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o - ;,\ Let P(x) be aepolynom'ial of degree n and |P(x)| < l‘lon [0,1].
1
The problem we discuss is, how largé [P'(E)| can be for a given real
. ,numbér £ . Im 1889, A.A, Markov considered this problem and establish—
Cv -
- ed a result known as: Markov's Theorem: If P(x) 1is a polynomial of
+ -~ degree n such that (P(x)l' i‘ 1 on [0,1], then
] 2" (x)| < 2n® '
/ on [O,l] . : 4 Y
> o .
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¢
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Later, in 1912 S.N. Bernstein oﬁserved that the estimate in
< »

Markov's Theorem can be considerably improved, if we restrict ourselves

A}

to the open Intexrval (0O,l). He proved: Bernstein's Theorem: If

a

P(x) ‘s a polynomial of degree n and \P(x)l <1 on [0,1] then

L

o}

v (1-x) Y

- ¥ ) [P'x) | <

The problem proposed by Markev was studied by E :\;!.Milg;onovskagél

In 1956 she established, by the use of the methods of Functional Analy-

»

1
sls, a result we call Markov-Voronovakaja Theorem: ~If+» P(x) 1s a_poly- '

‘nomial of degree n with lP(x)| <1 then

a .
‘ [T (E) | for £ €E,
[Pre) < " &
X ' IZn(E,GE)I for EE€ EZ

-

where Tn(x) denotes the Cebysev polynomial and Zn(x,0‘3 the Zolotarev
A )

polynonials: ET and EZ are sets where they are respectively extremal,

Fod

F
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is d polynonial of degree ® with . 1p(x)! <1 ,on [0,1] then

"2" .

1

In the year 1889 A.A. Markov published a paper "On a question posed

s { N - .
by D.J. Mendelyeff": There, he proves Markov Theorem: If P(x) is a B

4

polynomial of degree n such that |P(x) ] <1 —O-r.i. [0,1], then on

“[o0,1] . o g - ‘ >

'[P'(x)l‘f_ 2n2 .

Twenty-three years later, in 1912 S.N. Bernstein proved the follow-

4
ing result known as Berpstein Theorem: If P(x) is a polynbmial of

degree: m and [P(x)| <1 on [0,1], thenon (0,1)

. | ' . ‘
LA ool .

In 195 E.V. Voronovskaja.extende((i Marljov's and Bernstein's results.

i

N ) - .
She proved the theor{em (we call) Markov—Voz{onovskaja Theorem: If P(x)

~ ! '

\ /

lTI;(E),I ‘for‘ gE En

-

N I
|Zr'1‘(5’,9g)] for E€E,

:
B

.

T

‘: ‘ A%
where T (x) denbtes the CebyE/ev polynomial of degree n’, and E
ik called the (\:/ebyé'ev interwval; Zn(x,ox) represents the Zolotorev

- - 1

o’

"polynomial and EZ i‘s'éfalled the Zolotorev interval.

In fact, A.A. Markov in his 1889 papér considered thé following

problem: TYor a fixed point E€R  how large fP'(E)I can be when
- .

-

]P(x)[ <1l on [0,1]. He discussed this problem in de'tail but did
not complete the study. By use of ‘the methods of F{mct‘ional Analysis,

. . <& s R
Voro&c;\vskaja answered this problem.

« The alm of this work is to glve a complete and comérehensive

presentation of Voronovskaja's solution to Markov's problen.

*
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A & /
Voronovskaja has succeeded in creating a unifiied method called NThe

Functional Method", for studying and solving [certain proble

0
Ceby\s/ev type which could not be solved by-classical methqa . The woy
- \ “ /’ B X
of Voronovskaja is not well known and not yeﬁf well explaided anywhere,
| ) J
Only her monograph written in 1963 and transflated from Rdssiarg by /
* |
Boas in 1970 give her techniqtie. In [2] R.P. Boas discussed the impor-
tance of this technique,for further discussion see also | 6] /
The first chapter of our work deals with A.A. Markov's paper.

Since there exidts no pﬁblished English t anslatior oé\ this paper, we

* ~ feel that it is of considerable interest/to see what Markov has done.

~

o o
We take this occasion to thank Mrs. Tanyg Khalil for £ anslating Markov's

‘ ©

f

Y paper from Rﬁssian into English, for the purpose of this thesis.

o~

. | o
The second chaﬁter is concerned with S.N. Bernste"in's o[igina’\l
/

results. It is nof hard to prove Markov's theorem fr(#m Ber}ﬁstein's

theorem see [4, p.137]/, and there 4gre several easy p/roofs/of the

/ !

Bernstein theorem. / /

-~

: f
This might be one of the reagons that not much attention was given

to the original work of Markov. However, it is still intereéting to
- ) L)
see the original proof due to Bernstein, and compare it with the proof
/
due to Markov. We observe’hoyz close these two pr?ofs are,

The third and fourth chapters deal with the work of Woronovskaja.
/ }
She considered the space of all polynomials of degree < on [0,1],

and thought of P'(§) as the derivative functional F; ejlcting on

= £
P(x) d.e. Fg (P)~ P'(E) . The problem is then to find -the norm N(ED
of the functional FE and the extremal polynomial Q(x) for ‘E‘E i.e.

N(E) - “FEH - FE(Q) , max IQ(x)[ = 1. We present this study in two
oo (0,1]



v .
Cebygev polynomials % Tn(x) . In fact there are n disjoint intervals |

)

. '\ , . . i N E
parts., The /first part, which is Chapter III, deals with the case when "
! \

o . o
Cebygev polynomial is extremal. In this chapter we have also included

the general theory for the existence of the extremal polynomial for . X
' o ' - / < i
arbitrary functipgnal. By the use of Riesz Representation Theorem, we

'

determii'?/e for what intervals E the extremal polynomials are. the

T

e

1 .
ET where * Tn(x) are extremal and the porm N(E),Ee Eps increases

-
B B et Sentidens

N
DI L i+ e S

v ‘ . ‘ ’
from one Ceby‘éev interval ET to the next for all ETC'[lt,l] .
0 . / h

‘ v
In the complement of the Cebygev interval

| .
intervals the derivative functional FE is sérved by the extrenmal

-

polynomial called the Zolotorev polynomials.

» called the Zolotorev

-+

- a .
P P o I

The study of the class of

Zolotorev polyr‘mmials is quite involving. ost of Chapter IV deals with

this topic. We have tried to keep to.a minimum the étudy of this class

of extremal polyné)mials and present only those results néeded. for our L e i

- .
i

study. ; ' : ’ P
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‘ 1.1 Introduction Let Iln denote the family of. all polynomials P(x)

of degree <mn . Concerning the deriVative of a polynomial, Markov
posed the folloging two problems in his paper [ 3]:
Problem 1. For a given E€E R (real numbers), how farge [P' (g)| can
be for P('x)EIIn provided |P(x) | <1 on [0,1] i.e. for a given
geiR to find a;number N(E) .such. t:hatf‘ N(E) = s\‘prP'(g)I where sup-
Temun is taken q;ler_all those P(x) €1 which satisfy the condition”
|P(x)| <1 ‘on'["O,l]
Problem 2, How large |[P'(x)| can be.on [0,1] if P(;c)EHn ;nd
|P(x)| <1 on [0,1] . ”

Before discussing the work of Markov, we need the following def—
initions. A polynomial Pn(x)EHr1 ig said to be extremal at £ or

an extremil polynomial at the given EE€R for problem 1 if

/‘ ' .
\ =
|Pn(%i 1 on [0,1] and at 'E, Pn(i) N(E£). It clea‘rly means that
if Pn(x) is extremal at & ', then for every Q(x)€ Hn with
max|Q(x) | = 1, wehave [Q'(g)| < B!(5) . If P(x)€N_ and

max|P(x) | =1, then a point a€[0,l] is called a node of P(x)

In his work, Markov considered the first problem and sho;,:ed that
for £€ R, . the extTemal polynomial Pn(x) of dégree n has n or
n+1 nodes. If the extremal pol—ynomial Pn(x) has n+1 nodes then
Pn(x) = _+_ Tn(x) , wvhere Tn(x) = cognarc cos(2x - 1) ' is the C&vsev

polynomial, and it is extremal at all (€ R - [O;l] . Furthermore,
s

+ Tn(x) is extremal at £€[0,1] 1if and only if

T | 1 O
T (5) >0 and " GRS

-



s

If for the point .£€[ 0,|l], - the extremal polynomial Pn‘(x)' ~has n
I ' ’ , .
nodes, then Pn(x) satisfies the following propert‘es: Pn(x) “belongs

to the famdly of polynomials

2x -~ a g
P¥(x) = t cosnarc cos—
o otl
depending on the parameter ¢ ,, oOF Pn(x) belongs to the _
family pof polynomials“
‘ ’ ) , 2x - (Ct0+ 1) ' -
P**(x) = *tcos narc cos T
° - ’ - Cto ’
depending on the parameter o . If P (x)§P* and Pd¢P** (x) then

the extremal polynomial Pn(x) must satisfy the following differential
. ) o

equation

-

2 S xlr= 1) (= y) (X=8) ¢ oysyq 2
Po(x)-1= > - [P (x)]
n" (x - B)

where |y|,|8] > |8] and B¢[0,1].

From these observations, Markov answered the second problem and
1)
proved: For all PFx)GHn , [BT(x) | </2n2 on [0,1] provided
PG4 <1 om [0,1].

The proof depends c}n a number of results; we present them here:

1.2 Theorem Suppose Pn(x)EIIn is an extremal polynomial at X,

i.e. for every Q(x)€Tl with max[Q(x)f =1, at x_ we have,
n [0 l] - Q
1 { 1
Iq (xo)l < Pn(xo) . Suppose also that O Lof < Gyeee <0 < 1 are

_ the nodes of Pr;(x) . Then the sequence
Pn(az) Pn'(a3) 'Pn(as)
Pn(al) Pn(az)\ Pn(as-l)

has at least n-1 numbers equal to -1X. Hence if P (x) dis
.88 a8 —_—==r T ==

extremal then §,> n-1 and sgn Pn(ai) = - sgn P (a
= "B n

Proof: Suppose that-the extremal polynomial Pn(x) has 'm nodés

M

i+l), i=’1,2,-.p,s-l.



s N "8—

s [ .
arranged ‘as 02t <y, <t <1, | (1.1)
Bty .
and that the sequence f’_(—t——-_)_ » ,1=1,2,...,m-1 has s<n-1
n i+l .
members equal to ~-1. There 1s no less of generality in assuming that

Pn(tl) = 1. We decompose (1.1 into parts having the following proper-

ties: ’ > a .o
£ . tml " where Ifn(ti) =+ 1, i= l,2,...,1n1 s
= . = + ’
tmlfl’ en sz v\,rhere Pn(t.,i) \ 1, i. my l,...,m2,
' ':wll’xh - -
t t wh;re P (t,) = (---l)s-1 i = o+1 : m .
gns+l’ SR S . a' i , ms gee ey .

Between each segihent (t ,t + ), 1=1,2,...,s-1, we chose a point °*
my mi 1 : .
. < <
Yy such that t:mi Yy tmi'*'l' '
It 1s easy to find a polynomial (f:(x) of degree s~1 having a

4

& .
simple-zero at Yo i/: ]_,2,,3',\,5 and having s gna{)(tm -)=-sgnPn(tm ),

. 1 1
.1i=1,2,...,s. We let ’ ) . .
< < <ua. < <
O__cx«I o, <. *as—l“}
be those nodes.at which . : .
e : s Pn(ai) . ¢ - .
LN S , : .
N . Pn(ai+l) : . . i -
Wée define a polynomial \ ’
M) =P () +el ~x) 40 ¥ (1.2)

3

' where’. € > 0 but sufficiently small and xOGIR at vh.ich

&

P (x) 1s extremal - Recall that $ (x) 1is of degree s-1 <n-2,
n .

B

hence A(x). is a polyn}gpial of degree n we claim that
\ g ~

/ .o A <1,

i such that ¢(x) does

Let ~ I(Oti) be the interval around each «
- ) . s
not change its sign on each I(ai).’ On [‘0,1] \igl I(ozi) , max [Pn(x)l

=L < 1., With the choiae of a positive € such that

A
L]

’

>

-



A
; . —’9 - ‘r ] -
2y Ny
E(x - x,) 1o (x)| <1 -1 we have on '[0,1]'\j§$_1(ai) , .
; s
[A(x) ] jiantx), + e(x - x0)2;$sx)l‘< 1. ﬁoreover on- égll(ai) s
N2l

[A(x)| = |Pn(x1,+ e(x - xp) b (x) [; \Pan)] < 1. Hence [A(X)] <1
on fo,11.

/ Furthermore, for x = ko the derivative of (1.2) satisfies

d _-(_1_ N -~
dx A(XO) T dx Pn(xo) ’

, .
We now define a new polynomial Q(x) by multiplying A(x) by the
1

number ~ oy which is.bigger than k. That is
{0,1] . ’
- — A(x)
s Q(x) max |A (x) i

Clearly [Q(;)l <1 "and

7’

- _ Y _
: ‘Q'(KQI 7 | max |A(x) > ]k‘(%gl - IP;(XA] ! :
which contradicts that Pn(x) is.extremal. Therefore s > n-1., 'O

A polynomial P(x) of degree ‘n  cannot have more than n+ 1

nodes in [0,1], since otherwise its derivative would vanish at more
than n - 1 interior nodes of [0,1]. Consequently, an extremal
polynomial P(x) has n or *n + 1 alternating nodes. [If the nodeS’l

are n + 1, then O and 1 are among the nodes where P'(x) # 0.

1.3 Theorem If a polynomial Pn(x) of degree n has n + 1 nodes

in [O,i] and an(x)I <1 on [0,1], then Pn(x) =+ Tn(x) where

V o
Tn(x) is a Cebygév polynomial of degree n . If Pn(l) =41,

Pn(x) = Tn(x); and if En(l) =/-]., Pﬁ(x) = —»Tn(x).

. |

Proof: Let us conglder the case when Pn(l) = 1. Let the n+1

\ n . .
nodes of Tn(x) be (Ti)f=0 H ~ ‘ \

Y
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1
= < < ... < < ... < =1, ’
0 TO. Tl Tk Tn‘ 1 i
n
Since (Ti&i=0 a:e alternating nodes of Tn(xL one hés
‘ ) N
T(t)-P (t)=20
. nn n u \ )
Tn(ﬁhvl) - Pn(Tn—l) <0 ¥
~ . . \
N . N \
T (Tae) BT ) 20 \

e

Tn(TO) -~ Pn(To) =0
Hence’each of the n intervals [Ti,Ti+1], i=20,1,..,,n-1,

contains at least one zero of R(x) = Tn(x) ~,Pn(x). In fact to every

n intervals [Ti,Ti+l] , 1=0,15/...,0-1, there corresponds ét least

one zero counted once of R(x). In the case T other than TO =0,

[ERN

TA =1 41s a zero.of R(x) then fi is a node of Pn(x) as well, so

T 1s a double zero of R(x) = Tn(x) ~‘Pn(x) and each of these two

i

zeros can be assigned to each,of the intervals [Tial’Ti] and
> * \
[Ti’Ti+l]' Thus R(x) has at least n zeros, L

' n
-+ .
Let the n. - 1 nodes of Pn(x) be (Ui)1=0’
0=0,. <0, < ,,,. <0, < ,4s < On =1.

< < < . < < = = <q - '
{;f To-1 __Gk 0k+1 .o On-l Gn Tn 1 for k<n-1 E?en

R(x) has at least two zeros in [Tn_l,il, as observed in Figure 1.

! ~

™

n FIGURE 1
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So R(x) has at least n + 1 zeros in [0,1]. Consequentiy;—

+

R(x) = 0, i.e. Pn(x) = Tn(x?.

If © <

n-1 Tn-l ,'we interchange the role of Pn(x) and ATn(x)

gnd'conclude that Pn(x) = Tn(x)l. ® o O
If the extremal polynomial Pn(x) has - n + 1 nodes

8T . -

" then ' ‘

Pn(x) =1 Tn(x) = % cosnarccos k2x‘- 1.

We will investigate the' conditidns under which for a given & ,

max IPA(§)|= IT'()| with max |P (x)| = 1. We will consider
PET n [o,11 ™ . 3
only those polynomials Pn(x)G Hn such that . =
<
' = '
sgn P’ (£) = sgn Tn(E) . (1.3)
We put : - pe
‘\rn_i=% t2eostl (=010 (1.4)
and R
. Qx)'= Ph(x) - Tn(x) . . <(1.5)

Note that the Tn—i in (1.4) are.the nodes of Tn(x). We will show

that outside [0,1] the extremal polynomials are = Tn(x) . We need

>

the following Lemma:

1.4 YLemma The zeros of Q(x) are all real, and lying in the interval.
[0o,11. - '

Proof: Considef the values of fn(x) and Tn(x) at the points
TsTyseesTy given in (1.4). For ; = 0 "we find that

T = 3+ +3cos0=1. Thus Tn(l) = cosnarccosl =1, Since ?y

definition [Pn(x)[ < 1 we obtain from (1:!5) that® when Tn(Tn) =+1,

then

1 TFor another proof of this theorem see page 32 .

.
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Q(r) =Q1) 0.
In the same fashion we get s

T (t

n ) = -1 which implies -

n-1
S =41
T 2)

|
which implies
n n-

which implies

= (_1\0 _

| T (1)) = (-1) (
From the equation. Q(x) =0 it ﬁqllowé

root in each interval [Ti,Ti+1] (i = 0,1,

polynomial Q(x) must have all its roots

be written as
; Q(x) = q(x - nl)(x - nz) .

where ny (L =1,2,...,n) are the roots

<n < <T

< ...

T 2 =

' == <
;0T 1 ="

0 1

that

n-1 —

(1.6)

Qt ) 20

<'0

Qlt__,)

DN 0 .

Q(x)

must have one -

3

.+.,n=1),In other words the

real, Therefore Q(x) can

e (x - nnz (1.7{
and .
<n, T, 1. (1.8)

Furthermore the coefficient q must be negative, because when x = 1 ,

we obtain from (1.6) Q(1) < 0 and from (1.7) all the factors are non-

negative.

—

;’)

.

From (1.5) P(X) =T (x) + Q(x) . Therefore p;l(x)fi;l<x)+q'(x).

¥

By differentiating (1.7) we ob ~
PI(x) = T'(x) + ( L L=, @

n n -0, ‘x - n, ’ )
where n, are the roots /o . .

v - J

The Cebygev polynomfal Tn can be written as
Tn(x) = 22 xn-l
4 \p(en-k-1)...(2n-2k+1) p20-2k n-k

k!

o

Ao D™ onx # (D .
' = * = ' _
Since Tn(x) 0 for the points x TyoTgaeeesT 1 and the lead
ing coefficient of Tn(x) = 22n—l' Therefore

»

/
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2n ) ' (1.10) .

T! (%) = 2 Lt - TG =T e T

1.5 Theorem Outside ([0,1] the extremal polynomial is? T;(x) ,‘

f,e. for PE N with max [P(x)] =1, |P')| < |T'(x)| for all
—————————— n ——— . ——l n ——————————
[0,1] ¢
x ER\[O0,1]. .
Proof: We form the following sequence
Q(x) Q(x) Q) - (1.11)
. ’ _ 3 s s _ . .
X nl x‘ n2 X ﬂn X
where Q(x) 1is defined in (1.7) having (ni)2=1 as 1its roots. . Each

-

of the expressions in (1.11) has a sign oﬁ}osite to that of T;(x). \

.
To show this we consider two cases:

Case 1: Suppose ‘x > 1. From the fact that in (1.11) ¢ <0 , we

‘obtain Q(ﬁ) < 0 . Moreover since x - ni >0, t:én ;Q§§%~ < 0
i

for 41 =1,2,...,n0. On the other han@, from (1.10) we obtain that0

>

T;(x) >0, since the facggfs (x - Ti)(i==l,2 .,n=1) are all

. »
positive, ' R
Case 2: If x < 0 then from (1.7) we get Q(x) < 0 (recall q < 0)

[:1
if n 1s even, and Q(x) >0 1if n 1s odd. If n 1s even then

;955%— >0 (1=1,2,...,n). However from (1.10) when n 1s even then
< i . AN ‘

the produc; (x - Tl)(x - T2) eee (x - Tn-l) of n - 1 negative
numbers is négative. 'Thus to théxleft of [0,1] when ;Qﬁﬁl__ is

positive then T;(x) is negative. In the same way it can be shown

3

that when f© 1is odd then ;Qéz%_ is negative and T;(x) is positive.

We show that outside [0,1], |P'(x)| fJT;(xﬂ. "If P! x) >0 then
/'

. n
from (1.3) T'(x) >0, and L Q&) < 0, hence from /(1.9)
n i=]1 x-ni n

' v : ' ' X (x)
|p (x)tf_lTn(x)(. If P'(x)<0, then Tn(x)< 0 and 21 x-n, > 0. Hence

P'(x) > T!(x) ie. 1P".(x)l < [Tx'l(xu)l . o

[ 2

T



* negative, Moreover from (1.8) we have T

lthat T, ; <x<71,. Recall from (1.8) that we have

lhﬂ..f} ///’? i < ! *
- 14 - | - .

1

We will now discuss a sufficient condition for Tn(x) to be

-
o

extremal at a point £¢ ['0,1]. -We first prove the’ following:

1.6 Lemma Suppbse X E(Ti l’Ti) where Ti {s as in (l.4). Then

-

x)
sgn; (——— is opposite to sgnT'(x) .
ﬂit n
: ' #
Proof: Suppose that for X“G(Ti—l’ri)’ x ni and x < ni 3 then
frolelk7)(wg get
Q)
x-n, q(x ﬂ)(x n).-.(x 11)(x niTl .o (x n)
If Q(x) 1s positive then _Qﬁﬁl_. is negativé, and since q {is
o
negative then in (1.7) the product (x - nl)... (x - nn) is also

> = X
2Ny (1 =1,2,...,n) and

hence the product (x - Tl)...(x - Tn) is also nJgatiYe. Therefore

. ®

the product (x - Tl)... (x - Tn—l) 1s positive. Consequently by

(1.10) T;(x) is positive. Suppose now that Q(x) 1is negative then

x

Q@) is positive and also the product (x - n.)...(x -n) 1is
X - ni 1 n
positivé. Hence (x - Tl)...(x - Tn—l) is negative and by (l.lOY

T;(x) is negative. For the other cases; when n,Z > x , the arguments

i
are the same. Therefore sgn ;Qéz%_ is opposite to sgnT;(x) for
. . 1 .
x€(T 17T ) * . ) . D

1.7 Theorem For a fixed & €[0,1] the extremal polynomial is Tn(x) .

if and only 1if

; T" (&) .
n 1
Tr'x(a) + E~> 0 ‘ (1.12)
and ' . ’ .
T”(g) M ‘
’ n l .
T;(g) + E -1 <0 . (1.13)

Proof: For each x€¢[0,1] we can find an interval [;1_1,11] such

<
-1 = ¥2 Ty Tyg SNy ETy -
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Let i ) .
X -0 X =-n X ~-nN , .
z:.—_ —L —ni+"' + -ni : (1.14)
Xeo My X =Ty x - N :

using (1.14) we write (1.9) as

'l' — mt (x

Theﬁeforei -
P'(x) . -
= ' Q(x)
T) (%) 1+ TG (x - n)) . @as)

'as in (1.3) we may take

P'(x '
W®
. T! (x) )
n
'We note that the value of E 1s greater than
1 1 1 ' 1
- + +..0t o —— -n.>
(x-n) gt oo b b b b HE x-n >0 (1.16)
. 0 1 i n-1
" or
1 1 1 1
(x=-n)f——t+ —— + . t——+ . F——1]} 1f x-1n_<0(1.17)
i/(x Tl xq Tz x-Ty X Tn i
11.16) follows from the ilnequalities 0 < x - nj <x - Tj-l for
'$=1,2,...,i-1 and 0>x =7, 4 2x=n; for §=1+l,...,0;
and (1.17) follows from the inequalities 0 < x - Tj <x - nj for
§=1,2,...,4-1 and 0>x=ng>x=-7, for j=1ti,..,n and———————
From (1.10) we have T'(x) = 22n-ln(x-r ) ... (x-T_ ,) and so,
; n 1 n-1
"
T 1 1
T (x) x-7 X - T HEREN X -7 )
‘ n 1 2 - n-1
stnce/ Ty =0 and T =1 we get ' ~
1"
A T . 1
s T' (x) +';‘_ X - T x -T AR x - T ?
n 0 1 ) n-1
and ¥

1

-

o

o e i e
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C T P SR N 1,
Té(x) x-1 x= Ty Tt x - Tp *°° !
Thus we can write (1.16) as
o e LRI
-~ (x - )[_T?Ej + ;] , (1.16")
and (1.17) as
' ne SR
-n )[T T T x -1 , (1.17")

1f EEE“Smslifst value of E > 0 , then clearly all values of‘éé“

are positive. In this cade

Q(x) ¢
. . ] D - 0 .
B T () (x - ny)

, From.lemma 1.6 and (1.15) we get

: P'(x) .
n

0 < <1
jf TI;.(X) .

Hence ]P (x)] < Ty .

On the other hand, if the smallest value 1s negative, then from .,

-

lemma 1.6
-~ 7 - o ,
T, -1,) |
and |P'(x)| > lTé(x)l. Consequently Tn(x) '%s extremal for x€[0,1]
yo—m - - - 4f and only if >0 i.e. (1.12) and (1.13) hdid. To establish

only 1f, we note }hat when ny is -ri—l (or -ri) » the value (1.16')

) or (1.17') 1is taken by ‘E N : A O

. - We consider the case when P(x) other than iTn(x) is an

J.

extremal polynomial for & [0,1}] .

“

R
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AN
From our preceding discussion we know that P(:i) has n
' -
alterhating nodes. Let these nodes be 0 < al" < 0t2 < ... < an <1.

Since not more than n - 1 nodes are in the interior of [0,1], then
@ =0 or & =1 or both qll= 0 and o =1. Ifet $(x) be an-

other polynomial of degree n H)(X)I <1 on [O,i]. Since ]P(x) i:\< 1
for 0 < x <1, then thf, polynomial Y(x) = cf)(x) - P(x) must have one

zero n, in each of the intervals [uo , 0 1 1=1,2,...,n-1. Thus

, 1074+
‘ bx) = (@x - )x -np) ... x=-n 1), (1.18)
/ r r
/ where alinliazinzi...inn__lf_an and }qian or q_f_ol .
r .
Let 'E_nﬂ thus :
. br(x) = P'(x)+ {—E—+ ...+ —1 I}y ()
x-nl x-ﬂn

| .
1.8 TLemma In (1.18) sgn(gx - r) 1is opposite to sgn P(an) for all

values xE[al,an] .

Proof: Suppose that the product in (1.18), (x -.1711) ves (x - nn—l) is
positive. If Otn i-& we obtain (gqx - r) < 0 . Hence Ib(an) =
é(a ) - P(a ) < O.J;nd that implies P(ax ) =+1 . If o, > L then

n n .n 1—-gq
(gx = r) > 0 consequently w(an) = $(an) - P(an) > 0 which implies
P(an)=~ 1. The other case, when the product (x - nl) cee (x - nn-l)
is negative, 1s similarly proven. . o a

As long as sgn(gx-r) = - sgn P(Otn) , and
| /.l } Ny ~

< < < S e < 3 ./' c ey Z

a, < ”1 20,2 n2 < < OLn < nn , the numbers nl»j.Z’ nn | can be N

given arbitrarily wvalues,

1.9 Theorem Suppose that at a point x€[0,1] the extremal polynomial

P(x) 1s different fron}’ Tn(x) then xE[al,an] .
Proof: Suppose N, > x > o - Then the following inequalities

obviously hold .




i, 0 e
0 < 1 + 1 + ...+ 1 < 1 + —lCt +,.. + -ld,
x-nl x-nz X - n-1 X 0.2 X 3 ] X n
and " _1n < O/." .
N n

From (1.8) the numbers nl,n
such a way that the expression

{ 1 + 1
X ﬂl X -N

can be made positive or négative

+

2

Therefore the case when x > an

that x # al .

.

1.10 Theorem For each point X

where o

Recall that x E(ai,a

P{x) # Tn(x) then

» 1 +

x-al X"(lz

2,.;.,nn can be taken arbitrarily in

1

X -0
n

+ W (x)

contradicting that P(x) _is extremal.

cannot occur. Similarly we can show
¢

O

3

6[%,an] 1f the extremal polynomial

L

)

o0 (1.19)
: n

+

i=1,2,...,n are the nodes of P(x) in [0;1].

i b

Proof: Suppose Xx€ [ai,ai+1].

p (x) _
2 - eeng) ey )

x-'ni
we get that sgn ;wéﬁi— is opposite to sgn(~-1)
i
sgn (gx - r) = -sgnP(an) ‘and  x

From the expression
(x= ﬂiﬂ) cee(x=n ) (ax = 1)

n-i-lP(an} since p

- nj <0 j=4i+1,...,n-1,

In order that P(x) be extremal i.e.

XxX-N XxX-1N XxX=-n -
19" () | = [P" () + { ——tb L 4 .+ L2 1 ¥E | pr)] (1.20)
X-Nn, x-0N x-n_ x=-n, '—
. 1 2 n i
we must have '
X -0 X -1
i i (x) t e

+ + = 3

sgn{x — cer H = nn} sgn n P'(x)

But the expression (-l)n-i_

n-i-1

-1 P(an) is identical to the sign of P(a

rfL)

=ggn (-~ 1)11_1_l P(an)P' (x) .

L P(an)P'(x) > 0, because the sign of

1
i+1) and of P'(x) .

and that the nodes/\ozi are alternating, so

N

~h
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P'(x) >0 if P(o,,.) >0 and P'(x) <0 1if P(a,.) < 0. 1In

1+1 i+1

order for (1.20) to hold we need to find the samllest valué(of the sum

- ; ‘ .
1 1 1

(x - n){ + + =1}

. 17x nl x r\2 X nn

It is not hard to see that the smallest value of (1.21) is the sSmallés

(1.21)

H

"of the numbers;

(x - a2+ —2 4 L1 ),
1" " x -a X - Q X - Q .
* 1 2 n \\
(x - o, Y—— =2 )
v ‘ i+17 x - ¢y X - 0 X - o
. 2 . n
< One of these two must be negaéive, whereas we have already shown that
at . 1-1 ‘ )
. ni is, sgn (- l)rl P(an)P' (x) > 0. Consequently
to zero. ) -0

-

1.11 Theorem If at a fixed point x the extremal polynomial P(x)

is different from Tn(x) then the extremal polynomial P(x) sétisfies

>
one of the following forms;

v

(I If cxl = 0 .and an = 1 then the extremal polynomial P(x) sat-

isfies.the following differential equation

\ '
- plex) - 12 = G = D& = VG = %) pr2ex) (1.22)

, T -t e
wheref Y| > 8] , 8] > 18] .

(IT) If o, =0 and o < 1 then the family of extremal polynomial is

1
2x - &
+
L (x,dn+1) =t cosn arc cos—a———ll—i
/ nt+l
where the parameter o varies from 1 to S S .
—— B L = cos
¢ 2n
' “a

-
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’*"20" . “,

III) 1If a >0 and a = 1 then the family of éxtremal pglinomial

)

is

— 13
& ."’ 2x-ao—l
P (x,0..) =% cosn arc cos
0 l1-a
0 @
where the parameter % varies from .

Proof of Iz Suppose al =0 and dn =1, If /P(x) 1is extremh} then

its derivative P'(x) 1is a polynomial of degree %rl , with n-2 roots:

"
Gyl er s 0 between 0 .and 1 , and one root £ outside {0,1].

n-1

Suppose B > 1,' consider the following polynomial Pz(x) -1= Q/ of .

degr%e “2n. Clearly_we have n-2 double roots; az,a3,...,an_l and }

gwovsimpIe roots O ana 1 . The other two roots we denote by vy and

§ . We will show that y > B8 and § >"8 . Since [P(x)| > 1 for !
x > 1 then Pz(x) +—L2 >1 as x *B. Since p'(x) has no

zeros‘;reater than £ and since g is a simple root then for P(B)>0,

P(x) dec;eases for x > ) _and whenever P(B) < 0 ‘ P(x) increases

for x > 8. Consequently on [B,a) Pz(x) first decreases and after

vanishing it increéses to infiﬁity. Hence 'Pz(x) attains the value 1

twice at y > B and &§°> B. Hence

P - 1= 5% xma) -t e 700 G- D=1 6=6)

© y

.where S 1is a constant. Since .

[ = - % - -
P'(x) ns (x az)(x a3)...(x qn_l)(x 8)
then
, 2 =22, 2, 2 _ 2 a2
PIU(x) = a's (x - a)) (x ) e (x ~a ) (x = B)
consequently we can write

~



«

then we can alwaysg-vadd to the*

b

Y

vanish -

. L- 21 -
. . Pzng -1 = x(x ; 1)(? —Zy)(x -8) P,z(x) ;.
) [y n (x - 8)
Proof of II: If a, = 0 and o, <1
n . - /
nodes (ai)i=1 another node ¢ 4y » 1 such that the extre931
polynomial P(x) satisfies
P y = é«(g .
/ (an+l T (an) ¢
' C2x ~ O +
ntl
Since the polynomial P(x) - cosn arccos 3
' - ntl
n+ 1 times we have- ‘ :
2x - o
+
P"(x)E =t cosmarc cos ' ntl
- %n¥1 !

2

°

The unknown ah+l , according to (1.19) must satisfy the(gquation

o,/.'

n

1

o

- =1

o o
ntl n nt+l

x - (

Since the nodes az,aB,..

PMx) = c(x - az)(x -a

2

£y0

I

3 cosi-ﬁ-)

<
/

are the roots of P*{x) then

n

3

) oo

(x-o0

3

where c¢ 1s some constant. Consequently, we get

P“".(X)

v

L

(x)

Therefore by Theorem 1.10

©

"X - Q
=%

D

2 we will write P¥(x) or Pt(x,u

n+1)

"

b
Y

et

s

TS

PR N Y - 4 an

4 e AT
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: \ . . .
‘|2*_';£zc.l+3l‘= 1 _ 1 «+._.+£_’_l_ =0 .
P*T¢(x) X X - O X.— Q. -0 .
v . 1 2 n . .
o - 4%
“This we can write a§ . d \
’ xPR"(x) + PR (x) = Q.. ' . (L.23)
3 :
o o ’
otl ntl Il ‘
s > > = + _ v
. Furthermore o 41 1 ay ) 5 5 cos = .
i.e. >1 > . =—
i.e e+ 1 O 41 ° c0s o
P
Consequently, in order that the case al =0, an <1 . occurs, one
of the values an+l satisfying the equation (1.23) must lie between '
x s f\
1l and % é;. Further, for each such x where the maximality
cos
~2n
of PMx) is being discussed, there correspond only one e .
E 2 P . '
In fact, considem;%he sum
L]
- . l }. N i A‘ (1'21*)(\
o =1 “nt1 otl ‘

1l
2 5 cos i ;—) \

and note that if an+l

Bl

as d function ?f an

+1 increases th%s

“function indreasgé% " Hence equation (1.23) can not have more than one

root. So we conclude that the- case al =0 , an <1 occurs 1f
and only 1if for ,an+1 varying from 1 to ———%?Tr the expression
. # ) cos

n

~

xP*"(x) + P*'(x) changes its sign.

N
i

1. Except for those values of @+ for which (1.24) tends to infinity.

13

' . ) ~»
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- ———— > > 1,
Hence S 5T o 41 1
cos 5

2n

This completes the p%oof of II. ] . . 0

The proof of III is similar to the proof of II.

We now give Markov's solution to his first problem.

1.12 Theorem For each P(x)€ Hn with l_P(x)I'il on [0,1], °
IP'()| < 2n® for all x€[0,1].

Proof: Consider Tn(x) = cosnarccos (2x - 1) and let

= gi: -2 o
2+ 4cosd then ax sind y

a

Tn(x‘i =cosné ,
' - 2nsing , . ‘
Tn(x) sin )
2
" -2 - N
Tn(x) _2n c:osncbs:[ncb2 nsi,nn&sc?sé( 2) 5
sin $ '
_ lms:.nn&cos&; lm cos&sini
= 5 .
sin &» ~
Therefore .

@

(x—‘l)'r" ()T (x)
% T" (x)+T x)

(cosé l)ﬁsinn da cos &a — nces né siné}-i' sinn ¢ sin é},
(1+cos ¢){{sinn ‘}: cos 4: ~ncosn ¢ sin¢}+ sinn ¢ sin 4}}-%

— (1-cosd) (sinnd+ncosndsin ¢)
(1+tcos¢)(sinn¢ -ncosn¢sing) °

il
2n °?

sinn¢ > ncosn$sin$ .

In fact, for 0 < J;<

This follows by induction. For n =1 1t 1is ¢bvious, let it be true

for n-1_then

sinn Ja gin (n/—:)&) cos & +cos (n—-4) $ siné

v

(m-1)cos (n-1)¢ sin$ cosd+cos (n-1) ¢ sin¢

-

FRY
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g

- 24 =0

v

ncos (n-1) ¢ cos ¢ sind)

= n(cosn¢+sin (a~-1) $ sind)sin b

| v

nc’osnd)sin‘ﬁ .

Here we have used the fact that sin(n- l)c}:,sini’ and cosn ¢ are

positive on 0 < ¢ < 71%1— . The case for Il < ¢ < H--—:ZH?- can be

‘dealt with similarly,

Consequently, for 0<¢<—%— or ]T-—II—<$<H .

2n \\
- " + 1] \
(x l)Tn(x) Tn(.x) . o
xT;(x) + 'I‘r'l(x)
from where ) - ?
1"
- Tn(x) + 1 . } " -
TI(x)  x - 1 . ‘
0 <0 .
T () 1 .
L}
\Tn(i{) x
— l I ) » ‘ N
since % <.0 . This~-implies that , ]
o -
\ oo
\* ___..._.Th(x> + :1; >0 - wr
T'(x) X .
n
and
" ’ g )
Ta %) P S
‘Tt;(x) ‘x --1 * \ .
n-1 n '
Y S N SIEE AN
Note that o5 %= T, Elx -t o

Hencg¢ by Theorem 1.9 Tn(x) is .the extremal polynomial for ‘all

! it ‘ i I
$€ (0, - YU (T, H——z-;) , 1.e. fgr all x (§+5cos~§5—,l)u(0,é-icos—2-;l—)
we have
| < 2% . |

' Now suppose.that =x€ [4-4% cos—z%— , 3+ % cos —i%‘—] . Thén the

2nsinn

1..Tt'1(x)‘ - I sin

PR R

SE A
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extremal polynomial P(x) is either Tn(x), Pl(x), Pz(x) or P(x)

satisfies the differential equation (1.22). In this case we obtain the

following
x(1 -0 = (- (5= 0] /
1.2 1 41,1 1,2
. > (7) - (2‘[l"§'+2c032n])
- ;12 1.2 21 )
) (77 - () X’“ 2n
= Fstn®> L
\ 4n
Therefox;e
| | n|sinarc cos (2x - 1) 9
T'(x)| = S < 2n”
n v x(1 - x) ’ -
l ,
(2x -0, q)
nlsin arc cos 3 |
/ +1
IP*(x)l = . al‘
. X X ntl
/= a-=2—)
_ © Tntl ntl
< 2112
o (Zx - l - O ) - e
. / 0
. nlsin arc cos 1-a
L4 YA 0 1
| IP tx)l = - TTq
/ X (1-—% ) 0
1-0p 7 1=
ian ,
and from (1.22) we obtain , -
2 2 - .
.2 n (x-B8) - 2
P! = 1 -
Sy G Yovppey ¥ ey S IE R LS
2
n 2.2 * »
:'wx(l-x) < (@) ' -
Hence’ {P' (x)|5,2n2 . Therefore no matter what the extremal polynomial

may be for x¢[0,1}, we always have |P’(x»)|_<_2n2 for O _<_‘x <1

provided [P(x)| <1 on 0<=wm<1l ' a

-

T

v T L
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2.1 Introduct.:ion As we ha;e seen in Theorem 1.11 Markowv has found

that over the entire closed interval [0,1], |P' (x)] < 2n2 , whenever
the degrée of P(x) is <n and [P(x){ i[on {o,1] . s.N,

Bernstein some 23 years later gave a better lkstimate of |P'(x)| over

[ARN
e

the open interval (0,1); he has shown that: _1£ P(x) dis a polynom-

ial.of degree < n . and ‘P(x)lf_l on [0,1] then

n

1 T

O R T
We point out that it is possible to obtain Bernstein's result from
Theorem l.llg' . This can be seen by examining the original proof given‘.

by Bernstein, which we give below.
. ' n
2.2 Theorem Let P (x) = iio aixi be a polynomial of degree' n

such that 223, |Pr'1(x) /x(1 ~x) =M. Then it does not follow that

]Pn(x)| <% for all x€[0,1], i.e. we can find a point xOE [0,1]

such that

o=

'Pn(xo)J >
Proof: Let P be the collection of all polynomials of degree n such
~ Ipt / ~ . =
that for each Pn(x)g_ P, 0_2_1:6%_1 'Pn(x) x(1-x)| M. Let P(x) be
the polynomial of leaét deviation from zero in P . Suppose
= k
O?i?c?_l |P(x)| L and let (Of.i)i:l be all the nodes of P(x) in

1 72
Let E€ [0,1] have the property that |P'(£) VY £(1-E)| = M. We

{0,1], that is lp(ai)(=L 1=1,2,...,k  with 0ga <ax<...<q. <l .

claim that there is no polynomial Fn(x)E P of degree n which satis-—

3 In the 20th session of Nato's advanced study institute, in the summer
of 1981 at Université de Montréal, Professor A. Goncar of the Steklov
institute of Moscow brought to our attention that Markov was aware of
Bernstein's results at the time of publication of his paper in 1889,
‘This can be seen from the fact that the key to Bernstein's proof 18 line
(2.8)‘ which is identical to (1.22) in Markov's paper!
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fies simultaneocusly the following k + 1 equations

= = = ' B '

Pa;) =F (o)), P(a,) F (@), .. ,P@)=F (@) and Fl(E)=0.2.1)
Suppese that we have a polynomial F;?ka P satisfying (2.1) we

associate with each node a an interval A, with the property that

i i
a. € A, and for all x€ A sgnP(x) =sgnF_(x). If we delete all A
i i i n K T §
from [0,1] then max IP(x)] <L'“L for x€ [0,1] \ 131 Ai' Let

§ =L-L'" and for a sufficiently small A we get |>\Fn(x)| <8 . We
form the polynomial

CP(x) - AF_(x) .

. k
Since P(x) and F (x) have the same sign on Y, A’ we get
n . K i=1 i K

- (W) U
[P (x) AF_(x) l‘:) P(x)| <L on (21 A, andon [0,1]1\ YA,
|P(x) - AF_ ()| <L'+8 =1. Therefore

¥
|P(x) - AFn(x)L < L for all x¢[0,1]

On the other hand, 'since (P'(§) - )\FI"1 ENVEQA-EY=M then, whenever

> M. Hence the poly-

max |[P'(x) - )\Fr'l(x)] vV x(1 - x)l = Ml we get Ml

nomial

B(x) =;§11~ (B - AE_(x))
is such that

083, | P'(x) v x(1-x)| =M and [B(x)| <1 .
This imf)lies that the deviation of ,§(x) is less than that of Pn(x) s

but this 1s a contradiction.
{

We now show that the number of nodes is greater than n-1, that’

is s>n-1. We assume that s<n-1., By the Lagrange interpola-

v

tion formula we can construct a polynomial
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(x—x)(x—x Y.o..(x - x)
Qx) = (x -x2)l(x -x3) (x —xs) 1:‘(xl)
1 3 1 377 s .
(x - xl)(x - xz). colx - xs—l) )
+"'+(x -x,)(x_-x,) (x -x )P(xs) :
=g 1 s 277" Y's s-1 .
Q(x) 1s of degrée s - 1 satisfying the firgt s equations in

L4

(2.1). Putting R(x) = (x—xl) (x—xz). co(x- x.a) we' see that the poly-

% .

nomial N
' = + +
‘ P 00 = Q00 + (ax + HRG0)
of degree s+ 1, also satisfies the first s equations in (2.1). We

can always choose the numbers A and B such that o \

FI'1+1(E) =Q'(g) + AR(E) + (AE+B)R'(§) = O .
This is possible because R(x) has no double roots, R'(E)-=R(E) =0

cannot occur. Hence we have otbained a polynomial Fs+l(x) of degree
< .
at most n satisfying all s+ 1 equations of (2.1). &s we have already
N u

seen this 1s not possible. Therefore s must be greater than n- 1.

If s=n'*:2 then P'(x) being a polynomial of degree n-1 must

s—1

vanish at the n interior nodes (oti)i___2 which 1s impdssible. Hence

8 #¥n+ 2. Therefore we can only have s =n or s =nt+l .,

a

Case I Suppese s =n . Let

F (%) = Q(x) + BR(x)

-~

where B 1s such that

. Q'(E) + BR'"(E) = 0 .
Clearly Fn(x) is a polynomial of degree n satisfying the s+1
_equations of ‘(2.1). In order that the last equation in (2.1) faila,.i.e.

FI'I(E) # 0, it 1is necessary to have

LY orR@ =0, (2.2)
Since at the nodes (ai)z;; of P(x),P'(ai) =0, and.i P'(x) 1is a

- ' .
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polynoniial of degree n-1. Hence we must have a node at O or at

or at both 0O and:- 1. In all three cases

- Cx(1 -x))P" (x)
x -8

R(x)

H

1

where C and B are constants and when the nodes o, =0 or an=+l,

1

we take B =0 or +1 respectively. If however both nodes ¢

and ocn,=+1 then B 1s the root of P'(x) outside: [0,1] . From

o

(2.2) and (2.3) we get

d [x(l - x)

R'(8) = 5 (553 P'(X)]Fg
_d Vx(1-% .
- " ax (T Y x(l—x)P(x)])x=€
N \
- R e S R,
. x=£
P LD L ST | =0
x-B dx et
Consequently 1 (1-2%) (x-8)
ey e S I S o v > MM S
dx. x-f o 2
=£ (x-8) x=¢
_(1-2%)(E-B) - 28(1-£)
2 - ) VEL D)
=_B(1-ZE) -_g_ =0,'\
CE-0VEAD
so, B =-2—E_L1 . Since £€ (0,1) we have B8 #[O,l] . .

.- Moreover two of the nodes of P(x). areat 0 and 1,

the remaining n- 2 nodes are zeros of P'(x) in (0,1):

We need the following obsérvations. The polynomial L2 - Pz(x)

is of degree 2n and has zeros at the nodes of P(x) . The two zeros

v

o -
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’

at 0 and 1 are simple and n-2 =zeros inside (0,1) are double

zeros. Hence

. ' 2 )
[P'C] x(1=%)  4ivides L2 - P2(x)
(x - 8)

<

\

. ) ‘
having the quotient ax + bx + ¢ where a,b and* c are constants.

"Thus, we get

'y 2 2 ’
. -l = LIxA 0@ fbxte) (2.4)
; (x -~ B) .
We show that ) ’
Q@ 1 2
| 1 . LZ 5 x(l—x:))-[P Fx)] (2.5)

n
To prove (2.5), suppose B > 1 . We observe that since |P(x)| >L for

x >1 then as x >1 tends to B, [P(x)]2 tends to a number Li > L2.

Since P'(x) has na\‘zeros greater than B and since B 1is a simple
zero of P'(x), then P(x) decreases for x > B if P(HB) >0 . And
P(x) iﬁc‘reases for x >B 1if P(B) < 0. Consequently on
[Zﬁ,m),[P(x)]2 first decreases and after vanishing it increases to
infinity. Therefore‘ [P(x)]2 attains the value L2 twice at x =Y
and x= o where .y > B8 and o > B. From (2.4) we obtain that Y

2
and o must be the zeros of ax + bx +ec¢=0. Furthermore the

o

a

coefficlent of the highest degree térm of P'(x‘? is n times the

coefficlent of the highest degree of P(x). Therefore (2.4) can be
A

written as »

[2'G0) x(1= %) (- 1) (x = )

(2.6)
nz(x-B)2

L2 - Pz(x) =
Since Y >R >1 and o >f > 1 then for every x€[0,1] we

2
] -
2 ([P (X)]2 x(1 x)) Thus L > % . This proves the
n

have L

first case. -



\

_ - 32 -

Case II .Suppose s =n+ 1. Since P'(x) is z~polynomial of degree

s-1 - 7 ot
n-1 then (ozi)i___2 , the n-1 interior nodes are the zeros of P'(x) Q

»

and the two other nodes Of~-P(x) are o = 0 and o ., = 1.

Therefore from (2.6) P(x) satisfies the differential equation

')l 2 ‘
.L2_P2(x)=x(l-x%[P ({l]_ !

. n
which implies
n _ o P'(x) ]
v x(1- x) VI - PT ()
Hence
- marc cos (2x - 1) = arccos P(x)/L .
Coﬁsequently. . v , ‘

P(x) = L cosnarec cos (2x - 1) ,

which is the Eebyé’ev polynomial. Since

P'(x) = nL sinnarc cos—s—z-}-;————]-')——
vV x(1- x)

we obtain

From Theorem 2,2 Bemétein deduced the Theorem: If P(x) 1is a

‘ polynomial of degree n, and |P(x)| _<_\ 1 for 0< x <1, then

A , .
lP'(x)]i——-—n-———- for 0<x <1, '
/g(l—x) T

T

a

b e it ot o om et Be B8 oy IEDLE S Brenaline i X

RS- T
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3.1 Introduction In Chapter I we mentioned that Markov attempted t

investigate how large |P' (£)| can be for the polynomial P(x) ' bounded

a

by 1 on [0,1]. He obtained conditions under which for a given

\
£€ R, the Cebysev polynomials iTn(x) ts extremal. However, he did
not ,complete this study. E.V. Voronovskaja studied the provlem posed

by Markov and unified it with the methods of Functional Analysis. 1In

A -
A -

this chapter and in the subsequent chapter we present the solution of
Marl'mv's problem as presented by E.V. Voronovskaja. It is already

wt P
established in Chapter I that the extremal polynomial P(x) to our

problem has nodes s =n + 1 or n . We discuss the case when

s=n + 1 in the present chapter and the case s =1 1in the next

?

chapter, . N
, N
Let ¢[ 0,1] be the vector space of all continuous functions
defined on [ 0,1] with the distance between two elements fl ,f2'6 cl o,1)

given as ) ’, \

d(£,,£)) = o§§§1|f1(X) - 5] .

’ It is well known that the convergence in C[0,1] is uniform con-

. vergenwce of the sequence {fn(x)} and C[0,1] 1is a complete metric

space.

[
Let F:C[0,1] = R (real numbers) be a continuous linear functional

i.e. F satisfies the following conditions: Ka

(1) F(f1+§2) = F(f,) +F(£,) for all I3

1°f,€C00,1] (additivity)

(2) F(af)=aF(f) for all f£feCl0,1] and all o€R (homogeneity)
(3) ‘Ill_igF(fn) =F(f) . 1f £ converges to f uniformly (continuity)

It is ea‘sily shown that an additive homogenous functiona.l is con-

),

v X
tinuous if and only if it is bounded, i1.e. there exists a constant K



—

e } .

. - 35 = —
such that L . . '
[FCexl < gpag 20| for al2 fe.c [0,1] . - ‘
The smallest possible ;mber K is called(thé norm o‘f F and is denot-
edby NI Fl or N, mThus i '
= N=IlFIll = ;up lF(fl) | - o . ' -
T uhere sup 1t taken over all fe€cC[0,1T with 0% lt@)| = L. ’ g
The following representation théore:n of continuous’linear functional
defined on C[ 0,1] ° is fundamental to our work. ‘ i §
Risez Representat.:ion Theo’rem: Every continuous linear functional F
on C[0,1] can be represented in the form f
| " F(f) = f;f(t)éd}i(t) . 3
where H(t) 1is a funcﬁi:ion of bounded variation on [0,1]. " Moreover ) g i
' ‘ . ’ e 4 i

1
N=UFl =S [dH(E)]| .

Any such functional evaluated on thd/seQuence of powers l,x,aéz...xn,

N [N
generates a Moment Sequence ~
S

1
FG™ =/ t"dH@) = U .
] n

It follows from Welerstrass approximation theorem that a continuous

linear functional is xcompletely determined by a momep‘t sequence, . -

™ .

We now consider a limear functiénal -3
\ -

F O ~R
nn T - - )
defined.by a sequence of n+1 real.numbers, i.e. S
d ’ = 1 ’ .
By = Gpplpneenly : ;
such that » ' . ’ ’

1
»

FLQ ()] = q4Uy* QU te.atq U,

where Qn(x)= q0+ 9, +... +qnxn€ Hn .+ Recall that /‘Ilri is the space
N -

. /
of all polynomialﬁs ?f degree < n with d(Pl,PZ),-—ogggliPl(x) —Pz(x)] )

o
QE
k 3
" ;‘mw‘&x’x‘;m-«w»_mu -Te e
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for . Pl,Pze Hn, defined on [0,1]. Since 'Hn is a finite~dimensional

2 ’ ' vector space the norm Nn of the functional Fn " is attained by some

<

] .
reduced polynomial Qn(x) . which 1is then an extremal polynomial. That
P > ! » . : -
. . is Qn(x) is extremal for the functional Fn if and only if .Qn(x) 1
T . . 4
is a reduced polynomial i.e. max |Qn(x)] =1 and Fn[Qn(xﬂ =‘FN6".

Of course the extremal polynomial Qn(x) does not have to be unique.

In fact even the integrator function corresponding to the functicnal

4

Fn = U(;,Ul,...,Un need not be unique., In what follows we will give

necessary and sufficient conditions for a given Functional Fn to have’

a unique integrator function and a'unique extremal polynomial..

? 2]
- i Foy a moment sequence, (Ui)i=0 , let v _'Un,O and

U . If none of the differences

Um,n+l B m,n.-Um+l,n ,

(Um n)(m =0,1,2,...,;n=20,1,2,...) is negative then we call ’ .
’ . ‘

oo .
(Ui>iﬁo an absolutely-monotonic moment sequence , otherwise we call
' #

0 ) .
(Ui)i¥0 non-absolutely-monotonic moment sequence. Every moment sequence
(Uimi=0 can be represented uniquely as’ the difference of two non-zero

0’ called

l'absblutely-monotonic moment sequence (ai):=o qnd 681):=

the minimal® components of (Ui)

i=0 When the functional F is
o o - ‘ w
. N +defined by an absolutely-monotonic moment sequence (ai)i=0 we have
the norm N‘= ao. For the functional F defined by a non-absolutely-
. 1 oy = @) ® s th
. monotonic moment sequence (U,),_, 4;)j=g = (By)j=g » the nomm
R 5 .
= + —_— s - -~
N‘\ao BO

If F 1s a bounded linear functional given by a moment sequencé‘
P © -
(Ui)i=0 , then we denote (Ui)i=0 by U, and the value F[ Qn(x)]

as Qn(ﬁ), where Qn(x)é m . We now give the following:

; oF
5 see [T p. 8-12 ]“
N 4 we return to our main problem on page 48.
et v

) N P T

° \" b kzi") . /

§

v
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3.2 Theorem [, Theorem 1, p.l4]. gh absolutely monotonic moment e
séquence Q= (ai):=o has an extremalfpolynomial P(x) # 1 1f and only
2 -
. if the integrator function g(t) of o is a step function with a fin- .
ite gnumber of fumps (Gi):=l and if, (Gi)i=0 are the points of discontinuity
of g(t) then P(oi)='*l for i=1,2,...,s.
Proof: Since a is absolutely monotonic moment sequence then
o 1 ! ' ’
N=Varg(t) = ﬂ dg(t) =a 0" Since P(x)# 1, there exists a point X 4
and a closed interval [a,B8] such that 0 < a S'xo <B<1 and P(x).<1
for all x [a,B]. We apply the mean value theorem and obtain
Forwage < 2@ £ ago g “
‘ = P(§) var g (t) ]
[a,8] - ) ) /
! < var g(t) . :
’ [a,B] \
. Since N =,u0 we have ' ) A
, 1
ey = Q P(t)y dg(t) .
o . B R
=J P(e)dg(e)+ [ P(e)dg(t) + L P(t) dglt) -
= + + )
P(El){gz’a&]g(t) P(Ez)[&r%]g(t) P(£3)[\ga’r1]g(t)
. If {f P(t)dg(t) > 0 then from the fact that P(E;) <1 we get
o <P t) +  va t) + P t) , - . -
oy < BGEp)rpagge(t) tyagy g(t) ‘ (€3 5ax) 8(t) \ .

which means that . < N. ° Since %y = [¥31) g(t), we must have that
9

0
(35K ggt) = 0 or more explicitly g(t) on [0,B] 1is a constant

function. Consequently g(t) 1is a step function and can have discon- ' !

1

, tinuities only at finitely many points where p(x) = 1.
‘ ! ( ~

Assume néq that the step function g(t) 1is the integrator

w

function for the functional o, and suppose (Ui) are the pointé ‘

]
i=1

on the abscissa where the step function is discontinuous. " We make the

r

N ’

.
v
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, + -
following observations. If O < Ui < 1 then ig(oi) - g(0£)|=151> 0.

, N .
If 0, =0 then g(0) =0 and g(0)=<51>0. If -Us\=l then

g(l) - g(17) = Gs . We then have ’ : .

)

1 5
» ’ — = Z
ap = S dele) = ;2 6
and
5k

g 6

Uk
@ = L trdg()= 2, 0,8, .

n
Therefore if Pn(x) = kEO akxk is a reduced polynomial of degree n

.i.e. [H?T]!P(x)l =1 - Then

- 1 - )
P,E) = [ 7 (0) dg(e) ' :

.1 n Kk '
- = J; k—E-O a, t dg(t)
- 1 - - {l
= J; (a0 tatt ... + antn)d‘g(t) :

1 1
+
.C‘aodg(t:) f; a

1 .
tdg(t) +...+ L antndg(t)

Py 1
. s s .8 .
=5y ey v o &ret k) a0l 8
Vs s .
= 121 a8, + a;0, 8.+ ‘-."+an°r11 8,
s h \ .
= &1 P08,
. o s
Hence for Pn(O.) = OLO' = igl Gi we must have Pn(oi) = +1’. This
comp*lgtes‘the procf of our theorem. ' ‘ 2 a

The extremal polynomial of smallest degree, we call the principal

polynomial.

-

Co ary [7, Corollary, p. 15] If Pn(x) is a principal polynomial

' for the functional a = (Oti)z,:o where @ 1is an absolutely-monotonic . ;

moment sequence. Then the general form for P (x) is easily obtained
: n

depanding on the distribution of the discontinuities ,(ci) ;lﬂ {0,1] . For

. ae ORI ©



s

nl )— 2
. (l})‘_, 0 < e <0, Pn(x) =1-c igl (x - Gi)
} . s ) 2
(2) 0= =1 - ¢cx i_T_I_z(x - Oi)
. s-1 2
(3) 0« = 1 - c(l-x) 121 (x - oi)
s-1 9
(4) 0= =1 - cx(1l-x) 122 (x ~ Gi)

In the four cases ¢ 1s a positive constant. The degree of the
\

polynomial Pn(x) defined above cannot be decreased since every point

where Pn(x) =+ 1 1is a discontinuity of the integrator function g(t).
-~ s .
3.3 Definitions and Remarks The polynomial igl_(x--oi) which we
denote as Ré(x)lsis called the resolvent of the extremal polynomial
s

Pn(x) . The polynomial (x-Oi)2, is called squared resolvent and

i

is denoted by Rz(x) .
Remark 1 Let U be a moment sequence with a principal pélynomial
Pn(x) . If f(x) 1is also a reduced extremal polynomial of degree

Higher than Pn(x), we can then express f(x) 1in the form

fi(x) l-$(x)R§(x) where Ri(x) is the squared resolvent of Pn(x),
pad

and &(x) >0 . Since f(x) 41s a reduced polynomial that is lf(x)lf_l
on [0,1] then 1-f(x) <2 and 1-(1- é(x)Ri(x)).i 2 which implies

0<bt0 BRI <2 ., | ,

Remark 2 | If we have an absolutely monotonic moment sequence ﬁ=(Ui)=0,

. - »
and U has an extremal Pn(x) # 1 which we know, and moreover Pn(x)
is principal, then we can construct the integrator function g(t) of

the functional determined by U . We first find all the nodes

) G 30,5305 of Pn(x) on [0,1] 1i.e. these are the points where

Pn(x) =+ 1. We then solve the system
. g o
1=1 Gi.si—Uk k=0,1,2,-..,5‘l

) S b en

o
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3.4 Lemma [7, p. 16] Let U = (Ui)

-~ 40 -

-

of g(t). If we write V for the Vandermonde
(1)

for the jumps Gi

determinant of (Oi);Ll and V for the determinant of the matrix

formed by replacing the 1ith column of V by (uo,ul,...,u ).

Then by Cramer's Rule 61 = ~ i~= 0,1,..., -1. Hence g(t) is
. i - . :
determined.with jumps 61 at . o, . . '

We now extend Theorem 3.2 to the case when we have a moment

sequence (Ui)oz=O not necessarily absolutely monotonic. We first give

<

the following lemma:

- :
i=1 be a moment sequence with

- > - (o]
a4 = (di)i=0 and B = (Bi)i=0 1fs minimal components. Let the mono-

tonic-step function”® gl(tb be the integrator function for o and let

the monotonic step function gz(t) be the integrator function for B .

\

Then gl(t) and g,(t) have mo common points of discontinuity.

s
Proof: Let the points -of discontinuity of gl(t) be (ai)ii1 and let
S, . - : ]
(bi)i;i be the points of discontinulty of gz(t). Suppose that
a = bk = ¢\ with corresponding‘jumps Ga and Gb. We can always con-

'sfruct an fabsolute monotonic sequence (Yi)z=6 for which the integra-

ep function with a single positive jump 6c at the

-

point ¢ . We let GC " be the smaller of Ga and Gb. It is easy.

to see that both gl(t) - g3(t) and gz(t) - 33(t) ‘are pd;—decreasing.

-

We construct two mnew sequences

@ - _ o
. @ =g = @ = Y449
and
e = - @ ¢ .
(B = By =~ Yly=o -
L
Clearly ‘ ~ - ) /

. 4
-
’

=q!' -« R' = - _Q = - )
i Tl Sl PRI I

R

P - T o

=)

s e e ey 2
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'Since we are given that the absolutely monotonic moment sequepces o
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: o
Thus ( i)i“O and (Bi)i_ are two other components for (U

1)1-0 )

We now compute a6 + Bé . We have

1 1 1 ’
a'+86=f0 dgl(t)- 'Hg3(t)+f dgz(t) f d g, (t)

0
\\ =N..2'Y0( -~
which i§\imﬁ6331h}e. O
\ v
3.5 Theorem Py, Theorem 2, p. 16] The moment sequence U= (Ui):=0
has an extremal polynomial Q (x) % if and only if its minimal
« components a =////) and B = (B )i_o both have extremal polynom-
ials. \
N~——
Proof necessity: Assume that the functicnal defimed by U has an
extremal polynomial Qﬁ(x).,of degree n. Then

Q) =+ N =a,+8,

and B are the minimal components of U\ Then Qnta) =q and

0

T - Qn(é) = BO . Hence

ay + By =Q @ - Q@ - :

‘

consequently Qn(x) is the extremal polynomial for o and - Qn(x)
ry

'is the extremal polynomial for B .

Sufficiency Let QP {(x) and QP (x) Dbe reduced polynomials of loweét.,

- 1 2
degree such that® Q_ Q) = o and Q, (B) = B.. That 1s Q. (x) 1is
PI i 0 P2 0 P1
the principal polynomial for o« ana QP (x) 1s the principal poly-

2

“nomial for B . We will construct an extremal polynomial Q(x) for

the functional U . By the,éorollary 3.2 every principal polynomial
- s
1

has one of the forms (1),(2),63),(4). Let (ai)i=l and (b ) be

the points of discontinuity of ;;(xlx’ﬁﬁd gz(x) where gl(x) and

gz(x) are the integrator.functions of the functionals given by the ~

P
-

-
P

T i e e
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corresponding minimal components o and B of U. By Lemma 3.4

Sl S

. 2
(ai)i=l and (bi)i=l have no points in common. Thus if Q(x) 1is

the extremal polynomial of U then by the first remark of 3.3, the

o

resolvent of Q(x) must vanish at least sl-+ s2 = s points.

Q(x) is an extremal polynomial for both @ and B. Let the resolvent

Moreover

of QP (x) be RS (x),ﬁénd Rq (x) be the resolvent of Q. (x). Since
1 , 1 8, Py
5 .
RS (x) and RS (x) are two relatively primed polynomials, then by
1 2

the Euclidean algorithm for polynomials we can obtain unique polynomials

$(x) and Y(x) such that

<

bGORE (0 + B(ORE () =2, (3.1)
1 .

2
We have two cases to consider.

Case 1. Suppose $(x)_i 0 and Y(x) > 0 for allx€ [0,1] . From

o,

(3.1) we obtain °

: bGORG (x) = 2 = YEORS () Ve
1 - 2
’.Thus . .

Q@) = 1 - $(R: () = -1+ V(R: ) .
1 : 2

Q(x) 1is a reduced polynomial because é(x) and Y (x) are non—ﬂegative.

Case 2. Suppose that ¢(x) and ¥(x) are not both non-negative.

Then from (3.1) we obtain

$Gx) L V(x) . 2
RS R R (RS (x)
2 %1 1 2

We must construct a polynomfal A(x) such that

S 10 MPIURNUNE 105 B
2 - - 2 .
RS (x) RS (x)
2 1

That is A(x) satisfies the following

(3.2)

) + [P -A @RS (IR @=2,  (3.3)

[6G)+ A(ORS (IR
' 2 1 1 2

B - Lo e S L s
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where [&(x)*—k(x)Rg (x)] and [w(x)-k(x)Rg(x)] are non-negative.
2 .

Expanding (3.3) we obtain

(x) - )\(x)Rg ORZ (x)=2

¢(x)n‘s°'1<x) +2 ()R <x)s.§l<x> +YGOR;

2 1 1 2
which clearly equals (3.1). Thus (3.3) holds. We call (3.2) the zone
of reduction for A(x), it is of width _5___&7T___u> 0 . To obtain
’ RS (x)RS (%)

1 2 :
A(x) explicitly we take an arbitrary continuous curve inside the zone

: .
of reduction, then by Weierstrass's Theorem we approximate it by a

polymonial A(x) which lies also inside the zone. After choosing A(x)

we can write the extremal polynomial Q(x) as

QG) = 1 1400 + A(RS @IRS ()
2 1

== 1+[¢P(x) - A(X)Rg (x)]Ré (xf .
2

. 1

This completes the proof, O
Corollary [7, Corollary, p. 18] If (Ui):=0 is a moment sequence \\\\
with Qn(i) as its extremal polynomial then

. s .

= L y Tk =

Uk 121 Gicri k =10,1,2,... .
. . -y L

and O 20,2 1 with Qn(gi)“ sgnéi , and (Oi)i=l are the points

of discontinuity of the integrater function  H(t).

Let ﬁn = (Ui)z=0 be a finite sequence of real numbers we call

this sequence a segment-—functional. As we had in the introduction (3.1)

for a continuous linear functional Fn==ﬁn:Hn+I( we have

n
= Ty= 2
Fn[Qn(x)] Qn(Un) i,=0<11U.i ,
g i
where Qn(x) = 5 X € Hn . _
* \
By the Hahn-Banach extension theorem the functional Fn==(Ui)2=0

can be extended to Bl by one number U ~ such that the functional
[‘l.'*'l ’ n+l . *

v

. u"a"‘k‘&u‘.w_—ﬁ’_ﬂ;‘"*‘::“ -
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- segquence U= (U

[

has the same norm Nn as Fn .

C _ .
A segment-functional Un = (Ui)ril=O is called absolutely-monotonlc

segment functional if there is at least one absolutely monotonic moTent

[e+] - - n .
i = +
i)i=0 of which Un (Ui)i=0 forms the first n+1

terms of ﬁAf If among all the extensions none-is absolutely monotonic

A

moment sequence, we-‘say that ﬁn = (U 1s non-absolutely-monotonic

n
i)i=0

segment functional. If ﬁn = (U is a non-absolutely-monotonic

n
i)i=0

segment functional with P(x) as its extremal polynomial, then P(x)

cannot be equal to the constant 1 . Had it been = 1 the integrator

function_ H(t) 1is monotonic and l(ﬁn) =U. <N and then (Ui)?=o

0

becomes an absolutely monotonic segment functional. Furthermore a

segment-functional (Un)[il=0 has a corresponding integrating function

E<3

however the integrating function need not be~un5ﬂque2 « In the next

i)?=0 is non—absolutely;monotonic

\theor’em we will show that 1f T_= (U

segment functional then the integrating function is in fact unique.

-

. ' - n
3.6 Theorem P7, Theorem 12, p. 33] If Un = (Ui)i=0 is non-abso-

lutely-monotonic segment functional then ﬁn has a unique best exten~ .

sion, i.e. there is just one number U*

1 such that the segment’

. *
Uo,Ul,...,Un,Un+1 defines a functional fn+1 with the same norm Nn .
Proof: We must show that there is a unique number U§+1 such that the

segment U ,U

0 "’Un’U;+1 defines a functional Fn+

1" 1 witb’the same

norm as Fn . Let Qm(x) be an arbitrary extremal polynomial of ﬁn"

By Hahn-Banach we form an arbitrary best extension .

UO,Ul,...,Un,U .,Up,... .

¥l

5 see[6, TM 6, p. 22] for more details.

e e Ak

W PP
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'We then obtain a moment sequence where

i .
v = e duce) p=o0,1,2,... (3.6) .

»

By the corollary to Theorgm 3.5 H(t) 1is a step function with

s s
discontinui;ie: at the points (Oi)i=l and with jumps (61)1=1 .
Let (o,) E be all the points of deviation of Qm(k) on the A
174=1 .
closed interval [0,1]: That is \Qm(ci)l =1 for 1= 1,2,...,31. :
s -
Clearly 2 < S < Sl <mtl. Then the (Gi)iil at the points oi are
determined uniquely by the system of ) equations
;1 “~ ‘ B
i=1 diGi—Uk k=0,l,2,...,sl—1
Therefore by (3.6) all Up with p z_Sl can be uniquely defined
6 N
by— . \ v
. v 8
“w, El ~p ;
Up = & Gidi .

Therefore the segment (U, )"

1’ i=0 has a unique sequence of best exten-

sions which we denote by

e T

» *
UO’Ul’.."UI}-’Un+l’Un+2’... )
where each U* is unique, and every extremal polynomial P(x) is

nt+l

such that the points (Gi):=l of discontinuity of the unique H(t)
. \ 1

are somé of the points of deviation not necessarily all of them. U

Corollary 1 [7, Corollary 1, p. 34] To each non-absolutely-monotonic

segment functional ﬁn there corresponds a definite set (Oi)i=1,
N\

the paints of discpntinuitz,of the step-function H(t), where

/

0<o,<1. - X
i P Lt Coou

Corollary 2 F?, Corollary 2, p. 34] 1If ﬁﬂ is a non-absolutely-mono-

tonic segment functional and (0,) are the points of discontinuity N

8
171=1 ,
6 If a point: 0! 1s not a point of discontfﬁé&ty of H(t), then its
jump § 1s zéro. ‘ .

»

L N R et Tt e e

—
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then there is a reduced extremal polynomial Qm(x)(m< n) with

s - '
(Gi)i=l as its nodes and Qm(Gi) sigGi .
Krom now on we agree to call a non-absolutely-monotonic segment
= _ .. \n
funcpional simply a segment functional. Suppose that Un = (Ui)i=0 is

a segment functional and Qm(x) is its principal polynomial with m<n.

By the Hahn-Banach Theorem from Um onward the segment functional has
L4

a best extension U;+1,U;+2,... . Consequently the segment functional

U = (Ui>2=0 can be replaced by a truncated segment ﬁm = (U

yo
n i’1=0 °

Therefore we make the assumption that the principal pdlynomials of the
segment functional ﬁn are precisely of degree n, and in that case

the segment functional is said to be irreducible.

3.7 Theorem (7, Theorem 14, p. 36] If Q(x) 1is an extremal poly-

nomial of the segment functional ﬁn = (Ui)2=0’ then every other ex-

tremal polynomial is of the form

» LGx) = Q) + $CORE ()

where &(x) 1s a polynomial that ensures that L(x) is reduced. The

- ‘

function Rg(x) is the squared resolvent of the segment Un See

Definition 3.3.

" B
Proof: Let L(x) = Q(x) + $(x) . If (cri)i=l -are the nodes of the

segment ﬁn then sgnL(Gi) ==sgnQ(Oi) which implies &(Oi) =0.
Furthermore, by the fact that the polynomials Q(x) and L(x) have

1 of Q(x) and

L(x) equals tb zero. That is Q'(Ui)==0 and L’(Oi)==0. This implies

extrmas at °1€ (0,1), the derivatives evaluated at ©
{

-~

that éﬁ(oi)==01 It therefore follows that $(x) 1is a multiple of

R:(x). This completes the pfoof. - O

PR SR
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3.8 Remark Let ﬁn = (U ibe'a segment functional. Then a reduced

n
i)i=0

pblynomial Qn(x) #1 is extremal for the given segment functional ﬁn -

if and only if the system .
s K '
) = =
1=161 Oi Uk k 0,1,...,n

of n+1l equations in s unknown 61 satisfies the following two

.

conditions: ’
(1) the above system is consistent

(2) and (Oi)

§ = 0/; generally not all &, =0, o

1 i

The above we call criterion for extremality. In this case, the integrat-

-

s -
4=) are the nodes of Q (x) with sgnQn(ci)v—sgnSi

»

ing function H(t) corresponding to the segment Ffunctional ﬁn=:(Ui)z=O

is a step function having points of discontinuities at (¢ and
£ 1 E
k v k
=1 519>

s
i)i=l
k=0,1,...,n.

~ We now give the foliowing definitians., To each node Oi we
l
assign the sign of the corrésponding jump Si. This we denote by

t. g’

(Ui)i=l' and call it the distribution of the segment ﬁn' For a fix .

natural number n we div;de the family of "all segments into two
classes'depending on the number of nodes. If S_f-%'+ 1l we have a
segment of class I. If s > %-+ 1 we have a segment of class II.

he extend the concepts of classes determined By segments to polynomials.
We say that a polynomial P(x)€ Hn is of ciass 1T if s > %-* 1
otherwise P(x) 1is of class I. It is clear that if Qm(x) is a
ﬁrincipal polynomial for the segment ﬁn and if this segment is of

class II with s. nodes then Qm(x) is a polynomial of class II with =7

1

52 node® where s2 > Sl .

3.9 Theorem [7,Corollary 1, p. 37] For every segment §unctional ﬁn

‘ .
!,,‘ k]
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of class IT" the extremél polynomial of degree < n 1is unique.
/

Proof: Assume that Qm(x) with m < n is an extremal polynomial of

the segment I_In . Then by Theorem 3.7 we have that all other extremal

polynomials have the form

L(x) = Qm(X) + ¢(X)R2(X)

Since ﬁn belongs to class II, i.e. 's > -121 + 1, |the degree of L(x)

)

1
\

myst be greater that n . ( ! O
3.10 Let us return to our problem and consider the derivative
P'(x) at x =% as a continuous linear functional FE\\ on Hn , l.e.
#
for every P(x) EHn. ’ \
F.[P(x)] =pP'
J N E[ (x)] &)
Since F (xk) = kk_1 , we identify F, by the segment functional
£ € £
- k-1 n-1|
FgEUn'—'Q,lJE,---,kE IS 13 .

We call FE the derivative functional. The problem of finding the

max |P* (£) | over all polynomials P(x) of degree \in with

oxgazci]P(x)[ =1 {is in fact finding the norm [IF.ll . We denote the norm
X

&
by Nn(E) . If no confusion arises we write N(§) for Nn(F,'). There-

fore for. every reduced polynamial Péx) 3

N(E) j||p5|| = Fp(®) = [P (&)

Because of finite dimensionality of l'[n , the space of all polynom-
ials of degree < n, an extremal polynomial for each ‘Fg exists. In
Chapter I we have already established that the number of nodes s of an

|

extremal polynomial must be n or n+1l. Here for a

glven E£€ R

the extremal polynomial is unique (note: s > 121- + 1), |
|

[

First we consider the case(ahen s=nt+l, The ILther case where

the extremal polynomial has n nodes will be discussed in Chapter IV.

|

PP S S

.
O
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Since the Cebysev polynomials iTn(x) = fcosn arc cos (2x-1) are

" the only polynomials with n+1 nodes, our problem is reduced to the

" Qs . ’
study of those E for which de(x) are extremal.

-

Let the nodes of iTn(x) be (Ti) From the criterion of

n
i=0 :
extremality (Remark 3.8): the integrator function H(t) _ corresponding

to the functional Fg, has disc{g;fﬁuity at (Ti) *and the jumps

n
i=0 °’

1

i

Es

§ take the sign of Tn(Ti) . ?ﬂus we are led to determine £ for ’ %

which the system
n

k ' k-1 l ‘ ' .
3 - - ,
120 GiTi kg (k = 0,1,...,n) ) o ,

v

when solved for 61, gives 61 with alternating sign’éince ' C i

sgnTn(Ti)==-sgnTn(Ti+l) i=0,1,...n-1. \«\\’i

) The interval I such that for £€ 1, the extremal polynomial | ’ '?

v . R v e ' ,
isengbygev polynomial will be referred to as the Cebygév interval. e
We now have;

. .
3.11 Theorem [7, p. 158] The domain where the Cepy;;v polynomials

. & 1
iTn(x) are extremal consists of n separate closed subintervals of

%

v :
R , called the CebySev intervals. . >

v
Proof: Let (Ti):=0 be the nodes of Tn(x) and let the Cebygév

C o

resolvent be , . .

n
R0 = 40y x-1y) o R

We will solve the following n+1 linear equations in n+1
unknown 6, , ‘

i 0 i i ? e ) ( ) ' . E

'

1Y

Y By Cra.mer's Rule; from the system (3.5), we get

I N
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1 1

ol el [y )

T 'cl,..‘.,g sree,T

P SO

2 2 .
+ | %o Tl,...,E sees,T
a ’Q‘ LS ] .

. n .n .n " n \
_TO,Tl,...,E ,...,‘tn , |

k ;
V H ( T

R Y

°

The numerator of (3.6) is written as thg derivative of a Vandermo\nlde

, determinant, that is . - ] -
s d o,
¢ T (t,-1) where t-=¢8) - '
o 5. = dg 0<j<i<n 1] %.(-4 . . ,
k ., I (t,-1.) v .
0i<i<n™ 1 .
LG - 7)) | -
T /‘Ti) ‘
_ (_‘Jln-k’ ([ E-tpE-11" - ;,//‘
I ,/_ i E - T ' . 4-
. e T k , | :
. D™ A ©
° |t - GEE) :
17k Irk Ti[ kK |
. , ‘ .
S T A ®@C W R ®
& € - 107 S

If £ < 0, we note that all the nodes‘\are on the right hand side

. ' " _ . -
of &, so Rn_HL(E)SE T ’tk) Rn+1(€) does not change its sign with k,
hence Gk ~alt‘ernately changes its signs with k. The same conclusion

holds if & > 1. Cc'msequenltly for E ¢[0,1] , the extremal polynomial

for FE‘ is the E’eby;ev polynomials., ) 3 |
- 1 n N - k
"y0 A = g~
Let (Oj)j-‘-‘l be the eextrema of Rn+1(£) i=0(€ Ti) , where

- 3 .
. \
. '
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] ¢V v ™~
| (‘ti)ril=0 are the nodes of Cebysev polynomial. In the numerator of (3.7)
\ N '\f\_ e ~

§-

at E=Gj,

R0 (05 - 1) = R#1$03) = = Ry (0))

changes its sign

3

does not change its sign with k, hence (Gk)§=0

alternately.” Consequently for each GJ,; the derivative functional ‘FU .

has for its extremal polynomial one.of the polynomials * Tn(x) .

Furthermore since § is a continuous function of & , and 61{ #+0,

k-

when we fix £ = dys we note that all 6k will remain non-zero and -
keeps its sign changing alhternately with k over an interval contain-
ing Oj . This means that if one of the polynomials iTn(x) is

extremal at § =0 then it 1is extremal over an interval containing

j y

v
0, . These intervals we have called the Cebyéfev intervals. One should

3

note that none of the intervals would contain any of T because

k
'I‘I'I(Tk) =0, k= i,. ..,0=-1. This implies that there are n seperate

v v
intervals [a,B] such that for & {n these intervals the Cebysev
<

polynomial is extremal. We also observe that when £=0 or £ =1

we have

Ay

Fg:o = (0,1,0,...,0) and Fe’::l

respectively, and so 6k # 0 for all k and changes its sign alter-

= (0,1,2,...,n)

nately. Hence we have two numbers o <1 and B > 0 such that for

each £ in the two intervals (a,t®) and (-«,8) called the boundary

v v ’
. Cebysev intervals, t Tn(—x) is extremal for FE' 0O

- v
We are now going to‘'describe the end!points of the CebySev intervgl®
[a,B). Of course, for the end points at least oﬁe of the ‘Sk must
v v . .
vanish and then the Cebysev polynomial ceases to be extremal. We will

show that at the end points of [a,B] , the fir‘?,j" ‘Sk to vanish is



.

< ’/
- 52 -
either 60~ or Sn .  For this we need:
3.12 Theorem | ',‘TM 63, p. 158] For éach k (k= 0,1, ,01) put

R',EVE - 1) =R () =8 (E) .

I) Suppose Rr'1+l(€) > 0 then if AO(E) < 0 “we have Ak(g) <0

(k#0); 1if. An(g) > 0 then Ak(E) >0 (k¥n). Furthermore if

-

AK(E) 0" tl}en Ak_i(E) >0 and Ak+i(£) <0 (1>0, k#* 0,n)

II) Suppose R',. (E) < O then if A (E) > O we have & (E) >0
(k#0), 1f A (E) <0 them 4 (§) <0 '(k¥n). If A () =0 for
'k;e O,n then Ak_i(i) < 0 and Ak‘*’i(g) >0 . “";

. Rt ) _ _ ;
Proof: Let Rn+l(£) >0 . Since (& 1‘0) > (& Tk) for k#0 and

for ;'any Ee (0,1].
Rt',l_,_l(i)(ﬁ - TO)-~ Rnﬂ(E) > Rr'1+1(‘5)(5 - Tk) - Rn+l(€)
from where Ak(g) <0 |1if AO(«E) < 0. Further, we note that

& - T) < (E-7) ‘for E#n and.for any £€[0,1),

Rr'ﬁ_l(E)(E - T) - R € <R, (EE - t) - R ;)
Hence Ak(E,) >0 1if An(F,) > 0. Since 'ck__’i<Tk.< Tiky * ve have
E—Tk_l>€—'r'k>g—'rk+l and so C
£ ) >8,® > b © ‘
1f Ak(g) =0 , Ak_i(E) >0 and AHi(E) < 0 . The proof of (II)
folloks in a similar fashion. O

3.13 Corellary 1 [“, Corollary 1, p. 159] Let o and B be the '

v
left-hand and right-hand ends of some Ceby‘s/ev interval., Then at the

ends of [a,B] one of the boundary nodes loses its weight. Further

§ =0.

for E£E=a &_.=0 and for & o

— 0

=8
Proof: Suppose that for £ =aq , <Sk = 0 for k+# O,n then Ak(€)=0.
4

- In case zg,;+f(£)3~o (when Rr'1+1(5) < 0 the argument is the same),
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from Theorem 3.12, we have Ak__l(E) > 0 and Ak+1(£) < 0. Therefore

sgn by ) = -sen by

because
SIS WNG!
-1 = ;
dhe 11 - Tl
T o n-k-1
Y e N

T L T

. . v o
We note that for &€ [a,B] but sufficiently close to o, the Cebysev

polynomial is extremal and 61 alternates. By the use of continuity

~

of Gi ,» we must have sgn Gk_1=— sgn 6k=sgn 6k+l . Consequently for
E=oq 60=0 or Gn=0. ‘_ .
Finally we show that for £ =a , Gn # 0 thus 60 = 0 . Since
n
= I - ' =
Rn+1(E) i=0(£ Ti) has simple zeros at Ty and Rnﬂ(ci) 0

vhere (o )n are the extrema of R (€), each Ceby¥ev interval
=1 xtrema o+l , eac y3e erva.

[y

[¢,B] contains only one oy i.e. Ty <0< B < T4y - Thus in

' ' > > [y
the 1eft' of ci,at 0 we must have Rn+1(a) 0 1if Rn+l(a) 0 or

1] < . '
Rn+l(?.) 0 1if .Rn+l(a) < 0; see Figu\re 2. .

—
—

FIGURE 2 .

- ‘ ' = R" - -
As (o 'rn) < 0 , we conclude that An(a) Rn+l(0t)(0l Tﬁ) Rn+l(a)

“
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is either positive pr negative but never zero., Hence corresponding to
O, Bn #0 . The owher ;:ase corresponding to B 1is dealt similarly. O
It follows from c':orolla‘ry 1 that by setting 60 = 0 in (3.8) the
roots of R’:'_1 1(€)€ - Rn+1(E) =0 (except for & =0) are in fact the
left end point o of the é/ebygev intervals. Thus we have:

- . v
Corollary 2. [7, Cor 2 p. 139] The end points of every Ceby\s/ev

interval [a,B] ‘are respectively the roots of

i

Rr'1+1(a) g - Rn+1(a) =0
RI'l 1(8) ®-1 - 'Rn+l(8) =0

with the double root o = 0 excluded from the first equation; and the

double root B =1 excluded from the second. . E!

3.14 Remark Recall that Markov has shown that for & €[0,1] the

extremal polynomial is Tn(:‘g) iff (1.12) and (1.13) hold i.e.

-
% +1>¢ E (1.12)

and

, . .

: | :zi;+ F7< 0, ‘ (1.13)
, If for a given EG[O,l],(l.12)~ and (1.13) hold, t;hen by continuity
it also holds over an interval containing £ , and at the end points
of the interval the right hand. side of (1.12) or (1.13) nust become
zero. So, Markov's observation should conform with corollary 2 of 3.13:
Since ‘ !

o r® = e b

we‘haVe )

R
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n 28 @57 (8- 1) + 11 €) (26-1)E - TLEEE - 1))

22 e E- D+ TE)}

) :
2n~-1 3 n 1
I GGV N

R' (E)E- R(E)

I

and

n

R' ()€ - 1)-R(E) = 2" {(I(E)EE- D + T/ EIQ@E-DE-1)
S T (E)EE - 1)}

i

l ) 2 " !
€ - DT (E)E + Tn(m

~ 2 ThE)
~ . 2n-1(E~1) n 1
2w e v -

Of course TQ(E) # 0 hence the assertion is verified.

v
¢ The CebySev intervals we will denote by

[0,8,1,00,8,0,.05la 8 1, [a,11= ()] =E;
- .
where o, = 0, Bn = 1. Now we are going to show that for &£ €[ an,l] ,
+ »
FE has 1ts extremal Tn(x) and for g‘E[an-l’Bn—l] FE has 1ts )

extremal -Tn(x) and so on alternately. We note that at GnE [an,l] .

) >
the extrema of Rn'*'l(x) ’Rn+l(0n) < 0 because Rn+l(x) >0 for «x 1
and Tn =1 d1s a simple zero of Rn+1(x) « Thus corresponding to cn .
from (3.7)

-R_.(0)
= ntl n >0 .

‘ 2
LR NECEEES

n

This gives that the value of the Eeby‘s’ev polynomial (which is extremal)

—

at T = 1 must be +1., Thus +’I‘ (x) 1s extremal for the entire

interval [an,ll. Since at o E {a 1,

>
n-1°F0a1 R(0 ) > O we

have - T (x) as extremal for (€ [a .,B .], and so on.
n . . n~1""n-1 .

L}

We now givé a complete description of the norm of the derivative

1

&

PSP B N
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functional FE over the Cebysev interval. At this stage we need: |

'3.15 Theorem [7, p.,157] If Q(x) is an extremal polynomial for

Fg » then the polynomial Q(1l-x) 1is extremal for the segment functional

) -1
<2Q%>§=l = 0,-1, =2(1-&),..., =01 - &)"
and consequentgly N(&) =N(1-§f) . We need the following lemmas:

‘Lemma 1 [7, p. 3] 1If (Ui):=0 1s a moment sequence then
) n n . n
= - + - e — . .
Um,n Um,O (1 u 1,0 (2 U 2,0 (1) u l (3.8) ‘ ;

P*’:oof: The proof is by i‘lduction on n . The number m 1is arbitrary.

For n = 0 we have Um 0 = Um 0 for all nm. We next assume that for 0
n 1o matter what m 1s (3.8) holds. We will show that '
)
, ntl nt+2 ) otl . -
= - + + -
Uayrtt = Y0~ Ci 000 ™ G000 0 o G170 1 o
S_ince Uﬁ,n‘*l = Um,n,- Um+l,n we obtain
n n ’
- = - + - (-
e Unn Umr,n T U0 ColVmra, 0t (o 0Wmp om0 e ¢ 1)nUm+n,0
n n
- - + - = (=
(1,07 (1 20,0 (2 00043,0 1y o
n n n n
= -— -+ +
Um’0 [(l) (0)]Um+1,0 [(2)+(l)]Um+2,0“
. o.ontl . '
b .00—(—1) Um+l,o' ‘. i
Since (p+l) = (p) + ( P ) we obtain
‘ g q -1
ntl ntl
— = P +
Uan ™ Pariyn = Uno™ O 2 0% Co DV o . . |
nt+l ' i

o 5D U0

= Um,n'*'l

o+

B {
' A 2 n-1 ’§
© Lemma 2 If (Ui)i=0 0,1,28,3%",...,n§ then ' : :

)2 =0,-1,-2(1-£), -3(1~£)7,...-n 1 =) |

(U, 17 1=0
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Proof: From Lemma 1 we have

v n-1

; n n n 2 n
0,0 =0 = (P)H(2E-(3IE+ ... (-1 nE

=- n+n(111 )E-rl(tz1 )52--‘ -n" ngn-l
=-nl1- (e (5HE"- D™ 0™

=-n@-£)*?t

Proof of Theorem 3,15 By the definition of a moment sequence there

exists a function H(t) of bounded variation such that
£ T . 1

. ! n :
U fo t dH(t) . -
We shall show that
‘ 1
LI t™(1-t)" dH)
3 .
This we show by induction on n . Sirixce Um’0 - Um+l,0 =\Ih‘1 wpe
obtain that \
1 1
= m _ mt1
Um,O-Um+1,O fot d H(t) fot dH(t)
' m
‘=f0_t (L-t)dH(t) .. .
We assume that
1 .
L t®(1-t)" dH(t) .
1
We will show that
! +
U 4 = J‘O*Em(l -0 guce) .
b}
Since Um,n+l = Um,n - Um+1,n then
1 1
_ m n w1l n '
Uppil =/, £ Q-0 dB(t) = f e % (1-t) " dHlt)

1
=/ " @-t)" - e Cny™yan)

ntl

1
. =f° tP(1 - t) dH(t)
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Since m was arbiti-ary we have for m = 0

! A *
— n )
Uy o —fo (l—thH(t) .

We repface (1-t) by ¥ , hence

Ugn = folYnd[H(l) - HL - v)]
= fal Y?dh) ,
where ;
hGp) = H() - KA - Y) . . '

A

Consequently the integrator function h(Y) has ~discontinu:l.t;es at .

x where the Ci's are the dis-

continuities of H(t). Thus for the extremal polynom‘i'al Q(x), for

the points (1 - Oi) with fumps §

the functional FE we-have . . '

1
NE) =Fp () =/ Q@) dH(x) =L |8 [= L6 o))

1
£8,Q(1- (1—01’)’)=f0 Q(L-x) dh(x) =F, ; (Q(1-x))

]

N(L -§&) . |

From Theorem 3.15 it 18 enough to consider the norm on half the

-

interval [0,1] i.e.[i},l] .

3.16 Theorem [?'7, Theorem 65, p. 162] Let (Yi);:i be 'the zeros of

" n-1
Tn(x) and (Ii)i=2

be the (‘;eby's/.ev intervals. Then ‘yiE Ii

(i =2,...,m~2)., That is each interior Eebygev interval contains only
one zero of T;(x) . ‘

Proof: Let [a,B] be one of the interior El/eby\:;ev intervals with

a > %, It follows frqm _(I:LOL that

a2 R L) = T Xk - 1), (3.9)

also Rn+1(x) and -Tr'l(x) have the same sign on [0,1]. Moreover,

= '
agn Rn+l(a) sgan+l(B) because T, <a < B<T and Tn(x)

i i+l
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1

does not change its sign within consecutive nodes. Therefore from'®

(3.9) we get -

21’1—1 R'

02T R (0 S TE@ R - T 2D L (3.10)

From (3.7) and (3.8) we obtain
Rr'1+l (o = Rnﬂ(u) , ' (3.11)
and
R, (8 (B-1) =R, (B) . - .d2)

By substituting (3.10) in (3.11) and (3.12) we get

2n-1

12?7 @) = T@e (e - D+ T - R,

and .

2n

. -1 = mun _ 132 Y om _ ‘a _ .
n27T TR L (B) = TR ®IB(B - 1) + T (B) (28 DE@E-1 .
> = _mt
If‘ Rn'*'l () 0, then frém above we have sgn Rn‘*‘l (o) sgn Tn(a)
S0 Tr'l(oc)a(Zoz— 1) < 0O, hence wve obtain that T;(a)az(&-l) ™ 0 and

"
Tn(a) < 0. If R ,,(B)> 0, then from above we get

2n-1

T!(8)(28-1)(B-1) > 0. From (3.9) ve have n2 R, (8)>

Tr'l(B)(?.B—l)(B—l)' because B > 2R -1 that is B8 <1 . Thus

2 X
" _ " =
Tn(B)B(B 1" >0, and consequently Tn(B) >0. Since sgn Rn+l(a)

sgan+l (B) , there is a zero of T;(x) between o and B . If

Rn+l(0L) <0 and Rn+1(B) < 0 the proof is similar. This completes,

S
the proof. .

We further note that when sgn Rn_l_l(a) = ggn Rn:"l(B,) =+ ve , the

-Tn(x) and N() = —*'I‘r'L(E) . In this case

[}

extremal polynomial is

-T;((!) >0 and —T;(B) < 0, because of T the norm N(£) takes

k ’
ity maximum at £ = Tk . Thus we have:

Corollary [7, corollary, p. 164] In each of the iaterior é’eby;ev

interval the norm takes its maximum

e R

LT



- 60~
- ONGy) = T ]

v
4just once., In the Boundary CeAyé’ev interval the norm decreases

. monoton'ic;ally'frém outside in, that is

max N(§) =+ T1(1) = [T} (O] .

3.17 Theorem [7, Theorem 66, p. 163] Let (9,)]_, be the roots of

Tn(x) then 0'16 Ii (1i=1,2,...,0) i.e, each Eeby‘é’ev interval con-

tains exactly one root of Tn(x)

Proof: Let [a,B] be an interior Eebyé/ev interval with o > % . It
can be verified that Tn(x) = cosnarccos (2x-~ 1) satisfy o

x(1- 0T (x) - (x-i)Tr'l(x)'FnzTn(x) =0, (3.13)

Let Yy be a root of T;(x) in this interval. Suppose that the
extremal polynomial is +Tn(x) then TI'I(x) > 0, k(otherwise -Tn(x)

\

would be the extremal palynomial). It also follows from (3.13) that

Tn(Y) >0, hencé for B > v, Tn(B) >0 because Tr'l(x) >0 . We

-
’

will show that Tn(a) < 0. From (3.9) and (3.11) we have that

| .
Rn_ﬂ(a) < 0 and,so from (3.10) '
2n-1

' ) = " 1y ¥ T -
n2 Rn+1 (@) Tn(ot)a (0-1) Tn (@) (20 - 1) .
" We get T"(@) #0 (4n fact > 0). Using\(3.13), we have )
i n ' E
2 = - ' - - " ' .
n Tn(a) (o é)Tn(a) a(l a)Tn(a) R
= - ' + - " . ;
(@-HT' (@ +ale-DT] (@) ,
' =-3@-HT @ + o= 1T +Fales DT . f
' i
<0 :
Thus Tn(a) < 0. Hence in each of the interior Ceby-:::,ev intervals C é

Tn(x) has one root.

, v ,
For the last Ceby‘s’ev interval [a,1], 'Tr'x(x) >0, so Tr'x(a) >0

and T;(x) # 0, thus again Tn(a) ¥ 0 where as Tn(l) =1 >0, a

o
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3.18 Remark Since we are taking the derivative functional over [0,1],

v
the Cebyé/ev polynomial is given by Tn(x) = cosn-arccos (2x-1) and

its roots are Oi = % cos (22 =1

I+ 3 (4 =1,...,n).

When 1n 1s odd there is al(‘l’eby;ev interval of the form [o,l-a]
containing the point 2. TFrom (3.13) we obtain t}}at % 1s also the root
of T;(x) . Hence Theorem 3.16 and Theorem 3.17 remain valid. 1In each
oig the other Eebys\slev intervals to the fight of ¥ the roots (Yi)z;i Sf
D=1
This ‘follows from (3.13) because sgn Tn(Yi) = ggn Tr'x(Yi) and Tr'l(x)

T;(x) are such that Yy > ay where (0 are the roots of Tn(x) .

does not change its sign. So sgnTﬁ(x) =sgnTr'l(Yi) for Y <%, thus

v
g, < Yy - Hence over a Ceby:‘s’ev interval [ o,B]

n|sinn arccos (25“- l)_l_

NE) = |1 (®)] =
JET-D

We can easily see the following inequality

N(E) <

n
for £ [a,B] , ’
vE(L - E). ’

with equality tak'ing place only at the points where
|sinnarc cos (26 ~1)| = 1, which are the zeros of Tn(x) =

Tn(S:) = cosnarc cos (2x-1) , (see Figure 3).

. /\ . / +-T © )_ n

+T'(0’ij— n itl 1
‘ n v a,(-6,)
1
L | | | | 1 [ (
! 1 T T ! 1 -
O 9 Yy By %y T4 Vv Bieg

FIGURE 3

DU I
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4.1  Introduction We have already seén in Chapter I that for & €[0,1]

I
1

the extremal polynomialy for the derivative functional }?E has n ot

ntl alterﬁating nodes. The case for n+tl mnodes has been discussed
in the preceding chapter. We are now going to ‘discuss the case when
the extremal polynomial has n alternating nodes.

Let P(x) be a reduced pol};nomia-l of degree m having s nodes.
If the signs associated with two co‘nsecutive nodes are the same then
this intérval is called the interval of repetition. The total number °

]
of the intervals of repetition we denote by P . Then the numbers

n,sy;P written as [n,s,P] is called the passport of the polynomial
P(x) .
v oy
The Cebysev polynomials * Tn(x) are the only polynomials with
v ! .
passport [n,ntl,0] . Hence outside the Ceby\s/ev intervals the deriv-

L4 . .
ative functional FE has as extremals those polynomials which are of

passport [n,n,0] . We will investigate those polynomials in some detail

by studying those properties that are needed for our work. We yill show

that the'polynomials of passport [n,n,0] form a family of polynomials *

depending on a single parameter, which can be taken to be the leading
coefficientg, .

These polynomials take the form , :

ox" + yn_l(c)@xn'l+ cty @t oy,
where _22n-1 <§ < 22n—l . For g==z il these are the Eeby\s’ev\
polynomials. If O <0 < 22n—l , we denote t‘;ue family by Qn(x,c) .
For - 22n—l <0< 0 we have the polynomialg (- l)n—lqn(}— x,0) ancl
for g =0 ‘
Q(x,0) = -T .(x) .

n-1

e
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The polynomials of passport [n,n,0] are of the form % Qa(X,U)

and ¢ Qn(l-x,c). We call these the General Zolotorev Polynomials.

They fall into two classes. One class consists of transformations of

'Tn(x) , that is they are of the form % Tn(vx) and T£(v(1—x)),

where cos2 ig—<i vV < 1. The relation between the parameters V and

g 1s given by
G = 22n—l\)n

. ' - Y‘l.
The second®class which we, denote by Zn(x,c), are called the

Zolotorev polynomials,' The collection of all ?nch polfnomials are

+ Zg(x,c) and % Zn(l-x,c). The polynomials Zn(x,c) are connected
with theif resolvent
. n
Rn(x,o) = igl (x-Ui)

%

GZn(x,G) o
1——6—0”——-’: Rn(x,G)‘. ’

N +
. <

By the theorem on continuous deformation (Theorem 4.9) as O

decreases Kontinuously‘from' 22n—1‘ to - 22n—1 the polynomial’ Qn(x, )
’ N ¢ R el

.

is deformed continuously from +'Tn(x) {Eo —-Tn(k) following the

. n-1 '
sequence Tn(Vx), Zn(x,c), through -Tn_l(x) then (—FJ Zn(l-x,o),
2n-1

(- l)n-l“ Tn(\)(l-.x)) , and finally, —.'I:n(x) as 0 =-2

Y

We start our investigations into the class of polynbmials of

- - ’

passport [n,n,0] by noting an important property of the polynomial of

passport [n,n+1,0]. This will engble us to turn to sjgment functionals

with a variable parameter, i.e. segment functionals of the form

UO,Ul,...,U 8 . Furthermore we will show how we can construct the '

n-1°
family of all polynomials of passport [n,n,0] by means .of simple

segment functionals.

s
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- s 4.2 Theorem [77, Theorem 17, p. 42] Let ﬁn = (Ui)2=0 be a segment

functional and suppose that !Tn(ﬁn)l < Nn . Then we can find a R

number hl > 0 so large that 4-Tn(x) is extremal for the segment

g functional
+ .
UO,I}%...,Un_l,Un h1 . o
We can also find a number h2 > 0 such that - Tn(x) is extremaf.?or

the segment functional

UO,Ul,...,Un_l,Un--h2 .
Proof: Let

b < ...< -
0 T Tl % rn 1

e o b s

P

>--

I D I L O U

I3
N e S S A e

0
bé the nodes of Tn(x) so that ‘Tn(Ti) ] C—lfﬁi , Wwhere
. - n
_ 2,101, . k _ =
. - T = 8in” ( 5 ) % Ye solve iél 61 i—-Uk for k= 0,1,2,...,n.
) That 1s we solve for Gi in :
N - ) — ) '.- — —
[ " lo,ll,lz,ooo’l“ 61 . UO . L
LS ‘ .
. ' TasTysTaseeesTy 62 AUl X
A - 4 2 2 2 2 =
10,11,12,...,Tn 63 sUZ
n_n_n ‘n : :
po,Tl,rz,...,T 6n+1 Un )
~ s b . w— b - s —
.. By Cramer's rule we obtain ’
' ’

¥

,

PR

o X< e e 48 P S Ao b s Bt A T A
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1S FPN FPEL /TS STRP 1 .

TgrTyseroaTy 1 U Tyags ooty - ‘ .
2 .2 2° 4 2 2 \
Tor Ty 0Ty a0y

Qv :
T T T U
0 l’.." i-l’ n,il,'.

5, = - . o (4.0)
i 1gslyseeesl

Tn
T —_—

TorTyeee o7y ,

12 TZ T ' ) f
0’1’ - .
. . . w‘\
Tﬁ 15 Tﬁ !
I S
To simplify our work we introduce the following notations:
' n 1),z
Vn+1(TO,...,Tn) 1s the Vandermonde determinant of (Ti)i=0' Vn (U&
is the determinant obtained by replacing the ith column of Vn+1 by
"a column of the segment functional ﬁn . Vn 1 is the minor of Ti
in the determinant Vn+l(TO,...,Tn). Then (4.1) has the form
Véi)(ﬁn) ‘ .
§, = (1 =0,1,...,n)
i Vn+1(10,...,rn) .
k1
We now replace Un by Un+h . We thus obtain
- - *
vy + n™tn -y :
51 = 1] n,i . \Tt./z) M
1 ‘vn+1(TO""’Tn) !
i
n 3
The minor Vn,i of Ty in the determinant Vn+1(r°,...,rn),
ig itself a Vandermonde determinant. Hence 1
- n-1 - n-1 I h . v
D" "hevo= (-1 B 1 i<ken (T =1y ki *1 .

. - ) . / .
The product 1<i<k<n (Tk Tj) k:j i iskalways positive, since
|

N ‘ ’ |

- .




e
T, > 7T for j > k . Thus we can see that in the numerator of (4.2)
we can always take h so large that the numerator alternates in sign,
That 1is sgn 6i = ggn (- l)n"i =~sgnTn(Ti) . Therefore +Tn(x) is an
+
O’Ul""’Un—l’Un h .

Similarly we can verify that the second assertion also holds. a

extremal polynomial for the segment functional U

Corollary 1 [7, Corollary, p. 43) If +Tn(x) is an extremal poly-

n
=0’

u is increased. However if -~ Tn(x) is extremal 1t remains extremal

nomial for the segment functional (Ui) it remains extremal if

n
if Un is decreéséd.

In the above (Theorem 4.2) let the number hI be the smallest

" ’ ) "o + K"
among hl’ and h2 be the largest among h2. We denote Un Un hl
and U' = U - hJ , clearly U' < U" . We call the open interval

n - n 2 n— n A
(U;,U;) the critical interval for Un. Therefore the polynomials

* Tn(x) cannot be extremal for a segment (Ui):=0

Corollary 2 [7, Corollary 3, p.44 ) If the segment (U

if u' <y <uy" .
n n n

n
=0 L&

such that the element Un lies in its critical interval, that is

] < < 13} i
Un Un Un' Then a given polynomial Qn(x) other than Tn(x)

is extremal at most for one value of q1 . In other words if Qn(x)

)

is extremal .it is so only for one value Un lylng in the critical

¢

interval (UA,U;).

Proof: Suppose Qn(x) #* Tn(x) and let the number of nodes of Qn(x)

]
n

i)i=0

for which Qn(x) is extremal. Therefore the number of nodes s 1is

be s. Assume is the distribution of the segment (U

B

(04

less than n+1l and s is less than or equals s . Consequently the
|

1

system o

§. 05 =y k=0,1,...,n (4.3)
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is overdetermined that is we have more equations than unknowns. There-

fore the jumps Gi can be determined by any S1 equations from the

. . +* 1 o¢ < " L <y,
system (4.3). Choose Unl Unz where Un Unl Un and Un Un2 Un

Assume Qn(x) is an extremal for the two segments:

UO,Ul,...,Un,Un ,
' 1
UO’Ul""’Un’Un
2
We solve for the jumps 51 by choosing s’l equations not one of
which equals to U or U . Then we must have that ‘
Pl ‘ n, i \
szl n ~
¢ 8§, 0, =0 =1 ,
i=1 "1 ; n, n,
which is impossible. ' s

|

Theorem 4.2 can be generalized to any term Uk (k > 0).

‘Furthermore for any segment functional

a = . t vees >
a 01,02,.. ’Ok—l’ 1k’0k+1’ 0n (k > 0)
the extremal polynomials are ¢ Tn(x) . This can be directly verified
: n
5 jO k=01,”.k11&1“.m
by solving for 61 in the system &0 61 i / j=x
n k
where (Ti)i=0 are the nodes of Tn(x). Since a(k_l k.t ) = a
we have a simple proof of the following well known result;
n
4.3 Theorem Let P(x) = k—O ax bea polynomial of degree n such

that |P(x)| <1 on [0,I] then

la ] < It ]
where tk 1s the coefficient of the Eebygev polynomial
—_— = .
k .

= - = L
Tn(x) cosn arccos (2x-1) K20 L X . (see page 12).

Since the leading coefficient of Tn(x) = 22n-l we immediately

n

k.

conclude that for all reduced polynomials p(x) = k-o a x
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4.4 Theorem [7, Theorem 5, p.

of the moments Uk taken as a

69 -

if one

n
21] For any segment (Ui)i=0

parameter is varied, then the norm

al is-a continuous function of U .

'Nn(Uk) of the segment-function
Proof: Let h be a real numbe
Let maxi Pk [ be the largest
ials belonging to Hn. Fix U
let, Qn(x) be the extremal pol

= + ot
N U = gl * 4yl 9 Uy

k
r. We will examine INn(uk+h)-Nn(uk)|.

k'th coefficient of all reduced polynom-

in the segment (U )n and then

k i71=0

ynomfél. The norm

+...+ ann . Also let

Q*(x) q* + q{x +, r+q§x1'+...+ q;xn be the extremal polynomial for

the segment U .U yee.,U

+
o'U1 h,.

k

+q*U +_.,+q

+
Nn(Uk h) = 11

1%
We now observe that

Nn(Uk) ~ max ‘Pk |*|n| =4q,Y,

2q.4

..,Un. Hence the norm \

* + +...+ q¥*
k(Uk h) ?nUn

+qu +...+qu +...+an;l—max

1 K il

+-qu1 ...+'qk(Uk*'h)+ ...*'ann

00 |
5NJW§M QUG+ QU ook (U )+ L R
qo 0 q*U +, q{Uk+...+q;U#+max|Pk[-[h[
f_Nn(Uk)+max[Pk|' h| . . ‘

Thus we get \

Nn(Uk)-malek|°]h] 5-Nn(Uk

+n) -
Thus an(Uk h) Nn(Uk)I < max

~

+ +
h) < N_(U) + max [P

> .

h| .

Since the set {Pk} of all the k'th coefficignts from all the

»

reduced polynomials belonging to Hn is bounddd by the norm Nn of

the segment

a=20.,0

020 0O o Oy 00

0o .

S
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That is Q (o) = P' < max|P [ Nn , for all Qn(x)E'Hu, (see Theorem Q:B)

Therefore we have that for any € = Nn . Ih] > 0 there exist a number

§ > |n| such that’ INn(Uk4'h)-:Nn(Uk)| < € whenever IUk-(Uk4-h)I < 6.

This proves that the norm Nn(Uk) is a gontinuous function of U

4.5 Definitions Suppose the segment (Ui)2=0' is given.

[

consider a momené Uk (9 < k < n) as a variaple, that is

Then we denote the segment

= n = 17
UorlUpo e ol @y o0, = (Ui,8=Uk)i=0 Un,6=u,
We call ﬁn o=y @ variable segment. . The norm of a variable segment
b

k
we denote by Nn(Uk) as was done in Theorem 4.4,

4.6 Theorem [7, Theorem 19, p. 49] If the variable segment U

U

If we

k=0

does not become absolutely monotonic for any value of U

k

K

n,0=U
=0 then

k

element

there is a unique number Uﬁ célled the focus of the variable

such that at the k'th place the smallest norm 1is obtained when

Uk’
= *.
U = Uk
Proof: Since Nn(Uk) is continuous there. is a number Uﬁ that mini-

mizes the norm. We now show its uniqueness. Suppose that there are

two numbers Uél) and Uéz) that minimize the norm N (Uk) Then
the segments o’
- _ (1) "
v Ugse ol o0 aUpgpoeal 5
T o= (2)
A Ugree sl o0l s
have the same minimum norn Nn(Uﬁ). Take any o > 0 and B >0 ,
i
not both zero, and construct a third segment
_ aw® + gy @
En=UO,...,Uk_‘1, RN ,Uk_'_l,...,Un . .

[T
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\
i

That 1s, we obtain E: by multiplying G;. and X; respectively by

¢! B
PR and T and adding tpem term by term. Since the norm of the

.fwo segments does not exceed the sum of their norms, then the norm of

_ £
En which we denote by N( n) satisfies

n
(E) o N_(U% B N_(UX) .
n n k n k _
N2 ToTe R A
ED

n

Consequently Nn = Nn(Uﬁ) . By a suitable choice of @ and B the

aU(l) + BU(Z)

number k S T8 k(q can be any number in the closed interval
[Ui¥),0é2)]. It follows that every number in this interJEl minimizes
the norm.

. n
Let Qn(x) =#i§0 qixi be an extremal polynomial of E; with a

(1) (2)
fixed Uk where Uk < Uk < Uk . That is

. E€)
Q,(E) =N, .

v

We have three cases to consider;

Case 1 Suppose that the coefficient qk < 0. If we add a positive

number h to Uk such that Uk+5h j_Uéz) then the norm is not

increased, but )
T ) = *) + . > *
Q) =N (U +q * h >N (U

which is impossible. ‘

Case 2 Suppose 9 < 0, 1If we substract a positivechumber h from

(6]
-h >

U, such that U , we obtain

k k
9 .
= *) + 0 *
Qn(gn) Nn(Uk) lqkl h > Nn(Uk)
which 1is impossible. '

Case 3  Suppose q = 0 then for every IH(E(Uél),Uiz)) we have

pree

o b X

B
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o ) = N_(up)

Thus we have that Qn(x) remalins extremal fog all ‘'Uvu in the interval

k
(1) . (2)
(Uk ’Uk ) . Consequently by corollary 2 of 4.6 we conclude that since
‘ (1) _ oy = () )
+ = Uk =
Qn(x) # Tn(x) then U ™" = U%=U_ . O

For the index k > 0, we call the open interval (U&,Uﬁ) left~
+ T
hand part of the criti¢al interval and the interval (Uﬁ,Uk) we call

the right-hand part of the critical interval.

4.7 Theorem [, Theorem 20, p. 50] If U . is a variable
hAEEEEY L L _— n,e—Uk
segment with Uk =8 and U&,ﬁ'e f.Uu . Then the following holds;

1) The k'th coefficient qk(e) of any principal polynomial

Qn(x,e) = (8)xi increases on the whole critical interval

T
=0 YU

(U&,Uﬁ) with the property that in the left—hand part of the critical

interval qk(e) < 0 and in the right-hand part qk(e) >0 .

2) The norm Nn(e) is a continuous function which decreases mono-

tonically 4n the left-hand part of the critical interval and increases

monotonically in the right-hand part.

Proof: Let U* be the focus of the variable segment U ,_
froof k , n,G-Uk

Choose 6§ = Uﬁ +h, h positive or negative number. Then by the

definition of U¥*

k
* * + . .
. Nn(Uk) < Nn(Uk h) s (4.4)
: i
* + = Z *+
Let Qn(x,Uk h) 120 qi(Uk h)x~ be the extremal polynomial for
the segment Un,8=Uﬁ+'h . Then ‘ /

*+h) = * + + * 4 +... * + h)[Uk +
Ny (URH ) = qp(UR+ 1)U, + q) (UE+h)U +. .+ q, (U + )[R+ 1]
+ + . '
+.o. qn(Ui h)Un
= + + +
Qg (U + UG+ q) (UE+ DU+, .. qk(L(i:+h)Ult

oot g (UE+HD)U_+q (UE+ D) - b )
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= U * + + *+ .
_Hence !
* -+ *) + %+ .
N(Uk h) < N(Uk) qk(Uk h) h

Since Q_(x,U*+h) 1is not an extremal polynomial for the segment
n k .

= *
Un,8=Ul‘t UO’Ul’ .o ’Uk’ e ,Un . Ther‘efore
' s * . .
Qn(un&:%) < N_(UR). , EERCH)
/

From (4.4) and (4.5) we obtain that if qk(e) >0 then h > 0 and

if qk(e) <0 then h< 0 . We must consider two cases the first

e N
)

> Uk *
when U, ux and the second when U < Ug
Case 1 Let Uk > Ul’: , we will show that the norm Nn(Uk) increases

to the right of the focus and that the coefficient qk(e) increases.

A - -

Take 6 = Uk+ h with. h > 0 and denote the segment
n

= i
. = T -
UO’Ul’ ’Uk’ ’Un by Un Let Qn(x’Uk) ni=0 qi(Uk)x be- the
extremal polynamial of ﬁn , and let Ln(x) = i£0 R.ixi be the extremal

polynomial for the &egment
V= Ul Uy

Therefore . ' .

+h""’Un .

%) + + +h) + +
Ln(\)) 'Q'OUO 2,1U1 ...+JLk(Uk h)+ ... Q'nUn«

= £0U0+ 9.1U1+. ...+9,kUk+ ...+2nUn+ lk . h

I

=94 ]
Ln (Un) S?,k h

=N (U +h) .
l And ) !
Qn(\j‘.Uk) = qu U+ qq U)U+. .4 (U ) (U +h) + ..o+ q (U h Z
= 9, * q;}(Uk)U1+' LA (UIU g (U + gy (U) -
al = 0,00 + q @) - b
p < Ln(G) .

RN S e o TORSAS A w2
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Therefore - o !
+ . + .
Nn(Uk) qk(Uk) h < Nn(Uk h)
Since h > 0 then we must have the coefficient 9 > 0 . Hence
+h) = U) + .
Nn(uk h) Ln(Un) Qk h
) .
>N O+ q () - h
The function Ln(x) is not an extremal polynomial for the segment ﬁn .
3 ) :
U) <
Therefore Ln(un) Nn(Uk) . Hence

+ . U . + .
Nn(Uk) L. " h> Ln(Un) t L, ¢ h>NU) +q @ h

"
Coﬂsequently the norm increases and Qk > 9 to the right .of the focus,

Case 2 We show that to the left of the focus Uﬁ , the norm Nn(Uk)
2

decreases and that the coefficient qk(e) increases.

e — e

Let U < U* and put 6 = U +h where h < 0. Let

k k k
- n
Ln(x) = iEO lixi be*the extremal polynomial for the following -segment;
= 0\
P = yeeesU thy,. .. :
Pn UO’Ul" ,Uk h, ’Un’ where h < 0 We then have
8 = U + 0 .

& Ln(Pq) Ln(Un) lk h )

and

Q@YU = (U ,U) +q " h.

" Since Q (x,U ) 1s not an extremal polynomial of the segment P_ we
n k n

have ) o
+ . +

Nn(Uk) ‘ qk(Uk) h < Nn(Uk h) .

Consequently
~ - ~ ‘ .
+ = + . + .
Nn(Uk h) Ln(Un) Ek h > Nn(Uk) qk(pk) h

and

+ 0 . + '
N (U) + 2 oh> Nn(?k) q (U )R .

Since h < 0 we have q,(0) < 0. Observe that N(U ) decreases when -
, k k

4y increases.

et A e A o

R e e

s T ey




- 75 =
We have also shown that
>
. + - 9 + . .
9 () h <N (®+h) -N®)<q®+h -h. (h < 0)
+ . > + - > 0.

Therefore if h < 0 , qk(e - h) h > 0 and Nn(Uk h) Nn(Uk) 0
This means that. Nn(Uk) decreases monotonically in the left hand side
of the focus Uﬁ . If h>0 then qk(e + h) - h >0 and

+ - > X
Nn(Uk h) Nn(Uk)' 0 . This means that the norm Nn(Uk) increases
monotonically on the right hand side of the focus Uﬁ . This completes
the proof. O

4.8 Theorem [-7, Theorem 27, p. 64] (Theorem on continuous deformation)

= _ n
Suppose Un,6=U = (Ui,9=Uk)i=0 is a variable segment functional with

. .k
é@ varigble element 8 = Uk whose domain is the closed interval [o,8]
_T' B .
uch that ﬁnfgzU belongs to Class II, Then the principal polynomial
)
{ k n . .
= L

"is unique at each point U

k

continuous in the closed.interval [a,8] .

= § such that qi(e)(i==0,1,...,n) is

Proof: We fix a point 60 belonging to the closed interval -{a,B] .

We will show that

- limq(9)=q(9),
e*eo i i*’o

this will prove continuity of qi(e). Suppose Qn(x,e) is a reduced

polynomial.From Tm 4.3 ,we have for each 1(0<i<n)

] < Iyl
v v 2 i
where t, are coefficients of the Cebysev polynomial Tn(x) = 150 tix .

Then for any variable moment 60 the function qi(G) atsfins its

0
A
upper and lower bound on [a,B] . (We consider two cases, the firzt is

that each qi(e) has a limit as 6+60 and the second case is that

PR e ST SN
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for some i, q,(8) has no limit as! 66 .
i 0

~
Case 1 Assume that each qi(e) has a limit as 8*60. Let

lim q,(8) =P, (1 =0,1,...,m), (4.6)
8-+8
.0 -
Then : T
o i
= E =

%_{gl Q (x,8) = 2, Px" =R (x) o

O B

For any closed interv&l A < x < B we note the difference
. n n . i
- = I i_ =
2,0 =Q G e= Ly Pox - Eo g @)%

n
=z - i

n .
z -
<o IBmaq @ fn
where M = max {Ixi[; i=0,1,...,n}. By (4.6) we mgy suppose that for

[A,B]
E
each 1, IPi-qi(e)[ <-ITM for sufficiently small [8 - 60|. '

Therefore on [A,B]

[P (x) - Q (x,8)] <e . . (4.7)

Qn(x,e) is a reduced polynomial, that is max IQ (x,e)l =1.
: ' - [0,11 * '
If there exists a point xOE (0,1] such that IBh(x)| > 1 then by

(4.7) for a sufficiently small [0 - eol, we obtain that

»
]Qn(xo,e)l > 1 which 1is impossible. Therefore !gn(xo)! cannot be g
o i
greater than 1 . In fact we will show that there are points on the b
) . 1
closed interval [0,1] such that at those points En(x) = 1 . Since ’
the norm 1s a continuocus function of the variable element 8 = Uk we .
have P (U -y ) = 1lim Q @ . .. ,0) . 4
n' n,d Uk e+eo n' n,0 Uk
= lim Nn(e)
6*60
= Nn(Go)
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Furthermore every polynomial P(x) of degree n satisfies the Cet

following inequality

P(T_ o, ) <N _(8) max [P(x)] - (4.8)

n,o Uk n [0,1] ] g

Since fi (x)| <1 for 0 < x <1 we must have max |P (x)| =1 1if
v T (0,11 "

(4.8) is to hold. Thus Bh(x) is an extremal polynomial when 6 = 60.

Since Un,6=Uk

R (x) = Q (x,6,) -
Case 2 Assuﬁe that for some 1, lim /qi(B) does not exist. Choose

0

a subsequence § ,0, ,...,8, ... converéing to 6, such that
kl k2 kn 0

is of class‘li_phen by Theorem 4.2 it must be that

{
[

im qi(ekn) =By

Then thé’polynomial anx,ek ) tends to Bh(x) and by thg same argu-
n
ment as in case 1 we havey

SR ACI NN g

We now take a different subsequence BP , B GP ,...,OP se e
n

converging to 60 "such that ,

Ha o, Gp) =B, .

We thus obtain Qn(x,eP ) tending to Bh(x) # Pn(i) . That is we have
a .
obtained a different extremal polynomial whicP is not possible. Thus

we have 1lim qi(e) = qi(eo) for each coefficient. This means tha;

6*60

di(e) is continuous in the closed interval [0,1] . O

4.9 Remark We now consider the segment

) 0

5 = . -
Vn,8=vn (Vi,e=vn i=0 ‘GO’ 1’ ln-l’

_and let (08',6") be the critical interval V . For 6€°(8',8")

n,6=Un

¢

.
.

T

e Rt B

Ot

ool e s ekl A AL o

ANt B a2,

To



L eeas, oS wrr

= o g

X g g

-~

i e oy g S -&«.m..wwm» »Mrwurv:z—-"ﬁ

[

-

> Al | |
» * "
. the extremal polynomial is not % Tn(x) . We_show that Gn 8

i - 3

=u
n

"determines the family of polynomials of passport [n,n,0] -for

6€ (8',6") . The system

s K .
) = ' -
120 8191 =Yy :
o where Uk =0 for k=0,1,...,n-2; Un-’l:?- 1, Un = 6 can have a
T unique solution if 8 >n . Since the possibility of
* T (x) is ruled ’out; s =n . Furthermore the jumps Si alternates.

Hence the extremal polynomial is of passport [n,n,0] .
. . ° ‘»\
For any given -reduced polynomial of passpor* {n,n,0]; with nodes

00,01,.. . ’On—l We can solve the system .

- + = .

. ‘ ( 60 X + 61 +... 5!\—1 - 0
! C o+ + Y=

5000 61?0 oot Gn-lcn-l 0

n-1 n-1,° n-1
...+ +...4 =
6101 . 6p410n-1 ’ 1 -
) . n-1 a .
wit‘alternating § 10 thus determiping 6= 1—50 $ 101 uniquely in the
. e .

. ) 8497

critical interval. )

. : Hence, there is a imé.—on.e correspondence between 6€ (8',8") and

the family of all polynomials of passport .}[n,n,Ol . . .

Any bolynomial with n no'des in [0,1] must have either end or \;‘

e both ends as its’ nodes, seo ;he pélynomials of passport [n,n,O]' are
of two tyPes. When l‘%is not the nodé,' they are of type\ S Tn(\)x)

because if P(a)

It

1 for o >1 then P(x) = i:rn( x ). When 0 1is
not a no‘de P(x) = (-l)n—:L Tn(\)(l-x)). The .other types ‘are’ those
wﬁen both the ends are the nodes, and. cannot be of ‘:ype' one:

In oxder to describe how the polynomials changes ité fomﬁwith e,

' we must determine the critical interval for 6 in the segment

a

R A
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x \)n,9=\)n given abov

4,10 Lemma IS,Th'e

n-1

-79 -

.
\
e. -

orem 10, p. 315]

The critical’ interval for

- 1 " LI —
) (Vi,9=\)n)i_ 00)013- “«ovy n_z) lﬂ"l’a _13_ (9 ,8 ) ih_e_{E e i(n + l)
A and 8" =-~3}(n~1).
Proof: We use the same technique as in Theorem 4.2, We use the
“+l k C 241
, formula Uk‘ i—l 1151 (i= 0,1,...,n), where Ti =sir§ (2 )}  are
; ’ . the nodes of Tn(x). That is we solve for (Si in -*
- = — p— L pa —
1 »1  ,...,1 60 0
\ r Td ,Tl yoaa ,‘l'n 51 0
. 2 2 2 .
) \ Tg »Typ »eeenTy 62 -l10 .
. . n-1 _n-1 n-1 ¢ 1 ¢
\ T Ty )Ty Gn-l -1 .
° n n n
Tg 2Ty »eeeaTy Gn 6
) We denote by S _ the sum of the factors of To,‘tl,... ’Tk-l'Tk+1"" ’Tn
\caken n-m at a time. .Consequently
L PP S n-1g() : (k) :
k
, n+1(T " ’Tn) ) -
& \ .
k-1 n-2, ' n -
. - - SR SRR TR - to..+T )+ (~1))
: . A - -1 VB;L[( 1) (T, Ti Tt T )T 8]
i - -
- ‘ - eoe sy T b
{ N Vn+1(T0, ’Tn«)
: [} (4-9)
: 'V ‘ i .
5 R For- Gk = 0. we obtain
: S . _qyAtk=2 o = n"'k 3y £
% ! ) . ( 1) i Vn‘ e ( l) ‘h\ 1 ...+Tk 1+‘rk_{_l .-.Tn) .
. . Hence
:‘ . ' . ‘ = - ; + .+ . e + ven
, o . 8 =, l(r0 T Tee1 Uk T o +'rn) .
" ‘ . Toiobtain 6 minimum we take S](_O) « Hence . /
. ’ . \>
5 A . '
». v

.

B
o sk a « -,«‘.mu.w.w«.w«m...*m-y Aere B tadhes hu

B ey e s v 3 e TR ¥ s
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't = .. +
8 (11+12 ...+Tn)
2,211 2 .31 ’ 2 0-3. 0 -~
= _ + =) + +
(sin( ) sin ( )+ sin (Zn) ..._’si (Zn)
2(n 2)H+ i (n l)H+ sin % . | (4.1‘0)

_ Il i, _ ' n-—-1
Since sinx = cos (2 x) we have that sin ( n ) = cos (-—zn)ﬂ .

Hence (4.10) equals’to

[cosz (n—}2H+ CosZ(n-Z)II + COSZ(n-3)II 4o+ s’inz gn-3_gn
21 2n Zn 2n

B3

S - 2 - : : N\~
+ s;in2 n-2)IT +s:I.112—-——-—--(n LI +1] .
) 2n 2n .
If n 1is Jdd then the first n -1 terms add up to P—-;——l- . ,‘herefore
’ ‘n+ .
§' =- (‘rl+ T2+ e +1’n) = - [‘n—z-];] . If n 4s even then the middle
term d\f the first n-J1_terms 1is %. and hence sinz -I[-I- = %_“— :
) - ) -2 n+l
1 = + = - + = -
Therefore 8 T +'L'2 . 'l"‘_l [(A=Z 5 + 1) [—].
+
Consequently 6' = _[r} 21,] . To obtain 6 maximum we take S(n)
and 1in the same way we show that
( " =_ + 1, + + =.pozl .
8 (ro Tyt Tn-l) 2 *
Therefore the critical- interval L .
o ntl n-1
- (8,8 = (= (A72), - (352 . P

\
-

4.11 Theorem [ 5, Theorem 10, p 315] Let (\)i 8—\) )1‘0 ‘ be the" same

variable segmeht functional that was introduced in Lemma 4.10. If we

~ a

denote by Qn(x,9==\)n) the extremal polynomial corresponding to the

interval —521- <8 < __(n_;_ll then the extremal polynomials correspon-
— ' | - |
ding to __5.‘_‘7.1-). <8< —-2- are (- 1)" 1Qn(1-;x,6=\)n) moreover the

n * - D ’
i,6=vn)1=0 1s ® 2 .o

Proof: Suppose 86'[-% ,fj-ll—%—]'l]. We write 9=--x2—l+Y where

-

]

/ —cr_

.,
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B

-

+0 < y<%. Suppose that the polynomial

Qp (87,) = ay(8) +ay (O)x + ... Fa, @Ox" 4 a @

, - 1
= .. - - .
is the extremal f£or the sgegment o« 00,01, - ln—l’ 5 Y Then
for any reduced polynomial Pn(x) = bo + blx + ... + bnx“ we get
- + (=4 S - +(-n 4
a1 ( 7 Y)a b -1 ( 5 Y)b . (4.11)

Since the norm 1s a positive number and -% +vy 1is negative, we must

have -a and. a_  both negative.
n-1 n

Suppose now that the polynomial

n-1 - n-1 n
- - x,0= = (- + -x)t . - .
(-7 QM -x8=v )= (-1 "{ajta, (1-x*%. 4a (1-x) } (4.12)
-1 B
o1’ T p-1rT2 T Y
By expanding (4.12) and collecting terms we can write G-l)n—lQn(l-x,8=\ln)

1s extremal for the segment functional B =0,_,0

as

n—l n - ¢

Hence (- l)n-lQn(E.B-‘-'\)n) > Pn(g) that 1is
n n
- (an-l + ndn)- an(_f -1 >~ bn—1+ bn(—':’l-”Y)

Since bn < 0 then

n . n
. BN R I AR NG AR (4.13)

We also have

- + - Blovy=- +a (=14
(an—l nan) an(2 Y) an-l an( 2 v
If we denote the norm of a by Nn(—-rzl +Y) and the norm of E by ,'
Nn(-—% -Y) then we get by (4,11),(4.12) and (4.13) that
n B n
-+ = —_— -
N (-53+Y) =8 (-5 -Y) for O<y<$
By the fact that the norm 1s a continuous function of 8 it follows
that Nn(— %) 1is the minimum. That is the focus o* =’-321- . a
4,12 Theorem [P, Theorem'39, p. 85 and 5, Theorem 11, p. 317]

The family of polynomials Qn(x,e‘—:vn) disinéegrate into %two

S v 0

-
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fanilies of .different form: N ’ C
1) for 96 ¢ -(nz- 11%—- ’ -%_ l)) the g.ictremal polynomials are
2 cos” (=) '
2n
~=(n-1)
Tn(a x) where « — _- | K
' II) for B€ _.‘21, - _(_n_-z__J;_)__ﬁ_ ) we obtain a new family of polynomials \
2 cos (-2—{\_)

which we denote as Zn(x,B) . The points

0 and 1 always enter as

J thelr nodes and . T

.

lim 2 (x,8) =-T (x)
e_)_i_*_ n n-1

Proof of I: By (4. 9) the polynomial Tn(x) loses its weight at

i - T = 1, at the end point 6" =-% (n-1) of the critical interval

1 (-3(n+1), - #(n-1)). We-also have that at T < 1, Tn(x) preserves .

L4

the signs of the weights Gk at the other nodes.

Theorem 4.8 (on Continuous Deformation),

Consequently by

T~

the extremal polynomials are

Tn(ax) vwith a> 0. The nodes of Tn(ax) are

T .
o=l ede,, 22 2L L
a sl a o P B '
where the nodes of T (x) are glven by the formula ’
.o }
= sin (—-—) 2._“__4.L_ , (1= 0,1,...,n). For {1 = n-1 ‘we obtain
T = sin2 —P——]I”; cos ——- .
-1 2n 2n
'If tlie number of nodes is s = n then
cosz(-zr-%) N
—-—a——— < 1 -

°©

Therefore éosz(-ir%)‘ <0<1l, eand if cos,2(—%1-) <6<l then clearly

the number of nodes s=n. Hence

-

2,1
cos (2n)5-°‘<1

is the éxact interval in which Tn(ax) is extremal.
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°

We first establish the relation between o and 6 . The basis

of 1 . We denote by

n n~1
(vi,6=Un)i=0 1s (vi)i=0 OO’OJ_ > ’On-2’ n-1
A the numbers satisfying the equat:ion's

o

i
1 . k )
= = J
Ve T TR0 84T .
- " a .
That 1is 1 -
) -1
k _‘nz k
M = 42 84Ty
nEl Sk Ii-l a
B.ut 1=0 AiTi is the decomposition of 00,01,...,0n_2,—a ',a 8

in terms of the nodes of Tn(x), with Tn=1 omitted. Consequently,

)

since 8' ~-zin-1) we obtain -3(n -1) =ab. That is 6=-§];-1-(n—1)_.

2

_ n-1 2, 1T
Since o =-—5g= and  cos (Tn ) <& <1 we obtain
2. 1T n-1
x -
cos(zn)f_ 29<l.
Hence
c—n=l_ 5.zl S (4.14)
2 cos” (=) 2
2n y,

Consequently Tn(ax) are extremal only in the interval (4.14).
Prodf of II: Since Qn(x,e‘—‘Un) is extremal in the rigf\t hand part of

the critical interval and (-~ l)n-‘lQn(l‘-x,6=Un) in the left hand part

+ + :
-\(P‘Z—L) <8< - __Qn_iL__ . 1t is enough to consider the right hand
N 2co08 (42—5-) .
part .
S A bt
2cos (E-I—l-)

In this interval the extremal polynomial cannot be Tn(ax) by Part I. o
. _.:These new polynomials of passport [n,n,0] we denote by Zn(x,B)

We now show that Zn(x,e)*‘- Tn_l(xu) as 0 -+- % + . From the formula
o

) vhere 'U=0,k-0>1,2,...,n-2,Un == and Un=3‘.

T k

= 0

k =1 471 k -1
We obtain as in (4.9) that

U
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; +g,%0,+ ...+ =
: B+o o, *to, 0

1
Since (cos” T5——- H)n-l are the nodes of "1‘
2(n-1) i=0 n-

2p-1-d 1 (¥} . Then as in )

(4.10) - . ’ ot

n n -

I g = L geg2zldipg_n

i=1 71 i=1 2 (n-1) 2,
Therefore whenever 9 = -% we obt%in

Iz-l A
+ =
8 121 o, 0
Hence
lim Z2_(x,0) = - T __(x) . ' 0
w-on/2+ © nl |

4.13 Remark The family of all.pelynomials of passport [n,n,0] we

B

call the General Zolotorev polYnomiéls, and they are of two types.

The first type are ‘Qn(x,6=Un) and Qn(l—x,8=Un). The second type we

denote by Zn(x,e) and Zn(l—x,e). We also have that a Zolotorev

interval is subdivided into the following four subintervals,

‘(' 11';1, _n+____'ﬂ_2’_é~')’ (-n+_-L2:—]']i__-’-%)’
2cos (_E_) 2cos (—2—n—)
-1 - n -1 n -1
(' z y < = ) ’ (- y = ) )
2 2c052(—énn—) 2cosz(—in;) : 2 oo *

having respectively as extremal polynomials
E-i)“'lr (@(l-x)) = Q (1-x,8=0), (-D" 1z (1-x,8), Z_(x,8) and
* n n b ] n b n b} ) n )
Tn(mx)E Qn(x,6=Un) . We remind the reader that we did not yet examine
the Zolotorev polynomials of type Zn(x,e) and Zn(l-x,e) over the

-,

middle two Zolotorev subintervals given above;.f It is only necessary"ﬁ

t

to discuss the polynomials Zn(x,e) defined by the segment '
- _n _m=1)
00,01-,.. . ’On-l’ 1n_l,e in the interwval 2 <h < .

2.1
| 2 cos (Zn)
We will show that Zn(x,e) form a family of polynomials depending on

a saingle paramet\er, which can be taken to /be the leading coefficient. e

[resmemwe--eaw s FERLSRL At

4



- 85 -
That is the polynomial Zn(x,e) takes the form
o+ y @ Ly (@) * v ()

We know that for each 8 1in the critical interval (8°',8"), we
have one ar‘xd only one Zolotorev polynomial. nSo this, family depends on
the single parameter 6 . Let Zn(x,(G) = 120 ’qi(e)xi . In Theorgms
14.7’ and 4.8 we have thaﬂt Zn(x,e) , as a single valued function of @
has the property that its ‘leading coefficient qn(e) is a single
valued continuous function increasing‘ with respect to 0 in the cri-
tical intérval (8°' ,é") . Hence ag= qn(e) is in one-one correspon-
dence with the family Zn(x,e) and so o0 can be taken as a parameter
for the fat'nily En(x,c) = Zn(x,e) yhere 0 and © are inverse
continuous monotonic functicns. Put O = Y(0) hence

Z (x,8) =E (x,0)=0x"+y__ (@ T+, +y @Ox+y,©@

n n ) n-1 1 0
where yi(9) = q; (W () . .
Concerning the properties 'o‘f the coefficients yk(c) we mention

without giving a proof the folldwing:

4,14 Theorem [7, Theorem 41, p. 95] Denote the leading coefficient

of Zn(x,B) by o0 , and then take ¢ as égarame’ter, so that
z_(x,8) = £ (x,0).

Then En(x,c) has the following properties:

I) Its coefficients are differentiable functions of ¢, and

II) the resolvent ‘Rn(x,cr) of Ejn(x,o) equals to the derivative of

En(x,o‘) with respect to ¢ . That is
i

= O g
§n(xlc) - 30 En(x’o) .
4,15 Remark We have seen that the polynomials of passport [n,n,0]

form a family of polynomials depending onm a single parameter which can

U 1 e A

B 4 e e
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be taken to be the leading coefficient. That is the polynomials of

passport [n,n,O} take the form

n n-1 |
\ + + ...+ + A
ox yn_l(o)x e tyy (o)x yo(a‘) .

Since the leading coefficient of Tn(x) is 22n—l’ then the leading
coefficlent ¢ cannot bé gréater than 22n-l (see Theorem'4.3). Hence
"22“_15035_22“-1 . In Theorem 4.12 we saw that % Tn(\)x) an

L}
t Tn(\)(l- %)) are in the family of polynomials of passport\ {n,n,0]

v

whenever cosz(-%l-') <V < 1. The relation between "V and ¢ 1s

g = 22n—1 v? . Hence for 0< o < 221’1"l cos2n (—zln—) we have the second

2,

class of polynomials Zn (x,9).
We now investigate the derivative functional FE at the points
of [0,1] outside the ?.':ebyé/ev intervals. We have already observed

that the extremal polynomial for FE must be of passport [n,n,0] .

It is interesting to further observe that every polynomial of passport

{n,n,0] must be extremal for the derivative functional corresponding

to some & outside the Eebyé/qv interval. This follows from:

4.16 Theorem [y, Theorem 64, p. 61] Each polynomial Ln(x) of

passport [n,n,0] 1is an ex&remal of FE at precisely the n-1

points & at which the derivative of its resclvent is zero that is
n ‘
k
' = b =
RIE) = Zonb =0

K

Proof: Suppose Ln(x) is an arbitrary polynomial of passport

n k
= I
[n,n,0] having Rn(x) Lo VX @8 its resolvent. Let EO be the

point where Rr'l(gO) ‘=0 . We shall show that Ln(x) is extremal for

- +
F . Let (o ')n_ be the distribution of L (x); we solve the
EO 174=1 : n
system of n equations *

n
L g ok =ksg'1

4= 8404 k=0,1,...,0-1

B T i
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to get ‘
o i n-k
(-1)7R (5,

6k=

. ! =
recall (3.?) ; note Rn(EO) 0 . Hence 81(

nfo, - 0| €, -0

2

. (4.15)

alternates and so the

secon;i criteria for extremality (page 47) is satisfied. In order to

eéstablish that Ln(x) is extremal, we are to show that Gk obtained

from (4.15) also satisfy

' E n n-1
=1 %491 “réy

i.e. the system is consistent. We see that

= '
P R (5
= I k-1 )
k=0 Yk %0
n-1

= T -1 + n-1
=0 k8o Y Tandg

“El E k n-1l
= k20 Y 151 .89 T vné&g

n n k

n n

= L § K

T ‘ n-1 _
120 % k8o N9y T Y, (n&y

g 'n—l a
21 SRy (ot v (b T -y

Since Rn(oi)

‘ ) )
of Ln(x) and Rn(EO)-O. Hence (4.16) holds.

by L n-l _
=0 Yk 121 8195 * Y nég

n
Z n
Yo 121 S494
.
1 849y

n ——
Gioi)—o .

™~

(4.16)

t.

0 , because the zeros of the resolvent are the nodes

Thus as £ varies over the Zolotorev interval, the entire family

of the above theorem we have:

" of polynomials of passport [v,n,0ds described. As a conéxequence

Corollary [, Corollary, p."162] Since the: derivative functional - FE

loses its welght at™ T = 1 or To = 0 at the end points 8 and a ,

Vasw v F

e tn
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then as £ varies from B to o within (B,a) the types of extremal”

polynomial passes from ome general Zolotorev polynomial to another in

the order indicated above (Remark 4.13). By the theorem on corﬁ:inuous

deformation we see/that as £ wvaries the extremal polynomials passes

through all Zolotorev polynomials ending with ¥ Tn(x) at o if

'

% Tn(x) is extremal at 8.

We now give a description of the norm N(E) over the

Zolotorev intervals. From Theorem 4.16 and Theorem 4,12 each Zolotorev

interval (B,a) contaiqs 'a unique point, which we label £*

- T (x) 1s extremal. We first see the following:

n-1

4.17 Theorem [7, Theorem 67, p. 165] Suppose (B,a) 1is a

for which

Zolotorev

interval. Then the norm N(§) varies monotonically at each

point

£ € (B,0) at which the second derivative of the extremal polynomial is

not zero. ‘ -

Proof: Without loss of generality we take N(B) = Tl (8) .

By Theorem

4,16 there is a Zolotorev interval (B,A), where A satisfies the

inequality B <§ < A< E*, and thJext'remal polynomials of FE are

Tn(\)E) for c032 (——;-I;l—) < v <1, That is we have (see Theorem 4.12)

N(E) = T'(VE) - v  forall v (cos? (), 1)
. v or a v (cos ,Zn)’ .

Since the point £ 13 a relative maximum of the norm N we
tlate (4.16) with respect to &, and we obtain
N =+ TIEIVE
But T;l(vE)\) is also a relative maximum withl respect to V.
£ , thus

T;(\)E)\)E + T;(\)E) =0,

This means that

(4.16)

differen-

(4.17)

for fixed

(4.18) .

MR i 10 e
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S _ (T EVE) = 0
08 ‘o .

Consequently VE 1is a constant, Since V=1 for £ = R we get
v = R/f , and from (4.18) we have
N'E) =T = - 1) £
.n 52
Since Tr’l(\)g) >0,N () <0, i.e. N(£) decreases. For thé other
Eeb){:s/;ev transformatioqs there is *a similar proof that the norm 1s mono~-
tonic. Thus the extrema of N(£) lies on the part of the Zolotorev
-»

interval (B,a) where FE is served by the polynomial Zn(x,e) . It

remains to establish Theorem 4.17 for these polynomials.

Let A< El <«E* “and let an extremal polynomial for FE' be
. 1
Zn(x’eﬁl) wlith resolvent Rn (x,egl) . Then
2,60 ) |
\ N(El) = (————) (4.19)
- 9 e -
§ E 1 . -
and by Theorem 4.16
aRn(E’eil) < y
( ) =0 (4.20)
13 -
£=E, .
J
Since we have 5 2 :
3%z (€,0) 32 (£,8) 44
N' (g) = 2 + - 7

13 3t 30 dg
by Theorem 4.14 and lines (4.19) and (4.20) we get

2 . '
( 3°Z_(E,9) dR_(£,0) N
NTE) = (—E L b 8,
13 rer 13 dg - N
5 !
6=0 : 6=0
£, ,
— N L 54\"
o zn(El.esl) 0. < ‘ . (4.21)
This completes the proof. : . .0

e a s,

i R R L
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Since, from one (\I/ebyE’eV interval to the next Cebysev interval
the norm 'N(E) becomes larger, and, on the Zolotorev interwval in
between it first decreases, we must have a point Eoe (B,&) where N
N(§J) is 2 minimum. This is observed in the following:

4.18 Theorem [7, Theorem 68, p. 165] Suppose °(B,a) 1is a Zolotorev

interval. Then in each interval (f4a) there is a unique point

EOE (B,a) ' satisfying the property that

N'(Eg) =0
and

= i '
NEp = g MO < | 6]

Moreover if B> % then B < EO <Ex , and if @ < % then
*x< B <
£ 5.0 o
Proof: From the definition of the wveSolvent Rn(x,G) we have
G -
n ‘Rn(x,O') (x-1)

' ‘=
- 2! (x,0) TG= D) (4.22)
where )\ 1is the zero of Zr'l(x,c) outside [0,1], and G is the
1eéding coefficient of Zn(x,o) , taken as a parameter ’
. Clearly A 1is a function of o that is X = A(0) . From v

1 coszn (

Remark 4.15 if ¢ decreases from 22n— —z-n—n-) to zero, then by

re'writing (4.22) as

t ’ ‘ x(x_ 1)2;1(1-"0)
= nR_(x,0) (= X °

,0 =0, .
050)

P >
Since zn(EO,GEO) > 0 it f’ollows that Rn(EO’OEO) > 0

and ‘from (4.21) and (4.22)

O

s
s

/

/

et b g e B
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' = ol = | E"\
N'(Eq) = Zn(so’c’eo); “URn(Eo’GEO )[—————g(s 13!

E=€0
27
. = nGRn(EO»UEO) [‘}\(250- 1)-Eq\] .
Consequently EO can be found from the equation
. 2 A
)\(250 - l)-.E,'O =0 . (4.23)

When the Zolotorev interval (B,a) is left of % i.e. a< %,
there is no EO satisfying (4.23) as 0 waries from 22n-lcoszn§H; .

to zero or & wvarles from A to E* , Hence the necessary condition

minN(§) = N(Eo) 1s possible only when B > %4 . This proves that

. B <A< 50 <E* . By the symmetry of N(§) this proves that if o < 3

then £* < EO < o . Wenow find SO for Zn(x,c) when 8 > % .,
For £ €(A,E*) A increases monotonicall& hence we put A = $(£&),

that is we consider A as a function of & . Therefore at the point

Eé

S - D
curve of ) = $(E);&—increases‘ monotonically from 1 to « on (A'.E*) '

2
_ &
V= 2% -1

on (3,1), it follows that the point {-,'0 is the point of intersection

£ We have qimultaneously\):{= é(Eo) and A Since the

and the curve of decreases monotonically from +e« to 1

and that is unique. This proves the theorem. O

We note that for n even the Zolotorew interval is of the form

(B,1-B) . Hence we have g = &%= 32 and

= T = ' = - o
Ny = miaN(E) =T _, (})=2(n-1).
We also note that two successive curves of N(§) say Nn(g) and
Nn_l(é}) cannot have more than one intersection (see figure 4) in each
Zolotorev interwval for .t:he derivative functional corresponding to

z
Nn (§), since of@wise there woi%.d. be a.contradiction of the theorem

i
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