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ABSTRACT

Alternative Quantum Theories and The Two-Slit System

Jean-Guy Blouin

A basic experiment of quantum mechanics, the two-slit experiment, will be re-
exarnined using alternative descriptions of quantum mechanics. The various classical and
quantum theories needed will be introduced, and the two-slit system will then be solved
using Feynman's path integral formulation.

The resulting wave function will then serve as the starting point for both Bohm's
quantum potential interpretation and Nelson's stochastic quantum interpretation. The
observed interference pattern in the two-slit experiment will be reinterpreted in terms of
the quantum potential, eliminating the need for the duality principle.
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Introduction

The classical interpretation of quantum mechanics (henceforth denoted
CQM) assumes that a physical state of a certain system is completely determined
by a wave function which allows a probabilistic clescription of the examined model.
Thus no clear evolution of a system can be determined, as only the evolution of the
probabilities can be obtained. As a consequence, no clear trajectorics of particles

can be theoretically observed.

Although CQM is quite adequate for the current description of the micro-
scopic world, it is by no means certain that it will remain so in the futurc. The
existence of other quantum interpretations might therefore prove useful in ex-
panding the microscopic knowledge of the universe. Two such interpretations will
be applied to the two-slit system, namely Bohm'’s quantum potential interpreta-
tion and Nelson’s stochastic interpretation, both of which allow the existence of

trajectories. These two theories will be applied to the two-slit system.

The present paper contains two parts: part one contains the physical back-
ground necessary to comprehend the methods used to solve the two-slit experi-
ment, while part two will solve the experiment, giving the quantum potential

and the forward drift, leaving out as few steps as possible.




Part One

General Physics

Introduction

Part one contains the classical and quantum theories needed for the sec-
ond part. Chapter 1 deals with the classical theories of Lagrange, Hamilton
and Hamilton-Jacobi needed to understand Chapter 2, which deals with quan-
tum mechanics. The different theories discussed here include a short review of
Schroedinger’s CQM, Bohm's quantum potential interpretation, another short re-
view of Nelson's stochastic mechanics, and finally Feynman’s path integral formu-

lation, specifically needed to solve Schroedinger’s equation for the two-slit system.



Chapter 1

Classical Physics

1. Introduction

Chapter 1 introduces the basic elements of classical mechanics that are nec-
essary for the comprehension of the following material. All the subjects covered
are developed in (7], [8].

A fundamental notion in mechanics is that of particle, or material point.
The position of a particle in R* is determined by its position vector r, with
coordinates z,y,2. The derivative of r with respect to the time ¢

d
V= —r

dt

is called the vector velocity of the particle. Differentiating once again with respect
to t will give the vector acceleration. Henceforth, differentiation with respect to
t will be indicated by a dot: v =1.

Determining the position of a system consisting of N particles requires
N position vectors, or 3N coordinates, called the degrees of freedom if they
uniquely define the position. It might prove more useful to use coordinates
other than the cartesian ones, say qi, g2,...,gs, to fully determine the position
of a system. The {g:}i=1,..s are called the generalized coordinates, and their
derivatives {¢;}i=1,...,s the generalized velocities. The complete knowledge of the
¢:’s and ¢;’s is enough to fully determine the state of the system and to predict
its future.

2. Lagrangian Mechanics

Lagrange’s equations of motion are derived using Hamilton’s principle of
least action which states that the motion of a system of particles from time ¢, to
the time t2 is such that the integral

t2

S= L(Ql,---,(b, ‘h,---,d.nt)dt (1-2.1)
131



must have a stationary value. The function L(qi,...,qs, ¢1,...,4s,t) = L(q, g, t)
is called the Lagrangian, and S the action.

Suppose the system possesses only one degree of freedom, and let g = q(t)
be the function for which S has a minimum. Hamilton’s principle can be restated

as ta

68 =6([ L(g g t)dt) =0, (1.2.2)

ty

or, performing the variation,

“ 9L L.,
85 = | Iz 00+ Z7bdldt =0, (1.2.3)

131
where 6§ = j‘%&q, and éq is the variation of the function ¢(t).

Integrating by parts the second term of (1.2.3) yields

0L ., . ["0L doL, .
88 = Groall + /t: 50 - 7 3700t = O (1.2.4)

the first term of which vanishes, since éq(¢t;) = d¢(¢2) = 0. The value of the

integral must be null for all values of §q, from which

T E(E}-) =0. (1.2.5)
If there is more than one degree of freedom, then there will be s equations of the
form 6L d, 0L
— ——(==)=0 i=1,...,s. 1.2.8
92 dt(aq,-) 0 i s (1.2.5")

If the Lagrangian of the system is known, then (1.2.5’) gives the equations of
motion of the system of particles as a system of s second order differential equa-
tions requiring 2s initial conditions; say s initial positions and velocities. The
above constitutes a more intuitive approach to Lagrange’s equations. For a more
formal approach, the reader is referred to [16], theorem 6.8, where one can go
directly from (1.2.2) to (1.2.5).

The Lagrangian function of a system is defined as the difference between its
kinetic and its potential energies. References [7] and [8] give two different ways
of determining the Lagrangian. Thus it is simply stated that

L=T-V, (1.2.6)

4



where T is the kinetic energy and V' the potential energy.

Taking the total derivative of the Lagrangian with respect to time,
dL oL . oL, OL
ar 21:‘6—(1:(114—;55%4- B

8La

which, using Lagrange’s equation to replace the *'s can be written

dL d 3L 6L d,. OL oL
Z dt Bq)+zc'9q “t o _ZE(Q‘EE)+E’
or
i(Z'._a_L_'._L)_*_Q{'__
dt 2% 3g; at

The quantity inside the brackets is called the energy E.

Thus
d5 __oL
d ot
If the Lagrangian is time independent (as will be assumed from now on), then

%E- 0, and the energy is thus a conserved quantity.

For a system of particles, the Lagrangian is given by

2
meV;
L=) —=2-V(r,..) (1.2.7)

where the potential V depends only on the position vectors of the particles. Or,

in generalized coordinates,

L(g,q) = T(q,9) - V(q)-

Using Euler’s theorem for homogeneous functions,

Z GO aq, Z P aq, T,

so that
E=T(g,4)+ V(9), (1.2.8)
or, in cartesian coordinates,
mav?
E=) —=2+V(r,rs...) (1.2.8)

a

5



Space being homogeneous, it is logical to assume that a parallel displacement
of a system in space should not affect its physical properties. In generalized
coordinates, gé‘: = p, is called the generalized momentum, and g—;'l- = F, the
generalized force. Lagrange's equations are then written p, = Fi, which, in
cartesian coordinates (in which case the generalized momenta are equivalent to

the components of the vectors p,) are equivalent to Newton’s law of motion

Pa = Fa.

3. Hamilton’s Equations

Lagrangian mechanics requires the knowledge of the generalized coordinates
and velocities. It is also possible to represent the equations of motion in a form
involving the generalized coordinates and momenta, passage from one set of

coordinates to the other being performed via the Legendre transformations.

Taking the total differential of the Lagrangian yields
oL oL .
dL = Z a—qi'dqi + Z: 'éa'dq..

But, by definition, %LI = p;, and applying Lagrange’s equations, ?Tf.- = pP;, SO

that
dL =Y pidgi + Y _ pidds. (1.3.1)

Rewriting the second term as
}_:Piddi = d(z pidi) — Z ¢idp;,
(1.3.1) becomes
dL =) pidgi +d()_pids) — D Gdpi,
or
dd_pii— L) =-)_pidgi+ Y didp.

The quantity inside the brackets is called the Hamiltonian of the system,

H(p,g,t) = ) pidi ~ L. (1.3.2)

6



If the equations defining the generalized coordinates do not explicitly depend on
time and if the forces can be derived from a potential, then H = E. Thus,

dH = - Zz’udq; + Z‘Ldpt = Z gg‘dpt + Z 'g‘gdqu

from which

. O0H

g = Ep: (1.3.3a)
: oH
p, = —-az (1.3-3b)

which constitute Hamilton’s equations of motion.

4. The Hamilton-Jacobi Equations

The choice of the generalized coordinates g; is by no means limited by some
constraint. It is therefore possible to choose other coordinates @, which might de-
pend on the old ones, say Q; = Qi(g,t). These transformations (sometimes called
“point transformations”) do not alter either Lagrange’s or Hamilton'’s equations
of motion. However, the Hamiltonian formulation also allows the use of the gen-

eralized momenta p; as coordinates, which would suggest the use of new variables

defined as
Qi = Qi(q’p) t) (1-4.16)

P, = Pt'(‘]) b, t) (141b)

which should satisfy Hamilton’s equations of motion for some new Hamiltonian
K = K(P,Q):

: 0K
. 0K
P=-55- (1.4.2b)

Transformations (1.4.1a) and (1.4.1b) for which a new Hamiltonian K can be
found such that (1.4.2a) and (1.4.2b) are valid are called “canonical transforma-
tions”.



Consider the action S given by (1.2.1), and its variation (1.2.4), where 65
depends on the upper bound t; (i.e. q(t2) # 0), and 6(g(t1)) = 0. Thus (1.2.4)

becomes, after replacing %’f by pi,

6S = piba;, (1.4.3)

(since the second term of (1.2.4) vanishes), from which

5 .. (1.4.4)

6q,-
Consider next the action as a function depending explicitly on time. Then

ds 48 as., as .
-a';--é;'*' i 'a_qiql—'é't_'*'zplql‘

However, from (1.2.1),

as_ .
t
so that
L=+ ;Piqn
or 85
5 =L~ Zpaqz,
or, finally, using (1.3.2),
-Q'-S- =~-H (1.4.5)
ot~ -

From (1.4.4) and (1.4.5),

dS = pidg; — Hat,

and the action can then be written as
S= /[Zpidfh — Hdt),

whose variation is given by

6S = 6/[Zp;dq.- - Hdt] =0, (1.4.6)

8




which the new Hamiltonian K must also satisfy in the new coordinates:

6 / [} P.dQ. - Kdt] =0. (1.4.7)

Equivalence of the two conditions (1.4.6) and (1.4.7) does not however mean
that the integrands are equal. Equivalence will result if the two integrands differ

only by a function F' depending on the coordinates, momenta and time. Thus

3 pidg; — Hit = 3 PidQ: - Kdt + dF,

or

dF =) pidg - ) PdQ; + (K — H)dt. (1.4.8)

Thus oF
pi = 5;,. (1.4.92)

oF
P = —-a—Q—‘_ (1.4.9b)
oF

K=H+ o (1.4.9c)

and (1.4.9c) gives the required form for the new Hamiltonian.

Taking F = S implies that K = 0, since %‘;’: = —H. Setting K = 0 also
ensures that the new coordinates P and Q are constant in time, since Q = 0 and
P =0 (by (1.4.2)). Thus using (1.4.4), (1.4.9¢) finally becomes

S aS a8

—-—+H TR/ P Rr-u S ¥ r-wa |

= t) =0, (1.4.10)

which is known as the Hamilton-Jacobi equation.




Chapter 2

Quantum Physics

1. Introduction

Chapter 2 deals with the different quantum interpretations applicable to
the present problem. The basic interpretation of quantum mechanics (CQM)
will be dealt with in the first section, to be followed in order by the formulations
of Bohm, Nelson, and finally, Feynman. For a fuller understanding, the reader is
referred to (3], [4], [5], [9], [15] for a richer description of CQM, to [1], (2], [11] for
Bohm's interpretation, to [10] for Nelson’s interpretation and finally, to [6] for
Feynman's interpretation; although, in the last case, many books on elementary
quantum field theory will contain a small section on the subject (see [13] for

example).

2. CQM

Classical mechanics as elaborated in Chapter 1 allows the description of
a macroscopic world (such as a planetary system) with sufficient precision for
the current needs, but suffers great shortcomings when applied to microscopic

objects.

Light was originally thought by Newton to be composed of small parti-
cles, until wave-like properties were later to complicate the picture (interference,
diffraction). A study of blackbody radiation led Planck to state that for an
electromagnetic (EM) wave of frequency v, the only possible energy states are
whole multiples of hv, bringing about a quantization of the energy. Einstein
then postulated that light is composed of a stream of photons, each of which
possesses energy hv. Thus wave-like parameters (angular frequency w = 27v and
wave number k, with | k |= 2x/)) and particle-like parameters (energy E and
momentum p) coexist and are connected by the Planck-Einstein equations:

E=hv=hw (2.2.1a)

p = hk (2.2.1b)



where h = h /27, h being Planck’s constant: h = 6.62- 10734 Joule - second.

CQM states that both wave-like and particle-like aspects must be investi-
gated for a full description, as can be seen in the two-slit experiment (see figure
I1.2.1). A source S) emits a light beam that hits a screen S; pierced with two
slits A and B which illuminates an observation screen S3. If one of the screens
is blocked, say A, then a diffraction pattern I (z) appears. However, if both
slits are open, the observed pattern I(x) does not correspond to the sum of the
separate patterns:

I(:II) # Il(:r:) + Iz(:l:),
see figure 11.2.2.

If photons are emitted one by one from the source S, the same diffraction
pattern I will appear on the screen S3, although each photon produces a localized
impact. Thus both wave-like and time-like properties are seen to coexist, bringing

about a wave-particle duality.

It can also be deduced that it is impossible to observe the interference
pattern I and to find out from which slit the photon is coming, thus destroying
the classical idea of trajectory. Since the individually emitted photons hit the
screen in an aleatory manner, a probabilistic model seems appropriate for the
description of the behaviour of a photon.

A study of the absorption and emission spectrum of atoms led to a quan-
tization of the energy, which in turn led de Broglie to postulate that material
particles, just like photons, possess wave-like properties, so that all particles
satisfy (2.2.1), henceforth called the de Broglie-Einstein relations. (2.2.1b) yields

A= 2.2.2
o1 (22.2)

which is called the de Broglie relation. It gives the wavelength A of a matter
wave associated with the motion of a material particle having momentum p.

Thus, in quantum mechanics, a particle is fully described by a wave function
¥(r,t), which is related to the behaviour of the particle by a probability density
p(r, t) through Born’s postulate: the probability P(r,t) that a particle associated

1




with a wave function ¥(r,t) be located at the instant t in a volume element

d®r = dxdydz situated at the point r is given by
dP(r,t) = C | ¥(r,t) |* &®r = Cp(r, t)d’r, (2.2.3)

C being a normalization constant (henceforth assumed to be one).

For a particle of mass m under the influence of a potential V'(r,t), the wave

function satisfies Schroedinger’s equation
iﬁ—q-z[)(r t) = —E—szp‘(r t) + V(r, t)y*(r, t). (2.2.5)
ot 2m ' ’

Multiplying (2.2.4) by ¥*(r,t) and (2.2.5) by —9(r,t) and then adding yields

_ 1.2
lh'gt'[W (l’, t)’lp(l‘, t)] = "2h_m[¢. (r,t)V2¢(r, t) - 11)(1‘, t)V2¢‘(r, t)]
which can be written
2 e 8) + ol OV ) — YOV D] =0 (226)

where p(r, t} =| ¥(r,t) |? is the probability density. Letting J(r,t) = % VY-
¥ V1*), (2.2.6) becomes

ggp(r, t)+V-J(r,t)=0, (2.2.7)

which is known in fluid mechanics as the equation of continuity, suggesting a
reinterpretation in terms of a “probability fluid” whose density and movement
are described by p(r, t), the probability density, and J(r,t), the current density.

One last concept to be dealt with is Heisenberg’s uncertainty principle,
which gives an estimate on the limitations of giving a deterministic interpretation
of the microscopic world. The uncertainty principle states that if a measurement
of position is made with accuracy Az and a measurement of momentum is made
with accuracy Ap, then the product of the two errors is never smaller than
h/2 : AzAp > h/2. It is thus impossible for an experiment to simultaneously
determine the exact values of position and momentum. Using the de Broglie
relation (2.2.2), the uncertainty principle becomes Az Ak > 1/4r, where k = ngg
is the wave number. This states that it is impossible to simultaneously describe

12



particle-like properties and wave-like properties. There is also a statement of the
uncertainty principle relating time and frequency. AtAv > 1/4r, which, with the
help of Planck’s relation (2.2.10) can be written AEAt > t/2. Mathematically
speaking, it is possible to write down a generalized uncertainty relation in terms
of standard deviation, AAAB > | (i[4, B]) |, where AA, AB are the standard
deviations of physical quantities A and B, and (i[A, B)) is the expectation value
of the commutator of their hermitian operators.

3. Bohm's Interpretation

A quantum interpretation was developed in 1951 by David Bohm which
allowed a greater insight into the world of the infinitely small. An account
follows for the one particle case, generalization to many particles being trivial
(for references, see [1], [2], [11]).

As with CQM, the basic starting point is the Schroedinger equation (2.2.4)

6111 h
8t 2m

The wave function v is now written in the form

i — V) + V(r). (2.2.4)

¥ = R exp (iS/h), (2.3.1)

where R, S are real. Inserting (2.3.1) into (2.2.4) and then taking the real and
imaginary parts yields the following equations for R and S:

OR

%= ——(RV"’S + 2VRVS) (2.3.2a)
%:' _[(VS)2 V() - _h_2_ V;R]’ (2.2.2b)
which, letting P(r) = R2(r), can be rewritten
v (P = (2.3.3a)
at >+ (ZS)Q +V(r)+U(r) = (2.3.3b)
h
h Ulr) = :"_22;5. (2.3.4)



Remembering that P = R? = 1 + P, equation (2.3.3a) can be compared
with the equation of continuity (2.2.7) expressing the conservation of probability,

and P%s- is then interpreted as the mean current of the particle.

Equation (2.3.3b) is equivalent to the Hamilton-Jacobi equation (1.4.10) for a 1
particle system if V + V is interpreted as the total potential for the system.

Equation (2.3.4) is thus interpreted as a quantum potential which acts on the
particle in addition to the classical potential V. Thus (2.3.3b) is still considered
to be the Hamilton-Jacobi equation for a particle moving with velocity v =
VS(r)/m and with potential V + U. The total force acting on the particle is
then given by F = —V(V(r)+U(r)) = F+F,, where F; = —VU can be thought
of as a quantum force derived from a quantum potential. It is thus possible to
find trajectories by integrating v or by integrating Newton's law of motion

mg—z?r = -V (V(r) + U(r)), (2.3.5)

indicating the usefulness of the quantum potential.

Bohm'’s quantum potential will be used in part two to illustrate how the
interference patterns in the two-slit experiment might arise in terms of spatial

anomalies.

4. Nelson’s Stochastic Mechanics: The Forward Drift

Nelson's stochastic mechanics uses a (Markovian) diffusion process satisfy-
ing the Langevin stochastic differential equation (see [14]) given by

dq(t) = B(q(t), t)dt + V2vduw(t) (2.4.1)

with diffusion coefficient v = h/2m, forward drift
e (T |
B(r,t) = —[Re ( ” )+ Im( ” )8 (2.4.2)

and probability density p(r,t) =| ¥(r, t) |? instead of a solution to Schroedinger’s
equation as its basic model.

Solving (2.4.1) gives a stochastic process whose probability density is identi-
cal to that obtained from a normalized wave function ¥ (i.e. (2.2.3) with C = 1).

14



Thus stochastic mechanics and CQM are experimentally indistinguishable. How-
ever, a solution of (3.4.1) gives a path of the diffusion, thus allowing the existence
of trajectories (see [10]).

Although no stochastic trajectories will be determined in part two, the gen-
eral configuration of the forward drift will be sufficient to explain the interference
patterns in the two-slit experiment.

5. The Forward Drift and The Quantum Potential

As in section 3, let
1 = Rexp (iS/h). (2.3.1)

Inserting in (2.4.2), the forward drift can then be written as

h VR VS
B(r, t) = E[ﬁ- + T] (251)
Differentiating (2.5.1) yields
Mo,  2m (VR?* V3§ o
—E—VB = -ﬁ-U R? + T (2.«.).2)

where (2.3.4) was used on the LHS. Thus a relation linking the forward drift and
the quantum potential is found.

6. Path Integrals

Feynman's path integral formulation is introduced, as it will prove useful in
the determination of the wave function in the two-slit experiment. For a complete
description of the theory, the reader is referred to [6).

In CQM, (b, ts) is the probability amplitude that a particle is at the point
a» at time ¢,. The probability that the particle is situated there is then given by
(2.2.5):
P(b, ts) =| %(b,ts) | .

Feynman's path integral formulation of quantum mechanics is based on
the notion of a propagator K(b,a) defined as the probability amplitude for a

15



transition from a point g, at time ¢, to a point g at time ts. As in (2.2.3), the
probability that a particle goes from a point g, at time ¢, to a point gy at time
ty is given by

P(b,a) =| K(b,a) |*. (2.6.1)

The propagator is found by taking the sum over all possible paths from g,
to gs. It is found in [6] to be given by

b .
K(b,a) = / exp [2.5(6,0)Da(t) (26.2)

where S(b, @) is defined by (1.2.1) and D is used to distinguish between the usual
integral and the path integral. For the full form, see [6].

Suppose the time interval between t, and t; is divided into two, say at time
te: ta <tc < tp. The action (1.2.1) can then be written as

S(b,a) = S(b,c) + S(c,a), (2.6.3)
and the propagator as

K(b,a) = / K(b,c)K(c,a)Dygec. (2.6.4)
ge

Thus the transition from (ga,%s) to (gs,s) can be seen as a transition from

(ga, ta) to all available points g. at a time ¢, followed by a transition from (g, tc)

to (Qb> tb)'

The propagator K (b, a) is actually a wave function describing the system at
the end of its evolution. Thus, K(b,a) = ¥(gs, ts) is actually the wave function
corresponding to the solution of the Schroedinger equation. It is thus possible to
solve Schroedinger's equation simply by finding the propagator for the system in
question, as will next be done for the two-slit system.
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Part Two

The Two-Slit System

Introduction

Part two deals specifically with the two-slit system and uses the formulations
introduced in part one to solve the problem. Expressions for both the forward
drift and the quantum potential will be found. Chapter 3 deals with the one-slit
system. Chapter 4 will use the results of Chapter 3 and expand them to the
two-slit system. For simplicity, the experiment will be considered as taking place
in the z — ¢ plane.

17



Chapter 3
The One-Slit System

1. Introduction

Suppose a particle (say e™) is emitted at time ¢t = 0 from the origin z = 0.
At the time ¢t = T the particle goes through a slit screen with the slit centered
at 2o > 0 and with length 2b. For t > T, the particle is diffracted by the slit. At
t=T+T,T > 0, the particle is situated at the position z (see figure IIL.1.1).
The wave function for this particular situation will now be computed using path

integrals.

2. The Wa nction

A particle travelling fromz =0att=0toz =z at ¢t = T + T encounters
an obstacle (the slit screen) at ¢t = T. The action for the system must be then
written as in (2.6.3) and the propagator as in (2.6.4), with the point ¢ indicating
the position of the particle as it passes through the slit (in this case, ¢ = y).

Suppose that at time ¢t = T the particle is situated at a distance less than
+b of zo (see figure I11.1.1). The propagator (or, equivalently, the wave function
(x,t)) can be obtained by integrating over the length of the slit. Thus (2.6.4)
can then be written in this case as

b
¢(x’ T) = / K(x + xO)T + T; Zo + y7T) ’ K(zO + ¥, T; 0’ O)dy) (3'2'1)
~b

where the first term describes the particle as it goes from the slit to its final
position, and the second term describes the particle from the origin to the slit.
As the particle is not influenced by an external source or potential, it then moves
as a free particle, so that the Lagrangian is given by (1/2)mx2. The particles
that get through the slit also move as free particles, since they are not acted
upon by a classical potential.

The propagator (2.6.2) for a free particle with the action (1.2.1) given by

tp ty
S=[ Lizt)dt= %izdt

ta ta
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is expressed as

im (zp - Ta)?

m
K(b,a) = (m-_—-;) exp [—= o (ts = ta) —]. (3.2.2)

Inserting (3.2.2) into (3.2.1), the wave function becomes

: Y
vl 1) = [ (G e (25220

m_ 3 im (zo + y)?
(=) e (250 Wy,

or

[ im (z—y) | (s0+ )
v M= [ e (Rt + P Dl @29)

Consider next the function G(y) defined by

1, for-b<y<b

Gly) ={ 0, for |y|>b.

Introducing this function in (3.2.3), the integral can be written as

oo 2
sen) = [ UL op RS  Bo iy,

Consider instead G(y) to be defined by a Gaussian function,

G(y) = exp [%g;], (3.2.4)

so that approximately two-thirds of the area under the curve lies between —b
and b. Introducing this soft slit approximation in 1, the wave function becomes

s = [ T e (5 (5 CI) e (G,

which can be rewritten as

im z* z} )]_

P(z,T) = 2 h\/_ xp[Zh(_
/ o th'r) 2hT 262] v+ (“'—)d (3.2.5)

-00
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This integral is of the form

/oo exp [az? + fz)dz = 1/_770 exp [—4?:] for Re(a) < 0, (3.2.6)

-00

so that, integrating (3.2.4), the wave function is given by

2

m T lm.’B

. “’0)].
2mivVIT 5%7 - .'2.'!1(.% - ’1'!')

Y(z, 1) =

exp (-(EV(5E + Yk - ) - 550 h

which can finally be written as

Y@, T) =[50 wn—+‘+——n*

op (BB (@ Zpcd e b oy gan)

Equation (3.2.6) thus gives the wave function for a particle of mass m emitted
from the origin and passing through a slit of diameter 2b centered at xo at time T’
and stopping at the position z at time T'+4 Y. Using Born’s postulate (2.2.3), it
is thus possible to find the probability that the particle is located in a particular
volume element. It is however impossible to gather more information about
probable trajectories for the particle using CQM as the theory does not allow

such notions.

It will however be possible to gather more information about the movement
of the particle by using the formulations of Bohm and Nelson, both of which are

outlined in part one.

3. Bohm'’s Interpretation

The main goal in this section is to find the quantum potential given by
(2.3.4). In order to do so, the wave function must first be expressed in the
form (2.3.1) in order to find R and S, knowledge of which would also allow the
determination of possible trajectories.

20
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As a first step, rewrite equation (3.2.6) as

sty oo [ =FIT —imb(T+T)
’ v2rh \| (RTT)?2 + m2b4(Y + T)?
-m2b%(zY — zT)?
P (ST 4 omZh (T 1 1)
im g2 2§  m?bY T+ T)(zY — 2T)?

explor(x+ 7 TT{hTT)?] & mibA (T 2 )2

(3.3.1)

so that only the square root need be considered. Let

T(Y) =y/=FTT - im (Y + T)/[(FTT)2 + m2b4(Y + T)?]

! V& ¥, (3.3.9)

TR s e (T £ T

where @ = —RYT and B = -mb?*(T +T). Let z = a+i8 = w(cos 0 + i sin 6).
Then 23 = wi[cos (& -+ k) + i sin (¢ + kn));k =0, 1.

Only & = 0 needs to be considered since k = 1 will not alter the results. From
the definition of z, it is clear that § and w are given by

mb2(T +T)

= tan’l(g-) = tan~}( ST )
and
w=4x?+62 = \/(Tz'I‘T)2 +m2b4(Y + T)2.
Thus
Vo +i8 = vVw(cos [%- tan'l(ﬁ)] +1 sin [l tan'l(—ﬂ-)]),
o4 2 o
and

I(Y) =w? (cos [-12- tan"l(-g-)] +isin [-;- tan"l(g-)]). (3.3.3)

For si.uplification, let ! 8
— = =1/ =
F(ex,f) = 5 tan (oc)’
_m 2 i  m*bT+ Y)(xY —zT)?
GeT)=sp(x+7 - TT[(hYT)? + m2b* (X + 'r)z])’
mbw=3 [ —m2b?(zoY - zT)? ]
Yok P RTTE 4 2mii (X + T)2

H(z,T) =
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Then the wave function becomes, after expanding the exponential,
(z, ) = H(z, T)(cos F(x, ) +isin F(x,B)) - (cos G(z, T) + i sin G(z, 1)),
which can be written

¥(z,Y) = H(z, T)[cos [F(cx, B) + G(z, T)] + i sin [F(cx, B) + G(z, T)]].
Thus (z, T) = T + iW, and 1) can now be written in the form (2.3.1), where

R?2 =T2% + W?
- w
- —1 —
S =h tan™"( T )-

Thus
R=H(z,T) (3.3.5a)
3 1. mb?(Y +T)
S = h tan [tan[2 tan (—_hrT )+ G(z, T)]]. (3.3.5b)
Rewriting (3.3.5a) as
R=q(Y)er®m, (3.3.6)
the quantum potential then becomes
-h?V?R -h%,_, 9
U, X) =5~ = 2~(V?r(z, 1)) + (Vr(z, T))?)
= 6RTY? - ( : SR ) o4 Y
T2 [(RTT)2 + m2b4(T +T)2]  [(hYT)? + m2b4(Y + T)2|”

where, recalling, m is the mass, h Planck’s constant, 2b is the slit size, zo is the
distance from the center of the slit to the line pasing through £ = 0, and T is
the time that the particle takes to reach the slit screen (see figure II11.1.1).

4. The Forward Drift

The forward drift is defined in equation (2.4.2) as
e (T (T
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Writing 9 as in (2.3.1), the forward drift can be rewritten as

h VR 1
B(z,t) = —(—p~ + 3 V5),

where R is given by (3.3.6) and S by (3.3.5b). Thus
h
B(z,t) = -n-l-(Vr + VG), (3.4.1)

or, filling in the details,

B, m2b*T(zoX —zT)

Bt = 5Ty + m2oi (1, 72
m,z  m*b (Y +T)(xoX —zT)
+ 7 F * AT T i T (3.4.2)

h

5. The One-Slit Experiment

Figures I11.5.1 and IIL.5.2 show two views of the quantum potential with
the slit situated at the origin, while figure II1.5.2 shows a gradient plot of the
quantum potential. The forward drift is shown in figure II1.5.3, where the slit is
once again situated at the origin.

As a particle emitted from a source (situated to the left of the slit, see figure
II1.1.1) passes through the slit, it encounters the quantum potential where it is
strongest, keeping it from deviating to the sides. As it travels away from the slit,
the effect of the quantum poteatial diminishes, allowing the particle to travel
freely. The particle thus seems to be attracted to regions where the quantum
potential is strongest, i.e. it can be thought of as travelling on the quantum
potential surface. In the regions where the quantum potential is lowest, the
particle is pushed towards regions where the quantum potential is stronger, as
indicated by the forward drift (forward being in the z-direction, i.e. from left to
right).

The forward drift thus gives a measure of how the particle is pushed around
by the quantum force. A positive forward drift pushes the particle to the right,
whereas a negative forward drift pushes it to the left.
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Putting the two concepts together allows one to infer how a particle may
travel. After the particle has passed through the slit (coming from the left),
it encounters a region where the forward drift is stronger. It tends to keep
the particle in the center, where the quantum potential is stronger. A particle
deviating to the side, where the quantum potential is lower, is pushed back in the
other direction towards the quantum potential plateau. As the particle continues
along its path, the quantum potential stabilizes as the forward drift weakens,
allowing the particle to scatter. If the experiment would be repeated with many
(similar) particles, they would all encounter the same quantum potential and
forward drift, and so would all scatter as they travelled, with more particles
ending up at the center and less towards the sides. Figure III.5.4 shows a slice
of the quantum potential which is in agreement with the scattering.

The quantum potential can then be thought of as the evolution of the
particle density, more particles appearing where it is weaker (where the forward
drift pushes them back towards stronger regions).
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Chapter 4

The Two-Slit System

1. Introduction

Suppose, as in Chapter 3, that a particle is emitted at time ¢t = 0 from the
origin £ = 0. At time ¢t = T the particle encounters a screen containing two slits,
so that the particle passes through one of the slits. At t =T+ T, T > 0, the
particle is situated at the position = (see figure IV.1.1). We shall proceed as in
Chapter 3 in order to find the wave function.

2. The Wave Function

A particle reaching the slit screen at ¢t = T has two possible ways of getting
through, as it can pass by either slit. Thus actually two events need to be
considered: the particle passes through slit A, and the particle passes through
slit B. Both contributions must be taken into account. A particle passing through
slit A and reaching a point z at ¢t = T+ 7 is described by 14 (z, T) while a particle
passing through slit B and reaching the point = at ¢ = T + T is described by
a wave function ¥p(z, T). Thus the total wave function for a particle reaching
point z is expressed as

¢(‘T7 T) = 1/),4(22, T) + ¢B($r T) (4'21)

Using the path integral formalism, (4.2.1) becomes

b
¥(z,T) = / K(z+zog, T+ T;z04—¥',T) - K(zoa — ¥/, T;0,0)dy’+
-b

b
K(Z+$OB, T+ T; XOB +y, T)K(zOB + v, T; 0, O)dy

—b
Now, since o4 = —ZoB,
b
1/’(3, T) =/ K(I + zOBaT+ T; ~XoB — y") T) ' K(—IOB - y”T; 0’ O)dy'+
-b
b
/ K(z+zos, T + T;z0B + 4, T)K(zoB + y, T; 0,0)dy.
-b
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The second integral (i.e. ¥p(z, T)) is the same as was dealt with in section 3.2,
asince slit B is the same slit that was considered in Chapter 3. Thus the wave
function ¢ g(z, T) is given by (3.2.7) or equivalently by (3.3.1), and the functions
R and S (henceforth denoted by Rp and Sg) are given by (3.3.5a) and (3.3.5h)
respectively, letting zo = zoB.

The method for solving the first integral is exactly the same as in section

3.2. Thus, using (3.2.2) to expand the propagators,

_ b m im (z + 2z0p + ¥')
va@ ) = [ (o) exp (B YD),

s N2
() exp [EREL Ty (42.3)

For simplification, let z + 2zop = 4. Then

ot m im (y+¢')? | (zoB+V')>, .,
Ya(z, T) —/_bm exp ['27;( T+t T )ldy'.

The Gaussian function (3.2.4) is once more used, allowing (4.2.3) to be written

as

m % im ,y2  z3g
JT) = —=(%= + 22
va® ) = VAT Il S35 2

im im 1,2 im 7Yy  ToB, n,,
P (Gr+apr — ¥ T T T W

This integral is again of the form (3.2.6), so that, after simplifying, the wave
function is expressed as

[m 1 1 ik

im 4?2 z2 ToBw.,1 1 ih
e (215 + 28 — (L + T2 g+ 7+ =)l w2
4.2.

The wave function for the two-slit experiment can now be written as ¥(z,T) =
Yalz,Y) +¢yp(z, T), where Y 4(z, T) is given by (4.2.4), and ¥ g(z, T) by (3.2.7)
or (3.3.1). However, in order to find the quantum potential, we will want to write
Ya(z, T) in the form (2.3.1).
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3. Bohm'’s Interpretation

Proceeding as in section 3.3, rewrite 1a(z,T) in the form

mb | -RYT - imb(T+T
Val@ X) ===\ TirTys + mibh ((“r ¥ :r))2
—m2b?(vT + o T)? I
2(hYT)? 4+ 2m2b4(T + T)?
exp (2L z3p mef_(T-i- T)(yT + zoY)? )
BT T T XT((RIT)? + mI (T + 1)

exp |

(4.3.1)

which is similar in shape to equation (3.3.1). The root being the same, it can
then be expanded similarly as (3.3.2). Thus once again, 1 can be written, after
expanding the exponential, as

Ya(z,T) = Ha(y, T)lcos (Fa(ex, B) + Galy, T)) +i sin (Fa(cx, 8) + Galy, 1)),

where

[

mb(Y + T))
hTT
%B m2b4(YT + T)(yT + zopY)? )
T YT[(RYT)? + m2b4(Y + T)?]

Fa(o,8) = 5 tan}(2) = 2 tan~1(

GA (7’ 16) (

mbw—3} —m2b?2(yT + z0BY)?
Haln T) = —7== e [30yr 4 ambh (T + Ty

Using (3.3.4),

Rpo=Ha(v,Y) (4.3.2a)
2
S, =F tan~! [tan [~ tan—{(M 0T 4 Gatz, 1], (4.3.2b)
2 hXT
where v = z + 2z0B.
Rewriting (4.3.2a) as
R4 =q(Y)em =) (4.3.3)

the quantum potential for slit B becomes

_RRVIR, _-I
2m Ra  2m

Ua(z, T) = (V2ra(z, T) + (VrET))?
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and the forward drift

h VR 1
B“(I’T)=E RAA+ﬁ

VSa]= %(VTA + VGa4).
The quantum potential for slit A, plotted in figure IV.3.1, is similar to the
quantum potential for slit B, with the exception that it is centered on slit A;

similarly with the forward drift (figure IV.3.2).

4. The Two-Slit System

We now have the wave function (z,Y) given by ¥(z,T) = ¥a(z,T) +
¢¥p(z,T), or _ _

P(z,YT) = R4 exp [%SA] + Rp exp [%SB], (4.4.1)
where R4, S4 are given by (4.3.2) and Rp, Sp by (3.3.5). To find the quantum
potential and the forward drift, the wave function must first be written in the
form

¥(z,T) = R* exp [%s'].

Expanding (4.4.1) yields

¥(z,T) = [Ra cos (%‘1) + Rp cos (-Sf-)] +i[R4 sin (i":—) + Rp sin (,S’.?)],

from which

Ss— Sp
h

R4 sin (SA/TI) + Rp sin (SB/TI)
R4 cos (Sa/h) + Rp cos (Sg/h)

Writing Sa/h = sa, Sg/h = sp and with the help of (3.3.6) and (4.3.3), (4.4.2)

can be rewritten

) (4.4.2a)

R = ‘/Ri + R4 +2RARp cos (

S* = h tan™}] )- (4.4.2b)

R" =q(T)v/exp (2r4) + exp (2rp) + 2 exp (ra+ rB) cos (s4 — sB) (4.4.32)

& _F cag-1 &P (r4) sin (s4) + exp (rp) sin (s5), .
an [exp (ra) cos (sa) + exp (rB) cos (33)] (4.4.3b)
The quantum potential for the two slit system is then given by

-h? V2R*
V)= 7
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and the forward drift by

B(z,T) = ':? -V-;_— + %vs'].

Figures IV.4.1 and IV.4.2 show two views of the quantum potential where the
scale is similar to that of figures I11.5.1 and 11.5.2, while figures IV.3.3 and IV.3.4
show the same views of the quantum potential much closer to the slit screen. The
forward drift is plotted (using the same scale as figure IV.3.1) in figure IV.4.5,
while figure IV.4.6 shows the forward drift closer to the slit (using the same scale

as figure IV.3.3).

The quantum potential for the two slit experiment is seen in figures IV.4.3
and IV.4.4 to be made up of the two one slit quantum potentials situated left
and right of the region where they interact. Farther away from the slit screen,
the stable regions vanish as the interactions between the two one slit potentials
grow into a single wildly fluctuating region. Figure IV.4.7 shows three slices of
the quantum potential (where the top one is taken near the slit screen and the
bottom one at the back of figure IV.4.1) which show the increasing fluctuations.
The forward drift (figures IV.4.5 and IV.4.6) exhibits a similar behaviour, as
shown in figure IV.4.8, which shows the equivalent slices in the forward drift.

A particle emitted from a source situated on a line passing midway between
the two slits goes through one of the slits. As in the one slit case, the particle is
then acted upon by the forward drift, which either pushes the particle towards
the high interaction zone of the quantum potential, or propels it towards the

side, where it will eventually encounter the interaction zone.

Once in this area, the forward drift propels the particle forward in an erratic
manner as it is continuously pushed around. Farther away, the magnitude of the
quantum potential diminishes. However, fluctuations in the forward drift still
push the particle sideways, although not as strongly. Farther away still, the
forward drift regularizes in a way that allows the particle to continue on its way

inside a region of stable potential.

All the similar particles released in the same manner would react in the same
way to the quantum potential and the forward drift. Thus, when the effects of

the quantum potential are weaker, the particles are pushed by the forward drift
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into different regions of stable quantum potential, scattering as they continue
on their way. It is thus possible to explain the interference pattern (e.g. Figure
IV.4.7) using a particle-only approach, as undulatory aspects are not necessary

in the quantum potential interpretation of quantum mechanics.

5. Conclusion

It is possible, with the help of alternative quantum descriptions, to gather
additional information on a quantum system (in this case, the one and two slit
systems) such that the underlying quantum structure (e.g. interference) is not
tampered with. In Bohm'’s quantum potential interpretation, the wave function is
reinterpreted as a mathematical representation of a field which exerts a quantum
force on the system (in this case, on the individual particles in the systems). The
elements of the system (e.g. mass, slit width and separation) are combined by
the quantum potential in a system-defined spatial structure which influences the
system, in this case pushing or attracting a particle. Another system-dependant
structure resulting from Nelson’s stochastic mechanics, the forward drift, indi-
cates how the quantum potential acts on the system. It then appears that the
spatial properties of a system are intimately linked to the system itself (different
particles generating different quantum potentials), bringing about a space-mass

relationship reminiscent of relativistic theories.

Although current classical quantum formulations (such as Schroedinger’s
CQM) give a sufficient interpretation of the microscopic world, it can by no means
be ascertained that this will remain so in the future. The current formulations
must then be developed further, or alternative ones must be brought into play.
The two interpretations used fall into this second category. The basic results of
CQM remain valid in Bohm’s quantum potential interpretation, although some
reinterpretation might be required (see [3]). However, additional information is
added, such as the theoretical description of particle trajectories. The same is
true in the case of Nelson’s stochastic formulation, although stochastic quantum
formulations allow a generalisation to relativistic formulations (see [12] for a
richer description of stochastic quantum theories), while Bohm'’s formulation is
as yet a strictly non-relativistic theory. It is nevertheless worth considering the

development of these (or other) quantum interpretations, as they might prove
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useful in the resolution of some unforeseen difficulties which might arise in the

usual interpretation of quantum mechanics.
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Figure II1.5.3
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Figure IV.4.4
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Figure IV.4.5
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