y vZorn'é lemma and it is clear
from the condtruction of Ky that T' is maximal in K

(b) If R has a u;ﬁque K—maxi;tual extension! R suppose card R = y .
Then card S <y forl/all S € K and each S cdn be embedde\d into R .
Conversely assume both conditions are satisfied. Then cherevexists a

K-maximal S € K . If also S' 1is K-maximal there are embeddings

S+T, 8" + T, for some TE K , therefore §=T= §'

2. F-saturated extensions.

ad

6.8 Lemma ([2])). Let R be a ring and let F.C R[x] be a subset of

monic polynomials. The following conditions are equivalent:

(1) If S 41is an essential F-extension of R then §= R .
(2) For any essential F-extension S of R there is a retraction of

S onto R .

Under these conditions R is called F-saturated.
Proof. The retraction S - R is a monomorphism by (1.2).
6.9 Corollary. An’F-saturated ring is F-splitting.

E}

Proof. (6.8) and (6,'5)'
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6.10 Theorem ([2]). Let R be aring, d€ER, 0%+ a€R,

az =da=0, g(x)= x2 - dx . Then there is no g-saturated

)

extension of R . ‘More precisely, for any R-algebra § extending
!‘ 'Y «
R there is a proper essential extension T of § generated by two

o

roots of g . :

.

Proof. Le;: S be any R-algebra extending . R and let F=8S1X SuX Sv
be/a free S-module generated by the three elements '1, u, v . With
multipl'icatiop given as ,u2 = v2 =0, uw=vu=a, F becomes a
comnutative S-algebra whose unit element is ‘the unit element of S .

We identify S with S1 . F 1is not associative because a + 0
entails 0 ¢ au = (vu)u € Su , but 0= uzv € Sv . Denote by A the‘
annihilator a'& .of‘ a in S, then a, d € A . "Furthermore A‘u and
Av are ideals of F . For Auv= Aa= 0 implies that FAu C Au ,
other conditions being trivially satisfied, and similarly FAv C Av .
It will be shown that F/(Au + Av) = T 1is an extension of S having

L4

the sought | prop‘e{ties.

' Let h: F =+ 'i' be the cannonical S-,algebra homomori')hism. Since

a €A we have au = 0 hence '52; = = ya = ;(;;) frou? whic‘h

follows that multiplication in . T 1s arsociative. ;
Now h|S 1is an embedding of rings because (Au + Av) NS = 0

and therefore S may be identified with S . The embed_ding is proper

i:ecause u, v $ S . As well, T .is a g-exténsion of S since

g(u) = KZ -du=-~du € Au= 0 and similarly g(v) = 0 . .
Finally T is essential over S . Let B be a pon-zero ideal of

T and let 0*b=s+slu+szveB,vhere 8, sl,szﬁs.
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— It suffices to verify that BN S # <0> 1in the following three distinct

¢
cases: 4

(1) s, 81, 82 €A . Then b=s€ BNS .,
(2) s’¢ A. Then sa*+ 0 and ba=sa€ B NS

(3) 8 € A and one of s, or s, ¢ A . Assume s; ¢ A . Then

—_— -— —— 2 ——— -—
= + + = = = N .
bv sv“ s uv 5217 s;uv =s,a $ 0 and bv s;2 €EB S

Therefore BN S # <0> and T 1is an essential extension of S

6.11 Definition Let R be a ring. A polynomial in Rlxl"'fon]

which i§'un3hanged by any permutation of the indeterminates XysesoaX,

" is called a symmetric polynomial of XypeoesX o The elementary

symmetric polynomials of XpseeenX o are defined thus:

,
Q
0
o
+
X
+
+
»

Q
i
=
ol
+
bl
o
+
+
x
Lo
+
+
b
|
[
”

If x {is a variable oveér R[xl,...,xn] the elementary symmetric '
polynomials of X)reeeaX ~are the coefficients gy of the powers of

‘v X 4n the polynomial

n n-1 n-2 n
- - v e - = - + - cee ¥ (- R
(x xl)(x xz) (x xn) X olx ozx (-1) ¢

1

It is shown in ({15), Theorem 11, p.133) that a symmetric polynomial

N )
in Rlxl....,xn) can be written as a polynomial g(ol,...,on) .

-

el
N S
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6.12 Definition ([15]). The discriminant of a polynomial

(x—xl) .o (x—xn) = x" - len—l + ...+ (-1)"0n is the expression
m(x, - x )2 . This is a symmetric polynomial in x,,...,x
1<q i 3 \ - 1 n
because n (xi.— xj is mapped to =* Il (xi - %X,) by any permutation
1<j 1<j J
of the SRy It may therefore be viewed as a polynomial g(ol,...,o )

n
in the elementary symmetric functions. -

One notes that the discriminant of an arbitrary monic polynomial

n n-1
= +r + ...+ = - ees (x-
f (x) X r X i“ (x tl) (x tn) is uniquely
determined. For suppose f(x), can also be written as a product of
i - -
linear factors (x—sl) .o (x—sn) . Then (-1) Oi(tl,...,tn) ==
(—l)io (S;5...58 ) for 1i=1,2,...,n and therefore md, -v )2
i 1 n . 1<j 1 j
and H.(si - sj)2 contain exactly the same terms when written as
1<j : *
palynomials in 01,...,0n . We write d(f) to denote the discriminant
of a monic polynomial f
6.13 Corollary. If f(x) = x" + rlxn”1 + ... + r is a monic

polynomial over a ring R then d(f) 1is an element of R .

Proof. By (6.5) there exists an extension T of R such that f
9
splits in T into linear factors (x—tl) cen (x—tn) . Therefore

d(f) can be written as a polynomial in r T where

1’
r,= (Do (t,..t) .
i I >"n’
™~
6.14 Lemma ([2]). Let R be a ring that has no non-trivial
idempotents and let f € R{x] be a monic polynomial whose discriminant

' w
is invertible in R . If f(x) can be written as (x«ul) coe (x-an) ’

‘e R , then a

¥

a o are the only roots of f 1in R .

i 10
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Proof. If f(x) = (x—al)'... (x-an) hasign invertible discriminant

/ .
)2 then the values taken by the derivative f'(x)

d(f) = 1l (o, - @
1<j 1 -‘j no-
' = -
at Qseeesa - ave also invertible, for c}early f (ai) 321 oy aj

divides d(f) J#1

Now suppose B = o, *+ 61 . 1i=1,2,...,n, is a root of f

i
Expanding the terms -of uf(ai + 61) yields

(1) 0= fla, + 6, - £(a,) = 6,£' (@) + 6or PR
Put sy = (f'(ai))-l‘. Upon multiplication of (1) by TS, we obtain
0= 6,r,s, + (d,r,s )2
17174 ii7i
therefo;e e, = Girisi is idempotent and this means that e, = 0 or

e, = 1. 1If e, = 1, 1i=1,2,...,n, then all éi are invertible,.

‘consequently B - oy = 6 belongs to no maximal ideal. Then

i
B # a; in any factor field R = R/M which is impossible because

®-a,) ... B-a)=0.

1 n )
Thus e = Girisi = 0 for some i , hence Giri = 0 since 8y
"is a unit, and it follows from (1) that Gif'(ai) =0 . But f'(a,)
is a unit, therefore 51 =0 and so B = a, .

6.15 fheérem ([2)). Let R be a ring, FC R[x] a subset of monic
- v

polynomials. The following statements are equivalent:

(1) R has, an F-satyrated extension.

(2). R has an f-saturated extension for each f € F .

(3) No non-zero nilpotent element of R annihilates the discriminant

. of any f € F .

A
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;A)c Each essential extension R' of R may be embedded into a

/// product S = I § of rings S having no non-trivial
€3 i i

idempotents. The set W(f) of roots of f in % has the

~

= [ = + +
. W(E) {Res | B a e, ceetae ,oe,..e

nn n

orthogonal idempotents of S} ,
e

)
where al,...,an are roots of f 1in S such that f can

written as f(x) = (x—al) .o (x—an)
(5) There exists a caf®@nal number Y = Y(R, F) such that

card R' < y for any essential F-extension R' of R).

Proof. (1) = (2) is clear.

109

form

be

(2) = (3). By contradiction. Let f € F , let d= d(f) bexthe

-

discriminant of f and suppose «cd = 0 for some c € rad R s

2

ct 0.

We may, assume that ¢ = 0 . If S 1is an arbitrary extension of R

the result will follow once it is shown that there is a proper

——
-

essential f-extension of S .

By (6.5) there exists an essential f-extension S' of S which

is also an f-splitting ring. If S' # S the proof is complete.

therefore that §' =5 . Let £(x) = (x-a;) ... (x ) , «a €

Assume:

s ,

i=1,2,...,n , and let J={(k, 1) | 1 <k, 1 <n, k# 1} . We

show that there is an a € § such that a # 0 , a2 = 0 and

a(ai - I

by ¢ 1in case c(ak - ai) =0 for all (k,i) € J . Otherwise

exists a subset M C J maximal with respect to the property

-

C If (a, ~a = atto0,

. )
(k,i)em & 1

a,) = 0 for some (i,j) €J . These conditions are satisfied

there
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; R O
. where J\b:! is non-empty because
(d i c(k,?)a =) = 0 .
and therefore, in view of the maximality of M~, we have a pair (i,3)
in, AM such that h
a(o.i - aj) =0, with a% 0, az =0, a€s. N
4 -
Put 6 = a; - aj and let g(x) = kz ~ 8x . Then-
g(x -0y = (x - ctj)2 - 8x - ag) = (x -a)(x - oy = 8) = (x o) (x-ay)
divides f ., consequently any g(x - aj)-extension of S 1is also an
) f-extension. As follows from (6.10) § ‘%as a proper essential
"extension generated by roots of g(x - aj) and this is now a proﬁer
es;ential f-eftensios of S .
‘ (3) ™» (4). Assume (3) and let R' be an essential extension of R .
We first show that there is an embeddﬁ%g of rings -6: R'»> § = 23 Sy
1
into a product of rings Si = Sei (ei the unit element sf Si )
containing no non-trivial idempotents, such that the discriminant @
.- d(f) of each f € F 1is invertible in any Si that is not éh
integral domain. )
Put = rad R , t:J=N‘\0 and let D= {r€R|rr:1;_C_t‘.I}. This
3 S ) ig a multipliéatively closed set, for if rlN _C_t.i and rzr:l EZ_N
then r,r l.€= rl(rzl:l) c rlt:J E_N . By (3) we have
~ d(F) = {d(f)§| ff€F}CD . Let R;, be the localization of Rf at
the inult:iplicativeo set D 0(3.40). The kernel of the carmonica.l
.. ' ‘homomorphism &: R' - RI') is then the set of all r’E R' for ttvhich

;: there exists d in D such that rd = 0 , therefore

i

¢ o -

TR AT e

EENA
)
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Ker § Nrad R= <0> . If {Mi} is the family of maximal ideals

el

' ' ' =
ofk RD then the mapping RD - 121 (RD)Mi A 1is injective by

-(l4}, p.88, Corollary 2). The rings (R.I'))M are well known to be
i

local (a ring is local if it has a unique maximal ideal), thus there

is a homomorphism

(::R'->A=]'[Ai :
i€1

into a product of local rings A, such that Ker a N rad-R = <0> ,

i

As well, there is a homomorphism

o

5 oy b ,

L g: R' = hi R'/P = B
, P € Spec R'
( ¢
whose kernel is clearly rad R' . Therefore there is a further
homomorphism . ~7 -

8=aX B:R' *AX B= S

:

which is an embedding of rings because R N Ker 6§ = (RN Ker B) NKer o =

o

rad R NKer a = 0 , consequently Ker 6 = <0> by essentiality. Now

¥

the components of S = 1 Si are eitber_ local rings or integral
i€

domains. Since all non-units of a local ring are cont
4 .

un:f.que maximal 1dgal such rings have no non-trivial idempotents

A
this obviously holds for integral domains. Furthermore the

_,discriminant of each f € F 1s a unit of Rl') since d(F) C D and

I

it follows that all d(f) ,” f € F, are invertible in each of the .

local rings aniogg the § g Thus 6: R+ S is the sought embedding.

A
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It remains to describe the roots of fE€ F in S . Byl(6.5)‘
R’ has an essential F-splitting extension which is essential over R ~
by transitivity. One may therefore assume that f splits in R' into

linear factors. Now suppose” f ‘can be written as

v
,
’
- B f(x) = (x -,al) N ¢ an)/, a, €5,
,,.{/ﬁ :
and .identify R' with its imagé in S= I Se ’ where e is the
: . e 1 B
identity element of Si = Sei . Then the projections of Opseees@y
r onto the ith coordinate yield.a ﬁélynomiél
eif(x) = f(xi) = (xi - eial) . (xi - eian) » X T oeX,
and it follows from (6.léf that el re0 are the only roots of
o
f in Se; . Thus BES “is a root of f precisely when eiB is
a root of eif for all i€ J, therefore any root of f in S has
the form
R =:'H ei?j(i) » where j: J - {1,2,...,n} . -
i€y *-J ()
-
.. € = - - = = ,
y Let e(k) ‘ S.be defined by e(k)(i) ey if eiB_ ‘eiak , 0 i.f
* = 'K - .o :"“::* ‘ .
eiB e » k=1,2,...yn Then e(l), ,e(ﬂ),_are‘?rt?ogona{
8 >
+ + =
] idemposents‘of_ S, eyt e 1 anq
. = + ...t .
N B e(l)ul e(n)an
» :
{4) = (5). Assume R' {8 an essential F-extension oﬁ R and for
f'€ F denote by WR,(f) the set of roots of f in R' . By (4) _
: there is an embedding 0= 1l 61: R'+ 8= 1 Si into a product
. : , S (A 1€J -
2 . of rings Si having no non-trivial idempotents, hence
8 !
X _—
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card wR,Sf? < card/ggf) < n¢ar

A

¥

P
where W(f)  is the set of rodtsof f in S and n= deg f

Because R' 1is generated over R by roots of the f € F the result
.
‘\.

will follow once it is shown thag J may be chosenas J= R = R0

Now Kerf= N Kerei = <0> and so there is for each r € R
i€ =

an 1i(t) € J such that r g Ker © Therefore the mapping

i(r)

' = 1
r€

R' 8" =1_§

reR i(r)

0, :
f.( 1(1‘)

=

satisfies R N Ker 8' = RN ( 0 Ker ei(t)
r€R ~
an essential extension of R we have an embedding of R' into a

)= <0> ., Since R' s

ring S' with the properties stated in (4), thus R can be chosen
in place of the indexing set J and the proof is complete.

(5) = (1). By (6.7) R has a maximal essential F-extension. This 1s.

* an F-saturated extension.

6.16 Definition ([2]). Let R be a ring aﬁhhlet f € Rlx] bea
monic pdlynomial. We say f 1is saturable (over R) ig R has an
f-saturated exgension. The family of all saturable polynomials in
R[x] will be denoted by 'FS(R) . It follows fFom (6.15) that.“ |

FS(R) consists of all monic polynomials in R[x] whenever R 1is a

semipéime ring. i

— ~

6.17 Definition ([Z]). A saturable closure of a ring R is"é’maximél

essential F_(R) extension. A ring is called saturably closed if it

is Fs*saturqted. .o - . . !

3

'
L
¢~
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6.}8 Proposition. Let R be a semiprime ring. The following 1//
statements are equivalent:

- (1) R IETsaturably closed.

(2) R 1is algebraically cloged. . v

‘ Proof. Assume R 1is a saturably closed semiprime ring and Bﬁp;gse
T is a ring algebraic over ﬁ . Let t be an e;fmgnt of"f . 3
Then t satisfies an equation of integral dependence ]
f(x) = x" + rlxn-l + ...+ rno= o, \fi € R ,a;hence, R[t] is an . ]

f-extepsion of R . It is an essential f-extensiog of R because

'

T 1is algebraic'over R'. But f ©belongs to F;(R) since R ié
™ ' , :
\~ semiprime, therefore by (6.8) the embedding R + R{t] is onto and it

follows from (3,8) that (R, is algebraically closed. .

o

. <
The opposite implication is clear, an essential Fs-extension of

L

. a ring R being algebraic over R . . \

\-

., X
6.19 Corollary. The saturable closure of a semiprime ring R is

-
IS

.
- .unique up to isomorphism over .R . . . -
~\
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