National Library
of Canada

(A |

du Canada
Canadiar Theses Service

Ottawa, Canada
K1A ON4

NOTICE

The qualty of this microformis heawvily dependent upon the
quality of the original thesis submitted for microfilming.
Every etfort has been made to ensure the highest quality of
reproduction possible.

!l pages are missing, contact the university which granted
the degree.

Some pag .s may have indistinct pnnt especially 1if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of tnis microform s governed
by the Canadian Copyright Act, R.S C. 1970, ¢. C-30, and
sitbsequent amendments.

NU 339 (¢ BR/OM) ¢

Bibrothéque nationale

Service des théses canzdiennes

AVIS

La quahté de celte microtorme dépend grandement de la
qualité de la these soumise au microfiimage Nous avons
tout fait pour assurer une qualité supéneure de reproduc
tion

Sl manque des pages, veullez commumquer avec
funwersité qui a confére le grade

La qualité dimpression de certaines pages peut lasser a
désurer, surout si les pages onginales ont été dactylogra
phuées & l'aide d'un ruban use ou si f'universdé nous a tad
parvenir une photocopie de qualité inférieure

La reproduction, méme padielle, de cette microforme es!
soumise a fa Loi canadienne sur le drod d'auteur, SRC
1970, c. C-30, et ses amendements subséquents

i+l

Canadi

An Experiment
in
Automating Case-Based Knowledge
Acquisition

Carol De Koven

A Thesis
in
The Department
of
Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montréal. Québec, Canada

December 1991
©Carol De Koven, 1991

-

. 2

National Library

Bithiothéque nationale
ol Canada

du Canada
Canadian Theses Service

Ottawa, Canada
K1A ON4&

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or formnat, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliotheéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
celte thése a la disposition des personnes
intéressées

L'auteur conserve la propriété du droit d'auteur
qui protége sa thése. Ni la thése ni des extraits
substantiels de celle-ci ne doivent &tre
imprimés ou autrement reproduits sans son
autorisation.

ISBN ©-315-73635 X

Canada

Abstract

An Experiment in Automating Case-Based

Knowledge Acquisition

Carol De khoven

The knowledge base is an essential part of an expert systenm. Knowledge acquisition,
the process used to collect the knowledge from domain experts, is recognized as a
vital link in the development of expert systems. At the same time it is considered
to be the most difficult aspect of the undertaking. In this thesis we sarvey mannal
and automated knowledge acquisition techniques. In particular, we emphasize the
advantages of automatically generating from a set of cases a rule base which is useful
for prototyping an expert system. This thesis is based on two assumptions. The
first 1s that domain experts’ time is valuable and limited, hence their involvement
in the preliminary stages of knowledge acquisition should be himited, reserving then
contribution for the later refinement stage. The second assumption is that in many
domains there are collections of case data. oftenn in computer readable form, which

can be used for knowledge acquisition purposes.

To illustrate the feasibility of our concept, we have undertaken an experiment
to antomatically arquire knowledge from stored cases in the domain of Blackbox,
a computer game. The work involved the design, implementation, and testing of
a program used to extract knowledge from selected Blackbox cases. The acqnired
knowledge was placed in the rule base of a prototype expert system and used to
play the game. The test results obtained from this prototype affirm that auto-
mated knowledge acquisition from cases is a viable methodology. As well, the tests
demonstrate the benefits of applying successive iterations when performing knowl-

edge acquisition and of acquiring knowledge from multiple domain experts,

ACKNOWLEDGEMENTS

Before thanking the individuals who helped me in my work. I must acknowledge
the debt I owe to Concordia University. The University's policy of encouraging part-
time students afforded me the possibility of pursuing my undergraduate studies,

which ultimately led to my graduate work.

I could not have accomplished this work without the support of my supervisor,
Dr. T. Radhakrishnan. Dr. Radhakrishnan was always there with helpful advice
when 1 was stumped and a gentle push when 1 was discouraged. His guidance
throughout the course of my graduate studies and th- research and writing of this

thesis was indispensable. Thank you, Dr. R.

To CIiff Grossner, who advised me to embark on my graduate studies and guided
me through my early research into expert systems and knowledge acquisition, as well

as always being available for consultation, 1 owe a special thanks.

Kristina Pitula's help and her incisive input regarding the game of Blackbox
were useful in the analysis and design of my knowledge acquisition program. John
Lyons contributed to my work by writing the expert system shell on which I could
test my work. John also functioned as my resident human expert along with Le Hoc
Duong. 1 thank them all. as well as Christine Nadal, whose assistance in drawing
figures and preparing the thesis for printing was essential when the final crunch was

on.

Finally, I wish to acknowledge my family’s contribution. To my children, Rebin,
Alan, and Kathryn, whose unfailing pride in my academic endeavours was frequently
my motivation, thank you for that and for all the help. And a very special thanks
to my husband. Max, for his steadfast support and encouragement through the long

yvears of the process,

v

Contents

1

2

INTRODUCTION

1.1 A Fran ework for the Experiment

1.2 Proposed Work L

1.3 Thesis Qutline.

KNOWLEDGE ACQUISITION - PAST AND PRESENT

21 Knowledge Acquisition FUunction « « « v v oo oo
2.1.1 The Role of Knowledge Base in Expert Systems .. .0 L.
2.1.2 Tipesof Knowledge

2.1.3 Sources of Difficulty for Knowledge Acquisition

2.2 Manual Knowledge Acquisitiono 0L
2.2.1 Historical Perspective . . . L . 000 L oL o000
222 Preparatory Methodso 00000
2.2.3 Knowledge Acquisition From the Expert 0.0 ...
2.2.4 Problems in Manual Knowledge Acquisition 00 ...
2.2.5 Application of Knowledge Acquisition Methods .. 0000 ..

2.3 Automated Knowledge Acquisitiono L
2.3.1 The Need for Automated Knowledge Acquisition

5

6

10

2.3.2 Types of Automated Systems Developed 17

2.3.3 ‘Two Automated Knowledge Acquisition Systems 18

2.4 Case-Based Knowledge Acquisition 0L L. 21
2.4.1 The Case-Based Approach 21
2.4.2 C(ase-Based Manual Knowledge Acquisition. 22
2.4.3 When To Use Case-based Kknowledge Acquisition 23
2.4.4 Limitations of the (‘ase-based Approach 23
2.4.5 Case-based Knowledge Acquisition Research 24

3 BLACKBOX 26
3.1 Description of Blackboxo oL 26
3.1.1 How Gameis Playved 26
3.1.2 Distributed Version of Blackbox 28
3.1.3 Blackbox and Expert Svstems 31

1.2 Knowledge Representation in Blackbox 31
3.2.1 Temporary Knowledge00 31
322 Permanent Knowledge 0L oL 33

3.3 Knowledge Acquisition and Blackbox 34
3.3.1 Manual and Automated Knowledge Acquisition 34
3.3.2 Case-Based Knowledge Acquisition 35

34 Khnowledge Acquisition fromn the Distributed Game 37
J.4.1 Distributed Knowledge Acquisition 37
342 Possible Benefits .0 00000 oL 37
3.1.3 Potential Difficulties 00 00 o0 o 38

Vi

4 IMPLEMENTATION OF CASE-BASED KNOWLEDGE ACQU1-

SITION
L1 SYROPSIS & Lo
4.2 Familiarization
4.2.1 Background Knowledge
4272 CaseData Lo
1.3 Kuowledge Representationo
4.3.1 Preliminary Data Storage
43,2 Initial Rule Formato oo
14 Selectionof Examples. . .. o 00000000
.01 Grd Size o
412 Numberof Balls.00 o000
4.4.3 Training and Test Sets ... 00000000
4.5 DataAnalvsis . ..o oo 0 o o
4.5.1 Program Qutline
4.5.2 First-Run Rule Formation

1.0

3.4

5=N
ot
%)

£.5.4 Rule Merging

4.3.5 Completeness and Minimality . 000000000000
1.5.6 Minimal Blackbox Rule Base

4.5.7 Minimizing the Blackbox Rule Base .. 00000000000
Reduction Results o o o000 o

Distributed Blackbox and Knowledge Acquisition

Redundancy, Subsumption. and Inconsistency

vii

39

40

4

A9

149

H0

H6

59

63

5 THE PROTOTYPE EXPERT SYSTEM

D

-

).

Ny |

.

2

Outhine. e

The Expert System

5.2.1 Its Components

5.2.2 The User Interfaceo o000,
5.2.3 The Working Memory L.
524 The Blackbox Game Manager
5.2.5 The Expert Manager

The Expert System Rule Base © .0 0 0 00000000000

53.1 Selection Rules

5.3.2 Analysis Rules

523 Housekeeping and Meta-Level Rules.

5.3.1 Reasoning with Priorities and Certainty in Blackbox

6 RULE BASE EVALUATION

6.

6..

1

tw

Testing the Rule Base 000 0 0000 000000000

6.1.1 The Game Sets

6.1.2 Preliminsry Examination.
6.1.3 First Test Run Reetlts o000 0000000000
6.1.1 Incremental Knowledge Acquisition
6.1.5 Combining Experts
6.1.6 Supplementary Testing

Analyvsis of Test Results

6.2.1 Analysis Summary

Vil

~1
to

-1
(™

-~J
[8]

..... 82

..... 97

ceo.. 103

coe 107

7 CONCLUSION
7.1 Contributions
7.2 Future Work

Bibliography

.

........

...............................

.........................

List of Figures

1.1

Knowledge Acquisition Process 0L 4
Blackbox Shot Trajectories, 28
Distributed Blackbox oo oo 30
Blackbox Game Data oo oo 44
Shot and Hypothesis Frames 46
Initial Rule Structure L 49
Revisea kule Format L 55

Implicit Redundancies 38

Rule Merging Case 1o o o 60
Rule Merging Case 2 o o oL 61
Rule Merging Case 3 oo oo 000 oo oo 62
Blackbox Expert User Interface 74
Grid Representation Scheme 0oL oL L 74
Sample Selection Rule 78
Sample AnalysisRule00 00000 oo 80
Set Representation of Training and Test Sets0 90
X

List of Tables

2.1 Knowledge Acquisition Systems and Problem Types 19
5.1 User Commands and their Functions)
6.1 GameSets . . o . o e e e 84
6.2 Rules From: Player 1 - Tested On: Training Set 93
6.3 Rules From: Player 1 - Tested On: Test Set .00 000000000 o 94
6.4 Rules From: Player 2 - Tested On: Training Set i
6.5 Rules From: Player 2 - Tested On: Test Set 90
6.6 Rules From: Combined Experts - Tested On: Training Set 98
6.7 Rules From: Combined Experts - Tested On: Test Set.. 99
6.8 All Rule Bases - Tested On: Test Set 2(Part 1) R]
6.9 All Rule Bases - Tested On: Test Set 2(Cont.) 102

& P T s

X

Chapter 1

INTRODUCTION

1.1 A Framework for the Experiment

Projects involving the development of expert systems have been undertaken in a
variet - of domains. Often one of the first steps in such ventures is to build a
prototype for the purpose of exploring the feasibility and suitability of the proposed
expert systemn. The expertise that prototype expert systems use resides in their
knowledge bases, which are generated through the acquisition of domain knowledge

from domain experts.

Knowledge acquisition. which is integral to the development of expert systems,
often involves divect continual interaction between the knowledge engineer and the
domain expert. Numerous attempts have been made to reduce the work of the

knowledge engineer by using automated knowledge acquisition programs to inter-

view domain experts and thus create a prototype expert system. This thesis is
concerned with using a cace-based approach to automated knowledge acquisition in

order to minimize the time required of the domain expert.

Two premises form the basis of the thesis. The first is that the domain expert’s
time is at least as important as that of the knowledge engineer. In many domains
there are few experts and the timeof those few is extremely valuabie. The shortage of
readily available expettise to solve problems has contributed to the growing demand

for expert systems. However, the many demands on their time leave domain experts

little time to devote to knowledge acquisition. The experts' lack of available time
to share their knowledge can make the building of expert systems a prolonged and
arduous task. Thus the same factor that has prompted the need for expert systems
also impedes their development. This suggests a need to find ways to reduce as much
as possible. but not eliminate totally. the expert’s involvement in expert system

development.

This leads to the second premise for this thesis, namely that in many domains
data pertaining to past activities and decisions has been stored and documented
and that such data can be used as a source for automated case-based knowledge
acquisition. The accumulation of data is a common practice in many fields. In
the course of daily operations a considerable amount of information leading to and
resulting from actual domain activities is gathered and stored. Today such data
is frequently well-documented. categorized, and readily accessible in computer data

banks.

1.2 Proposed Work

The second premise for the thesis provides a means to a solution for the problem
presented by the first. 1f knowledge engineers require additional means of knowledge
acquisition to overcome the difficulties posed by the experts’ lack of time perhiaps

the accumulated data in some domains could provide a needed source.

It is proposed here-in that by analyzing stored domain data, one can attempt
to trace the domain expert's reasoning i arriving at decisions. Since such data
has been amassed from actual examples within a given domain, it can serve as a
primary source of knowledge from which rules can be extracted and a prototype rule-
based expert system can be built. This method of knowledge acquisition is meant
to reduce the domain expert’s involvement in supplying the knowledge engineer or
an automaed interactive knowledge acquisition systemn with the elementary domain

knowledge required 1o build a prototype expert systeni.

Using the method proposed in the thesis. most of the catly work involved in

the development of the prototype would be borne by the knowledge engineer. This
wonld include becoming acquainted with the stored data and writing a program to
organize the data into rules for the prototype expert system. It is not expected that
the knowledge base will be exhaustive, nor that the human expert’s involvement
can be eliminated entirely. Rather, the prototype will only be expected solve a
limited set of cases. At this point the expert system could create a file listing all the
problems that it could not handle and these problems could then be presented to the
domain expert for correction or clarification. Thus the human expert’s time could
be used more effectively in the later stages of the building of the expert system, once

the prototype system has been built and tested.

In this thesis I proposed the knowledge acquisition process that is Jdepicted in
Figure 1.1 and carried it out using cases of the Blackbox game as the source of

knowledge acquisition. The results of the experiment are presented in the thesis.

1.3 Thesis Outline

Chapter 2 of the thesis will describe the various means available for knowledge
acquisition, including traditional manual acquisition methods, automated interactive
systems, and the acquisition of knowledge from cases. An explanation of the game of
Blackbox will be given in Chapter 3, as well as a brief description of the distributed
version of the game and previous work done in the domain. Chapter 4 will provide
a detailed description of the work that was involved in the case-based knowledge
acquisition experiment. The expert system and the generated rule base will be
presented in Chapter 5. In Chapter 6, the tests that were carried out using the
generated rule bases will be explained and the results presented and discussed. The
final chapter in the thesis will present the conclusions resulting from this experiment,

as well as a small section proposing possible future work in this research area.

- '

Extract < Select a
Knowledge Set of Cases
Burid o Select a
Knowledge Sel of
Base Test Coses
Prototype
Knowleadge l > Expert
Bose System

Test
Setisfactory
or
ieration Limit
Reached

Involve Other
Techniques of
Knowledge
Acquisition

Y 5

Refined
Knowledge

\922——/)

Figure 1.1: Knowledge Acquisition Process

Chapter 2

KNOWLEDGE ACQUISITION -
PAST AND PRESENT

2.1 Knowledge Acquisition Function
2.1.1 The Role of Knowledge Base in Expert Systems

Iarly research in Artificial Intelligence revealed that general problem-solving tech-
niques and heuristic methods were deficient when faced with the complexities en-
tailed in solving ambiguously defined problems with imprecise information. The
factor that was found to be missing in the problem-solving programs was knowl-
edge, a resource that people use in various aspects of problem handling. Human
problem solvers use knowledge to help define the problem, to propose useful solu-
tion methods, to ascertain whether available facts are valid, and to judge if a feasible
solution has been found. The realization that expertise in a task domain depends
upon significant knowledge about that domain was the start of a major shift in the
direction of Al research [5]. From attempting to isolate a few powerful problem-
solving techn'ques, the focus shifted to knowledge, how to obtain it and how to
represent it in ways that would facilitate its manipulation. Writing a program to
solve problems in a given domain required capturing and encapsulating the expertise
that a human expert would use in their solution. This new emphasis on knowledge
as the key to achieving expertise in solving problems prompted the use of the term

“knowledge-based systems™ as a synonym for “expert systems™ [7].

[

The knowledge built into an expert system’s knowledge base is meant to imbue
the expert system with the ability tosolve a given set of problems within the specified
domain. The knowledge base is also important for its relationship to the other
components of the expert system. The type of knowledge involved in solving the
problem, its representation, and the reasoning method appropriate to manipulate it,
help determine the type of inference engine that should be used or in which expert
system shell the system should be built. The knowledge built into the expert system

also influences the design of the expert system’s explanation facility.

Each expert system’s knowledge base distinguishes it from other expert systems.
All knowledge is not relevant to all domains, and within a given domain, different
bodies of knowledge are required to address different issues. This great diversity of
knowledge across the wide range of human endeavours makes the building of expert
system knowledge bases a complex and specialized task. Additional complications
are presented by the fact that knowledge is stored and represented in a variety of

ways.

2.1.2 Types of Knowledge

Within a specific field, human expertise incorporates general knowledge about the
field, an in-depth grasp of inherent problems, and the ability to solve most of them.
To effectively acquire knowledge and '.uild it into an expert system it is necessary
to first gain an understanding about the different aspects of knowledge as it can be
applied to domain expertise and to expert systems. Knowledge may be categorized
according to its functionality and according to its provenance. Two broad functional
categories of knowledge hLave been identified: background or shallow knowledge and
deep or expert knowledge [15]. Background knowledge can be partitioned into the
knowledge that can be used to become familiar with the domain and the knowledge of
practitioners in the domain that may be used to implement a preliminary knowledge
base. The background knowledge at the practitioner level can be further subdivided
into descriptive knowledge and procedural knowledge. Expert knowledge. which is

mostly procedural. is used to refine the knowledge base. [15]

6

Background knowledge for domain familiarization comprises

1. the overall goals of the domain;
2. the vernacular of the domain;
3. the domain’s accessible sources of information; and

4. the characteristics of the system’s intended users.[15, 23]

Included in the practitioner level knowledge are

1. objects within the domain: their names, their possible attributes, their poten-
tial relationships and interactions;

2. data relevant to the solution of problems, and the sources of such data;

3. actions and events associated with the problem solution;

4. restrictions and exceptions that need to be considered;

5. techniques used to interpret the problem and solve it; and

6. how to evaluate effectiveness and gauge success.

Some practitioner level knowledge is known as “Descriptive Knowledge”. This
encompasses the “object-oriented”™ items ~ facts related to domain-specific objects,
people, incidents, actions, and concepts. It describes objects, their role, and the re-
lationships and traits they may have. With little or no experience in the field needed

to acquire it, most descriptive knowledge is not classified as expert knowledge.

The non-descriptive component of practitioner level knowledge is known as “Pro-
cedural Knowledge™ and is associated with rules. This category includes the strate-
gics and methods needed to change the conditions of objects. It basically supplies
“textbook™ answers to domain problems and is the repository of the “if-then-else”
rules. Some procedural knowledge is expert knowledge. However, much of it is con-

sidered “public knowledge™, since it can be acquired without invoiving an expert.

By contrast with background knowledge. which is essentially quantitative. expert
knowledge is basically heuristic and qualitative. resulting from extensive experience

i the domain. It includes

-1

1. the correlation among various types of data and actions;

o

understanding the relative significance and pertinence of data and its sources;

deductions from limited or flawed data:

- o

decisions concerning the relevance and sequence of assorted activities;

shortcuts in solution process;

[=2] o

. heuristics and effective rules of thumb;

~

ability to recognize patterns that lead to problem definition and solution;

8. possible trade-offs. and their results.

Aside from its functional characteristics, the knowledge that underlies exper-
tise can also be divided according to its origin into public and private knowledge
[15]. Familiarization-specific background knowledge falls under the public knowl-
edge classification since it is readily available in a published format. Much of the
practitioner-level knowledge is also public and can be obtained by consulting acces-
sible sources. In addition to such publicly accessible knowledge, human experts use
private knowledge that has not yet been published, or widely disseminated within
the domain. Private knowledge also includes the portion of practitioner level knowl-
edge that is not readily available. An expert system must incorporate both the
public and private knowledge that is necessary to effectively solve problems in the

domain.

2.1.3 Sources of Difficulty for Knowledge Acquisition

Knowledge acquisition is recognized as the most difficult as well as the time-eritical
task in expert system development [5. 23]. Most knowledge engineers hegin the
task of building an expert system with an incomplete understanding of the problem
domain, a deficiency that must be overcome by researching the field in question.
The acquisition of public knowledge is relatively routine and in most domains can
be accomplished with little or no difficulty, time being the main variable factor.
However, public knowledge is usually only shallow surface knowledge and while it
may vield a functional knowledge base for an expert system (indeed. task-oriented

superficial knowledge is routinely used by many expert systems [34]). such a system

8

will not exhibit the type of expertise that can be achieved with expert knowledge.
In order to broaden the information acquired it is therefore necessary to attempt to

clicit the knowledge of experts in the domain.

The difficulty of the knowledge acquisition task often begins at this point [5].
'The domain knowledge possessed by experts was learned over a number of years. A
knowledge engineer cannot realistically expect that this knowledge can be elicited
from the expert over a short period of time. This can be partially attributed to the
fact that frequently experts’ knowledge and abilities have become intuitive. Experts
often make decisions without being cognizant of the facts or knowledge they use or
of the techniques they apply. On the surface, they know and understand the factors
that they employ in their work, but often, their decisions may be influenced by
other stimuli which they do not acknowledge at a conscious level. Since the experts
themselves do not consciously recognize all the varied elements that contribute to
their work, it is very difficult for a knowledge engineer to penetrate the process and

extract that information.

An additional hindrance to the knowledge acquisition task is the difficulty that
many experts have in verbalizing how they approach their work [23]. This may
be due partly to their inability to bring to the surface some of their intuitive and
unconscious knowledge. It may also be due to the fact that many experts operate at
a higher level than laymen or novices in their field and, unless they are accustomed
to teaching or training beginners, they are unable to discuss their work at a lower

level than their own.

Experts in most fields are in short supply and are often too busy doing their
work to help in the building of an expert system. When experts, for lack of time
or other unspecified reasons, do not cooperate fully with the knowledge engineer,
the difficult job of acquiring the necessary knowledge becomes even more complex
and exacting. Thus. in order to overcome the difficulties mentioned and success-
fully transfer the knowledge of the experts into the system. knowledge engineers
must expend a considerable amount of time and effort in the process of knowledge

acquisition.

2.2 Manual Knowledge Acquisition
2.2.1 Historical Perspective

Knowledge acquisition has usually been done manually, involving the knowledge
engineer intimately with the domain, its practitioners, and its expert(s) throughout
the process. Past experience of knowledge acquisition has shown that the process
involves several stages and combines a variety of methods and techniques to acquire
the necessary domain knowledge and transfer it to the expert system knowledge

bare. The steps include

1. obtaining background domain knowledge

!\D

eliciting knowledge from the expert

@

recording the knowledge

-

. generating a prototype with the knowledge

[&1]

testing the prototype

(=2}

. repeating the process from step (2).

The iteration of steps (2) through (5) is done until the prototype functions satisfac-
torily. The knowledge acquisition task is ended when the expert svstem is deemed to
be fully operational, unless additional knowledge is required in an evolving problem
domain. Many systems incorporate a facility for the system’s users to update its
knowledge base, thus relieving the knowledge engineer of responsibility for further
knowledge acquisition. Within the knowledge acquisition process, steps (1) and (2)
involve an assortment of methods and techniques. which may he used in varions

combinations, depending on the domain and its complexity.

2.2.2 Preparatory Methods

The first preparatory stage entails fanuharizing the knowledge engineer with the
problem domain. Initially it is necessary for the knowledge engineer to frame the
problem clearly and concisely. In addition to declaring the raison d'étre of the

proposed expert system. the problem definition is useful in clarifving significam

10

aspects of the system. It helps to ascertain whether the problem is appropriate for an
expert system application. and if so. it helps set limits on the knowledge that would
be required by an expert system to produce an acceptable solution. As part of the
familiarization process the knowledge engineer learns about the system’s potential
users - their abilities, the functions they perform, and their probable expectations
from the system. The user data, along with the problem definition. is used to decide

what type of system will meet the needs identified. [15]

While the knowledge engineer is becoming familiar with the problem domain.
he or she is also acquiring background knowledge. whether by design or as a by-
product of the familiarization processes. Background information can be obtained
from a variety of sources including manuals. books. journals. and classes based on the
domain, as well as from practitioners in the domain. Some of the techniques used in
eliciting knowledge from the domain expert can be used to obtain information from
domain practitioners. These methods include observation sessions, unstructured

interviews, and questionnaires [14, 25].

Although not all of the background information will be used in the actual imple-
mentation of the system, it is a key component of the knowledge engineering task.
Its function is to provide the knowledge engineer with sufficient understanding of the
domain to be able to discuss its intricacies with the expert. Background knowledge
is also essential to gain the expert’s trust that the knowledge engineer understands
the knowledge well enough to express it faithfully in the system [33]. This will make
the eventual task of knowledge elicitation from the expert more productive and less

stressful.

The comprehension that the knowledge engineer has gained from the background
knowledge also helps him or her to make informed design decisions about the planned

system [8. 30]. Some questions answered by these preliminary decisions are

e on what type of machine should the system be implemented?
e which language is best suited to the needs of the system?

e should an inference engine be built or can a cominercially available tool be
used?

1

¢ What type of documentation should be kept during the knowledge acquisition
process’

o which knowledge representatiou formalism is most suited to the system and
should more than one type be used?

Having made these decisions the knowledge engineer has a clear idea of the
direction that knowledge acquisition for the expert systemwill take. The background
knowledge that has been gained can then be organized into a “lirst-pass™ data base

and used as a basis upon which the knowledge to be elicited from the expert will be

built [14].

2.2.3 Knowledge Acquisition From the Expert

When the preparation phase is over the knowledge engineer can begin the process of
extracting the knowledge of the domain expert. Expert systems tesearch has identi-
fied a number of effective techniques for this task. The two that are most commounly
used are observation and interviews. Previous experience has vielded cettain guide

lines to the use of these and other methods of manual knowledge acquisition.

Observation

As the name implies, observation is a technique whereby the knowledge engineen
observes the expert performing some typical tasks. This technigue has also been
called “the method of familiar tasks™. as well as “Behavioural Observation™ [14].
To yield the most information. observation should take place without interrupting
the expert and breaking his or her concentration. It is preferable that the tasks
under scrutiny be selected by the expert rather than the knowledge engineer. These
constraints on the observation should ensure that the expert is at case being involved
in his or her usual routine. The drawback of observation is that it can he time-
consuming and may not by itsell give any great insight into the reasoning process
used by the expert. But information gained from observation sessions helps the
knowledge engineer augment his or her familiarity with the domain. The knowledge

engineer also gains an appreciation of the inputs experts requite for solutions as well

12

as the data produced as a result of their tasks. This information can be combined
with the background knowledge acquired in the familiarization phase to prepare a

preliminary data base that can then be refined using other methods.

Interviews

Two types of inlerview techniques are used in knowledge acquisition: unstructured
and structured. Unstructured interviewscan take place while the expert is describing
or performing a task in the domain. In this type of interview, the knowledge engineer
spontaneously asks the expert questions, particularly when the expert appears to
be drawing an inference that is not obvious. The knowledge engineer’s questions
may be partly based on the knowledge that was included in a preliminary data base
[14]. The unstructured interview method has been one of the most frequently used
knowledge acquisition tools. Some rule bases have been constructed solely on the

basis of knowledge gained in this way [34).

By contrast with the unrehearsed nature of the unstructured interview, the struc-
tured interview is a rather formal approach and requires some preliminary work on
the part of the knowledge engineer. The interview is conducted using previously
prepared questions, which may have been derived from the research done during
the familiarization phase or from previous knowledge acquisition sessions. Struc-
tured interviews can produce considerable information, but they are usually very

time-consuming [14].

Other Techniques

Self reporting or verbal reporting is a knowledge acquisition method that consists of
asking the expert to “think out loud™ while performing a typical task [24, 33). Self
reporting sessions should be reesrdod on audiotape or videotape and reviewed after

the session.

There are some methods that may be used to gain deeper knowledge and uncover

the expert’s heuristic reasoning. In one such approach the expert is asked to solve

13

tasks in which the information has been deliberately limited by the kunowledge en-
gineer. Another technique involves changing or constraining the expert's reasoning
strategies. The theory is that by either limiting the time available for solving the
problem or asking the expert to address only a small portion of the problem, more
and different examples of the expert’s thinking patterns may emerge. Although at
first the expert may not be at ease with the restrictions imposed, both these methods

have extensive potential for the acquisition of deep knowledge. [14]

Observing the expert solving a comphcated and unusual problem can be very
instructive about the more intricate aspects of the decision making process. The
rarity of such problems makes it difficult to predict when such observations should
be done. To overcome this. the domain expert may be requested to audiotape any

difficult cases he or she may encounter, even if the knowledge cngineer is not at

hand.[14]

2.2.4 Problems in Manual Knowledge Acquisition

Manual knowledge acquisition is usually very time-consuming. Much has been said
and written ai out the difficulties involved with the elicitation of deeply seated knowl-
edge from domain experts [14. 15, 23]. These difficulties sometimes arise as a result
of biases that occur when the methods used for the collection of such knowledge are

not applied correctly.

A structured interview can yield very valuable information. Howeverif a strue-
tured interview is not conducted carefully. the knowledge engineer risks creating
biases with the wording of questions and hence cbtaining inaccurate information.
To detect such biases, the knowledge engineer should ask the same question in dif-
ferent ways. If the answers to the various questions are not similar, the knowledge

engineer must alert the expert to the inconsistency and try to correct the problem.

Unstructured interviews or interruption must also be handled carefully by the
knowledge engineer in order to avoid influencing the expert’s thinking. Such an
impact would he most likely if the work is being done on a rapidly changing problem.

In fact, in such a case, the expert is apt to completely ignore the knowledpe engineer

14

and proceed with the work at hand. If this were to happen, the knowledge engineer
could continue the learning process by switching to uninterrupted observation and

noting questions to be asked soon after the job has been completed.

Self reporting has the disadvantage that many people find it difficult to verbalize
their thoughts, particularly while performing important tasks. A further drawback
is that this method can disrupt the thought processes of the expert, and as a con-
sequence, impact on his or her effectiveness. Therefore, self reporting sessions are
preserved on videotape or audiotape in order to keep a record of the procedure and
the expert is not censtrained to talk if it is not convenient. To keep the decision pro-
cess fresh in the expert’s mind, it is recommended that the analysis of the recording
should be done as soon as possible after the session is over, thus filling in any gaps

there may be in the information revealed.

To ensure the accuracy of the knowledge base the knowledge engineer should
be aware at all times that there is a likelihood that biases will influence some of
the information elicited from the expert. The sources and causes of such biases
and errors should be monitored carefully in order to combat their effects on the

know ledge base. [33]

2.2.5 Application of Knowledge Acquisition Methods

The techniques that have heen described may be combined in various ways de-
pending upon the domain, Some of them can be applied at different points in the
knowledge acquisition process and may produce different types of information de-
pending on when they are used. Others serve as more specialized tools and perform

best when limited to specific times in the process.

In the preparatory stages of knowledge acquisition, unstructured interviews can
help to augment information gleaned from published sources. Unstructured inter-
views can be a source of decper knowledge when used after observation or verbal
reportiig. Observation is best applied after some background information has been
assimilated by the knowledge engineer. Thus. the timing of its employment is dic-

tated by the availability of background knowledge.

-

15

Self-reporting can be used as the first method for knowledge acquisition after
the familiarization phase. Structured interviews are useful in helping to clarify and
enhance knowledge derived from self-reporting and other methods [30]. Special tasks
such as limited information or constrained processing tasks are recommended to help

fill in gaps that the acquired knowledge base may exhibit [14].

Regardless of the methods chosen, the process of knowledge acquisition is an
iterative one. That is. knowledge is abstracted from observations and self-reporting,
This knowledge is used as the basis for some interviews More observations may be
conducted and result in a larger knowledge base, which can then be refined using
structured interviews. Special tasks can then be developed to help complete the

knowledge acquired.

It is useful to audiotape and, wherever necessary and possible, videotape the
sessions with the expert. All the knowledge acquired should be kept in a knowledge
document, written in terms that can be understood by the human expert. With
cach session the knowledge obtained should be added to the knowledge document.
Once sufficient knowledge has been documented, it sheald be implemented in a
prototype system. Whenever a session has yielded enough knowledge the prototype
as well as the knowledge document should be altered. Each update of the prototype
should be tested using some sanmple problems and comparing the system’s solutions
with those suggested by the human expert [30]. Rigorous testing of the prototype
is necessary to enlarge upon the existing knowledge and modify it when necessary.
A large number of test cases should be used and an effort should be made to select
a variety of problems within the domain. Wherever the system disagrees with the
human expert’s own results, the differences between the two should be examined
thoroughly. These diflerences will often point to missing or incomplete knowledge.
Testing the knowledge document by hand is also recommended if the knowledge has
not yet been entered into the prototype system [30]. The prototype prepared in this
fashion becomes the basis of the final product and the knowledge document will

serve as useful documentation for the system.

16

2.3 Automated Knowledge Acquisition
2.3.1 The Need for Automated Knowledge Acquisition

The difficulty of knowledge acquisition is frequently cited as the main stumbling
block in expert system development. The knowledge acquisition task is usually very
protracted and often is not consistently productive. Its success hinges largely on the
availability and cooperation of the domain expert. Since there are many demands on
the expert’s time and services, the knowledge engineer’s claim for attention is often
judged to be the least urgent of a seemingly endless queue. Because of the many
hurdles encountered in acquiring domain knowledge the building of a prototype
expert system that can function with some level of expertise typically takes from

six to twenty-four months [13].

Onc of the main functions of computers is to speed up lengthy routine tasks such
as number and other data processing. The notion of automating an exceptionally
lengthy manual process is therefore intuitively appealing to computer scientists.
Indeed, it would be an anomaly if knowledge acquisition, a task common to the

development of all expert systems, were to continue exclusively as a manual process.

2.3.2 Types of Automated Systems Developed

From the beginning of expert system research, computer scientists have sought some
form of automation of the expert system building process. Some of the early expert
system developers approached the task by extracting some salient features of their
systems that were not domain specific. From these they produced new programs
that could be adapted to new expert systems operating in different domains. In
this way MYCIN. a medical consultation expert system, gave rise to EMYCIN, an
expert system development environment, and PROSPECTOR, an advisory system
for finding ore deposits, was the forerunner of I{AS [13]. Other programming tools
for the development of expert systems, although not directly descended from a spe-
citic system, were developed as the result of their designers” experience in building

expert systems that dealt with particular problem types. Thus, EXPERT was de-

17

veloped by a group of designers who had extensive experience in developing medical
consultation models. These systems are all frameworks for the building of expernt

systems and were the forerunners of many of today’s expert system shells [13].

Although expert system shells greatly speed up the process of building an expert
system, they have not appreciably simplified the “bottleneck™ in expert system
development, knowledge acquisition. The eflicient extraction of knowledge from
experts and its subsequent transformation into a form readily used by the expert

system is still a job that is often done manually.

Some early automated knowledge acquisition systems were developed for specific
systems to help augment and maintain an already existing knowledge base. One such
system was TEIRESIAS, developed as an offshoot of MYCIN to assist in acquiring,

correcting, and using new knowledge for the MY CIN system [13].

Automated knowledge acquisition has been approached in two ways. One method
employs an interactive program to interview an expert and use the answers given to
build a knowledge base [1]. Another technique involves case-based machine learning,
using historical examples and extrapolating a knowledge base from the solution

process used [20].

MOLE is a successful interactive knowledge acquisition tool that is used for
systems that solve problems using heuristic classification. The knowledge acquisition
tool knows that the problem solving method used makes some key assumptions about
the domain and how knowledge can be used to search for problem solutions. Armed
with these assumptions a knowledge acquisition program uses simple interactive
facilities to elicit only the knowledge required by the problem solving method and

to verify its adequacy. [6, 12, 19)

2.3.3 Two Automated Knowledge Acquisition Systems

The type of problem that an expert system is meant to solve helps to dictate the
problem solving method that will be used and the types of knowledge that will be

useful in the solution process. Two of the problem types undertaken by expert sys-

18

SYSTEM PROBLEM TYPE DEVELOPER

ETS Classification John H. Boose, Boeing

AQUINAS Classification John H. Boose, Boeing

MOLE Classification L. Eshelman, Carnegie-Mellon

BLIP No problem type K. Morik, Technical U Berlin

INFORM Classification E.A. Moore, Applicon/Schlumberger
A.M. Agogino, UCB

SALT Construction S. Marcus, Carnegie-Mellon

MORE Classification G. Kahn, S. Nowlan,

J. McDermott, Carnegie-Mellon

Table 2.1: Knowledge Acquisition Systems and Problem Types

tems are classification or analysis problems and construction or synthesis problems.

Since many of the expert systems written to date deal with classification problems
it is not surprising that most knowledge acquisition tools have been designed with
a classification system in mind. Table 2.1 lists some knowledge ucquisition systems,

indicating their problem-solving orientation.

Interactive knowledge acquisition tools often parallel the work done in manual
knowledge acquisition. The process involves interviewing experts, transferring their
knowledge to some intermediate knowledge document, analyzing the knowledge, ver-
ifving its completeness, validity, and consistency, transforming the knowledge into
rules or other representation, and testing the problem-solving efficacy of the rules.
To a lesser or greater degrec, most of the knowledge acquisition tools developed to
date have incorporated these tasks into their systems. A brief description of two
knowledge acquisition programs, one for classification systems and one for construc-

tion systems, follows.

The Expertise Transfer System (ETS) incorporates personal construct theory

and repertory grid techniques, both borrowed from the field of psychology, into a

19

methodology to acquire domain knowledge for solving analytic problems. Using
these and some statistical analysis methods, the svstem interviews an expert, an-
alyzes the acquired knowledge. creates heuristic production rules. and generates
knowledge bases for KS-300 and OPS5. The prototypes are then used to run test
consultations to establish the merit and sufficiency of the knowledge base. At vari-
ous stages in the process the expert is shown the generalizations made by the system
and may elect to correct any apparent inconsistencies. The prototypes prepared by
ETS are not fully operational expert systems. Interviewing of the expert by a knowl-
edge engineer is still required as is further knowledge refinement. The automatic
generation of prototypes, however, considerably shortens the process of constructing

an expert system. [1]

SALT is a knowledge acquisition system for expert systems that solve construe-
tion type problems [9. 19, 18]. A principal characteristic of these expert systems is
that their knowledge is partitioned according to its role within the process. SALT
uses its understanding of how these expert systems function and of the different
types of knowledge to acquire knowledge from the expert. The knowledge acqui-
sition is done interactively., SALT interviews the expert using menus to help the
expert select the type of knowledge being addressed. During the process, SALT em-
ploys its grasp of knowledge types and their necessary attributes and pre-conditions
to prompt the expert and help collect the necessary knowledge. After the knowl-
edge has been analyzed to remove any possible irregularities, and corrected with the
interactive help of the expert, the systemi produces OPS5 rules for a target expert

system shell.

These and other interactive knowledge acquisition programs have ecasy to use
interfaces. They do not assume that the human expert being interviewed is familiar
with either the knowledge acquisition systems or with Artificial Intelligence concepts.
A brief explanation of the systems is sufficient for their use by a novice in knowledge

acquisition.

2.4 Case-Based Knowlzdge Acquisition

2.4.1 The Case-Based Approach

Definition Cusc-based knowledge acquisition is a method used to learn domain
sl)eciﬁc knowledge from examples drawn from the domain and to generalize
the knowledge using inductive techniques.

Definition A training set is a set of sample cases of solved problems within a
domain that are used to extract pertinent information about the domain.

Definition A fest set is a set of sample cases of unsolved problems in the domain
that are used to verify the accuracy of the information learned from the training
sef.

The case-based approach to knowledge acquisition postulates that a set of ex-
amples showing how the expert solved individual problems can present an accurate
portrait of the problem: domain. Therefore, by extracting knowledge from the ex-
amples and expanding it with induction methods, it is possible to build a knowledge

base that can be used to solve a set of related problems in the domain.

The process of case-based knowledge acquisition normally spans several stages.
Initially prellems typically solved in the domain are defined by an expert or non-
expert practitioner in the domain. The key elements used in arriving at solutions
along with the related solutions are identified at this time. Next, a training set of
cases that demonstrate the expert’s problem solving expertise is assembled. The
design of a program to extract important factors and relations from the training
set and an induction algorithm to analyze and generalize the derived data comprise
the next step of the process. After the program and the induction algorithm have
been written, the actual knowledge acquisition takes place. The knowledge acquisi-
tion program cxtracts relevant information from the training set and the induction
algorithm transforms this information into more general rules suitable for solving
domain problems. Finally, the rules are applied to a test set of unsolved problems.
Any problems within the test set that are not solved by the rules are then used
along with their solutions to form part of a new training sel for the next iteration of
the final two steps. These iterations are intended to contribute to the improvement

of the rule base [24].

This method aims to automate knowledge acquisition in a manner that reduces
the obstacles presented by the manual process. The interview process where the
expert is expected to reveal all the secrets of the trade in response to the knowl-
edge engineer's probing is eliminated. as are many of the other techniques used
by knowledge engineers to elicit expertise in problem solving. To suit the require-
ments of case-based knowledge acquisition the primary role of the knowledge en-
gineer has been altered. After a preliminary period of domain familiarization, the
knowledge engineer is primarily occupied with designing and writing the knowledge
acquisition program and the induction algorithm. Once this has been accomplished,
a case-based knowledge acquisition system can run virtually independently of the
knowledge engineer. However, the knowledge engineer would become involved again

during the testing and knowledge base refinement phases.

2.4.2 Case-Based Manual Knowledge Acquisition

Case-based knowledge acquisition is also manifested in traditional methods of knowl-
edge acquisition. One of the techniques used in manual knowledge acquisition is that
of observation. By observing the expert at his or her regular task the knowledge
engineer hopes to gain insight into the workings of the domain and in turn transfer
this understanding into a knowledge base. This is a situation in which the knowl-
edge engineer is learning about the problem domain from actual examples. Another
such situation involves sclf-reporting in which the expert describes the actions being

taken in the process of solving the problem.

Other manual knowledge acquisition techniques involve learn‘ng from sets of
examples that have been deliberately devised for that purpose. These are the sit-
uations in which the expert is required to solve problems with limited information
or problems where constraints have been placed on the expert’s resources, thereby
changing the reasoning strategies used. Such cases are also used by the knowledge

engineer as examples from which knowledge can be gathered.

One of the tasks of the knowledge engineer is to attempt wherever possible to

generalize the knowledge that has been acquired. In this fashion. manual knowledge

acquisition, like its automated case-based counterpart, involves using some means

to expand the specific knowledge elicited to more general forms.

2.4.3 When To Use Case-based Knowledge Acquisition

It is apparent from the previous section that case-based knowledge acquisition is
a characteristic of some manual knowledge acquisition methods. Therefore, what
distinguishes case-based knowledge acquisition from the manual process is the fact
that in the former learning from examples is the primary method used while in the

latter lea, ning from examples is only one of several techniques followed.

There are certain attributes characterizing situations ir which case-based knowl-
edge acquisition is the appropriate methodology to pursue. An application domain
where experts are not readily available or where experts who are accessible cannot
easily convey their decision processes would not be suitable for manual knowledge
acquisition. However, if such a domain were finite with clearly definable problems,
and if a set of examples representative of the application area were available, the

domain would be appropriate for case-based knowledge acquisition.[24]

2.4.4 Limitations of the Case-based Approach

The success of case-based knowledge acquisition depends on and is therefore limited
by three factors: the training set, the test set, and the induction algorithm. To
ensure that the knowledge extracted from the cases is accurate and complete it is
important that the training set be representative of the domain, depicting a sufficient
variety of domain problems and issues. Similarly, the test set must also comprise
typical examples to affirm that the process of verifying the reliability of the acquired

knowledge is effective and accurate.

The responsibility of selecting representative cases for the training and test sets
should be undertaken by someone who is well versed in the characteristics of domain
problems. In order to confirm the relevance of the training and test sets it may be

useful to employ several sets of cases for knowledge acquisition and compare and

23

Yt e e

¢
‘
:
)
¥
!
?
£

combine the elicited information.

In most instances. the knowledge acquired from the training sets of cases is spe
cific to the cases studied. The induction algorithm is the tool used to analyze this
specific information and expand it into more generally applicable knowledge. Thus
it is important that the induction algorithm be suitable for developing accurate and
valid general rules from the limited information extracted from the examples. The
inductjon algorithm's effectiveness depends on isolating the fundamental features of
the training cases that should be thoroughly analyzed and elaborated upon to yield
general information. These important factors should be identifiecd during the initial
stage of familiarization with the domain. The success or failure of the induction
algorithm will become apparent when the newly constructed rules are applied to
the test cases. If some test cases are not solved satisfactorily by the expert systems,
and if, in turn, using solutions for these test cases as a training set for a subsequent
iteration of knowledge acquisition does not result in improved rules, then the indne-
tion algorithm may be faulty and may need to be rewritten. Alternatively it may
be determined that the training set is not representative of the domain and needs

to be replaced.

Acquiring knowledge from cases may cnly vicid a limited rule base, which can
serve as a starting point for further knowledge acquisition. The expansion of the
rule base may be done either by using new and more complex training and test cases

or by involving the domain expert in improving upon what was done antomatically.

2.4.5 Case-based Knowledge Acquisition Research

Case-based knowledge acquisition or learning from examples has been at the heart of
much of the research into machine learning and knowledge base construction. It has
been the method used in Meta-DENDRALI dealing with the synthesis of chemical
knowledge [2]. and in AQ11 for soybean diagnosis [20]. It has also been successfully
used in industrial contexts, such as in the development of a large expert system
for British Petroleum to design hydrocarbon separation vessels [31]. There are also

commercial expert system building tools that use induction as a tool for deriving

rules from examples. Among these aie RuleMaster, Ex-Tran. and 1st-Class [31. 21].

These systems represent the extracted rules in the form of decision trees.

As in other branches of expert systems research, there is ongoing work into ma-
chine learning in general, and learning by examples in particular. Some of the work
has concentrated on automating the acquisition of the conceptual knowledge that is
the precursor to the actual acquisition of domain specific, problem solving knowl-
edge [10]. Other research has focused on simplifying decision trees, a representation
that has frequently been used for rules derived from examples. thereby making the

knowledge more comprehensible to human experts and users [31].

V]
ot

Chapter 3

BLACKBOX

3.1 Description of Blackbox

3.1.1 How Game is Played

Blackbox is a game consisting of a square grid that contains a number of hidden
balls {28]. The objective of playing the game is to determine in which squares these
halls are located. To locate the balls a player fires vertical or horizontal beams into
the grid from positions along its four sides. Then the player analyzes the behaviours
of the beams and hypothesizes on the possible locations of the hidden balls. The
goal is to determine the exact locations of all the balls using a minimum number
of shots. Sometimes, the game cannot be solved by analysis and the player is then

obliged to stop with a partial solution or to propose a solution by guessing.

A beam that encounters a ball along its trajectory in a square grid of size n can

exhibit one of the three following possible behaviour patterns:

Absorption: A beam is absorbed if a ball is in (i,)) and the beam travels along row
i or column j. The absorbed beam disappears from view.

Deflection: A beam is deflected if a ball is in (i,j) and the beam travels along
row (i+1) or (i-1), or along column (j+1) or (j-1). A deflected beam turns 90
degrees away from the ball and continues its trajectory aleng the column or
row immediately before the hall’s position.

Reflection: A beam is reflected if any of the followin% six conditions is true, A
reflected beam is turned around 180 degrees and ultimately exits at its origin.

1. a ball is in (1,3) and the beam enters along column (j+1) or (j-1) from
the top.

26

2. a ball is in (n,j) and the beam enters along column (j+1) or (j-1) from
the bottom.

3. a ball is in (i,1) and the beam enters along row (i+1) or (i-1) from the
left.

4. a ball is in (i,n) and the beam enters along row (i+1) or (i-1) from the
right.

5. two balls are in (i,j) and (i+2,j) and the beam travels along row (i+1).
6. two balls are in (i,j) and (i,j4+2) and the beam travels along column (j+1).

These beam behaviours are the domain rules of the Blackbox game and are applied
in the order of precedence presented above. The game can be played by a person
on a computer, using an interactive program developed by John Lyons and Kristina
Pitula [16, 26). The computer screen displays the game-grid and identifies beams’
entry and exit locations with pairs of identical alphabet letters. The entry point
of an absorbed beam is marked by the computer with the letter ‘H’ (for hit) and
the entry/exit point of a reflected beam is identified with the letter ‘R’. There is an
inherent symmetry in Blackbox. If a bean fired at point X exits at point Y, then a

beam fired at point Y will exit at point X.

Figure 3.1 shows some examples of shots and their trajectories. In the figure,
the shots labelled ‘a’, ‘b, and ‘d’ are deflected one, four, and two times respectively
by balls located in their trajectories. Shot ‘c’ does not encounter any balls in the
vicinity of its trajectory and thus passes through the grid without any deviations.
The shot labelled ‘H" (for Hit) is absorbed by the ball it encounters directly along
its trajectory, and shots labelled ‘R’ are reflected back to their original entry points
by balls whose locations in adjacent rows do not permit deflections and further

penetration of the grid.

Performance in Blackbox is typically measured using two parameters - the score

and the number of errors. In general, the score is a function of the number of shots

and their relative behaviours. In our experimental studies a lower score indicates
a better level of performance. In this scheme, deflection increments the score by 2
and the other beam behaviours increment the score by 1. The scoring is directly
representative of the immediate visual result of the different shot behaviours. When
a shot is deflected its entry and exit are both visible, affecting two points on the

A‘) "'

b 8 c
]
8 fma—
®
d
[
R s e e
H —‘
bl a
@ @
b R c

Figure 3.1: Blackbox Shot Trajectories

grid's perimeter. A shot that is absorbed and one that is reflected only show the
shots’ entry positions. The hypothesis dedu:ed about the grid’s internal configura-
tion improves with more information about the grid's perimeter. Thus shots that
reveal more information add more to the player's score than those that yield less
information. Errors occur when the final hypothesis that the player makes about
the ball locations does not correctly identify the locations of hidden balls. The num-
ber of shots taken by the player and the time elapsed to solve the game are other

possible performance measures.

3.1.2 Distributed Version of Blackbox

In theory, a problem that is too large to be adequately evaluated and analyzed
by one individual could be solved if the problem space and hence the problem
solving responsibility could be divided into several smaller parts to involve several
people. Blackbox, when plaved on a very large grid. can be representative of such
a large problem. Distributed Blackbox (DBB) modifies the Blackbox game into a

cooperative game played by rnore than one player.

28

Blackbox lends itself naturally to a geographic decomposition of the game space.
A variety of partitioning approaches may be used. The grid can be divided into two
or four parts, all of which would have several common physical characteristics - the
same number of external edges. the same number of internal edges, and the same
communication needs with neighbouring spaces. In such a partitioning scheme all
the players would requize the same skills and approach the problem from a similar
perspective. Other methods of partitioning could also be considered. A larger
grid could conceivably be divided into more than four parts: six or eight or even
more. In such cases the separate games spaces would not all share similar physical
characteristics. Some parts would have more external edges than others, and some
would have more internal edges. The communication needs would differ among them
and consequently the problem solving skills of the players would differ according to

the game space they were assigned to solve.

Although the game is readily partitioned along geograptucal boundaries, the dis-
tinct problem spaces designated by these boundaries cannot be solved independently.
Shots that originate in one section of the game may p=ss through other sections and
events observed in one area may be indicative of a particular situation in the state
of others. To arrive at a solution encompassing the entire game-grid of Blackbox,
all the plavers must cooperate during the problem solving session. Thus Blackbox is
suited both for problem decomposition and for cooperative problem solving among

distributed components.

Of the various partitioning designs considered for Blackbox, the one dividing
the game into four quadrants is intuitively appealing. The physical division of a
game-grid with even dimensions (e.g. 8 x 8 or 10 x 10) into four areas of equal
size results in square quadrants which outwardly appear like small Blackbox grids.
But the similarity ends here. A player in a four-way partitioning of Blackbox has
control over the two external edges in the assigned quadrant but must communicate
with neighbouring quadrants to obtain information ot request activity along the two
internal edges. This design allows the player some measure of autonomy. while in-
corporating sufficient complexity into the cooperative solution process. This scheme

refrains from overwhelming the player with multiple communication channels as a

29

b a c
|
3
®
d
]
R ——
H— = 4
a
L o
L
b R c
=mam Agente may oniy shoot in along black lines
D Shaded area 1s shared by adjacent agents

Figure 3.2: Distributed Blackbox

more extensive distribution pattern would do.

In DBB the game grid has been partitioned into four geographically distinct re-
gicns each conforming to one quarter of the original grid. In this format of the game
each player is responsible for solving a different quadrant of the grid. communicating
partial solutions to the other players in an effort to solve the global game. In DBB
each player can only shoot beams into the grid from locations along the two exterior
edges of the quadrant. The remaining two edges border on the adjacent quadrants
and beams in transit can pass through them to neighbouring quadrants. (See Fig-
ure 3.2). The protocol used for playing the game has players taking turns shooting

beams inte the grid using a simple round-robin, token-passing control scheme.

DBB is a cooperative game to which all the players contribute their individual
efforts to maximize the group's performance. The involvement and participation of
all the players is necessary for the effective solution of the game. The game produces
no losers and does not entail competition among its players. Therefore, people are
“comfortable” playing DBB. The Blackbox performance measures of score, number

of errors, number of shots, and time can be used to evaluate the performance of

.

30

teams playing DBB.

The partitioning of Blackbox into DBB was done for the purposes of studying
interaction among cooperating computer users. The interaction can be studied
quantitatively by comparing the performance measures achieved in DBB with those
achieved in Blackbox. A qualitative study of the interaction can also be undertaken

to determine the levels of satisfaction derived by the group in playing the game.[4]

3.1.3 Blackbox and Expert Systems

Blackbox and Distributed Blackbox can both be played by human players or by
expert systems. In fact Blackbox is eminently suitable for an expert system imple-

mentation, for the following reasons:

1. The solution process entails a great deal of ambiguity. That is, although partial
solutions, in the form of partial hypotheses, are formulated at intermediate
stages of the game playing, these incomplete solutions are not always certain
until the comprehensive solution has been determined at the end of the game.

2. The state space representation of the game is straightforward.
3. Hypotheses can be formulated and refined at different stages of the game.

1. The performance evaluation is simple and straightforward.

s

An exhaustive solution is uninteresting.
6. Heuristics can be applied in hypothesis formulation and shot selection.

. The knowledge engineering involved does not require knowledge from an ex-
ternal expert and hence is not very time consuming.

-3

The last point mentioned makes Blackbox an interesting testbed for a university

environment and particularly suitable for this experiment in knowledge acquisition.

3.2 Knowledge Representation in Blackbox

3.2.1 Temporary Knowledge

Definition The rcal grid is an object representing what is known ahout the Black-
box grid by the game-managing module - its size, the number of hidden balls,
and their locations.

31

Definition The hypothesis grid 1s an object representing what the playing agent
knows about the Blackbox grid and what it determines as the game progresses
- the size of the grid. the number of hidden balls, the entry and exit locations
of shots taken, the number of balls located, and the contents of cach square of
the grid, unknown, empty. or a ball.

Definition The game-managing module is the part of the Blackbox game system
that is responsible for deterinining the trajectory of each shot, and marking,
the shot’s entry and exit locations in the case of a deflection, or the shot’s
behaviour in the case of a reflection or an absorption.

Definition The playing module or playing agent is the part of the Blackbox playing
expert system that shoots beams into the grid and makes hypotheses based
on the trajectory of the beams determined by the game-managing muodule.

The temporary knowledge in a game of Blackbox consists of representations of two
grids, the real or actual grid and the hypothesis grid. The real game-grid incor-
porates the knowledge that the game managing module possesses about the grid -
its size, the number of balls hidden within its boundaries, and the locations of the
hidden balls. While the playing module is also cognizant of the size of the grid and

the number of balls, it does not know where the balls are hidden.

The real grid remains static for the duration of one game of Blackbox, changing
only with the start of a new game session. The grid coutents can be represented
by a two dimensional array. This may not be the most memory-efficient method.
However, ordinarily the Blackbox grid size used in our experiments is no larger than
10 x 10, and thus the total amount of memory used is not very significant. Fven a
very large game with a 20 x 20 grid of dimensions would not require an excessive
amount of memory, using a maximum of 400 bytes of storage. The information
maintained in the grid’s array representation is the contents of cach element in
the array, whether it is empty or a ball. Alternatively. the grid’s contents can be
maintained in a linked list of grid coordinate pairs, one for cach location containing
a ball. All locations not mentioned in the list are assumed to be empty. The size of
the grid can be stored in an integer variable which would then be used to determine
the grid boundaries. The number of balls hidden in the grid can also be kept in an
integer variable.

Definition The arailable shots are points around the grid’s perimeter which have
not vet been used as the entry or exit point of a previous shot.

32

The hypothesis grid knowledge comprises what the playing expert knows about the
real game grid, available shots, shots (entries and exits) as they are made, as well
as the player’s hypotheses about the locations of the hidden balls. The bulk of the
information in this data section is dynamic, changing with each shot that is taken
and with cach hypothesis that is proposed or modified by the expert system. As in
the real grid the size and the number of balls can be represented by integer variables,
and the hypothesis grid contents by a two dimensional array. The hypothesis grid
locations are all initially labelled “unknown™ and, as the game progresses and the
hypothesis is modified, individual array elements may be labelled “empty”, “ball”,

or “possible ball”.

In addition to the above data structures, an integer variable is used to store the
number of balls located in the hypothesis grid. A list of available shots is maintained
as a doubly linked list of # and y coordinates, from which locations are removed as
shots originate from or exit through them. Two other dynamically changing shot
lists are kept. One is a list of uncertain shots, which contains the number, entry
and exit locations, and a letter identifying the beam behaviour of fired shots whose
trajectory has not yet been analyzed by the expert system. The other, a certain
shots list, consists of data describing shots that have been fully analyzed for the
purpose of making an hypothesis. Also maintained is a linked list describing the

locations of balls located by hypothesizing about shot behaviours.

For the purposes of an explanation facility a list of rules that have been fired
along with the specific shots that triggered them is also kept as part of the dynamic

knowledge represented in a Blackbox playing expert system.

3.2.2 Permanent Knowledge

Definition A partial hypothesis is a modification made to the hypothesis grid by
an expert system as the result of analyzing one or more shots.

The permanent knowledge in Blackbox includes the rules that the expert uses to play
the game. These rules are divided into analysis rules and shot-selection rules. The

analvsis rules are responsible for forming partial hypotheses based on the behaviours

33

exhibited by shots fired into the game-grid. Essentially, an analysis rule consist of an
antecedent incorporating a description of a shot whose occurrence within the game
causes the rule’s consequent to be performed. The consequent involves changing
the contents of locations in the hypothesis grid. This is done by placing a “ball”, a

“possible ball”, or an “empty” indicator within squares of the hypothesis grid.

The shot-selection rules' antecedents involve shots that have previously been
fired as well as their exit behaviours, These result in consequents that establish

from which location the next shot is to be fired.

In addition to the game playing rules of analysis and selection, the permanent
knowledge includes some “housekeeping rules™ that are used to maintain the various
components of the dynamic data related to the hypothesis and its ancillary pieces
of information. There are also some “meta-level rules”, that can provide further
analysis of the hypothesis grid created by the application of the rules or handle the

resolution of a partial hypothesis at the end of a game.

A comprehensive explanation of the knowledge tepresentations used for the
Blackbox expert system is given in Chapter 5. which describes the design of the
actual expert system used for this knowledge acquisition experiment and the rule

base that resulted from the experiment.

3.3 Knowledge Acquisition and Blackbox

3.3.1 Manual and Automated Knowledge Acquisition

Section 3.1.3. discussing Blackbox as a suitable problem for an expert system, noted
that the knowledge engineering involved in a Blackbox playing expert system would
not require an excessive expenditure of time. This is due to the fact that experts
in the game were not difficult to locate. In fact, since several projects involving
Blackbox as their testbed had already been undertaken within our University, the
experts were available in our midst. The question then arose. which methods of
knowledge acquisition were appropriate to extract the expert knowledge required to

play the game.

34

The knowledge utilized in the playing of Blackbox can be roughly divided into
two components. The first part is a clear understanding of the domain rules of
Blackbox as described in Section 3.1.1 and a knowledge of how to use these rules
in analyzing shot behaviours. The second part involves the selection of shots to fire
in the game, depending on what is known about the grid configuration at a given

point in the game.

Manual knowledge acquisition is a viable option for acquiring these elements of
Blackbox playing expertise. A combination of interviews and observations could be
used to query the expert and reveal his or her knowledge. Automated knowledge
acquisition in the Blackbox domain presents a knowledge engineer with a dilemma.
Into which genre of problems does Blackbox fall? Is it an analysis problem or is it a
synthesis problem? The answer is both. The shot-selection knowledge can be seen as
an exercise in synthesis much like planning or scheduling, whereas the shot analysis
knowledge is an analysis problem, deriving solutions from exhibited behaviours or
symptoms. This combination of knowledge types might be difficult to capture in an

automated interactive interview process.

3.3.2 Case-Based Knowledge Acquisition

The alternative approach to manual and automated knowledge acquisition is au-
tomated casc-based knowledge acquisition or learning from examples. Case-based
knowledge acquisition is appropriate for a finite domain in which the problems are
clearly definable and a set of examples representative of the application area are
available [24]. This method requires little or no interaction with a domain expert.
In addition to these criteria, it should also be possible for the knowledge engineer
to learn background information and understand which are the key elements used

in arriving at solutions as well as the related solutions.

The game of Blackbox meets all of these requirements. The domain is indeed
finite, being located in a square grid of limited dimensions. The problem of discov-
ering balls hidden in the grid can be stated clearly and concisely. The background

knowledge of the factors that contribute to solving the problem is readily available

35

from a Blackbox player’s manual [28] and from experts in the game.

Definition A game file is a text file used to store historical data from a set of
previously played Blackbox games.

The most important requisite for case-based knowledge acquisition is the availability
of sets of examples for learning and for testing the newly found knowledge. The
version of Blackbox written by Kristina Pitula for playing on a P(* has the facility
to save data from completed games in computer text files known as game files [26).
These files therefore provide historical data on actual domain problems and their
solutions in a form accessible for computerized analysis. The game files store the
chronological actions taken during the playing of individual games of Blackbox by
an expert human player. The score achieved by the expert is also stored as well
as any errors that may have been made in the final solutions. The background
knowledge of the game can be used to write an analysis program and design an
induction algorithm. The first would be used to analyze the data stored in some
game files, extracting essential factors and using the inter-relations they exhibit to
form preliminary rules. The induction algorithm would focus on specific attributes
of the game and analyze the preliminary rules, transforming them into general rules
to be used by an expert system to play the game. The grid configurations of other
game files can be used as testing sets for verifying the acquired rules and as the

basis for future iterations of the knowledge acquisition process.

A final phase in the thorough application of case-based knowledge acquisition
would be to have the expert evaluate the acquited rules and their performance and,
if necessary. suggest ways in which the rules could be improved. IHere too Blackbox

meets the necessary condition since experts in Blackbox are not difficult to find.

3.4 Knowledge Acquisition from the Distributed
Game

3.4.1 Distributed Knowledge Acquisition

Most expert systems writien to date have incorporated knowledge acquired from a
single domain expert. This fact has helped reinforce the notion that, in addition
to a knowledge engineer equipped with the appropriate tools, such as a suitable
programming language or a compatible shell and some knowledge elicitation tech-
niques, one expert is all that is needed to build a knowledge base [13]. This concept
has been questioned, particularly the assumption that the knowledge that can be
extracted from one expert in a given domain can be said to reveal all expertise on

the subject [22].

At the same time, the suggestion has been put forward that knowledge should
be elicited from several experts in a domain and combined to capture the essence of
wisdom in the field. This is in effect a distributed approach to knowledge acquisi-
tion. The different, experts may attempt to solve the whole problem from different
perspectives using different techniques. Or, alternatively, the different experts may
not have expertise sufficient to solving the entire problem but each only possessed
proficiency in some portion of the issue. In yet another type of situation, the experts
could be involved in solving a problem that has been partitioned for distributed so-
lution. Thus the work involved in extracting the knowledge, comparing. combining.

and collating it. is distributed in nature.

3.4.2 Possible Benefits

Acquiring knowledge from multiplesources can provide a solution to some difficulties
commonly seen in knowledge acquisition. The inability of experts to dig deep into
their subconscious minds and explain how and why they do their work is frequently
mentioned in the literature {14]. If several experts in a field are being questioned
and observed there is little chance that all of them would share this difficulty in

the same aspects of the domain problem. Another problem faced by the builders

37

of knowledge bases is the expert’s inability or reluctance to devote sutlicient time
to the project. With a number of experts being employed in the process, if one
expert is inordinately busy, another can step into the breach and contribute his or
her knowledge in the area. Thus using a greater number of experts can be a start

in overcoming some of knowledge acquisition's major handicaps.

One of the express aims of expert systems is to acquire sufficient knowledge
to be able to solve obscure problems with very little information. The experts
attempting to solve a portion of a distributed problem are required to do so with
less than complete information. Observing the experts at their distributed tasks and
analyzing their individual actions may yield the deeper knowledge and heuristics
used with the limited information available within the boundaries of the segments
of the problem. Since distributed problem solving employs communication between
the partitions, knowledge acquisition could also uncover the communication patterns
being used in the problem solving sessions. This communication knowledge could

be used in the building of distributed expert systems.

The knowledge acquired from several experts working independently to solve
identical problems or cooperatively to solve a distributed problem would need to be
compared and then combined to produce a cohesive logical knowledge base. In the
case of experts working to solve a distributed problem, the knowledge derived could
be compared and combined with that of a single expert solving the whole problem.
Such comparisons could give a greater assurance of the validity of the knowledge
acquired from either source and the combination of the most powerful heuristics

could provide a more robust knowledge base.

3.4.3 Potential Difficulties

Distributed knowledge acquisition could present a great challenge to the knowledge
engineer. The task of interviewing and observing several experts at similar jobs or at
difierent parts of the same job could prove to be overwhelming. This would appear to
argue for an automated approach, and, if sufficient cases of previous problems exist,

for case-based knowledge acquisition. Organizing the cases cf different experts might

38

be a complicated task but one that offers interesting opportunities. For instance,
knowledge gained from the cases of one expert could be tested on cases provided by

another expert to yield broader experiences.

One problem that might arise in the knowledge acquisition process is that of
effectively comparing and combining the knowledge acquired from several expert
sources. Since different experts might approach a similar problem from different
points of view or using different methods, resolving these differing points of view

and finding a representation scheme that is suitable for all might be a difficult task.

Another issue that should be addressed is the validation and comparison of
knowledge from different sources. Are performance measures sufficient criteria for
sclecting one path rather than another? Since the knowledge does come from ex-
perts, the resolution of their differences for the purposes of building a coherent
knowledge base for an expert system may have to be referred back to them or to

another expert who was not at all involved in the elicitation process.

3.4.4 Distributed Blackbox and Knowledge Acquisition

A distributed version of the Blackbox game was developed for an experiment in-
volving human players. It was used to study “organization”, “control” [32], the
amount of computerized or non-computerized support required, and the patterns
of “communication™ between the players. In the study four players solved the dis-
tributed game and then the results obtained were compared with the performance

of an individual playing the non-distributed game [4].

In the course of the experiment the game playing data was saved in computer
text files. This or similar data could be the basis of future case-based knowledge

acquisition experiments on the distributed game experiences.

39

e v =

Chapter 4

IMPLEMENTATION OF
CASE-BASED KNOWLEDGE
ACQUISITION

4.1 Synopsis

This chapter will describe the process that transpired in the automated acquisition
of knowledge from actual cases of Blackbox games stored in game files. There were
several stages in the process, beginning with an initial familiarization period and

ending with writing rules in a format acceptable to the target expert system shell.

In case-based knowledge acquisition two essential ingredients are a representa-
tive set of cases, known as the fraining set, used to acquire the initial knowledge,
and another equally representative set, known as the lcst sel, used to validate and
improve on that initial knowledge. In addition to the training and test sets a third
ingredient that is necessary for automated case-based knowledge is a data analysis
program to do the actual acquisition of knowledge from the cases. In the automated
acquisition of knowledge from Blackbox both the training set and the test set were
drawn from cases in game files that recorded game sessions played by experts. Be-
fore these sets could be selected and the data analysis program written to perform
the knowledge acquisition. it was necessary to conduct the preparatory phases in

the process.

40

The first preparatory phase entailed becoming acquainted with the domain and
developing familiarity with the format of the stored game files. Learning to under-
stand the roles of the individual elements of data in the game files was a necessary
prerequisite to making some decisions essential to the planning of the knowledge ac-
quisition. One important decision was on the representation of the acquired knowl-
edge. This was followed by a selection of the type of inference engine that would
be suitable for the expert system, backward chaining or forward chaining. Once
these design decisions were resolved, the decision involving the selection of cases for

a training set and a test set could be made.

The preparatory phase and deciding on the required design features yielded the
necessary information to begin writing the program to read the stored data, ana-
lyze it, and extract information for the expert system’s knowledge base. After the
program was written, it was tested on the selected samples and any deficiencies en-
countered in the testing were rectified. The final version of the program was used to
analyze the data available in the training set and write rules suitable for the expert
system shell. These rules were then placed in the expert system'’s rule base and the

expert system was ready for testing.

4.2 Familiarization

4.2.1 Background Knowledge

The preparation phase is an essential part of all knowledge acquisition projects,
whether manual or automated, interview or case-based methods are used. At first
the knowledge engineer must obtain a rudimentary understanding of what happens
in the domain, identifying the problem to be solved and some factors that con-
tribute to the solution. This knowledge, like the background knowledge of most
knowledge acquisition undertakings. can be obtained from workers in the domain or

from published data.

In Blackbox, the domain background knowledge consists of a description of the

game board, the game’s goals. and the rules used to play the game. This information,

41

which appears in Section 3.1.1, has been documented in several technical reports
and conference papers produced by Cliff Grossner, Kristina Pitula. and Carol De
Koven [4, 11, 28, 29, 27]. The game’s rules provided an adequate understanding
of the functioning of the game. Informal conversations with an expert in the game
yielded a deeper understanding that could be applied to the knowledge acquisition
program and the induction algorithm. Unlike more complex problem domains, such
as medical diagnosis, the Blackbox domain is not too complex, offering the knowl-
edge engineer the possibility to actually play the game and attempt to solve the
puzzle. This opportunity to participate in domain problem solving was a further
aid in understanding the background knowledge and the data that the game playing

produced.

4.2.2 Case Data

Once the background knowledge had been assimilated, the focus of the familiar-
ization process shifted to understanding the case data to be used for kunowledge
acquisition. It is necessary to become familiar with the strncture in which the case
data is presented and learn to identify what the individual data elements represent.
In many domains this learning process would require the assistance of someone ac-
quainted with the storage of historical data in the domain and with its usage. In
some domains, stored data bases may be well enough documented that the knowl-
edge engineer would only need to consult them. Whatever the means used to achieve
it, understanding the data and the role it played in solving domain problems con-
tributes significantly to the design decisions that would be addressed in the next

phase of the knowledge acquisition.

The case data used for knowledge acquisition in the Blackbox domain was col-
lected automatically as the games of the training set were plaved. For each game

this data was saved in five sections.

[y

. Game board configuration.

no

. Errors in the final solution. if any.

3. Score achieved in playing the game.

42

4. List of shots taken.

5. List of hypothesis modifications made in the game.

The data in the last two sections is stored and numbered chronologically, thus
detailing the sequential steps taken in each game. Figure 4.1 shows data collected

from the playing of a4 X 4 game with two hidden balls.

The GAME BOARD in the game data gives the coordinates of the squares where
the balls are hidden. The SHOTS and HYPOTHESIS MODIFICATION sections
provide a detailed individual description for each of their respective actions. In each
of the sections there is a sub-heading entitled “ACT NO”". These are the sequential
numbers given by the “Blackbox game-managing module” (defined in Section 3.2.1)
to the individual events occurring in the game. Thus from sequential perusal of
the data, one can faithfully reconstruct the process taken to solve the game. It can
therefore be observed that the first act in the game is always a shot and the last
act is a hypothesis modification. A shot may be followed by a modification or by

another shot. In most instances. a modification is followed by a shot or no action.

In the game shown in the figure, there are four shots recorded in the SHOTS sec-
tion, cach described by four sub-headings in addition to *ACT_NO". Each shot has
a “SHOT_NO", which is a number reflecting its chronological ordering. Each shot
is also assigned a “LETTER", which is displayed on the monitor on the perimeter
of the game grid at the origin and exit of the shot, describing at a glance which
of the three possible behaviour patterns the shot exhibited. An upper-case letter
indicates that the shot exited the grid at a point different from its origin, after zero
or more deflections in its trajectory. Upper-case letters are assigned to each shot in
alphabetical order. An ‘r” signifies a reflection of the shot out of the grid at its point
of origin and an *h” means absorption of the shot caused by a hit. The remaining
two sub-headings, “IN" and "OUT", give the grid coordinates for the shot's entry

and exit locations. respectively.

[n the HYPOTHESIS NMODIFICATIONS section of Figure 4.1 three hypothesis
modifications are represented as separate sub-sections according to their individual

“ACTNO s, Within ecach "ACT_NQ" there are three units of information describ-

13

GAME BOARD
| Two Balls located at (2, 1) and (1. 2)

SHOTS ACT.NO SHOT.NO LETTER IN OUT

6 4 r (5. 1) (5. 1)
4 3 B (5.4) (0. 4)
9 2 A (0.2) (1.5)
1 1 h (0. 1) (0. 0)

HYPOTHESIS MODIFICATIONS

ACT_NO 7: LOCATION OLD VALUE NEW VALUE
(4. 1) unknown emply
(4, 2) unknown ball

ACT.NO 5: LOCATION OLD VALUE NEW VALUE

(3. 3) unknown empty
(3.4 unknown empty
(4. 3) unkuown cmpty
(1. 1) unknown empty
ACT.NO 3: LOCATION OLD VALUE NEW VALUE

(2. 1) unknown ball

(2.2) unknown empty
(2. 3) unknown empty
(2, 4) unknown empty
(1. 4) unknown emply
(1.3) unknown emply
(1.2 unknown cmpty
(1. 1) unknown empty

PLAYER ERRORS Total Errors: 0

SCORE 6

Figure 1.1: Blackbox Game Data

44

ing the modification that affects one square of the grid. The “LOCATION™ gives
the r,y coordinates of the square on the grid. The “OLD VALUE" reflects the
status of the square prior to the hypothesis modification, and the “NEW VALUE™

is the square’s changed status after the modification.

The last two sections record the player’s performance in one game session. The
PLAYER ERRORS would list the cirors made in the final hypothesis if the TOTAL
ERRORS were greater than zero. The SCORE achieved in the game session in the
figure is 6. As explained in Section 3.1.1, a hit and a reflection increment the score
by 1 and a deflection by 2. Thus in the figure the score includes 1 for each of shots

1 and 4, which are labelled ‘h’ and ‘r", and 2 each for shots 2 and 3.

4.3 Knowledge Representation

4.3.1 Preliminary Data Storage

The understanding of the domain and its data structures that is achieved during
the familiarization phases of the knowledge acquisition operation helps in resolving
some important design issues. The first is selecting the knowledge representation

most suitable for the data at hand.

The Blackbox background knowledge showed that the game is solved by a human
player using the domain rules of the game in an attempt to trace out plausible
trajectories for previous shots whose only known attributes are their behaviours
and their entry and exit points. This information, combined with the observed
sequence of events in the game, described by the “ACT"s in the game file, helped to
explain the roles assumed by the different data components. The chronology showed
how the different actions in a game history created a thread unravelling the puzzle
and indicated how the analysis of the data could classify them. The interleaving of
shots and hypothesis modifications in the pattern of most games showed that cause
aud eflect relationships could be extracted and used in the formulation of rules on

the playing of the game.
The first step was to decide how best to represent the information that would be

15

SHOT FRAME
act_no;
shot no:
shot _entry _and_exit;
last _hyp;
next. hyp:
last _shot frame;
next shot _frame;

HYPOTHESIS FRAME
act_no;
num Jocations_modified;
list _of_locations:
last _hypothesis_frame;
next_hypothesis {frame;
last _shot;

Figure 4.2: Shot and lypothesis Frames

extracted from the cases. To follow through from the structures used in the storage
of the data. a frame-based representation scheme seemed appropriate. Four different
frame structures were designed to hold the data extracted from the game files. Two
of the frames were to give statistical overviews of the games. One was to contain the
statistical information for cach game. including the game number, the number of
balls hidden in the grid, the errors. if any. and the score. The other statistical frame
was to store the measitrements for a complete file of games, comprising the number
of games playved. the average score. and the average error per game. The rematning,
two frames were a “shot frame™ and a “hypothesis frame”, whose struetures are

shown in Figure 4.2,

The shot frame was used to store pertinent data that appeared in the SHO'TS
section as well as some additional infermation. The “ACT_NO™, "SHOT.NQ™, “IN".
and “OUT"” attributes of individual shots were extracted from the SHO'TS section

and stored in the shot frame. By visually examining the data it was noted that

16

whenever the “LETTER” assigned to a shot was ‘h’, the "OUT" of the shot was
‘00°, and whenever the “LETTER”™ was 't°, the “OUT™ of the shot was the same as
the “IN7. The alphabetic identification given to the shots tended to break from its
sequential character in the former two cases, whereas the numerical identification
in the “SHOT_NO” was always consistent. In addition the behaviour information
given by the “LETTER” could easily be deduced from the “IN” and “OUT” loca-
tions. These facts indicated that no new additional information was provided by the
“LETTER” attribute, which could therefore be excluded from the shot frame. The
shot frame was given two additional slots, the last_hyp and the next_hyp. These
were the “ACT_NQO?” of the last hypothesis modification made prior to the shot and

the hypothesis modification immediately following it, respectively.

The hypothesis frame included the “ACT_NOQO”, taken directly from the data,
along with the list of the individual grid locations affected by the hypothesis mod-
ification and their changed contents. An additional slot was added, the last shot,
identifying the last shot taken in the game prior to the hypothesis modification.
This additional slot as well as the ones in the shot frame pointing to the last and
next hypothesis frames were created to preserve the patterns that occurred in the

games for the creation of the rules.

4.3.2 Initial Rule Format

Once preliminary storage for the data extracted from the game files was designed,
the next decision to be made was whether the knowledge that would result from
analyzing the data should be represented in the form of rules. and. if so, which data

clements would forim which parts of the rules.

The chronological structure of the data in the game files and its functional at-
tributes suggested that a rule format would be an appropriate means of attempting
to capture these data characteristics. Thus, the antecedents and consequences of
rules could be developed by following the progression of the games. The game data
showed that players performed two types of actions in the game: hypothesis modi-

fications and shots. To capture the decision process followed to make these actions

47

one rule type was designated for each action tvpe.

Within each game the first action was always a shot and hypothesis modifica-
tions always followed shots. Therefore, rules to decide which hypothesis modifica-
tions should be made would use shots as their conditions and modifications as their
actions. This type of rule, whose function was to analyze shots that had been made
was called an “Hypothesis Rule". With the exception of the final act of the game
and some instances where one hypothesis modification was followed by another, a
hypothesis modification was almost always followed by a shot. Thus in the rules to
decide which shots to fire, the conditions would be hypothesis modifications and the
actions would be shots. This rule type that selected shots to be made was called a
“Shot Rule”. The situations in which one hypothesis modification was followed by
another indicated that the player had exited the hypothesis mode of the game hefore
having completed all the changes prompted by the last shot. In reading the game
files such consecutive hypotheses would he combined to form one larger hypothesis,

simplifving the rule building process.

In the game of Blackbox each action of the player may or may not contribute
to formulating a solution to the problem. However. the chronological aspect of the
data suggests a progressive building process, where cach act is not only a precursor
of the act immediately following it but can also contribute to all the acts that follow
it in the game. Thus, with the exception of the first shot taken. no act in the game
occurs independently. Therefore. in order to capture the entire decision process
followed by the human players. the structures of the rules were expanded to include
more conditions. Hypothesis Rules’ conditions would encompass all the previous
hypothesis modifications made in the game, in addition to the shots taken since the
previous hypothesis modification. as well as the number of hidden balls remaining
to be found. Shot selection rules would have all previous hypothesis modifications
as their conditions, as well as the number of balls. In this way, each rule would
provide a picture of the state of the grid as it is perceived by the player at the time
the action takes place. It is interesting that the two primary data elements in the
game, shots and hypothesis modifications. were eacli assigned different functions

(conditions and actions) in the two types of rules extracted from the data. The two

4N

Hypothesis Rule

IF C1: Shot.in and Shot_cut {and Shot.in and Shot_out...}
C2: Ball Number
C3: {Previous Hypothesis State}

THEN Al: Hypothesis Modification
A2: {Reduce Ball Number}

Shot Rule

IF ('l: {Previous Hypothesis State}
C2: Ball Number

THEN Al: Next Shot_in

Figure 4.3: Initial Rule Structure

rule structures are illustrated in Figure 4.3.

4.4 Selection of Examples
4.4.1 Grid Size

In our previous work on Blackbox. the game has usually been played on a 10 X 10
grid with six hidden balls. In this size, the game can provide a level of complexity
suflicient to challenge most human players without overwhelming either them or
the computer facilities with an excessively large playing surface. The 10 X 10 grid
can be presented adequately on most computer monitors. allowing for the display
of supplementary information that is required by the player. such as the menu of
available options and the current game status indicated by the score and the number

of balls to be located. The 10 X 10 grid size was also found to be convenient in

49

studying the distributed game of Blackbox. The distribution pattern selected there
was to subdivide the 10 X 10 game into four separate 5 X 5 quadrants, cach of which
was to be plaved by a different agent. This gave each plaving agent a non-trivial
playing surface, and their performance could be compared against a single agent

playing the same game configuration on the entire 10 X 10 grid.

Despite its advantages for playing Blackbox, the 10 X 10 size grid was deemed
to be too larg~ for automated knowledge acquisition, especially in the initial experi-
mental stages. Each of the rule types planned for the knowledge representation had
as a condition the current hypothesis state, which would comprise the accumulated
hypothesis modifications made in the game. Individual hypothesis modifications
made in 10 X 10 games could affect many grid locations. Combining large hypoth-
esis modifications for each rule could becotne unwieldy, particularly in the carly

experiment trials that were used to learn about the knowledge acquisition process.

Having rejected the 10 X 10 grid for the task at hand. it was necessary o select
a suitable size. small enough for the data to be casily manipnlated and yet not so
small that all complexity had been removed. At first, the 3 X 3 grid was considered,
but was discarded as being too simple, offering very little possibilities for variety in
approaching the problem. The 4 X 4 grid was small enough to be manageable b
could offer some complexities, which would necessitate some planning in playing the

game. This size was therefore selected for the initial knowledge acquisition sessions.

4.4.2 Number of Balls

Along with the size it was necessary to choose the number of balls that should
be hidden in the grid. For the same reasons of economy and manageability of
experimental data, it was decided to keep the number of balls to a minimal number.
One ball hidden in a grid of any size offers no complexity. Two balls, on the other
hand. can often be hidden in such a way that they affect each other’s possibility
of being located. The level of difficulty presented by two balls was judged to be

sufficient for the knowledge acquisition purpose.

Thus the cases for testing the proposed antomated knowledge acquisition pro-

50

gram would comprise 4 X 4 grids with two balls hidden in each. Such cases could
yield some basic knowledge on how to play the game. This knowledge could be
furthered by procecding from the 4 X 4 game format to knowledge acquisition from
5 X 5 games, and then the knowledge would be generalized into rules that could be

used to play any size game.

4.4.3 Training and Test Sets

In Section 2.4.1 it was explained that knowledge acquisition from cases involves the
use of a training sct and a test sel of examples of domain problems. Often these
example sets are selected from actual cases within the domain and are provided by
workers in the domain. In order that the process should yield useful information,
the examples selected must be representative of activities within the domain. The
training set is used for the initial elicitation of knowledge, and the test set is used
to apply the knowledge learned and ascertain its validity. If errors and omissions
occur, the test set becomes a new training set and is used to augment the knowledge
learned to date. This process can be repeated as often as is deemed necessary until

sufficient knowledge has been obtained.

The Blackbox domain can produce a combinatorially large number of examples.
The sub-domain selected for this experiment. consisting of 4 X 4 grids with two
hidden balls, reduces the number of possible examples to 126 . That is, there are
120 possible grid configurations for two balls hidden in the 16 locations in a 4 X 4
grid. With 120 possible examples it would be feasible to study all of them to acquire
the knowledge used to play them. If this were done, the training set would include
120 cases, leaving no examples to be used in the test set for validating the knowledge
on similar cases. The case-based knowledge acquisition paradigm requires a training
set for acquiring rules and a test set to validate the rules. In order to follow this
standard. it was decided to employ some of the 120 possible games containing two
balls in a 1 N 1 grid to form the experiment’s training set and some of the games

for the test set.

Blackbox can be played on pre-configured ganie grids or on configurations ran-

il

domly selected by a random number generator accessed by the game managing
module. To ensure an unbiased selection of examples two subsets of 4 X 1 games
with two balls were selected at random. Of the sets selected one contained 29 game
configurations which were played by an expert to provide a data file to serve as
the training set for the knowledge acquisition experiment. The other containing 28
games was designated as the test set. These sets will be described more fully in

Section 6.1.1.

4.5 Data Analysis

4.5.1 Program Outline

After completing the preparation phase and the selection of the training and test
sets the next step involved the actual extraction and analysis of the data presented
in the game files. A program was written to perform the various tasks required in
the acquisition of knowledge from cases of Blackbox games. As the program was

run on the training set. it and the data structures it used were altered and refined.

The program'’s initial functions were to read in the game files included in the
training set, isolate the different units of information, and store them in frames as
described in Se~tion 4.3.1. Once all the data from the games in the training set
was transferred into the frame structures the program then used the frame data to

construct the first-run Hypothesis and Shot Rules.

The next task required of the program was to remove redundancies {rem the first-
run rules and attempt to minimize the number of rules resulting from the training
cases. The rules that remained in the rule base after the removal of redundan-
cies could then be analyzed further by another algorithm whose function it was to

generalize the rules and hence their applicability.

g}
S

4.5.2 First-Run Rule Formation

This phase of the knowledge acquisition was intended to produce rules that could
be casily analyzed and manipulated in any subsequent processing that would be
necessary. Thus the resulting rules should be straightforward, avoiding excess com-
plexity. This was not a characteristic of the initial rule format, which was designed
to portray the exact progression of events in the game. The preliminary goal was to
translate the actions in the game into a progressive series of rules and then examine
the patterns that emerged in the process. Once the reasons for these patterns were
understood the rules could be simplified to reflect the analysis of events that had

occurred.

The first test runs of the program produced rules in the format that described in
Section 4.3.2 and depicted in Figure 4.3. These first rules appeared to contain com-
plexities that could be eliminated without losing important informatioa. Originally
the first condition of the Hypothesis Rules was all the shots taken since the last
hypothesis modification was made. This derived from the pattern of each Blackbox
game having the format [s h s h. . s h], with s representing shot(s) taken and
h representing a hypothesis modification. Assuming error-free hypothesizing (each
time a hypothesis modification is made, the full implications of the previous shots
have been assessed, the hypothesis modification is complete and the player does not
reenter the hypothesis mode until another shot is made), each h can only have a
length of 1. However. the minimum length of any A, (a series of s) is 1, and its
maximum length in an n x n game is 4n —)21 ;. Thus to record the variable
length of X occurring in any game, the first condition of the Hypothesis Rules could
include one or more shots, This pattern in the gaime could be explained by the fact
that the information vielded by several shots may be needed to make the decision
reflected by the modification. Another possibility is that only the shot immediately
preceding the modification is responsible for the action and the earlier shots may
not be related to the modification. The earlier shots may not be resolved until later

in the game when more information is available.

Since the reason for the pattern of several shots preceding one hypothesis mod-

T v b o

%#4:, o

ification was obscure, it was difficult to assess which part of the modification was
caused by which shot and hence to manipulate the rules for the purposes of mini-
mization and generalization. To simplify the rules for subsequent processing it was
decided that each Hypothesis Rule elicited from the examples should have only one
shot as its first condition, and, if no hypothesis modification immediately followed

the shot, the action part of that rule would be empty.

The next problem with the rule structure was encountered in Condition 2 of the
Hypothesis Rules and Condition 1 of the Shot Rules. Both conditions included a
representation of the previous hypothesis state, that is the state of the hypothesis
grid when the rule is applied. The state of the hypothesis grid at a given instant
in the game is the accumulation of all the hypothesis modifications made in the
game up to that point. As the game progresses, the hypothesis grid includes the
grid locations affected by all the “ACT_NO"s in all the hypothesis modifications
that occurred previously. Using the hypothesis grid as a condition in the rules can
require a great deal of storage space and causes the rules to become unwieldy and
difficult to manipulate. Since each hypothesis modification only occurs as the result
of one or more shots, then the rules can be simplified by using shots to represent the
hypothesis modifications that follow them. It must however be remembered that in
the relevant conditions the shots are representatives of their respective hypothesis
modifications. The rule format that was in effect after these revisions is illustrated

in Figure 4.4.

Another problem was manifested in the last action of most games. After having
located all the balls hidden in the grid. the expert human players modified all other
previously unknown locations to empty. While this was a correct action, its effect
on the automated rule acquisition and rule merging was to utilize more space in the
processing and to result in excess rules whose actions would not be valid if taken
in the middle of a game. By ignoring the setting of empty locations in the final
hypothesis modification, this problem was solved. If the empty locatious set in the
final hypothesis modification resulted from the preceding shot, then ignoring those
locations would cause the loss of some information related to the effects of that shot.

However, the inforination could be regained if in other games such shots were not

54

Hypothesis Rule

IF C1: Shot_in and Shot_out
C2: Ball Number
(3: Previous Shot_in and Shot_out
{and Previous Shot_in and Shot_out...}

THEN Al: {Hypothesis Modification}
A2: {Reduce Ball Number}

Shot Rule

IF C'l: Previous Shot_in and Shot_out
{and Previous Shot_in and Shot_out...}
C2: Ball Number

THEN A1l: Next Shot.in

Figure 4.4: Revised Rule Format

the last ones in their games. A single rule unrelated to any specific shot would suffice
to ensure that once all the hidden balls had been located the remaining unmodified

squares of the grid could be emptied.

4.5.3 Redundancy, Subsumption, and Inconsistency

The first-run rules that were elicited from the Blackbox data exhibited certain
anomalies that needed to be corrected. Some of the rules emerging from the data
were similar to others. In the experiment similarities between rules were divided into

two categories, which were entitled Explicit Redundancy and Inplicit Rednndancy.

Implicit Redundancy will be explained later in this section.

Explicit Redundancy is a situation that occurs when similarities between two

rules are "visually apparent”™. Explicit redundancies are manifested by similar con-
ditions and similar actions. In the Blackbox rules two types of explicit redundancy

occurred, which were designated Complete Redundancy and Partial Redundancy.

Complete Redundancy is an explicit redundancy in which two Hypothesis or two
Shot Rules have identical conditions and identical actions, taking symmetry into ac-
count. Partial Redundancy is an explicit redundancy of two Hypothesis Rules with
identical first conditions, dissimilar third conditions, and some common actions.
Complete and Partial Redundancies are illustrated in Examples 1 and 2.

Example 1

RI1: IN - (0,1): OUT - (1,0) ==> EMPTY (1.1) - (1.2) - (2.1): BALL (2,2)

R2: IN - (1.0): OUT - (0.1) ==> EMPTY (1.1) - (1,2) - (2,1): BALL (2.2)

R1 and R2 form a Complete Redundancy.

Example 2

R3: IN - (0.1); OUT - (1,0) ==> EMPTY (1,1) - (2,1); BALL (2,2)

R4: IN - (1,0); OUT - (0,1) ==> EMPTY (1,1) - (1,2) - (2.1): BALL (2.2)

R3 and R4 form a Partial Redundancy.

The most obvious type of complete redundancy occurs in the situation when
two rules (Hypothesis or Shot) have identical conditions and identical actions, It

frequently happens that two Shot Rules have equivalent first conditions and identical

56

actions but their second condition, indicating the number of balls remaining to be
located 1 the game, is not the same. Similarly in Hypothesis Rules there are
situations when the actions of two rules are identical as are their conditions except
for the second condition, which. like its Shot Rule counterpart, shows the number of
balls remaining to be located. Such redundancies are also considered to be complete
redundancies. and when they occur either in Shot Rules or in Hypothesis Rules. the
second condition is determined to be unnecessary. When complete redundancy is
detected, one of the rules is eliminated, and if Condition 2 was deemed unnecessary

it is made void in the remaining rule.

Partial redundancy is an explicit redundancy that only occurs in Hypothesis
Rules. Partial redundancy occurs in two different situations. In both, two rules
are equivalent with respect to condition one but have dissimilarities in condition
three. In addition to these characteristics, in one manifestation of partial redundancy
the actions of the two rules are equivalent. In the second. the action of one rule
reprerents a complete subset of the action of the other rule. These two types of

partial tedundancy are also known as “subsumption”.

There is another situation in which two rules have equivalent condition 1 but
their actions are neither identical nor is one a subset of the other. Rather the two
action sets may have some identical elements in common. In such a situation partial
redundancy may be present. This can be determined by the rule merging process

designed to resolve partial redundancies that is discussed in the next section.

lmplicit Redundancies occur as a result of the symmetry of the game. A visual

inspection of a game grid with the trajectories of shots drawn through it shows
a sintlarity between shots originating and ending at different locations. This can
he seen in Figure 1.5 where shot A is a mirror reflection of shot B. and shot C
would resemble shot D if the grid were rotated 90 degrees. In the figure, the O's
represent Balls in the grid and the “bullets™ trace out the trajectories. Hypothesis
Rules elicited from such visually similar situations would have different absolute
coutdinates for the locations in theit conditions and actions. However such visual

similarities must be analvzed and means found to detect their occurrences in the

A B
Al ¢ ® | B
g0 (o o
: ol :: B N
D| ¢ o
o ‘ . e | C
D C

Figure 4.5: Implicit Redundancies

extracted rules. Such rule similarities were named Implicit Redundancies. explained
by the fact that the likeness between the rules was not overt but would only become
apparent after symmetries are taken into account. The approach used to detect and

remove the Implicit Redundancies will be discussed in Section 4.3.7.

There are two broad categories of inconsistencies that can he detected in exam-
ining the elicited rules. The first category covers the situation of two rules that have
different conditions leading to equivalent actions. In the discussion of complete
redundancy differences of condition 2 were judged to be insignificant. Discrepan-
cies that occur in condition 3 of two rules may prove upon analysis to be due to
a partial redundancy. Inconsistency with respect to condition ! may be caused by
two different shots revealing the vame information. Such a circumstance could be
the result of an implicit redundancy between two Hypothesis Rules. a fact which
does not necessarily indicate that either of the rules in question is incorrect. These
implicit redundancies only demonstrate that sometimes more extensive analysis is

required to arrive at the essence of a rule.

The second category of inconsistency occurs when two rules with equivalent
conditions have different actions. This type of inconsistency in Hypothesis Rules

can be more critical if analysis of the rules has shown that partial redundancy does

not apply. Such a sitnation implies a possible error, which can be determined by
referring to the game frames related to the rules and ascertaining whether any errors
occurred in the games heing considered. If the inconsistency in question occurred in
Hypothesis Rules it may be that later actions in one of the games reversed the parts
of the actions that were inconsistent. If no errors occurred in the source games and
if the actions were not reversed. then the rules are given « confidence factor less than

] to indicate the fact that more than one action is possible in the circumstances.

Inconsisteney of conditions or of actions in Shot Rules is not regarded as a seri-
ous diserepancy. Rather it illustrates that the game of Biackbox is not one of simple
clear-cut solution paths but rather one in which solutions can be found using differ-
ent approaches. In the thesis inconsistencies related to different conditions resulting
in the same action were judged to be insignificant and were ignored. However, in-
consistencies of Shot Rules with identical conditions leading to different actions were

resolved using a “confidence factor™ approach. which is described in Section 5.3.4.

4.5.4 Rule Merging

Rule merging was the method used to reduce the number of rules by correcting the
pattial redundancies that wete characteristic of numerous Hypothesis Rules elicited
from the Blackbox data. To identify how to correct partial redundancies. it was
first necessary to understand why they occurred. In some circumstances two rules
exhibited differences in Condition 3 (the previous shots conditions). but their other
conditions and actions were equivalent. Such situations and the rule merging pro-
cedure used to resolve them are entitled Rule Merging Case 1 and are illustrated
in Fignre 1.6, In Blackbox a hypothesis modification is considered to be prompted
by the behaviour exhibited by the current shot. Therefore. previous shot(s) in the
game might be deemed irrelevant and any differences between two rules with re-
spect to condition 3 could conceivably be eliminated by combining the two rules
and completely omitting condition 3. However. sometimes previous shots in the
same game are related to the grid area involved in the current shot and contribute

to the analvsis made by the plaver. Tt was therefore necessary tu find a way to pre-

Y

If Rule A.C1 = Rule B.C'1
and Rule A.("3 # Rule B.('3
and Rule A AL = Rule B.AL

Then Rule A and Rule B are replaced by Rule ¢* such that
Rule C.C'1 = Rule A.C']
Rule C.A1 = Rule A.Al
Rule C.C'3 = Rule A.C'3 N Rule B.C'3

it

Figure 1.6: Rule Merging Case 1

serve potentially relevant previous shots and eliminate those that could he deenmed

irrelevant.

In this tvpe of partial redundancy. the rule merging process follows the reasoning
that any element in the condition common to both rules is potentially v levant and
elements that the two rules do not share are not relevant to the current hypothesis.
The two rules are replaced by a new rule whose condition 3 is the intersection of the
previous shots of the two source rules, whereas the other conditions aad the action

of the new rule are unchanged.

When the partial redundancy is manifested by one rule’s action set being a subset
of the other rule’s actions then one of the rules may have an incomplete action set
Figure 4.7 illustrates this tvpe of partial redundaney and the rule merging process
used to resolve it, known as Rule Merging Case 2. The incremental nature of
Blachbox hypotheses are the root of sucl partial redundancies. Eachi hypothesis
modification in Blackbox involves only the part of the grid whose contents may be
changed as a result of the trajectory followed by the current shot. It often happens
in a game that some grid locations affected by a particular shot have previously been
modified due to another shot that had already occurred. These locations would not
be inciuded in the present hypothesis modihication. In another game the current
shot could be the first to affect the relevant grid squares. cansing an action set that

includes all the appropriate locations. Thus two identical shots with similar entry

60

If Rule A.C'l = Rule B.C'1
and Rule A.C'3 # Rule B.("3
and Rule ALA1 C Rule B.AI

Then Rule C is created such that
Rule (".CC1 = Rule A.C']
Rule C.C3 = Rule A.C'3 N Rule B.C3
Rule C.A1 = Rule A.AT U (Rule B.AT N Rule A.C3.A1)

If Rule C.A1 = Rule B.AIL
Then Rule A and Rule B are replaced by Rule C

If Rule C.A1 # Rule B.A
Then Rule A is replaced by Rule (" and Rule B remains

Figure 1.7: Rule Merging Case 2

and exit locations could cause one action whose elements are a subset of the other's.

This type of partial redundancy is resolved by creating a new rule from the
original two. Condition 1 and condition 3 are treated following the method described
in Case i, The action of the new rule is produced in three steps. Assuming that
rule A's actions are a subset of rule B's, first the actions of every rule in the rule
base whose condition 1 is equivalent to one of the shots listed in rule A's condition
3 are combined. Then the intersection of this list with the elements in the action
of Rule B is determined. The final step produces an action set that is the union of
the action set of Rule A with the action set in the intersection. This becomes the
action of the new rule. The action of the new rule is compared with that of rule B.
If the two are equal then both Rule A and rule B are replaced by the new rule. If
the actions are not equal. then the new rule replaces rule A and rule B remains in

effect.

Aunother situation managed by rule merging is one in which the actions of two
tules A and B are not equal and one is not a subset of the other. This can occur

if both rules” action sets are incomplete due to the effect of previous shots and

61

If Rule A.C1 = Rule B.C']
and Rule A.C3 # Rule B.C3
and Rule ALAL # Rule B.AY

Thetw Rule (s created such that
Rule C.C'1 = Rule A.C'
Rule C.C3 = Rule A.C'3 N Rule B.C'3
Rule C.A1 = (Rule A.AT N Rule B.C3UAL)
U (Rule B.AT N Rule ALC3 AT

If Rule C.A1 = Rule ALAI
Then Rule A is replaced by Rule €

If Rule (".A1 = Rule B.A1
Then Rule B is replaced by Rule ¢°

If Rule C.A1 =0
Then Rule A and Rule B are not partially redundant
and eliminate Rule

If Rule C.A) # Rule VA
and Rule C.AT # Rule BUAI

Then Rule A and Rule B are inconsistent
and Rule A and Rule B remain unchanged
and Rule (' is added to the rule base

Figure 1.8: Rule Merging Case 3

their respective hypotheses. Another possibility is that the hypothesis modifications
recorded in one or both of the 1ules contained changes resulting from previous shots
but only ascertained after the current shot. This situation and its corresponding

rule merging procedure, entitled Rule Merging Case 3. is shown in Figure 4.5,

Whether the situation indicates a partial redundancy is determined after the
creation of a new rule from rules A and B, Conditions 1 and 3 of this new rule
are created in the same method used in the previous cases. ‘The ereation of the

action of the new rule involves several steps. Rules with condition | equivalent to

an element of tule A's condition 3 (previous shots) are identified and their actions
are combined and intersected with the elements in the action of Rule B. The same
steps are followed with Rule B's condition 3 and Rule A’s actions. The union of the

actions in the two intersections becomes the action of the new rule.

An examination of the newly created rule will indicate if the rules were partially
redundant. Partial redundancy is assumed to have occurred if the new rule’s action
is not empty. If the new rule’s aciion is equivalent to the action of either of the
original rules, the original rule with the equivalent action is replaced by the new
rule. Otherwise, the new rule is added to the rule base. Partial redundancy did not

occur if the new rule’s action field is empty, in which case the new rule is discarded.

4.5.5 Completeness and Minimality

The following concepts are used in this thesis. A minimal rule base for a given
game problem can be defined as a non-redundant set of rules with which the expert
svstem can solve the game. A complete rule base can be defined as a set of rules
with which the expert system will not only solve the game but will also achieve a

specified level of performance.

The goal in developing expert systems is to construct a complete rule base con-
taining rules that pertain to all facets of domain problems. At the same time, it
might be considered desirable to minimize the number of required rules. The ben-
efits of minimization include saving memory. reducing the time required to load an
uncompiled rule base into the expert system, and minimizing the cost of maintain-
ing and expanding the rule base. Thus, in building a rule base it is necessary to
strive to maintain a balance between completeness and minimality, taking care that
in achieving one attribute the other is not neglected. To do this some measurement
must be devised to assess the completeness and minimality of a rule base. Before
tryving to define a measure for completeness and minimality, which can be a difficult

task, it is advisable to examine what is meant by these characteristics.

In its broadest sense, completeness is defined as logical completeness. To be

logically complete a rule base must include one rule for each combination of the

63

conditions needed to assert hypotheses. This means that for a rule base with n bi-
nary conditions logical completeness entails that there should be 27 rules. If logical
completeness was required in all rule bases it could be measured casily. However,
in many problem areas. logical completeness could result in including rules with
combinations of conditions that could never occur in the domain, and the rule base
would have superfluous rules that would never fire in aun expert system. Therefore
this notion of completeness is not useful for us, and completeness of a rule base is
defined as the inclusion of all rules needed to solve the subset Q of problems in the
domain that are targeted by the expert system. That is, each rule in the rule base
must be representative of a situation that can actually occur in the domain. The
verification of the applicability of each rule in the rule base can be accomplished
relatively easily especially when the rules are all acquired from actual domain cases.
However it remains difficult to know when all the necessary rules have been in-
cluded. making the rule base complete. Unless all potential domain problems can
be analvzed during the building of the rule base, completeness must be achieved in
an incremental manner. One way this can be done is to have a dynamically chang-
ing rule base that can be augmented whenever a problem that canuot he solved is

encountered.

In theory it is possible to assess the minimality of a rule base by repeatedly
adding and removing rules. However unless a logically complete set of rules is im
tially available from which one could select rules for this type of testing, minimality
remains difficult to quantify and measure. Nevertheless during the building of the
rule base it is possible to strive for minimality by avoiding anomalies that can result
from the knowledge acquisition process. For example redundaney and subsumption
are not infrequent by-products of knowledge acquisition. If not detected and elim-
inated. their presence would detract from the desired minimality of the rale base.
Uncorrected inconsistencies would also adversely affeet the size and efficiency of the

rule base.

In the extraction of rules from Blackbox game files. some of the iregularties
affecting minimality were encountered. Their properties and the procedures used 1o

climinate explicit redundancies, subsumption. and inconsistencies were discussed in

01

previous sections. It can be argued that it is theoretically possible that an attempt
to ensure minimality would conflict with an attempt to achieve completeness. Our
extensive experience with Blackbox showed that this would not occur in case-based
knowledge acquisition. Completeness as it affects minimal size was not an issue
in the Blackbox case-based knowledge acquisition study. All the rules acquired
were derived from actual case files, hence rules whose sole purpose was to ensure
logical completeness were not created. The rules that resulted from the knowledge
acquisition reflected actual decisions that were made and were therefore deemed
necessary for the rule base, unless they were redundant. The process followed was
not expected to succeed fully in achieving completeness and minimality. However.
it did ensure that the rule base that resulted from the knowledge acquisition would
include all the rules that emerged from the cases examined that did not display

unresolved redundancies or inconsistencies,

4.5.6 Minimal Blackbox Rule Base

If the expert system domain is not too complex. it may be possible to categorize and
enumerate the different types of situations that would trigger the firing of rules. If
this were the case it may be possible to define a number to represent minimality for
that domain’s rule base. To begin defining a minimal number for Hypothesis Rules
in the Blackbox rule base a study of the types of shots that can occur in the game is
required. The shots taken in a Blackbox game can be categorized as corner shots
and edge shots. according to their point of entry or exit. In a grid of size n, a shot
whose entry location’s x or v coordinate is [or n is termed a corner shot. A shot
whose entry location’s coordinates are neither 1 nor n is an edge shot. There are
8 corner positions and 4(n = 2) edge positions in a game grid. In order to cover all
possibilities, one might think that a rule would be needed for a shot originating in
every one of the locations surrounding the grid. or 4n rules. However, the symmetry
of the game suggests that, given some modifications, a set of rules comprising one
riule for each type of shot entry/exit pair might be sufficient to serve every shot

taken in the game.

65

The next step in defining minimality is to identify how many different types of
shot entry /exit pairs are needed to classify all the shots that can take place in a game
of Blackbox. Each shot into the grid exhibits one of three behaviours. A shot may
be absorbed by a hidden ball that it hits: it may be reflected out of the grid through
its point of entry: or it may exit the grid through some other location. The number
of exits possible for each type of entry determines the number of possible entry fexit
pairs that can be used to describe any given shot. Each corner shot can exit
the grid through n different locations. excluding reflections, and therefore a corner
shot can be represented as n different exit /entiy pairs. Fach edge shot can exit
the grid through 4n — 6 different locations, two of which are corner locations, which
would be accounted for under the corner shot heading. and one of which is the
reflection. exiting at the entry point. Therefore. cach edge shot can be represented
as 4n —9 different entry/exit pairs. when the corner shots and the reflection are not
counted. Absorption and reflection (of any type of shot) account for two entry /exit
pairs. Totalling the number of entry/exit pairs for one corner shot and one edge
shot results in dn— 7. i.e. (4n — 94 n +2). This would be the number of Hypothesis
Rules that a Blackbox rule base would need if the necessary modifications to handle

svinmetrical entry /exit pairs conld be incorporated into the rules.

This number, however, does not cover all the possible actions that could be taken
as a result of the various shot types. For instance, when a shot results ina hit thee
are at least n possible conclusions that could be drawn fiom it only one of which
would be correct for a given game. In addition. shots that exit the game grid will do
so after traversing a trajectory that may deflect them 0 or more times, depending
on the game configuration. Thus seemingly identical shots occurring in different
games could be indicative of different trajectories and hence different hypothesis
modifications. Given these arguments. 51 — 7 is the least number of rules that
will serve a given game grid under some conditions but it may not be adeguate to

actually gqualily for a minimal or complete rule base.

Attempting to define a minimal number of Shot Rules in the Blackbox rule base
presents a greater difficulty. There are 4n possible shots that can be taken in a

game. This is therefore the number of actions that could possibly be taken as a

66

result of the firing of Shot Rules. However the conditions leading to these actions
are varied and numerous. Since shots are selected on the basis of previous shots
that oceurred in the game. and since the order in which shots are taken depend on
the playing style of individual players. it is difficult to predict the number of Shot
Rules that could result from the case-based knowledge acquisition. In addition the
combinations of shots that are taken in games of Blackbox would vary based on the
trajectory of different shots and would represent an indeterminate number. Thus it
is difficult to derive a number to approximate minimality and completeness for Shot

Rules in Blackbox.

4.5.7 Minimizing the Blackbox Rule Base

After complete redundancies were removed and rule merging was employved to adjust
partial redundancies and remove subsumption. the Hypothesis section of the rule
base consisted of a set of rules whose number in one instance had been reduced
from 125 rules in the first run rule base to 55 rules. However the minimization task
was not yet completed. The rule base still contained implicit redundancies which
had not been detected or removed by the automatic reduction methods employed.
Therefore, the next step in improving the rule base was to addre - the issue of
implicit redundancies and further minimize the rule base. In addition, the rules in
the rule base had up to three conditions leading to a set of actions. Another goal at
this time was to transform these rules from multiple condition rules to simple Horn

clauses (one condition and an action set for each rule).

According to the structure of the Hypothesis Rules in the rule base, each had
as its primary condition a specific shot entering and exiting the grid at particular
locations. Thus each rule could fire for one and only one explicitly defined shot
rather than for a class o1 type of shot. This was thought to be the means by
which the implicit redundancies caused by the symmetrical composition of the game
were introduced into the rules. It was necessary to isolate the shot attributes that
contribute to the visual similarities such as those discerned in Figure 4.5 and to

devise means of quantifving and computing those atiributes. Once computable

67

characteristics to identify and group shots in relationship classes were isolated an

algorithm could be developed to remove implicit redundancies from the rule base.

Shots were initially identified by their entry and exit locations. However, since
such definite entry and exit locations were suspected to contribute to implicit re-
dundancies, another manner of identifying shots was required. One method of shot
identification was to calculate the distance between a shot's entry and exit locations
in the grid. Visual inspection of the perceived similarities indicated that similar
shots had the same distance (measured in grid squares) between their entries and
their exits. If two shots could be shown to have an identical distance between their
respective entries and exits. this similarity might be indicative of other similarities

and the Hypothesis Rules related to the two shots could be combined.

Shot entry-to-exit distances were computed by subtracting a shot’s exit coordi-
nates from its entry coordinates. In order to ensure that the distance computation
was done methodically and consistently. it was necessary to a adopt a labelling
scheme universally applicable to all shots. The following example illustrates the
need for a uniform labelling scheme. A shot entering the grid at location (0,1) and
exiting through (2.0) would have a distance of (-2.1) and another shot entering the
grid at (2.0) and exiting through (0.1) would have a distance of (2,-1), suggesting,
different shot behaviours. However since both shots follow the same trajectory, the
above conclusion is erroncous. To prevent such errors from occurring, it was de-
cided to incorporate the fact that in Blackbox the entry and exit of a shot can bhe
interchanged without changing the eflect of the shot. Thus, the labelling adopted
required that a shot's entry would have a numerical representation that is greater
than or equal to the numerical representation of the exit. The numerical represen-
tation of a grid location is the juxtaposition of its o and y couvrdinates. That is,
a location of (0,1) is represented by the number 1 and a location of (2,0) by the
number 20. If a shot enters the grid at (2.0) and exits at (0,1) its label is 2001, jux-
taposing the numerical representation of the entry and the exit in that order. The
same label of 2001 is used for a shot that enters the grid at (0.1) and exits at (2,0},
since the entry and exit are interchanged before labelling the shot. The entry-to-exit

distance attribute of both shots is 2.-1. This methodical distance calculation from

63

shot labels also helps to identify other rules whose similarities can only be detected
from thei identical distance attribute. For example, in a 4 X 4 grid a shot labellcd
5435 would have a 2,-1 distance attribute. and could therefore be handled by the

satne Hypothesis Rule as that for 2001.

The distance attribute only addressed similarities in the first condition of the
rules extracted from the data. In order to be able to use this to actually reduce the
number of rules, the other conditions included in the rules also Lhad to be consid-
ered. Inspection of the rules that emerged from the redundancy removal procedures
showed that many did not include Condition 2 (the number of balls remaining to be
Jocated) since very often that condition was deemed to be irrelevant to individual
rules and was discarded. Similarly the rule merging procedures often eliminated
some if not all of Condition 3 in treating partially redundant rules. In rule merging
only the portions of Condition 3 that were common to both rules under consid-
cration were maintained in the merged rule. In addition, rule merging used the
clements of Condition 3 as pointers to other rules whose actions could be used in
combining the actions of the similar rules. Thus the significant information that was
provided by Condition 3 had already been extracted by the rule merging procedure
and was reflected in the merged rules. This prompted the decision to eliminate
(Condition 2 and Condition 3 from all Hypothesis Rules, after the redundancy check
and rule merging had been applied. This would give the Hypothesis Rules a Horn
clause structure, fulfilling one of the goals for the rule base, without diminishing the

effectiveness of the rules.

Once the rules were restructured as simple Horn clauses it was easier to manip-
ulate them by using the distance attribute as a measure of symmetrical similarity
and combining rules based on these similarities. First each Hypothesis Rule was
labelled using the labelling protocol described above, and the entry-to-exit distance
was computed. The distance was used to replace the entry/exit pair of the original

Condition I in the rules.

Since the rules were now concerned with relatively situated shots, rather than

with specific entries and exits, the action component of the rules needed to reflect

69

this changed approach to location addresses. The actions of Hypothesis Rules,
drawn from the hypothesis modifications in the games. previously included the new
contents of some grid locations aloug with the location’s specific address. In the new
version of the rules specifically named locations were replaced by locations relative
to the shot entry. Thus, regardless of the actual entry and exit of a shot, as long as
its entry-to-exit distance was that in the rule’s Condition 1, the rule could be fired

on the shot’s occurrence and the actions would be applicable.

In this way the implicit redundancies in the Hypothesis Rules could be removed.
Using the new rule structure, rules with the same Condition 1 (entry-to-exit dis-
tance) were now combined into one rule, forming a union of their actions and re-

moving excess identical action elements.

4.6 Reduction Results

The automated knowledge acquisition was initially applied to the trainig set stored
in the game file described in Section 1.4.3. The game file consisted of 29 games, 27
of which were different from one another. The total number of shots taken in all
29 games was 125 shots. The first phase of the automated knowledge acquisition
created one rule for each shot taken. Hence 125 Hypothesis Rules and 125 Shot
Rules were constructed from the first pass on the game file. The Shot Rules were
then processed 1o remove redundancies antomatically. This procedure reduced their

number to 62 Shot Rules.

Refinement of the Hypothesis Rules section of the rule base was done in three
stages. First all complete redundancies were removed reducing the number of Hy-
pothesis Rules to 81. In the next stage rule merging was employed to correct partial
redundancies and eliminate instances of subsumption, which resulted in another
reduction, down to 55 Hypothesis Rules. The final step involved applying the mini-
mization algorithm to remove implicit redundancies and produce more general rules,

This step produced the greatest reduction of all, resulting in 19 Hypothesis Rules.

The rule base that emerged from these automated knowledge acquisition proce-

70

dures was now ready toinstall inan expert svstem and used to play Blackbox. The
Blackbox Fxpert System and the installed rule base will be described in the next

chapter. The results of the testing that ensued will be presented in Chapter 6.

Chapter 5

THE PROTOTYPE EXPERT
SYSTEM

5.1 Outline

Following the extraction of kuowledge from Blackboy game files, the acguieed rule
base was installed i an expert system and tested. This chapter will describe the

rule base and the expert system used for evaluating the rule base

5.2 The Expert System

5.2.1 Its Components

The Blackbox plaving expert system uses the Blackbox Expert Shell. which is made
up of several components., implemented as objects in C+4. Some of these elements
are standard features in many expert system shells and others are unique to the
Blackbox Expert Shell. The shell comprises a user interface, the expert manager.
the Blackbox game manager. and a working memory. These ate combined with an

inference engine and a rule base to constitute the Blackbox expert system.

The Blackbox Expert Shell was designed and wiitten by John Lyons in C44
for the purposes of conducting experiments on Blackbox and Distiibuted Biackbox
[17). The Blackbox Expert System utilizes the CLIPS inference engine whieh is

embedded within the Blackbox Expert Shell [3]. The inference engine controls 1he

~1
g

overall execution of the expert system. deciding which rules should be fired to solve
the Blackbox game. The forward-chaining inference engine has a Lisp-like syntax

based on the OPS3S langnage.

5.2.2 The User Interface

The Blackbox Expert System works almost completely independently of the user.
The user need only provide the configurations of the games to be solved by the
system. All the information required by the system to solve the games is provided by
the various constituent parts of the system itself. The user interface object controls
the interaction between the user and the system within four windows displayed on
the monitor. A diagram of these windows is shown in Figure 5.1. As described
below, cach of the windows has a specific function to perform in communicating

with the user.

¢ Grid Contents: While a game is being played by the expert system its actual
configuration is shown in this window.

¢ Current Knowledge: This window displavs what is currently known by the
expert system about the present game. The game grid is shown as are the
shots that have been fired in the game along with any hypotheses that have
been made by the expert,

¢ Dialog: All commands entered by the user are echoed in the Dialog window.
Any messages from the user interface to the user are also shown here.

e Commands: The user may communicate with the system using a set of com-
mands which are listed in this window along with their requisite arguments.

‘The version of the Blackbox Expert System used for this experiment only had ac-
cess to some of the commands listed in the Command windove. The other commands
which had not yet been implemented were not required to achieve the goals of this

experiment. The available commands and their functions are shown in Table 5.1.

The representation used for the contents of the individual grid locations in the
Grid Contents and Current Kaowledge windows and for the labels given in the
Current Knowledge window to shots fired by the expert is explained in Figure 5.2.

The labelling format used 1s the same as that explained in Section 3.1.1.

Grig Contents b= Commandgs = -JCurrem Know iegae

ABOR™
L1s”

LOAD f1le
LOG ONIOFF teve! tile

ololofe Qul~

RESUME
RUN fil2

Ble|le]e SAVE file

cljciclcix
[l

C
cfcicy|c
cjcljc|c

U

SETUR
START

TRACE OMICFF
WHY

— Diaioque

Figure 5.1: Blackbox Expert User Interface

Grid Contents Shot Labels

U Unknown h Absorbed Shot
B Ball r Reflected Shot
e Empty A..Z Other Shots

P Possible Ball

Figure 5.2: Grid Representation Scheme

COMMAND ARGUMENT

ACTION PROMPTED

LOAD file name

ABORT
RESUME

QUIT

TRACE ON o1 OFF

START

load a Blackbox game
configuration

abort the current game
fire another shot into the grid

shut down the blackbox game
plaving svsteni in an orderly
fashion

enter or exit trace mode - if the
argument ON is used, after each
shot the system waits for the
user to enter RESUME command
hefore continuing the session

initialize the objects necessary
to begin playving a new game and
fire the first shot.

Table 5.1:

User Commands and their Functions

5.2.3 The Working Memory

The working memory object manages the storage of data used by the expert while
the game is being played. The information stored by the working mewory includes
the up-to-date hypothesis made by the expert about the grid’s contents, the number
of balls that have been located by the expert, the locations of those balls, a list of
shots whose trajectories are known. a list of shots whose trajectories have yet to be
analvzed with certainty. and a list of locations from which shots could still be fired.
In addition to this dynamically changing data. the working memory also knows
the grid's size and the number of balls hidden in the grid. The working memory
manages ils dvnamic data structures in response to instructions received from the
expert and provides information needed by the user interface to inform the nser

about the current status of the game.

5.2.4 The Blackbox Game Manager

The Blackbox game manager is the module in the expert system that aceepts the
shot input and returns the exit. The game manager knows the domain rules of the
Blackbox game and maintains the information about the actual configuration of the
grid. Tt uses this knowledge to determine the trajectory of shots fired by the expert

and inform the expert of their outcome.

5.2.5 The Expert Manager

The expert manager’s mission is to coordinate the activities needed to solve the
game such as selecting which shot to fire next, analyzing the fired shots in order to
make hypotheses about the contents of the grid. and determining when the playing
should be halted. The performance of these tasks requires communication with and
coordination between the various components of the system. The expert manager
provides this function. It creates the working memory at the start of a new game
session. During the game session the expett manager interacts with the working

memory to acquire the information required for the expert’s own functions and to

76

informn the working memory about changes to the dynamic data structures that
will be needed by the user interface. The information exchange with the working
memory involves the properties of the last shot fired. the number of balls found.
and changes to the hypothesis grid. The expert manager uses this information to
determine its own agenda and to set up the fact list required for rule execution.
During the course of the geme, the expert manager also communicates with the
blackbox game manager, instructing it where to fire shots and receiving information

about their ontcome.

5.3 The Expert System Rule Base

The Blackbox Expert System rule base is written as an ASCII text file conforming
to CLIPS syntax. In CLIPS syntax each rule is identified by the CLIPS keyword
“defrule™ and a unique name and comprises a collection of conditions and actions.
The rule’s conditions are patterns that must match facts currently known by the
expert system about the state of its world. The facts that the expert system reasons
about form a dynamic data base. Facts are asserted and retracted by the expert
svstem when events occur that change the current status of the game. When all the

conditions of a rule have been satisfied its actions can be performed.

The Blackbox Expert System rule base is divided into two rule types, Selection
Rules and Aunalysis Rules. corresponding to the Shot Rules and Hypothesis Rules
derived from the two types of actions identified in the case-based knowledge acqui-
sition process. The knowledge acquisition process automatically generates an initial
set of rules. In addition to these automatically derived rules, the rule base contains
some Housekeeping and Meta-Level Rules written to help maintain the regular flow
of rule application and the appropriate development of the game. Some are used to
prepare the inference engine for rule management at the beginning of each game ses-
sion: others are used to manage the fact list between rule firings: and still others are
used to control the end game. judging when a game has been solved satisfactorily.
which leads to termination. The following sections will describe the Selection and

Analvsis Rules and how they evolved from the Shot and Hypothesis Rules described

-1
-1

(defrule SR1001b sascore 6.000(2) {(declave (salience 1))
(phase selection)
(OLDSHOT 2100 1)
?sl <- (SHOTLEFT 0 4)

(setnextshot 0 1)
(retract ?sl)

Figure 5.3: Sample Selection Rule

in Chapter 1. and the derivation and creation of the Househeeping and Meta-Level

Rules.

5.3.1 Selection Rules

Figure 5.3 shows a CLIPS Selection Rule as it appears in the latest version of the
rule base used in the experiment. Except for small modifications, shown i bold
type. this rule was derived directly from the revised rule format for Shot Rules as
seen in Figure 4.3, The rule’s name combines the representations of the previous
shot’s entry and exit taken from condition 1 of the Shot Rule. The name follows
the protocol that the numerical representation of the entry coordinates must be
greater than or equal to that of the exit coordinates. The condition in the CLIPS
rule matching an OLDSHOT with entry and exit coordinates is a formal statement
of the rule's first condition. If the rule’s first condition included more than one
previous shot, each shot would have a corresponding OLDSHOT condition and be
included in the rule’s name. The first action statement in the CLIPS rule causes the
expert svstem to call procedures to fire the next shot in the game from the location
identified in the action in the Shot Rule format of Figuie 4.3. According to the
minimization procedures followed in Section 4.5.7. Condition 2 of the Shot Rules

was deemed unnecessary and was therefore not indluded in the CLIPS Selection

Rule.

The CLIPS Selection Rule contains statements that are not included in the Initial
or Revised Shot Rule formats. although some are derived from the information avail-
able either in the rules themselves or in the Shot frame created from the Blackbox
game files. The first is the comment that follows the rule's identification statement
indicating that the average score (ascore) achieved in the two (2) games from which
this rule was extracted was 6.00. The average score is used to resolve apparent
inconsistencies in Selection Rules. It contributes to determining the degree of the
“salience”™ declared in the immediately following statement. The salience indicates
the level of priority assigned to the rule. If all the other conditions of two or more

ritles are identical then the higher salience indicates which of the rules is to fire first.

The rule’s type is identified in its phase condition (see Figure 5.3). The last
condition in the rule states that the location that will be selected by the rule’s
action as the entry for the next shot has not been used previously in the game. The
final action statement in the CLIPS Selection Rule is an instruction to remove facts

that were asserted by the firing of the rule.

5.3.2 Analysis Rules

The Hypothesis Rules shown in Figure 4.3 were modified by the rule merging and
minimization procedures described in Sections 4.5.7 and 4.5.4. A sample of the most
recent version of Analysis Rules that were generated for the CLIPS rule base after
these modifications is shown in Figure 5.4. Much of the rule as it appears in the
figure was derived from the automatically acquired Hypothesis Rules. The parts of
the rule that were not derived from the Hypothesis Rules are shown in bold type in

the figure.

The name identifying the Analysis Rule is obtained from the entry-to-exit dis-
tance attribute calculated from the shot coordinates in the first condition of the
Hypothesis Rule. Also derived from the Hypothesis Rule is the condition that de-
termines the shot type, comprising the shot’s behaviour pattern - deflect, reflect,
or hit. and its entry-to-exit distance parameters. The shot’s behaviour pattern is

revealed by its distance parameters. Since a reflected shot enters and exits the grid

9

(defrule S1-3
(phase analysis)
(GRIDSIZE ?n)
?st <- (SHOTTYPE DEFLECT 1 -3)
s <- (LASTSHOT 7SN ?IR 71C 70R 70(C)
(not (CERTAINSHOT ?SN))

(setstatus (- ?IR 1) (- 21C" 0) EMPTY)
(setstatus (- 70R 0) (- 700 3) EMPTY)
(setstatus (- 7IR 2) (- 21C° 0) EMPTY)
(setstatus (- 7OR 1) (- 700 3) EMPTY)
(setstatus (- 7IR 2) (- 71C' 1) BALL)
(setstatus (- JOR 1) (- 70" 4) BALL)
(assert (SETBALL =(gensym)))
(makeshotcertain 7SN

(assert (CERTAINSHOT ?SN))
(retract ?st ?ls)

Figure 5.4: Sample Analysis Rule

50

at the same location, its distance is *0 0. Since an absorbed shot does not exit the
grid, the game managing module assigns it a default exit of “0 07, thus making its
distance equal to its entry coordinates. All other shots whose distance parameters

do not conform to the previous two criteria are deflected shots.

The remaining statements in the conditions section of the Analysis Rule were not
derived directly from the Hypothesis Rules. Instead they were included to acquire
dynamic information required to carry out the rule’s actions and to ensure the
efficient firing of rules. The phase condition statement is used to identify the rule’s
type. In some rules the distance parameters are a function of the game’s gridsize,
c.g. a distance of one greater than the gridsize is given as (n + 1). In order to
interpret this information, the gridsize statement gets the size of the grid from the
expert system. There is also a condition that obtains information about the last shot
- its shot number and entry and exit locations. The shot number is used in another
condition to ascertain that during the current game this shot has not been declared
a certain shot, that is, one that had already been evaluated completely. This is a
precaution taken to ensure that hypothesis modifications are not applied repeacedly
as a result of the same shot. The shot’s entry and exit are used to translate relative
grid addresses to specific locations in the current game when the rule’s actions are

applied.

The first actions in the CLIPS Analysis Rule use the command “setstatus” to
instruct the expert system to make modifications to the game’s solution hypothesis.
These actions are derived from the elements in the first action in the Hypothesis
Rule. As deseribed in Section 4.5.7, after the specific grid addresses named in the
rules” conditions had been replaced by the entry-to-exit distance parameters, the
addresses included in the individual elements of the rules’ actions were revised to
reflect this changed approach. The “setstatus” aclions are the formal end-product
of these revisions to the rules” actions. Hence the individual actions in Figure 5.4
specify that the status of a location identified by its distance from the last shot’s
entry coordinates and exit coordinates be modified to “EMPTY™ or “BALL”. In
some Analysis Rules there are actions setting the status of a location to a “POSSI-

BLE BALL™. The process used to decide whether to modify a location to include a

o
—

“BALL” or a “"POSSIBLE BALL" will be discussed in Section 5.3.1.

The action immediately following the “setstatus™ actions in the Analysis Rule
is an adaptation of the second action in the Hypothesis Rules which reduced the
number of balls remaining to be found in the current game. The action calls the
CLIPS “gensym” function to increase the number of grid locations that had been
marked with balls and instructs the expert system to assert a fact with the increased
number. This last action is only included in rules that had a “setstatus BALL"

as part of their actions.

The remaining actions in the rule are not found in the Hypothesis Rules. Like
the added statements in the condition portion of the rule they were included to help
the flow of the rule application. The next two actions cause the expert manager
to add the shot that has just been reasoned about to the certain shots list, and
assert that fact in the fact list. As is the case in the Selection Rule, the final action
statement in the Analysis rule is used to instruct the expert system to remove some

facts that were asserted by the firing of the rule.

5.3.3 Housekeeping and Meta-Level Rules

The rules described in the previous two sections all contain some information that
has its source in the knowledge acquired either automatically or by adaptation from
actions in the game files. In addition to these rules there are others that are needed
for the efficient functioning of the Blackbox expert system. These are the Housekeep-
ing Rules and the Meta-Level Rules. The Housekeeping Rules have been designated
as Selection and Analysis Rules to indicate in which phase of the game they are ap-
plied. The Meta-Level Rules are all fired during the analysis phase and are therefore

included among the Analysis Rules.

The Housekeeping Rule applicable in the Selection phase is a default rule that
fires whenever the expert system needs to know which shot to fire and none of the
selection rules in the rule base can apply to the current state of the game. In such a
case. the default rule selects the next shot from the list of available entry locations

maintained by the working memory.

0.9
[

Among the Housekeeping Rules included with the Analysis Rules one is a set-up
rule used to initialize the facts regarding the number of certain balls and the number
of possible balls found by the expert in the game. In addition, there are Housekeeping
Rules that are used to compensate for the incompleteness of the Analysis section
of the prototype rule base. If no Analysis rule can be applied to analyze a current
shot, facts that were added to the fact list when the shot was fired are not used or
retracted. It is therefore necessary to include rules whose sole function is to clear

the fact list.

The Meta-Level Rules are rules that fire as side effects of the actions of other
rules. One such rule updates the number of balls placed by other Analysis Rules
during the progress of the game. Other Meta-Level Rules are used to infer informa-
tion from the status of the hypothesis grid. There is a rule that determines if the
number of balls hidden is equal to the number of balls that have been found with
certainty, in which case the remaining locations in the grid can be marked empty.
Other Meta-Level Rules are used to reason about possible balls and when deemed

appropriate convert them to definite balls.

Some of the Housekeeping and Meta-Level Rules were prompted by the properties
of the CLIPS inference engine. Other rules were written as a result of requirements
perceived in the writing of the Blackbox Expert System. And still others were
written in response to some shortcomings viewed in the performance of the acquired

rules upon preliminary testing. These will be described in the following sections.

5.3.4 Reasoning with Priorities and Certainty in Blackbox

In the Blackbox knowledge acquisition experiments, priorities and certainty factors
were the means used to deal with and rectify inconsistencies that became apparent
as the rules elicited to play the game were analyzed. Both Selection and Analysis

Rules were affected by disparities that needed adjustment.

Inconsistencios arose in the actions of some Selection Rules of the Blackbox rule
base. Given the same previous shots, different shot selection decisions were found

to have been made in the game files used for knowledge acquisition. This apparent

83

inconsistency was not too disconcerting. Like many games, the rules in Blackbox do
not prescribe a fixed pattern of play. Therefore, different human players will have
individual styles of playing the game, and one player may use disparate strategies
in various games with seemingly similar scenarios. Unlike human problem solvers.
computers are always algorithmic. If an expert system is given a specific rule to
follow at a given time, it will do so unfailingly, and, if it is given several rules that
can apply in the same situation, depending on its method of firing rules, it will either
apply the first it sees and ignore the others or it will require a means of prioritizing,
these rules in order to fire the best one first. Therelore it was necessary to reconcile
the differences in strategy that appeared in the rules acquired from the game files,
and determine which of the conflicting rules contributed to a more successful playing,

of the game.

As redundant Selection rules were identified, the average of the scores achieved
in the games from which these rules were acquired was calculated and stored as part
of the rule that remained. When the rules were ready for installation in the expert
svstem, the average score achieved using a rule with one action was compared with
the average score achieved using another rule that had the same conditions but a
different action. The rule with the lowest average score (indicating the best per-
formance in Blackbox) was then awarded the highest priority. Siuce the knowledge
acquisition process is incremental and “everlasting”, the rules with the lower prioni-
ties were retained for future use, although. given the nature of the game, they would
not be fired until the rule base changes. As more knowledge is acquired in futume
sessions or if the knowledge is refined by a human expert, these rules’ priorities may

improve, possibly surpassing that of the current hest rule.

In the Analysis Rules, adjustment was needed when there were mconsistencies
that were not resolved when rule merging was applied to rules with a similar first
condition. In the process of detecting redundancies and reconciling similarities, cach

o

rule that remained in the rule base was given a “redundancy” count, a “similarity”
count, and an “exception” count. Whenever a rule was found to bhe redundant, the
redundancy count of the remaining rule was incremented by 1. When rule merging

was applied to similar rules and only one rule remained. the similarity count of

84

the remaining rule was incremented to confirm the similarity or partial redundancy.
The redundancy count and the similarity count both contribute to a higher certainty
factor for a rule. since its cortectness is assumed to be confirmed by succeceding rules

that emulate it.

If after rule merging was applied to two similar rules, one rule was found to have
an action whose elements were a complete subset of the action of another, the first
rule was removed and the “exception™ count of the second rule (with the action
superset) was incremented. Likewise. when two similar rules” action sets were not
perfect subsets of one another’s, both their exception counts were increased. The
exception count could be equal to 0 (for rules whose actions did not disagree with
any other similar rules), or it could be 2 or higher. The exception count reduces
confidence in the rule since it is indicative of dissimilar actions of rules with identical

conditions.

The next steps in assigning a certainty factor to the rules occuried as the rules
underwent the minimization process to remove implicit redundancies. st an in-
terim ce: [ainty factor was assigned to the individual action elements in cach rule.
This interim factor was called the action’s “frequency”™ rate and was the 1eciprocal
of the rule’s exception count, unless the exception count was 0, in which case the
frequency rate of the action eclements would be 0. In this way the fiequency rate
was always either O or less than 1. The individual action elements also inherited the

redundancy and similarity counts of their rules.

The calculation of the certainty factor was continued while combining the actions
of implicitly redundant rules. In this process. a count was kept of the number
of rules that had identical action elements. Whenever an action element was found
to occur in one more rule, its frequency 1ate was increased by the frequeney rate of
its counterpart in the other rule. The action element’s redundancy and similarity
counts were similarly accumulated at this stage. At the end of the process, each
action element was assigned a certainty factor equal to the quotient of its frequency
rate divided by the numbet of rules contributing this element. If either the action

element’s redundancy count or its similarity count were greater than its certainty

factor, the certainty factor was assigned a value of 1, to reflect the fact that there was

more than one rule with the same action element, thus giving it a higher certainty.

The certainty factor caleulated in this fashion was used to determine the degree
of confidence that could be placed in an action element that marked a grid location
with a “ball”. Thus, if such an element had a certainty factor greater than 0 and less
than 1, the action would mark the g i ocation with a “possible ball”. Otherwise,
the action element would place a “ball™ in the location. In this. a certainty factor of
0 was not considered to be a lack of certainty. Rather, it was an indication that the
action element came from rules that did not exhibit any discrepancy when compared

with other rules.

Among the Meta-Level Ruies included in the rule base there are some that decide
when the certainty attributed to the “possible bails™ in the grid increases and, if
necessary, convert them to “balls”. This is done by having rules that calculate the
number of grid locations with “possible balls™ and maintain information about the
number of different shots that cause the placement of a possible ball in one location.
This information is used by other rules to convert locations that have been referenced
by two shots from possible balls to balls, and, at the end of the game, when there
are no more shots that can be fired into the grid. to convert possible balls to balls

i order to make a final hypothesis.

The issue of certainty is also addressed explicitly in the Analysis Rules. As was
explained in the previous section, whenever an Analysis Rule reasons about a specific
shot, before the rule fires one of its conditions ascertains that the fact list did not
contain a fact declaring that shot certain. If there is an Analysis Rule that can be
fired in response to the shot. one of the actions in the rule asserts a fact stating that
the shot 1s certain. If the rule base does not contain an Analysis Rule to cover a
specitie shot, the shot does not become certain and is displaved on the user interface
in reverse video to indicate to the user that there is a potentially useful Analysis
Rule missing from the rule base. This information can be useful in the selection of

examples for improving the rule base in future iterations.

The method used to assign certainty factors to the rules as they were acquired

86

from the cases and processed through the various steps of the tule base creation was
specifically designed by me for knowledge acquisition in the Blackbox domair. The

method’s benefits and limitations will be discussed in the nest chapter,

Chapter 6

RULE BASE EVALUATION

6.1 Testing the Rule Base

Testing the prototype expert system involved several phases. Two human experts,
Le Hoe Duong and John Lyons, who will henceforth be called Player 1 and Player
2 respectively, independently plaved the same two sets of games, called the {raining
set and the test set. The data resulting from these game sessions was recorded and
saved in four separate game files. one for each expert with each set of games. At
first the automated knowledge acquisition process acquired one rule base from each
training set game file. Thus in the first iteration of the knowledge acquisition process
two rule bases were developed. Each rule base was examined in a preliminary run
to remove any superfluous elements, In the first test runs, each of the rule bases

was used to play the games in the training set and then the games in the test set.

These first test runs were followed by similar tests on different rule beses. One
set of tests was conducted on rule bases acquired from the combined training and
test sets of cach of the human experts. Another set of tests was performed on rules

acquired from the combined training set game files of the two human expert players.

The foliowing sections describe the composition of the sets of games used in the
experiment. detail the testing process, and present the results obtained from the

tosts,

[o.4]
4

TRAINING | TESTI | TEST2 | TOTAL | DISTINCT
GAMES | GAMES
TRAINING 2 20 27
TEST1 5] RA 22
TEST?2 0 0 0 il Tl

Table 6.1: Game Sets

6.1.1 The Game Sets

The expert system using the acquired rule base was tested by plaving the games in
the training set game file (from which the rules had been extracted) and in two test
sets. As described in Section {4.1.3. the games in the training set and m the first
test set were selected at random. The second test set was constructed to include
all the games of a 4 X 4 grid with two balls which were rot included in the other
two sets. Table 6.1 shows the composition of the three game sets in1elation to one
another. The training set had 29 games in total, two of which were identical to
two others in the set, resulting in 27 distinet games. TESTI. the first training set,
contained 28 games with one game identical to another in the test set and five others
identical to games in the training set, yielding 22 additional different configurations.
The second test set, TEST2, contained 71 games. which by design were all distinet.
Figure 6.1 gives a set representation of the thiee sets of gatnes within the universe
of 4 X 4 games with 2 balls. Hence the knowledge for the expert system rule bases

was acquired from 19 games and tested on 120 games.

6.1.2 Preliminary Examination

The two rule bases used in the initial testing were acquired from the training set
games plaved independently by two human experts. These automatically acquired
rule bases were supplemented by “Housekeeping Rules™ (described in 5.3.3) and
loaded into the expert systemn at separate times to be used to play the games in the

training set and in the first test set. This preliminary examination revealed that

89

NN
x\ N

TRAINING TEST-!

\ SET
Nirmom

.,
\'\\

4
4

Figure 6.1: Set Representation of Training and Test Sets

sorne rules had not been adequately refined by rule merging during the knowledge
acquisition process. This was due to the fact that not all rules underwent rule merg-
ing, since many of the derived rules were unique and were thus translated intact from
the game files to their respective rule bases. As a result of the preliminary testing.
any superfluous actions that were found to cause incorrect hypothesis modifications

were removed from the rules.

The initial tests also demonstrated the need for the inclusion of some means
of deciding when to change hypothesized “possible balls” to “balls” and when to
terminate a given game session. Without rules to handle such decisions. the expert
system did not know when to stop firing shots and often placed more “possible
balls” in the hypothesis grid than were actually hidden in the game grid. Thus it
was not possible to perform any useful measurements on the performance of the
expert system. The Meta-Level Rules described in Section 5.3.3 were developed in
response to this need. These rules were not acquired automatically but the heuristics
used in their contents were derived from the inspection of automatically acquired
rules. The rule bases used in the formal testing of the prototype expert system

would henceforth include both Housekeeping Rules and Meta-Level Rules.

50

6.1.3 First Test Run Results

In the first testing phase the two rule bases (from the two experts’ training sets)
were used individually to play the games in the training set and the games in the
first test set. Tables 6.2 and 6.3 give the results obtained in testing the rule base
acquired from the games played by Player 1. Similarly Tables 6.4 and 6.5 show the
results achieved in testing the rule base acquired from the games played by Player
2. In each of these tables. column 2 reports the scores achieved by the human
expert; column 3 gives the srores achieved by the expert system plaving with the
rules acquired from the training set; and column 5 gives the deviation of the expert

system’s scores in those games from the human expert’s scores.

The scoring used in the experiment was based on the convention deseribed in
Section 3.1.1. The maximum. or worst score. that could be achieved in cach 4 X
4 game is 16. In the tables. any games that remained unsolved or whose solution
contained an error received a score of 17. Unsolved games were marked with a *U”
and errors were marked with an ‘X" after the score. Games that duplicated the grid
composition of other games in the same set were not included in the tables or in
the calculations. Thus the average score in cach set was based on the number of
distinct games in the set. If there were any unsalved games o1 games with errors,
two averages were calculated - one including the scores of all the games, and one for

the solved games only.

The average deviation was calculated using the sum of the simple deviation of
each game’s score from its counterpart in the human player’s colmmn. This method
was elected over the mean squared deviation since it gave a more aceurate picture of
the performance of the expert system. Squaring the deviations would have distorted
the expert system’s performance by failing to differentiate between instances in

which it outperformed the human expert and those in which the opposite occurred,

Table 6.2 shows that the average score obtained in plaving the training set games
with Player 1's initial rule base was 11,1832 without any errors or unsolved games.
In Table 6.3 playing the test set games with the same rule base resulted in an average

of 11.2222 for all the games. However. this test run had one unsolved game. reducing

9]

the average score per solved game to 11, The deviations of these test run results
from Plaver I's own scores were 5.6667 for the training set games and 5.6923 for the

solved test set games.

In Table 6.4, Plaver 2's first 1ule base obtained an average score of 11.5556 in
plaving *he training set games. This average was reduced to 10.6087 when the four
unsolved games were removed from the calculation. Table 6.5 shows that the test
set games played with this rule base had an average score of 12.1852 with 8 unsolved
games which resulted in an average per solved game of 10.1578. The deviations from
Player 2's own scores were 1.9565 for the solved training set games and 1.7895 for

the solved test set games.

6.1.4 Incremental Knowledge Acquisition

The second iteration of the knowledge acquisition process involved acquiring rules
from tl » combined training and test cases saved by each human expert. These rule
bases were also tested by plaving the games in the training set and those in the
test set. The scores achieved in these test resnlts can also be seen in column 4 of
Tables 6.2, 6.3, 6.4. and 6.5. The deviation of the expert system’s performance from

the human expert’s results is given in column 6 of these tables.

These test results were compared with those of the rule bases obtained in the
fitst iteration of the knowledge acquisition and the comparisons are detailed in this
section. The rule bases acquired in the second iteration performed better than the
carlier ones. The rule base acquired from Plaver 1's combined game files solved
all the games in the training set. achieving an average score of 10.8519, which was
an improvement of 2.98% over the first rule base. The deviation for this test was
5.3333. reducing the previous rule base's deviation by 5.88%. The same rule base
coriectly solved all the games in the test sel, scoring an average of 9.9630 with a
deviation of 4.6296. This score was 9.43% better than the solved games average for

the first rule base, and the improvement in the deviation was 18.67%.

The second rule base derived from Player 2 also solved all the games in the

training set games without any errors, scoring an average of 10.2222. with a deviation

GAME PLAYER 1| RBI RBI™ [DEVIATION [DEVIATION
GAl 6 6 6 0 0]
GA?2 5 14 14 9 9
GA3 6 15 15 9 9
GAd 5 16 16 11 ('
GA5 4 14 11 10 10
GAG 8 13 13 5 5
GAT 6 14 14 s s
GAR 4 1 { 0 0
GA9 6 14 11 P 8
GAI0 4 13 13 9 9
GAll R 16 16 8 N
GAIL2 5 15 15 0 10
GA13 5 14 14 9 9
GAlY 6 6 6 0 0
GAls 4 4 4 0 0
GALG 6 T 7] I
GAIlT 8 5 5 -3 3
GAIR 5 5 1 0 -
GA19 5 14 11 9 0
GA20 5 10 6 5 !
GA2I 6 10 10 4 1
GA22 4 1 4 0 0
GA23 3 R 4 5 1
GA25 6 15 15 9)
GA26 £ 16 16 8 N
GA2T 6 14 14 8 8
GAR 5 16 16 1 11

AVERAGE 5.5185 | 11.1852 | 10.8519 5.6667 5.3334
UNSOLVED
GANTS (1) 0 0

LEGEND

PLAYER 1
RBI

RB1’
DEVIATION
DEVIATION®

first human expert’s scores
expert system’s scores using rules from training set

expert system’s scores using rules from combined sets
deviation of RB1 scores from Piayer 1 scores
deviation of RB1” scores from Player | scores

Table 6.2: Rules From: Player 1 - Tested On: Training Set

93

GAME PLAYER 1| RB1 | RBI' | DEVIATION | DEVIATION:
GBI 3 R 1 5 1
GB2 3 12 3 9 0
GB3 8 11 8 3 0
GB1 4 4 3 0 -1
GB5 5 6 5 1 0
GBG 5 12 5 7 0
GBN 6 12 6 6 0
Gi1BY 8 16 16 8 R
GBI10 8 13 13 5 5
GBI 5 16 16 11 11
GRB12 1 1 4 0 0
GB13 6 14 14 8 N
GB14 6 17U 15 11 9
GB15 6 14 16 X 10
GB16 7 14 14 7 n
GBIT 5 16 16 1 11
GBIR 1 5 1 1 0
GB19 5 14 14 9 9
G820 4 1 ¥ 0 0
GR21 1 5 1 | 0
GB22 & 12 12 1 1
GB23 5 15 15 10 10
GB21 5 11 14 9 9
GB25 1 5 N 1 0
GB26 5 11 14 9 9
GB27 5 10 10 5 5
GB28 6 16 16 0 10
AVERAGE 5.3333 | 11.2222] 9.9630) 1.6296
UNSOIVED
GAMES (U) 1 0
AVERAGE
SOLVED 11 5.6923
LEGEND

PLAYER |
RBI

RBI’
DEVIATION
DEVIATION®

first human expert’s scores
expert system’s scores using rules from training set

expert system’s scores using rules from combined sets
deviation of RB1I scores from Player 1 scores
deviation of RB1" scores from Player 1 scores

Table 6.3: Rules From: Player 1 - Tested On: Test Set

41

GAME PLAYER 2| RB2 RB2° | DEVIATION | DEVIATION®
GAl 3 6 6] 1
GA2 3 11 13 M 12
A3 6 14 15 8 9
GAd 6 16 9 10 4
GAS 3 17 U B 12 9
GAG n 13 13 6 6
GAT G 1 1 -2 2
GAN 4 H 5 1 1
GA9 G 5 5 -1 -1
GAL0 6 16 12 10 6
GANl 8 16 16 8 R
GAlL2 R 10 b 2 0
GAL3 5 17 U 13 12 S
GAlt T 5 R]]
GALS { 4 { 0 ()
GAL6 6 11 h H |
GALT n 13 10 6 34
GAILS 4 5 5 | i
GAlY i 17 1 13 13 9
GA20 3 N T } 2
GA2] T 16 13 9 G
GA2R 4 ¥ n 3 3
GA23 { ¥ 6 3 2
GA23 6 17 U 15 (N 9
GA20 n 16 N 9 9
GA27 6 I 11 8 &
GA2R 4 16 16 12 12
AVERAGE 3.5356 115556 | 10,2222 6 1.6667
UNSOLVED
GAMES (U) N 0
AVERAGE
SOLVED 10.6087 1.9565

LEGEND
PLAYER 2 serond human expert’s scores
RB1 expert syvstem’s scores using rules from training set
RBI’ expert system’s scores using rules from combined sets
DEVIATION | deviation of RB1 scores from Player 2 scores
DEVIATION™ | deviation of RB1™ scores from Player 2 scores

Table 6.1: Rules From: Player 2 - Tested On: ‘Traming Set

95

GAMLEL PLAYER 2| RB2 RB2" | DEVIATION | DEVIATION®
(i8] 3 T 6 4 3
GB2 3 4 4 1 1
GB. 6 1 13 5 T
GBA 4 12 5 8 1
GBS 5 6 6 1 1
GB6 6 13 0 D 0
GBX 6 17 U 0 11 1
GBY 7 17 U 16 10 9
GB10 7 16 14 9 7
GBIl 6 17 U 16 11 10
GBI2 5 5 5 0 0
GB13 R 4 4 -4 -4
GBI 8 17 U 16 9 8
GBS 5 16 10 11 5
GBI6 6 14 11 8 5
GBI17 T 16 16 9 9
GHIR 5 R T 3 2
GBI19 T 1 12 T)
GB20 6 8 1 -2 -2
GB21 5 11 6 6 1
GB22 5 13 14 8 9
GB23 5 14 15 9 10
G324 5 17 U 13 12 8
GB25 9 bt 5 1 1
GB26 4 17 U 15 13 11
GB27 5 17 X 8 12 3
GRB2R T 17 U 16 10 9
AVERAGE H5.55555 12.1851 10 6.62962 444444
UNSOLVED
GAMES (U) T 0
ERRORS (X) 1
AVERAGE
SOLVED 10.1578 1.78947

LEGEND

PLAYER 2
RBI

RBI
DEVIATION
DEVIATION®

second human expert’s scores

expert system’'s scores using rules from training set
expert system’s scores using rules from combined sets
deviation of RB1 scores from Plaver 2 scores

deviation of RB1' scores from Plaver 2 scores

Table 6.5: Rules From: Plaver 2 - Tested On: Test Set

96

of 4.6667. The average score improved by 3.615 over the first rule base average
for solved games. The deviation improved by 5.85%. Player 2's second rule base
also solved all the test set games correctly, achieving an average score of 10 and a
deviation of 4.4444. The average score improved by 1.535% over the solved games

using the previous rule base and the average deviation improved by 7.21%.

Analysis of the significance of this and other test results will be presented in

Section 6.2.

6.1.5 Combining Experts

As the next step in the experiment the two game files of the human experts playing
the training set were combined to generate another rule base. The scores that
resulted when this rule base was used to play the training set games and the test
set games appear in Tables 6.6 and 6.7, respectively. In both tables column 1 shows
the scores achieved in playing the games and the other columns show how this rule
Liase’s performance compared with others. The combined experts’ rule base, RB3,
solved all the games in the training set and all but one in the test set. This was
equivalent to the experience of the RB1 rule base and superior to that of the RB2
rule base. which failed to solve four games in the training set and cight games in the

test set,

Colummns 3 and 4 in the tables show that the average score achieved by RI33 in
each of the game sets was better than that of RBI and RB2. Columus 5 and 6
give the deviation of RB3's results from those of the human experts. In playing the
training set games. the combined rule base’s average score for the games solved was
6.29% lower than that achieved by the first rule base of Player 1, and 1.2% lower
than Player 2s first rule base. When the combined rule base was used to play the
test set, its average score for the solved games was 3.85% lower than Player 1's first
rule base and 4.12% higher than Player 2's rule base. This last negative result was
tempered by the fact that the combined rule base only left one game of the test set

unsolved whereas the first rule hase derived from Playver 2 left eight unsolved games.

97

DEVIATIONS
GAME RB3 | RB1-RB3 | RB2-RB3 | RB3-P1 | RB3-P2
GAl 8 -2 -2 2 3
GA2 14 0 0 9 11
GA3 16 -1 -2 10 10
GAA 6 10 10 1 0
GAS 14 0 J U 10 9
GAG 13 0 0 5 6
GA7 5 9 -1 -1 -1
GAR 5 -1 0 i 1
GA9 3 9 0 -1 -1
GA10 9 4 7 5 3
GALll 16 0 0 8 8
GALR2 15 0 -5 10 T
GAL3 14 0 3 U 9 9
GAlY 8 -2 0 2 1
GA1H 9 0 0 0 0
GALG 10 -3 1 4 4
GAIT 10 -5 3 2 3
GAIR 5 0 0 0 1
GALY 14 0 J 1 9 10
GA20 9 1 -1 4 4
GA2I 9 1 7 3 2
GA22 6 -2 1 2 2
GA23 T 1 0 4 3
GA25 15 0 2 U 9 9
GA26 16 0 0 8 9
GA2T 14 0 0 8 8
(1A28 16 0 0 11 12
AVERAGE [104815 | 0.7037 1.0741 4.9630 | 4.9259
UNSOLVED
GAMES (U) 0
CAVERAGE
SOLVED 0.7826
LEGEND]
RB3 expert system'’s scores using rules {from both Playvers

RB! - RB3 { de'.ation of RB1 scores (Table 6.2 from RB3
RB2 - RB3 | deviation of RB2 scores (Table 6.4) from RB3
RB3 - P1 deviation of RB3 scores from Player 1 (Table .2)
RB3 - P2 deviation of RB3 scores from Plaver 2 (Table G.4)

Table 6.6: Rules From: Combined Experts - Tested On: Training Set

a3

DEVIATIONS

GAME RB3 [RBI-RB3 T RB2-RB3 [RB3-P1 | RBI-P2
GBI T 1 0 1 1
GB2 4 & 0 1 !
GB3 11 0 0 3 5
GB4 4 0 & 0 0
GB5 ¢ 0 0 1 I
GB6 1 -1 0 8 n
GBS 13 -1 4 U 7 7
GRS 16 0 1 U 8 9
(:B10 13 0 3 5 G
(:B11 16 0 1 U 1l 10
GB12 5 -1 0 1 0
GBb13 5 9 -1 -1 -3
GB14 17 U | 0 1 0 U 11 9
GBI15 14 0 2 R 9
GB16 14 0 0 7 N
GB17 16 0 0 11 9
GBI8 6 -1 2 2 I
GB19 14 0 0 9 7
GB20 4 0 0 0 2
GB21 7 -z { 3 2
GB22 13 1 0 5 N
GB23 15 0 -1 10 10
GB2A4 14 0 3 U 9)
GB25 5 0 0] I
GB26 14 0 3 1 9 10
GB27 10 0 T U 5 5
G B28 16 0 1 U 10 {)
AVERAGE | 10.R148 | 0.1074 1.370 1 5485 | 05.2508
UNSOLVED

GAMES (U) 1 1 8

AVERAGE

SOLVED 10.5769 | 0.4231 0.8047

LEGEND

RB3 expert system'’s scores using rules from both Players
RBI1 - RB3 | deviation of RB1I scores (Table 6.2) from RB3

RB2 - RB3 | deviation of RB2 scores (Table 6 1) from RB3

RB3 - P1 deviation of RB3J scores from Plaver 1 (Table 6.2)
RB3 - P2 deviation of RB3 scores from Player 2 (Table 6.1)

Table 6.7: Rules From: Combined Experts - Tested On: Test Set

99

6.1.6 Supplementary Testing

The universe of 4 X 4 games with 2 hidden balls from which the knowledge acqui-
sition cases were drawn is finite and not too large. Therefore it was feasible to test
the rule bases acquired in the experiment on a set of games within that universe
that are disjoint from the games in the training set and the primary test set. A set
of 71 such games was prepared and the expert system played them with each of the

rule bases acquired in the experiment.

The results of this phase of the experimental testing is shown in Tables 6.8
and 6.9. RB1 and RB2 are the rule bases acquired from each player’s training set
sessions. RB17 and RB2' are the rule bases derived from adding the test set games
to those in the training set. RB3 is the rule base from the combined training sets

of the two experts.

These results are not as straightforward as those of the other tests. The overall
performance of RBI™ showed an improvement over that of RB1. The enhanced rule
base left no unsolved games. compared with 2 unsolved by RB1. and the average
score of RB1™ was 1.67% lower than that of RB1, when only the solved games were
cousidered in the average of RB1. These results are consistent with those witnessed

in testing these rule bases on the training set and the test set games.

By contrast, whercas RB2" also reduced the number of unsolved games from
11 for RB2 to 3. its use also resulted in two errors as opposed to one for RB2.
The overall average score for all 71 games in the set achieved by RB2" was an
improvement of 3.47% over the equivalent measure for RB2. However, when all
the unsolved games and errors were removed from the equation, the average score of
RI32" showed a degradation of 1.457 from that of RB2. This is not a fair comparison
since 12 games with a score of 17 were removed from the total scores for RB2 before
calculating the average of the remaining 59 games, whereas only five games with a
score of 17 were removed from the total for RB2". All but one of the unsolved games
from RB2 that were solved by RB2" had a score that was higher than the average
score, thereby contributing to an increased average. The error that occurred in the

testing of RB2" and not in RB2 was the result of a difference in the order of shots

100

e

GAME | RBI RB2 RB3 | RB1' [RBY
GX1 16 16 16 16 16
GX2 16 16 16 16 16
GX3 15 15 15 15 15
GXd 14 14 14 14 15
GX5 11 14 14 14 14
GX6 12 13 13 13 I
GX7 13 16 16 13 16
GX8& 15 13 16 15 15
GX9 15 16 16 15 16
GX10 R 3 3 7 3
GX11 11 T N 14 T
GX12 17 U417 Uj17 v 10 17 U
GX13 |12 4 4 11 1
GX14 14 12 14 6 15
GX15 5) N T 2 7
GX16 8 17 X110 R 1T X
GX17 8 9] 3 1
GX18 12 17 U 12 13 13
GX19 2 5) 3 b
GX20 |10 10 10 0 1
GX21 15 11 15 16 15
GX2z -4 6 T 4 n
GX23 110 17 U110 10 17 U
GX24 14 12 14 10 15
GX23 10 1 3| 4 4
GX20 9 9 9 10 T
GX27 |13 17 U1 13 16
GX28 ¥ 8 S 8 il
GX\29 16 16 16 16 16
GX30 14 16 16 11 16
GX31 11 17 14 11 14
GX32 1 M4 17 11 1 14
GX33 |1 16 14 14 14
GXi3t 15 17 U115 15 B
GX33 (1t U1t Uyt U 6]
GX36 |13 6 12 13 5
GX37 10 11 11 R 13
GX3R G 6 G 6 6
GX39 T 8 K 9 X
GXJ10 4 6 O 4 T
GXx1l H 1701 b) N 17T U

Table 6.8: All Rule Baves -

101

Tested Qn: Test Set 2(Part 1)

GX42 | 6 6 4 8
GX43 6 10 R 5 17 X
GX41 3 12 5 3 9
GX45 16 9 11 16 8
GX46 11 13 13 11 13
GXA7 5 7 7 5 7
GX48 4 4 4 4 4
GX19 9 9 9 10 8
GX50 14 15 15 14 15
GX51 12 9 9 10 8
GX5H2 13 13 13 10 13
GX53 11 4 4 8 4
GX5Hd 11 8 8 6 8
GX5HH 14 I 14 4 14
GX56 16 16 16 6 16
GX57 16 16 16 6 16
GX58 16 16 16 6 16
GX5H9 7 9 9 9 9
GX60 16 16 16 16 16
GX61 14 16 14 14 14
GX62 15 15 15 15 15
GX63 14 17 U |4 14 14
GX64 10 10 10 12 10
GXG65 15 15 15 15 15
GXG66 7 10 10 8 7
GX67 16 16 16 16 16
GXG6R 16 16 16 16 16
GX69 14 16 14 14 14
GX70 14 17 U |14 14 15
GXT1 10 12 12 b} 8
AVERAGE 11.5775 | 121690 | 11.4789 | 10.8873 | 11.7465
UNSOLVED

GAMES (U) 2 11 2 0 3
ERRORS (X) 1 2
AVERAGE

SOLVED 114203 | 11.1864 | 11.3188 11.3485 ¢

LEGEND

RBI
RB2
RB3

RBI’
RBY

using rules acquired from Player 1’s training set

using rules acquired from Player 2's training set

using, -ules acquired from combined games in both Players® training sets
using rules acquired from combined games in Player 1's training and test sets
using rules acquired from combined games in Plaver 2's training and test sets

Table 6.9: All Rule Bases - Tested On: Test Set 2(Cont.)

102

fired in the game. as prescribed by the selection rules that resulted from the second
iteration. A Meta-Level Rule was used to change a “possible ball™ to a “ball™, based
on a heuristic that if two separate rule firings indicate that a location has a “possible
ball™ then it is likely that that location actually contains a “ball™. In this case the
rule did not work. A more accurate rule would have waited until all possible shots
had been exhausted before changing any “possible ball™ to a “ball”. However such a
rule would have resulted in the highest possible scores for all games in which possible
balls were an issue, leading to a significant degradation of overall performance. Since
this rule only caused such an error in two of 120 cases the benefits of its inclusion

seemed to outweigh the risks.

The rule base combining the expertise of both experts had an overall performance
that was better than that of RB1 and RB2, which were obtained individually from
the two experts. Like RB1, RB3 only had two unsolved games. The average score of
RB3. excluding unsolved games, was 0.89% lower than the equivalent score of RBI.
When compared with RB2. RB3 has the same problem as RB2. RB3 had only
two unsolved games and no errors, compared with 11 unsolved and one ervor for
RB2. In the average score that included all games, RB3 was 5.67%. lower than RB2.
However. when the unsolved games and errors were removed, the same phenomenon
that affected the comparison between RB2 and RB2 took effect. In this case, six
of the unsolved games from RB2 that were solved by RB3 had a higher score than
the average and four had a lower score. Given this distribution, the avetage scote

of RB3 was pushed up slightly. resulting in an increase of 1.18% over that of RB2.

6.2 Analysis of Test Results

Several important facts emerge from the test data presented above, The first is that
the rule bases acquired in the experiment were able to solve most domiain problems
presented to them. If the goal of the expert system was to solve the problem and
the only performance measure was whether the solution was cortect, the rale bases

in the experimnent acquitted themselves reasonably well.

103

The rule bases acquired from Player 1 performed particularly well, with the
first rule base solving 97.5% of the 120 games tested. Player 1's second rule base.
derived from the combined games of the training and test sets, perforined even
hetter, solving 100% of the games tested. While the rule bases acquired from Player
2 did not performi as well, they were adequate. Player 2's first rule base solved
807 of the 120 games tested and the second rule base solved 95.83% of the games.
‘The rule base acquired from the two experts’ training set game files was also very

effective, solving 97.5% of the games tested.

A second fact that becomes apparent is that, if comparative performance mea-
sures such as scores are considered. the rule bases did not perform as well as the
human players. The average deviations of the rule bases’ performarnces from the
average scores achieved by the human experts ranged from 80% (refer to Table 6.5
columns 2 and 6 AVERAGE) to 106.73% (refer to Table 6.3 column 2 AVERAGE
and column 5 AVERAGE SOLVED) of the human experts® average scores. Thus, in
the case of Blackbox where the goal is to solve the games with the lowest possible

score, the rule hases acquired fiom the cases were not sufficient for the task at hand.

Using the average deviations as a criterion of relative performance, the worst
performances recorded were those of the rule bases acquired from the training set
and the best were those of the second rule bases acquired from the combined training
and test sets. There was a wide divergence in the improvement observed in these
deviations, ranging from 5.85% to 18.67%. However these results, as well as the
improvement in average performance of the enhanced rule bases, demonstrated that
incremental benefits can be realized by using an iterative approach in automated

knowledge acquisition.

The rate of improvement recorded in the performance of the expert system when
additional examples were used as a source of knowledge acquisition ranged from
1.A5% to 9.43%. The reason for this variation may be due to the fact that very little
care was tahen in the selection of the examples in either the first training set or in
the test set which became the incremental training set. In well-selected sets of train-

ing examples for incremental knowledge acquisition. it is expected that the increase

101

in performance would be monotonic. i the Blackbox knowledge acquisition experi-
ment the selection of individual examples was not done methodically. Therefore, we
do not attach any great importance to the significance of the level of improvement
rates observed. Rather. the trend itsell is considered to be the important aspect of
the results of these tests. What is significant is that, without exception, the incre-

mentally acquired rule bases performed better than their earlier counterparts. How

long this trend can continue would be a function of the size of the available case

base and of the methodology for selecting cases for knowledge acquisition.

It is reasonable to deduce from these results that as more cases are added to the
training set. more diverse situations can be studied. additional rules can be included
in the rule base. and previously incomplete rules can be augmented. In addition,
the careful selection of the training cases could maximize the benefits of incremental

knowledge acquisition.

In the Blackbox domain. additional cases can be selected to provide solutions for
observed deficiencies in the rule base. As the expert system is currently designed,
if it cannot fire a rule to analyze a shot. it displays to the user which rales it is
missing (Section 3.3.-4). To help fill the observed void in the rule base. examples
that would yield the missing rules can be added to the training set. If these examples
are not available, the domain expert can be asked to solve the game i question,
following the same sequence of actions used by the expert system. thus providing a

new example for the training set.

Another interesting factor perceived in the test results was the performance of
the combined experts’ rule base. Although in these tests the average score did not
improve from that of the first rule bases in all the game sets, the combined experts’
rule base did solve more games that its earlier counterpart. Like the observation
made regarding incremental knowledge acquisition, the results of knowledge acqui-
sition from combined expertise show a trend to improved perfornance. This would
therefore suggest that using multiple experts as a source of knowledge acquisition

from cases would have beneficial results.

Overall the results of the testing were enconraging. Although the expert systen

105

did not come close to matching the performance of the human experts. it was able to
solve most of the games it was given. Sonie of the weakness in the performance could
be traced to deficiencies in the Anatysis Rule section of the rule bases. In the process
of the testing some shots were not fully analyzed by the expert system. and oihers
were not analyzed at all. This necessitated the firing of more shots into the grid
and raised the scores of the games. This lack of hypothesis formation on the part
of the expert sy stem was due to the fact that the exact sequence of actions used by
the expert system in some games differed from that which occurred in the training
cases, Thus, the expert system fired shots that may not have been used in the game
files, meaning that the rules to analyze these shots could not be acquired from the
cases. The incompleteness manifested by some other rules could be traced to the
samie causes, Lach Analysis Rule in the rule base was meant to includ~ various shots
with the same entry-to-exit distance attributes. If certain shots had not occurred
in the actual acquisition cases, then the action required to handle them was not
included in the Analysis Rule. These deficiencies argue for the using more iterations
of the knowledge acquisition process with carefully selected new cases which might

help to improve the rule base.

The performance of the Blackbox expert system was also affected by the Selection
Rules which were not complete nor very powerful. In the games tested the expert
systemoften had to resort to the default rule for selecting shots from a predetermined
ordered list of grid entry points. It is possible that the Selection Rules section of the
rule base requires more iterations of the knowledge acquisition process to increase
the number of specific situations covered by the rules. An important part of the
deep strategy used to play Blackbox is the selection of the appropriate shots at the
right juncture in the game. The emphasis of the knowledge acquisition method used
in this experiment was on the hypothesis making aspects of the game. A change in

focus might serve to improve the shot selection process.

Some of the positive results of the testing of the rule base could be attributed
to the calculation of certainty factors that was described in Section 5.3.4. The
certainty factors helped to determine whether an Analysis Rule that placed a “ball”

in the grid would do so in all circumstances and game configurations. The primary

106

contribution of the certainty factors was in some rules that could select among two
or more locations when allocating a “ball”. The calculation of the certainty factor
was designed to indicate for such rules that a “possible ball” rather than a “ball”
should be marked on the grid locations. thus leaving the final decision to a later, more
certain Analvsis Rule or to a Meta-Level Rule. Another, less important contribution
of the certainty factors was that they facilitated the process of removing superfluous
actions from rules during the preliminary testing. In some rules that had not been
sufficiently refined by rule merging the certainty factors changed “hall” placement to
“possible ball™ and thus prevented errors in the preliminary testing. The weakness
of this calculation of certainty factors was that whereas a low level of certainty was
used to alter some Auaiysis itules by changing “balls™ to “possible balls™, a highet
level of certainty was not utilized to enhance the power of other rules. Another
problem is that with the small training set that was used in the thesis, the power of
the certainty factors as a determining tool in placing confidence in rules could not
be explored and tested adequately. This may also be the reason that the certainty
factor calculation did not prove to be sufficiently powerful to be used automatically

to remove extrancous elements from rules.

6.2.1 Analysis Summary

The rule bases generated in the experiment performed as expected. It was not
assumed that the role of the domain expert in knowledge acquisition could be elinn
nated completely. The expectation was that automated knowledge acquisition conld
generate sufficient rules to construct a prototype expett system and that this pro

totype could be used to focus attention on salient issues in knowledge acquisition.

In the tests conducted in the experiments. it was apparent that the rule bhases
generated were not complete and needed improvement. However, the tests also
indicated that some of this improvement could be achieved in an antomated fashion
by using repeated iterations of the knowledge acquisition process to incrementally
build a rule base. Careful selection of the cases nsed in the process would be equired

to vield more consistent incremental benefits. However, this iterative process cannot

107

be expected to continue indefinitely. The nature of expert systems is that they can
only solve problems in a limited domain. Therefore, at some time in the knowledge
acquisition process the finite nature of the domain would become a factor and the
mmprovement of the rule base would reach a saturation limit. At this point any
subsequent improvement that might occur would be of a minimal nature. In order
to detect the approach of a saturation limit and thus avoid performing extensive
repetitive example analysis with little or no new knowledge being acquired. it would

be necessary to continue measuring the rate of improved performance.

In planning this experiment it was also anticipated that after the automated
knowledge acquisition from cases was complete the involvement of the domain ex-
pert would be required to critique the rule base and improve it where necessary. The
Blackbox rule bases acquired in this experiment could benefit from the intervention
of a human expert. The domain expert could help improve the process by helping
to identify a method of case selection that would yield a representative set of pre-
liminary training examples or a set of suitable examples for incremental knowledge
acquisition, In addition the domain expert could participate by helping to add miss-
ing rules or to complete incomplete rule in the rule base. Such a participation by
the human expert counld strengthen the rule base and correct the deficiencies in the

performance of the expert system.

Chapter 7

CONCLUSION

7.1 Contributions

The thesis demonstrated the feasibility of automated knowledge acquisition from a
set of available cases throngh an example study. It showed that a knowledge base
so generated could be used to build a prototype expert svstem with very little di-
rect involvement of a domain expert. Thus, the domain expert’s vanable time was
reserved for the later stages of the knowledge acquisition process. when the focus
would shift to refining and improving the prototype. requiting direct application
of the domain expert’s knowledge. By lessening the dependence on a domain ex-
pert’s contribution in the early development stages. his or her imited time would

he utilized more cfficiently.

The conclusions that were reached in this thesis were based on the spedifie ex
periment involving the game of Blackbox. One wondeis whether these conclusions
can be generally extended to other domains beyond the realm of Blackbox. At this
stage. we do not know the answer to this. For a domain to be considered suitable for
the application of the knowledge acquisition method used in this thesis, the following

conditions would need to exist:

109

C1. the existence of many actual cases stored in computer readable form

C2. data in which the roles of “cause” and “effect™ or condition and action is either
apparent or can be easily extracted based on a preliminary explanation of the

composition of the cases
C3. data that lends itself to “easy” knowledge representation

C4. an cffective method of sclecting appropriate cases for training and testing.
perhaps based on the commentary of the domain expert.

Three additional major points emerge from the results of the thesis. The first of
these is that the knowledge acquisition process benefits from using the expertise of
multiple domain experts. Where possible. case-based knowledge acquisition should
be undertaken in a domain that has more than one source of cases. A set of cases
that are generated by more than one domain expert in a domain can provide a
much better insight into different approaches to solve the domain problem. This
conclusion is borne out by the results obtained in this thesis using the combined
knowledge of two domain experts. which are shown in Tables 6.6. 6.7. 6.8 and 6.9.
When compared with the performance of rules acquired from the individual sets of
cases, the rules derived from the combined sets performed better by resulting in lower
average scores, and in some of the test sets, by solving more games. These results
demonstrate that tapping the expertise of multiple domain experts is beneficial and

desirable to the development of a knowledge base.

The second important point of the thesis is the assertion that iteration is a
necessary feature of automated knowledge acquisition. With repeated applications
of knowledge acquisition techniques the knowledge base can grow and improve. In
case-based knowledge acquisition, as successive iterations analvze more cases, the
knowledge base can be expected to continue to improve. The results of the thesis
demonstrate the positive benefits of two iterations of the process that was used.
Tables 6.2 through 0.5 show that. without exception, the rule bases built through
incremental iteration performed better than their respective earlier counterparts.
Although the results were positive, the expansion of the knowledge base cannot be
expected to continue unabated over successive iterations. Indefinite growth might be
restricted by limiting factors such as the finite availability of training and test cases

and the methods for selecting appropriate cases. Therefore it is fair to expect that

10

successive iterations of knowledge acquisition would eventually reach a saturation
point. These observations should not detract from the positive benefits that can
be obtained from the judicious application of iterative knowledge acquisition, using

some means of assessing when the process should be halted.

The third result of the thesis underlines the benefits that can accrue to the knowl-
edge acquisition process from building a prototype expert system. The knowledge
base derived for the prototype can serve as the basis for the development of a more
comprehensive knowledge base for the operational expert system. From the pro-
cess of developing and testing the prototype, the knowledge engineer can generate
“meaningful” questions to ask the domain expert as well as guidelines for improving,
the knowledge base. During the development of the Blackbox prototype, questions
arose .about how to convert “possible ball” hypotheses to “balls™ and when to de-
clare that a game was over. When the prototype was being tested, another question
that emerged was whether a “Meta-Level” rule that caused errors in two of the 120
test cases should be retained in the rule base (Section 6.1.6). The tests also high-
lighted the limitations of the prototype. showing cases that could not he solved and
indicating which rules would be needed for their solution. A data bank of unsolved
cases could be used as guideli es to the selection of cases for future iterations or as
specific questions for the expart system to supply the missing rules. The experience
in this thesis suggests that prototypes in other fields could also be used to generate

probing questions to help further knowledge acquisition.

7.2 Future Work

I envision that the automated knowledge acquisition process as it was applied to
the game of Blackbox could be expanded in future studies. An algorithm could be
designed to perform additional analysis on the acquired rules and, based on that
analysis, procedures could be written to perfect incomplete rules. Procedures could
also be written to extrapolate from the knowledge inherent in the acquired rules and
create rules to cover plausible situations that did not occur in the training cases. It

is also possible that the rules that were acquired in the present experiment could

111

be generalized further to enable the expert system to play games on larger grids

without requiring actual knowledge acquisition from the larger games.

The rule base might be improved by the design and addition of an interface to
the expert system that would allow the human expert to intervene in situations
where the rule base was deficient, browse the rule base, and insert or improve rules.
The issue of knowledge acquisition from multiple experts could be also be stud-
ied further by increasing the number of experts contributing cases or by acquiring
knowledge from cases of distributed playing where several experts cooperatively play

the distributed game.

It would also be interesting to apply the ideas of automatically acquiring knowl-
edge from cases to ieal life problems in domains where thz previously mentioned
conditions C1 through C4 apply. One such domain is the area of medical diagnosis.
Patient data is often readily available. stored in computerized formats; symptoms
and diagnosis, and diagnosis and treatment form natural cause-and-effect patterns.
Another possible domain is that of credit approval. In this domain. too. records
of previous credit applications exist along with a clear cause and effect pattern of
measurements of financial stability and the granting or refusal of credit. Insurance
underwriting and insurance claims adjustment are also likely candidate domains
since insurance companies maintain many computerized records of existing policies
that show the conditions that led to the issuing of policies, the rates that were

charged, and claims settlements.

In the domains mentioned the seletion of cases for knowledge acquisition could
be divided along the lines of successful cases (cures, credit approvals, issuing of
policies, out-of-court settlement of claims) and failures. Rule-based knowledge rep-
resentation could be used to build knowledge bases for these domains. In addition,
tne use of frames could possibly enhance knowledge representation in the domains
of medical diagnosis and insurance. However, since the extraction of frame-based
knowledge is a totally different problemi that was not properly addressed in this the-
sis, it would be inappropriate to comment on its feasibility other than to say that

this too would be worthy of further study.

112

Bibliography

1]

[9]

[10]

[11]

J. H. Boose. Ets: A pcp-based program for building knowledge based systems.
In IEEE Western Conference on Knowledge-Based Engineering and Erpert Sys-
tems. pages 19 — 26, Amsterdam. The Netherlands, June 1986. Elsevier Science
Publishers.

B. G. Buchanan and T. M. Mitchell. Model-directed learning of production
rules. In D. A. Waterman and F. Haves-Roth, editors, Pattcrn Direeted Infer-
ence Systems. Academic Press. New York, 1978,

C. Culbert. CLIPS Reference Manual. Artificial Intelligence Section, Johnson
Space Center. Houston, 1989

C. De Koven and T. Radhakrishnan. An experiment in distributed group prob.-
lem solving. In S. Gibbs. editor. Multi-User Interfaces and Applications, Pro-
cceding of the IFIP WG &4 Conference on Mult-User Inte rfaccs and Appliea-
tion, pages 61 — 76. September 1990.

Richard 0. Duda and Edward H. Shortliffe. Expert system rescarch. Seicnee,
220(4594):261 - 268, April 1983.

L. Eshelman, D. Ehret. J. McDermott. and M. Tan. Mole - a tenacious
knowledge-acquisition tool. [International Journal of Man-Machime Studees,
26(1):41 - 54, January 1987.

Richard Fikes and Tom Kehler. The role of frame-based representation in
reasoning. Communications of the ACM. 25(9):901 - 925, September 1985,

M. Freiling. J. Alexander. S. Messick. S. Rehfuss, and 5. Shulman. Starting a
knowledge engineering project: A step- by-step approach. Al Magazine, pages

150 - 163. Fall 1985.

S. Nowlan G. Kahn and J. McDermott. More: An intelligent knowledge acqui-
sition tool. In Procecdings of Ninth International Joint Conferenee on Artificial
Intcdhgence, pages 581 - 383, 1985.

W. A. Gale. Knowledge-based knowledge acquisition for a statistical consulting

system. Internation Journal of Man-Machine Studies, 26(1):55 64, January
1987.

C. Grossner, J. Lyvons, and T. Radhakrishnan. Validation of an expert sytem
intended for reasearch in distributed artificial intelligence. In Second CLIPS
Conference, 1991.

113

[12]

(13]
[14]

15

[16]
[17]
18]

[19]

[20]

[21]

[22]

(23]

[24]

T. Gruber and P. Cohen. Principles of design for knowledge acquisition. In
Proccedings of The Third Conference on Artificial Intelligence Applications,
pages 9 - 15, February 1987.

F. Hayes-Roth, D.A. Waterman. and D.B. Lenat. Building Erpert Systems.
Addison-Wesley, Reading. MA, 1983.

R. R. Hoffman. The problem of extracting the knowledge of experts from the

]l)((*r.s_'pcctivc of experimental psychology. Al Magazine, pages 53 - 67. Summer
987.

Judith H. Lind. Downloading the expert : Efficient knowledge acquisition

for expert systems. In Proceedings of the 1986 International Conference on

Systems, Man, and Cybernetics, SMC, pages 547 - 551, 1986.

J. Lyons. Blackbox game: Program written in c. Technical report, Concordia
University, Montreal, Quebec, 1987.

J. Lyons. Bb-ace: An expert system to solve blackbox. Technical report,
Concordia University, Montreal. Quebec, 1991,

S. Marcus. Taking backtracking with a grain of salt. Intcrnational Journal of
Man-Machine Studies, 26(4):383 - 398. April 1987.

S. Marcus, J. McDermott, and T. Wang. Knowledge acquisition for constructive
systems. In Proccedings of Ninth International Joint Conference on Artificial
Intelligence, pages 637 - 639, 1985.

R. S. Michalski and R. L. Chilausky. Learning by being told and learning
by examples: an experimental comparison of the two methods of knowledge
acquisition in the context of developing an expert system for soybean discase
diagnosis. Intcrnational Journal of Policy Analysis and Information Systems,
1(2), 1980.

D. Michie, S. Muggleton. C. Riese, and S. Zubrick. Rulemaster: a second-
generation knowledge engineering facility. In IEEE Conference on Artificial
Intelligence Applications, 1984,

Sanjay Mittal and Clive L. Dym. Knowledge acquisition for multiple experts.
Al Magazine, pages 32 - 36, Summer 1985.

J. G.Neal and D. J. Funke. Transfer of knowledge from domain expert to expert
system: Experience gained from jamex. In Proceedings of the 1986 International

Conference on Systems, Man, and Cybernetics, SMC, pages 536 - 540, 1986.

M. A. Newstead and R. Pettipher. Knowledge acquisition for expert systems.
Electrical Communication, 60(2):115 - 121, 1986.

Kamram Parsayve and Mark Chignell. Erpert Systems For Erperts. John Wiley
& Sons, Inc, New York, 1988,

K. Pitula. Blackbox: Revised game program written in c. Technical report,
Concordia University. Montreal. Quebec, 1988.

IX. Pitula. T. Radhakrishnan. and C. Grossner. Distributed blackbox: A testbed
for distributed problem solving. In Proccedings of the International Conference
on Computers and Communications, March 1990.

114

29
[29]
30]
31
32

33

[34]

K. Pitula. T. Wieland. and C. De Koven. Blackbox: Player’s manual. Technical
report, Concordia University, Montreal, Quebec, 1989,

K. Pitula. T. Wieland. and ('. De Koven. Distributed version of the game of
blackbox. Technical report. Concordia University, Montreal. Quebece, 1989,

D. S. Prerau. Knowledge acquisition in the development of a large expert
system. AJ Magazine, pages 43 - 51, Summer 1987.

J. R. Quinlan. Simplifving decision trees. International Journal of Man-
Machine Studies, 27(3):221 - 234, September 1987.

M.R. Railey. Dynamic Control Structures for Coopcralting Processes. PhD
thesis, University of Illinois. Urbana-Champaign, 1986.

A. H. Silva and D. C. Regan. Using cognitive psychology techniques for knowl-
edge acquisition. In Proceedings of the 1986 Intcrnational Confercnee on Sys-
tems, Man, end Cybernetics, SMC, pages 530 - 535. 1986.

S. M. Weiss and C. A. Kulikowski. A Practical Guide to Designing Eirpert
Systems. Rowman & Allanheld. New Jersey., 1981,

115

