2

I* National Library of Canada

Cataloguing Branch .
Canadian Theses Division_

‘Ottawa, Canada
K1A ON4

— ~ NOTICE -

The quality of this microfiche is heavily dependent upon,

‘the quality of the original thesis submitted for microfilm-
ing. Every effort has been made to ensure the highest
quality of reproduction possible.

if pages are missing, contact the unwers:ty which
granted the degree.

Soma pages may have indistinct print especially if
the original pages were typed with a poor typewriter
_ ribbon.or if the university sent us a ppor photocopy.

Previously copyrighted materials (journal articles,
published tests, etc.) are not filmed.

Reproduction.in full or in part of this film is governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30.
Please read the authorization forms which accompany
this thesis. : ’

- THIS DISSERTATION
-‘HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

NL-339 (3/77)

>

Bibliothéque nationale du Canada

Direction du catalogage N -
Division des théses canadiennes

-
- . . e, "

" AVIS

La qualité de cette microfiche dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons -
tout fait pour assurer une qualité supérieure de repro-

* duction,

S'il manque des pages, veuillez communiquer avec
I'université qui a conféré le grade.

°
.

La qualité d'impression de certaines pages peut
Ialsser a désirer, surtout si les pages ongmales ont été
dactylographiées a I'aide d'un rubarfusé ou si l'université
nous a fait parvenir une photocopie de mauvaise qualité.

Les documents qui font déja |'objet d'un droit d'au-
teur (articles de revue, examens publiés, etc.) ne sont pas
microfilmés.

La reproduction, méme partielle, de ce microfilm est
soumise & la Loi canadienne sur le droit d’auteur, SRC
1970, c. C-30. Veuillez prendre connaissance des for-
mules d'autorisation qui accompagnent cette thése.

LA THESE A ETE
MICROFILMEE TELLE -QUE
NOUS L’AVONS RECUE

S ALGORITHMIC HARDWARE.DESIGN LANGUAGE (AHDL)

, .5 Allan"Kang Ying. Wong .
) ' A Thesis
. . . I 3 I
- ' "~ The Facéty
| e of T ;
(_) o , " . Engineering
» 'ni . ‘ .

-

Presented in Partial Fulfillment of the Requirements
for the degree of Master of “Computer Science
Department of Computer Science
Concordia University
Montreal, Quebec, Canada

September 1978

. (:) Allan Kang Ying Wong, 1978

ABSTRACT

~ ALGORITHMIC HARDWARE DESIGN LANGUAGE;(AHDL)

Allan Kang Ying Wong . .

A textual consensus multi-level language, 1intended

specifically-for the ° descrfbtiqn, simulation, and desigh of

computing harqware systems,- is preseﬁted in this thesis. The

langque is AHDL (Algorithmic Hardware_Design Language). .Its
structure contains ? .fluid hierarchy of three levels
behavioral level, functional level, and structural level. These

levels can be either applied individually:for their designated

'purposes, or interacted in accordahcegwith the rules described

in the text. The' language AHDL 1is capable of expressing
concurrent and parallel operations, which are the fundamental
propertiés of. hardware systems. It also accommodates the

-

-l
application of standard logic design techniques and available IC

technologies.

The language AHDL is described on a theoretical level. This

research was concentrated mainly on the validity of the 1anéuage

"design. The implementation of AHDL was outside the scope of the

work <coficerned. “The structure of AHDL was, howéver, thoroughly
tested on many différent.examples.'Some of these efémples are
provided in the appendix,'.while others are presented in

appropriate places throughout the body of this thesis.

= ==

-

) BN RS T M e M T)) T

: | . PREFACE . .

The establishment of a " universal " languaée applicable to
the’ s;mulation, descriptioﬁ, and design of computing hardware
systems, has recently been the subject of different resgarches.
Such a 1language would require a consensus multl—leyel modular

structure It would support the’ formulatlon of aigorlthms at any

_desired level of detall. The aim of this project 1s to de51gn a

" textual linguistic structure, which fulfills the requirements of

the language concept stated abbvef

" ‘s

Hardware design and description languages, principally

Register Transfer (RT) languages, were ‘first designed - early in'

the 'sixties. Since that time, they have béen refined, and new
ones have/%een:develﬁped, in gttempts to keéb pace w;tﬁ -~ the
evolution of 1IC technology. 'The RT languages pré;entlﬁ in
existence.together cover the contiﬁuum of digitéi' applications.
Each RT language, howevér, has certain; limitations on its
application because of tﬁe framework of its strugture.” In

general, a RT language is applicable only to a particular level

of detail.

AHDL (Algorithmic Hardware Design Language) developed in
this research is a textual <consensus muiti-level modular
language. It is wunique in that it potgn}ially covers the

camplete range-of contemporary digital design. It was derived by

" the technique of language tuning, which has been responsible for

/

the emergence of most of the existing textual RT languages.

L)

L__.%yhT:j .

== s T LB ol T

prn

| p—

P TN

'

,—) [C) .

-}—C

-
. H : - .
This - thesis work 'was undertaken as a result of the ideas

provided by Pr. Terill Fancott.
‘I wish to express mX‘full gratitude to Dr. T. Fancott -for

his supervision and guidance dhring the research and development

of the language AHDL.

—

—

!

i

EDw

T p—

4

1

W R -)) g pey |

CHAPTER ONE : GENERAL INTRODUCTLON

TABLE OF CONTENTS

PREFACE

"

Rationale of .Digital Hardware Systems

-

The Philosophy of Digital-System
Design and Description

Dlgital System Design Objectivg///ﬂfzz//

and Technlques

+Motivation for a High-level

Universal.Language

Requiremedts of a High-level
Universal Language

- -

Is There Any Textual High-level Universal

Language ?

A Textual High-level Universal Language
to Design Automation

Survey on Textual HDLs .in the Field.

'Thfs Thesis

-

Relationship to Other Work

Introduction to AHDL

III

11
16 -
17

19

vl il eV

-

H‘ H l e 2] I —— l

o=) fumey) p)

)

. —hr-.!-!)-)n—.) e P p-ql '

_Declarator

CHAPTER TWO = BEHAVIORAL LEVEL OF ‘AHDL

Introduction -~

Basic Language Elements and Some
Important ‘Linguistic Structures

'Rég{sﬁer

Vartable

Operator

. Blocking Mechanism

Renamihg Mechanism
Précedure Ca;r

Control Structure
Expression and Statement
Active-TranSipion-Indicafor

Synchronous and Asynchronous Data Transfers
Subsecript

Summary and Comments

Example

24

31

36

37

40

41

ug8

49

50

52

53

55

58

58

60

60

I

ﬂ,;____] ;__7___1(_. ~= | H

AL n] '

)

r

e B e B0 B 2 B L D D

= —

- -ﬁm))

“ r

CHAPTER THREE : FUNCT;ONAL LEVEL OF AHDL

Introductidn

’ : L -

Terminal

»

Rippliné and Parallel Operations
State

Representation of Synchronous and
Asynchronous Operations

Coupling

Generic Definition of Counters

Proceéure Call

- -

Interactlon Between Behavioral and
Functional Levels

LY -

Summary and Comments

Example

CHAPTER FOUR : STRUCTURAL.LEVEL OF AHDL

'
LA

!
/
/

introduction ‘ /
Limk

Modular Interconnection

64
66

'6'_7

7

73
77
79

81

82

8y .

86

92°

95

96

e pe T T T e

==)y)} =)

pamil

fumg pme!

==

")_

a e, e)G
7~

‘
Ry

State Assignment
'iInput Equ;tions~to_Flip-fLops
Design ;t the-Strhcturél Level :
bperatgr aﬁq_Declafator
Summary and Comments
Example

. | S

CHAPTER FIVE :' CLOSING REMARK

The Language AHDL - .

1%
. ~,

Compariscn with Existing RT Languages .

4

The Development of AHDL
Evaluation of AHDL

The Potential of AHDL

APPENDIX

’

BIBLIOGRAPHY

97 -

100

102

106

107

10%7

115
116
117

118

119 C/#

120

134

=R e i

Vel e
—

t

o B R o

t)

L

) oan BB Y s IS W) B

LW PR Y §

'y
+
.

CHAPTER ONE

GENERAL INTRODUCTION

. RATIONALE OF DIGITAL HARDWARE SYSTEMS

-
-

As pointed out by Dietmeyer (Dietmeyer-01) and Peatman
{ Peatman-02), the hardware brganisapion of any digital syétem
can be simply repreéented in the model illustrated by Figure

1-1. The actual implementatioh of any digital system, however,

may take a variety of forms because of the two eriteria :

‘ cbst-effectivenesa, and designated application (Fairchild-03).

In Figure 1-1, the rational _hardware organisation for any
digital system would include . two rmajor networks interacting
together. These two major networks are the control network and

L3

the .data processing network. The/ data processing network

transforms system inputs to meaningful oytputs. All the:

~

- .
operations 1in the data processing network are sequenced by the

coqtrol network.mThe control network itself may be subdivided-

.

iqto the timing ecircuitry and the mode circuitry. Operations

-

which are functions of time only are sequenced by the timing

-

¢ircuitry, and operations which are functions of both .time” and

data are sequenceq by the mode c¢ircuitry. The modé circuiﬁry is

a decision-making structhre, and the decisions made are the

functlions of timing issues from the timing circultry and data

from the data processing network. Generally, the ceontrol network

aétivates only ¢the appropriate p&rtion of the data processing

network, for-the specific ﬁaté tranaformatdion.

-

e e D e E e B e s S S

SO) P) [T s ey —i- = .

Ty

. The constituents; of any digital system are discrete
hardware 'components Jéllectively known as structural primitfges
(Gardner-ou').7Thes%/basic building_blocks may bear. ﬁifférqnt
levels éf meaning}rand éomplexity. The lowest level has been-

generally accepted as gates and flip-flops at the SSI level: The
higher levels may involve MSI and LSI. | "

h‘Concurrénéy and parallelism are the fundamental properties

of hardware systems. The hafmonibus_ co-operation of the
structural primitivés within a digital system must be ensured by
synchronizing mechanisms. Hardwaﬁi synchronization is achié@ed
through .enabling and disabling electrical signals. Thése binary -

signals are usually generated according to algorithms.

data input
@ 11
3
control
network _
timing -
circuitry 3 data
signals processing
, network
signals |- .
system| ¢ X , '
clock - . T
——1. N modé ’ . _ signals
circuitry P
= signals

: ML
data output

_\\.}H’

Figure 1-1 A rational hardware configuration
for any digital system.

THE PHILOSbPHY OF DIGITAL-SYSTEM DESIGN AND DESQR;PTiON

|

}‘ ' Digital system design is .hsually a top-~down multi-level

lt~ process of algorithmiec formulations and tHe assembly of

primitives for the execution of the

-

Mﬂappropriate structural

algorithms formulated. Bach level in a design process repﬁesents

‘a stage in_thé desigh cycle to proviﬁé rational feedback to the

-

designer. Similiar to ‘the philosobhy of a desigh process,

-

{ - 'descriptionh of a digital system may also be a hulti;level

*‘lh "~ + process. Tﬁe purpose of any descriptive process is to express

ri*f{ the ﬂ.dea;l.r'edl levglr of .detail of a system, ranging from simplé

. behavioral information go subtle pﬁysicél details. '

B
A

R

)RS 7y

(R

Multi-level description is a method of making a digital

.
-

.system understandable by documenting information on an
) --

appropriate set of,lévels._It allows the different people, who

take part in the different areas of a system, to communicate

e

among themselves. Theﬁtool for communication, however, is 'a

language, vpoﬁerful . and universal enough, for -expressing

e

different. levels of ideas, but using a common syntax.

) ri

A top-down ;ultiﬁlevelJ design hethodology is a ' basie
engineeriné principle, If there 1ia a language, . wkich can

P accommodate-the different sﬁage;\within a top-down design cycle
and support' the éxpréssions ;f-;various design Jﬁechntques,

available in a désign'process, the ease of the, design will be

greatlylenhanced.

f-/

L

al

r--_)"w) e R e g y)) [e e = -

m awe,

[

;

\

t

———’

DIGITAL SYSTEM ﬁESIGNJOBJHCTI&E_AND TECHNIQUES

" The ultimatp cbjective of any digital system design is to

achieve a given performance for the lowest total system cost. "

- { Fairchild-03). In the past decade , system design, component

G .

selection and logic design were to a -large degree independent of

. 1

one another: Logic designers were concerned- with degigning: with

the minimum number of gates and .flip-flops by using the
{_‘ . - L .
conventional techniques such as Boodlean algebra’ or ' Xarnaugh

Maps. The evolution of IC technoiogies has brought abundant

bhoices of more cost-effective MSI and LSI logic components. ?é?ff

impact of these. sophisticated 1logic components has éhanged

radica{ly the techniques of designing digital systems'by making

~system design, 1ogic‘pesign,- and component selection heavily

interdepenQant. To-day, designiqg by minimizing the nimber qf
gates and flip-fléps is no longer sufficient. Modularization

{ El1l11s-05, “?ranklipéog, Clark-07), whi’c'h is the partition of a
system into subsystéms or even sub-subsysteméﬂéalled moduies, is
far more impoptant.,Each module, éhich is a bounded system
itself and 1s functionally complete, then lends itselfl to design
wiﬁh increasingly Qophisficéted and‘c&st-éffectivé iCs. In some
cases, a module is just a sinéle IC'logic comp§nenp; A module 1is

a4 bounded system because it cannot be affected by other ‘systems
* F - . . .

‘except through the 1input interconnections. It is functionnily

'complete because it has_beén isolated for designated. performance

to the specifications of a designer.

-~

In order to cope with the .rapid evolution of IC

-

{

LTS Y)

’

’

e D))

g T

N e

e

T
. rl

-) SNES)

Pl . »
w

I'd

technologies, a new'design methodology for digital systems 1is

required to incldde system design, logic design, and component
selection as an integral part in any design process. In
'}articular; sach a design methodology must‘be hierarchical in
order to do the following :.
I To-formulate the.algorithms for a system architecture

at the Qchematic.lével. .
2. To partition‘a system into modules so that each module

 can be individually and completely developed; then

‘the cé@tnbl strhcture to-ﬁake the modules'inter?ct

hapmoniéusiy can be designed. _ ’ ,f
3. To providé a framework which can acdommodate.different

IC Fechnologiés, |
b. To accommédate cdnveqtional leogice des}gn techniques

whenever needed.

o~

_wd

Befdre a design technidue can be applied at will to do the four

.

things st%ted, it must contain enough'basié elements which can

be selectively “assembled for any béﬁticular application during a

‘design 3rocess.

-

‘

MOTIVATION FOR A HIGH-LEVEL UNIVERSAL LANGUAGE

The motivation for a high-level universal languagé is to

provide a versatile notation which can be used equally well as a

‘descﬁiptive , simulating and design tool, applicable to any

wanted level of detail. The notation required 'is a Formai

I
A

mechanisam to generate and transmit the right amount of

. ‘ﬁ\ i .
g @
U :

information needed. It 'must maintain " proper and unambiguous
[{ communication among differenty phases and areas of system
o ! . . J
k_) dEVeiopment: - v

The first .criteribn of a high—levél universal language is

¢

[‘___4 4‘\

to establish an orderly framework capable of Eccommodating the
development //of numegpus and . yet distinctive dialects for;
communications as pointed by Iverson and Chu : ¢
Iverson {1-Iverson-08) :
"L, in tht design of a data. processing

.8Bystem, it -is impenqtive to maihtainlclose_

. communication between the programmers/

7h gunc IV AN Cuvny B aae A B

-

(i.e. the ultimate usérs), the software .

e

designers, and the hardware designers.." -
. Y] ‘

Chu (1-~Chu-10)":

-

".Software\designe;% y Ppractically system programmers,

need to know how tE¥’hardware system works without

)

—

knowing electronics; In fact those who are in selling,
L)

serveing , operating,'teaching, fabricating,

L\Tﬁﬁtaéling y and testing computers all need to know

p— Jo—

.how -2 modern st&red-=program computer works rather than

how the hardware is interconnected. "

e

-7

The second critérion of a high-level universal language 1is
to provide a design tool that keeps up with teechnology

evolution, but not the specifié application of any technology as

stated by Barbacci and Siéwiorek'(Siewiorek-12)

" Because of the rapid technology evolution, there is

P

Iy

=1

e
-
p—

rd

C——

e

rd

pum FRm pEme T pem) fme) 5

’
——

-)))

REQUIREMENTS 6F A HIGH-LEVEL UNIVERSAL LANGUAGE

v
-

a great need to attain independence from any specific

‘ . Ve
. technology in the design process. "

A' high-level ' universal iahguage must.fulfill three basic
reduirements. First, it muﬂh be b@&sed .on a multi;leyel
hierarchical modular philosophy-—tr—6rder to be compatible witn
the hierarchical nature of 'digital systems. The ' hierarchical
nature of digital systems was clearly explained b& Barbaccl
(Barbaeei-13), and the:essence of a multi-level hierarchical
modul;r philosopﬁy-was bresented-by Su LSu-15). Sevond, it must
be consensus. As _pgintéd cout by Lipovski (Lipovski-18), a
consensus hardware descriptive and design language contains a
common set of linguiétic elements applicable to any level of a

digital design or descriptive process. These linguistic elements

cah_then be assembled according to needs into the corresponding

~and appropriate constructs.., Third, to permit a rapid top-down

approach for any designated dpplication, it must have a high

'dégree of extensibility incorporated into its stricture. The

meaning and the advantages of extensibility in the structure of

a language were well-gxplained by Schuman (Schuman-19)

PROMISES OF A TEXTUAL LINGUISTIC STRUCTURE

, A textual linguistic structure is more advantageous for a

-high—level universal lénguage for four reasons. First, the

descriptive poﬁer of conventional programming 1languages to

-

s

K
[N . express ‘algorithms in terms of language statements has implied
N . J -

H' that texEualu languages c¢an Dbetter exbreés subtleties and
‘\w) ‘ variatipdg ‘than qan'graphical‘lang&ages through shapes and sizes
,f_ "of figures. Second, the control structures in the conventional

programming languages have: already benefitted from extensive
Lj . work gover thée p;st two .decades. The merits of these control

- structures can be extracted and inecorporated into a Qigh;leyel

uﬁiye}sal langgage:' Third, extensibility can be easily

incorporated into textual language statements, and extensibi}ity

- -~

is ﬁhe baéic requfrement‘for the generation of a multi-level

»
+

hierarchical language structure, Fourth, the. existing
compilation techniques for compiling conventional proéramming
languages are fpétentially _applicable for'a high-level textual

univeffal languagé. Co- ' -
) o

™)=y)

—
s

IS THERE ANY TEXTUAL HIGH;LEVEL UNIVERSAL LANGUAGE ?

p—

1974, Su (Su-1T7)} discussed different textual hardware

P

L '~deseription languages in the field. He pointed out that these
' ’ o

languages,‘inteﬁded for the design an& description of digitél

p—

system8, were.developed on the basis of a hierarchical top-down
methodology. Therefore the developménbs of these languages were

bagsically directed towards the concept of a textual high-level
~universal language. These languages are RT ('Register Transfer)

languages because they are operating an.the Peéister level. They

have covered all the needs in both th design and descr;ptive

e
r.: .
-

processes for digital systems. However, each RT language is

i

applicable to only a particular level of practice because 1its

L)

AR N N N) PeT) T

s R Y}

I ey
-

.

y—_) -

’applicability is limited by the language structure.

—) T)

Up to the present, there 1is " no textual HDL (Hardware '
Description' Language) that can fuffill all the requirements of
a textual high-level universal language, wundoubtedly because
¢

there are always reascnable limitations for p%e application of

any existing textual HDL, These limitations were hexnlored - by

A

Lipovski (Lipovski-18) and',Jordan' (Jordan-20). Similar

information can also be found in Barbdcci-14, et

’

A TEXTUAL HIGH-LEVEL UNIVERSAL LANGUAGE TO DESIGN AUTOMATION

Design automation using comp@teré‘as design aids is a .new
Y

and important subjeet in digital ~design methodology . The
conQext of :design‘ automation is to _provide .a computerized
hierarchical top-down aesign_ process from simulation 'to.
synﬁhesié foé any propoesed digiﬁal design. It gimsr at a. rapid
top-down iterative design scheme by allowing efficient
optimizétiod o}\the ﬁany possible design tradeoffs which .are
part of the' process of Isystem or 1dgic‘de$ign. The book by

Breuer (1-Breuer-2t) givqs' a clear concept of design

autémabion, mentioning different fundamentals and requirements..

N ‘ . o
1972, design automation had already received a great deal

of attention as 1illustrated by Breuer 1in his survey (

2-Breuer-22 }. 'Since,theﬂ, the number of active researchers in
this area has been ever 1increasing, as clearly indicated by the

proceedings pregsented at the 1975 International Sympesium on

¢

.

.

. S

-

(.E

PR

[T e

,
——

-))

-]0 -

-
’

C.H.D.L. and Applicatians (Proceedings-23). Design automation

systems of "variable degree of success were reported , and the

better known projects providing an oyerview of the subject are

+

p;esented in Siewiorek-12, and Stewart-26. All these researchers

adopted somewhat different techniques and approaches for the
developmerfts of their design automation systems, buf the quality

and the feasibjlity of the languages used were always their

primary considerations. It was not unusual that existing textual,

‘.
H " e v

RT- languages. were tuned to their, needs 'throﬁgh appropriate

mpdificgb;gns . This underlines the fagt that a more upiversal
. \ . il - ! - N
textual high-level -language would be desirable in the industry

of design automation.

In order to derive a comprehensive automated design, the

quality and .the feasibility .of the 1language adopted is very
v o .

/
erucial -because of © three reasons. First, the top-down

hierarchical natﬁre_of any automated deéiéh needs a compatible.

hierarchical deéign 1anguage: Second, the language used ;s
needed to convej accurétely the design problem to -the computer
and Qice versa. Third, the'language'used is required to support
any design stage iﬁ the cyclé of an automated design by

accommodating the pertinent and necessary design techniques.

'Thq?eforeb a textual high-level universal(language based on a

multi-level hierarch%cal modular philosophy 1s potentially

applicable to'design-autqmation.‘Itg textuality allows a clear:

x

communication between the comﬁuter and the designgr in.an
automated design process. ‘The 1issue 1is however, how much

latitude the language has in its structure to accommodate the

-
.

= f"?/{

~

——

Lo

LIRS

[P
s

T

r

‘. -
7/

| panpy

T/)y)

) v—)

I

——

P— T e~ —~

. ' -1 - -

necessary informapion and the variety of design techniques
possibly engaged.

SURVEY ON TEXTUAL HDLs IN THE FIELD

Hardwqré desceription and design languages developedlso far
are RT .1angu§ge§ (Jordan-20) ‘because they alwéys operéte.at
the register level. However, no RT languagé can 'completel&
assume . the hser#ice of a textual high-level univerﬂai'langdage
because any RT languagé"is‘good fﬁr Bhly'a par&icular level of
application. Since‘these RT languages héve-covered a wide range
of applicatioﬁs, several of them-aﬁpropria;; to differenE levels
of -applications may be cccasionally combined to_fulfill the task
of 'a; téxtual ‘high-level . uﬁ@versal language. Somehow, the
application of different RT %anguagesrfo the different levels of
a particular éommitment may be hindered by the problem of
ambigulty. This ambiguity is due to.the use of a set of common
sSymbols to express | different concépts in the different

languages.

I0perations at the register level are ‘fully reflected in the

assignment statements generalised in the antax

C e T

condition —= carrier =—— data operation expression

&he second part of the assignment spatement};

carrier - data opefation expreésion

—_
=

L

‘represents the source and destination 6f a data transfer. It can

== M s T T e /

v/

o IR

- 12 -

+

b

.be broken up to have the followiné meaningé
1. The left arrow (‘;—*) is the transmit- aor assign
operator which transmits ar assigns’wﬁat.is on the
right siderto the destination on the left side.
2. Tﬂe n daté opération'expression " repreéents any
gata t:;nsfqrmation, whereas only thé résuit will
be transhitted or assigned. In special.cases, it;. :ﬁr
represents only a value to be’trans@itted or aésigned
‘but no data transformétion at all. } e s
3. The ".cérrier " is a memory enti;y acting as a’ .
destination for the cor;esponding data transfer.
st/bointed by Bafbacci (B;?bacci—lu)f carriers
' can.be registers, or tepminals of aitrgnsieﬁt .

natures. The latter represents wires coming out

of combinational networks.

The first part of the assignment statement
condition —— .-

»

represents the control which irivokes the correqunaing data
transfer. Tﬁe riéhﬁ arrow (—) ishthe operator whieh transfers
cont;ol at a particular time interval from what_is bn the 1ef£
to‘what is o; the right. The " conﬁition " abstracts the control
slgnal generated by a " test netwqﬁk ".or a " monitor ";, The
'existence of the condition implies that dyhamic data transfer is
a rule rather than an exceﬁtion. A more detalled description of

the characterization of the - RT level based on different RT

languages was made by Barbacci (Barbaceci-14).

_")I-"I)

—]
p——

A

4

oy

V4

rd

e B o P e
‘ -

rd

. pu—

»

-
rd

[

ol -

”

- 13 =

As a conclusion drawn from the survey on different RT
languages : ISP (Bell-27), DDL ¢ DietmeyquOI-), CDL
(2-Chu-11), APL (2-Iverson-09) and the language by Vogel

(Vogel-28); and from the suggestions by Barbacci (Barbacci-14)

-

and Jordan (Jordan-20)3 any RT 1anguage‘is, or can be completely

defined by five basic abstract data types : register, terminal,

varlable, declarator, and operator. They are 1listed -and

explained in Table 1-1. They are called abstract data types

because. they abstract either the Structures or éhe\behaviprs of

+

- - - . 3 -
the physical building blocks, as suggested by Flon (Flon-29J7 .-

The power and scope of the différent RT ianguages rahge
fném 'qtating a problem at the schematic level to Fepresenting'
structural details of physical ob&ects. For example, ISP is geood -
fd} any schematic-level appliqatién, DDL is good‘ for
deécripfions of 1argerlmodular transfer, and CDL is good for the
gate and flip-flop ~level. Though there are indeed ovérlqpped
capabilities among the different RT languages, one lanéuage may
not be ‘as suitable as ‘another for é 'particular level‘of

application.

-

In fact, the applicability-of a RT language 1is' determined

by the . avallable abstract data tyﬁes it contains,4 the

S

transformations which can be applied to these abstractf dééé.

types, and the character}stics of the language structure. In

.

Isé, tthe absence of the " terminal " abstract datga type makes
expiicit terminal wiring description impossible. The control

-

labels in CDL specify timing to an accuracy of one clock pulse

&

L

e

t
| S
2

e

- g s

AT

T) .y ey

_—)F!!%.gﬂ‘-!) [___J!

- - -

- making CDL applicable for description at the .structural level.

~

The .explicit’dynamic multiplexed terminal assignment statements
in DPDL with the syntax /
<¢ST> condition : terminal identifier = expression

1
. - &N
7 .

make the language more suitable for modular descriptions.

The procedural RT languages usually impose more rigid
formats fo} their -applications because the execution of
statements is based on their sequential ordering. TQe execution
of a statement is basically conditioned by the completion of the

preceding one. In ﬁddition, the considergtion 6f timing in

L3

prodedural RT languéges 1s generally crude. Therefore the"

structures ~and the timing considerations in thg procedural RT

1

. languages can rarely cope with the subtleties énd the precision

ﬁeeded respectively *'in ;the gate and flip-flop. lével. The
non;pr;cedurél RT languagéé impose l;SS‘rigidity in fofmqtting
because lex;graphical ordering of stateménts has no meaning. The
execution of statements is based on a scheme of " dynamice
selection " for a statement ¢to be efecuted,- and timing
éonqideﬁation is highly refinea or even in terms of single
déscrete ciock pulses.’ Therefore the non-procedural RT languages
are more sultable for the 1level of gates and flip-flops.
Barbacei (Barbacci-14) and Jordan (Jordan -20)-compared the
structures of differgnt RT languages. They concluded that the

limitagtions of these RT language were due to their part{cular

linguistic structures. =

-

;

.l

e Tt et et B =

= T) pemy

pom P

-

. y
<
L

— T) -

_’ .

-~

‘; 15 -

- \

Recently, moder;te effort has bgeﬁ put into different
research work, driving towarés the 'development " of a teftual

. . s .

high-level ‘3niver§a1 language. Well-known reseaﬁchers_in terms
of their efforts and ideas are Lipov;ki {.Lipovski~18) and Su «
(Su-16). Lipovski is now working 'on 'the development of . a
framework. which can .accommodate the. différent ‘Bowerful RT
ianguages in a consensus way. Thus, when several RT lanéuaées-of

different levels of applications are combined together, they can

fulfill all the requirements of a textual high-level universal

_ language. Su developed LALSD whieh has been claimed to be a

languége forp automqted loglec and system design. LALSD has a

multi-level 'hierarchicalﬁ structure and reasonable MACRO

facllities, and - it 1is poﬁentially capable of describing,

-

documeﬁting, simulating, and synthesizing digital systems. The

applicability of thé language LALSD is, however, still at the

experimental stage.
!
. - {
Table 1-1 Abstyact'data types of RT languages

abstract data type : declarator
structure : names or labels made up of ' o/
natupal language elements
functidn : identify the existence of different
"structures or declare the properties
of different structures
extension : declarators are generally freely
: choosable but rules may exist to
determine the ways to choose . ‘ {
special remark ': a system of nomenclature
abstract data type : reglster)
structure : one-dimensional array of binary nature
function store information over a pericd of time
extension forming two dimensional arrays (memory)
or other structures by means of indexing

-
.
-
.

'special remark.: reglsters are identiflied by

-declaratioqs and ‘théey are candidates for
the destinations of data transfery -

[EEEEIES]
-

[|

| B S §

LI 2 B N

| oo | — A-—

-

’

T)) p—

— JF-H(ﬁ\

g

ned

abstract data type : variable
structure : identifiers made up of a single character
' or several characters
function : variables have no inherent meaning, but they
can take up either Boolean values or S e
‘ numérical values °
extension : subscripbed or_ non- subscripted
speclal remark -f basic. units of control formulations
' . or computations;-operated: on by the
appropriate operators; no physical
p " correspondence - . .

—————_.._-__.._____...--——_-—.---.-.-———--——__——_...-—_——.....---...--.-———_

abstract data type : terminal

structure : identifiers made up of a single character
; . or several characters. ’ .
function : each terminal represents the output of a

~Mereircult ‘node " by taking on the current
logical value of the node over a périod of
time or.in ‘a transient manner
extenslon : terminals can be dimensidned
special remark : terminals are identified by declarations .

—— e . e . . L e S M s e M S T e S WS v Ve M MR R W T T e = AR S W ER S e We M e T e S MM Sw e e e e Sl e e

abstract data type : operator

structure : symbols

function : data transformations, and control formulations

extension : forming expressions for data transformations
.« , and control structures -

shicial remark : choice based on convention

THIS THESIS _ :

This thesis proposes a finguistih . 8structure which
theoretically enbompésses all the essential featuressfof a
. !

textual hiEE level universal language..The lénguage which has

been developed is called AHDL (Algorithmle~Hardw1re Dnsign

.Language). It is based on a consensus multi-level modular.'

philosophy. The queétiye of the research work/was cdncentrated

maihly orr the>§alidity of the iaﬁguage propoéaL. Implementation

of AHDL was not within the scope of the research.

' o } . '—r“'__,,_‘
f.': - . , /_,,—-

S

M e))T

 ps B ===

y— e L) Y

B

2

r

3
.

‘_’).

- 17 -

The technique wused for the ‘deveiopﬁent of AHDL 1is woo
language tuning " which 4is the £échnique besponéibie'for the
egergence oE most of . the exlating RT .languaées. The Dbasic
prineiple iﬁof ‘language tuniﬁg was implicit}y Juétifigd by~
Barbaceci (‘Barbacci-13)'; | |

" Iﬁ faqt, Eonventional programming -languages @ave been uﬁed.
The issue.is,'houever;‘how much they muét ﬁe éhangéq to

refléct pérallelism,.timing and the structure of the

" .bject being represented, " - NG

4

L]

The fpowerJAof ianguage tuning waé explicitly Jjustified by

Lipovski (Lipovski-18) saying : .
“'Specificall§, what 14 more commonly referred to as
hardware deacbiptipnllanguage 1s a'variation of_a

programming language tuned to the overall

needs of describ%ng hardware. "

-

l| B .
Overall, the tuning process derives the syntax and semantics of
4h§ merits of conﬁentionai programming
. . .

lénguagea with the additiénal inclusion of lingﬁistic elements

a RT language from-

able to express parallelism a?d concurrency. The .rule for

establishiqg these . elehents_ for AHDL {is abstractive power and

familiarity .

’RELATIONSHIﬁ TO OTHER WORK .) 2
‘-Conventional ' procedure-oriented' pFogramming' "languages
" developed for _ serial . computations are powerful and well
. S ' ' oy
) ?

) :

(Bartee-31), and Schorr (Schorr-32)}..Thén came the more

- 18 - _ -

1
l

developed, ©but they -all have serious 1imitations/for solving

problems involving parallelism, Opler (Opler-65). There is,

however,® a’ high degree of correspondence- between soffware
programming techniques and hardware operations. . It is clearly
indicated by the philosophy and techniques of micro-programming

(2-Chu-11). In fact, some convéntionél programming laﬁguages

have tuned by different researchers to describe hardware which

has the Inherent property of parallel and.cbncurrent operatidns.
The tuning process has produced differeht pewerful hardware

descriptive and design RT languages 1like CDL, ISP and many

others., It follows that languagé tuning, as 1learned: from the

‘past experience, i3 an efficient technique for the work of this

project,. A ‘] .

.
L]

)
I

.

The intended applications and structures of textual RT

languages have - been continually’ evolving. Informal work on

textuval RT languages was star@ed early in the sixties by Bartee-

formal and powerful textual RT languages like coL, ISP, 'DDL,

among 6thers. Since the backgrounds and the approaches for the

défélopment of the different‘texhual RT ianguageé in the field-

were different , the applicability of these.RT languages vary.
They cover a cintinuum of leve;s of description‘,ahd design of
digital systems,.

Nowadays, the complexity .of digital systems, ;ﬁj rapid

evolution of IC‘technologies, and the trend of des;gn ayytomation

- necessltate é textual high-level universal language- to

[R N T

o b

g i))

R

language can individually and sufficiently support the

INTRODUCTION TO AHDL

- 19 -

L

communicate with, to simq;ate with, to design with, and t

drive

comprehensive automated designs., However, no existing text\al RT

als

stated. . As a result ', different researchers are looking for\a
language which posgesses a linguistiec structure functionall
compétible to thg'”" genuineness " of a textual

universal language. This is also the main 'objective of ‘the

research for the development of AQDLJ

o . - ety

L .

AdDL, introduced by this.thesiﬁ, is a consénsus multi-level
modular hardware design and descriptivg lénguage. It"is capable
of accommodating thé thﬁeq leveis, of “détail of any digital
system. : thg top or the behavioral iev%;, tﬂe middle or the
functional level, and the bottom or thF struétufal level. The
levels reflected in the structure of AHDL'can be interacted,

i.e. in a construct written in any given level, the features of

n
<

the other two levels are available according to a set of rules

described in the body of this -thesls. A high degree of

'extensibility was " incorporated into AHDL to ensure the smooth

[

. extension from the behavioral level through the functional level

to the structural 1eve11 -
) ' . 7 ‘

The behavioral levél, which concerns: ”algorithmic
formulation"at. the schematic level, 1is characterised by the

.

register transfers, the procedural structures, and the basiec set

of operators. The structur®t of the behavioral level is basiéally

- 20 -

o

defined by " ‘time"blocks ". The generalised representation of a

W Doee

))

ot

time bleock is

condition — execution of ‘a ™ single action " or

e ——

a " block of single actions "

p—
by

The structure of the behavioral level is procedurally similar to

conventional programming languages, except for the possible

inclusion of —concurrent single actlons in the block of single

=

'actions of the time blocks. Any single action may represent a

basic unit of data operation, or a,pime'block. The " condition ™

‘“_,...’.{

represents an active flow of control at a particular time

interval.

The functional 1level represents the principles of the

) =)

mechanisns contributing to the system dynamiecs. It is

[
-
'

)

characterised structurally by Boolean equations and terminal

variables. This level stresses the use of control variables as

terminal functions. Modularization at the functional level

fy

becomes explicit. Modules may be specifically designed on this

level in terms of input-output relationsﬁips.

= -

Theastructural level considers timing in terms of single

]

clock pulsés. It is basically a level of logic design in terms

—

#

modular descriptions and the Interconnection of modules through

) -

input and output terminals. '

i

The extensibility of AHDL partially comes from the

!

~—
o

)

of gatés and fiip—flops. This level is characterised by discreté‘

SRS
e

)y I/ y .

'
[

iR i et

R

p—

S

r—) I'_'ﬁ-f"\'r-ﬂ*.-j)

d

. - 21 -

hiérarchical nature of the set of operators it possesses. The

operators situated at a higher level can always be defined ~by

opergtors. at the 1lower 1level 8o as to provide more detailed ...

Information.

+

Since the procedural_siructure of the behavioral level can
not accommodate all the detailed information at the structural
level, a nen-procedural structure, which imposes less

restrictions on €he expression.of digital functions, was adopted

for "this level, However, the time block characteristic prevails

-

in the structures of the three ‘lévéls, except that any time
block in the structural level contains solely concurrent single
actions in its block of single actions. Generally speaking, the
procedural structur; at the behavioral 1evé1 fades into the

non-procedural structure at the structural level through kthe

compatibility of the time block construct to both structures.

The definition of a time block and a single action in its
block of single actions can be recursive, because such a single
action may be apother time block itself. The procedural
structure of the behayioral_ level and the pon—procedural

strubture of the’ structural level defined in terms of time

'bloeks are presented in the following

1. The procedural structure outlined in BNF {(Backus Naur Form)
' for the behavioral level is

. <{single actlion> ::= <simple action > ! < time block>

{time block> :::c(léondition> {execution> -

= opmy

)
s

1

r!!; ?—T’ —

)

/M) =)

v p——

—

) p)

—

{

- 22 ad !

<single action> | <execution> <separator>
{single action>

{execution>

.

<condition> ::= <(state of control) <=
{separator> ::= , | ; -
" , denotes concurrent behavior " .

" ; denotes sequential behavior "

The most important feature of the procedurgl.structure is ﬁhe
{execution> . It signifies that sequential ordering of single
actlons carrys a significant meaning, because the execution of a
single "action’ may be conditioned by . the completion of the
preceding one. |

2. The non-procedural structure outlined in BNF for thé‘
structural level is i

<single actiond ::= < simple action > | < time block>
{time block> ::= <condition> <execution>

{execution> ::z <single action> | <execution> ,
{single action>

<condition> ::= <state of controld> < >

)
t
) /
In order to make the characteristics and the _applicabiliﬁy of

each level in AHDL more understandable, each level is compared

‘in Table 1-2 with a well-known RT language which has the

~

compatible level of behaviors and'application. ;

[I Y .-

B anl)

2

i S S e

e IS e B r—f}’

B - 23 - -
. |
;]
k !
Table 1-2 _Comparisoﬁ of each level of AHDL with a ?
consistent RT language)
LN CDL DDL ' ISP
RE : 2-Chu-11 Dietmeyer-01 Bell-27
ST = non-procedural non-procedural pﬁocedural
AP : ' gate and F-F transfer of schematic-level
: level of data between formulating tool
application automata or

large mqQgules
CT : in terms of state of control state of cqntrol
- single clock memory medium memory medium
pulses ’ .
TB : containing ‘containing only containing both
only concurrent concurrent sequential and

‘activitiles activities concurrent
' activities
CM : structural level functional level behavioral level

but biased to
the structural
level '
Remark : 1. The compatibility of the different RT languages
with the respective levels in AHDL, as shown .in
the above comparisons, serves only as a guide-line
to make the structure and applicability of AHDL
more understandable. The actual differences between
AHDL and the three languages are not conveyed.

of application of .application .~

2. The symbols'used in this table are explained as

/ " in the following :
. LN = language
RE = resource)
. 83T = structure L
. AP = application . ‘ C .
. F-F = flip~flop
. CT = -contrel
. TB = time block ° ‘
.-CM = comparison with AHDL

- e v A Em e S e e T Y e R R R W T v TR Ee b NN M M T M e e e e M N MR M N M M R M e e M mm W MM e e e el e s B e

)

)T)T

- l). ~ unrr—\?wl‘

CHAPTER TWO

BEHAVIORAL LEVEL OF AHDL

INTRODUCTION

The behavioral level of AHDL is designed to support the
élgorithmic formulafions _for digital-systéms at the schemétic
1evel..It can represent {he pertinent ~sequential and Earailel
operations clearly. ISpecifically, this level is épplicable to
describing and simulating the behavior of systems, without going

into the details of construction.

‘Ail objedts in the behavioral level are defined by the set

of " basiec language elements " separatar, letter, digit,

logical value, and abstract data types.

. ’ A

The,separatdrs are symbols chosen to do the foliowing

1. Represent ordingry punctpétion marks to enhance the
readabilit& of any constru;t at the behavioral level.

2. Indicate timing by 'marking .sequential and concurrent
relationship among the linguistic structures.

3. Indicate the functional relatiénship among the different

“linguistic entities.

Letters and digits .respectively do not have any inherent

et
meaning. They serve to form the other 1inguistic structures,

Y
k]

it e

- 2§

™/

Logical values are "true" and "false " as usually encountered.

here are .four abstract data types‘in the behavioral level of

T

AHDL, namely : register, variable, declarator, and operator.

———
'
———
e
*

They are the chief building blocks for the fdrmation of any

construct in the behaviorol level.

) S—

The five basic language elements are combined . together

according to rules to form single actions and declarations . The

declarations form 8 system to do the following :
3

1. They declare.the existence of linguistie structures. In this

case the declarators are simply " labels " without any

intrinsic meaning.

2. They declare the properties of different objects., In this

= ,p) =)

- case the declarators are reserved " words rather than

¢

freely ohoosable labels as in the previous case.

| i
e .

J
The single actions are the basic units of algorithmic

formulation for the solution of design and descriptive problems.

o e I s

They are expressed by the three types of stafements avallable in

-

the behavioral level, namely * . assignment statement s

designational-spatepent, and conditional statement. A™ statement

-
\.\

period of time.

-

e,

Single actions which are acting as basic units of
. - : < : '

computations are expressed in assignment statements. Assignment

l__w_J

.
'

—_ rees mgm

l1s considered as an operational event occurring in a particﬁﬁ%ri

.'f_' \

S

ekl S}

s L

3

QU T))

- 26 =~

!

/
statements which characterise the RT level of operations are
*
data transfer: statements with the generalised syntax :

carriera———-data.operation expresslion

+

The operator (+) transfers the computed result by the ‘data"

operation expression to the designated " carrier ". Any carrier
which is assumed to have- the ability to hold data information is
either a register or a vaeiabiel The data operation expression
represents either a ruie‘to compute a value or.a rule to present
e_ value before a- transfer. Any computation, which is always a "
simble data'_bransrormatiqn ", 1s based on, either. normal
arithmetic. eompositien or Boolean algebraic operation. Tt is
always . a simple data transformaticn because _its formation
involVes oniy either just a'single ﬁnary operator on a single
operand or_ a -single binary operator on two operends. The

.

operahde are themselvzs variables. The operators are symbols

selected” to abstraet the designated data transforming
mechanisms., In certain " simple data transfer ",athe data
operation expression contains no operatgrrat all, but just 'a

Single vapieble'repreeenting the value for the transfer,

The’ single actions, which constitute the basie structural

units of control sequencing, are designational and conditional

-statements.

—

A designational statement creates a control path between
itself and a particular part in a construct. Control wil1l then

be transferred to that part for its execution. When execution is

g

=Sl B N~

)

-

- ’ - 2 7 -
¢ ,

completed, control will be returned to either

statement itself or the single action’

™

the deslgnational

right after the

designational statémpnt. There . are, therefore, two types of

'udesiénationall\
-

and dynamic muitiplexed aesignatioqal statem
designatiodal statements -are represénted by
When a procedqre cgll is executeq; a branch'td
procedure for the subsequent execution-will be
éxecution :;f _the _procedure is "completed,

H;eturned "back to the - single action

procedural-call statement . Associated wi
,muitiplexéd desigﬁational spabemgnt, the pres
process, is‘always. assumed. This decoding p
particular conditiogafncoded aavone of the sta
The switching operator in the dynamic multipl
statement, then, transfers qutrol toe the corr
the lconstnuct ‘for execution. When e%ecut%

cbmplete , control is returned back to the dy

designational statement itself.

‘Conditional statemea}s are built up
statements, designational statements;, and
statements themselves. The characteristic

statements are summarised in the following :.

1. The basic Wtructure of " any conditiona
generalised in the syntax : l
condition —— ACTIO

"It says that the ACTION part will be exec

statements : sequential desigﬁational statement,

ent . Sequentiai
procédure cglls .
the'cor%espond&ng
performed. If the
control will be
right gfter the
th any dynamic
ence of ardecoding
rocess decodes a
tes ip a register.

exed designationa
. -

esponding part of

on of that part is

namic multiplexed

s

from assignment
even conditional

s of conditlonal

1 statement ' 1is

N

uted only when the.

S)

) _—)

-
et

pmm e

- 28 -

" condition " of Boblean'natﬁre is " true ",
The .condition of ‘“any cquitional statement i3 reflected
explieihly'by the Boolean value of a Boolean expression or
that of a relational expression. ‘The Boolean value of a
Booléan.expresaion, which 1s of ordinary Bﬁoléan algebraic
composition, is the function of‘tﬁé Boolean expression. The
Bbolean value of a relationalxeipressioﬁ, which represents a

" test network " to compare the magnitudes of two variables,

- 1s the result of the corresponding comparison.

Ihe condition of any éonditional statement implies! a
particular time fnterval during which the ACTION 1is
completely executed.

The, ACTION part may contain a ‘single " unconditional
statement " which is either an éssignmept statement or a
designational statement. |

The ACTION part may contain 5 " block " of" several
unconditional statements. .

The ACTION part.“may contain a " block " of unconditional

statements.and conditional statements intermingled together,

i.e. conditional statemenﬁs_can be nested .

The.execution of the statements within a biock. can be
sequentiall§ dependent y ¢oncurrently 1independent ™_ or
sequentially ahd éoncurrently intermingled . This timing
relationship among the statemenﬁs iIs marked by_appropri#ﬁé-

separators.

.

The control structure of the behavioral .level of AHDL .is

/)

P

{

/s

>

Y — =

—
1 7’

3\

- - 2 9 — . ' A]

7

¥

‘based on the concept of a time block . This is a condition and

execution relationship working on the principle of a conditional

“‘::' - . B
statement, i.e. a time block is defined by the syntax : .
’ e T
condition — = a single action or a block of single actions

A tonditional statement, however, 1is only one of the ways to

represent a time block. The condition of a "time block "can - be

~

represented in three possible ways. First, it may be represented

explici#ly as the condition of a conditional statement. Second,

1t méy'be encoded as one of the states in a regiéter. In this

case, the récognifion of the»condiﬁion is performed by decodingi

Third, its 'ﬁxistence 'may' not be explicitly defined by any

structure. Instead, it.may be assumed by default at the " entry
poiﬂt " where execution ©begins._ For eiample; in a consﬁruct
containing several stétements in -sequential brdebing, the

1

execution of a statement i1s conditioned by the completion of the

preceding one. .

The ihclusion of concurrent single actions in phe blocf of
7single actions of a. time block is la rule” rather than an

exception., Furthermore, any éinéle.action in a block of single

{
. L4 .
actions may represent another time block. Therefore the

definition of a time block and a single action can be recursive.

Mt

o .

Single'xactiéns can always be grouped ‘together to be

~

identified by unique labels. These groups are named bloéks. The

—

representational effect of. a block is the same as a single
{i " .

‘actlon, The way of parﬁitioning a block of siﬁglg"actions into

——

- 30 -
. >
uniquely named subblocks, or sub-subblocks is referred to as the

.

" blocking méchanism ".

rd

The?pasic principle'of control transfer is summarised in

two steps. The first step is the interpretation of the condition .

of a~time blocki,The second step 1s the adtivation and execution

.0f the corresponding s;nglé actions. There are three modes of

L}

control transfer.és described in the following :

IRy
1

1. When a'pondigion is &néoded as one of the states 1n a
register, the contrpl‘ transfér is a dynamic and selective
process, it involves decoding- the conYition and then

" interpreting the result for a particular pqth of coﬁtrol

transfer.‘Special oﬁerators are incorporated for this mode

b] -

of control transfers.
2. If a condition is represented by either a-Boolean expression

or a relational exp}ession, the interpreﬁétion of the

S

condition is direcfly assumed. Then cbntrol transfer to the.

correspondipg' block' of single actions or the corresponding

~

single acWion starts only when the condition is true .

3. In any construct which contains single actions or/ blocks of

single actidns‘-in seduential ordering, control will.pass

-

down from.a single action or a block to ahother sbqﬁentially
and respectively. In other w;rds, the executlon of a single
action or a block is conditioned by‘éhe completion of the
preceding one. If a tiﬁenslot qf'cohcurrent single actipn?
or. blocksl does exist between two Qequential entities, the
whgie time-slot will receive the same‘control transfer as if

itpwereﬁa single éntity. This sequential mode of control

J—

=

/moem, ey

- o

?m) —) r::) i.—-'-.—'

e

- N

‘lssues.

- 31 -

transfer in any case can only be violated By procedure calls

whioh imply "‘3umps " to skip a certair number of single

actions or blocks for the execution of the corresponding

procedures.

The:structure of the behavioral level is " procedural "

because sequential ordering of stateﬁents has a significant

meanihg. It implieb the consideration of consecutive

» L
et

This level 1is for formula

architecture of any digita} system,

tim

ing

tiné the framework or

Formulations in

the-

behavioral level do‘not consider the intrinsid'properties of the

»

tasic building blocks. For example, a begistep'is declared- as a

storage .element irrespective to its ‘ultimate principle of

oL -9 '
operation. However, ." synchronous "

and .

"

gsynchronous

operations can be reflected by the indicator "™ " " which will be

P

described later in this chapter.

13

- {letter> :f;

. 1
~ ‘ =

‘-

o

-

»

BASIC LANGUAGE'ELEMENTS AND SOME IMPORTANT LINGUISTIC STRUCTURES

L.) -7

-
-

Letters do ndt have individual meanings, but they are used

+

*

to form " identifiers " and " information strings ". The letter

set can be extendeg arbitrarily with any'diétinctive characters.

The -basic set provided is

. .
e

S - . -
< . . . -

v

gttt

CAIBICIDIEIRIGIHIIIJIKILIMINIOIPIQIRISIT!

-~

.

viviwixiyiziaibleldleifigihlilfikilimin}

olplq!r{srf{ulv{w}xlylz) .

p——

~,
L]

Ty

- T
) 7

do not have any inherent meaning. They serve to identify the

existence. of different .entities in a ‘construect. Withinm a
construct, the identifiers must be " unique “.‘The syntax of the

identifiers gs

v {identifier> ::z <letter> | <identifier> <letter> !

<idéntifier> <digitd

-

"The 4information stringg are used for different purposes,

™) T,

y

in terms of ©bits, in the behavioral 1level. The syntax of

—
y

informétion strings 1is

pregy
J
{

<information string> ::= nXr

-

" n denotes numerical representation

-1!

" X denotes number-system designator

.
J

O denotes bit-length of n "

~

convenience. Any Information string is binary in nature because
it. 1s defined by bifs.-In the above syntax, X specifies the

number system, r specifies explicitly the bit length of the

~F— —
J

) string in terms of a " decimal number ", and =n 1s the value

2220
5
b}
4

‘.

|
J.

Identifiers must start with a letter, but individually they,

but their principal purpose is to represent " number systems "

"

The symbols n, X and r are left to the choice of the wusers fo%~

N
S~ . -. 33

.represented particular to the number.system. For.example,- if B

’{L\ designates " binary ", O ‘designates “‘octal_", and D designates

") - .

l!ﬁ "™ decimal J}, then the value of " nipe " may have .the
b representation of " 001001B&6 ", " 1106 ", or " 9D6& "

%j\ . respectively.

\ . * ¢ . . - . cw .
E:_ Pigits are used to form ldentifiers, - information stridgs,
* c_ . ,) '
and " numbers ". The basic digit set provided is)

U" <digit> ::= 0}1}21314!51617i8!9
- ’ (
F‘) .
‘;' _Numbers have 'conﬂﬁntional structures and meanings. Real

numbers are expressed in the form of

-
L e __
- h ’

?he symbol " separates the places of decimals specified by B

lf‘ . from A, and the example is the real number : 15"824 ..
lf‘ o _ ' ‘Logical variables may assume one of the two binary values
I?\ ' true or false . They aré.reprgsented by appropriate identifiers.
[ﬁ‘ : . The standard functions and properties of the separators, in
- the basic set at the behavioral level, are listed in Table 2-1.
! ' - .
- Table 2-1 Standard functions and properties of the
: separatorg in the basic set.
- i - S
' Separator o Explanation
(() : T,) E indicates concurrent activities

o~ :
t
[i H indicates sequential activities
(;) n " separates the places of decimals
); in real numbers
R , .
= 4 : separates declarator on the

. left and the structure
IJ“) : . on the right in any declaration

= ' separéfes the switching operator from
' the 1ist of labels in any dynamio

d . selective designational statement

~ ' . separates the upper limit from the
E. ' lower limit by having the meaning
< of " from--—-to "

$ denotes the beginning of a comment

;“"N

-~ / ‘ separates and defines the equivalence
-~ ‘ of two different representations
k : containing the same number of entities;:
- for example see Remark 3
[. at the end of this table

-~

-~

i separates..and assocfates twe
parallel entities on both sides
respectively; for example see Remark 2
at the end of this table

algorithm

»

[] hﬁﬁéin end brackets to delimit the definition of an
-

() brackets to contain the parameter list
[_\ . . : of any procedure @all, and to be used
‘ freely to enhance readability

- k = brackets to contain label 1list for
l ' ‘ sequencing control

< > © " brackets to contain subscripts for -
- one-dimensional arrays

-

B
J

-

[1] ‘ brackets to contain the subscripts for
the " rows " of the two-dimensional Arrays

-‘) .

-~ | {) ‘ brackets to be used freely to enhance
I .) . readability

.-.—-.———-.._————..—._——-.-—_.--.-._.-.—_..—_....-—__——_.__.-_'_—...-__.—-...-...._—..__—....

Remark

) 1. " Indexing " in the brackets of " ¢ > v L], x n

1
~—

f: "2 35 -
L N |
- b

always follows the conventioﬁ of " from left to right ",
{E When the separator " ; ‘is:used in the brackets of " ¢ > "
K and * [}] ", it aects like the separator " ~

The two parallel entities separated and associated by the
separator " // " are subjJect to the convention of indexing.

The matching of " entity1l // entity2 " to the corresponding
counterparts must be one to one <correspondence. The
principle of the matching is generalised as : entity? /7
entity2 "' matching mechanism " part1 //part2 . Therefore
entityl 1s matched to partil, and so 'is entity2 to part?. If
entityl contains two subentities as " X,y ", and parti

4 4
contains two subentities as " p,q ", then the simultaneous
- . . matehing 1s " x to p " .and " y to q ", i.e. corresponding to
[the position indexed. The matching mechanism is generally an

appropriate operator. In the example of

'%F CEZ: T
n

(Aadition//Subtraetion//nivision)——-(A//S//D)

Subtraction, and Division are transferred to the registers
A, S, and D respectively and parallelly. The symbol " " ig
the transfer operator

3. Indexing is also applied to the both sides of the separator

=

[

¥

tﬂ ‘ ' the results of .the parallel operations Addition,
-

[-\

i " / ". For example, in the construct of

‘]

Jﬂ

A,B,C,D / a,b,c,d

A and a define each other, and so do B and b, C and ¢, and D
and d. '

[N - . The abstract data types :ldeclaratof,'register} variabfe,
-~ and operator are the principal building blocks for any construct
H . .‘- ..
L in the behavioral level. They are explained in detail 1in “the-
ﬂ\

l ‘ next four sections.

- .

()

DECLARATOR

-

Declaratord are the basic ent{;ies in the system of
nomenclature (which will be discusSed.in more detaill in one of
the latter sections). 'They serve‘to define the properﬁieé of
identifiers and to declare. the existence of .diffetent

co-existing individual linguistic structures within a‘construct.

'In the behavioral level, some declarators are tuned to have

inherent'meanings. They are called the." reserved declarators ",
The basic set of reserved declarators contains " Register ",
"Subregister ", " Memory ", " Operator ", " Integer ", YReal",

"Boolean ", " Operation ", " Sequence ", " Bus ", and

’

" Procedure . ". This set can be extended at will by
"predefinition " to compensate for any deficiency that. may
arise. The purpose of the reserved declarators is to define the
properties of different identifiers;'The existence of different
individual linguistic structures, which méy be identified for
the sake of clarity when structuring a .behavioral-level
construct, can be declared by non-reserved “and unique labels.

The syntax of any declaration.is

declarator : structure

For example, the deciaration of

Register : A

means that the identifier A possesses the property of a

reglister, and the declaration of

o ——

k.

-

- -

means the corresponding assignment statement to be declared by

the label L.

REGISTER

Registers are identifiers declared as data- carriers. They

J‘l.

may appear 1in the forgfgf " gimple identifiers " without any

’

Subscripf, for example
Register : A

- P <
(3

Sometimes, registers represented by unsubscripted identifiers do
not provide the necessary information; because they do not show
the binary nature and. the word-léngth-bf them. The provision of
subseripts makes registers) into one-dimensional arrays. The
brackets " ¢ S " are particular to the one-dimensional shbscript
specifications., The incorporation of indexing in these brackets
makes the binary hature of a register clearer. 1In -the First
example : ° . | 4 o T
Reéister‘: A <O0;4>

£

the subscripts of 0 and 4 are rgspéctively the lower and upper
limits for the word-length of the }ggister A. In the second

example : _ T —

Register : A <0,1,2,3,4>

each bit 1is clearly indicated pdsitionally from left to right.

I3

4

7/

-"38 - .

-

)

Register§ can be decomposed 1into subregisters by the

=i
J

C.

appropriate " subreglister declarations " of the ayntax

Subregister : identifieras of subregiéters

; .

¢

The decomposition process 1s typified by the two examples

-
)

presented in the following :

[
L

5

1. Example of decomposing a reglister into subregister :

e
)

Register : A<0;u2 \

)

Subregister : A <0;2>

=

'Aﬁ<3;ﬂ>

}

$ The register A <0;4> has been decomposed into
subregister A <0;2> and subregister A <3;4>.

s

J)

o

).

2. Example ofy decomposing a register into bits

Register : A<0;h>

.;“

Subregister 1 A<O> g .

‘i ACT>
= L
- A<2>

['“ , ~ A<3)>
A<U>

p—
)

$ The register A<O;4> has been decomposed into '
bits which have been declared as subregisters.

e~
J

U .

l ﬁ The concatenation operator " @& 7 aliows the formation of a
- compound register by cascading several different registers

’ positionally together, .i.e. the opposite \process to the

(3 decomposition a register. The compound register thus formed will

>)

Fomer o

)

- 39 -

*

assume all the charagtéristics of-the. component registers whicH
each individually, positionally, and uniquely contribuﬁeg to‘the
overall regiéter specificaﬁion. The compound register is
represented.by'f new-idéﬁtifier. (Assignment of an identifier

to a newly' formed compound register is part .of the " renaming
., ' . A . ..

. mechaaism " which will be discussed in morb‘detail in one of the

latter sectiogs; } The formation of.. a compound register is

-

illu;trated in'the followlng example :

~ -

Register : B<0;3>

C<0;3>

BC<O;7> # B<0;3> @ C<0;3>

.- ~$ The compound register formed by éascading

the registers B and C has been renamed by the
operator " # " to be BC

¥ . R
Obviously from the above example, the operator " @ " must

override the operator " # " in the'precedence of oberations.

-In fact, the decomposition of e@a register into subtééisters.
or 'even into bits-can also_take place within the subscript by
the aid of the concatenation pperator. The éubshript is then'
decomposed into different portions to be identified by unique
identifiers. These identifiers are subseéuently dimensioned. By
-fhe brqckets " < > " with the aubscripts indexed qqrrespondiné

to the original 'position in the © soﬁrce register ". For

example, ir E<0;10>. is the register to ‘be decomposed

; [
'

'deliberately ‘intd E<op . 8% adp>, 'hheﬁ:'bp:Jﬁﬁd adr can be

. N0 -

dimensioned and' indexed to have the designated format of

E<op<0;4> @ adr<s5;i10>>. Therefore the two potential subregisters

can be 1solated as E<op> and E<adr>, or as op<0;4%> and

adr<5;10>, to be renamed and declared. The stacking of registers
of tﬁe same word—length together forms' a memory which 1is a
two;dimensidnal array. The dimension of ‘the stacking is.
contained in the brackets " [] ", The syntax of a mémopy is"

MR cjdl<a;b> ‘ -

MR is the identifier of the memory to be deéiared. ¢ and d tells
how:many registers are there, and a and b denote the word-length

of each register. The decomposing and renaming qechanisms} which

produce distinctive subregisters or bits, can alsb be applied to

" decompose a memory into memory blocks or sihgle'memory cells

(individual registers) . Such mechanisms, however, will be
applied ﬁo the content contained in the brackéts ™ [} " instead

of that 1n the brackets " ¢ > n,

VARIABLE .

A variable 4is an identifier ﬁo- ghich either a Boolean
value, a real value, or an ipteger value is assigned. It can be
used as an opgraﬁd in any " ‘compubatidﬁ " oor " cantrol
foﬁmulation ", Any compdtation\is defined by the data operaéiqh
expression ‘ of an assignment statement,‘ and any contr51
formulation 1s regarded as fhe process‘of defining the condition

for aniexecution . In the behavioral level;' variables can be

~ - R 1]
identified 1in three possible ways. First, identifiers can be

B
L
I

-

b

e T e
)))

!
pL 4

1

e e

-
).

8.

- 41 - -

explicitly declared as elther Béolean, integer, or real
variables. Once é variable has been declared, ‘1t possesses the
property as declared permanently, and i1t must be operated Gn by
the same type‘(Boolean, arithmetic) of opefaéora. Second,
declared data carriers 1like regiéfers, subregisters, and

identified bits can be taken as variables, but the properties of

these variables are determined by the nature of the operators

acting on them. Third, variables cdn be freely defined as "
catalytie ideﬁtifiers " to represént the required infermediate
stages. Then,l their nature depends on thg nature of the
corresponding_assighmentﬁstabements. The example oé a catalytic

NG)
identifier will be given in the section of CONTROL STRUCTURE

later..

OPERATOR ﬁ ' /

Iﬁ-

L
LI

The operators in the behavioral level serve three purposes

: computation, control férmulation, and the formation of

!/ :

.syntactic structures. Operators for computations are referred to

as " computationai openators',-", cperators for controk

-
.

formulations are called " control bperators " and operators for

the formatiqns of syntgctic structures are called " syntactic
Opénators". Anyléperator is claésified as computational operator
if its oberation has to be defined‘ ﬁy an " data oper%fién
expression '". Some of the ;perato;s primarily designated for
conﬁrol formulations operate as if they‘ are coﬁputationgl

operatora, Therefore ‘they are included in the class of_

computational operators. Since some of the Boolean operators may

:uﬁtﬂgill [-

.
P sl

“ m [

e BN

mug g

HigL\ 1

kf\ 7 . 42 -

be wused for computations as well as control formulations, they

are included.in_boph the classes of computational operators and

control - operafors._ Table 2-2 shows the complete set of

lcomputational operators SUbdivided into different groups

4

according to functions. Table 2-3 illustrates the wunary
operations of the compufatipnal operators on the register A,

Table 2-4 illustrates the binary operations of the computational

operators - on the registers. A and B , and the constant C (i.e.
A :

integer variable). Table 2-5 shows the complete sét of control
operators subdivided intb “different groubs according to
functions. Table 2-6 illustrates the unary anﬁ biﬁary‘operations
of the control operators on‘the Boolean variables P and E, and
the 'integer variable Kn' Table 2-7 .shows the comp}ete'éet of
syntactic operators. It shéuld be noted that the classification
of th?‘bésic set of operatdrs into the three different typeé of

operators is made only to provide a clearer concept.

+

*

Although the basic 5et of operators is sufficient ‘to meet
most of +the general requiréements, occasions may arise, where
special operators are needed to be defined to describe either

non-standard, or higher-level functions. The fact thap' an

»

operator actually abstracts a modular logic network implies that

N .
a process to define a special operator corresponds to- the

definition of a particular module. The definition of any special

operator can be worked out by either oneléf the two ways

simpie declaration, and pfoéedure call. .

]

Thé simple declarations are having' the syntax

Operator : OPERATOR IDENTIFIER begin ALGORITHM end

e —— Tt i o e g

¢ ey
5

u---w'l)

——

4

implied.

. u3 _ _;1 ‘ -’r_____.

- . -

For example, the 6penator which represents the operation of a

Y

A-to-D cdn#ertef is ﬁéclared :

T ——

" Operator : convert ' S

begin
Integer : A $ A represents an analog signal
. ‘changing respective to time
'Register + D : ’ _-
-, , - _]
(A>D) ——=D «——count-up D

(A<D)—-D .-_count:down D °

end
¢ .

The capability of the operator ‘" convert "
is assumed by the declaration. Then, it can
be used like other standard operators '
available in' the behavicral level of AHDL.
What is delimited in the brackets " hegi

end " serves to depict the basic pr‘oper-g
of this special operator, and it has the

sSame meaning as the assignment statement
of ¢ D=——convert A .

A1
48 £ 6 €8 OF & O & A

- ' b g
“‘convert " 1s the operator with the working algorithm? defined
within the separators (actualdy brackets) n begln " and
" end " , In this case the operator " convert " serﬁgs more for

_ documéntary purpose. It specifies the fact thatran‘analog value

represented by the ‘Integer variaB;s A Is converted into a binary

value to be stored in the register D., The actual

4

conversion-mechanism is not specified here, bﬁt its existence is

-

. e 7 - . -

e

The detailed working algorithm of any special operator can

application of the special 'operator then becomes .a procedure

call :The probedural .algorithm may prov;dé the framework for

.actual 1hp1ementation. Therefore procedures to represent special

\:} _ . be theoretically described in ~an appropriate procedure . The'

‘. ‘ ‘ f

7

a' ‘operétgﬁs'are ot only for documentary purposes, but they may
Féppesent the simple and ultimate drafts in the early phase.of a

5 . . _

. design process;'Procgddres will be discussed.in more details in

one of the latter sections. S | | o

Table 2-2' The.complete set of computational operators

’ " -
] . . . PN) ° ,
. a . L .
. . -

Operator Group ° -Symbol Explanation
» _-f-;;ZEQEl;E{S___'_--f—fl__"-‘“ZSEC;HEISE;I_;&BIEIS;""",""
] - ‘ - ‘ Lo Ty C - " . conventional subtraction
. - R -fl . conventional multiplicdtion
2 -+ .conventional aivision .
| C T legieal L TITTTTTRiogtest wor o TTTTTTITTTTT
i | - v logical OR ’
’ ‘ - ;"logical AND'
. i logical EXCLUSIVE-OR
1 ""C;EES;;I-_f-__EEZFE_"_'-—_f;;S;;EEZSH;i--IQEE“QEI?E ------
: ‘rotate : .circuldr lﬁ?f;ghift :
l, ' ' eichange. swap the contentSt)ff 2
. . .o .+ two registers ' -
| ",";5;2I;I""T";SGEE-'J;""SSGSE-__S;-S;TSS;-"T—,_-""‘"—_-
~ ' ' coﬁﬁt—down count:dogn by bngj
-— | : decode ‘ seleét‘one out of)
(;)_ o . - o " 2 to the power n " T fr. . .

possibilities : . . "*' R

r

- _ .
Gl d . Nl W@ . ;“ o

MY o Gal e

Téble‘2-3 Unary operations of

transfer the computed result

to the designated- carrier

on register A.

&

'txpresalon of Unary
Data Operation

—-————...—-_———_....-__——_.-—-.._--————_——_-—_——-...——_——_—-—.__.-_——_—-.-...——

-0R all bit§ of A

rotate A.

shift A

" count-up A
count-down A’

decode A

Table 2-4 oBlnary operations of the computatlcnal operators

logical
logical

logical

--—.————d-—————-—————-.---—-—.—-—

the'computationél operators

%

Explanation . . e

AND all bits of A
EXCLUSIVE OR all bits of Y
COMPLEMENT all bits of A

shift A one b;t to the left
with the content of the
leftmost bit inserted into

the positlon of the right-most

bit

shift A one bit to the-
right with the rlghtmost
bit dropped off

increase the content of A by one

“decrease the content of & by one

select one out’of "2 to the power n"

possibilities, and n is the number of
bits in the register A

‘__.—_—.-.—_———_.__._—_—-—_____.——-_-..-...___—-.-..._.-.—__——-....--.—-_—__——-.._.....—.---

“on the registers A and 8, and the constant c.

', Efpression_of'

Explanation._

Binary
Data Operation
n+B add the coritent of A to that of B
"A-B " subtract the content of B from that of A
e

T

R

A exchange B
C count-up A
C count-down A

A—B".

- 46 -

multiply the content of A to that of B

AxB g

A+B i divide the content of A by that of B

AVB logical OR the corresponding bits of A'énd-B'_

A"B logical AND the corresponding bits of A and B

ABB _ logical EXCLUSIVE OR the corresponding bits of
| ; A and B . -

The complemént operatar " . " is not a binary operator.;,. 4

C shift A ;hift'A by C bits to the right :

C rotate A left circular-shift A by C bits -

swap the contents of A and B -
\ . |

count up A by C times

count down A by C times

transfer the content of B to register A e
Y e

The operator " decode " can not be used as.a binary operator,
because the standard format of a decoding operation is

-

Table 2-5 The complete set of control operators.

-

Operator Group

1ogfcal

relational

transfer

switching

>1<s‘<=‘r>=1=: .

K ——decode AB

——————————————— -y s e S W e e e o —— v d el i W ———————

Representation Explanation.

R R S v S A g L AN R A M A ek) R vk A N R N AN . S T e ey e e e

v, ,8 " same as used for computations

‘greater than,less than,less
than or equal to, greater than

V4 S . or equal to,equal to,and not
" equal to respectively T
————— transfer of control on .
a condition . =
switeh’ functiconally similar to the

FORTRAN " computed GOTO " far
" selective control transfer "

{

e

3"

5 | ".

R
-

PRSSSREE

A

)

Naal =

J | {ament
. J . ————

—

o B W

=

)

—

=)

j‘“"

e~
-

]

re—
-

S

sequential call

S ——— A D —— i —— A S A e -

- 47 -

sequential control transfer,

but the-return of control is

also implied; u3ed only in
proqeduré-call statements e

S S P b D G L e A ——— S ——— - ——— i —— i —

Table 2«6 Unary and binary eperations of control operators,

e D S S - ——— A) —— —— g’ -
e

—

Operator Group Nature of Operation Example
- logical unary and binary refer to Table 2-3 and f
Table 2-4 !
'relational bihéry D#E means compar.ing D and
E for equality i =
" transfer X unary activates the counterpart {
: of a condltlon ’
8witching unary the example is
switch K := % x, y,z ¥ ; j
" switch " works on the ‘
integer variable K to !
txansfer control, to one !
f the identifiers in o
"% the ‘brackets " * % n - !
sequential ‘ special e.g. do COSINE; calling

procedure COSINE

L e e E E P O T e ——

Table 2-7 The complete set of syntactic operators and
their operations.

.Operator. ' Symbol

concatenation . é
renaming’ i

»

e et e = et s ——— - .

~a compound .register is formed.

Explanation -

The operator cascades different
objects of the same properties
together to form a complex
structure, e.g. A8B, whereas

from registers A and B.

The operator renames a syntactic

e e
i B '1

!

|

L

=)~ 7

H
[
-~

~>=d

|

)) T

>

=1

~

|

3
‘4_-

—

E

fam,)

e '

i

-

\H)f’*' - ug -

structure. For example, C # A6B

has the compound structure
renamed C.

T —— O - . o —— T — . — T T D D W S b b ———— A W i) — ————

Remark : The operator " @ " .overrides the operator " # " in the
precedence of operations,

- — T T — " —— A A S AP PP TR S e A A D B ———————— ———————— -

BLOCKING MECHANISM

The purpose of the blocking mechanism is to 'decompose the

o

block of singlé‘aptions of a time block into subblocks or even .

- sub-subblocks to bg identified by unique 1labels.” The blocking

mechanism " is part of the system of nomenclature for any

-

construct, and it has the syntax

<blocking mechanism> ::= '* :<label list> *
<{label list> ::=z {(label> | <label> <separator> <label list>

{label> 11z <identifier>

.
The " separatbr ": which 1is either a separator to denote
concurrent occurrehge of ‘labels or a .separator to denote
sequential oécugrence of labels, can be inSeréed repetitiieiy
according/ to needs. The " label 1list " is contained in the
brackets " * % w_ For example, bhé time block

-

“condition—= % A1; A2; A3 W

T I—

S e

R

- 9 - _ ' ’
is the result of the application of the corresponding blocking -
mechanism. The label 1ist contains the lébels Al1,A2,and A3. 'The'
labels which each'idénﬁifies a subblock are séparated from one

another by the separator " ; ". This separator denotes that the

execution of each 'subblock is sequentiélly performed-fkom left

to right. Each label can further be decomposed by the very same

blocking mechanism to produce sub- subblocks.

RENAMING MECHANISM

The renaming | mechanism is ‘part of the system of
nomeﬁclatpre to rename previously defined structures with new
names. .The, new name then takes up all.ﬁhe-chéracteristics of the
old name, except that the s&ntactic representation of the new'
may be different from thé old. The operator for renaming is " ¢
" ., For example, the'précess of forming a‘coquQnd register from
the registers : A<0;5>, and B<O;5> is |
| ABCO: 11> # A<0;5> @ B<O;5> .

The compound reglster formed has been.renamed to be AB with

different subscrlpts from that of réglsters A and B

SYSTEM OF NOMENCLATURE . (

Tng system of nomenclature for any construct contains three
. . ' o
basic mechanisms" : declaration, . blocking, and renaming.
Declarations are ultimate to any construct at the behavioral

level. The other two mechanisms cope with various unusual

= k‘“ “\

u u 0

-

zor

oL

o

.“

- e sk EE e

‘with a " procedure header " defined below

- 50 -

situations. The system of nomenclature 1is important for any

construct because, it enhances the understandability,

’

readability, extensibility, changeability, gnd workability of
it. '

PROCEDURE CALL

Procédure call is the mechanism to ensure programming
hierarchy whieh 1is a modular approach to solve problems. A
procedure itself is-a " program module " in AHDL. The syntax of

any procedure call is

{procedure call>

call <{procedure identifier>

{procedure identifier> identifier> <{subscript-list>

¢subscript list >

(<1list of parameters>’) |
: (" <Lempty>)

<list of parameters>

<list Qf identifiers>

C

The procedure callélmust be sequenced by the operator " call ",

1

The paraﬁeters are then passed down from the proceduge call to

the corresponding procedure . The current values of .the

parameters are only defined in the procedure-call statement. The

-

syntax of a procedure is

Procedure : procegure body

|

The procedure body is a block.bf jﬁingle actions starting

1 ik el

L

r

<{procedure header> ::= <procedure identifier> {formal

.) parameter list>»

<formal parameter 1list> ::= (<formal parameters>)

L4

)

The number'of_parameters “in the. list of parameters _in any
'pqogedure call statement must be equal to the number of " formal
par;meters " in the respectivé procedure header. The parameters$
are-linked:by one to ohe positional. correspondenee: _After é
procedure .has been executed; control is passed back to the
/,,55;;1;7222;;n which fol}ow§ﬁ éhe tcorrespondiqg pro&edufe-call
. Statement. A procedlre call operation 1is iliustfated by the

following example

call COSINE (A,B,C) §$ procedure-call statement

' w

Procedure : COSINE (a,b,c) $ procedure header

——

i

In the above example, A,B and C are the éctual. parameters}

and a,b,and ¢ are the formal parameters.

PROCEDURE CALLS AS AN INTERACTING TOOL
. ‘

A _ . ‘ .

. Procedure calls at the behavioral level are not restricted-

to calling prdcedd}es structured in terms of the behavioral

-

.o »

H

_.
oy

w4

.-

4 il e

R 1

r¢_l¢:rii i-ll

'%I .

- 52 -

[

level . They cén be used as a tool to interact the behavioral
level with the other two levels of AHbL. HdEe precisely,
behaviorél-level.procedure calls can call procedures constructed
in-terms of the fu;ctional level or the structural level. Such
interaction of levels allows programming hiebarchy po match with
the fequired " informatién hierarchy ", The latter is defined as
a process of _providing more detailed in}ormation' in each
succe;sive level. The three levels of AHDL represent such an

information hierarchy.
CONTROL STRUCTURE

-Sequencing of the execution of single actions or blocks of

single actions is'basically performed by either dynamic and

selective ﬂcontrol, or sequential control. The principle of -

dynamic and selective control 'is the interpretation of the
condition. of a time blodk, followed by the execution of the
corresponding block of single actibns. It‘is dynamic beéause all
the time blocks, at the same level of operations within a
construct, have the same equal chance to be selected. . TENs
selective becausé one and ‘only one céndition will becometr;:T§§
a. particular time inteéval. The fundamental 'prinCipie of
sequential control 1is that the execuﬁion of a single action 15

conditioned by the completion of the preceding one.

Dynamic and .selective control ‘transfer are explicitly

expressed by the Hhelp of the operator " decode " and the
operator " switeh ", the separator " := ", and a ﬂ.label list v
4)\‘ ’_v

S

- 53 -

derived from the blocking mechanism. Such a dynam{c and

-

[N

L
selective control transfer 1is _examﬁlifie by the following

R

example
3 K —decode A ,
I switeh K := * A1, A2, A3 ¥
'ﬁ The regisbef A is decoded by'thé"operator " decode " to

produce an integer value to be assigned to the variable K."

Simultaneously, the'currgnt value of K is ‘ﬁétched positionally

l to the corne’sj-_:ondili'ng' label in the. label list. The interpretation
. and " the matching of the value of K is performed by the operatoy
- " switgh v, Thé label. list contains solely " concurrent labels !
as indicated by the separator " ;‘ ". The wvaridble K 'is a
c;télytic .identifier. It 1is defined as a matter of convience.
| 4 Its identity is not previously declared. i

L4

Sequential control Ltransfers may be assisted by the

separator " ; ", and sometimes’ a label list derived by the

blocking mechanism. Special provisions for sequential control

transfers are procedure calls.

EXPRESSION AND "STATEMENT {’

-~

Any expresSion in thq behavioral level of AHDL is defined

as a quantity having either- a.:single variable, one or more

. respectively, or a ﬁr&dedure identifier . The use of appropriate

/

T\ operators acting on one or more associated variables

T Jr—)

e

-

FIPUEAD Lam) Bics

t—

-

r

e

N E

-

e Bl

J—

™ 7

‘

- A

T e S

o

-

- .54 -

LY
separators in an expression is always possible. Expressions are
the basic components from which statements are structured. There
are three- types of statements in the behavioral level :

assignment statement, designational statement, and conditional

. statement.

. Assignment statements spécify the way to assign éomputed
valués to the corréspondigg carriers. The type of value to be
assigned is determined by the expression part of any assignment
statement, terminolqgiéally célled’ lthe ." data ‘opgrégion
expression ", This. kind. - of expﬁession ‘is basically
computational. The carr@ff which receives the value aggigned
assumes the property of the value. The syntax of 'an assignment

statement ;s‘

carrier ——data operation expression

Designational statements specify the way tb sequence thé
executioﬁ of single actions or blocks of single actions. There
are two. types of designétional statements provided : " switech
stateﬁen& h and " call statement ". The switch statement for
dynamic and selectiye sequencing tontrol is ﬁaving the syntax,
in terms of én'expression, as the following

switch VARIABLE := EXPRESSION

.
i

The VARIABLE is always the " integer type ". The EXPRESSION 1is,

in fact, a label 1ist derived from the blocking mechanism. For

example, in the switch statement :

switeh K := % A1, A2, A3, A4 *

-~

.

Pl W e

D) Ty R Rl

i
P

1

= M o

1)

))

o

. the syntax in terms of an expﬁ%ss}onn:

—

- 55 '

L

control will be transferred to 41, A2, A3, and Al

correspondingly one at a time 1f the value of K 1is equal.to one,

two, . three, of four respectively at that particular time

iﬁterval. The call statement i1s for séﬁuenbial control. It has

¥ f

call EXPRESSION

L] -

The EXPRESSION is represented by a procedure identifier.
~Conditional statementq' which represent time " blocks

explicitly have the syhtax
condition a single action or a block of single actions

Since a éingle action may represent any statement_(or a pause of -
no operation in exceptional cases), conditional statements are
. %

Qtructured from different kinds of statements. !

ACTIVE-THANSITION INDICATOR

The indicator " °“"ndicates the " active-edge behaviors "
of "any timing pulse which is identified as a variable. For
example, if K 18" the timing pulse, then K indicates " a

leading-edge transition -, and K~ 1indicates a trailing-edge

‘transition . The- example whieh illustrates how to wuse the

o A
indicator " " "™ is the following : ’ Y

- HH =

$ Illustration of the use of the indicator " ' »

Registér : A<O;T>

N \-".'

Algorithm : 'K—-—~A-*——count-up A
In the- above exaniple, the " Algorithm " says that

©“r o

of the register A is increased by one.

-
]

i

‘In the above example, the indicator Moo indicates that at the
leading-edge transition of K , all the flipflops in the register,
A react simultaneously‘. Thus all the flipflops are sjnchronized

to the timing pulse K.

v

SYNCHRONOUS AND ASYNCHRONOUS DATA TRANSFERS

-~

The control structure based on the concept of a time block

-

can be symbolised by Figure 2-1.

e .) . B
S co - [
control| C1 s ?ﬁmf?Ziong
2

e T U e i B B Y) N T e U =

,_._

Figure 2-1 Symbolism of the time-block concept

CO, C1,, and C2 are the conditions of three different time

—~

blocks.” Theoretically, data transfers, in the forms .of

L]

v

| E‘j}\F:ﬂ.)l-.)r-ﬂ) -

—

at the leading edge transition of K, the oontent C

-

e

—
|

1

— .-

=) [w— |

.
1
—

Ta

pomny] eey] p—)

—=

t
—-—
-~

p—

—] Jpe—)) U

construct :

-5 -

assignment statements, with respect'to a particular coﬁdiiion.
. - . ..
can be synchronized by the condition. For example, in the

'CO ~—=data -transfer 1 ,

Hdata transfer

2
data’ transfer 3 ,

the three data transfers are synchronized _Ey Co0 at tﬁé

leading-edgé transition. If " CO " is used for ;he condition .

instead of " 'CO ", then the three data transfers become

]

concurrent ' 1nstead of being " synchronous ". It is no way to

_knaow when each of the three dath transfers is executed -in the

duration of the condition " CO ". Therefore concurrent data

- L]

transfers are considered as " -asynchronous ", JUnder certain

~circumstances, it 1is easier to write dowh data transfers

sequentially related corresponding to. a particular condition,

i.e. ‘data-tramsfers in sequential ordering. For example, in the
construct | | -

CO—=data transfer 1 .; : ‘
aaqg transfer 2 ; .

dqia transfer 3

the execution of #* data transfer 3 depends on the completion

of " data transfer 2 "} which in turn depends on the-cdmpletion

of " data tranSfer‘1 ", Tpe three data transfers are considered

as asynchronous. because with respect to CO , they are not

- .58 - o : .

1L/

. executed at the " same hime-ppint ",

" SUBSCRIPT

<1/ .l
—
.

prd

Subscripts play‘an important part in " indqxing " in AHDL.

SubsctFipts for one-dimensional arrays are- enclosed in the

brackets. wy o, and,éubscripts for two-dimensional arrays are

;enclosed in, the brackets " [1" . The convention' chosen for
indéxing subsaripts in AHDL is from left to rigﬁt. | ;

It 1is not;a1Whys necessary tﬁat subscripts be presented in

= the form of integer numbers. Labels, arithmetic éxpreséi@ns, and

‘},,ippropriate separators are always allowed to be -uSed . to

-,

structure apprd%riaté.subséripts. In the example

Subregister : A<10> ‘
B B<a,b,e> . L
S CCI4+1> $ I is an integer variable-

—) mem) pem] g 1 ey =) oA W) S O

-
i .

10, a, b, ¢, .and "I+1" are subsdripts._ _*
’ +

[f .
~ SUMMARY AND COMMENTS
A N ' ' . . Co- ' ‘.'.

) - The behavioral level of AHDL is designed”pringipally for
]l schematie fgrmulabion. This chapter_ has discussed the basic
e i :
j‘ linguistic elements and characteristics of the behavioral level.
‘) - - The other two 1levels preSented in the following chapters are
~) S ,

N

Eras B

S 22:1,7’333 }F=55JL

-

P T)R) e) 2T). o

s

‘- 59 .

-+

s
L]

designed to provide the tools for detailed representation of

. eircuit modules and elements. It should be noted, however, that

the power ‘and"versatility of AHDL is due not only to the
distinctive formulatioag available at each of the three 1levels,

—

but also to the possible interaction of the three levels through'

--" procedurq} co-existence " in any construct. Therefore AHDL has

a fluid hierarchy of three distinctive levels., K S

The context of procediral\ co-existénce! is . to call

procedures constructed in terms of one level of AHDL by

procedure . calls expressed in terms of another levél of AHDL. It

is a problem of practical application of AHDL, and a methodology

, to deal with the need of appropriate and desirable information

for different parts of -a’ digital system.\The interaction of

levels -in AHDL is hased on the three criteria ':_cprogramming

'hierarchy ' informqtion hierarchy ; and " information hiding ",

They are explained in the following : . = B
. \ - . f o R
[. .
1. Programming hierarchy is defined as a modular approach to
. i
i

?olve problems.
2. Inform@tion hierarchy is defined as a structure to provide‘
more detailed information.as g01ng down’ from ,one level . to

another lower level. The three levels of AHQL may represent
an‘inform:tion hierarchy. | : | 0 |

3. Information hiding is. defined as .a pro%%ss ‘to _avoid

unnecessary details during'anr algorithnic Td{nulation}

. 5
¢

- 60 - » *

.\\

EXAMPLE

v
N

Two more examples of formulations at the béhavioral level

L’:——._IC —-'-'-"‘ AT B 4

of AHDL are presented in the APPENDIX section.. The only example

-[l , attached here as an illustration is the behavioral descr'}/ption
' of the PIA (MOTOROLA MC6820). -
— 3 .
.[Example
™)) | _
J& $ The behavioral-level descriptionh. of the PIA (MOTOROLA MC6820)
-~ . 3% looks at the PIA like a black box.. It illustrates the basic
~$ principle of the HANDSHAKE algorvithm\f‘or ‘the PIA in a concise
U - $ AHDL representation, Detailed descriptions of the iAternal
-) $ organisation, physical working principles of the different
$.components, and fabricating information ‘will not be Eiven
~$§ at this level. The block diagram of the PIA is illustrated
R $ by Figure 2-2. L . '
. i - - .
JE ' " MPU vs PIA CA1 section-A control
- ‘ . data interface - —=CA2 B '
DD<O; 7> s +—= PA<O;7> data interface
-i - ‘ o _ ' - of 'section A
- " PIA ,
E -~ .IRQA. ~—— o .. |*—*PB<O;7> data interface
- /) of section B
IRQ " :
[.IRQB *——r ‘
- MPU o, T 3 s
“ "INTERRUPT ;CBZ * section~B control
- . . . B - . PR H "
- CBi1 ¢

Figure 2-1.Block diagram of PIA (MOTOROLA ‘MC6820)

Y . ¥,

$ In order to'ma_ké the. HANDSHAKE 'r,descr'iption cl.ear'er',‘ Boolean

e -

o J F':".!H—\’:H- e)

Bus : DD(O;T) $

r==

PACO;T> $

'ﬁ PBO;T> $
- - ‘

[Boolean : CAY 3

- . : - CB1

!z | caz $

)

ﬁ | CB2 3

. . - ‘ IRQA §

i o IRQB .3

i‘ DA - $

l CRA $

\Eﬁs %

< _)

REP $

Register :

— F—-lhr——[“_f._ J
i .
R .

B $
T $ TRANSITION of the pertinent control si
i $ the indicator "'n,
) $
’} $ transition,
= $ The "BLOCKING ‘MECHANISM",
- $
l $
$
$ The behavioral-level

- 61 =

description of the

bidirectional data
PIA o

bidirectional data
peripheral devices
bidirectional data
peripheral devices

in the form of :
eases the-formulation of the behavioral-level description.

All the AHDL elements used in this description can be

found in the appropriate places in the text of Chapter Two.

variables and registers are symbolically defined. The ACTIVE
gnals,is specified by
For example, 'K represents the transition
-at the leading edge of K, and K' for the trailing-edge

The "™ SEQUENTIAL CONTROL "
Sequential statements is indicated by the Separator " ; ®

for the execution of

1 .

* label 1list * ,

PIA begins here

bus between MPU and

bus between PIA and
(section A)

bus between PIA and
(section B)

BUFA<O;
"BUFB<0;

7>

variable from peripheral devices
section A) | : '

control
to PIA(
control
to PIA(section B)
control variable from
devices(section A)
control variable from
devices(section B) .
interrupt control variable from PIA to
MPU(section A) .
interrupt control variable from PIA to
MPU (section B) S

direction control variable for data
transfer, i.e. input or output in

FPIA to peripheral

PIh-to peripheral

"section A (catalytic variable).

direction control variable for data
transfer, i.e. input or output in
section B (catalytic variable)

control variable acting as the mediator
for handshake 'in section A ,
(catalytic variable) : :

control variable acting as the mediator
for hamdshake in section B

(catalytic variable) :
control variable abstracting the .
response from the MPU upon interrupting
by PIA (catalytic variable)

$ buffer registef in sectiop f-
$ buffer register in sect f, B

7>

variable from peripheral devices

62 -

Algorithm : * Start ; Data * $ algorithm begins here and
: the condition to activate
the algorithm 1s assumed
by default; application
of the BLOCKING MECHANISM
is illustrated

R

f
1

Start : * SecA', SecB *

SecA : 'CAl— CRA«—1, §$ set CRA at leading-edge
- ' transition of CA1

'CRA—IRQA«=—0 $ pull TRQA low .

%)

\

ry Pl)

SecB : 'CB1—CRB«—1,. § set CRB at leading-edge
. ~ transition of CBI1

L8
. 'CRB4=IRQB+—0 $ pull IRQB low .

$ The- biock " Start " describes that part of the handshake
'$ configuration from the peripheral devices through the PIA
$ to the MPU. . .

Data : * Response ; Transfer * § Response méans the result
: ' ‘ ., of polling the status of
‘ ‘ the PIA upon interrupt

| ey)) =)

. -

y . Response : ,IRQA —=REP «— 1, $ REP is assumed for clarity

—
[

" .IRQB —» REP a— 1

bt 3

Transfer : ¥ Section-A ., Section-B *

SectionzA : ¥ input , output *

i * input : REP".DA—+DDe—PA ; § input data‘frbm“
. ' : - - peripheral devices

CRA+——0 , $ reset CRA to low

CRA'=—CA2+—0 § input-aéknowledge -
- g * '

output : 'REP"DA~—+BUFA-—DD ; $ ipput to buffer
. . ' register -

CRA =—0 , $ reset CRA to low
CRA[-H-bCAé-o—'-O‘ $ output ready

g
i

-

1

wyl

- 63 -

Section-B : * in , out *

Y

, in : REP".DB—+DD «—PB ; $ input data
'cha‘ﬁxo + $ reset CRB.to low
CRB' —=CB2 ~—0 $ input acknowledge

out : REP"DB—=PB «—DD ; § output data

CRB«—0 , $ reset CRB to low
CRB! —=CB2+—0 $ output ready

In order to make the behavibral level description for :
the PIA clearer -verbalt description is provided here.
The input- output processes between the MPU and the
peripheral devices are through the three data buses

DD, PA, PB. The direction of either input or output

is determined by the catalytic control variables

DA and DB..The algorithm for the bidirectional
communlcat1ons is defined by the block of single
actions named+Algorithm. The algorithm first describes
the appropriate initiations and then the processes of
of data transfer. The PIA is physically divided into
two parts which are symmetrical. The behavioral-level
description provides a glimpse into the working principle
of the PIA without any regard to its actual application
because initialisation of the appropriate registers

in the PIA is necessary in any realistic designated
application. Besides, the behavioral-level description
was efficiently worked out by the application of the
pertinent blocking mechanisms and the appropriate
recognition of the corresponding time blocks.

€

' i
—m' et

s

1 pem) jpeey)——)) e b)

)

———
i

- Pl e) T7)

- 684 -

CHAPTER. THREE

/ FUNCTIONAL LEVEL OF AHDL

E E e L L L L o L o o S S C L E o o S L o o o o o ot o o o o o o o 28 o o o e o et = o
e e e e e e N - i 1

INTRODUCTION) ' o /

»
-

The céﬁg;ol structures, the operatérs, and the various
éystem companents abstracted at the behévioral level of AHDL may
represent very complei- combinatorial and Bequéntigl loéic
networks. If more information, or even the ulpimate 'working

principles ' of these logic ' networks are required, then

-descriptions at the fqutioné; level of AHDL are necessary.

-

rd

o In the design process of ény digital circuit, the first

step of aléorithmic&description-at the behavioral level must be

followed by the next logical step, i.e. the precise description

-

of the pompohent_ modules. This step implies an exact,
specification of the 1I/0 relétionship of the éompongnt modules
within a‘ system, -and hence theiﬁjbasic principles of internal
operations. The functional level of AHDL corresponds to the
second step of ihe design process. The set of language elements
provided.ﬁg thé behavioral level are uéualiy requ}red in this
level. However, additional elements are needed for formulating

clear and precise functional-level constructs. In addition, the

functional-level structure must suppoﬁt the " non-procedural "

structures which may be involved in the formulations of the

at

pertinent digital control.

)

o

— o

i e Jpumg) r—) ——f

pe=i e

pon) putng) puney)

i

e

‘._...__.(--—-.
. . .

- 65 =~

The fuﬁctional level is eharacterized by the two abstract

data types'which are not present in the behavioral level. These

two abstract data types are : " state ", and " terminal ".

~"States are. expressed in the form of ™ state variables ", and

terminals are expressed in the form of " terminal variables ",

/
The context of the functional level fs summarized in- the

L

following objectives :

1. To provide a clear modular approach.

2. To represent the input and output of modular components in

terms of terminal variables which are the basic elements for

" wiring ".

3. To define the ultimate working printiples of the
combinatorial logic netwbrks in terms of Boolean operators,
terminal variables, and the modes of operations : rippling ,
and parallel operation . | :

J. Io dqfine séquenﬁialﬂloéic networks in terms fof terminal
.variables, Booléan operators, state variables, " state

transitions ", and the modes of operations : ‘synchronous K

and asynchronous .
L

5. To accommodate different design techniques.

6. To represent more detailed timing issues- than 1in the

~behavioral level.

. e o e e ettt

B P L I Y

——e—i S L

T NN

i

- 66 -
i' .) -
14 ‘ .
o TERMINAL : e
T f - Terminals are input and output. logic <circuit nodes of
ll ' T modular units, and each terminal represents one and anly one

logic circuit node. They take on Boolean values as functions of
,time, and the current values are always assumed . Termlnals are
the basic elements for wiring . Any terminal, which must be
identified by unique identifier called the terminal variable is.

validated only by the corresponding " terminal declaratiog "

- -
»

with the syntax :° o

Terminal : terminal variables

Terminal variables can be unsubscripted or subsoripted
identifiers. In other words, terminal variables 'may be
! . l -
: dimensioned and decomposed ' 1like registers and subregisters. In

the. example
£

Terminal : A

el el ol ey)) o) pem]

B<O; 2>

A represents a single termimal, and B<0;2> represents three

terminals namely : B<O0>, B<1>, and B<2>. : !

Ahy' terminal variable 'can be specified by a Boolean
expression composed of ‘the appropriate’ Boolean algebraic
operation. The syntax of any terminal variable to be specified }

. - .. : i

by the coresponding Boolean expression is -

., .

terminal variable :- Boolean expression

]

PR e)) T ey

———

- 67 -

=

g

The equating operator " :- " associates the termin@l'variable on

the left defined by the Boolean expression on the right. In the

..
e

example
Terminal : C :-'x @Y

.
»
-
. !
'

- the function "'X'® Y " is associated to the terfminal variable’ C.

Terminal declarations may be associated. to structures

l_-._-,'

Qreviously declared. The assoclations are jndicated by the .
separator M :: " with the syntax : i '

declarator ; IDENTIFIER :: TERMINAL DECLARATION

The TERMINAL DECLARATION then defines what terminals are

possessed by the IDENTIFIER. This act . makes the IDENTIFIER a

—

distinctive module. The example is'

pr—

Register : RP :: Terminal : U<0;5> - § six input terminals

=

©V<0;5> $ six output terminals

-

In the above example, RP is the register which possesseé six

input terminals defined by U<0;5>, and six output terminals

p————
e

defined by V<0;5).

RIPPLING AND PARALLEL O?ERATIONS .

d
;

The rippling operations and the parallel operations for

Y

combinatorial logiec networks ‘are represented by special

r

—— F-ﬂg\ﬂzﬂ

i

Pyt i f:_‘(":*.-‘ e

-

! M
| S

.]‘

Y S s M S

i

= L e A » 73
r""ﬂh} —
e

T

T4 e Iy) ey

s e o ———— i ey e

- 68 -

formélisms in the functional level.
The formalism for parallel operation is the notation

TR(a”b):" F(X<C~d>, Y<e~f>’ Ill.lll.’l'.l')

Th? identifiers TR, X, Y andlothers likewise, if decessary, are
tefminal- variables, whereas " F " is any Boolean functibn: The
subscripts from a to b, from ¢ to d, from e to f, and others
likewise must be v corresponding ". Concisely, the formalism.
sayé thaﬁ TR<a> 1is the“termiﬁal assoéiated by the operator " :-
" to the Boolean function " F " which operates' on the variables
X<e>, ¥<e>, and the others in a similar manner; and so do TR<x>
with'.regpec; to X<x>, Y<x>, and other terminal variabIEEéaith
the " x " subscript. x represents the subscript at a designated
position within the range of the subscripts delimited By the
corresponding brackets " < > ", TWo examples are givén .below to
illuatrate. the application of lsuch a'formalism for parallel

operations.

The firsﬁkexample is the following’construcp

‘ $:Fun9tional;1evel description of a 2U4-bit parallel adder

Terminal : A<0;23>

R<0;23>

~ r

Opérator : + :: Terminal :

C<23> := 0 ‘ $ the 23rd carry is always " low "
. (Boolean)

- C<om22> :— A<1"23> R<1723>vR<1723>"Cc<1 23>VC<1 23) A<t 23>
Sum<0"23> 1= A<0~23>8R<0~23>8C<0 "~ 23>

T

r=opem))) Pl ool ool e

A

1

I

R—

- 69 -

In the above construct; the 24-bit parailel adder absitracted in

‘'the behavioral level by the operator "u+ " is completely defined

by the terminal declaration. The behavior of the parallel
operation has been clearly depicted -py the formalism stated
earlier. |

i

'The second example is the functional-level description of

the-circuit shown in Figure 3-1.

‘

Z Y X W

P-Q R 8§
| \ l — sz
' .] RY
/.
| QX
._____4 F—PW.

Figure 3-1 Four p?rallél ANDing operations

The.functional—leﬁel construct for Figure 3-1 is the following

$ Fﬁhotfonpl-level construct for Figure 3-1

Terminal : Ga<P,Q,R,S>
Gb<W,X,Y,Z>

Gc(?H,QX,RY,SZ)_ t=- Ga<P,Q,R,S> " Gb<W,X,Y,Z>

Yy

— Py

C

L o B s

pu——

,.._..
g

==t Jfem) pT) T pe

- 4 e

- 70 -

~

In the above construct, the four parallel ANDing operations are’

olearly expressed.

The formalism for the rippling operation is the ".po n

[

statement represented below :-) '

DO label RANGE IDENTIFIER:a;b,HODIFIER
The mechanism "of this ‘DO statement 1is different from the
classical ?QRTRAN DO statement, because the variation of the
RANGE IDENTIFIER cén be " ascending " or 0 descending ",
depending on whether "™ b is greater than a "or "™ a 1is greater

than b ~»" reSpectively. The incorporation of the MQDIFIER is an

option. It statgs how the RANGE IDENTIFIER changes. By default,

the RANGE IDENTIFIER. changes by one. The MODIFIER must BDe
written down as an integer number, for example

DO add J=1;10,, 2 < C.

has the MODIFIER equal to™ " 2 ", and thus the RANGE IDENTIFIER J
changes by two. The construct which 1llustrates the appliéation

of the DO statement 1s the following

$ Functional-level description of a 24-bit ripple adder

Terminal : A<0;23>

R<0;23>

\...,I.

B Yo W VN oo M et et MV I = SN

t

=] gl) ey

) pe—)

Jpam))

A

]

ey F!!?—Qﬂ!!
».

- 71 -
- N , .
Opé;;tor : %+ ¢ Terminal : . . f
* C<0> :- 0 $ the Oth carry is always " low "
: "(Boolean) ‘
DO addition i=0;23 ' $ iterating in ascehding order

addition : C<I+1> 1= ACI>*RCID>VACI>“CKI>VRCI>~CLI>
- sum<I> :- ACIYBRCINECLIY

STATE

For sequential logic networks,” terminal variables alone are.
n?t enough to represent all'thé neéessary informaﬁidﬁ.involved.
Another abstract data type -called " state "‘has been defined to ;
compénsate for this deficiency,. Any state, which represents " a
'étage of performance " at a particular time intervai} is

identified by the- corresponding " . state variable ﬁ. State

. variables are only validated by the corresponding -." .state

|
t

declarations " with the syntax :

State : state variables

State variables. can be unsubscripted identifiers or

subscripted identifieﬁs.'MQre pfécisely, state variables may be

~" dimensioned and decompoéed like memories ". In the example :

State : ST , ot

sV[0;2])

{
i -

ST represents a single state, ‘and SV[0;2] représents thfee

.states : SV[0], SV(1], and sV[2].

L

- !

T

-

Fﬂlaaéﬁz#!‘)lil!;)!'?f) T ey

S

1 e)P)) Y

- 72 -

State-' decIarations may - be associated to structures

previously declared. The correSponding éssoeiétion is indicated
.) .. L. L

by the separator " :: " with the syntax

declaratdr :+ IDENTIFIER :: STATE DECLARATOR

‘The STATE DECLARATION then defines what states are possessed by

the IDENTIFIER Such an association makes - the IDENTIFIER a
distinctive module. In the example :,

Register ': R :: State : C[0;2] '$ register R has three states

-
Y
-

g

register R possesses three states defined by C[052]. C[0;2] can

be decomposed into distinctive.state variables as ciol, <cf11],
"and C[2]. ' |

-]

The transitiop of states from one to another, in any
sequenpial logio net@qu,lare declared by the corresponding
sequenoe declaration with a generalised syntax

Sequence : transitions of states
Any sequeoce declaration . at the functional level has the same
format as tpose‘ in tﬁe ‘pehavioral 'level. The_ sequence
declarations at the fhnctional level, however, can provide more °
precise information. Ihe tran51b10n of states is based on lthe
time-block conecépt, i e, 3 . ,?';
coodition —— next state
= 0

The condition part 1is always a Boolean expression, Appropriate

state variables may be taken as operands for the formation ¥f

o
[

S L S
. . 3 R ‘__.-’ - .

|

I S el d

=

-

1 Fea? "

' r p—e

o
.

?
L.
N
3

-such-a Booleeﬁ-exp&essidp. The operator ™ " means that .coﬁ;rol

-
Bt S

- 73 -

-
'

‘will Dbe transferre&" to the -next. state iﬁ‘the corresponding

condition is true. For illustration, an example is 'provided

below :) S ~f '.' -

$ Definition of the operation of a 2- bit up -counter
$ in terms of state transitions .

-+

Counter > CTR :: State :C[n/0;3] $ assume the declarator
. L $ " Counter " has been
$ predefined

¥

:: Sequence : Clo] ——=cC[1]

o, - cl2] —~c[3]
. ; - (3] ——c[0]

. : Cl1] —=C[2] |

It * should be noﬁed however 3equence declarations may be
presented mathematically. For example, the sequence dectaration

for CTRfin the above construct, Qan.be‘represented ‘below :

Sequence : (n<3) Q[FE' ‘C[p¥1]., ” 5
: . ‘ B . . -

.~ (n=3) clal clo]

.

REPRESENTATION OF SYNCHRONOUS AND ASYNCHRONOUS OPERATIONS -

. 1
i . . ¢ K i
o~

—_— -

. oo . ’ : e . R
- The appropriate formuldtion of the.” conditions " for state

transitions can reflect the'ﬁvsynbhronous " "and " sasynchronous "

- ‘modes’ of operations. Such a reflection'is achieved by default
. \ - .

el

.j:phrohgh the»use of the indicator- no »1 . The following - twq

. . o . . : v
_.exigfles “illustrate ‘how to .use the.fndicator "' " to reflect

GO giuve S —— I

C

€A 0 4 R

/r - 7‘4 -

synchronou§ and a;ynchronous operations respectively at the

‘functional level : . o SO

1. Example to illustrate the use of the fndicator noromoto
reflect Synchronous operation-:

Definition of the synchronous state

transitions of a «2-bit up counter

CTR. The state transitions occur . o

at the leading edge of a timing -
pulse K derived from a~clock, . :

All the declarators used are .

assumed to be already predefined,

& F A 47

Counter :-CTR :: State : C[0;3]

Sequence : 'K°C[O

] ——cCI[1] ,

5 'K*C[1] ——C[2] ,
’ ’ ‘ 'KAC[2] '_""C[3] '
'K*cl3] ——clo] ,

$ In the above construct, the synchronization of the
$ flip-flops which have encoded the four states is
$ illustrated

. 2. Example to illustrate how the indicator " ' " can reflect

the asynchronous coupling of two synchronous counters :
_ y

Definltion of the operation of two 2-bit b1nary up counters
asynchronously coupled together as shown in Figure 3-2. The
transitions occur at the trailing edges of the correspondlng
timing pulses. K.is the timing pulse derived from a clock,

and all the declarators are assumed to have been predeflned.

" ‘, .
Counter ibe1 13 State : C1[0;3]. $ counter no. 1

:: Sequence : K!*C1[0] ——=C1[1]

o ' K*"C1[{1) —=cC1[2]
Kr~c1[2] ——*—*C1I3}
K'*C1[3] —cC1i[0

— ,
r = = {

——r

A

T ey g) ()) et 0 T

L.

el
e

B
n

[W

—t

——

) '.!%:jﬂ-"J-.-*) a;f

b

{

: CT2 :: State : €2[0;3] $ counter no. 2

:: Sequence : C1[3]' "c2{0]—=cC2[1] ,
. ‘ c1(3]* “c2[1]—cC2[2], .

. C103]1' ~c2f2])——=cC213] ,

* c1l3])' “ca2f3]1——=c2(0] ,

$ The above example has shown that any state transition
$ in counter CT2 depends on the state transitlon of :
$ C1[3] of the counter.CT1. | .

cutput ___c——r al b2

K ~1cl CT1

CT2

Figﬁre 3-2 Asynchronous coupling of two synchrohous 2-bit
up counters named CT1 and. CT2.

r

DIRECT REPRESENTATION OF SYNCHRONOUS AND ASYNCHRONOUS OPERATIONS

-~

Though the indicator " ' " can,/ be used indirectl{?to

reflect " synchronous "™ and-" asynchronodg " operations,+ direct
. . , M
representation of such Operations are made p0331b1e by

appropriate declarations. The intent of direct representation is

to make thevsyncﬂronoub and aEynchronous prOperties of different

f

components more evident.. S ®

The declarators " Synchronous "™ and " Asynchronous " are

'

T pmu ey o

|

-

-
p

- dpss) D) Y el) o ol T

-

- 76 =

self-explanatary. Since they describe only the properties of

-different éntities, they are'better,used with other apbropriaﬁe

declarators to form " double;declarators " rather than to be

used aléne. The syntax of double-declarators is

declarator & modifier (declarator)

Therefore the " double declaration " : ' ' -

Register & Synchronous : AR<O;7>

means that the flipflops in the register AR are operating

synchronously, The separator " & " is necessary for any

' double-deciarator formation.

*

The declarators " Synchronous " and " Asynchronous " can be

taken as modifiers because they may change some of the
. . .

conventions adopted in AHDL. For example, the construct

-Counter’:-CI1 :: State : C1[0;3]

\ : . :t Sequence : 'K"CI1[0]——=C1[1]
- _ 'K"C1[1]~=Ci[2]
, 'K*C1[2] —C1[3]

'K*C1{3]~—=C1[0]

¢

- o - e

- Co ' -

has illustrated the operation of CT1 as synchronous because of
the 1indicator LR It séy5 that at the " leading;édgel
transition of K, the flip-flops encoding the states are
triggered sinchronously. Parﬁicularlj, in any construct which;
has the format és in the above example, the convention of

synchronous operation is always assumed.
~ '

) —— W

&)

——4)

|

) o) = e

-T7 -
If the-declarabor " Counter " in the above example 1is
changed to " Counter & Synchronous f, the element " 'K "

in@icatés only the transitional characteristic. The declarator "
Synchfondus " has alregdy clearly declared tﬁe synchronous
operation of the counter CT1. |

~If the declarator " Counter ™ for CT1 in the above example,
however, is changed to-" Counter & Asynchronous ", the element "
'K '"';no longer indicates sYnchrohous operation. Instead, an
'asynchronous-configuration of the counter CT1 is declared. Then,
K represents the signal to drive the change' of. states of the
asynchronous counter CT1, at its leading-edge trahsition.

.)
The declarators " Synchronous " and " Asynchronous " are

a

important to' define the characteristics of different components

within a digital system directly. In any design process, they

express clearly what kind of functional elements are exactly

required.

COUPLING

r .

The declarator " Couple "™ is reserved to cope with unusual
situations in, any functional-level formulation, declaring the
required coupling characteristics df‘different entities. Thendse

of this declarator is illustrated in the example below
‘.. L . .‘ .-
$ Two " synchronous " countlrs CR1 and CR2 are '

$ asynchronously coupled together to form th
$ counter CRR. ~ . : '

I - 78 -
;_ Clock : K .

‘ ‘; | Counter & Asynchronous : CRRK0;3> # CR1<0;1> 8 CR2<2;3>

) | .

1\”’ o . : :: State : CO[0;15] $ states
L. . . . of CRR
- Subcounter : CR1<0:3> :: State :. C1[0;3] |

J 7 & Synchronous .

o . i1 Sequence

@ / - 'k"C1[0])—=C1[1] , N

- B 'k*C1[1] —=cC1[2] ,
-\ 'k c1[(2) —cC1[3] ,
[ij‘ *k"Ci[3] —~cC1[01] ,
- CR2<0;3>.:: State : C2[0;31]
lJl ' Seqﬁence,:'
~

_ 'q"C2[0] —=cC2[1] ,

ko ‘ tq"Cc2[1] —=cC2[21 , .

S rqc2[2] —c2(3] , E
- 'q"C2[3] —»c2[0] ,
l; . Couple : K/k $ k and K define one another
, .
C1{3)/q $ C1[3] and q define one another

——1

-}

- 1

In the above eXamp}e,.the cdupling'characteristic

R

'c1[3]1"c2[n)——C2{n+1]

form :

) =) pemy! g
) e o

‘of " Ct[31/q "

i's equivalent to specifying the state transition; for CR2, in the

.Coupling cha¥acteristics can exist in a variety. of forms.

There 1s no definite rule to exact the ways of specifying them..

couple declaration " in the generalised syntax

: !
- Couple : coupling characteristics

- e ey -)
-

LY

Thegonly-means'to make them clear is through the corresponding "

N 'F"‘:
- H
. .

— R e T e, pem T E=al

I

.
*

| < T

- 79 -

This declaration defines the 1I/0 relationship of the logic

functions which.perform the coupling.

GENERIC DEFINITION OF COUNTERS
Since counters play a very significant part in digital
systems, " generic " definitions of counters are included in the
functional‘g level in order to. meet the generality - . Thg
deciarator‘h.Modulo " is to declare how many states whiech a]
countet hag. The syntax of a "modulo declaration " is either
Modulo : state identifier fa;b % absent states]
or Modulo :jﬁtate identifier [a;b] o

The dimension of [a;b] répresents any strict binary count
sequence from a to b - by default. For example, the modulo

declaration / -

‘Modulo : 1[0;3]

-

1

: is the ° functional-level representation of the symbolism

illustrated by Figure 3-3.

I00] — 1[1] ——I[2] —=I[3]

Figure 3« 3 Symbolism of the count sequence from state
- I[O] to state I[3] .

A
?°

. ’ : B .

: "The seﬁarator_"'z‘" separates and indicates the abSe&t states

{

=

.J

e |

y -

Ipem) =) =)) =))

o=y pe—) e

.

)

\
Al

-

ER g

- 80 -

from a strict count sequence from a to b.- For example, the
modulo declaration :

Modulo : I[0;5 % 2,3]

-

?

has the same meaniﬁg as the symbolism illustrated by Figure 3-4,

-

¢ I[0]—=TI[1) —=I[4)—I[5] - | .

A

Figure 3-4 Symbolism of a count sequence of fousztafes.

L]

The use of modulo declaraE}on saves the wordiness of
writing down-the state declaration and sequence declaration feor
any counter provided that the count sequence is continuous . For

example, in the functional-level description of the counter CT1

in Figure 3-2, the whole construct can be simplified as

Counte} : CT1 ¢ Modulo : C1[b;3]

-y

s

Such a construct implies the same count sequence as ‘preVﬁously
worked out. If a Y¥-bit counter CY has a count sequence of the

fourteen states sequentiak}x listed. :

0000P Y

1000P 4

0100P4
0010P4

1010P4

@110PY
_1110PY

0001P4

$ P stands for binary

WE W W W W WA W g

5o

L

—t

.

= ==

e

Sy) p—) —)

1

po e)

]

I\‘)

-)))

(j:
o

/

N

. PROCEDURE CALL

- 81 -

1001P4
0101P4
0011P4
1011P4
0111P4
1111P4 , .
_____________ $ change back to state " 000QPY v

0000P4 _; i - I

-, .

the states of 1100P4 and 1101P4 are absént. The modulo
declaration for the counter CY is

Counter : CY :: Modulo : CC[0;15 % 3,11]

T4 .
\

The modylo declarations are compatible with the generic1

; counter descriptions in the field. If the count sequence is not

continuous, then the approaches . of state and sequence

declarations are réqﬁired.

Procedure calls .;n the.functionéi-level are based on the

very same philosophy and rules as in the behavioral level. The

§e§tion W PROCEDURE CALL " in Chapter Two explained already such

basic philosophy and rules,

Procedure céils*in-any functional-level construct qanucq}l
procedures constructed in terms of either the functional lévei
itself, the behavioral 1level, or .the structural level. The
interaction of the fund%16n31 level with the other two 1ev?lé.of
AHDL, therefore; is always possible. Functional-level procedure

#

calls, caliing procedures con?tructéd in terms of the structural

y

)]
by

—d

oy |

fovmam |

~——1

p—) p—)

|

) s

)
P)

. through a pfocedure cali

1 ey - =) ey

- 82 -

level, match programming:hierarchy with the required information
hieraréhy . If they, however, call procedurés cohstructed in
terms of the behavioral' ieyel, they represent a form 6f
information;hiding . Since information hiding ;s defined és the.

process to avoid the unnecesSary detéils with resﬁect to a

'particuiar level of formulation, behavioral-level ‘procedures

~called by functional-level procedure 'calls " hide . the

undesirable information,
‘ .

INTERACTION BETWEEN BEHAVIORAL AND FUNCTIONAL EEVELS

'

o Theoretically, . the procedural co-existence of any

behaviocral-level description and any functional-level

dgséription is poséible, if the interacpion-between them is 6ﬁly

-

-

if a functional-level procedure is called by a

~ behavioral-level 'Statement, then the programming hierarchy goes

in parallel .with the- corresponding required information

hierarchy . In the behavioral-level construct :

Register : A<0,;23>
R<0;23>

C<0;23>

Boolean : K -

Algorithm : K—Ce—A+R $ add A to R, and the result
o R to C, if K is true
4

=~ : B - 83 -
E ' C ¥
]}), s ‘the Algorithﬁ part can be converted ﬁnto the following cgnstruct
Tiw' | ‘containing prrocedure call : s ' ~
B Algorithm: K-—scall ADD <A,R,X> ;
1] C—2X .

!

The procedure body of ADD, then can be written in "~ the

functiqnal-level form : :

¢

m. 1!’
A Y

L o $ Functional-level. procedure of parallel addition

Prdcedure : AﬁD {aa,rr,xx>
Register : aa<0;23> :: Terminal : a<0;23> $ output terminals

[}

e

rr<0;23> :: Terminal : r<0;23> $ output terminals

i

Y - Terminal : ery<23> :- 0 $ cry stands for " carry "

ery<0=22> :- ad1723> r<1723>vr<1723>"ery<1-23>y
ery<1723>%ac1~23>

el) e) pasm))

‘ sum<0~23> :- a<0~23>8r<0~23>8cry<0~23>

==

In the‘above1ﬁiscu3310n of the procedure call " call ADD ", the
idea of procedufal co-existence 1is clearly shown.: The only
linkage betwggn the .bghavioral-level formulation and the
functional-level procedure is the set of parameters transmizted

in the process of the procedure call.

- . L. Al
“

Jmm) p) T fem

The reversed process of a behavioral-level procedure to be

called by a functiongl-level procedure call is also possible.

4
3

Such kind of procedure calls obeys the criterion of information

. * .
- f .
. _ ’ .-

I | .

- 84 -

hiding . ' , I
SUMMARY AND COMMENTS

The reserved declarators in the functional level are .
" Terminal ", " State ", " Subéounter ", " Modulo ", "Counter™,
" Clock ", and " Couple ". Any additional declaratoer can* be

predefined as a reserved declarators in the functional level, to

the convenience of the users.

The operators particular to the fﬁﬁctiondl level are ;1sted

in Table 3-1.

Table 3-1 The operators assumed particular
to the functional level.

Operator . Explanation

PR e WD e e b e S WS S e B S WU WS VA ek el e S el e e Em e g R A A m mw mm mw m Em e ovm e tm

® e A operator to dssociate a terminal
variable to a Boolean expression

Do - operator to abstract an iterative

mechanisnm

-.———-——.u--—————--‘-‘—m-.—--——---—---u————————--n-————-——————————.-...nv——

L)

" The separatdr n":: " geparates any modular description from
the corresponding identifier for the module, and the separator
" £ "™ indicates, the absént states in any natural binary sequence

The separator " & " indicates any formation of " double

deolaratioh ",

=4

R

Jpwa) =) == et gl) o

ol

the appropriate .operators.

-85 - .

The staﬁe variables and the terminal .variables in the

functional 1level can be baken as operands to be operated on by’
. e

The most'promineht difference between the behavioral level

~and the functional 1level 1is the presence of the two'abetract

data types : terminal ahd state ,and "the other iingﬁistic'

elements in the latter buﬁ'not»in the former.

Prqcedural co-existence of the behavioral level and the
functional level 'i8 provided by appropriate - procedural calls.
The latter defines clear boundaries among constructs structured

in terms of both levela. ‘The _linkage among the procedugglly

" co-existent constructs is through-parameterization.

]

The ‘criterion of information hiding, however, permits bhe

co-existence of the different levels of AHDL in a diffeHQQt

form, i e. continuous co—existence This kind of co-existence hs)

one-dimensional or strictly hierarchical For example, standarc'

operators ih the ~"behavioral level may be used in
functional-level constructs, withoct beicg defined in terms.of
the functional level. Nevertheless, the reverse operation'fof

using functional-level elements in a behavioral-level constrﬁct-

I

is incorrect.

: Procedural co-existence enhances the applicability of AHDL'

by allowing .it to have a fluid hierarchy. Outside the “use of

prccedures, howeyer, the levels of ‘AHDL are gcverned byu the

' -

Pl

=

L~ -

~=,

\

» et

-

A

. .
-

e

ot

[~

Rkt i i e i B s AN

: D;_

N

" level are‘ presented in the APPENDIX section. The only exa

hwawammaa«mﬁ NI T W T I EIPIIN

{

" - 86' -

+

s o ' a
EXAMPLE . .

~continuous co:existence which imposes a ifrict hierarehy.

-
‘o

Two more examples for the constructs 'at . the functioill

e

_attached’ here as an illustratiqﬁ' is the rfunctional-level 7
"description of the PIA ('MOTOROLA MC6820)

The functional-level description of the PIA .(MOTOROLA MC6820)
takes care of the behavioral-level characteristic. At: the
same time if looks into the internal organisation of the PIA.
- The basic working principles of the .co-operative components
are examined. Terminals are 1dentified, and a modular
approach has been adopted. This level, howevér, is -
concerned with the input/output relationship of modules in .a
system. It does not provide and support however, detailed
component descriptions. : : .

When the PIA is interfaced with a MPU, the operation . "
ofsthe PIA is deétermined by a " software polliﬁgxprocess "
.in the MPU to check the status of the PIA,.

‘This polling process plays an importanq part .

in the HANDSHAKE €onfiguration for the apération

of the data transfers through the PIA . ',

a set of Boolean signals through the appropriate terminals

to the PIA. A simpler HANDSHAKE concept using the °
PIA as a mediator was presented in in the behavioral level

L

. .Bus 7 DD<O;7>. '$ between. MPU and PIA (bidirectionfl)
PA<O;7> § betpeen peripheral device$ '
T and section A
of the PIA (bidirectional)

PBCO;7> % ‘between - peripheral devices"i

. . ~and section B a
L of the PIA (bidirectional)
Yy .) .) J‘. . .
- a . ‘- - . . , , .- ". . . . \. _,".

; o‘ ‘,‘,_- . \)) . v
Register : CR3<9;7> g'CQntrpl-régisterlof section A+

T

. . .
L - Lo) b |-

_The result of ‘the polling process is _the generationm of -r_'

-description of. the PIA 'in Chaptér Two. _ R :..":

it —— e A L

=

AR el o B cuus ::rr.:::

———

)

- - ey)

P

T ey

P T))

pasen

“Subbus

’

Subregister ,: SCRA<0;5> # CRA<O;S>

DDA<O; 7>

ORA<O;7>.

CRBCO; 7>

DDBO; 7>

ORB<O; 7>

SCRB<0;5> # CRB<O;5>

- 87 -

Terminal

DDAA<Q; 7>

Terminal

-

DDBBCO; 7>

SD<0;5> # DD<O;55

+r

data direction
register

of section A
output terminals

_of DDA -,

output register
of section A

control register
of section B-

data dirkction
“‘register

of section B

output terminals
of DDB

output register
of section B

»

rename DD<0;5>
as Sb<0;5>
/

Fename CRA<O;5>
as SCRAKO;5>
for clarity

rename CRB<CO;5>
as SCRB<O;5>
for clarity

CRACT> Terminal @ T1 $ output terminal
‘CRBLT> Terminal T2 $ output terminal
CRA<Z2> :: Terminal T3 $ output terminal
CRB<2> Terminal T4 $ output terminal
$ The required " terminal functions " of the ‘PIA are defined

$ below invterms of some of the basic terminals of the

$ integrated circuit itself. These terminals and terminal
$ functions are listed sequentially for clarity. :

— ™= M=

Terminal : RSO
RS1
€S0
C31
cs2

- 88

.
’

® B B -

SEL:- CS0"CS1°.CS2

RW

$

RSO is control terminal

to PIA

control terminal

control terminal

control terminal

control terminal’
i $ select PIA

control read(RW)
and write(.RW)

to
to
to

to

PIA
PIA
PIA

PIA

$ The above seven terminals carry HANDSHAKE signals from:
$ the MPU to the PIA after polling. They are the original
$ pins of the integrated circuit.

) ey) i

- P

e p—) g)

E ; $ clock input terminal to PIA

Reset ; $ clear all registers in PIA
-IRQA :-= .T1 ; $ interrupt control terminal

from section A

”~

IRQB :- .T2 ; $ interrupt control terminal
from section B

'$ The terminals IRQA and IRQB carry HANDSHAKE signals from
_ $ PIA to MPU through " interrupt ". They are original pins.

A :~ .RS1~.RSO0"T3 ;

$ ORA enable
B :- .RS1°.RSO".T3 ; $ DDA enable
C :— .RS1"RSO ; $ CRA enable
D :- RS17.RSO°TH .; $ ORB énable
_ - F := RS1".R30™.TY4 ; $ DDB enable-
G :~ RS17RSO ; $ CRB enable
DA :- DDAAO:T> ; $ ANDing all bits of DDA
DB :- DDBBKO;7> ; $ ANDing all pits of DDB

)

J

Tl ey

o
it

) Simisad) p——)

$ The above eight terminals are catalytic variables.

A & o

- 89 -

—

CA1 ! ; "$ control from peripheral
‘ * devices to PIA
.. (section A)

CA2 :=- T1 ; — $ control to peripheral
- : , devices '
L . from PIA(section A)
CB1 ; $ signal from peripheral

devices to PIA
(section B)
CB2 :- T2 . $ control from PIA
to peripheral
devices(section B)

The terminal's CA1, CA2, CB1, and CB2 are terminals which
carry HANDSHAKE signals. They are original pins.

In the construct below, "™ * —— *." indicates the
" blocking mechanism ". The separators ™ , " and " ; "
denote parallel and sequential operations respectively.

»

Algorithm : * Clear, Program, Data ¥ $ three possible

- . .operations
Clear : Reset”SEL * X1,X2,X3,X4,X5,X6 *
® X1 : ORA =—00000000P8 , § P stands for
. binary
X2 : DDA «— 00000000PS
X3 : CRA ~— 00000000P8 |,
. X4 : ORB-—00000000P8 ,

X5 : DDB «—00000000P8

X6 : CRB -— 00600000P8 ,

Program : * Read, Write *

If

— i

r R

preny) P)) p—

|

= -

T)

o

) e} _pi-')'

_ 90 - .

Read.: * Sectibnﬁ, SectionB ¥

SectionA : SEL"E"RW".T1—— % Y1,Y2,Y3 ¥

" Y1 : A—eDD <—ORA , $ rehd ORA

Y2 ! B——-—"S[S-——DDA ., $ read DDA

Y3 : C——-_+DD -——ch , $ read CRA
SectionB : SEE;E7RH”.§2:——4-* YU,*5.Y6 *
Y4 : D—~DD=—0ORB , $ read ORB .~

Y5 : F—=+DD «—DDB , $ read DDB

Y6 : G——DD «—CRB , $ read CRB

Write : * SechA, SecB *) %
Sech : SEL"E".T1".RW —= % 71,22 *
Z1 :* B—=DDA<«—0DD , $ write into DDA
22 : C—=SCRA«+—SD , $ write into
: » first five bits
of CRA
SecB : SEL"E".T2".RW —s * 23, Zu4 *
Z3 : F*fDDB*——-DD , $ write into DDB
ZU4 : G —=SCRB~—SD , $ write into

first five
bits of CRB

Data : * Start ; I-0 ¥ |
" Start : 'CA1—=CRAST>=——1P1 , § set CRACT>
'CB1——=CRBCT> «—1P1 , $ set CRBCT>
I-0 : * partA, partB */ -

partA : SEL"RW"E"T1".T2".DA—DD=PA ; $ read periphgral
' o deices

-~ . . ‘: - f .

' ' CRA<7>'1OP1 $ reset CRA<CT>
[.“‘-\ . . * ’ Py ‘) . ' o

(_) i $ The transitional méchanism which resets CRA<T> is not
i : $- shown because it has not been defined explicitly in the
lE") -$ manual for the PIA.

[~ - SEL".RW"E“T1".T2"DA"A * AAA;BBB ¥

. AAA : ORA DD ; $ write into ORA

20 . L PA A

ORA _ $ write into Pa '

o : , , BBB : CRA<T> 0P 1
l- .parEB : SEL"RW"E".T1"°T2".DB DD PB ; $ read peripheral
l;”‘ : o CRBCT> . OP1 § reset CRBC7>
- $ The transitional mechanism which resets CEB<7> is not
l: $ shown because it hag not been defined explicitly in the
—_ $ manual for the PIA.™:- . . .
l‘-\' ~ ~ ~ .~ a - . '
SEL".RW"E".T1°T2"DB"D * CCC; DDD *
i \ '
L,\ _— ‘ o CCC : "ORB DD ; $ write into ORB
o S PA ORB
- .
: DDD : CRB<C7> CP1
" . \\\
Lan] ‘ . . '/
' $ From the above functional level deseription, it is clear
—_ $ that how terminals are defined and used efficiently for
'. $ various control purposes. The complete capabilities of
$ the PIA are presented in terms of various modular
. $ components. Most of the characteristics of the AHDL
! $ behavioral level have 8till been retained.
L $ Since the exact operational behavior &f the hardware in
— $ the PIA has not been given in the manual for the PIa,
- $ the functional-level description above serves only to
$ fully represent those information available!

| /7 . - 97 -

'CHAPTER FOUR

li“\ ! ' . . STRUCTURAL LEVEL OF AHDL

! .INTRODUCTION

-}) The structural level of AHDL is.the level of logic design’

in terms : of gates and flip-flops. It .defines the physica}

)

-

behavior 6f str@cﬁural' primitives with respect to discrete

)

timing pulses. Design techniques and IC technologies employed in

design processes can be clearly represented by appropriate

~

constructs at this level. Normally, the strﬁctural level would

yp—)

only be used 'by engineers to specify the SSI logic circuitry’
required to adapt medium and large scale integrated circuits to

a particular design requirement. It could also be used in the

| RIS SR

design of the integrated circuits themselves, as demonstrated in

‘the example présented at the end of this chapter.A

The structural level is an extension of the functignal

P s

level with one additional abstract data type : " link ", Most of

———
e

the syntactic characteristies 1in the functional level appears

also in this level. The basic framework to express any control

=

transfer i3, also based on the concept of a time block

condition ——+a single action or a block of single-actions

The " condition "™ part is always a Boolean éxpression of ANDing

all the pertinent control varlables. These variables are the

N) s

(oo

<

S
. ’

oo)).

T““a- o I
‘l

M -

1. At the trailing-edge transition.

p—) jemm) p—

¥
.
(]

- .

- 93 - _ .

'."identyfiers of different single timing pulses. When a condition

becomes true, ?% is also‘é single timing pulse.’

’

~

Since the basie unip of control is a siﬁgle.timing pulse,
all the single actions in a time block to be executed within the
duration of the corresponding condition must -alﬁays be

éoncurrent . Tﬁe one ' ' condition to one single. action

corﬁeﬁpondence makes the structural level nonprocedural r i.e.

. by definition the lexicographical ordering of single actlons has

no ﬁeaning. Activation of a bloeck af single actions by a

»

condition may be done in one of the three ways. :

2. At ‘the 1eading-edge transition.

3. During the period when a condition is true.

Detailed description‘ of modules 1is one of the major
applications oé the structural’levelf A modular description ﬁay
be presented in'fe;ms of terminais ‘and states (described in
Chaptéy Thr;e). States, however, can be AEFined in more detail

in this level, through statement assignments, specification of

flip-flop tprs and circuit equations}

' /£

/

The interconnection of different modules ‘in a digital

‘system can be clearly specified at the structural level. Modular

interconnections are defined by wiring terminals in the forms of

termlinal variables. The wiring of the terminals is accomplished

) (M -

-)

g

fa pesy g T

p——y
merr

g, S)RR))

by the operator " :-: ",

In .accordance with the pringiple 6f information hiding, it
is-p rmissible to use behavioral-level and funcﬁionéi-level
entities in °~ any structural-level consthuct¢ wiéhout first
dqffning them in terms of the structural level. for example,
standard behavioral-level operators ';éy be usea ‘in a

-

structuféi—levei construct ' with presumed néh—procédural

behavior. Behavioral-level and fﬁnctional-level entities used in

- this . way are treated 1like Iblac'li boxes. The input/output

relationship of thesg black boxes is defined, but their internal
structures are unspecified. This corresponds closely to the
i

actual - pnacticé of circuit design with MSI .and LSI, where the

, ,
'functions or-behavior of the more complex modules are known to

-‘the designer, but not the internal structures. The designer uses

his knowledge of gate-level iogic design, where necessary, po'
connect and adapt the larger modules of standard functions. He
does not, however, try to emulate them with the SSI components.
Procedure calls in the strucdtural level are éubjectfto the
same rules as in the behavioral and functional 1levels. The
incorporation of procedure callé in the structural level does
hot contradict with the non;procedural nature of the structural

level. The reasons are

-

1. Procedure calls have the character of a singlé statement,
2. The virtual execution time of a procedure call is restricted

to a single clock period.

ex B o A g B Qe P e B e ¥

)

+
—————

.

)

I -)

- g

J pu— P}

Procedure calls in the structural level ensure programming

~
f

- hierarchy. They also provide a means to interact the structural

level with the other two levels of AHDL.

~ e

Thevstructural-leVel of AHDL is designeéz to fulfill the

following objectives

1. ﬁepresentation of circuit designs with discrete 1logic
elements, i.e. gates and flfp—flops.

2. Explicit descripiion'of modu}ar designs Qhere appropriate

3. 'Specification sf logic for the interconnection of modules.

y, ‘Defining the co-operation of different modules within a
digital system witﬁ respect to discrete single timing

pulses. ¢

o

The " link " is the abstract data type exclusively defined

LINK

in the structural 1level. A4 1link corresponds to a common
connectien such as & wire or a data bus in a digital system{"By.

b, .
itself, it has no implication of direction . Since links serve_y/

as interfaces between modular data paths, the -directionaifty

imposed by a module on the path may 1in turn impose

directionality.on the corresponding links connecting the module.

In simple terms, for example, a link may be considered as a
R .

~single strap to. which a number of modular terminéls- are

¥

- 96 -

connected. Links are expressed in the form of " 1link variables

—

n. Link variables are validated only by the correspording " link

(J ' declarations " of the generalised syntax

§ p—

Link : link variables

" Link " is a reserved word in the structural level. Any
. . :)

link Gariable can be an unsubscripted .or a subscﬁip;ed
identifier. Generally, 1link variables can be dimensioned and

decomposed like registers. In the examplé :

Link : L1

)

. L<Q; 7>

} r—)

L1 is/a single link, agd there are elght 1links embedded 1in

L<0;7>, namely L<O>, L<1>, ‘L<2>,.L<3>J L<U>, L<5>, L<6>, and

“ -— -

L<7> . The application of link variables is shown in the

structural-level description ~of the PIA (MOTOROLA MC6820) in

the section EXAMPLE.

MODULAR INTERCONNECTION

.

"
]

-

Modules are wired together by the wiring operator " :-: ",

p———
P 1

The syntak of wiring of two terminals is the following

»

P

Eerm;nal.variable =2 terminal variable

Any wiring "is declared by. the deélarator " Wiring ", In the

example :

f_wf\fﬁ-) ynane /

~. n

=97 -

~
- - .
* . ~

i?

- $ Terminal Wwiring explication
- o . .

{\ . : Wiring : A :-: B

1 ' \ C<O;11> :-: DCO;11>

the single. terminals A" and B are ﬁired, and the twelve terminals

specified by C<03;11> are wired to the twe'lve terminals specified

by D<O;11>. i.e. C<O> to D<O>,C<1> to D>, and so on.

' ¥

L - . -

STATE ASSIGNMENT ' .
N T

-

" State assignment " is the procgss_bf.assigning a binary

code . to a state of a sequential networﬁ. The books . by Frdiedman

-

v

(Friedman-25)} and Torng'('Torngizﬂ) resbectively give clear

dicussions of the problém; ' R

N

State assignment is’ a complex problem. Detailed description

f

of the techniques involved for state assignment is out of the

p. T)) ey

scope of the present work. The structural level of AHDL provides

only a " gstate-association mechanism * allowing the users to
-

assoclate freely_qgibbinarx combination in terms of bits ‘to a

= .
Sl
s rd

state- Sﬁecifically, thesfunctions are as follows

1. Specification of the number of bits used to encode the

.

required states.
2. Assignment of unique ideéntifiers to each of these bits.
3. Definition of the binary code to represent a state, in terms

of the identifiers assigned to the bits,

i e N e F R oy

gt

> o

Oh& state-assignment provision in the structural level

—_— fﬁf

represents £ user-selected mapping of binary cédes to states., It

o —emy

\is not, however, intended to provide any algorithmic means of
s

optimization. o e

[

’
-

For the inclusion of the necessary state assignment , a

state declaration expressed in the synbax'below_is required

State : state identifier[a;bl<state assignment>

The state assignment enclosed in the brackets " ¢ > n ig

-

represented «<by a string of binary digits. For examp{e, if the

4 N

—

binary stging " nP3 " is the formal state assignment -for a

particular sequential 1logic network, tpen n symbolises any

p—m,

pdssible bit pattern for a state. In the example :
, o }
state identifier[x]<nP3>

" state identifier [x] " designates a'particular state, and

o

"<nP3> " specifies the binary ﬁoﬁe for this state.
.

* -

Every bit in n can be assigned a unique identifier through
the application of the correspohding bloéking mechanism . For’

‘ example, the three bits of n may be represeqted by “the

corresponding identifiers pos%tionally in the form

n* A, B, C #p3

~

I R Sy

—

2

1

Y e

prm— g P

——
-
-

LT

¢ T

Al

- 99 .«

a

After the binary code for a state has been répresented in terms

of

A, B and G, the qualifier "P3"‘Pecome5 redund ant. The bart

of " P3 " can, therefore, be omitted., The following example -

illustrates. the concept

‘level.

of state assignment at the structural

$ Description of state assigﬁment for a 8421-code counter

$
$

.Clock : K $ activation'at the leading-edge transition

Counter : CT :: State : S[0;151< n¥ By B, C, D *Py >

A, B, C, and D are bit' idéntifiers of The counter CT.

)

These bits are assigned by the blocking mechanism " * —__ & ",

Sequence

'K"S[0] —=S[1]<.4,.B,.C,D>

. 'K"[1] —=~5[2]<.4A,.B,C,.D>
.~1k"s[2] —%131¢<.4,.B,c,0>

"K"S[3] —=S[H1<.A,B,.C,.D>

e e " — —— - ——

& o
'K*"S[14]1——=5([151<A,B,C,D>

'K"S[15]—=S[0]<.4,.B,.C, .D>

-

, $ n is "0001"
5 $.n is "0010"
y $n is mo011" _ '

, $ n is "0100" .

y $nis mp11qn o

, $ n is "oo000" -

In the above example, the representation in ".,A,.B,.C,D" is the

bit

A

pattern of "0001", and so is.

".A,.B,C,.D" for "0010Q",

»+B,C,D" for "0011", and so on. In an actual AHDL construct, .

B T VT

—

1)

P T)

external excitation, usually on or near

-

. -~ 100 -

howéver, it would be necessary to specify all the sixteen

-
.

assignments.

'

INPUT EQUATIONS TO FLIP-FLOPS .

Flip—flops change state in response to an appropriate

the transition %©of a

-

~timing pulse. There exist many different types of flip-flop

‘ . - 1 . N,
designs, and correspondingly many different ways to respond to a
given excitation. Aﬁ the Structural level, AHDL has_the capacity

to define such a response through the " equation declaration "

of the syntax : d ‘ .
Equation: : input equations

* F ' ‘ ‘
Equation declarations are functionally similar to terminal

'declarations. Tﬁey are, however, applicable only Lo flip-flop

descriptions. A description of the RS‘flip—flob,-which is shown
. M " " " . "

in Figure U4-1, 1is given below to illustrate this type of

declaration

T

ri,-ui

.

o) e—

)

Y eEm pEm gem T

)))

o A S

: - 101 -

L

1~.85 and C are the input terminals to which external triggers
\\\g&QJ conriected. These external” triggers are expresSed in

Boolean expressions sopthat'the input equations to phe' RS

flip-flop are :

. /
S :- Boolean expression 1
and C:- Boolean expression 2

-

2. The RS flip-flop changes state at the trailing-edge
ttansitioﬁ of the clock puise qn-terminal " ¢l ", Change of
étape "takes place in accordance with the truth table/shown

in Figure-4-2,

input . next state - Y
Sn Cn Qn+1
0 0 b Qn
0 -1 0
1 0 1L
1 1 Ambiguous “
__________________________________ J--______‘r
{
- + . .\\./.‘
///ﬂ Figure 4-2 Truth table for a RS flip-flop.
In Figure 4-2 the subécripts "n™ and " n+l " differéh{éhte

1

- 102 -

L) Py

"before" and " after'™ of the " 1 to 0 " clock Eransition.

DESIGN AT THE STRUCTURAL LEVEL . v i

- If a 2-bit Gray-code counter as shown in Figure 4-3 1is

P

designed from tGQ?RS,flip—flops described by both Figure &11 and

[Figure 4-2, the design éonté;ns the following information
. ' :"‘“\ . . P
1. The block diagram' of the 2-bit counter is.shown in Figure

4

§-3.

Y

LT) pmy) p—

s
ev)

Clock — o 2-bit

i Gray>code countey

LT e pEm
-

Figure 4-3 Block diagram of the 2-bit counter.

e

s 2. The count sequence of the 2-bit counter is shown in Figure

e _
L' \J) - 44, m A" represents the output of the first flip-flop, and

,_
[

V) pams) P 7T O pES MR @R T S gy

3.

4,

- 103 -

" B " represents the output of the second flip-flop.

e
4
B
AY B
0 0
9 0 1
1, 1 *
t
1 0 ’

W kgl e T R S M S e

-

Figure 4-4 Count sequence of the 2-bit Gray-code counter.

v . /

' The input: equations to the first flip-flop are

“and Ca :- .B

: /
The input equations to the second| flip-flop are :

l—n—-——'ﬁ

V)

et T ek ek GBE T

pr—— e))

and Cp - A

5. The combleted design and the implemenwation for the 2-bit

Gray-code counter is shown in Figure 4-8,

A B

Q Q Q Q

Sa cl Ca Sb el " Cb
Clock

Figure 4-5 Completed design and the .implementation
8 of the 2-bit Gray-code counter,

-

The design process above .foﬁ tﬁe 2-bit Gray-code counter
comprises standard procedures of applying conventional design
techniques and IC components at the S3S8I level.. However, tﬁe
whole design process can be expressed in the form of a

structural-level construct in AHDL to the véry same details.

p—

)

t/

-~

e

P T NS eEa B

e~) gl)

- 105 -

- Such a constrpctciéhgresented as in the following

$ Structural-level construct of the 2-bit Gray-code counter

$ as shown in Figure 4-5.

Clock : K

Counter : CT :: State : S[0;3]<n*A,B¥P2> § P sbands

& Synchronous

$ The synchronous .operation. of the counter CT has
$ declared explicitly.by the declarator " Synchronous
+$ K' indicates that the trailing edge of the clock

$ csynchronizes the transitions.

:: Sequence : K'“S[O]'———-S{13<;A,B> ,
K'“S[{]-——ﬂ*S[Z](A,B> ,
K'~S[2] —=S[31<4,.B>
K'"s(3) ——=5[01<.4,.B>

\

i

:: Terminal

|

A % output terminal of 1st flip-flop

B $ output terminal of 2n{ flip-flop
Sa $ input tgrminal of 1st flip-flop

Ca $ input terminal of.1st flip-flop

Sb $ input terminal of énd fl1ip-flop

Cb $

input terminal-of 2nd flip-flop

¢t Eguation

L2

-t

Sa :- B“k'
Ca :- .B7K!
Sb :- :A“K'
Cb := ATK'

. for binary

been
!I.

ey T) T

-l N R) e)

- 106 -

-

In the equation declaration of the above structural-level

construct, K' is ANDed to the corresponding variables %o make

the input equatioﬁs more informative. In any actual practice,

such an.ANDing is not strictly necessary

OPERATOR AND DECLARATOR

The operator which is particular to the structural level is

the wiring operétor "o M. The'reserved‘declarators'which are

- particular to the structural level are " Link ", " Wiring ", and

" Eguation ",

PROCEDURE CALL

The basic structures and rules for the procedure calls in

1
"the structural level are the same as in the behavioral and

funetional 1levels. Other than ensuring brograﬁming hierarchy ,

other two levels of AHDL in the form of procedural

ence , in accordance with the princfple of information

P

I

T T R M ERN WG PR)

pr—

e Jl-—&"/

.specifying how different terminals to be wired

r___‘\ [—y jeE)

- 107 - . 3

SUMMARY AND COMMENT - _ - 1

-
-

Basically, structural-level constructs are formulated to

accommodate details for the subsequent implementations. However
AHDL, in accordance with the principle of information hiding,
perm{té’the structural level to interact w{}h the other two
levels through either procedural or continuous co-existence.

Ve

Struqiural-level constructs, however; must be non-procedural

A structural-level constructkmay, hoﬁéver, be completely

defined in terms of terminals, and input equations " to

flip-flops. The construct then appears 1like a wiring list,

EXAMPLE \ _' | | . .
&

One more_ example for the structural level is presented in

the APPENDIX section. The one provided here as an illustration

.is the structural-level description of the PIA (MOTOROLA

MC6820).

v

Structural-level description for the PIA (MOTOROLA MC6820).

N .
The structural-level description of the PIA looks into the
gates and flip-flops of the PIA. The different modules are
clearly expressed and described. Since the exact working
prihciples of the gates and flip-flops. in the different
modules- were not presented in the manual for the PIA,

it was assumed fthat the registers in the PIA were all
structured. from flip-flops of 'the RS type. In addition,
parallel cperations of these registers have been assumed,
The specification of . a LSI module in' such a manner

would normally only be done In the enpineering

department of the manufacturer. This example.Ferves

& L A A OF O B T 45 O E-3

H -7

t : ' ‘ . i

BV

J—))

__..:/-—"F P

$ to compare the examples of the:.PIA description in'the

$ previous two chapters.

Clock : E

Bus : DD-IN<O;7>
DD-0UT<0;7>

PA-INCO; 7>
PA-OUT<O; 7>
PB-INCO; 7>

PB-OUT0;7>

Link : L-IN<O;T7>

L-0UT<0;7>

e

$

108 -

system clock

from MPU to PIA
from PIA to MPU

from peripheral devices

.to PIA

from PIA to peripheral
devices

from peripheral devices

-to PIA

from PIA to peripheral
devices ‘

internal bus to register
Wwithin the PIA

internal bus where
register drain
within the PIA

e EE

.) [p— -

Lol

Path : DD-I :~: L-IN :-: PA-QUT $ first possible

data path

DD-IN :-: L-IN :-: PB-QUT . $ second possible
. . ! data path
' _ %
DB-0 :-: L-OUT :-: PA-IN $ third possible
: . . data path

DD-QUT :-:.LaOUT :=~: PB-IN §$ fourth possible

. h data path

‘Register : CRA<O:7> Terminal

& Synchronous

S1<0;7> $ set input to flip-flop

C1<0; 7> '$ clear input to flip-flop

Pt S

I I Een , ‘_,_____i

et

) -y T

L))

e

Y

tK*.351<n> "C1<n>~—+CRA<n>+—0P1 , $ reset flip-flops -

$2<0; 7>

C2¢0; 7>
| Q2<0;7>

K<0;7>

RET<O.,; 7>

.- 109 -
Q1<0; 7> $ output terminals of “CRA
K<O3 7> $ clock input to flip-flops
RET<0;T> $ reset terminals to flip-flops
Operation '
. -, ,
'K"351<n>".C1<n>—» CRACN>=~—1P1 , § set flip-flops

. +RET ——— 'CRA «——00000000P8 , $ clear flip-flops

DDA<CO;7> :: Terminal : ‘ |

-
T
s
s
$
8

set input to flip-flops L
reset input to flip4f16ps
outpup_terminals of-DDA

clock input to flip-flops
clear terminals to flip-flops

-

Operation : \

TK"$2¢n>"™.C2<n> —=DDA<NYe—1P1 , $ set flip-flops

1K~ .§2<n> ~02<n>—DDA<N>+—O0P1 , $ reset flip-flops

_RET - —=DDA «—00000000P8 , $ clear flip-flops
: ORAKO;7> :: Terminal
/

S3<0; 7> $ set input to flip-flops

C3<0;7> $ reset input ot flip-flops

Q3<0;7> $ gutput terminals of ORA

K<0; 7> $

clock input to flip—fiops

A\

4

]/—'-._—_

-4

a

s |

-—) =

Jome) punel)

M e eem

-

f

e (T) P) S)

[o—
Y

n

- 110 -

RET<0;7> $ clear terminals to flip-flops o~

Operation

-

3

1K~S3¢n>~.C3<n> — ORACN>«—1P1 , § set flip-flops

TK~.S3<n> " C3<n>—+0RAKN> ~=—0P1 , §$ reset flip-flops

.RET — » ORA=—00000000P8 , § clear flip-flops:

CRBC0;7> :: Terminal

set input to,flip—flopé

S4<0;7> . $
C4<0; 7> $ reset input to flip-flops |
Qu<0;7> '$ output terminals ofCRB .
' K<O; T $ clock input to flip-flops
CRETCO;7> $ clear terminals to flip-flops
o .)
]
Operation
. .a
'K4su<q>".cu<n>——~caa<n>-v——1p1 , $ set flip-flops
1K~ .SU<nd> “CU<n> —=CRB<n> — OP1 , $ reset flip-;léps
<RET —H;——b:CRB-——-OOOOOQQOPB y _$“clear,flip—fiops
DDBKOQ ;7> :: Terminal
35<0;7> $ setlinput to flip-flops
C5<0;7> $ reset input to flip-flops
Q5<0;7> $ output terminals of DDB
- K<037> $ eclock input to flip-flops
RET<0;7> $ clear terminals to flip-flops

T)/

___,_]C i

s B

PP s) P

T MR em BB

r.

P p— e) e

S 111 -

Operation

'K"S5<n>".C5<n> —*DDB<n>=——1P1 , $ set flip-flops
'K~ .85<n> "C5<n>—»DDB<n> =— OP1 , $ reset flip-flops

.RET ———-—» DDB=—— 00000000P8 , $ clear flip-flops

-« : ORBCO;7> :: Texminal

56<0j7> $ set input to flip-flops
C6<0;7> $ reset input to flip-flops
Q6<0; 7> ‘ $ output terminals of ORB
- K<O; 7> $ clock input to flip-flops
RET<0;7> $ clear terminals to flip-flops
Operation
TK"S6<n>".C6<n> ~—+0QRB<n>=+—1P1 , $ set flip-flops
'K“;86<n>fcé<n>;—rORB<n>4——-0P1 , % reset flip-flops

.RET » ORB =—— 00000000P8 , $ clear flip-flops

Subregister : SCRA<O0;5> # CRA<O;5>

SCRBLO;5> # CRB<O;5>

CRACT> :: Terminal : T1 $ output terminal
CRBLT> Terminal *: T2 $ output terminal
CRAK2> Terminal : T3 $ output tefminal
CRB<2> :: Tgrminal : T4 $ output terminal

- 112 -

[E)
T o .
Ii : Terminal : $ the terminals are sequentially %
! - defined here for clarity '
[l, RS0
T_ RS1 _ .
.g CSO ; . . .) [l
[? €31 ; .
' - cs2
li\ E 3 .5 clock output terminal
K :=:"E 3

)

RW ;7 % read(RW) and write(.RW) terminal
RESET ; $ terminal to clear flip-flops
RET :-: RESET ;

“IRQA :- .T1 ; § interrupt from section A
of the PIA

IRQB :-..T2 ; .4 interrupt from section B
: of the PIA :

$ The above terminals are the original bins of the IC(PIA).

P RN W, P pew e

a
A :- .RS1".RSO"T3 .; $ ORA enable .
"B - .RS1“.R§0“;T3 ; $ DDA enable
C :+ .RS1"RSO ; $ CRA enable

L "‘
o
|

RST1~.RSO°T4 ; §$ ORB enable.
F := RS17.RSO".TH4 ; $ DDB enable
G :- RS1°RSO , § CRB enable

DA :- 7Q2<0;7> ; % ANDing all bits of DDA
DB :- "Q5<0;7> . $ ANDing .all bits of DDB

T -

$ The above terminals are cépalytic variables.

i~

)

.) - 113 -

il Pl B o I

Q .
CA1 ; ~$ from peripheral devices - -
) \? to the PIA i
r; CA2 :- T1 "3 % frem PIA to per.ipheral
! : devices
j i CB1 ; : $ fr&h‘peripheral devices;‘
: , to the PIA. '
I CB2 :- T2 = ; $Afro¢{P A to peripheral
device 3
A . . SEL :- CS0°CS1°.CS2 ; ¢ select PIA
2 vt * $-The above five terminals are original pins of the IC(PIA).

*

$ Identifications of the idput)terminals to flip-flops
$ without using any equation declaration

J— gl))

S1¢€0;5> - L-INCO;5>"SEL".RW"T1"C

'C1<0;5> 1= .S51<0;5>
. 82<€0;7> :- t—IﬁSO;??‘SEL”.RW“.Tl;B :
C2<0;7> :- S2<0;7> ’ . |
$3€0;7> :- L-IN<O;7>’SEL“.RW“TT“.TE‘DA“Ar ;

€C3<0;7> := .83<0;7> ;
S8<0;5> ':- L-INKO;5>"SEL".RW™.T2°G

R A e

Cl4<c0;5> := .SU<0;5>
" 85<057> := L-INKO;7>"SEL".T2".RW"F ;
’ C5<0;7> - .8540;7>

S6<057> 1= L-INCO;7>"SEL*.RW*.T1°T2°DB A ;
" | o ’

C6<0;7> :- .S6<0;7> ;

$ Change of state owning to external request from
$ peripheral devices. .

) s he

{

P)) ecey

e

I

LTS | l

o

ety

- %-_

Pt —

—

o]

Ay g)) ey

AN M W

.'l

)) p=)

.

1

T ’_\.

= -

$ terminals with

a7 0 8 4o

S1<7>

S CILT>

S4<7>
CU<7>

0[01<0;7>
o[11<0;7>

0[21<0;7>

7 0[31<0;7>
0[41<0;T7>

0[5](0;7>
0(61<0;7>
007140;7>

.- 114 -

CA1

.CAY

1

CB1

.CB1

réspect to. " read data.into MPU

-

.T1°C

1~ QI<0; 7> SEL"RH K" ;

£ 1 Q2<0;7>"SEL" Rw K~.T1"B ;

15 Q3<0;7>"SEL"RY K . T1"A ;)

- Qu<p;7>*sEL“Rw"K“.T2“G-5;

f- Q5¢0;7>"SEL RW"K~.T2°F .

t= Q6<d;7>fSEL“RW“K“.T2¢D -

.~ PA<O;7>"SEL RH*K~T1".T2".DA 5 ﬂ
PB<0;7>”SEL;RW‘K“KT1“T2‘TDB' s

_Couple : 0[0;71<0;7> :=: L—OUT<0;7> $ WIRE-OR coupling

it is clear from the structural-level descriptfion t
for the PIA above how differént modules are B
interconnected through the corresponding terminals.
Furthermore, the interaction of the different.

modular components have been well- deflned by - !
the appropiate Boolean functions.

- |

TG M el BN T o N e I B SN T e PR e

) p—_) p—

- 115 -

CHAPTER FIVE

CLOSING REMARKS B

.THE LANGUAGE AHDL

-~ .
The objective of this'résearch was to propose a consensus,-
multi-level language suitable for the description‘and simiulation
of computing hardware structures. AHDL (Algorithmjc Hargﬁare

. ’ v t
Design Language -} 1is +the textual 1language whic has been

developed and presented in this thesis.
-

AHDL consists of three separate and distinctive levels of

application. They are the behavioral level, the functional

level, and the structural level. The three levels oflﬂHDL are

concisely described in the following

1. The .behavioral level supports algorithmic formulations at

_the top or schematic level. -

2. .The functional level defines efplicitly the principle of any

mechanism which contributes to the operation of a digital
system., The definition is“'expressed/ in terms of the

input/output'relationship of the system combonentsf

3. The structural level is the level of iogic esign in téfms

of gates and flip-flops. This level .would normally be used

‘'only by engineers. ,
o

l: | : 1 - - 116 -

e ‘ :
L The three levels of AHDL can be applied separately and

[. . . . '
l(_ : distinctively for different digital purposes. They can, however,
\T\; ‘ '_ co-exist in two different fbrms : procedural co-existéncé, and

. % . L 4
continuous co-existence, in accordance with the prirnciple of
infi?

rmation hiding. Procedural co-existence refers to the
.structu%ing of'procédur&s in terms of one level to be called by
procedure” calls constructed in terms of another level. Such

co-existence permits the three levels of AHDL tb interact in the,

sense of 4 fluid hierarchy. Continucous co-existence, however,

represents only the application of the elements of a higher
level in a lower-level construct. This cQ—existence is strictly

hierarchical, and the reverse operation is incoérrect.

The inclusion of procedure c¢alls in AHDL gives 1its

application a further dimension because they provide AHDL ‘a

o ‘,~)”) i

-

potential' mechanism for interaction.with other.laﬁﬁuages. It is
possible that a prgcedure, which isjconstructed in terms of a "
non-AHDL " 1aﬁgu ge, may be called by an AHDL procedure Ca11; or
vice versa. Since this feature represents a question of the
futthgr development of -“AHDL, -the rdles concerned are not

discussed here.

COMPARISON WITH EXISTING RT LANGUAGE%

B

The capabilities of AHDL, compared favourably to éxisting

pom——rn
L
¢

J

|

RT languagea, are listed below

=)

.1. The three ievels of AHDL are consensus.

" p—— ——
=

2; The three levels of AHDL are compatible to any top-down and

=

) PuS) P T
i —

;

i]

4
=

)

P
- ',—- e

——

g

‘l

-,

-y,

g p—
[WE}

——

[—

e a

LN

S

- 117 -

multi-level digital task.

Procedural co-existence ﬁf the three 'levels' permits the
interaction of them inL the fPrm of a fluid hier;rchy, in
accordance with the princible of information hiding.
Procedures in AHDL can easily accommodate new MSI ané LSI

modules as they become available.

THE DEVELOPMENT OF AHDL

The textual structure for AHDL was adopted for five reasons

as presented in the following

Experiences from textual conventional programming languages

~have concluded that a textual structure is better .able to

>
express subtleties-.

lThe well-proven control structures of the textual

conventional programming languages can be adopted.

The techniques of compilation for the textual conventional
programming languages are potentially modifiable Eor
compiling AHDL. _

Most of the poﬁerfub RT ‘;anguages presently in use are
textual, .
A high degrée of extensibility can be incorporated easfly
into the textual language statements. Such extensibjility is
required to generate a multi-level linguistic structure for

AHDL. h ,

!

/

g

L

[p— PR, T, T

) gl

I ’J

}

)

el pill - -

- 118 -

AHDL was basicaily " tuned from different textual
conventional programming and RT. languages. The inclusion- of
linguistic elempnts' }or expressing parallelism and Eoncurrenéy:”
was based on thg‘ abstractive power ‘ana familiarity of the

elements. The basic framework of AHDL is structured from the

seven basic abstract data types . : register, variable,

‘declarator, operator, terminal, state, and link. The structure

of AHDL was thoroughly tested by different examples worked out
on each of the three levels. Some of these examples are attached
in the APPENDIX section, while others .are preéented in the

appropriate places throughout the text.
EVALUATION OF AHDL

AHDL is potentially applicablé to the description, design,

"and simulation of digital systems. The general evaluation of

AHDL is the following

1. Its “textual similarities to conventional programming

languages make it easy to be learned and compiléd.

2.. The simplicity and the egpresgive power of its linguistic
elements make it suitable for clear spécification or
deseription of digital systéms.;

3. 1Its hierafchical “naﬁure corresponds with the hierarchical
nagure'of any digital sysfem.

4, Special structures and techniques éan accommodate the
applicatioﬁ of standard design -technmiques = and. IC

technologies.

vy
HEE

—=)

PO M e SRR P e gl

T) Pt

pr— =,

- 119 - d

THE POTENTIAL OF AHDL

Based on the qualitigs of AHDL eviEEiE;d above, the further

development of this language could include the following

1.

Certain parts of AHDL could be modified to make it more

informative and constructive;

The framework of AHDL could be tuned for computerization.
AHﬁp could be compiled and used like an ordinary programming
languages;

It could be adopted as a suitable language to drive any

'design automation system.

It could be interacted with conventional programming
languages to support the formulation of algorithms for

parallel processing.

120 -

APPENDIX
——,

.. i) \u) . .
T ed e T (el e md W W BB o oo (B vmel Ceumd

 —— P——
bt ™ i
s

(]

- 121 -

»
-

- APPENDICES'- .

BEHAVIORAL-LEVEL EXAMPLES

'
!

Example 1

$ Design of a digital system which counts from "Q" to "255™"
$ in terms of the behavioral level of AHDL. This is the
$ Schematic formulation of the algorithm for the system.

©F A B O 4

Clock : K
Register : C1<0;3>

€2<¢0;3>

Operator : display $ abstract operator

Algorithm : * Counting , Dlsplaylng ¥ $ applieation of the
. blocking mechanism

Counting : K'—=Cle—count-up C1 ,

(C1=15)'—+C2 «—count-up C2
A

Displaying : display C1

display C2 .

r

The operator " display "™ is a dummy operator
introduced only for descriptive purpose and
clarity. " count-up ", however, is a standard
operator in the behavioral level of AHDL.

For more information about the system, the
respective functional-level construct will be
presented as Example 1. in the next section.

Example 2 :

Object : Design of a stored program computer at

the schematice

level ;n terms of the behavioraljlevel of AHDL.

]

’-(- -..‘.
.
S

- ————a—
T —=
’ A

- A‘I

Py g T T

-~ -

- 122 --

Specification

1. The instruction and the number formats are

Y

23

op I X adr

and

0 1

23

sign bit number bit

R

The symbols "op" and Wadr"‘represent respectively the

op~code and the address

part.

(instruction format)

{ number format)

2. The instruction set is shown in Table-BL 1%

Instruction

addition
subtraction

jump on plus

store

jump

shift right :
circular left shift
clear and add

no operation

- ek 8 v . T b T oy by A AR A M G A S W AR AR A R ek kb b b b kB ok bk W AN A L A e e

ADD
SUB
JOP
STO
JMP
SHR
CIL
CLA
NP

Table BL-1 The instruction set.

The character "m" denotes a memory address. It means that

L3

Nea¥i

-

T T) e, e T

[N K"#‘.—» :

JE M E P aam | am

N e

- 123 -
° .

the symbol m represents an instruction or operand address in the

the address field of the instruction preceding m. The opcode is

octal. The explanation of the instructions are the following

.
' '

a. ADD and SUB adds and.subtracts .respectively the numerical
value in address m_to-Br from that in the accumulator.

b. ' CLA clears the accumulator beforeﬂéddition.

e, VSTO stores ~the content of the accumulator into the memory

location specified by m. 1

d. JMP takes the next instruction from .ﬁhe'_memory location
specified by m. |

e. JbP performs as JMP, éxcept only wﬁén the content of:the
éccumulétor is positive.

f. SHR shifts the accumulator one bit to the right, but- the

sign bit extended and the least significant bit dropped off.

‘&. CIL shifts the accumulath oné.bit to the left, but the most

: significant?'bit enters into the position _of_ the least

" significant bit for every bit shifted.

h. NP stobs the édﬁpuber dperation.

a v,

3. The stored pfognam éomputér has six registers : R {(buffer

B YRy

7

/.

T

-—.-—.._l

- r‘"‘.:

lf'-'i_‘
P

)

lhl- y) —_-—

-I
2

mrmﬁii -

- 124 - !

registeri; A .(acéumulator), T (instruction register), P
(program counter), € (address register), and F (coéﬁrol.
register)l‘When the computer starts, the coqtent of P 1is
transferredlto‘c,-and then the content of P is counted'up by -
one, The conﬁent of* the memory location specified by the

content of C is then transferred to- the .register T. The

‘.registef- T. can be decomposed into two separate parts

op-code and address. The op-code is always tranéferred ‘to
the controi register F to be decoded. If the I and X fields
of T is assumed ineffective, then the address part 1is the

"m" as shown in Table BL-1. The operand in the memory

locatidn.at'the address m will be fetched and loaded into ‘R.

The contents of ‘R and A must be operated on by appropriate

‘operators.

‘Behavioral-level construct for the stored program computer.

Register : R<0;23> $ buffer register’
A<Q0;23> ~$ accumulator
T<0;23> $ instruction register
P<O; 14> $ program counter
C<0;14> ¢ address register
"F<O0;5% $ control register

Subregister : T<6p/0"5> $ Qpacodé of T
T<adr/9~23> % address part of T

T<I/6> $ indexing bit of T
T<X/778> $ indirecting addressing
- . " bit of T

J /
Memory I M[0;327671<0;23>

Algorithm : * Fetch;Execution;Fetch * $ application ofl

.blocking mechanism

$ It should be noted that the cyclical relationship of
$ Fetch and Execution within * * is clearly indicated.

.._,1

e

=

-4

F~1

) M-, =

1 ==
T -
- 1

M sam MR P Gum e

ey

©“ o O S

Fetch :_C+——P

Pe—2¢

T—M

FeT

Execution : ¥
'Decodiﬁg

Activation
_ ADD
SUB

JOP

_ 125 - . -

; $ content of ‘P to register C . {

ount—up'P'; $ increase P by one

[C] ; % instruction to 1nstruqt10n , .
register . '

<op> $‘op~code of Tto F '

~

Decéding,Activation *

K-——decode F $ the va{ue of Kis octal R
switeh K := * ADD,SUB, pr STO JMP, SHR,
CIL,CLA,NP *
R M[T<adr>] $ addi@ion
A<— A+R ‘ Co
' R=—M[T<adr>] ; $ subtgaction 1
A e— A—R . " .) : .
(A<0>>=O)——*P-—T<adf> 4 jump on positive

STO
JMP
SHR
CIL

CLA" :

AA

BB

NP

.The above behavio

~accumulator

MIT<adr>]+—A .$ stoFe acéumulftpr_
P+—T<adr> ‘ $ uncopdi£ional Jump
shift A ‘ ~$ right shift-
rotate A % left circular-shift
* AA;BB * o
R=—M[T<adr>] , $ AA is a block‘of.two
- _parallel data
R operations
A-—0 .
A‘——A+R‘

$ pausc of no operation

ral-level construct has shown the

algorithms of the stored program computer. For the

functlonal level

constriuct of this computer, refer to

Example 2. in the next section

C

- 126 -

il

FUNCTIONAL-LEVEL EXAMPLES

——ny
—y—
[+

‘Example 1
- $ Design of a digital system which counts cyelically from
D $ "O" to "255", The result of the count will be displayed
% by twe T- -segment modules. The two 7-segment modules are
$ shown in Figure FL-1." S S

r_-‘ —
“"'f'1l [I
1
s
-

/ a 1.
b d m o]

s T C n
. e ’ g p r

/ f a
(M1 | o (2) M2

Figure FL-1 The twoJY—segment modules. .

;$ The countlng is'carried out by two 8427-code’ synchronous
$ counters coupled together ds shown in Figure FL-2.

A.B C D X Y 7w

|

el counter C1 ck counter C2

3| ccsu21) . Lt (8421)

) p—— =) TN eEw e _— P A— = T

1

o . Figure FL-2 Two 8421-code synchronous counters
coupled together. :

P——
|

I N
' .

T

i
ot

- 4

[| g =i 1 |
) J¥ - —— K'\ —

}

/= e

co T VR T

,.

yr——) b

Cowp
j

i

>

i - | S =27 -

$ Therefore the‘coﬁponents necessary for such a system are::
$ two 8U421-code synchronous counters, two 7-segment modules,
$ and a clock module. . '

$ The fﬁnctional—level construct for the design is -
$ presented below. ‘

~

. Clock : K $ clock .to drive the system

Counter & Schh%onous
_ -

C1 :: Modulo : S$1[n/0;15] $ 16 sequential states
Terhinal el -~ K $ cl is clock input to- C1.

<A,B,C,D> $ output terminals of CI
$ and the order_of the
$ ‘terminals is indexed |
$ from left to right:
$ in the brackets ¢ >

T -

Operation : cl'“S1[n]——-S1[n+1] , $ chnting
’ o algorithm
cel'"81[15]—31[0] T

02‘:: Modulo : S2[n/0;15] $ 16 sequential states
Terminal : ck := A"B°C"D $ ck is clock input |to C2

Xy Y,Z,W> $ output terminals of C2

Operation : ck'"S2[nl——=S2[n+1] , % counting

, algorithm
ck'"S2[15]) —=S2{0] . ;
T~segment ; M1/:: Terminal
a !~ .A"C.v \A"B"D v A".B".C v .B*.C".D
b A".Cv .B".C v .A"B".D '
c LAB”.Cv A.B".C v .A".B"C v .A™C".D
d := .A".C".Dv .B"C".Dv .A"C"D v .A".B"C
e :- ,B".C v ,ATC".D . ' :
f :~ .A"B".C°D v .B".C".Dv A".B".C v .A.B"C v JATICT LD
g = .A"Bv .A"C"D v A".B*.C v .B".C".D

7-segment : M2 :: Terminal

e =Y

1 := X"Z v XYW vVv X" Y'.Zv . ¥Y°.27.W
ki m - X".Z v . Y".Z v XY W :
' n - XY .Z v XTY.Zv XTYTZ v XL
o = X".ZTMH v YTZTW v (XTZ7H v XT.Y"Z
p = YT.Z v UX"2Z".W
q - XYW v YTLZP W v XTYT.Z v L XTYTZ v XTI LW
r ii XY v JXTZW v XYL Z v LYTLZT M '

$ The structural-level construct for this design will .be
w . #% § presented in Example 1 of the next section. In this
$ example, though the counters.aPe defined as generic
$ types, the terminal connections are specified explicitly.

7 ——

.
‘.

Example 2

‘The functional-level construct of the stored program
computer described in Example 2. of the prefious section
is presented below. Only the significant parts

of the'behavioral-level construct are extended. The
specifications and working principles of the ‘system
remains the same. The application of procedure-calls

is illustrated. _ .

L1

) - T

| 4B LA i B

Registeny: R<0;23> :: Terminal : RT<0;23> $ RT<0;23> are the.
- o : : ‘ output terminals
of register R '

e e

) | - . L o
A<0;23> :: Tefminal : AT<0;23> § AT<0:;23> are the

. . output terminals
. of register A

L

e

instructioh register

o

- T<0;23> $

I: . ' - w ¢
. P<O; 14> $ program counter

l: 1 C<03 14> - $ address register i
3 o -)

- t F<Or5> ! % control register

-~ Su registeﬁ/:-Tpr/O;5> - % op-code part of T

' T(adr/§?23?¢'$~address part of T

._f

i

PR '

,....__...
[
:

|
p

—

F)M y o)

!

.~j ”|)

Mg -
T<I/6> ~ $ indexing bit of T
T *
T<X/778> $ indirect addressing o,
/ | bit of T C
Memory : M[0;32767]<0;23>
Algorithm * Fetch;Execution;Fetch * $ note the appglication

- of the blo¢king
mechanism .

$ It should be noted that the cyclical relationship
$ of Fetch and Execution within the bractets * *
$ is clearly indicated.,

Fetch

C—P ; . $ content of P to C
- P——-count-up.P i % increase the content of P by one
T—MI[C] ;. $ instruction to instruction register
F+—T<op> ; $ 6p—code of T to F
Execution * Decoding,Activation * P

Decoding : Ke—decode F

$ the value of K is octal

Activation : switch K := * ADD,SUB,JOP,STO,JMP,SHR,CIL,
: CLA,NP *

ADD

SUB

JOP

STO

JMP

-

/

R+—M[T<adr>] ;

call Addition (RT,AT,SUM) ; $ procedure-call, and SUM

A‘——,*SUM

Re—M[T<adr>] ;

is a catalytic variable

call Subtraction (RT,AT,DiF) 7 $ DIF is a catalytic

§ ~—DIF

(A<O0>>»=0) —+P+—T<adr>

MIT<adr>J=——A

Pw-T<adr>

$

variable
Jjump on positive
accumulator
store accumulator

unconditional jump

==y

i

1

[S——

Fo-ad

)

P

-}

j-)h)

T eEa gme @Bg P

pasaz ,)

=)

——

i P el .
=

- 130 -
SHR : A<n+1>-—-A<n>~%;7z' $ right shift, and A<O>.
" is the most 51gn1f1cant
bit
©'CIL 1 A<nd> «—A<n+1> B $ circular left shift

A<23> =—AKD> |
CLA : % AA;BB * $ épplicetion of blocking mechanism
AA : R-—M[T<adr2] , $ AA is a block of two parallel
‘ data operations
A0 > .
BB : call Addition (RT AT, SUM) ;
A-——SUM

NP : $ pause of no operation

Procedure : Addition (x,y,i.)~

Terminal : x<0;23>

- y<0: 23>
z<0;23>
Operator : + : Terminal : $ parallel addition
€<23> := 0

C<0™22> 11— x<1723>%y<1723> v x<1”23> C<i™23>
' v y<1-23>°C<1723>

2<0723> - y<0"23> @ x<0723> @& €0~ 23>
$ The symbol C represents the carry generated by the
$ corresponding circuit.
Procedure : Subtraction (p,q,r)
Terminel :-p<0;23>~
.q<0;23> $ complemented'q<0;23>

r<0;23>

X

- 131 -
[. o
-) Operator : - :: Terminal : $ parallel subtraction
{ - CC<23> :- CC<O> $ feedback Jdoop
f' CCL0™22> :- p<1723>7q<1723> v p<1723>7CCL1~23>
N v q<1723>7CC<1723>
- . . r<0-23> :- p<0~23> @ q<0723> @ CC<0~23>
b - . w
$ The symbol CC represents ‘the carry generated by the
'f‘ $ corresponding circuit.
| .

STRUCTURAL-LEVEL EXAMPLE

Example

e $ -Example 1. of the last section : "FUNCTIONAL-LEVEL

$ EXAMPLES", in terms of the structural level of AHDL.

$ The system counts cyclically from "O" to "255", and

$ the result will be displayed by two 7-segment modules.

%:ggnn;gference of the two T-segment modules and the

coupling eonfiguration of the two 8421-code synchronous

counters, see Figure FL-1 and Figure FL-2 respectively.
Since the functional-level construct of the :
system already defined the working principles of
.the system and the components involved, the construct
at the structural level concentrates malnly on the
design of the twp 84271-code synchronous counter using
RS flip-flops. :

l:‘\
- : $ Design of the digital system which was describéd in
L

é4ﬂeymeﬁeya

l‘ ' Clock : K . $'clock to'drive the system

Counter & Synchronous

- C1 :: Modulo : S1[0;15] $ 16 sequential states
L - 11 Terminal ; ¢l :- K 3% ¢l is clock input to C1 ‘
- ' : i $ output terminal of 15t FF

B $ output terminal of 2nd FF

C $ output terminal of 3rd FF
- D $ output terminal of HUth FF
| ' . :: Equation : Sa :- .A $ Sa is set-input to 1st FF
- + Ca :- A % Ca is clear-input to ist FF
‘(. . - Sb :-= A".B $ set-input to 2nd FF
&

= - 132 -
§
Ld, .
. Cb :-= A"B $ clear-input to 2nd FF
o S¢ i~ A"B".C $ set-input to 3rd FF
L‘ Ce :- A"B“C, $ clear-input to 3rd FF
{ 5d :- AB"C".D $ set-input to U4th FF
ol cd :- A“B"C“D $ clear-input to 4th FF
[*
f. C2 :: Modulo S2[0;15] $ 16 sequential states
Terminal ck = A"B"C"D $ ck is clock 1nput
T ' ' to 1st FF
: X $ ouvtput terminal of ist FF-
Y $ output terminal of 2nd FF
- Z $ output terminal of 3rd FF
t; W $ output terminal of 4th FF
- :: Equation
: . ‘) Sx .X $ set-input to 1st FF
- Cx X $ clear-input to 1st FF °
'Sy X©.Y $ set-input to 1st FF
l Cy Xty $ clear-input to 2nd FF
- Sz X"Y*.Z % set-input to 3rd FF
Cz := X°Y"2 $ clear-input to 3rd FF
‘ Sw-i- X“Y“Z".W $ set—input to 4th FF
\ Cw :~ X"Y"Z"W $ clear input. to 4th FF
T~-segment : M1 Terminal $ 1st T-segment module -
' a (- JATC v B*D v. A".B™.C v .B~.C".D
b :~ .AT.C v ~.C v .ATB".D
. ¢ :- .A"B".C v A".B".C v .A".B"C.v .AC".D
' d := .A".C°.D v .B"C".D v .AC"D v. .A".B"C
e :- JB".C v .A"C".D". ' ‘
f := .A"B".C°D v..B”.C".D" v .A".B"C v A".B".C v .A"C".D
l: g-:-~ .A"B v .AC"D v AT.B".C v .B".C".D
{ M2 :: Terminal $ 2nd 7-segment module
L 1 = X"2 v XYWV XT.Y".Z v LY L2
m := X".Z v Z v XYW
-~ n - . XY".Z v X" Y".Z v XN Y"Z v . XTZ7.W
: o =~ ,X".2° v .YTZT WY X "ZI°W v L XT.Y"Z
a P 1= .Y".Z v .X"I".W \ -
~ qQ - XY".Z7W v JYTLZTW v XT Y2 v XYLy .%‘Z“ W
lT ro:- XY v X"Z°Wv XT.Y".Z v X"Y".Z v .Y .ZTLWW -

i

—— p—— p———
oo (IR —_—

R

)

)

)

)

]

)

.l

o) })

¥
H

. - 133 -

The structural-level construct presented above contains
all the necessary information in terms of terminals and
input equations to flip~flops. It provides the base

for the actual implementation of the system. In order to
illustrate the complete design of the counters,

Figure 3T-1 shows the implementation of the 8UZ21-code
synchronous counter C1.

a4 6 B A S A

A Iy B B C C D D
Sa Ca Sb Cb S¢ -Ce Sd Cd
L a
] B
K i .|

Figure ST-1 Complete design and implementation
- of counter €1, -

$ The counters C1 and C2 are Pa51cally the same 1in phy51cal
$ configuration.

TABLES OF NOTATIO§S

Table APP1.

Separators

Symbol Indication Example
ST concurrency see EXAMPLE (p. 60)
ST sequence see EXAMPLE (p.60) -
"“'F"""""””“'"";;;I';;;Bé;'""‘3'""'?5555 """"""""""
"""""""""""""" declaration | Regidter : A -
T switching ~ switeh k <= *a,b,e%
- T limits Reglster : A<0-235
Ty T comment see EXAMPLE (p. 60)
T equivalence see Remark 3 (p. 35)
7 parallel association see Remark 2 (p. .35)
‘begin ‘end brackets see A-to-D converter

‘ (p. u3)
oy T BEQZESE;"T‘i;:";;;‘5'5511'6655&EZR?%:EE'E’
' : (p. 51)
e T brackets Algorithm # ¥ a,b,c,d *
s T brackets Register : B<O;U>
oy brackets Memory : M [0;10231<0;8>
oy T brackets freely applicable .
"""""""""""""""" modularization Register : A :: Terminal :
ARCO ;7>
s T absent states Modulo : CT [0;1583,41
e T double declaration Counter & Synchronous : CT

'-,‘_'l : i - 135 -

E Table APPZ2. Indicator
(\
LA Symbol Indication Example
____________ _.l_..___...__._....__..__._...___.________._.._......_..._____...___..._..._.......
l; ‘ active transition K'—s - Ae——B-C

..._._-.-.__._...-...__————..-.-._-————_————..._—--——_—..._-__.—_—-......_...._._._.-...__———-—...

g

Table APP3.. Operators

.)-)—jl Y
/

* Y Li
.

A

| Tovaner T Tmateavion T Gamete
[P waicien T e T
v P — subbraciion T e T
[T T eitimieavien T e T
_ P aviston T e T
[wor T covisie T
L I on T 0001 v t000r1001

B T T 0001 T 100070000
1 . S e

Tenine T iamelamin T sarea T
! Trotare | siresiar tereisnire T covare a T
(e it b T
i | ,

- (}:\‘-‘__ 1

—

R B B s

- e~

%) M4 oam

o

-

t

-

/

J

- 136 -
exchange. .8wap
count-up © inorease by ome
" count-down decrease by one
decode decoding = +
LT * data'transfer .
ST greater than .
T less than -
T less than or equal to.
s T greater than or equal to
P equal to
CoL T not equal to -
T control transfer
Cswiten - dynamic maltipiexes
R control transfer
Ceall | sequential comtrol
- transfer
T T concatemation
T renaming -
T | Boolean equation
b0, iteration
LT wicing -
3
.'\'\
‘ .

.-

A exchange B

e e G e e e e o = e e

T R e AR) v b ER e e e e o o e e = e im am

e o e R e e e e e . A = A S

T e e e - e A e o me = o e

- 137 -

Table APPY,

Declarators (reserved words)

At e . S A R AR EE GR A mE R MRk RN N M AW T M T mw P e e e A et S ek ek B SR e A G ef e e R TR M ey ey ey e e e et i W SN A G W A e

[(—.A—}“

two-dimensional arrays

h AR EE e et eE Am AA A s R AR e e el e AR AR AR M AR SN R e M W S M S e e e et e e e N e e et ey R W e e M e e e e e

Subregister one-dimensional subarrays

Subregi

Meﬁory

ster
AL3;5>

...-____._.: __

M[0;1023]<o;ﬁ>

—_——
T

e atih odil <l el L BT

v = T E T R T TE TR T T N TR ER T YR W Em ey v e e i e B A WE AR e e S o e e b e b ek e BB L B e e mm e e e

e g M A e e b b o S A S S e e e

e v N e M A L e e A Bm e M M e e Em M e A = ey b e e md dm o e o h e B AR M e e

‘ t

e
]

L

AH -)")—','

r

il

input equation to
flip-flops

- TR e TR R e e e e e e M S S M T ER MR TR T MR TR ST M TR MR MR e MR A WA AR AR R R AR A R em b e e e e d e G AN AE

P L N L ————— A T e e e e e T R S

‘ - 138 -
- REFERENCES -
(Dietmeyer-01) Dietmeyer D.L. : Ed., "LOGIC DESIGN OF
- ' DIGITAL SYSTEMS", Allyn and Bacon Series,

Mass., 1971

{Peatman-02) Peatman J.B. : Ed., "THE DESIGN OF DIGITAL
' SYSTEMS", McGraw-Hill, N.Y., 197t

‘

(Fairchild-03) Fairchild Semiconductor Corp., Calf., :
' : Ed., "THE TTL APPLICATION HANDBOOK™",
August-1973)

(Gardner-04) ‘Gardner R.I.,Estrin G., and Potash H. : "a
Structur®l - Modeling Language for
Architecture of Computer Systems", proc.,
International . Symposium " on CHDL and
Applications, September-1975, pp. 161-171

(Ellis-05) Ellis R.A. : "Modular Computer Systems ",
proc., IEEE. Comput. Conf., COMPCON"T2,
September-1972, pp. 301-302

(Franklin-06) Franklin "M.A. and Ellis R.A. : "High-level

Logic Modules': A Qualitative Comparison",
proc., .IEEE Comput. Conf., COMPCON'T72,

- September-1972, pp. 313-376
-

(Clark-07) Clark W.A. : " Macromodular Computer
' Systems", proc., Spring - Joint - Comput.
Conf., 1967, pp. 335-401

(1~-Iverson-08) - Iverson K.E. : "A Common Language for
. Hardware, and Software, and Applications",
proc., Fall Joint Comput. Conf., 1962, pp.

253-263 ' -

(2-Iverson-09) . Iverson. .K.E. : Ed., "A PROGRAMMING
' LANGUAGE", John-Wiley, N.Y., 1962

-

“{1-Chu-10) Chu Y. : "Introducing the Computer Design
~ Language™, proc., IEEE Comput. Conf.,
. COMPCON“72, September-1972, pp. 215-218

‘.

N - . -

(2-Chu=11)

-

(Siewiorek-12).

(Barbaceci-13)

(Barbacci-1Y4)

(Su-15)

(Su-16)

(Su-17)

(Lipovski-18)

(Schuman-19)
™

Chu. Y. : Ed., "COMPUTER ORGANIZATION AND
MICRO-PROGRRMHING", Prentice-Hall, N.Y.,
1972 -, : -
Barbacci M. and Siewiorek D.P.

"Application of an ISP Compiler in a Design™

Automation ’ Laboratory", " proe.,
International Symposium on CHDL .and
Applications, September-1975, pp. 69-74

Barbacci M., Bell C.G., ;and Newell A.

"ISP .: A Language to DesScribe Instruection’
Sets and other Register Transfer Systems",

proc., IEEE Comput. Conf., COMPCON"72,
September-1972, pp. 219-222 -

Barbacei M. :- wj Comparison of Register
Transfer Languages for Describing Computers
and Digital . Systems", IEEE Trang.. on

Comput., wvol. c¢-24, February-197s5, pp.
137-150 o .
Su S. : "Hardware Description Languages and
"Applications : An Introduction and

Prognosis", Computer, Juhe-1977, pp. 10-13

1
Su 5. and Barray M. : "LALSD - A aﬁanguage
for Automated Logiec and System Design",
proe., International Symposium on CHDL and
Applications, September-1975, pp. 30-31

Su S. : "A Survey of Computer Hardware
Description Languages 1in the u.s.a.n,
Computer,-Deeember—197ﬂ,'pp. 45-51

Lipovski G.J. ¢ "Hardware ' Description
Languages : from the Tower of Babel™,
Computer, ‘June-1977, pp. 14-17

4
Schuman S.A. and Jorrand P. : "Definition
Mechanisms in Extensible Programming
Languages", proc., Fall Joint Comput,
Conf., 1970, pp. 9-20

—,

o —
(-:‘_...Av,. N

P~ pemy pen

M NGNS, e SEN SN W P pem

(Jordan-20)

(1-Breuer-21)

(2-Breuer«22)

(Torng-24)

(Friedman-25)

"(Procéedings-23)

(Stewart-26)

\

(Bell-27)

(Vogel-28)

(Flon—ég)

s

Prentice-Hall, N.J., 1972

Jordan H.F. and Smith B.J. : "The
Assignment Statements in Hardware
Desecription Languages", . Computer,
June-1977, pp. U43-49 . y

~

Breuer M. : Ed., "DESIGN AUTOMATION OF
DIGITAL SYSTEMS : THEQORIES AND TECHNIQUES",

-+

Breuer M. : . "Recent Developments in the .

_Automated Design and Amglysis of Digital

Systems", proc., " IEEE, voel. 60,
January-~1972, pp. 12-27

"IEEE : Ed., "1975 INTERNATIONAL SYMPOSIUM:

ON C.H.D.L. AND APPLICATIONS PROCEEDINGS"

Torng H.C. : Ed., WLOGICAL DESIGN OF
SWITCHING SYSTEMS3", Addison-Wesley, Mass.,
1964 '

Friedman A. and Menon P. : Ed., "THEORY AND
DESIGN- OF SWITCHING CIRCUITS", Computer
Science Press, Calf.’, 1975 _

. . »

: : - 5
Stewart J.H. : "LOGAL : A CHDL for Logic
Design and Synthesis of Computers",
Computer, June-1977, pp. 18-26

Bell C.G* and -Newell §, : Ed., "“COMPUTER
STRUCTURE : READINGS ~ AND EXAMPLES",
MeGraw-Hil1l, N.Y., 1971

Vogel E.W. : "A Model Approach to the
Description of Hardware Systems", proc.,:
International .Symposium on CHOIL and
Applications, September-1975, pp. 32-37

Flon L. : "Program Design with- Abstract
Data Type", Dept. of Comput. Sec., Carnegie
Mellon U., Pittsburg, Pa., June-1975

i

- 11 -

-

(Opler-30) _ Opler A. : "Procgdure—Orienfgak\xanguage
. Statements to Facilitate Parallel
_ - . Processing", Comm. vol. 8,:no. 5, May-1965,
o, ‘ pp. 306-307 S |
. ' s ' ! . '
(Bartee-31) , .Bartee T., Lebow I., and Reed I. : Ed., "

‘'THEORY AND DESIGN OF DIGITAIa MACHINES",
MeGraw~H1i1ll, N.Y., 1962

e

(Schorr-32) . Schorr H.' : "Computer Aided Digital Systenm
.- Design * and Analysis Using 'a Regilster
Transfer Language", . IEEE Trans., - vol.
EC~13, December-1964, pp. 730-737 -

