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ABSTRACT )
\ ~ AN 'EXPERIMENTAL INVESTIGATION OF /
- HIGH CONTACT RATIO GEAR TOOTH BEHAVIOUR ' , .
~ . » . ' hd X . . ~ * .
s leslie L;ajoa Kenedi . . , ) .
: . ’ | N
. . . o - .
* . ‘ ! - "\ . - L, .

The objective of this study is to examine experimentally the

. . . ¢ , " .
static bepaviour of a pair of High.Contact Ratio Gears (HCRG). There {is

a recent Ipterest in suth gLeari;\g which stems from the possibility of
sd.gnifi‘c'ant weight saving. -
' Photoelasticity was used extensiv;aly in the past for . ’e
investigating mtostly a -single -téot_h. For HCRG a multiple tookh model @19 =
necessgary, as the interaction of the ¢simultlaneously engaged tooth pairs
determines hov&the load isg distri:buted.~ Building ,§uch photoelastic «
modél is' a novelty as 'extremely high precision is r.!eq.uired. . |

The fillet stresses are observ;ad iP single and multiple tooth

palr engagements., For a few selected fillet-locations the stresses are

plotted .vs‘loading position meagsured on the line of action. Thus the

¢

v . -3
gtatic stress excur)sions of these points are obtained, allowing -

N 1

determination of the most damaging'-stress ranges. .

o o S . -
7 ‘Deflection measurements are taken and new cqnc\-,pts are introduced

~ . .
for setting their reference datum. The variable compliance ,of tooth
: f
1

pairs as’ a function of load position is determined and the sharing of

the toad is explored in depth using'several new techniques.
As the structure is indeterminate, the concept of "Stress

Admittance” is ‘proposed. This 18 the stress due to the combined unit

3 M

deflection of a pair of contacting teeth. It may be used For finding
\ 4 "

the critical lggation: of the load in'multiple tooth pair engagewment,

i
’ . . >

-

o ~ K
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a, addegdum '
a) moment arm Co ) : o
A cross, sectionmal area
b half width of contact
b constant (Wilcox & Coleman): * '
, 5\ . 1 M i
e, Lbz.\ length of side of equivalent straight flanked beam
B face width of beam, thickness of model M.
' By  varlable (Wilcox & Coleman)
. s
c distance of extreme fiber from neutral axis
- N constant (Wilcox & Coleman}
— _— . «
' C compliance ‘
- /
C4 center distance o " . e
’ Ce’ equivalent compliance
N}p ~> pair - compliancé
Cpo pair - compliance at pigch point
d " dedendum
dy " constant (Wilcox & Coleman) ‘ )
» .
D, variable (Wilcox & Coleman) .
, .
L 2. -

- “

L4

! The assemblance of symbols quoted from a variety of sources are often
conflicting. To make the text more readable the notation of some of
the quoted formulas was changed, though an effort was made to retain
as much as possible of the original nomenclature. )

L4



-

¥

0

1'

g.2'g

v Y3 .
LIST OF SYMBOLS! (Cont'd) .

half length of the weakest section \
Young's modulus \
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[

Young's modulus of support
size of gap " ) |
shear modulus \\\

distance from contact to tooth centerline along the
profile

material fringe constant  [kPa - m], (psi-im)

total‘depth of tooth
distance . .l
the 1th number of a séquence

a

second area ‘mdment

geometry factor “~

dimensionless flexibilfty coefficient (Chabert)

stress concentration factor ,

. N v o
stress correction factor (AGMA standard)

s

A}

normal to the

[4

constant, repregsenting the effect of inaccuracies on the

stresses in ‘the model.
"residual factor" (Wilcox & Cdleman)

O'Donnell correction factor .
constant ’
- AN

height from weakest section to load

height from weakest, gection to the load 1line at its
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INTRODUCTION
The term "High Contact Ratio Gearing” i&plies that the average

number of teeth being in contact at a given time 1is high in contrast
- -

-~ 4

with the "conventional” Low Contact Ratio Gearing. Usuali} High Contact
Ratlo Gearing involves 2 to 4 pairs of teeth in contact at a given
time. A decrease in load ber tooth may be therefore attained. However
the pressure angles would be lower, the pitch may becoﬁe finer, thus the
relaﬁive stregsing of the fille; would increase. With more teeth acting
at the same tipe the sensitivity to manufacfuring errors could be ‘
critical, At such conflictiné??onditions the analysis must be
1n9reasiﬁgly précige. .
There are a number of analytical approaches available for the
evaluation of gear tooth designs, each attempting to cover the most
common practical cases. By stepping from low contact ratio (l.2 to 1.6)
to hy&h congact ratio practice, caution must be exercised. The new
éonditions may exceed the range of validity fo£ a previously proven
method. | | A |
The opening mg;keﬁ for HCRG.and the incréased demands for
dﬁtugate analysis warrants an experimental effort to contribute to the
choice of ;n economical and reliable Qnalytical tool.

1 ~

The 1iterature on the subject is first investigated, so

repetitioné may be avoided, and the efforts may be focused on areas
‘ *

not adequately covered. ,“x

CHAPTER ONE ' 14

s




CHAPTER TWO . N . 15

LITERARY SURVEY S

The low .pressure angles at which HCRG .operate, shift the critical

v

stresses to the fillet 4rea. Therefore afticLE: dealing with/j}lietrzx

stresses will be explored: first.

As the load carried by ‘an 1ndividual tooth depends greatly upon

how the total load is shared, the flexibility 5% the tooth gains

.

For this reason papers examining the compliance

increased importanée.
of gear teeth will be considered afterwards.

The analytical methods for finding the fillet stresses may be

grouped urnder four headings.

1) Short’beam model approach «
2) Finite Element ;nglys;s d
3} Isotropic Wedge Theory
. 4) Theory of Elasticlty approach, using complex potential ~
functions and coﬁformai tran;formatio{. |
The material bélowlis listed along these lines. -
K -, 0 » —
’ # ’
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2.1.0 Stress Sensitivity - Short Beam Model Approach - .
. Lt * " t
2.1.1 The Lewis Equation’ [26], [37] : :

¢

The hdstoric first was attributed to Wilfred Lewis (1892). A

.+ parabola of "equal strength” was fitted into the tooth outlix;e.

(Fig. Zf_l)'. The load line is extended to the radial centerline of the

tooth giving the agex of the parabola. The "weakest section"” AA" is
- . o ~ »
obtained by drawing a tangent, to the fillet rﬁdius such that “AB = BE.

. i . b - .
To this section, elementary beam  theory is ‘éjéplied. . .

- s

H

The formula announced in 1892 for the bending stress of the gear

s e

tooth 1s: - o
e n : _ N
. Wt ’ )
\ ot - —_—— © . - (2'-1)
PBy,
“where W, is the traﬁsgnitted (tang#fieial) load
. ™y ° S ' .
p 1is the éizgfar pitch °~
5. - - L
B'1s the facd® width of the tooth . / ’

y1 1s the dimensionless “Lewis form factor”, (:lx\ifdepends upon

" the form of the to‘z)th. ) . . / -
Using Fig. 2.1 it may Be shown how this expression is linked to the .beam

theory. By similar trianglés\syom in dashed lines:

ct/2 e t? s
—— = —  therefore *x; * — (2.2)
X) t/2 e 4" ) . . :
The 'stress at "A" due. to the tangential component of’the load: .
y; M 6W ' We r v{‘ 1 1 ‘ .
o't - _ . 0w < - . — - *
I/c  Bt? B t2/6x’ 3/63%41' 4/6

m\‘xlt plying the numerator and the'denomi'nator by p-and substituting x
. \ ‘ b

from EN (2.2) ” o,
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. ~ . \/
- H
, We .
Oy = ; -~
B (x)/p) (2/3)p ~
B h s
. . 2X1 «
Letting the form factor y; = — Eq. (2.1) is obtained. K

3p

-

2.1.2 Dolan & Bréghaﬁzr - Stress Concentration Factor [12]

It was soon discovered that the Lewis formula gave grossly .

¥

inaccurate results. Following a few early in&estigators such as S.
Timoshenko [39], R.V. Baud [33], R.E. Peterson [34], P.H. Black [35],
Dolan and Broghamer made the first extensive study to isodlate those

parameters which influence the fillet stresses most.

-

\ Eleven models were made of bakelite, 1nco£pon§£iqg a systematic

var{g;ién of load position, number of teeth, pressure angle, addendum

}roportions, fillet size, and fillet shape. !

Eaéh model consisted of a middle tooth and two halves of the

neighboring teeth, as in Fig. (2.2). They were held in a rigid frame

(l1). Deadweight loading was transmitted by a half wedge (2), through a
AR X JQ.?

thin cellulose strip (3) protecting the model.

* After careful measurements and analysis the parameters were
organized into the gﬁapg of the well known stress concentration factor
formulas for the tensile fillet. For nominal pressure angles of:

¢p = 144° K = .22 (tfrg)0:2 (t/2)0-4 (2.3)

bp = 20° K = .18 f(t/rggo-l-" (£/2)0+45 (2.4)

) The factorsnabové include the direct effect of the radial load

and increase significantly the nominal stresées obtained by the Lewis
formula. ?he use of these expressions 18 discouraged for ang¥§? other

2

than indicated. o ¢

h:
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These.stress concentration factors const{tute an important i
»

feature of the "Modified Lewis formula”, which along with ‘other

¢ I/

considerations forms the basis of the AGMA standard described below.

+ 2.1.3 The AGMA Standard [&]

\

*

l‘
This standard has -received wide acceptande. It stipulates a

series of service factors providing a guide for design. Modifications
vere iptroduced to the Lewis ¢formula, which in its revised form
congtitutes the core of the standard.

Wy Py

Gt = < (205)
BJ

where Py the diametral 'pitch has replaced the circular pitch, and

J a "geometry factor” was introduced.

v

. Y . g
J - N N - - ) ) 3(2.6) .
Kf m, .

a

where Xg. is a stress correction factor, essentially Dolan &

Broghamer's stress concentration factor. ' f
m, is the load sharing ratio. For conservative estimates tip

-

loading 1s assumed and it is taken as unity. 1\

The new form factor Y is defined by the expression: ‘

< ’1
|
1
: Y= 2.7y |
\cos A [1.5 tan A] '
g 08¢y X1 t . ]
wheré’ X, & t 1s read from the layout as in Fig. (2.1) E 1
«‘” ' The second term in the denominator accolnts for the direct ef:fec‘L.

of the radial component of the load, as it w.aslproposed‘by Merrit [38] »

(1938). The moment effect of the same 1s ignored.
5 .

|
|
a S |
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When the designer is confidex)t\t:hat manufacturing can keép
profile errors at very low val\;es, he' may assume that load sharing does
exist at each and every mesh. Then the critical load may be placed to
the "Highest Point for Single Tooth Contact” (HPSTC). -The term tacitly
ihfé;és LCRY gearing. The radial position of this point may be found for
the driver gear \;sing Fig-' (2.3). Essentially the.length of one base
pitch is measurgd forward from point E, the engag@xept end of the line
of action. To find Ry, the position of the HPSTC for the driven gear,
point D the end of the disengagement branch is used as datum.

The ¥ form factor is then determined similarily as before except
the load is located at the HPSTC. ’
For standard tooth ft;rms th; values for Y are} available in
tabular form. [For non-conventional designs however an accurate layout

or compt'.ltation is still ne‘cessary.

The accuracy of the "Modified Lewls formula” is far from being
satisfactory for the new industrial demands. The.following researchers

are gll attempting to improve the accuracy using various approaches.

2;1.14 R.B. Heywood ~ Gear Tooth as a Projection-{1948)[17][18]

This author used photloelasticit:y in his investigation of /the
behaviour of loaded projections. The scope of his work is quite
general. It deals with écrew threads and other prott\{Iding structural
elements, symmetric or skewéd. bo'unded by flat flanks of any practical
incline. i C°

For the extension of his analysis to gear teeth the curved flank

of the tooth was transformed to an equivalent straight sided projection

» -

‘ shown in Fig. (2.4). - -

—

(3

o o cmanoh

e
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Equivalent
straight sided
projection

FIG. 2.4 HEYWGOD'S CONSTRUCTION [18] &

Eqﬁivalent: straight sided projection

A ]

Lewis tangents

— Lewis parabola

k>

FIG. 2.5 KELLEY - PEDERSEN CONSTRUC"I\ION "f20] -
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In the analysis of the ge‘ar problem.first it 1s expl.gined that
the Lewls approach 1is unsound. The simple bending formula was intended
fc;r long parallel beams, not for short tapered shapes. A:lsd the load is
much too close to the fille;: so its “proximity" can not be ignored.

The photoelastic measurements were regarded as the undisputed

true stresses, and.a formula was constructed to fit the results. The
[

_effect "6f/"proximity" was 1solated and is given as the second term in
. ,

the second bracket below. °

The maximum tensile fillet stress:

) e 10 1.5 a; (.36 4 sin A
o = —~ | 1 +.26j— Fl—1 |1+ (2.10)
B re e? boe 4

The stress concentration factor depends upon a single ratio, it
" L 3

was found independent of the load height, cf Eq's. (2.3 & 2.4).

" No attempt was made to construct a formula for the compressive ..

stresses.,

2.1.5 M.A. Jacobson - Proximity Effects (1955){19]
This author. emphasizes the importance of careful experimental
‘practices.
# v
. His main contribution to the art was the demonstration of the
proximity effects. He shows that as the load approaches the fillet

area, the tensile fillet stresses start to increase again. This happens

in spite of the diminishing bending moment.

)
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2.1.6 B.W. Kelley and R. -Pedersen - The Contemporary S€ate of the Art
and a New Formula [20]

These authors have analysed and compared the afofe mentioned ,
methods and test results, including their ‘own, and an improved formula
; . .

was proposed. -
]

Their original objective was to find a stress concentratidn
factor formula for 25° pressure angle, similar to those established by
Dolan and Broghamer.

It was soon found that no unique constant would satisfy large and

small tooth mx{:bers equally. This lead the authors to svcrutinize the

S
t

construction of the Lewis parabola and that of Heywoods equivalent flat
v . .

sided projection. Also the shape of the fillets was more closely

examined. K R -
'.Th‘e radius of curvature of trochoidal fillets, which are produced
by rack type tools 1in a generation process, has 1its minimum value as. it
blends with the root radius. From this point it increases gradually
t:_oward the fanvolute. It is reasonable: cheref‘ore to adopt for stress
calculatiops the actual fillet radius at the location of maximum stress.
+ It was observed, thz;t: as the load moved toward the tiﬁ, the
location of the p;ak' stress shifted toward the involute. The parabolic
construction in the Lewls layout does not give the right locatiom, but B

moves 1t in the proper direction with the variation of:

a) load position, b) beam depth and «¢) the "taper” of the tooth

. shape. ,

)

The Heywood construction is not sensitive to this “stress

shift”. Once the taper of the equivalent straight side 1is determined, a

-
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cofistant 30° is taken for the location of the max. stress from the point
of tangency,~é§ shown in Fig. (2.4) p 23. )

— .

A hybrid process was proposed. The Lewls parabola was chosen as
the basis of the construction, as in Fig. (2.5) p 23. The location of
the m‘aximum stress was determined by the “stress shift” exprt;ssion .Eq.
(2.11) b;low, The structure of the stress formula resembles that of
Heywood.

Kelley and Pederse} have observed that the angle between the
Lewis tangent and the tangent to the fillet at the point of the maximum

-

.stress may be cloa:eli' a'pproxim?.ted by A

v

exp = 25° - vy ’ , (2.11)

vhere egp 1Is the angular shift of the maximum tensile stress which is

the angle between the above tangents. s

vy, 1s the angle between the Lewis tangeni: and the centerline

of the tooth.

’

The maximum fillet stress is:

W ' e 07 1.’Sa1 sin 8 '0.45 :
g = — |1 + 0.26 ['__J + + (2.12)

B T¢ e? 2e (bze)*

;lhere B 1s the acute angle between the direction of the load and the
set of principal stresses at the "eritical point™, (Fig. 2.5), p 23.
The proximity terms are somewhat different from those of
Heywood. Neither of them are based on the l'a;ls of physics, they both
are purely empirical butf Kelley and Pedersen's terms fit the results

s

better, It is clalmed that the formula may be applied also to concave:

i

sided internal gears.
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They conducted also some fatigue tests in support to thelr ’
- - / 1

formula and found excellent correlation at stress levels near the

endurance limit. The significance of the "range of stress” {s mentioned

~ with respect to residual stresses. In the carburized layers large\com—

¢

A\
‘pressive stresses are locked in by quenching. These superitﬂ/;’osed onto

- the service stresses give an entirely new set Tf fatdigue conditions.

2.1.7 I.M: Allisor and: E.J. Hearn - Effects of Friction [3] -
[ -

The a;‘ticle deals with a wide range of conditions ef-fect~ing the
bending strength of gear 'teeth. Howeyer the role of friction should be
mentioned here.

It‘was shown that frictional forces at the contact may alter the
stress pattern radically. Geat; performance 1s only slightly affected -
since lubrication usually keeps u <0.1. However friction may become a %

L

major source of error in photoelastic tests where 0.3<u<0.6 under’ . )
static conditions is typical. It 1is shown, that with y = 0.3 a 40%
chaxige in the fillet stresses may be experienced.

2.1.8 R.W. Cornegll's Expression for Fillet Stresses [8]

This study 1s part of a wider computerized effort for finding the
fillet stresses under dynamic,conditions {9]. The static analysis is
odescribed below, the ]_.ayout: and pomenclature are shown in Fig. (2.6).

This author found that the Heywood formula gives equally close

*

- f

resu‘l.t:s for LCRG and HCRG cases. Hence it was adopted with some changes .

| .
Term (3) below was adjusted for the bending component of the load. In

tern (4) the factor .25 was replaced by the Poisson's ratic and it was »
made ,moré sensitive to the proximity of the radial load by employing the

ratio tp/tg. Term (5) for the radial load was added.
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The-modified Heywood formula was given in a normalised form:

oy B tg 0.7
—_— =14, 26 — .
W cos) 2r¢

I

where factor (1) is

e

term (2) is

9
(3) is
(4) 1is
(5) 1is

J

the
the
the
the

the

6'g .72 V4 ty, " tan)
— +[ ] 1+ ——— v tan X|-
ts” . \tg %g ts tg

2 3 4 5,
stress concentration factor

beam cant ilever stress

!

préximity stress due to the bending
- 4
proximity stress due to the radial load

direct stress due to the radial load

thp location of the maximum fillet stress is cousidered to be a

variable. It is determineduin terms of fillet angle Yg in a

computerized process which maximizes, the fillet stress. After vy is

found tg, 25 and L'y can be calculated.

The rzults were compared with stresses obtained by other close

form ‘solution§, tests and by "analytic transformation”

correlation was found.

a

2.2 Stress Sensitivity - FinitﬁElement Method ' .

{5] and good

This 1is the most widespr:aad tool of stress analysis for continua

of primary importance.

"in the computer age. Ttﬁvrefore its application to the gear problem is

The method does not yield a general solution, it gives rather a -

L

" gpecific answer ta a specific question. It is however extremely

suitable for parametric studles sc data may ’bex:@ccumulated' economlcally

for building up a closed form empirical formula. _.In this coatext the

finite element method may be regarded as "numerical experi“mentatibn".

L
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2.2.1 L. Wilcox & W. Coleman's Polynomial Formula (1973){/31]

vo.

. + These authors developed empirical expressions for $tandard

addéndum symmetric and asymmetric involute tooth profiles/ from data '

generated by fini}:e elements. The variation ‘of pressure angles and
tool--edge -radii gave nine symmetric and six asymmetric models.

The position of the load was varied from tip to pitct:‘line . The -

" equation developed is similar in structure to that of Kelley

and _Pedefsen =[20].

o = K Scp Ky fi\;r the symmetric and (2.14)
g =K Scg U fér the asymmetric cases. ‘ (2.15)

where Scp is the basic blam bending stress.

. The’ stress concgntl\ation factor:

Vaey

o -

4 . )

¢ 30.256 S

K = 0.939]— ~ , ) (2.16)
rg » . -

s K; and U are the "bhlanced and unbalanced residual factors” for -

~

symmetric and asymn;etric tooth forms respectively. All the hard to
) ' . s

- <

roximity etc. effects are cast into these

)

account for radial, shear,

¢

coeffi7ients .

a

"power series of 204 degree in terms of a

s in Fig (2.8). t ;

‘ 132 .
J+ D1(¢p)[t—J , (2.17) .
. L ' ’ .

pressure angle and are assumed to Have

) K; is expressed with

) nondimensional load height,
Kl -"Bl‘(ép) + CI(QP)[

By, C; and D; are functions o

the form:
. a " 4’0 . \" ¢o 2 i L '
. ¢p ¢p }
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Intermediate
size elements

Fine mesh regions .
on and near the
surface - both sides.

e

Rectangular elements

. : -,
L SN , FIG. 2.7 CONTOUR OF FINITE ELEMENT MODEL .
. . . ASYMMETRIC TOOTH - WILCOX & COLEMAN [31]
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*where ¢, Is an “arb'itrary']choice of pressufe angle, to have the
expression nondimensional. The constants by, c¢;, d; are detetmined from
the finite elemepé’ iresults and solving systems of (three) equatiomns. 'l
'C1(¢p) and ‘D1(¢p) are ‘det:ermined ‘ft? a similar manné;', a quadratic
equation of nine terms was obtained.

U the unbalanc%/residual plays a similar roll for .asymmetric

tooth forms. A cubic equation of (16) terms determines this factor.
i ’ .

a $pL - ¢PU
The nondimensional -pressure angle here is expressed as —m— ——

¢pL + ¢pU

where the indices PL and PU refer to the loaded and “"unloaded” sides.

Good agreement is found with the photoelastic results of Dolan &

Broghamer [12] and Kelley and Pedersen ,[20]‘. It remains to be seen that
the formula v‘;ould apply to modified addendum cases/,’ as the constantg"
were found by using standard addendum proportions. The constants are
pu’blished in the a‘rticle, thus they méy; be readily adapted to a
pr.-'ogramable hand calculator. a

The investigato;s us‘ed constant strain type rectangular
eleménts. In the low gradient l\reg:l.ons the size.of the elements was
approximately 10%Z of tooth height. [In the fillet area this size was
'fre,duced to 2X. To obtain reasonable Qrface stresses numerical
averaging and hyperbolic gxtrapolation was’ applied.

In a later paper “[32] they report having used isoparametric

elements. Substruct:uring' was emplogyed to handle the large number of.
* ¢

elements in acceptable. computation time.
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2.2.2 G. Chabert, T. Dang Tran, Rs Mathis's (1974)
Expressions for Tensile and Compressive Fillet Stresses [7]

N #
. An article which extends this survey to the continental Europe.

[}

The scope of this investigation is narrower than that of ref. {31].
20° nominal pressure angle, standard addendum symmetric profile
of the European module system was examined, (Fig. 2.9). The tool edge

radius, number of teeth and the load positions wére varied in the finite

L i \
element experiment.

-~ -

From the results closed form expgessions were developed for the

peak tensile and also for the maximum compressive fillet stresses
‘ 3

4 ’

expressed in N/rnm2 .

( 1 rf © W : '
o = |3 +— [38 - 50 o (2,19)
N m Bm ’
L e
~ ~ for 12. N <50
] 1 re)] W h
o = 3.5 +— |41 - 50 — (2.20)
Sl N mJ|Bmm
!
where N 18 the number of teeth
W the normal load [N]
rs the fillet radius [mm} %
B the fice width [mm]
n the module {ﬁn]
o

m. is the contact ratio

Triangular elements with midside nodes are used. The density of
the elements around the fillets and along the flanks are approximately
102 of the tooth.height. There 1s no reference if afy ad justments were

tade to compensate for the size and limitations of the elements.
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FIG. 2.9 LAYOUT OF FINITE ELEMENT MODEL - CHA.BERT ET. AL
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2.3 Stress*Senéitivity - Isotrbpic Wedge Theory

From the point of lodding tangents até drawn to each fillet, thus

" a wedge is obtained. The known solution of two dimensionalctheory of

Y
elasticity for an isotropic wedge under a point load of arbitrary
. -

-
.

: ]
orientation is applied. ' - ’
.
This solution is credited to Mitchell J.H. (approximately 1900)

and may be found in Timqshénko & Goodier's Theory of Elasticity [28].

2.3.1 B.A. Shotter's Wedge Stresses
and the Most Damaging Stress Range [27]

The inadequacy of the beam approach is even more true for high
strength tooth éofms, such as the Wildhaber & Novikoff circular arc
profile, than for involute shapes. It was found that when for
manufaJturing convenience the fillet depth was increased on'such[tooth
shapes, the stresses have decreased unexpectedly.

Apparently the close proximity of the contact surpassed the

—bending moment in s¢ressing the fillet. Therefore the elasticity

solution of an isotropic wedge was applied. For an arbitrarily oriented. _

-

Ioad the maximum tensile and compressive stresses are:

2w a3 cos ap - sin a3z cos.qy -
O't - — (2021)

reB - a32 - sin? a3

2w a3 cos oy - sin a3 cos ay ] K
O * — 5 > (2.22)

r.B az” - sin® a3

where ry & r, are the radial distances from ‘the point of load
application to the tangencles on the tensile and comptressive fillets

respectively, as shown in Fig. (2.10). ‘ -



FIG., 2.10 LAYOUT, WEDGE PRINCIPLE -, SHOTTER [27]

-
te

1

36

e Al

-y




It must be noted, that for these equations to hold, the stress

distribution must remain putely radial mpef. [28], p 112. This is

unlikely to be the case at the reactions near the fillets, where it

. matters the most.

The article deals also extensively with'the nature of fatigue

failure. 1t is emphasized, that the maximum tensile stress is not

,

sufficient for the determination of the fatigue life of the gear, even .
@ .

S, f
if it was known precisely. The f%;l distribution of the stresses around

the fillets are needed for a whole load cycle to find their most

damaging stress rénge. )

-«

\ .
5.4.0 Stress Sensitivity - Theory of Elasticity Solution, Uéing Complex

Potential Functions and Conformal Transformation

The theory of elasticity derives the stresses and the deflections
from the Airy stress functign. The complex potential theory relates the
stress function to certain anmalytic functions, the so called complex
potentials. HendE the stresses may be expressed in ge;eral terms of
these complex potentials.

\

The curved edée of the tooth profile i{s transformed to a stralght

edge of an infinite half plane using conformal wmapping (Fig. 2.11). The

boundary conditions on this straight edge allow the complex potentials
[~

to be specified. As the stresses in the plane'of curved contours are -

)

expressed in terms of the complex potentials now with specific

¥ /

functions, a solution 1is obtained..

2.4.1 T. Alda & Y. Terauchi

4

4] ;
" These authors ;ﬁe credited with being the first to apply this two

dimensional elasticity solution using curvilinear cogrdinates to the

1
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whéte B s the face width of the tooth.

39
gear pfoblem. The derivation and even the application 1s quite
involved, 1its proper presentation is~beyopd the scope of this study.

Aida aﬁd Terauchl have realized, that the complex pofential
metﬁod is not suitable for every day practice, therefore they
constéucted a utilicy formuia, which gives stresses reasonably close to
those obtained previously.

The loads were resolved into tangential and radial components and

"npminal stress elements” were selected corresponding to the load

kK

components. The layout and nomenclathre is shown in Fig. (2.12). The

nominal bending stress {is:

6WL cos A .
op = 7 , . (2.23)
Bt

-

m-‘\"'?
-

]

The nominal direct compressive stress, including the effect of

its moment about the centerline of the tooth: ‘ "f, )
W sin A 6Wa; sin A . )
op = - - ,' (2.24)
Bt T ope? )
and the nominal shear component:
W cos A
T ™ i

(2.25)

Bt

These nominal stress components were compared with the stresses.
obtained under the respective loads by the complex potential method.

The process has lead to the éstablishment of weighting factors for each

stress component- and an expresgféﬁﬁﬁor the stress concentration factor.

The latter is the quantity in the first parenthesis below. The maximum

tensile stress is: .



FIG. 2.12 AIDA-TERAUCHI LAYOUT [2]
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’

t ~ '
op =|1+ 0.8 _] (.66 op + .40 (op2 + 36t9)} + 1.15 o]
re

(2.26) —

The rational structure of the formula suggests that it may be
employed in a more genex-'al sense. 'This observation was us‘éd later by
the writer to extend the us‘efullness of the formula for compressive'
peake, and for analysing frictional effects.

Alda and. Terauchl investigatred the accuracy of Hofer's method for
findi‘ng the "weakest section"”, which 1s the same 30° tangency from the
tooth centerline as it was done by Heywooi [18]. It was found,that the
location of the tensile peak varies f;om 24° to 36.8°. It is claimed
that the choice of a constant 30° leads to an underestimate of Omax.

by not more than S5Z%. )

They also performéd a series of photoelastic tests to verify
the formula. Good agreement was found for those shapes which resem.ble
genuine tooth forms, even for low’ dedendum loadinﬁ cases. To obtain a
better representation of tm’g_;ear shapes, it was realize:i that more

than three terms are needed in the mapping function. This was achieved
' v . .

by the authors of the next. article.

2.4.2 C.N. Baronet, G.V. Tordion's "Exact Stress Distribution”
(1970) (51

Simultaneously with Aida and Terauchi's paper [1], V.L. Ustinenko

[40] published a similar solution using five terms in the mapping

. function. The calculations were performed for the standard European
-

tooth form. Baronet and Tordion used a similar transform function ‘and

computed the stresses for American Standard teoth shapes. Using these

-
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five terms a straight line may be mapped almost perfettly into a geaf
tooth pr8file, as in Fig.(2.11) p 38. Only the discontinuity at the tip

is rounded off with little effect on the/stregses.

The eight constants for the trangform function were determined by

trial and error. They are given in tabnlar form for 20° and 25°
: . r
pressure angles and standard addendum propottions for six different

tooth numpefg at the end of the article. Th% stregses are expressed by

the "Modified Lewis formula”: ’
& WePp N ‘ '
. Omax = ———— (2.27)
B J(t or-e) - g :

where J, and J, are geometry factors for the tensile and

compressive sides respectively and are given in tabular form.

It is Onfortunate that the results are compared only with one
source which was also obtained by computation. Some supporting evidence
from a photoelastic experiment would be %esirable.

|

\ ‘ {




vt Sy e+ s =

. e

=

1 4 v l‘s‘
2.5.0 Survey - Investigating Tooth Compliance )

To find the dynamic. loading on a structure it ishnecessary to

know 1its stiffness. For a pair of %eaf teeth in mesh the reciprocal

.

term.co%pliance is more convenient. The displacements are considered in

¢

. 5 .
the direction of the normal load, i.e. along the line of action.
,,J

2.5.1 Weber's Semi-elagticity Solution [29]

The deflection of a tooth may be 1dea11;ed‘co compris; of three
discrgte elements.
a) The Hertzian deformation of the contacf‘and of the underlying
region.

b) The bending and shear deformation of the tooth ag a beam.
v l
. ¢) "The displacement at the load due to the deforfation at the

'

foundation of the tooth. ’

The Hertzjian deflection is deriyed from theory of elasticity
.pfiﬁciples, using a stress function of complex varjlable. The elliptial
- load @;gtribution given by Hertz is adopted (Fig. 2.14b).’

S P = ax [1 - ('/B)2) A (2.28)

. .
where b 1is the half width of ‘the contact strip between the- %

O
I
-

/céqtacting cylinders,' as in Fig.(2.15§3. If they are made of the same

-

material:
: 8W . ryr, 1-v¥]t - . N
b = . : (2.29)
nB 1.'1+ ry . E vt ¢ 2.

r) and ry are the radii of the cylinders. ‘
The length "h" over which the deformation of tfe contact and the
underlying region is considereﬂ, is delimited to the centerline of the

tooth. The apex of the shear parabqia in a rectangular beam is at the



-

FIG. 2.13 COMPLIANGE LAYOUT - WEBER [29] ™ ?
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pressure distribution
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 'FIG. 2.14 CONTACT DEFORMATION AND PRESSURE

DISTRIBUTION - WEBER (29
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centetline. Hence the main flow of the forces once they have reached

»

the centerline of the tooth is.-transmitted through shear, which is ’

H

accounted for in the "beam deflection” term. Therefore the Hertzian

deflection for one tooth is:

w 1-vE 2 v ‘
y'c - e— I — - — [SiC]l (2'30)
‘wB E b, 1-v

[

where h is the distance from the contact to the centerline of the tooth,
(Fig. 2.13). .
and for a mating pair made of the same material:

G 1-v2 NElhz v
V'etr t Vo2 = — —= |1n L [15:1(:]l < - (2.3D)
mB E b 1-v

The other two components of the deflection were found using

energy methods. The strain energy in the tooth was equated with the

" work done by producing the displacement at the application of the load

(4. Wy'). The beam deflection is given as:

W LY (2'-y)? ~ tanZA) 4 [ dy %
y'p = — cos?) |12 dy + 3.1 {1 + — | (2.32)

EB . o (2x)3 .1 J g/ 2

where 2x, the section width, is a function of y, as in Fig.(2.13)
The first term is due to the bending moment, the second,‘ constant

term 1s”a factor for the shear, and the third term represents the effect

s
'

of the radial c‘omponent: of the load.

o

v

IR.W. Corpell [B) found the last term to be . The writer could
arrive only to the latter result. 2(1-v)
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The displacement at the load due Lé(the deformation at the .

foundation of the tooth is:

W 22 v : tan?AY] ‘
V'p = — cod?x (5.2 | —| 4| — |+ 1.4 |1+ (2.33)
EB- Lt t 3.1

' The first term is due to the bé;ding momeént imparting root

.rotation. Thé,second term combines the recié;oc§y/affeets of:
a) the Qoment effecting root displacement,
b) the shear force producing root rotation.

The constant Iin the last pafenthesis tepres;Zts the shbar
displacement and the last term is due to the radial component of. the
load. . "
Sampié calculations are tabulated, and are compared with the

experimental data of Walker [41] finding good ‘agreement. The theory

developed in this work is quoted repeatedly in the literature. \

2.5.2 W.J. 0'Donnell: Str%sses and deflections in Built in Beams [22]

fhis article focuses on disgﬁaéemeﬁts which are due to the
rotation at the foundation of the beam under a bending moment. It {is
shown, that for short beams like a gear tootg, if this rotation 1s not
accounted for, it leads to serious errors. It is equally true, and4
aémitted by this ;uthor in the subsequent discussion, that for gear
tooth foundation the "other” displacement elements dealt‘with by Weber
[29] in Eq. (2.33) must also be included. ,
Nevertheless reasonable solutions were obtained expressed in a tabular
hand book style. The nomenclature used 1s identical to that used by
Roark [24] so that the insertion of *a correction factor K, perﬁité ready

app¥cation.
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The rotation,at the built in end:

16 r plane stress solution
Op = . for narrow beams '(2'.34)
mEg (t + 1512 B
- 16.67 M (1 - v?) pland strain solution
8 = for wi/de beams (2.935)

® Eg (t + 1.5 rg)? B
where Eg; 1s Youngs modulus for the support material.

The correction factor is given as:

K, = 6y EI (2.36)

2.5.3 G. Chabert, T. Dang Tran, R. Mathis - Deflections, Using Finite
Elements {[7] ! :

° i3

These authors used the finite element set up as described in -
paragraph 2.2.2 and Fig. (2.9) p 34.

At the outset the boundary of the structure was 'detemi'ned. The
outer contour ABCDEF was fixed first, then the displacemehts along lines
PQ and RS were computed. As it was found, that these displacements
exceeded nowhere 3.5% of the deflection at the l'oading polnt M, 1t was
concluded t;hat the boundary may be safely reduced to PQRS, where: zero
displacements were imposed. The author's rationale Yor this step was to
ascertain that a load on one tooth did not affect significantly the
deflections on the next one.. Consequently the flexibility coefficients
were used directly to c‘o.mpute the sharing of the load for two pairs of
teeth in contact. '

4 Deflection values were generated for tipy pitchpoint and “"Lowest

-Point for Single Tooth Contact” loadings. From the results "k”

tfion-dimensional flexibility coefficients were cgmputed, which were

defined by the equation: 7

[

-
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kW
y = ' . ' (2.37)
BE ‘ '

where y is the deflection

W the normal load

B the face width

E is Young's modulus

. The flexibility coefficients were then plotted vs load position .

and it was found, that they depend only on the geometry of the tooth and
on the position of the loaa. |

The sharing of the 1oad was determined by considering the two

»

teeth in contact as springs in series, the pairs as springs in parallel,

y
“

as in Fig. (2.1532: Hence the two branch forces equal the total force:

W o+ Wy =W (2.38)

The two branch deflections are the same.

(k1g + kyp) W1 = (kgg + kpp) W - —(2.39)

The loads per unit face width were then .plotted vs position on
the 1line of action as in Fig. (2.15b).

It 1is clear that when all the load is carried by a single pair of
teeth, it is the total normal force. However for double engagement the
load variation on a gingle pair being "strictly linear” is questionable.
Some additional evidence would be helpful to-support such claim. |

The process whére the boundary was reduced must be examined more
closely (Fig. 2.9) p.34. The proximity of the outer boundary ABC of

'zero displacements to line PQ has coﬁtrolling influence on the. displace~
ments aléng that line. This very fact may invalidate the éonclus%on,

NS

which ruled out significant interaction between adjacent. pairs.
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2.5.4 A. Premilhat, G.V. Tordion, C.N. Baronet ~ Deflections,
Using Complex Potentials [23]

Thé complex potential functions obtained bx G.V. Tordion and
C.N. Baronet [5] are used to find the aeflectipns. Using plane strain
analysis, the displacements.of the median line of the tooth along. x,y
coordinate;‘in the origi;al z plane are obtained:

Due- to' the singularity at the point load, the deflection at thg
point of intersection between the tooth centerline and line of action is
computed. To find the total deflection one may add the contact
deformation as per Eq. (2.30) and footnote té the rép;rted values.

. The displacements of the tooth cent;rline are campared with
Weber's [29] results graphically. They show similar grends, Webers
-

values being somewhat higher. The difference is likely to be reduced if

the contact deformations are added to the deflections of the centerline:

%

2.5.5 R.W. Cornell's Expression for Pair Compliance [8}
J

+

The deflection:of the tooth comprises of three components:

a) The deflection of the tobth as‘a centilever beam.

b) The deflection®at the load due to the de%ormétions at the fillet
and the foundation area. . -

e) ‘ The local deformation at the contact and the underlying region

delimited by the tooth centerl&ﬁe.

Computation of the-beam deflection in general requires an
integration. This operation is approximated by a summation process,
which 1s based on elementary strength of materlals principles. 1In this
form the ‘calculations can be readily performed on a programable hand

calculator. The layout and nomepclsture.are shown in Fig. (2.16).
'3 . ! : .
\

"

A
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FIG. 2.16 BEAM COMPLIANCE - CORNELL' [8]
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The deflection of the tooth asva beam:
& N
W cos’h n 54224 64+6;2 /3 [2.4(14v) + tan®A]
64 + =
1 Ti Ai

Y'y =
BE i=

' ‘ ' (2040)
1 1 1 1 1 1
where — = i[—-— + ———J and — = -+
1 It Iiy Ay A Ag4

I; 1is the second aln':ea‘ moment of the 1. segment.

A; 1s the cross sectional area of the 1., segment.

cii is the lgngth of the that segment. T X
2y 1is the dista'nce'of the segment from the “critical sectlon”.
The expression above assumes narrow teeth i.e. B/t <5. For wide.

'S

teeth the values of I should be replaced by I/(1-v%).

For the deflect;oqs at the load due t.o- the deformation at the
foundation and fillet areas a modified'version of 0'Donnell's ana%gis
(22] was adopted. The bgilt in end is fubdivided into two regions l{.e.

. s
to foundation area or root and fillet area, see Fig. (2.17).

The deflection at the load due to deformations at the root is:

~ W cos?r [ 16.67 (2532 L5 : tan’)
: Y'pF - (,‘— + 2(1-v) | — |+ 1.534|1 + —————
/ BE LN tp 2.4(1)

plane stress solution for narrow teeth (B/T< 5) (2.41).

W cos2A 16.67 (2p)2 1-v-2v¥ iy tan®)
Y'FF = — (1) — 2 _____[_._ + 1.53 | 14—0o
c BE * Atp 1-v¢  tp 2.4(1+)

plané strain solution for wide teeth (B/t>5) (2.42)

~




’ where the l is due to the type of , caused by:
tem +  deformation at the root
st r;tat:ion moment
2nd . 1) ‘ro't:at ion1 sfxear
| 11) dfsplacement! moment
' '3rd‘ ' displacenent shear
. )
4th di{splacenent the radial component

-

ty 1s the bean depth, which is obtainegi by maximizing the deflections.

;""F is the distance from the load-centerline intersection to tg-.

The deflection of the fillet area y'ppg 1is calculated“similarily
as y'p and the total deflection due to the flexibility of the

foundation and the fillet area:

Y'F =Y'rF + V'rB - ) (2.43)

For local deflection Weber's [29]‘ equation is adopted. TIf the

-

mating gears are -made of the same material:

4(1-vZ) W 2/ hy v -;
Ve = ———— — |1n — - (2.44)
TE B b 2(1-v) | ¢f (2.31)

where h; and h; are the distances from the contact point to the
. respective centerlines of each tooth 7long the line of action.

‘b 1is the half contact width (Fig. 2.18).

-
In the dynamic program [9] the compliance of a mating pair is

considered. For this reason the deflection of the two members must be

\
added, as they act in series connection.

Lare equal terms as per Naxwell's reciprocity theorem.

.

[
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These lengthy expressions are ‘calculated only for 5 loading

positions. Using the 5 results curve fitting is a;;plied and a 4th

degree polynomial is generated, exiaressed’in terms of a special

normalized pqsition' along the line of action. The pair compliance’

equation:

s s sy s
Cp = CpO 1+ Al ——] + Bl — + Cl —-—] + Dl — (Z.AS)
: So So S, So

where S, 1s a reference distance along the line of action, S§,,

for the approach and S,4 for the recess.

S 1is the directed distance of the contact from the pitch point,

positive toward disengagement.
A ,81,C1 ,D| are curve fitting coefficients.

Cpo is the pair complliance at the pitch point.



2.6 Conclusions of Survey

L

The articles examined indicate a considerablend’evelopmen‘t fron
the Lewis formula to the application of complex potentials in the art of
calculating fillet stresses. Consequently there is a wide variety of
formulas availablg for this purpose. |

The Heywood [18] and Kelley-Pedersen [20] expressions have
overcomenmost of the early difficulties,and take into confideration the
effectq of stress concentration, radial component of ' load and the
agpects of "proximity"” at low dedendum loading. 1‘

The Coleman-Wilcox polynomial equation covers a wide v;riat}on of
pressure angles, treats symmetric and asymmetric tooth forms. The
Baronet~Tordion tables [5] are expected to give accurate "form factors"
for the American séqndard tooth form. The AidajTerauchi [2] formula

retains the beam principle, accounts for all load components. The

building block structure of the weighted stress components has a.

rational appeal.

It was indicated-i:y Shotter [27] and others that the maximum
tensile fillet stress, even if it~sas accurately known is. not sufficient
" to predic.t fatigue failure. The stress distribution of the whole

fillet, observed over a full load éycle, can oﬁly reveal -the most
. td

w

dangerou§ stress range.
Relatively few articles were found dealing with the compiiance of

.

gear teeth. The basic analysis 1s due to Weber [29] complemented by
/ <

O'D@nnell [22]." The knowledge of this property is vital for dynamic

analysis and for the determination of load sharing between

simultaneously acting toot}% pairs. :I‘he analysis applied by Chabert et

& 3
o .

P

-,




al [7] to the simple case of LCRG {is not convincing. For evaluating .

HCRG this problem rises to primary importance.

£y

A full treatment is given by Cornell and Westervelt [9][8].’ it

AN

encompasses the determination of tooth proportionms, compliance,,dynamic

loads and their sharing, and of the maximum tensile fillet stresses.”

, U
These theoretical developments are supported by experiments where

<

only sirngle teeth were loaded. Some hard core experimental evidence is
lacking on the interaction of simultaneously acting tooth pairs.

Therefore it is deemed, that by conducting tests on a high
4
'cont:act ratio photoelastic model with multiple céntact and rolling v
v

capabilities, our knowledge could be furthered concerning the following

“

' How is the total load shared? . '
‘_ \“ . 2 s

_How are the fillet stresses affected by the :interaction cf the o
branch loads” acting at any point along the line of action? N

To answer these questions “the ‘conventional photoelastic stress
° . ' » D
determination must be augmented by deflection measurements from which

the compliances and the sharing of the Toad may be calculated. The »

experimental results Would be supported by finite element analy‘s.

As 2 measure of the quality of the design a new concept the

-

"Stress Admittance” will be introduced th(ch is expected to reveal the

/

) critical location of the load in multiple tooth engagemenc.
Such experiment may yield the range ofl stresses expex\'ienced by a
hY - . N

_ given fillet point' during a loading cycle. This information may be used

later for fatigue analysis..



CHAPTER THREE ’ 58

' ‘ FORMULATION OF THE GONCEPT OF
‘STRESS ADMITTANCE
AND FATIGUE CONSIDERATIONS

The fillet stresses for HCRG are f:[.near with respect to the
Joad. Therefore the stress distribution for multiple tooth engagement
may be obtained by superimposir}g the stresses generated by the’
indi(ridual loadé. A single load induces primary stresses iﬁ the
- adjaceni; fillets. ASecon'dary st‘resses appear on a substantial portion of
the l1‘:Lm. Fillets, second iand t:;xird in line act as stress risers in this
. diffused stress fleld. The cross effect of the loads results therefore
in a conip/lex stress distribution. The problem is fu;:t:her aggravated by

. the fact, that the ind{fvidual loads are not known.

3.1 Stress Sensitivity f ’

I e
It was seen' that the "primary” fillet stresses due to a single

.
v

Jload may vary greatly with ‘the shape of the tooth. However once a -

particular design is chosen, the stresses depend linearly on the

maénit:ude of the load, and in a moderately nonlinear manner on the
' 1

S

location, whege it 1s applied; If this location .1s identified along the

' "line of action", a common parameter for the pinion and wheel is

'
L]

obtained. The stress regfzorfse of a single tooth due to a unit load- was

¢

referred to by Cornell [8] as the "Stress Sensitivity". It is a property.

of the shape of the tooth and 1s a function of the position of the load.

a
P

g

Ve— : . ,(3.1)
W /'—’ . -, X .
where V is the stress sensitivity

: -
d 1s the maximum fillet stress, tensile or congpressive

W is the normal 1load
i . ) . -,

~
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3.2 Load Sharing in Multiple PairvEn§§gement
When a tooth acts in a group of simﬁltaneously engaged pairs qf
thre; taeth, it may be modelled for static analysis as in Fig (3.1).
The total load branches out‘Fo three parallel paths using

initially similar logic as in ref's [7] and [9]: . \\\\\\

W=w1+w2 +W3 ’ 9 - (3.2)

A pair of springs connected' in series represents a contacting
pair of teeth. The parallel branches model the simultanously acting
palirs. 1Initial gaps are indicated for example in brancﬁbs 1 and 3.
These gaps eventually may be present due to manufacturing errors or
profile modifications, which are lntroduced deliberately to minimize
impact loading. .

The total displacement is the.same for each pair:
y'r =yl ~y'3 =y’ (3.3) ,

_The total displacement in ‘branch 3 1is typically the sum of .the

™

deflections of the teeth in that pair plus the size of the gap g3, which

|

must be closed before these teeth can deflect.

v's = ¥'3a +y'3p +ay . GB
The compliance in general: ‘ . 1
y' ¥
C=— , 4 (3.5)
W .

The compliance for pair 3, using Eq. (3.3)

Y'3at¥'3p ¥ - 83 .
C3 = C3q + C3p = =

]




e
-8

o~

-t ~.ﬂ

giving the branch lSad -

" y' - 83 y'- 81
or Wi =
Cy cy

W3.

‘ The total load from Eq's. (3.2 and 3.6)

" | : ¢
n oy - g4
W= —
i=] ¢y

where n is the number of pairs simultaneously engaged

g{ 1s the gap at the ith pair. This gap is taken relativ
.

the first contacting, pair, hence here gz = O.

Solving for the relative deflections between the two gear bod

'

" ngq
y' =W+ — | C
i=1 Cy

(3.6),

(3:7)

ko

(3.8)

r where C, 1s the equivalent compliance of the n pairs connected in

con§1dered to be rigid. -

’ n 1 \
-I:__ N

Ce 1=l Cy

. If the g;ps and compliances are known, and the compliances do not

depend ﬁpori the load, the system deflection using Eq's. (3.8 and 3.9)

parallel i.e. the system compliance with the gear bodies

(3.9)

61

may be calculated. Then the branch loads ®ay be found from Eq. (é.é).

»

3.3 Stress Admittance

This new concept attéuii)ts to deduce the stgess response of a
. T

to,oth' in a sysﬁém from elementary properties.

The stress sensitivity of a tooth when acting as a member in a

»

!

group may r\o‘i: indicate the most dangerous location for the load. If

4
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applied at the tip it induces the most adverse_ a:t:;;esses, but also causes
the largest deflections. If the combined compliance of such tooth and
itg c;ntacrling matg’,ﬁfs more than the same for the adjacent palr, the
bulk of the load would seek out the other stiffer path, thus leaving a
smaller load for that more sé’nsitive.location.

: Therefore it is proposed that fo‘r a tooth acting in a group the
ratio of its stress sensitivity over the combined comp,,lianc'e v‘lith its
contacting mate to be considered for e'stabliéhing the critical location

A
for the load.

From Eq's. (3.1) and (3.6) the stress in\(tooth "3a":

Via -
O3a = W3 V3g = (y' -83) — =~ (y' - 83) 234 (3.10)
Cs -
Let Z be called "Stress Admittance” axlni be defined by the equation:

v
Z = . ‘ (3.11)

Cp
where- V 1is the stres; due to a unit load (stress sensitivity)
Cp is the compligmce ?)f the tooth in question plus the comﬁii’%nce
of 1ts mating pair. br alternatively multiplying the numerator ar‘ld the

denominator by the load:

Smax .
Z - - (3-12)

'
yP‘

‘where Opax 18 the maximum fillet stress, tensile or compressive

Y'p 1s the combined deflection of the tooth in question'with
its matingl paivr. Both parameters to'be generated by the same load;

Z 1is a property of a subsystem, a pair.of contactiﬁé $eeth and is
a function of the locatiqn of the load. At a given ‘point it has foux;

q

" : . -

pra

1,
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values, each associated with one of the peak stresses In wheel and

pinion, tensiale and compressive.

. \ °
3.4 Equivalent Static Alternating Stresses

[l

Fatigue, analysis is beyond the scope of this study. However some

aspects of it are considered to demonstrate that the knowledge of the

.diffferent range of stresses over a full load cycle. These ranges may be
described by the mean of its extremes and the alternating amblitude
about this mean. A comparable measure of the damage potentlal of these

palrs of stress components may be obtained by using the Goodman

relation: :
Oa Om '
—— + — - l ' - . “ (3-13)
Jae  Cut , n .

r

where g, 1is the alternatihg component of stress
oy 1s the mean stress

oyt 1s the ultimate stress in a uniaxial tension test i t
, g
is the equivalent alternating stress with 'Zeto mean having
‘ v ,
the same damage potential as op and gy represent.

P)

Cae

gaL, in Fig. (3.2) i}s the allowable maximum gge. It may be'

set at 60% of the enddrange limit of the material.

s
-

This method of evaluation was used by A. Elkholy [15], the

diagram is shown 1n Fig. (3.2), p.59. v

.
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TEST EQUIPMENT

4,1 - The Prototype

The subject of this investigation is ome of several propose&
shapes for a pair of spur gears, in the reduction gearbox of a newly
developed turbo propeller engine. The tooth proportions were designed
uging a computer program which is in the devel;pment stage and is based

on the articles of Cornell and Westervelt [8]. "High“Contact Ratio”

"involute forms of modified addendums were employed.

»>

The gears are proposed to be made of Aﬁs 6265 carburized gnd
ﬁardened steel, having a Young's wodulus of E = 207 GPa (30,000 Ksi).

The gear data are éiven in Table 4.1. The tooth forms are shown
in Fig’s. (4.1) and (4.2). The various portions of the cént;ur such as,
true ilnvolute, modified tipy arc; of fillet -and root circles are
indicated. /
4.2 The Model

A scale of 5X magnification was chosen for. the models, It gives
a high resolution of position énd serves to attenuate thexeffgct of
manufacturing e}r:;s. .

Five teeth were machined on each model, which were made of

6.35 mm (.25 in) thick, Photolastic PSM-1 clear polyester plates of

305.x 254 and 330 x 305 mm (12 x 10 and 13 x 12) inch sizes.

For sufficient diffusion of*"the applied forces the bodies of’the
models weTe reinforced by 9.5 mm (.38 in) thick poiycarbonate plates
cemented to botﬁ sides, see Fig., (4.8), p 81. .

\
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| ’ Table 4.1 Gear Data
\ E] -

Pinion Wheel

Tooth éize ‘ m =.,2,61 mm

(Pp = 9.73 in~})

Nominal pressure angle 17¢
Number of teeth 36 . 137
A
Pitch didmeter Do -e39m | 3s7.635
I | € 3.6999) ( 14.0801)
1
Outside diameter (mean) | 102.21 . 362.81 .
( 4.024) ( 14,284 )
Root dlameter (me;n) 87.56 348.32
» ( 3.447) ( 13.713 )
"True Involute Form Diameter” 90.330 351.559
( 3.556) ( 13.841)
Root fillet radius 1.331 min 1.207 min
) (0.0524 min) (0.0475 min)
Circular arc tooth thickness (mean) 4.345 3.570
] ' (0.1711) ~ (0.1406)
Tooth to tooth compoéite érror , 0.010
: g (0,0004) ¢
Center distance  — 225.806
' ( 08.89 )
N )
Addendun . - 1.576 m 0.991 m
Dedendum . 1.228 m 1.784 m
Contact ratio , . 2.327 \
Face Width 1 ' ' . 76.2 v
. ( 3.00)

‘Lengths are given in mm's, their inch equivalents are’shown in
parenthegses, m is the module in mm's. ’
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s -4 25151 —The Involute - — —

’

PSM~1 has a Young's modulus of 2.34 GPa (340 Ksi), Polgson's

' P ’

ratio .38, a nominal material -fringe value of 7 KPa-m (40 psi-in). It
is non—-hygroscopic, therefore changes in humidity give no boundary

stresses, i.e, little of the so called time edge effects.

4.,2.1 Computation of the Profile

The size of the model prohibited its machining by generation.

s

The remaining wethods kno@n.to the writer for faBricating the tooth

, ' 67

profile required to calculate, the coordinates of the contour. All these

computations were ﬁerformed on a Texas Instrument TI 59 .programmable

hand calculator. . . '

.

The equations‘for the involute may be found in gear handbooks
[6],[13?. For convenience they are repeated here in some detail.
The 1nvoiute is often described as the path of a point on a cord
which is held taut, while it 1is unwound from a cylinder. In Fig. (4.3)
the cylinder is the base circle of radius Rg of a gear. The cor& is
J

shown as line AE. Point A initially coincides with point B on the base
§
circle. It passes the pitgﬂ circle at point P, ending its path on the

)

gear at the outside diameter at point C.

P

Arc BE has the same length as side AE in the right triangle AOE.

This key step gives the roll angle:

BE AE  (R2-Rg2)?
€ m——m— = = [(R/Rg)2-1]} = tan s (4.1)
Rg Rp Rp
The pressure angle may be obtained direétly: .

¢ = cos™! (Rg/R) . (4.2)

’

Y

s
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tooth centerline may be read off Fig. (4.3).

69

" The vectorial anéle 9 1s also known as the involute c;f d.

B =¢c=-¢ = tand - ¢ = inv ¢ ‘ (4.3)
In the design process the base radius Rp is usu'ally obtained

after the pitch radius R; and the nominal pressure angle ¢, has been

<

chosen.

Rp = Rp cos ¢, ’ (4.4)

’

Arc tooth thickness T determings the position of the involute
curve in relation to the centerline of the.tooth. It is measured on the
pitch circle, where thepressure angle is ¢p by definition. The ™
origin of t‘he involute point B is at polar angle ag with respect to
the centerline of the toofh. F}:om Fig. (4.3):

ag = by + 6y ' or

T
ag = — .+ tand, -~ ¢p . (4.5)

ZRP -

The polar angle a for a general point A:

a =qap - 0 or .
T . 1
a = — -+ tang, = ¢p - ¢ + tan} (4.6)
'ZRp

This is a polar.equation for the involute curve as a tootp
profile- The polar angle a is implicitly the function ;f radial
position R via Eq's. (4.1) or (4.2). The tie-in with the gear is
through design parameters T, R.p and $pe

The normal to the involute with respect to the normal to the

A =¢c<ag . : ‘ (4.7) ‘

- o -

N
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The Cartesian coordinates of a general point on the involute: )
X =R cos a
(4.8)
y =R sin o
4.2.1.2 The Fillet . , '

At the time of designing the model, the exact manufacturing

process for the prototype was not known, hence the actual shape of the

/
s

fillet curve was uncertain. As an appréximation circular fillets were
c@osen for both models. The fillet curve was computed according to fhg
geometry shown in Fig. (4.4)., '

The center of the fillet circle lieé on an involute parallel to

the original profile at a normal distance of ry and at the same radial

distance from the root circle.

Ic = oC = Ry + ¢ and (4.9)
rf :
) de = — ) (4.10)
Rg ,

The figure indicates that

N

ac = ag + Ae - 8 =" ap * ¢¢ ~ €c + A¢ or
. ) .
. , M Re + 1f Yoo
oc = ag + cos” - -1 4+ — (4.11)
Ry + r¢ Rp Ry A

The center of the fillet circle is determined by
. o v
Xg = (Rt + rf) sin ag¢ .
i ‘ (4.12) .
yc = (Rg + rg) cos ag : i ' .

The coordinates of a general point F on the fillet at an angle vy may
be found from . _
XF = XC — rf tos Yf ; ) .
(4.13)

YF = ¥c — rf 8in yp ) .
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The fillet radii on the model weie increased"by approximately 5%
over the specified minimum. This represents 1/4 of the popsibie

increase of fillet radius for the pinion, w_ithoutf .violating the "True

Invdlute Form Dia" limit. The choice of this amount was arbitrary,-the *

change htself concur with the findin s of Kelley and Pederse “[20]. The

‘radius of curvature of the trochoid, which is. the actual ghape of the

fillet produced”by a rack type tool, is substantially larger at'; the

region:aof the peak stresses, than it 1s adjacent to the ,rodt éircle,
l A

where 'its minimum value is located. A moderately oversized radius dis

) g
thus a more‘representative substitution.

"4.2.1.3 Tip Relief - R (R

X As the gear tdoth 1s an elastic structure it deflects underTthe

load; Consequently a loaded tooth lags behind in motion in ré dtion to

A [
ah unloa'dé‘t‘i togth néxt in line. This tooth would then engage/in a non

conjugate contact with an impact, the sharp edge of the t:.ip scoring the

mating face, causing early failure. Manufacturing-errors in the tooth’

L]

form aggravate the problem. Removing’ sgme material from the tip to

\
H

smoothen the fnitial contact is the usual remedy.
The amount of tip relief may bh calculate’d from the deflection of
:Jie tooth to which the composite errdr is added.® If the transmictad

P S

[orque varies widely, a tip relief correspounding to the maximum loading
: &

"may cause impact at lower torque valies. {

. At such \condition the deflection' of the loaded paif:'does not fill

the gaﬁ,c‘reatgd by the tip modification. As the ,contacti}xg pair
3 ; .

disengages, Athe next pair has te jump the gap.

[

.o : _ o2

o o e e ma Dot B

ok,
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- A c;)mprOmise must be made, the designer should be guided l;y good
judgement. The relief has its maximum at the tip’, then gradually
decreases untill it blends at a certain poin& into Dt:he involute.
. Suggested optimum va.lue’ are given in two empirica} formulas in D.W.

- ‘
Dudley's Gear Handbook [13], Chapter 5, p. 23

'The maximum modification at thé engagemert side:

5 Wy [N]
Oepax(mm] = 5.08 x 107° —er (4e14) ’
o *B [mm] 4 ’
where material is remo.ved from the tip of the driven gear. The same at )
.the disengagement side:
. -
L] s wc[N] |
Depax(mm] = 2,90 x 1077 (4.15) -
B [mm) ,
LR where ﬁatgria-l is removed from the tip of the driver gear.
These formulds gave mpay of .0 7 €.0005") for the driven T
k3 ) 1
wiieel, and .0072 m (.0003") for the pinion. The designer of this drive
adopted .0102 mm (.0004") for both gears, which was then locorporated
. A » ) _ o !
into the photoelastfc model. JMm& ' <y ' ’
* : 2 -

.

, ' " The departure from the involute wmay. take a parabolically
im‘:géasing ‘form. Such scheme is given by R.W. Cornell and W.We ’ ' %
| Westervelt [9]. The médification is given in terws of the position of

. the contact along the line of action "S": . o
: ‘ . . : ‘ v -, ‘ :
s = 5o I |
Wy * Megay [..__.__] and ' o - . o
’ Soe ~ Se

\

. 3 \ S (ka6

- @ . \. . s - se 2 .

v We = Wemax {‘_, J
: . Sod ~ S4

~ ”

. on the engagement and disengagement 'sides
) (;} - ’ M

/ O
respectively, where

! s

~% . -
o
. A »
/ > s o,
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.~ ‘
Spe and Syq4 are the end points on the line of action.

. Se and Sy are the respective values é,,whc‘.re the tip relief

starts with zero.

’

At LCRG usually the "Highest Point for Single Tooth Contact” is

i

chosen for starting the relief curve., For HCRG an analogus “Highest

may be adopted as the initial poinf of
k4

~

Point for Double Tooth Contact”
tip modification. Replacing Py in Eq. (2.8) by 2Py and using Eq.

(2.9) the respective Ry's and thelr corresponding positions on the
line of action were computed, obtaining:

‘Bg = 180.4 m (7.102") and Se = 5.14 mm (0.202")for the wheel.
49,8 mm (1.960") and Sd = 7,71 mm (0 304")for the pinion.
For the inspection of the pt;ofile it was “necessiary to det:erm.;’ne
the inclination ofv the nordfal to the contour at the check poin.ts.

angle for the true involute using Eq, (4.7) and Fig. (4.5)

»

\ Ap = €5~ ap
At the modified profile this normal rotates with the rate of

¢
change of modification with gpect to radial® position.

dmt
AM = A+ — &
# dR

(4.17)

dmt/dR\may be obtained from’ Eq. (4.16) and from

N see also Fig.” (5.1), p 86

'

~

1

Lk

dm dm. dS s - S R o
---'—-——"zmtmaxn T T2 2 . ‘
"dR s R Soe ~-Se (R? - Rg)} o
."2 Depax S — Se , ’ o S
- ‘ . . (4.18)
. Soe = Se

7 .gin ¢.
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where ¢ corresponds to radius R af point A.
From Fig. (4.%) %t may be seen that % MAO = 90° - (aA +Ap).
Irianhle\ﬁAO lends itself to find the polar coordinates for point M.

Ry = [Ry? + m? - Ry m sin (ap + XA)]*

(4.19)
’ m | s
\\\_ . Aa = sin~! —E cos (ap + Ap) ’ (4.20)
Ry

4.2.2 Making ‘the Models

N
The coordinates of the profile were used as input for numerically \
controlled machines (NC). These systems accept discrete points as raw ‘

data, the "best fit" curves are internally generated for servo control.

-~

50X (prototype) comparator charts of one tooth with 2 spaces were

’.‘
drawn on mylar using an “Interagtive Graphic System”.:= The templates for

¥

the models were contoured on an NC Onsrud milling machine.
¥

Unfortunately the  latter produaeed a wavy{sdrface. The templates had to

be fipished by hand, using the comparator charts as a guide. .

¥

.- The contours were transferred from the templates to the models on
a Photolastic HSR-1 router. The'two lip router\Eit works under water, -

# thus signiéécant residual stresses 'are avoided. .

PO —~

It was soon apparent, that the HCRG system is more sensitive to

machining errors,gsthan the conventional LCR gearing. The accuracy so P
. »
. e . 7 ¢
far achieved, produced an un&ikely‘photo%}astic picture. It was .

realized, that if any useful conclusions are to bg‘dxawn from a multiple

1
e contact test, the precision of the model should be one order higher than

that of the prétocype. The 5X enlargement is hélpﬁul,'but adequate

iy
ooy

s
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P \ .

methods for machining and for inspection were .yet to be found. ‘
The solution to the problem of inspection' came first. A
coordinate,iﬁspeétign machine DEA-Gamma was chogen. As the probe of
\

this machineQ:pproacﬁés the target the computer registers the position

L] -

of the probe at the instant of contact. It was claimed, that this
m;chine oﬁerétes with a repeatability of .005 mm (.0002").

The .method which was deviéeq for the adiustmént of the préfile
may be explained with the help of Fig.(4.6). The model (1) is clamped
to the angle plate (2) with datum piﬁs (3) held firmly gkginat the side

3

surface of the'plate. The assembly 1s “then mounted on tpe sine table

3

(4). The gage blocks (5) tilt the model to a desired angle with high
‘accuracy. Therefore if the direction of the normal to the profile at a

gselected point 1s known this normal can be set exactly vertical. ,‘“]
4

=

Consequently a; abrasive tool dﬁth its motion restricted to a horizontal
plane may touch the model precisely at that point, see Fig. (4.7).

The prelo;aed ball slide (1) gave a Sack%ash free.linear motionﬂ,
It was mounted on a cross sllde (2), giving vertica} ;djustment by the
means of its lehd screw (3). The assemgly was bolégd to an angleplate
(4) so that the top surf;ce’of Fhe ball slide could gset horizontal
within .005 wm (.OOCZ)”. A wedge nosed square tool bit (55 with
protrudiné front was attached to the top of the bdll siide. A fine (400

\ .
grit) emery paper (6) mounted on the nose with face down gave the

abrasive sd@face. ‘
. . K

With some care this set up made it possible to rempve as little

’

a8 .003 mn (.9001"): aquafe to the plane of the model from any convex

region of the prqﬁilea~‘The contours of the rolling surfaces were

b}

’ V1
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v LN

corrected point by point in several passes. \

The true involute was eventually appt9ximated g\ithin «013 om
(.0005"). The overall repeatability which was affected alss by other
conditions such as the flatness of .the plastic, the accuracy of\the

‘ 3a£um holes ‘etc. inhibited further improvement.

The most relevant error, which affects the 'Sharing of the load
b;t:’;en pairs of "téeth 18 the deviation bet;weén their respective’
distances along the line of action i.e., the relative base pitch error,
see Fig. (4.6). These distances may be measured directl)" on t:he' tilted

o

set up described above.

v

As a final step for refinement of the profile the base pitches
h A
for points in simultaneous contact for the planned loading positions
were tuned within .008 mm (.0003").
/ . - .

When the modelgA‘ererinstalled into the rig the maximum gap in
the involute region was found to be .0l mm (.0004").
4,3 The Rig

The experimental setup is shown in Fig's. (4.8) and (4.9). The

. m‘odq’ls must be mounted on their ;.-especcive centérs t':o perfn.it geruine
roliing. This would require an excessive size of photoelastic material
to make z; one pilece wheel. A commeﬁcially available size of plastic was
chosen ‘and it was consequentl{ augmented by an aluminum plate, the arm
(1), whic‘:’h was joined to the piastic model at the pgolycarbonate éi,cie
plates (‘2) u;ipg press fit aluminum\ bushings (3).
‘ Deadweight loading pulls the arm upward by means of a ‘I.Z‘m
(3/64") dia flexible, stainlesa, steel cable (4), passing over two

pulleys (5),(6) equipped with ball bearings.. Spacé between the side

s
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plates yields access to the bottom side of the arm, to which the cable-
j . ¥

is attached. The circular arc on the front end of this arm is furnished

with a V-groove 1in which the cable 1s seated. This arrangemeunt ensures-

N -

consistency in torque with respect to rolling and delivers the load to

the vertical cemnterplane of the model. -

'
4

The rotation of the pinion is restrained by the reac’fion link

(7). Its length is adjustable, hence. the. p"oi‘nts of contact may be moved

’

along the line of action. This device is esseatlally a turnbuckle, made

to accept hardened setting blocks (8) ensuring a repeatability of

setting within .025 mm (.00l in.).
The weight of the rréaction link is balanced by deadweights via a

second cable and a lever (not shown).

The center distance for the models exceeded the width of the

straining frame (9). An outboard truss (10) was added to the structure

to support the center of the wheel. Fine adjustment of the center
distance is accomplished by a differential screw (11), which shifts the
pivot hole block (12) within the arm. S
The deadweights aré seated on two ;iiscs hooked in tandem. The

upper disc (13) carries a small load just to maintain a positive
contact. The main load is applied to the lower loading unit .(14).
Rapid and smooth loading or unloading is achieved‘ by a lever system
(15), which could enéage or disengage the lower loading unit, see

the side view Fig. (4.9). This device is bolted to the supporting bench
(16) o.f the polariscope and is operated from the viewing seat (not
shown). The experimentat set up 18 also shown on photograph Fig.

({..10). o o

1 1
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g CHAPTER FIVE . 85 7
TEST PROCEDURE /-
P )
5.1 Geometric Considerations
— -

- 1 . '
Por proper correlation of data and for the planning pf the test

it 1s necessary to know in advance:

3.) The ppint on the pinion that will be%\tact with a given N
kj

i

point| on the wheel:
b.) The paints which are simultaneously in contact. :
5.131 Theoretical Match-Points of Pinion and Wheel

s *
These points y be found using Fig.(5.1). The center distance:

C=Rp\+ Ry’ ‘ (5.1),

vhere the prime refers to the pinion, the unprimed symbol to the wheel.
.~ ‘

The angular position of the contact:
R o
1 2 (5.2)

«

q

. The radius on the ro]%%ing surface of the pinion, which matches the pointJ

. L]

at R on the wheel \\ )

; \ . .

R' = (R2 * % - 2RC cos vt (5.3)
The pos tio;l ‘of the contacy on the-line of actio‘: .k
,‘ 0N

‘//S = R, sin ¢‘L— (% - rg¥Ht | (5.4) RN

- ' ‘rv\\ ]

! \

: S
S+1.2; Points of Simultaneous Contact o : .
\ .
N )
The points which are in céiu:ac}t at the same time may be

determined from\Fig. (5.2)'.‘

The distance between two contacting points is the base pitch Pp

.y

which may be obtained from: /

\
‘
- 0 ; ’ \
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Pg =-— Rp - . (5.5)
. N oo )

il

- where’'N is the number of teeth. Using the nomenclature as shown:

cos (90°+ ¢p) .= - sin ¢ . . (5.6)

cos (90°= ¢2) = sin ¢, : (3.7)

{j

&

-Lf. the radius ct" the contact in the tooth on the middle is known
(}2), the contact on the higher.radius will be at: f

Ry= (R,2 + g2 + 2R,Pp sin )% ~(5.8)
. ' . .

and the ons on the lower radius at:

R3 = [R22 + PBZ - 2R2PB sin ¢2]§ ' (5-9)

4 N : -~

-
5.2 Scaling /

&

As the geometric proportions’ and material properties of the model :
¢ . '

are different from those for the prototype,\‘their load, ‘stress and

deflection relationships must be estab‘lished.

Their simila‘ritly to remain valid, the ciistribution of the
stresses must be independent of Poisson's ratio [10],[14].

For plane stress gnalysis of a simply c;mnected structure }:; a
practically uniform éravitational body force Eield,, the Poisson's ratio
does not influence the stress distribution. The presence of holes make,
the models apnd the prot?@ypes multiply-connected.’ The loads are reacted
at these hg}es hence their boundaries are not in self equilibrium. Due
to this 1gst.condition the stresses do depend upon Poisson's ratio.

However the fillet areas are sufficliently far from the holes, hence

simple connection may be safely assumed.




N .
_For these ,rerasons; the relationship between model and prototype

can be expressed. by constant scaling factors. These may be determined
> 4 .

from dimensionless ratios m, formed of relevant parameters. Such ratlo

for “stress, using o = W/A. © ™~ ’ . ’ \ a
¢BL : “ .
T - — ~ v (5.10)
W .

Lt . i J
and, from uniaxial deflection y' = WL/EA

. -~ y'EB
.“.2 - [ J ¢ i (5-11)
W . : y

N .

where L length and y' displacement are distances in the plane of
. . Y

the model andsrof the geair re‘specti;,ely.

b

B the face width of the gear or the thick.ness of the model are
transverse distances.
W is the normal load
-E is Young's modulus
If for 'L and y' the same scaling ratio ;s chosen, and Eq. (5.10)
.is ‘divided by Eq.' (5.11), a newsdimensionless ratio 1sr_obtained.
&f R £ -_0_' AN o (5.12)
E . : .

. The similarity will be wvalid if the dimensionless ratios are the

same for the model and for the prototype.

o g T
[_.__J - [—-— Q then ( 5.1 3)
E Jn E P . ] ,

(5.14).

A\l

P -

where m and p stand for model and prototype respectively. Using Eq's

N - v o~ e umy e e




..h

st

(5.10) ‘and (5.14), ‘the load scale factor will be:

- wm_ﬁmn,,',i.; h -' | (5.15)

" Ep Bpilp . )

~

The scale factor for compliance from Eq.(3.5§ amei subsc;tuting L for y':

v - B . N
N Cm Yv'm wp . \ '
. . b . (5.16)

1

—— M e

gp ' y'p wm ¢

*

The nu'megical values of the scale factors which emerged ‘a8 degign

choices are:

. Ly . ¥'m
, — = — %5 . :
L ¥ -
By 6.3_5 mn (.25 1in) 1 P
B, T emomw ¢
Eq ( 2.34 GPa (340 ksi) 1 . .
£, " 707 Gra (30,000 ksi) 8.2 Ve
Therefore, the stress scale ‘factor ffom Eq." (5.14):
- om' 1
Tht;, load scale factor from Eq. (5.15): -
v Wy ) e 5 ) - ' '
AE:_ (88.2)(12) TE -
The scale factor for compliances from Eq. (5.16): W .
&l syane - 105 7 /
L G .

‘This scaling scheme assumes plane stress conditions, which is

eorrect for the model. The B = 76.2 mm (3 in.) wide and t = 5.36 mm

1
\

(.211 in.) deep cantilever beam for the prototype is definately a “wide

[

v "n
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beam:‘ (B/t = 14.2) to which plane st:r;in ass‘utnption fits beéter. .

f

. The proble of stresses in a wide beam was addressed by Wellauer

‘

and Seireg [30], Roark [24], p. 134, Timoshenko and Goodier (28] in s
[ ) » » 1

article 124. The aspect of deflections is dealt.with by' R.W. Corne_ll

N >

[dl. . From ‘these sources including some finite.element investiéation by

the writer, no confistent simple factor has emerged for the . .

transformation frg narrow beam (plane stress) totviide beam (plane

. ¢

strain) analysis. ) ’ , ’ ;
’ ~N o . ' - v .
It was recognized that this matter requires a thorough )

)

Investigation, hence it was excluded from the scope of this study.

( b v .
. Plane stress was.assumed, with tie understanding that the results do not
reflect the more realistic'plane strain condition for the, prototype.

\ ’ $ -
- ' 5.3.0 Loading o .

4
The prototype normal load is given as 31,600 N, (7090 lbs) hence

.the modei*\normal load: f

. MWy = 31,600 N/ 211.8 = 149 N (33.5 1bs)

‘/ i ‘ » '
3 From equilibrium of moments for the rig the required deadweight

_ %s 227 N (51.0 1lbs), (Fig. 5.3). ,

As the model wds not completely free of residual stresses, It was
, decided that the load would be applied at two levels.. The fringes were’ '
v »
] ! '

measured accordingly and the differl‘g}nces in load and in fringe readings

were cousidered. Thus the residual stresses and the slowly changing

~ J
environmental effects were cancelled out., The reduction in bias type

/ - L
error was somewhat offset by an increase in precision errors due to the

two readings per data point in place of one.
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From nequilﬂ;rium of moments the necessary \deadweights are:
- 855.00" - '
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used:

High level load - 239 N (53.7 1bs) "
’ . Low level load 2 12N - (2. e
Y Test load L wN (51.9 1bs)
For the Single C_outact'tests‘SOZ of the test load was'emp]:oyed.
. )

In the case of the deflection tests the low level load was

-reduced to 1.1 N (0.25 1bs) and the load required to:produ(:e a gi've'n

deflection\was measured each time. . . v ' .

The \ ncy of load transmission was chetked using a Ravere

~ T

5-500 N (1-10Q§ 1bs) range load cell. The ball bgaring ptllies were

found to pass 99.8% of the applied load through.

Al » .

5.3.1 Sclieme of Loading Points

The lgading points were firs't planned in“:arms of radial posit.::;.on,
on the whe}el‘r . Initiélly «5 m (.0'20 An) 1nthvals weregselected, N
starting from the pitch point; For one extrexge,'the criticAl tip .
loading, the point .1£7 tmh‘(.OOS in.) below the nominal outside radius

was chosen, a conservative estimate of distance left intact on the

[ i ¢ f

profile by the actual tip rounding practice.

4

The matching radius on the wheel of such tip point omn the‘pinion

gave the innermost loading point. "When the locations of simultaneous

{

contacts were considered as loading sites, the orderly increments were
o ;

lost.' The number of loading points turned out to ‘be 19. As ‘two or
. - Co ]

13

. . i
three of these contacts were active 'at the same time, they detlermined

the 8 loading stations. _j

Table 5.1 shows these stationsand loading points wit

For the Multiple Contact'tests the following deadwefgh loads were
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positions on the wheel (R), their matching radid on.the pinion (R%) %nd

[}

‘ . ~
their normalized positicn (S5') on the line of action.

, s .

‘ S = , ) . i '(5.17)
Lo Pg /

where . § 1s the ;;ositiqn of the load on the line of action:

t
»

" Py is the base pitch

b

The sign of \S' corresponds to the pinion being the driver, which

reflects the condition on the el:xgine. On the test this direction is{
¥ ' -

A revérsed, the load is applied through the wheel, which allowed the 'use
of smaller dc‘aadweights. . . R
The identifi‘catidn of: the'teeth\is shown on Fig. (4.8\), p-81.
5.4 Stress Measur'ement: g | .
+5.4.1 The Photoelastic Method" -
‘The model is made; pf a "temporarily birefringent” material, which
is a prgperty of most transparent plastics. When a.point gj.n such
“* material is :L'n'the gtate of two dimensional st:e/ss a'nd is 1illusminated by

a pencil of polarized light, the latter separates into two wave'fronts.
» " Each front is polarized .in one of‘the two principal strﬁess directions,
and pfopagates with different velocities. Whence the name of
birefringence. The change of velocity in each front is propc;rtional to
the corresponding princi;;al stress.’ ‘The absolute vélo&ities cannot be
measui-ed in ordinary photoelasticity. However as the fronts traverse
the model they accumulate a relative retardation, consequently they
emerge wfth a pb}ase' .shift:. In the ‘polariscope.this phase shift is madg
visible. The interference pl}enomer;on is utilized, resulting in dark and

bright fringes. With white ligtnt i1l1lumination one value. of relative

K

-

L
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. - / .
retardation:‘:orresponds to different phase shifts for each wave length.
A given stress,differ’enée extincts %‘paf‘ticular vave length but e - U

transmits the complémentary colours, resulting in axcolourful ) ¢
et - . )

“Isochromatic” fringe pattern. Such fringe is the locus of points where ..
the™dif ference between’the principal stresses is constant. ; .
oy -0, = N'f/B : " (5.18)
‘ ref [10], chapter 7
where N' Is the fringe- order

B is the thickness of the model ) . . '. '\‘ : =
£ is .tbe “material fringe value” [kPa-m] (psi-in) iahif:h is
determiined by calibracion ‘ ,
The 1sdchromatic fringes are clearly visible when the 1light
extinction associated with the orientation of the principal stresses is
suppressed which is achieved by interposing t:he so called “Quarter wave

plates.” In this,mode the instmment: is a’ "Circular. Polariscope”. The
plates are optically removed ,‘in' the "Plane Polariscppe" . These settings
of’ the instrument are expla‘ined, 1n‘de}:ail in rief. [1oi, éhapters 6 & 7.
In the Plane Polari-scbpe additional fringes appear, the so called
"Isoclinics”. ‘Such fringe is the locus of p;)ints vzhere’ the direction of
one set of principal scx"esses coincides with the angulat tilt of the
instrument. This position is read off a dial, thus the orientation of o
the principle stressés may be det:.ergxing.d. -
s

The tranformation of the polariscope from one mode to the other
is simply rotating 45° the quarter wave plates by the means of a lever.
$.4.2 Calibration ‘ |

Tts objective is to relate the fringe orders observed to the

stresses in the model. This may be achieved t;y counting the frin'ges in ‘ h
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a suitably loaded specimen for which the stresses may be reliably

M &

” , ”

known. In a tensile strip loaded in unTaxial tension the stresses are: .

/ , . -
W -
g, = — " og = 0. ° .
tB M . ' (5- 19)
where W ‘is the normal load - !

B 1s the thic;knéss of t,he stfip
¢ 1s Mts wideh, | ‘
substituting (5.19) -into (5.18) éives the material fr:f.t;ge value:
W o | ]
S — T < (5.20)
tN'

.As the pinion ‘and the wheel were cut from different sheets, one
tensile strip was made from each. The specimens were subjected to '
*Incremental loading, the fringe ord.er N' was plotted vs the logd. The
"best fit" straight line was determined using the method of‘"Lea_st
Squares”, An "1mproved': {I' was then calcuiated corresponding to a
445 N (100 1bs) load. The fol%owing material fringe values vere found,
using Eq. (5.20): . .

f = 7.10 kPatm (40.95 psi-in) for the pinion

f = 6.95 kPa-m (40.07 psi-in) for the wheel.

‘

5.4.3 Determination of Stresses

The fringe orders along the fillets were measured. As the normal

stress on a free surface is zero, these fringes give directly the

_ tangential stfessess White light illumination was used, which allows

to recognize the integer fringe orders with ease. The fractional fringe
orders were determined using Tardi compensation, which is fully
. ' . '
explained in ref. [10], Chapter 9. ' ‘¥

a
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The accuracy of the location of the meagurement is just as .
important as. it is for the fringe orders. Therefore a travelling

teleini:éroscope was used equipped with.stage‘ micrometers. The angular
Lo
positions were found using a protracdtor reticle.
a - .

The fringe orders were recérded at 10° positional increments, the

maxima were determined to the nearest integer degree. The fringé

-

’ -]
measurements were substituted into Eq. (5.18) thus the model stresses

4

'were: ‘obt:flined« The latter 3et was multipliea by- scaling constant 88.24,

giving the prétotype stresses. , ' S

»
A
"

For the Multiple Engagement tests two teflon shims were placed

between ‘each pair of contacting teeth. Thus friction was reduced to

u=0.1. In the Single Palr Engagement runs the shims setved an
additional purpose. By fitting with the teflons only the pair to be
loaded, the unwanted ,contiéctg were removed.

1

5.5 Pair-Deflection Measurements

The search for finding a viable method lead to a improved
pafameter; the "Relative’ Pair Deflection”.

Deflections of single palrs were considered. Single contact was
® . ' ‘.
achieved here by inserting a precision ground shim stock into- the

contact of the pair, the deflection of which was sought. At a small ‘
[ N .
initial load of 1.IN (.25 1lbs) only the shimmed pair was engaged, the

adjacent contacts were separated. As the load was increased by small

.

increments the shimmed pair has deflected and the gap” at the adjacent

-

pair gradually closed.

’

N

- The closing of the'éap was determined optically. Eveﬁ a ‘very

~slight contact is easily recognized due to the comparatively \high

o

v
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Hertzian stresses. e.g. Due to a load of 0.5N (0.1 1bs) a pressure of
f

538 kPa (78 psi) may develop at the\contact.'."m’e brightness of the:

‘corresponding fringé order of 0.50 makes these slight contacts highly /

visible against the dark background in the polariscope.’

1
First the initial clearances were determined, those created by J -
tip modification and the smaller ones due to mnufactqriﬁg errors. This

was achie(r;ed- by using so'called “onion papers“, the finest of which

- -

measures a mere 0,005 mm (.0002").

, 2 \
For set:i:in_g deflections in fine increments the thickness of the

precision shim stoX\‘ ranged from 0.025 mm (.001") to 0,254 mm (/010"). '

s

The magnitude of the deflection was .considered to be the width of

the ga'p being closed, which was equal toitﬁe thickness of the shlm plus

the initial clearance established prevjously: by the onio _B@ :
. . o [l L
The -corresponding load was taken as the differgthi between the

“
load at which the® second contact reappeared minus the initial load of

-

Wqg = 1,1 N (.25 1bs). : e
! ] ° . Tt ,
At each loading point 6 to 8 deflectioh increments were .

measured and recorded with ‘the eorrésp‘onding loads. )

This method gave the relative deflection’ between the shimmed and ¢
. v ‘ . ) )
observed contacts. As both contacts lie on the line of action the loads

and the deflections are all.in the required direction. No artificial

-

reference datum is imp‘osed;‘;the motions reflect the true action of the

3

teeth, . " ! : .

v.’ﬂ"'
The measurements are sufficiemtly sensitive, the resolution of

the loading is 1.1 N (.25 1bs) or 1% of the "sir{gle pair load level™

Wg = 113 N (25.5 lbs). o -~ : i

&
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ALTERNATIVE ANALYTICAL METHODS

The objeetives of this experimental investigation will be
b . - - .
analysed using other techniques also, which are described in the -

; R . following. The Q‘umericél results_“will be compared in Chapter 7.

6.1 Application of the Kelly-Pedersen Formuka [20] . ¥

This was ¢hosén as a sample from the f’amily of projection type

v

formulas. For convenience Eq. (2.12) is repeatéd here:
o - ow [ ‘e V0.7 152, sin g  0.45
op = — |1+ .26] — ' + + .
. . ‘ . . B s '_ e? 2e (bze)}
The construction f’or this expression is based on the Lewis

o - L -~
-tayout, where the key step {s to find.the point of tangency "A", between

- ‘the parabola and the fillet radius as in Fig‘. (2.1). The graphical:
. J Yy

. \)
solution is cumbersome and inaccurate, therefore it was replaced by &

-

-calculation. The' nomencliture is shown in Fig (2.1).

{ . e “
' let  h' =yp - yc - xp tan ) ' - (6.1)
. "them ‘&' = h' + re sin Yy (6.2)
‘ . t o xe - ¥r cos yp) cos v )
also &' = — cot yp = ® -4 {6.3) -
: A SN 2 sin vy, :
which may be r‘éduced ‘to: ) ‘ .
, . Xxg cos Y - 2h' sin vy ) o
. - rg = i (6.4)
. > sin? yp + 1 . .
-

Solving for YL' locates point A. This may be done by trial and

~

’ error, u‘sing a programable hand calculator. The other parameters in

“»

Eq..(2.12) may be readf off Fig. (2.5).

=]

x{'/'n(p'YL‘*'EKP

/
- for the second term using Eq/ (2{.13): '
e

e

L
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. ) YKP : vy + 25° - YL/Z = 25° % ‘{L/Z . (6.5)
e = xg - T cos YKP ’ (6.6)
. ay = (h' + r¢ $in ygp) cos A ) (6.7)
! . . 2 \ v ;
%y = [(e = xp)? + (yp.- yc + r¢ sin ygp)?1} ——
. (6.8)
N “ -~ \‘ .,
- B = ygp — A \ (6.9)
6.2 Application of .the Aida-Terauchi Formu}a\}g] L

' The rational structure of the formula lends itself to include the
. -

[y

calculation of the compressive maxima. Eq. (2.26) is repeated here in a

’ slightly modified form to facilitate this latter application. The

. nomenclature is shown in Fig. (2.12). o
\ t’ ‘ )
Ops de =11 + 0.8 v R
rs « : )
. {t[. 660y + .40 (op2 + 36 THE] + 1.15 (opy t app)]
; . \ (6.10)
“ . . .
; ’ -wﬁwhere the +ve sign applies to the maximum tensile,
H . )

the -ve sign to the maximum compregsive fillet stresses.

The "direct component” of the nominal radial stress is;

N W sin A .
a Opd = = ———— . (6.11)
"L bt
o~ e °
! The "bending component”™ for the same: s ?
. ) )
6 W a) sin A . . )
Orp = ~ - -~ (6.12)
b2 .
. . '\

The term in the bracket of Eq. (6.10) is the nominal stress due

o

) to the bending component of the load. This effect is symmetricall
— ’ ' ’
e

* opposite for "the tensile and compressive fillets. opq is compresz

S

for both sides. However as the radial component of the load acts of f
@ ~

v
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the centerline of the tooth, o, 13 compressive for the tensile fillet

and causes tension on the compressive fillet.
This formula may be used also to account for the effects of S;
superposition of this traction modifies the loading and the formula may

"

.frictional forces acting tangentially at the contacts. The

be applied without change. '
Results may justify the exténslon of the formula. It has gorked
.for this pair of gedrs, but fd} full acceptance some further evidence

-would be needed. e . °

6.3 Using the Cornell-Wegtervelt Dynamic Program

A computer program based on the dynamic analysis in ref’s.[9] and
¢ 1
[8] was written and was gade available for testfng. By running it at a

very slow speed input (2 rpm) an essentially épacic»analysis was
obtained. ' i

This progfam first optimizes tooth proportions and calculatels
patr compliance. Then it determines the éharing of the dynamic loads

W .
between a péssible maximtm 'of (4) pairs of teeth. Finmally it compytes

the tension stress peaks produced by the péév10usly‘obtained load .
fractions individually on each of the respective teeth.

The~ effects of gpeed, composite tooth error, profile
hodification, backlash ailowance, t?ermal expansion, manufacturing
tolerapnces, center distance variation aré'all taken into consideration.

For the computation of compliance, depending upon the ratio of
face width over arc tooth thickn;ss, optionally‘plane stress or plane
strain calculation may be selected. As an‘additional option this .
operation may be bypassed énd the user may'input its own coqpliance

~.

oy
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constants. The optimization process in the program may be modified by
an input allowing an arbitrary increase in arc tooth thickness for ome

gear at the expense of the mating one,

In the output the gear data are listed in detail. Compliance
. properties are given in the form of constants fitting Egq.” (2.45).

Hertzian and maximum tension stresses are printed out. Tooth load

-~
v

»

sha?{ﬁg, contact and peak root stresses are also available in graphical
' for; as ,an option. ’%;sample of load sharing curves is shown in Fig.
(6.1). The load ratfo is the fraction of the individual branch loads
with respect to the Fotal load.
The horizontal axis extending from O to 1.00 représénts one base

pitch. The simu;taneouS\sontacts are plotted as they occur giving a
. » 'S “

. -

* qeumpact presentation of tgé full length of the line of action.

The vertiéqi lines were added onto the' computer generated graphs
by hand. ‘They represent Fhe exﬁerimental loading stations, with the
simultaneously engaged loading positions idengified by the’ typing. Thus
the experimenﬁylly determine& loads may be compared with those generated
by the computer.

:

6.4 An Application of Finite Elements

H

6.4.1 Element -Network

Grids representing the phétoelastic models were constructed using
triangular elements. Thd/ three central teeth were fully modelled, the

* siqg teeth were truncated leaving only the fillets, as in Fig's. (6.2
WA M ~
,thru 6.6). The thickness of the elements was unity except at the

polycarbonate reinforcing plates shown by the heavy lines, where it was

\
4 times that value. A typical side of an element in a’'general area of

P
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Typicdl loading site

N
FIG. 6.3 FINITE ELEMENT GRID, CLOSE UP - WHEEL
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FIG. 6.4 FINITE ELEMENT GRID, CLOSE UP - TYPICAL LOADING SITE

» .



o

LKENEv. 3387, o REWR. | L1 P ﬂltli; L1818,
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.4110 YPRU, YNV *.0000 2.0110 oY 9.0800
$.0900 ANV, ZAXY 9.0000 8.0000 92 $.0000

hN
. B = l
B.= 4
R ————rln
u=0 4
v=0
u=0
Number of elements: 870

Number of primary nodes: 537

ld

FIG. '6.\15 FINITE ELEMENT MODEL - PINION
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FIG. 5.6 FINITE ELEMENT GRID, CLOSE UP - PINION
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the tooth was approximately 15% of tooth depth. The same for a fillet

element was 1.7% and for those carrying the distributeﬁ load was 0.7%.

The model for the wheel was constructed of 882 elements and 555 primary

nodes. For the pinion 870 elements and 537 primary nodes were used.

6.4.2 The Program

14

A versatile two dimensional Finite Element program was used for
the task. It has é\%eeping capabilities sué\h as handling plate and
axisymmetric probleu;s under external, centrifugal and t;hermal loading,
with applying eléstic, plastic and/or ecreep analysis. For this study
only the elaétic analysis of a plate under inplane eXternal loads was
needed. )

Quadratic assumed displacement fields are ex/nployed. The corner
nodes are specified By the user, additional midside nodes are generated
internally. This allows more particulars in specifying boundary
conditions and returns finer detail in the output. Plane stress or
plane strain analysis may be chgsen. In a standard output 'external and

VA C

reaction forces,”displacements at all nodes'; coordinate stresses “at the

primary nodes and at the center of gravity of the elements are listed.

Optionally the principal stresses may- be ingluded.

The program may be linked up with a graphics pr.ogram, which
displays the network. This was instrimental in debugging the input and
for printing Fig's. (6-2 thru 6.6). The ourc;:u:‘was treated similarily”

giving sam;;les of the deflected shape for the pinion, Fig. (6.7) and of

the 1sostress lines for principal stresses Fig's. (6.8 & 6.9). .
. . 1

. 6.4.3 Boundarj Conditions ' .

As the photoelasti;: models were held in space by a* pair of large
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diameter pins, the finite element models were also fixed at nodes

representing these points.
1 .

»

6.4.4 Loading K >

It was intended. to, ‘re;\)roduce t'he Hertzian displacements as
closeiy as feasible. Therefore the grid at the sites for the contacts
.‘wer:a prepared for that purpose. ﬁue to the non linear nature of the s
displagement as.in ;Eq. (2.44), incremental loading was plamned. The,
spreading of the contact width was to reach, precisely a new pair of
primary nodés at eagh increment. ' ,
" The .widt:h o'f the restangle Yat the ’contact of two parallel
cylinders pressed against each qﬁher is propqrtional with the square
root of the load as in Eq.(2.29).Hence if the subse;{uent load levels are
Wy = 2W, and We = 3W, " g | | i
then the subsequent widths Qf the contact rectangles will be:
b, = /2 b, » and, b = /T by . (6.13)
Distributed loading is represented by so called “"work-equivalent”

or "conslstent” loads acting at the nodes. These may be calculated for

a parabolically distributed line load,' spread -over the edge of an

L4
4
element from:

L . ,
" Wy = — {épy+ 2p; - p3) . =
* 30 . '
, ’ . - . ' . - , .
mt . L . ' N> N *
Co "Wy = — (2p; + 16py + 2p3) | sy -
' 30- ' .- - )
-~ . A .
o - Wy = — (-py + 2py + 4p3) ) 4
30 . i _ .

where Wi represent consistent nodal loads
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LY

py represent the intensities of vth'e distributed line loading
th the nodes i
. : ~ ’k. N
Nodes 1 and 3 agre primary, node 2 is a midside node. S
"(6.14) are derived in Appendi*x (1), which, was based on
r?f's [11] and [16]. The distances between the nodes were detemined
using the rule set by Eq's. (6.13). : jﬁ
An el/lipuic load distribution of a contact extending over five
primary nodes:is shom; In Fig.'(6.10). The load intensities were

obtained from Eq. (2.28) repeated here for convenlence:

P = ppayx (1 - (x/b)21% . :

" where Ppnaxs the \fertigzal half axls of the ellipse, represents the -

maximum load intensity. For normalizafion purposes the total load was
first taken as unity, which must equal the area of the half ellipse.a

A= dppagbr = 1. : é (6.15)

’
!

Then using Eq's. (2.28),(6.15) the )ﬁressm:e at each node was

[

determined. Next the fractions of the consistent loads over each
element were calculated employing Eq's. (6.14). Finally the fractioms
of nodal loads were assembled as shown in Eig.‘é?.lO) for three load.

levels. The results are listed in Table (6.1).




X
7
C,E,G,I,K are primary,
D,F,H,J are midside nodes.
[ ]
[
v For element "A" For element "B"
P17 Pc ' P17 P
Py = Pp & Py = Pp
b3 - pE Q‘. -p3 - pG
Giving nodal loads for each element using Eq's. (6.14):
¥1a Y18
"aa _ "8
T Wy . Wap
Then the assembled nodal loads are:
e TV = Wy
Up TV "W o
Wg =Way tWpy =W
. %5 "W "W
WG = 2 wBB by symmetry 4
: . \ -
FIG. 6.10 ~CONSISTENT LOADS [ 11 .'
3
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Note:

\

\

Table 6.1 Non~dimensional Load Frécéions

Contact extending to: 3 5 ; 7
primary nodes
Node #
. 1 .001
1-2 x ‘ 31
2 | .003 .027
) 2-3 1061 .072
. . 3 .032 .080 .072
3-4 .338 276 +233
4 .260| .160 .128
. 4-5 .338 .276 .233
5 .032 .080 .072
5-6 061 | .072
T b .003 |y .027
6-7 ! .031
7 .001
Total | 1.000 | 1.000 | 1.000

Midside nodes are indicated

\

4

by the adjacent corner

1
node numbers.
3

Ve o mm e
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/7
To determine the load which would extend the widthiof the contact -

H

to a predetermined distance, Eq.™(2.29) was used., This is rearranged

'

he;e:
. 8w ryr; -2 Dew oyt
b=|— —" = — Kyp
’ ™ r1'+r; E w '\ B
Wwhere: B )
- 8(1-v?)
K3 = * . (6016)
TE
r1r2 s ..'/
p = (8.17)
ry + rp -
hence: ' ~ )
! . a
sz: ' . o
Wea — ' (6.18)
Kb ‘

The face width B of the gears and constant K3 do not vary with .
the positidﬁ of the todntact. The equivalent radius of curvature "p" was
calculated for each lqu;né point. The requirgd half width of the
contact determined the magnitude of the totél ioad over a given site.
The load fractions were then calcdlaégd gnd %he group was orientated

/

into the normal direction at the central primary ‘node of the’ contact.

6.4.5 Determination of ﬂeflections = Using Novel Reference Data
‘ The main objective of this inyestigation is to detg&mipe the
f}exibility o{ these gear teeth. As everything deflects, the choice of
a suitable datum such that "all relevant displacements but nothing else"”
would be included is of paraTount importance.

The dynamic program considers tooth deflections only, but
includes the effects of the elastic nature of tﬁe foundation region.

/ N
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This datum 1s determined by maximizing deflections. A reasonably
specific point may be found by en\tering photoelastic considerations. IA
the photographs of Fig. (7.11)\\p 133 certain black areas appear in the
foundation xegion repeatedly. These spots move with the position of the
lﬁad. Inside these areas there is an "Isétropic Point'" which is unique
for’ a given loiading.~ Its location may b; determined by using the
isoclinics mentioned in Paragraph 5.4.1.

The black colour indicates that o) - oy : 0.\ Therefore such
point is in a state of pure hydrostatic stréess. ' The shear strain here
is zero, _hence no local rotation, only translation can take place. It
represents the distortion free displacement of the Fim.

This property makes the isotropic point a suitable datudf.: F;:om
here on the displacement at. a contact in reference to the isotropic
point‘ will be labelled as an “absolute” deflection, which excludes the
rigi‘d‘body displacements of the rime These deflections ';rAe comparable

with those generated by the dynamic program.

In contrast, the displacement at a contact relative to the !

"displacement at the ntact site on the adjacent tooth is defined by _the

parameter of "relative deflection". The ’gquivalents of the latter were
measur;ad experimentally.

The lc;cations of the isotropic points, e;ch corres‘pondfng to a
loading site, vere determined using the photoelastic models.. Then a
node was assigned to each such point in the fi;lite element model . ™ Thus
the advantages of photoelasticify und finite element analysis ’are |
combined. p

In. all cases, first the resultamt displacements were computed and

. -
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) then, these were resolved into conmponents along the line of action, and

P . those per]@ndi;ular \tc; it. The former gave the deflections, the latter
represent sliding,

The versatllity of the finite element method ylelds a common
ground to compare the results from the dynamic prograﬁ with those from
the physical model. ¢

At each loading site the loads were applied in three increments.
‘Thus, including zero load, four points became available to expése the

. " suspected non—linearity. ) o

¢

. 6.4.6 Determination of Fillet Stresses

. The fillet stresses due to single tooth loading were extracted
‘froni the output of the third 1<.>ad leyel computer runs., Then they were
linearly adjusted to' the standarized single énga’gement prototype load of
15.8 kN (3545 lbs)'. The output was plotted and .smooth lines were drax;m
through the'data points, which cbnstitute the final results.

The tooth loads on Multipie Engagement runs were based on the

compliaécé results and on the subsequent load sharing analysis.

Four group loadings were applied to each model. =

y T et
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RESULTS & CORREtATION WITH ALTERNATIVE METHODS

»

- The data are expressed in'terms of the prototype. The reader may.

relate to these results better than, for example, to the small stresses
in the plastic. The scaling factors were described.in Paragraph 5.2.

The fillet stresses are plotted vs angular position. The zero

N

polar position is defined by the line connecting the centers of the

e

<///:~ensfl; ands compressive fillet radii for a tooth. Positive angles are

e

—

reached through anti-clockwise rotation. At points'I and J as in Fig.'
(7.1) the fillet circle blends into the s-hort: segment of the root
circle. They are at slightly different angles for the pinion and for
the wh;zel. l \

The position of the load is defined as "Normalized Position Along
the Line of Action", referred to as S' and 1i obtained by diviciing the
directed distance' from the pitch point over the base pifch. Thus
distances between contacts are integer numbers and the f_ul], length of
the engagenent gives the contact ratid. Such normalization provides
common ground for pinion and wheel data.

“Best fit™ 1lines were drawn "byleye" aided by "French cur\;es"
though numerical curve fitting could have been applied for this purpose.

-4
w 7.1 Stresses — Single Tooth Pair Engagement

Samples of fillet stress distribution vs fillet angles due to
loacis ac.txing on individual te]eth, are shown ir} Fig's. (7.1), (7.2) and
(7.3) for the wﬁgel and in Fig's. (7.4), (7.5) and (7.6) for the
e i)inion. The tensile and the co;npressive pealf stresses and their angular

location are plotted vs normalized'posit'ion along the line of action in

- 4

Fig's. (7.7) thru (7-10)0

IS
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As may be expected, the tensile an? the compressive maxima
;ncrﬁase in magnitude as the load moves toward the tip. The reversal of

[

this trend for tensile stresses at iow dedendum loading [19] may be

<

observed for the pinion, but for the wheél, only the slope of the curve

ﬁs reduced. Similarily as the“load moves toward the tip the location of

the peak climbs toward the flank, with some rever%al at the dedendum.

On figures, whidﬁ display the peaks, the stresses obtained from
the photoelastic experiment are shown in full line. Those found on
finite element analysis are connected with dashed lines. The stresses
determined us*ng.the closed form equations appear as unattached points:

The locations, where the plotted stresses would superimpose on%}
thﬁ peaks at the adjacent teeth as "direc; cross effect of stresses" on
an assumed multiple engagement, are indicated.

- The finite element, photoelastic results and those obtained.by
using the Aida-Terauchi formula in general correlate well.. The Kelley
and Pedersen stresses appear to be under estimates, however their
angular podition f£it the data neatly. The photoelaétic_peak stresses
seem to fall behind the finite element maxima as the load apprbachés the
tips. The maximum deviations for the tensile and compressive peaks are
respectively 6% and 9% for- the wheel, 11% and 16% for the pinion.

Friction at the contact may be partially responsible for these
discrepancies. This subject is discussed in more detail }n Para. 9.1.

Photograph Fig. (7.11) displays the isochromatic fringe pattern

in black and white for a pair of teeth in single éhgagement. Six loaging/

-

cases .are shown. The crescent like fringes indicate the Eillg;/sf}esses,

. ]
the isotropic points and the contacts are clearly recognisable.

Ty
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1
7.2 Stresses - Multiple Tooth Pair Engagement

Sample plots of fillet stresses vs angular position are shown in
Fig's. (7.12 thru 7.17).  S'yom refers to the load on the central
tooth "C". The insert oun the graphs 11lustrates the location of the

loads and the convention for the fillet angles. The experimentally

determined loads and the radil of contacts are also shown in the boxes.

. The fillets are identified by two letters., The first of these

stands for the tooth to which the fillet belongs, the index letter P or

L refers to pressure or legefides respectively. The finite element

N,
s

résults are represented oy by the peak values. These points are left
unattached, they are identified where they may be ambiguous.

The highest stresses appear when only two palrs of teeth are
engaged simultaneously. The magnitudes of the compressive stresses in
general exceed those of the tensile stfesses. The cross effect of the
loads on the adjacent teeth appreciably modifies the.stress
aistribution. This is most apparent at the fillet bottom Qgtween two
loaded t?ﬁth’ where the tensile field die to one load and the
compressive stresses owing-to-the-other one are mutually reduced.

The dominant influence on each péak ;\ress is still the load on the
tooth to which the fillet belongs, the cross effect here 1is small.

The maxima were plotted vs position along thé line of action in
Fig's. (7.18; and (7.19). The experimgﬁtal, finite element and dy;amic
program results 4and those which were calculated from "Stress
Admittances” (Para.8.4), all correlate well. The latter is Pased on
data obtained from single engagement stress and defléction measurements,

and gave ‘an average deviation of 6%. This value may be used as a rough .
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estimate of the cross effect of stresses at the location of the peaks.
PhOCOgraph§§i the preceding page (Fig. 7.20) are samples of

fringe patterni obtained o multiple tooth pair engageﬁent tests. The

double crescents indicate¥peaks of opposite signs on each side of the

¢

fillet.

7.3 Deflections
F

Samples of load vs deflectiog/curves are shown in Fig's. (7.21),
(7.22) and (7.23). The "relative” deflections are shown with full |
lines. The "absolute" data are given in dashed lines. T
| By empléying the finite element method it was possible to obtain
the deflections for the pinion and for the wheel individually. They
were plotted separately, then their sum curve, which represents the’
deflections of a pair, Qas added to each graph. ‘

The experimental measurements which yielded.relativé pair
deflection directly, are also included. A line indic§ting the "shared”
load level was added at which the coﬁplianceS'we;e'latei evaluated.

Weber [29] and Cornell [8] sugéest by Eq's. (2.29), (2.31) &
(2.44) that these curves are non linear. The finite element results
indicate that this affect is very slight. The measurements on the
photoelatic model display a more pronounced deviation from linearity.
The plastic model appears to be markedly more flexible at lower loads

than the finite element model. As the loads increase the curves tend to

become parallel, thus the non-—linear action on the photoelastic model

‘ happens ,at light loadings. Geometric imperfections at the contact may

be partially responsible for this discrepancy, though the reason for

this behaviour'is not yet clear.
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CHAPTER EIGHT' : 148

; ‘ ANALYSIS OF RESULTS

From the stresses and displacements obtained from the experiments
and finite element analysis; the pai‘r-tvmp—ki—ante,—ther"sharingﬁofﬁhg—**
load, the "Str)ess Admittance” and the "Equivalent Static Altermating
Stresses” will be calculated in the following.

8.1 Pair Compliance #+ Experimental

, The compliance by definition is the ratio of deflection over load
. (Eq. 3.5). In the experiment‘ re]:'altive deflections were measured,
“dlviding them by the load "relative compliances” are obtained.
It wag/shown in ref's.[8] and [9] that the deflections are
substant ly non-linear with respect to the position of(the load.

) N
s, (2.31) and (2.29) and test results indicate; . finite element

.

. ~ '
results to a lesser degree, that they are also slightly non linear with

respect to the magnitude of the load. Based on the experimental data a

-~

single value cannot describe the flexibifity of a pair of teeth at a

P e

iven contact polnt.

The compliances in the experiment were evaluated at arbitrary

[

lodd levels of 25, 50 and 75% of "full test load" as shown in ’Fig.
(8.1). A "best fit" dashed line was drawn through the- 50% points. The
25 and 75% values are connected with vertical bars, giving a measure of

]

on—linearity coi\responging to each load deflection curve. After the

-\‘W e fiamay ¢
e

ire reev?ﬁ.ﬁi’tgl -at the’ levels they were shared in the multiple

. eéﬁgagement tests. Theil "best 'fit"” curve is shown in full line.

i

\\l\ At S8' = .23 an odd point appears. Based on the adjacent data it

i\ :

s%ms, that two slightly different curves may .intersect at this poiat,
%

ot

¢

,\ t

| .

N, o

!
| .

=
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FIG. 8.1 COMPLIANCE VS S' - EXPERIMENTAL
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"The test records indicate, that from 5' = —1.0 to .23 the closing -
of the gap was observed at contact sites lying to the right of the o
loaded pair. (S' increasing) whereas from S' = .33 to 1.33 it was done
from the opposite side. It is reasonable to expect ‘that the two loadi‘.ng ‘
sites on.the adjacent .t;eelsh due to a load on a middle tooth would not

deflect in exactly the same manner. - L \,‘
- R

Hence 1in cases of triple contact the relative compliances ér?
ambiguous. However the diff'erences(are small and a fair average value

may be obtained by curve fitting.

8.2 Compliances from Finite Elements, Correlation of Results
. N Y,
The finite ‘element compliantes were evaluated at the experimental /

"sharing loads”, and are shown in Fig. (8.2). The "absolute” pair (
compliances (dashed line) will serve to correlate data from the l
t
¥

preprocessor of the Cornell-Westervelt:dynamic program, which will be

available=at a later date. ‘ -
The “relative" and "absolute” pair compliances are nearly . \
parallel, suggesting that either set leads to almost identical load

 sharing. The relative values exceed the l.étt:ner by approximately 7%.

The deviation of relative compliances due to shifting the

,"viewing” datum from o;te side to the other is less that 1%Z.: Hence the
ambigulty mentloned 1s Paragraph 8.1 may be safely 1gi\ored. - «
The experimental compliances run nearly parallel with the
relétive compliances obtainec:l from finite elements. Their devigtion at
S!' = 0 is a significant 24.42. ' : -
This ciiscrepancy originate from deflection data.' The possibility

of geometriec inaccuracies at the contact were mentioned in Para. 7.3.

’
3
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It is also possible that the mesh of the fini;e element structure was
) not fine enough. The number of elements used w'as.near the 900 maximum
permissible,

Fo.rtuna;t:ély the parallel appearance of these curves suggests that
the most important aspect of the compliance property 1s preserved. The
affect on load sharing is nearly the same uysing either curve. This is

true if- the ratio of compliances of the simultaneously engaged teeth

remains the same. An example is shown in the table below,

¢, (5!=1.00) Cy (8'=0) ¢ /¢
X 10‘7[mm/N] X 10"7[mm/N]
Experimental 15.8 12.1 1.31
Finite elements 12,6 - 9.7 1.30
Deviation, 25.4% 24.7% 0.87%

N o
[

The resulting maximum deviation in load sharing was 3.7%.

8.3 Sharing of the Load 'in Multiple Engagement

The sharing of the load for each contact on the multiple
engagement tests were found from the:

a) MeaSur:ad stresses at the "ggauge points”,

b) Deflections, using graphical means.

From tt’x_ese experimentai data é "best fit" curve was obtained as shown in
Fig, (8.3)

The shati‘ng of the load from the“finite element results was
determined by calculation, usting Eq's. (3.9), (3.8) and (3.6).

The cprrelation between the experimental and finite element-

results and those obtained from the Cornéll-Westervelt dynamic program

with external compliance data was good as may be seen from Fig. (8.4).

These methods are described below.
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8.3.1 Determination of the Loads using Gage Point Stresses

+A gpecific point on the fillet was found to be suitable for

functioning as a load transducer. , ‘ N ‘

The quadrant of a fillet curve which is part of a tooth under

,load 1is considered to be the "near side” of that fillet. This quadrant -

may lie eitﬁer at the pressure or at the lee side of that tooth.

It was observed on single-~pair engagement to:esta, that the
Lstr:os!sses ‘on, the far sides of thé fillets were zero or near zero at +30°
fillet angles for»all loading positions. This held true for the tensile
and f9r ‘the compreefive fillets, for the pinfion and for the wheel.

As the far dide for Qay tooth '®%' 1s the near side for. todth "C",
it may be"’safely asgﬁmec; that under multiple engagement loading the
lat-:ress measured at tt‘le .30" fillet angle near tooth "C" can be attributed
exc],us:!.vely to the load on that tooth. 'The cross effﬁ gppeafs to ‘be.
nil at these points, hence the’30° fillet angle point may be used as a
lodd - transducer. )

The single-pair teét results were us‘ed as “"gage calibration™ and -
are plotted on Fig's. (8.5) and (8. 6) The proto_type equivalent of the
load was 15! 8 kN (3545 bs) The "shared load” may be calculabed from:

%h = 15.8 ash/ag‘ [kN) (8.1)
wvhere ogh is the “"shagred stress™ obtained on the multiple engagement

tests due to Wgp, |

ag is the "gage stress” obtained on the single engagement
. calibx;at:ion Tuns due to'a load of 15.8 kN.
Both stresses ar agsured at +30° fillet angles, where the —ve sign

refers to the compressive fillet. As each branch load is surrounded by
N e 2

~
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e
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four "near side"” fillets four sets of independant data were available

for each load. Using their average an improved load value was obtained.

8.3.2 Graphical Determination of Loads using Deflections ~

-

The non linearity of the deflection curves presented difficulties

for finding a unique compliance value associated with a given loading

1

position. This graphic‘al method circumvents the problem. The load-

deflection curves for {hose load poipts which belong to: the same loading
station f.e. act simultane‘ously, are replotted on the same graph, as on
Fig's (8.7) thru (8.9). Let these curves be called set "A".

t

The graphical steps which follo\;v are also illustrated on the
figufes: .
P
1) The curves were redrawn in dashed lines for those loading
points where there was gn Initial gap, in a position slhifted to the
right by th?a distance equal to that gap (set "B").
e curves with zero initial gap wére not moved (set "C").
i1 Tt}e‘ ordinates of sets "B” and "C" were added.and their sum was
replo %2d on the same graph. This_curve represents load vs relative
displacement for a group of pai:rs at a given station. It was sufficient
lto restrict this operation to the central regilon,of t’he abscissa.
111) 'I:he total load was therefore horizontall){ projected onto the
sum curve, the intersection projected to ‘the abscissa gave the group
displacement. .Ea/ch intersection of this vertical line with spt "B" ¥nd

‘
“C" gave the respective branch loads.

—

!8.3;3 Calculation of the Loads Assuming Linearity

As the deflection curves obtained from the finite element

- ¥

investigation appeared to be nearly linear, the computational method
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dlscribed in Paragraph (3.2) was appliéd-to these data.

i The measured gaps on the model were scaled down to protytype
level. The equivalent compliances were obtained from Eq.(3.9), then
th% group deflegtions were determined using Eq.(3.8). figally the
branch loads were found using Eq.(3.6) and the results are shown in
Figl(S.h), pe 154, . .

\ The goéd correlation with other data encourages an extension of
thisxmethod. The compo;ite tooth error may be represented by using a
positive or negative gap respectively. The branch loads fof such cases

may be calculated and the filleﬁ stresses evaluated accordingly.

8.4 Stress Sensitivity and Stress Admiﬂ%ance

» The stresses which were obtained on the Single Engagement tests
and are shown in Fig's. (7.7) thru (7.10) were divided by the

corresponding loads. The resulting "Stress Sensitivities” are plotted

~ vs position along the line of action and are shown in a compact form on

Fig. (8.10). Sensitivities in tension are drawn in solid lines, the
absolute values of the compressive sensitivities éppear in dashed lines.
4
The stress sepditivity values in Fig. (8.10) where then divided

by t%: experimental compliances of Fig. (8.2). Their quotlents yield

.the "Stress Admittances” which are plotted vs position on the line of

action in Fig. (8.11).- Ténsile and compressive, pinion and wheel data,
are shown on the same graphs.

\ All four peaks on Fig. (8.11) are inside the limits of the
“Highesf Point for Double Tooth Contact”. 1i.e. The damaging loads are

guccessfully averted from the sensitive tip areas.
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8.5 Equivalent’Static Alternating Stresses

’ “

Results’from the Multiple—Engagement photoelastic tests were
rearranged to obtain the stress excursion in a full ‘cycle for a given
location on the. fillet. Four such plots aré shown in Fig's. (8.12) tﬂru

\\\\\\“ff;}S). For this treatment it was necessary to define uniquely th;
| position of a group of loads as viewed from a fillet, . E

Coésider first a single contact as it moves along the flank of a
tooth. Let the corresponding location on the line of action be called
the YLabelled Position".‘ To each such position belongs.a unique set of
one or two more loads which act in a distance of * one base éitcﬁ. By
monitoring the “Labelled Posit%qn"-che motion of the entire get can be
defined. The range of the excursion 1is somewhat extended by considering
the "Labelled"” load acting on either the downstream or on the upstream

‘ flank with respect to the fillet,

Tha actual observatlions were made over several fillets as noted

4 e X

on the graphs. The rule above was then applied for the plotting of the

data.

(R

Tables 8.1 and 8.2 list the extreme stresses developed within one
A ’

cycle at 22 fillet angle positions and tabulate the subsequent

calculation for the’Equivaleht Alteénating Stresses. First the stress
range, the mean stress and the alternating stress components were

;alculated. For A;é 6265 steel an ultimate tensile stress ;f 1700 MPa
(250 ksi) and an Qltimate compressive stress of 2100 .MPa (300 ksi) was

used. Eq. (3.13) was expressed for the equivalent alternating stress: . A

e
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Oyt %a i -
. Oge = —————— for a tensile mean stress and (8.2)
Oyt = Om )
, %uc 9a
Uge = ————— for a compressive oy (8.3)
~ \ Guc - am ~

The calculated values are shown in Fig., (8.16).

The maximum value for‘cae is 156 MPa (22.6 ksi) for the wheel
and . 163 MPa ,(23.6 ksi) for the pinion. Both values originate from
po‘ints in the compressive fillets. K Each of these equi‘valént alternating
stresses are higher than those’ caused by the' maximum tensile fillet
stresses alone by b

8..12 for the wheel and by

| 19.6% for the pinton,

It' is emphz;sized tha\’t these results are not intended for
predicting fatigue 1life. They merely demonstrate that ‘other stress
ranges may be more damaging than the range from zero to oprpay. An

early crack at the location of g pyx may or may not lead to

catastrophic faillure. B

7

Exploring this subject is a worthwhile topic for further

regearch.
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4 Table. 8.1
] 7 . “Equivaleht»Alternating Stresses” — Wheel
.\ ‘(Zero Mean Stress) s
. ’*‘” Obtained in static tests, excluding effects of
v 1) Dynamic loads
N : ’ 2) Manufacturing errors
: All stresses in MPa excegt where shown as (Ks;)
' Stress _ Ode
Y° Range - Op * g,
(Ksi)
0 169.6 84.8 84.8 89 12.9
.10 197.2 98.6 98.6 105 15.2
20 230.2 1 115.1 123 ©17.9
30 252.4 126.2 126.2 136 19.8
37 266.2 J/ 133.1 | 133.1. 144 20.9  f
40 268,2 127.9 134.1 145 21,0 ek
50 269.6 117.6 134.8 145 21.0
! ~ © 60 262.6 94.1 131.3 139 20.2
70 255.2 68.9 127.6 133 19.3
80 251.7 38.3 125.8 129 18.7
89 246.1 [  10.7 | 123.1 124 18.0
—_—— e & e e | e - — _———— e e —
p , -89 244.8 1.7 122.4 123 17.8
H;:\ ’ .
w -80 243.4 -23.1 121.7 123 17.9
s -70 244,8 -47.9 122.4 125 18.2,
- -60 1 245.5 ~74.5 122.7 127 18.5
< : -50 . 26@&2 -107.2 134.1 141 20.5
. -40 290.3 | -130.7 | 145.1 . 155 22.5
K , ' ‘ -33 & 290.3 =141.7 145.1 156 22.6
i N -30 286.1 ~141.0 143.1 154 22.3
‘ , ~20 256.5 -128.2 128.2 137 19.8
&) 0 -
~H¢ N ) =10 227.5 -113.8 113.8 120 17.5
: ' 0 199.9 -100.0 | 100.0 105- 15.2
\ K

171

* Location of maximum tensile and compressive peaks respectively.

, ** Maximum gme in tension d

Gge 13 based on. .

[N

nn

1

oyt = 1700 MPa (250 Ksi) and oyc = 2100 MPa (300 Ksi)
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’Thble 8.2

"Equivalent Alternating Stresses” - Pinion, ’
‘ (Zero Mean Stress) ’
Obtained in static tests, excluding effects of
1) Dynamic loads . }
. 2) Manufacturing errors
All stresses in MPa except where shown as (Ksi)

Stress ae
Y° Range Om % 0, f P .
(Kgi)
] A
0 152.4 76.2 7642 89| 11.6
10| 188.9 94.5 |  94.5 100 | 14.5
20 224.1 112.0 | 112.0 120 | 17.4 i
30 248.2 122.0 | 124.1 , 136 | 19.4
, < 34 254.4 125.1 | 127.2 137 | 19.9 B
40 264.1 114,87 132.0 142 | 20.5 °° ek
50 266.1 100,0 | 133.1 141 | 20.5
60 263.4 76% | 131.7 138 .| 20.0
70 255.1 49.6 | 127.6 131 | 19:1
80 256.5 23.4 | 128.2 130 | 18.9
85 | 2530 7.9 | 126.5 127 | 18.4
-85 252.3 ~4.8 | 126.2 126 -] 18.3
~80 248.9 ~17.6 | 134.5 126 | 18.2
-70 244,1 41,4 | 1220 125 | 18.1
-60 244,81 |7 -65,2 | 122.4 126 | 18.3
- ~50 274.4 | -101.4 | 137.2 166 | 20.9
-40 | 299.2 | -131.7] 149.6 160 | 23.2
-30 302.0 | -148.2 | 151.0 163 | 23.6 .
‘ -26 302.0 | -151.0 | 15L.0 163 | 23.6 [
-20 291.0 | -145.5| 145.5 157 | 22.7
- =10 239.9 | =120.0 | 120.0 127 | 18.5
0-1 209.6 | -104.8 | 104.8 110 | 16.0
|

-+ * Location of maximum tensile and c):mprlassive peaks rgspecfively.
#* Maximum 0y in tension domain,
’ s

Ogg 15 based on . ‘
&;’ = 1700 MPa (250 Ksi) and gy = 2100 MPa (300 Ksi)

[s
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AN ESTIMATE OF THE ERRORS

o

" An experiment may be prepared and conducted with utmost care, but

the results still carry some errors. Lt is'good practice to givé an

0y

: .
estimate of the\ge deviations. : "
. Ty A

Q\ere are two basic types of discrepancies. The limited

"~

precision of the various instrument readings leads to errors of random
distribution. This type of scatter may be described by the probable
errdr, by the standard deviation or by some other similar deviation

parameter Ref. [25], Para. 3.1.
The.. shit:t of the medn‘ of the data from the 'v'true value" or bias
. , .
is likely to be caused by instruments which drifted.,'off thelr

»

calibration or by faulty test conditions.

9.1 Bias Due to Parasitic Loading

Friction at the congacting surfaces 1s markedly diffgre’nf}or the
model under static loadiné, and- for the prototype running in the
gearbox. Th:a oil film due to dynamic lubrication maintains an eff;':c':tive
coefficient of friction ,of 0.03 - 0.04. The direction of the frictional .
force at tt,;e meshing surfaces reverse as the p‘ositior{ of the contact
moves froz;n the line,of apf)roach to the line of recession.

The frictional coei;ficient at the machined surfaces of \the
plastic is typically 0.4, I}ence a tooth of, tj‘xe model mdy carry a
tangential traction of 40% normal load, §istorting the’ resuits beyond |
recognition. 'The finite element data. indicates (Fig. 9.1) that the
tangential c'ompopent Qof the displagement- at the contact in-all Q}i:ﬂes
points awa'y from the g\eat body. Con'sequent.ly ‘the frictional forces are
directedémutually toward the respective gear bodies in the static test.

a -

o -

[
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After some experimq@:ation with oil and dry/lubricants jit was
found that if two sheets of .076 mm (.003") thick teflon ‘are placed
between the contacting su'lj:faces, the frictional qoefficiént may be
reduced to 0.1, The tractions were possitlaly further reduced by the
' practice of gentlyjplucking the loading cable after the load was
applied. Thus vibration was induced to the contact, which may have
partially relieved the contact surface of these tractions.

The Aida-'rerauchi formula and a fev{ finite element program runs
were used to evaluate the effects of an assumed frictional force of
0.1. W. It was found that for the significant addendim loadings the
average Teductlion of tensile stresses was. 9.8% and those for the

compressive stresses 4.9%.

It is un'likely that t:h;z frictionall fox;cc;s always devglop fquife to
their maximum value. Therefyre oy in the photoelastic test ma;;‘t:ave
been underestimated by say BX, the compressive maxima by 4%.' To .these a
small value of O.ZZ‘ ma§ be added fo"rw_the loss of load due to fric.r.ion;at

the pulleys.

9.2 Random Errors -

These errors may originat‘:e from a number of sources, each
éonti'ibuting to the total in a specific manner. For numerical
assesspent some assumptions must be made,

Let us assume that these errors have a normal .distribution.

. As an arbitrary choice, the scatter for each type of error will °

be characterized by its standard deviation "s™

The stress on a free surface from Eq. (5.18);/ . '

-~
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v

3

g= N'f/B

where N' 1is the fringe order

¢
F is the material fringe constant

B 1s the thickness of the mode 1

The stress from Eq. (3.1):

o= VW

where V is the stress éensi/ivity

stress sensitivity to the

V=K V1

I

fur

W is the normal lga&

Considering that\the model 1s not perfect and assuming

e

g = Km Vt W "u\

from Eq's. (9.1) and (9.4)

Vt .-

N'E

By W £

Each of these variables represent a specific source of error:

177

9.1)

(9.2)

true” sensitivity V. of a “perfect” dodel

(9.3)
(9.4)

(9.5)

The fringe order may vary due -to the inaccuracy of the instrument

and the subjective errors in the reading of the fringe. The

linear r

8

or syt /' = .02

standard deviationm of this type of scatter may be 2%

- 'The material fringe constant obtained by calibration is of similar

nature to N'. However replications and treating the results with

P

egression a mich better value, say 0.5%, was obtalned.

Hence s¢/f = 0.005

.
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B' The thickness of the material may‘ vary * 0.5%
sp/B = 0.005
K; The nature of the va\;iacion in model accuracy is uncertain.However
great care was taken to achieve a maximum deviation of 0.001 m
* (0.0004") i]‘\n the base pitch at assembled condition. The small
Ivalue may justify linearization. Guesstimating this error to be
1% or Sgp/l = 0.01
¥ The un‘certain'ty whether the tractions at the contact have developed
to their mean bias or not adds a random component to this error.
Assuming this to be 2% sy/W = 0.02
A treatment of uncertainty in complete experiments is given by
H, Schenck Jr. [25].
A result of an experiment R is a f{xnctionQOf X,Y, .etc when R,

%.s Yo are the true values. The wvariance of the resulr:

2 3R ¥ R . ‘
S '[ Jsxz +{—]Sy2 (9.6) -
ax, at, ref [25], Eq. (3.14)

The contribution of the variance of N' to the total variance of V

using Eq. (9.5):

2 2
aVy f e
[ sy1 2 -[_.___ syt 2 ' (9.7)
aN', B Ky W :

Then the variance fraction of the same with respéct to V!

E \ersw¥ [ £ Y By WY [sy'y2
«[‘ } [ J-(—————J SN'2£ }-(— ) (9.8) . /
By W) (Ve | B K W N' N o )

Similarily, taking an example from’ the denominator of Eq. (9.5) the

contribution to the total variance of sy:

o
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aveY NE N -
By = Sy . - S (9.9)
W, B Ky W2 \

It.s fractional contribution:

-N'f ¥ B Ky W 82 -
_] w2 {__ - — (9.10) -
[B Ky W oL NE W |

The percentage error in stress sensitivity based on Eq's. (9.8) and

(9.10): ‘ . .
Syt (s’ 2 8¢ 2 S 2 Sm 2 Sw‘:2 %
100 — = 100 || — |+ | =] + | —| +|—1 + __J .
Ve N’ £ B W
" = 100 (,022 + .005%2 + .0052 + .012 + .022)t = 3.082 RPN

According to these figures 68.2% of the photoelastic test results
fall within * 3.08% of the "“true values" over and' above the bias, a
likely uﬁderestimate of 8% for the tensile and 4% for the compressive
maxima. This estimate of the total error fs as good as the estimate of

the errors of tHe components.
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CONCLUSIONS AND CONTRIBUTIONS

10.1 Conclusions

J The stressing of the fillet‘ in multiple engagement is primarily
controlled” by the sharing of the 1qad, which in turn depends upon the
variable .'compliance of a pair of contacting teeth.

_The finite element umeth-od gave significantly lower compliances
(24%) than those obtained exp;fimentally. - However the two.curves are
essentially parallel, the .difference appears along the vertical axis.
Consequently both results have lead to nearly ‘identical load suharing.
These loads _correlate well with those obtalned from the dynamic program,
which was run with experimental coﬁpliances.

The interaction of deflections modifies the load sharing only

- -
'$

sligh;;ly (1%), as the "reiative" and "absolute” compliances obtained
from finite elements are also nearly parallel, w;th‘ the latter being
lowervby 7%.

The direct cross effect of stresses between adjacent teeth at the
location of the peak stresses is small, an average of 6X. It {s signif-~
j:cant only at the fillet bottom, where it 1s beneficially (attenuating.

The stresses obtained using finite elements are slightly higher

.than those determined photoelasticalnly,l both giving acceptable low

values. The tensile stresses for the wheel are 266 MPa (35.6 ksi) and
they are 5.5% higher than those for theﬂpinio;l,‘\(ZSZ MPa, 36.6 ksi). (
The closeci form Aida-Terauchi equation gave remarkably good
correlation with the photoelast}c and finite element results.
The Kelley-?eders.en "stress shift” equation calculated accux.:ately

[}

the location of the .t'ensile peaks. f

;13 N >
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The Stress Admittance plots shog that all four peaks fall well
within the limits set by "'1"he Highest Points- for Double Tooth Contact™..
This indicates thac] ‘che selectedm com‘:act ratic and tooth forms
constitute a design where the load cérrying capacity of the material is
effectively used.

The "Equivalent Static Alternating Stress” curves indicate that
the most severe stress ranges seem to exist near the compressive |, .
maxima. It 1is not clgimed that these locations are in fact the weakest

points. However it is suggested that for proper fatigue analysis the
stresses be monitored under dynamic conditions aléng the entire fillet

‘curve.,

10.2 Contributions to the Art

~

. \\
1) The concept of "Stress Admittance” was introduced, which gave the \

critical location of the load for the wheel and for the pinion

respectively. It also lends itself to calculatel multiple
!

engagement stresses from single pair stress and deflection data.
% ‘ -

Colmbinin‘g this feature witix.load sharing Eq's (3.9, 3&@6‘5.63
a complete analysis is possi?le using a pair of finite  element
models with single t:oot'h'loading. ‘ e i
{1) To the best knowleglge of the au;:hor no attempt was made before to
build a High Cont;ct Ra.tio - Multiple’ Engagement ‘photoelastic
model, which was made using novel techniques. anortupately i:t: Vg
is ‘inherent in this type of model that surface .traction: effects
can be not be completely eliminated. \
111) The conceptfs of "Relative Pair Deflection” and of "Relative Pair

|
" Compliance” describe precisely the elastic behaviour of a pair of

\

3 y
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geaq:‘teeth"\in multiple engagement. These parameters account fdxj

the interactive displacement of the adjacent teeth, thusvée

.

sharing of the load may be determined slightly more accurately. ,
- } .
iv) The Isotropic point used as a datum isolates t:he" deflection of

¢

the tooth frono tﬁa deflection of the rim. -

S v) The observation of the "30° nearffex{stresses" yielded an .

‘

independent method to' determine the sharing of the load between
ﬁarallel acting tooth pairs. ’ . /
vi) The graphical method to determine the sharing of the l:)ad
circpmvented the difficulties arising from the apparent non-
,1.in/earity of deflection vs load. | a
_aviil) The notion of positive.annd negative gaps in \conjuncltic;n with the
load” ;haring analysis in Chapter 3 opens the possibility to
account for the effects of ;'c;omposite~ error”,
‘, viii) The extension of the Aida-Terauchi formula permits ;;a'lculation of

. the compressive maxima and the effe€ts of frictiom on fillet

" %
stresses.
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- The relationship for virtual displacements:

Al

’

— Appendix (1) *

Wc;rk Equivalent Loads .
- . When a distributed lir'te load is replaced by-.a set of joint- loads

. s : L ] -
the work done must remain the same. Principles of virtual work -are |
R . \
p ’ o\
~ . ] \
used.

The method was applied’ by P.C. Dimentha (11}, the fundamentals

-are described by R.H. Gallagher ([16]¢« For 'simplicity consider a

N '
"single” degree of freedom. The edge of an element with a midside node

is shown .below: . .
. o .
1 2’ 3

Let {P} . and {6} be the distributed lvads and displacements.

- T lxl ftl

. »
The nodal forces and displacements are respectively:

| Fl } 51
(51} {sz} , {si}'-{sz}
I - 83

3x1 3l

The distributed displacements are tied to the nodal displacements by the

2

re"fat:ionship: ) )",,
(8} 0 = T, {51}3;;1 T ‘ . an
\ -
where [NA] = ‘[Nl Np N3] 1s ;:he shape function.‘ =
As t;e assumed disf)lace;nents'are barhbolic, and isoparametrig
formulatio\n 'is uséd: | )
Ny =%k ‘(15‘1) Np = (1-£)2 Ny = i_‘ﬁ (1+8) (~A-2)

where £ is a "natural” coordinate which may take values of -1 & 1.

%3

- - [vA : A3
{M}lxl N ( ]1x3~ {Asi.} 3Ix1 % ¢ )

L.y . S
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.

s . . ' AY

The poetential due to a virtual displacem’e;lt %1en distripute;i‘ loads:®

3 . i

(b} as ' sy .

-8V = AS
!S{'_ } Ix1 1x1 ,

~

The work done by the external nodal forces is the same as that .by the

" distributed loads: . - .
a64]T {F = [4[NA A84] - ds .
[(8841] 5 P T WL e -
= [a64]T Na)T d . I
[ 1]l,x3 Js ]3x1 {P}lxl s‘\ : 2
therefore:~ i 'y ' -
- {Frg} =Tfs AT {p)} ds | T (A) o

The distributed 1oad_‘expressed by the 18ad intensities at the nodes:

1x1 . NZ

{p} = {Nypy + Nppp + Naipa}' = [p; p2 p3] {Nl} = iPA]{*Nl\B}
N3

L g

Hence: Y

" '
“l A
F = NA]T" [pA NB} d i (ahe
{ 1}3;:1 [s 1 L1 B s { }3xLs . , (A6
* <]
Expanding . [MA]T[PA]{NB} = . , - o - -
Ny 1'«? .

M ‘ - N Nipy Nypz Nyp3 MY
=N, [r1 P2 Psl; o aM2r = |Nopy Moo Jopy) sz
3xl - 3x1 N3Py N3p2 N3p3|3x3 (N3) 3x1
7 L)

N3 N3
erzpl # NyNapy + Ny Nap3a] . , §€T~ R
T o=eNiNppy + NZpy + NpNaypg . , . ;
[N1N3p) + MNgpp + NaZps| a4 . ) ?‘
This product may be rearranged: . 4
M2 MmN, NN T , . v .
M N NN Py = el (ef .
[NiN3 NNy N 3x3 AP3)3x1 | ' . S
) . .
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T e . K ? 4, ‘ .
A . , :
- i . . ’ ° , , -
thereford: [F] = [, ¢}~ [PB} ds - . (A7
- { }3x1' ) If't ]3x3 { }3x1 - D)
gL o, - E=l  8,E
o Ly SRR, " )
y . o .
y e R ~
-Fig. A-1
) ) o y .
#  The isoparametric coordinate £ takes values from -1 to 1.
also /for the given coéf@ingte ‘syste‘mé:
. .
A 23 ' e 5 L,
CoE e — therefore: ds = - dg .
L ) " s 2 td
'  After hav1‘ng integrated the enéries in Eq (A7)
1.4 2-1 oL _—
[g[NC]lds = — | 216 2| = [ND] : (A.8)
) 30 | ~1 2.4 4 .
<. . ‘ 1 4 2 -14.p) - -
R  {W} e [ND] {PB} = — | 2 16 2{ {pp} hence (A.9)
. 30 |-1 2 & p3 . ‘ Lo .
J\' oo ‘
. Ser \
Wy = C4py + 2py - p3) — . )
' 30 -
" » ) - \'
. 2ot £ L '
= Wy =—C2py + 16p; + 2p3) — Eq's. (6.14)
® , 30 . N . ¢
N S SO , O
. L
' # V3= (o1 + 202 - lpy) — -
- . . 0 'S
b - 4
p .\
\\ -
[ . \
. 5 -~ . -

A3

g
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