. . . . v o, - \ b i ! 3 \\‘
' ~ - ' .) . \)
| 1 v ’) "‘\\
. ° A . ns
- ’ A P . » . i - , '
- = ‘ . 177, L]
o oo) . N
Desfgn and Implemehtation of-a QBE System [
: . N ’ "o y . N .
. . Lo ’ o R . .
! ~
tN : 7 5o
= j\ Eva Ekiana Tandjung) o o B
< % \ . : E '
:T) .) i . . y) :‘ . L oa < " . .
" c » e . Sy ’ * : <. 4
S i - . . . A "Major '‘Report. . J
i ' . .;' ' N N O’ ‘ , '
NS . . - - . ¢ -
‘ . . , v Tavo ') T
R IS ‘ o * " . - ~ q
1 g ,.) awy in ¢ . 4 !
%) * ‘ «] . N .
{, . ‘\ .) \
& ' - ‘ « N
L c ’ - - .
: " . ‘ The Department . .
N - o " ¢
H " - '
3 . ' . N |
1 . ‘» - . N

» ‘/\ N '. .
. N . . '
LI R - o ’ tp‘ - R - \ " Y ‘ ‘ T
- i . ,Computer Science ' - -) }
' 4 s . ' s
t _* _- -
N A * -~ v . (. . .
* s . . " f ' ‘ N ' X :
v \ . - N
' . 1 « ~ " - i
) R ' a P IR ‘
! . Presented in Partial Fulfillment of the Requireménts , -
. - \) . V ~
! R k]
- . -) . R) o) . L * *
j , for the degree of Master of Computer Science at, ° B -
* ~ a ;‘ N 4 '
hd . U ~ L e .o .

: ' ‘ Concordia University - T

g \‘ - . . L
: Montreal, Quebec, Canada
: .) - . ‘ -
LI s . v, » , v
; e . : ‘ \ ‘ - ’ o
. ot .* March 1983 S .
” i N 4 N : . ¥ , t %

‘ [N ~ N . N . -)

- .) ‘ ' ¢ '
v \ :\() Eva- Liana Tandjyng , 1983 .
i . . ‘ . . ' I
Ve ‘ . .
. L]
H -
i .
,! (1) -
5 . . . ~
|) .
: : .
N) -

(¥

¢+ " .t. ABSTRACT - o

1] 8]

- . o 3
THE DESIGN AND IMPLEMENTATION OF A QBE SYSTEM

\

.

‘
LY
¢ s

" Eva Liana' Tandjung - - . K

I3

i
4 9 e

'Query"By Example (QBE) is one of the most popular

‘quéry languages used for database applications. This

[] , .
interactive. language requires users to operate on a two

. . ' R > <,
‘dimensional screen for specifying queries. In . this major.

report a software system called QBE system is described.

’

which has two major components hamely.QBE‘Frdnt End. Process

or QFP. and QBE Host Process or QHP. The QFP is a software

. system written for the miéroprocessor MC6869 that * will

eventually become an integ;ai part of.the H19 CRT terminal

¥

Id

s

v
PR,
A s e ot e 0T ¢ A e LMt TR
.

-

~used forwﬁégf*vommunication. The QHP . software system ' is,’

written

ruh on a.,mainframe liké computer system as aﬂ’
interface betweén; tha QFP and the database‘ management
system. The "QHP réported here is written in PASCAL for tHe
CYBER 172 syé;em and opérates'in the context of a rqlizfonal

database management system called RISS.

\ e

\"

- - i) -~ -
— I s e T VI, - Faey R L A A PR -
:) N . ;
. - - »
. , . ~ -
a2 -
. 2 . i -
L. B . . .o
-~ . 1 “
> - e - P - a -
N i - * s .\ -
- . - . T - 3
\ . ! . * .
5 - -
S < , . .. ¥ «
i PR >
- . - -
. ! m . . " -
2 o " - m . ,
. B
i -b. - . e f s . s
7 e
. - © ° ’ -
) -
y - . s
' B M '
. [7] .
- e - - - Id -
- - 5 - . -
. ot : . .
- - M *
. N .) .
S . oA - :)
. ° 1
. N > ~N
, . E L
o . . O - ' - .
[. i R \
. L. ' , .
3 v 4
. -
o . - P
N -y I3 . . D 4 -
- 0
- ’ L. -
R .
. LN -r
. .
A . - N 2 . P
. - o i - . "
& . - "
] N - . . N
D * L. -
. v .t - ot . ’ o
« AN .
.. -
. - ® L] N
* [] ¢ - - .
.., . . . ’ :
. , .
i - . .
> . k3 - .
. -t toae .
. . £ - -
, L . .
r . - .
N M [} v -
L4 ® - : - . T
- . R .
g - P
. . -~
~ 7y P B - E
. - ’
- .) . R
. - * . -
N N . e - * e - .
.. -
- * - -
. - « -
. - . ’ N -
. . . P
. k3
R -
. R Y *
< B .
. . - . v s -
P . . A .
. . .
VR
« . N . s &= -
- .
lll\-.m...ril!d‘tllllllf.\xni - . N - . - i e
= . i . - - o
d - . =~ R
" . o o - s

4
PR
- -
. .
Ty «
*
- i
.
-~ - ~
L
d
- s
. r .
.
‘\\-
- .Y
~ - N
- L]
%
-
Y
, K 4
«
.
. ¢ 7
‘e
.
L
. L3
- »
'
¥ ?
-
“ R
rd
o - -
~
. .
,
. -
: *
- &

N o o -
.. . v
T . - " - .o~
> . - -
- 5 - - Vau
- o L
. . PN
-~ 4 Lo~ =
. . 7 ’, - .
« . - N
- L4 lf *
. .
LY
. PR . . i
.) e T . ..
. P > “
'Y . . [N .
rs . . L - -
‘o
v a* - ~
. - N
- - i " L
» PR
5 - - =
. " - Sl e . - . N
%
B . . -
~ : -
. i . ¢ -
s e
-
., . - . “
. .
. - «
» - -
4. L4
~
- L r
N - P
. . . 3
, N
. . R . R
° -~
. R -
- N - -
_ .
.
.
.
. - - ~
; i
-~ \ /
.
4 " e
. - - .
. - P
- - \\I\. -
. N d .
. . .
N .
. .
- -
~ N
.
. .)
. L -
- S
. u
» 1
&
4 -)
- ‘ “~ " .
- . e e s i ot i <

for providing the QFP. ., _ | o

-~ M ’ .
- ! N N] : .
° 4
toa

.'t - - -~

f . * Al
I ‘would lilfe to take ‘f:his opportunity to: éxpress- Jity .
sincere gratitutes 'tb|my supervisor Dr. T. Radhakrishnan .

N ‘N\//
who &utlined the philosophy and direction of this major

-répfrt, read the numerous drafts of thi$ report, and made

suggestions for its improvement. -)

3

> \
’ ' =

To Aciek, "go my specfal thanks for his unfailing

]

support Auring my study in Concordia. A}'\d-_ "to Rao, thanks '

?
. 1
f .
4

@ ¢ . y ,vih
'I would also like to thank professor Radhakrishnan and
the Department of <Computer~ Sciencé for their financial

assistance. . " - . '

L

4

kit

S o
o, . °) K)
" Contents - . '
‘ . Y A
~I° INTRODUCTION . .
- - ° \

* © . . i

lol. -dbje(.:tives.....'.....;.‘....;.a‘..-:-'.-...'....1

[: . o

'102. Qu‘ery By ‘EXémPIE.'..-..:..._..._....-..".......2
1‘03- DeSign Phases-....'...-..J..'....j.--..q......3

\ °,,\1,4; Features of the QBE‘Sys;em;:.,x...:........B
. K . . T L .o
", II. LITERATURE' REVIEW A
& B 0 ’
¢

2.1. Relational, Hierarchical and Network based

N

3
[

2.2. Natural Language Like Query ianguages.....lG

oL ' \

N 203. PiCtUre Query; Languages....-oo-oo...hcno00019\\\

- - ° . !
III. IMPLEMENTATION DETAIL OF QFP

3

3.1. QFP System Level Details..f...g...........21

3.2. Data Structures Of QF Puceeeeoeseeseeeosest23

4

3.3. Design of the Display Format..;...........28

Ay

- , L}

'Y

QUETY LaNgUAgeS.eeerceeresesnossonsocdsoccesonanesl’

»

w

L et e et i ereta kg e # R

-

"

' : =

t

3.4. Degcpiﬁt{on éf QFP ModuleS..caveeaereioaasdl

- o
’

Iv. . IMPLEMENTATION DETAIL OF QHP

i - \ “ ‘
4.1. QHP System Level Detaills..................55

-

4,2. Maj‘or Groupings of QHP Software System....56.

4.3. Data Structures bf QHP.....eeesdsoeneess. .6

4

4.4. Description of QHP Modules.,..’.........'..~.68

>

v.' CONCLUDING REMARKS AND FURTHER WORK :

e

5.1. On fnté‘lligent Front End Termin.als.h.......B‘B

5.2. Contributions of ThisS ProjeCt..c..eeeeee...B85

5.3. Futther Work.-.....-‘...-;.-'..........._. .D..‘sj

- 3

REEGIQDCES.;............‘.o.....¢..N.-----.-....-...-..88

User Manual‘.-olc.oono-'nnl'.‘oooolo.c-ono.-.co‘..o’ct’)oo'ougaa

Exaﬁ]ple Query SesSiQO‘n's..O...."....‘lll..I.l';...........l‘ﬂ4
L)

!

) ample Database.....---..-..‘...-‘-..o.'-'-............--.-lﬂe

o .
[} 4
A} 3 M

. ‘

’

T it s W At + BT

s >

S D

L

8

9

lg -

11
12

13

r ¢

QBE*Systemol.‘;....7....I‘...Illl....l......‘..........ls
N Q\\ . ¥

. : ¥
QBE SUbSY§temS-.--.----:l....-zoic.--.---0

A V)

e

QFP Pata Sttuctbres\ncoloc...ul.o‘.ctll.’."o.!-cuic..24

QFP Modules Interéonnection.....z.....,,......:...32
] ' - . \\‘_\ ‘

«
-

SPLITZ NOde.--.....'.....‘;....-'I-....a--...-.-o-..n.36

a <@

aSPLIT4 Modelo.o.oco..-.o-.oo;llo.o-u..cco-c..o-no.3'7

b

SPLITE MOde.-.;..-...-.'-a....’.‘....---.o..---;......38

dﬂp Systém Control Flow......llontclllC..l...ll'.l57.
' -y

- -~

" Data Structures‘of QHP.iveseascosassssssssecsnsessessbl

.

|

Flowchart of CHECKTYPE MOQULCes o eeeronacsaananaaeall

Process fLinked Tuplesl..'l...'...'.‘..l.l....‘.‘?g
¥

'LIST.OF FIGURES s -

o e s et it oS b v sl e s £ 5
1

CHAPTER 1°

Introduction

. r a

- .

, : - oyt
As coéputér systems become more popular, there is an
increasing need to have a good and cost effective
communigation betweén a database and 'its " users.
Conséquenély more and more attention is being focused on.the
prime element of the éomputer applications, namely the human
element. Efficiency "in the use of system resources can
become ineffective if a system is not designed to match tﬂe
needs and capabilities of its end users?_mﬁfgzéact has led

to thé explorétion of new research areas involving the

human-oriented aspects of éqppuﬁer systems [Reisne791.

1.1 Objectives

~

The objective of this major report is twofold:
l. To develdpe an information retrieval system which
interfaces through the use of ‘éuery By Example language
(QBE) . '
E., To employ a front end microptocessqr'to control and
carry out the necessary terminal oriented 6perations for QBE

1nte§face.

.
e 3 AT Ead

/n \‘ . . ‘ S .

' A software system called QBE system is developed for

this purpose and it is bqéed oﬁ H19 Heathkit terminal.- This

terminal"supports limited grapthS'.capab lities such as
displaying horizontal-and vertical lines on the screen.

. e .
1.2.Q%ery By Example ° ,

2

QBE is an easy to use .high' level language with a'
H
convenient and unified interface to query, update, define,

control and secure a database. In this language, when a
. ny . -~ .

o~

uéér wants to pergorm an operation against the databasé, he
fills in an example of that operatioh‘ in skeleton tables -
displajed on 'thg ;cteen wﬁich are associated with some
‘4relat12ns of the database. The Software system presented in
this report analysesithe user supp}ied information through
.Sych graphical fqrmg, reformulates the query in terms, of
reiational operators operating on the specified relationsy
The system retrieves information using the RISS ([Mcleod75]
DBMS -and displéys it .in the form'of appropriate’resuit
relations. The philosophy behind QBE is to reéui;e users to
have very 'little’ knoyledge in order to get started and to
minimize the number of objects and concepts that he has to

learn to understand and use the language.
£

v .

e

e et 3

. - -
- - '3
. M - Ve "
~ . J/ W .
, g B
! B 1.3. - Design .phases \

~0

»

i e

'i‘he .design of a' QBE sy§tem,consi§ts- of thrée phases.

Phase one is concerned with developing a front end process

as the user interface named QBE Front End Process‘(QFP) . It

is developed on & MC6809 microprocessor and is stored in a
ROM and képt as part of the H19 terminal. In phrase two, an

interface to handle ,th'e information retrieval is developed

‘and named as QBE Host Process (QHP). lFinally,.in phase

three ‘the complete sysfem is integrated and tested using an

example data’ base. on the RIBS [Mcleod75] data base

management system.
; , ’

-

N F

1.4 Features of the QBE Sysﬁem

The fdllowin"g are ‘the essentijl features of the .QFP:

° x

1. One to four relations can be displayed on the screen at
. (.

the same tim;:- in the multi relatioh mode.

'2. Users can view a selected relation‘ in full on the entire

¢

scfeen and restore bdck to multi rela\tionydisplay by

pressing a single key.

- - 1

3. Users can téadili(refer to the status of the relation -

displayed on the 25th line in Feverse video mode.
4. Users can select the mode to display one, two or four

relations at a time on*the screen 'using function keys.

A

b

i

R £ i et 4

ARl Y

i
i
!
i

s

{

i
|
i

*

“ %
H

A
4

»

Wit

a ~

X ’ N
“ . " . .‘\
) R '
v)) 4 ™~ ' 4 ‘ ’ l
\ N ’ﬂ‘] T :) \'"’F\ \z P N) ﬂ
5. The mdhu'of the felations ifi the database can be used to

)
4 L P
»

forﬁulgte queries.

‘ -
-

6.-8crdlling°can be dond , to ‘display the" next . group or

previous grou

of tuples or columns by medns of the four
) \ .

cursor function keys. This can' be done with any "of the i

The following are thé features of the QHP: « .
Lo . ¢ :

1 e 5] it e MDA =
R
. - . -

- -] ' >

1, Retrieval based on simple type.

2. Retrieval of qualifagd type.

. . 3
3. Retrieval using pre-determined keywords..

*
13

Retrieval using common. example elementS (linking) within

o

one relation. . N . _ ¢ L
> @ I -
]

5. Retrieval using common exéﬁple elements between any tweo

- relations.y A Ne o : . ‘
AN) BN ’ Y e) «
6. Imposipg print operators before,the firstcolumn to be

considered as row-operators.)

[P

v f

7. Editing facilities such as: insertion, deletion and

\Q?déte. This “feature however,-.is ot suUpported at this
. - sthge. ~

) b > ._' '
I\ N :
. .
]

The QBE system involves two independent Software

fsyétems: QFP’' and - QHP. Figure‘ 1 shg%s the complete QBE) .

-~

system. v - <

. o -
. . 1
- . -
i '
. . . g 1
.
.

~ [V

-

F 33

&

%

Y P

3r

)

!

-

Bl

. 1 ' . .) * .
QFP acts as an end user interface which takes care of " the

. .

transfer of fnformétion’gehteged by .a user from the H19

terminal (micro computer based- tfrminal) to the host

processor. (QHP). -~ QHP will .then\‘make} an access to the s

-

. _ \ -) .
database (RISS DBMS), extract the dgs;opriate informations .

ich will‘dispiay‘the

N

and pass the answer back"tq QF?

answer on the screen. The central computing facility wused’.
e . . - .
for isys préject is the Cyber 172.mainframe.
. . Cow T
N . R ('
' * = “ .

e

1

¥

TN

~

. 1978, various high, level data base 1languages have been -

a \
AN . \.',&. ?
N .
\\
\\ ' o < 4
) 7 . "
X\\. » - \:\. *
S N S
® CHAPTETR 2 ‘ -
. R 0 ~/ ¥
Literature Review '
- A- < 3
L]
P B
¢ o

Generally, dafa sublanguages, suppdrt a Set-of data

bése operators emﬁedded in. a host\p{pgramming lénguage. on | >
the other . hand query 1languages are stand alonellanguages . ‘
through which én end. user interacts directly with, the
database . management system. ~In addition Eo their query
cppabilgty,u mo;t query languages provide facilities vto
updage, create and delete data. As compﬁie&:to’a txpigal/ - \ {-
data sublangua;e, a query\language is at a higher leve}f

S -

less ' procedural, and intended for a more casual user*

4 . Ve — . " N .
Sometimes, however, the Same basic set of operators can . be
A N

found in Dboth agkdata sublanguage« and a query language.

4

Below we present a brief review of the liieraturg in " the

N . W
area of query languagés.. i — ’
4 ’ '
s - "z 'y ! ¥
2.1 Relational, Hierarchical and Network based o
——\ . <, ‘a
Query Languages

ah \ ' . : . _:
- ' AR - ‘

Since the introduction oJf relational data model in % . . .

-

‘intrédUCed to Support this model. For almost all of thém,

1

relational calculus and relational algebra‘ lay "the ground

[

‘wotk ‘The relational calculus is further divided into two ¢

classes a tuple relational calculus and a domain relati&hal
calculus. Alpha [€odd72) and Quel [Held75] are two typlcalﬁ

examples of tuple calculus’ languages; FQL [P;rott77]: "ILL

(Lacroix77a, Lacroix77b]s and QBE® [Zloof75] are typical

examples of domain calculus languages. [It'is noted that not

much research - was conducted on query languages for network
or hierarchical oriented databases. The principle‘ reason
for the K interest in relational model of data is that it

allows the user to express the desired results of a query in

S

a-high level nomn-procedural data langugae without spgcifying

the access path to é stored data.

s
0

Either Relational calculus or relational algebra can

be wused to specify a complex gquery against the database.
. '

Howeveér, their underlying mathematics and the procedurality
are nat easyuto understand for a casual user. As a result,
much work h3s been done to develop languages which are as
powerful as the relatipnal ‘calcu{usu and the relational

algebra but. are easy for users of any background.

There are three query languages of.- this type uorth
mentioning: Query-By-Example [Zloof?S], Square [Boyce75] and,
Sequel [Chambe74]. Query-By- Example (QBE) is an easy to use
high levei language with'a convertiennt and unified interface
to query, update, define, control and secure a d;tabése. In
this language when a user performs an operatlon agalnst the

database(;uch as query or update), he fills in an example

,claimedq to be simpler and more conci:

1
[~

[

of ét,,openation in skeleton tables displayed on a screen
by'the syétem. The Pﬁilosophy behind‘QBE is to requireoc a
user to know very }itt}e to get started and to minimize tﬁe
number of obiects and concepts that he has to learn in order

to understand and uSe the language.

The QBE language has been used for several détabase
appl&catrons_ by non-programmers. A stchologiéal test
[Thomas75] shows that it requires less than three hours of
instrdction for casual users to be gble to ask a | fairly
vcomplex queries. [Dawei81] wused the 1idea of QBE to
construct another . query language called FOBE
(Form Operation By Example) to be applied “to sggcify
queries on forms. Aan~ al@&rithm for processing qﬁerieé

expressed in.QBE is discussed in [Niebuh76].

\

© Square iBoxce75] is a ﬂon-procédural lanquage based on

‘relational calculus intended to be wused in aq hoc

interactive problem éblving by non-computer specialists. It

also provides facilities for querying, insertion, deletion

and update of tabular‘database. The query capabilities of

Square were proven to be relationaily complete. | Users of
Square can desc;ibe the data to 'be accessed using
expressions based on "mappings". Queries Qsin Sdua;e are
e than -their

equivalenceé in the relational calculus. '

v

T N T P ot

TN
Ko

In 1974 the query .language SEQUEL was introduced

S

(Chambe74]. It is used as a data retrieval and as a data

manipulation 1language. This language is based on the
relational data model and ‘intended .to be used by non
programmers. Sequel was later extended to' Sequel2(SQL')
[Fhambe76] to facilitate users to exﬁressdcbmplex queries-.
S&L uses a block—struétu;ed format., and . English keywords.
Each SQL iéery block selects cértaiw tuples from a relation
by means of\éxAND/OR tree of ‘selegtion predicates. These

predicates may in <turn contain nested query-blocks whicht

select values from other relations. The notabig feature of

the language is the nesting*%%“quéryablocks to an arbitfary

depth. SQL may be thought of as a language consisting of
’ . m‘ o
several layers of increasing complexity. The casual . user

may learn only the simplesf dﬁery features; more trained

users may find use for more pQWerfui features. SQL is the

&

main external interface supported by system R as a data
/ ’

sublanguage embedded in PL/I. Sequel has been"aﬁpliedwin a.

minicomputer' environment. « An example of such a system. is

discusse@ in [Ander78] as Minisequel for DBMS., Tablet

discussed in [Charle8l] is similar to SQL. SQL is based on’

"Codd's relational «calculus where as Tablet .-is based on

Codd's relational algebra.

\

A study of human factors comparison of procedural and

¢

a ﬁon—proéedural query language, was conducted in [Charle8l].

This study compared the use of Sequel and a Tablet" based

H

g

’

R TN N

;%

v

-

o

. method. - It conecluded that people more often write difficult’

;‘ ¢ . . ‘
queriesfgorrectly using a procedural query 1anguage< like
Sequel than they "do by using a nen—pregedural method.
[Reisne?s] was conducting another study on whunan factors

'evaluation of Sequel and Square gquery languages. The goal

of this study was threefold: - i

lt To ‘determine whether the languages could- be lused by’

T
i

users w1thout extensive train1ng. .

.*2. To determlne whether there was a difference in usablllty

of the two languages.

3.' To discover the common errors frequently made by‘ the
users of the two lahguages.

This experiment was done on students of a university.q The
stnnentsﬁyere divided into two catagqeries: non-computer
specialists and computer specialists. The results of the
experlment showed that non-computer specialists were more

¥

comfortable w1th ¢equel rather than Square. Both classes of

users were able to manipulate the basic 1language features

frequently made were on syntactic and synonym type of

ane combined them in several different ways.’ Errors

errors. ,

Another psychological test was done on the the three popular,
query languages (QBE,’ SQUARE and SEQUEL) (Greenb78]. The

emphasis of the test was to determine if any of the three

languages has significantly better learning and applicat;gn‘
capabilities over the others. The result of the experiment

. R —a
showed that Zloof's QBE was superior.

1

-
; Z. (U WEUUNREIP PRSIV T Y
et e A I e Y g
.

. eI SR AR b s

"

satisfy the need of UNIDO's division| for industrial‘ studi

12 . A

;{ .
[Mcleod76] discussed an approach to translate a Qéﬁ: .

query to 1its Sequel equivalence. This paper suggested the

usefulness of a translation algorithm that ¢an facilitate

{

H

j

|

33 T

: a
1
i
?

- the translation from one query language'to~ahother one, so

-
W

it will provide a mechanigm by which muIﬁ%ple query
languages may be supporteé in a single data Base systenm, -
allowing queries to be stated in a lanéﬁage.most'appropriate !

to the user and/or the query itself. ' - : - !

' ~
[ShipmaB8l] discussed thé functional data model and ’

data language DAPLEX which has the following properties:
]

1. Formulation of data in terms of entities. | AN -

2; A functional,repreQEntétion for 'actual and viirtual data

relationships.

A

3. A ffcp~collection of.language constructs for) expres§ing ...

entity selection criteria. \ k \
7 T
entity types. . . ' \

1

) SLANG'[ﬁicolaSl] is a statistical language designe

for an efficient, powerfu and easy -to wuse package for

/

descriptive time series analysis.

;
ARy

"

There is a query language which ' provides \th
capabilities for queryin

-

and operati g\\on databases

amed CQLF. COLF is anothﬁr
\.

SN

]

[Manolag82). The language is

o .13 -

Y

ek

high level " query 1language for‘acceséingéand manipulating

data in databases described wusing the 1981 ANSI dpANS

version of the CODASYL Data Description language.

\

APPL? [Robert76] is a language claimed to be tHe best-
query language, sters can formulate queries solely in terms
of attribute naﬁés}\\?he system sqftware‘will determine the

" access path needed. This language is difkerent from ALPHA

-

in that it does not require wusers to have mathematical
.‘ , -
background and it is claimed to be better than SEQUEL\\gr

QFﬁé

i

. 'In- SEQUEL ~or QBE users have to specify the relation

name(s) and the atgributes to be used to navigate across the
yrelation boundaries, whereas in using. APPLE users can only.
specify tlie att;ibufe names;, APPLE can handle single acceés
path as well as multiple ones. ‘This lang&age is currently

used as the Host language on a minicomputer based general

purpose database™[Patnai8l]. \

QUEL (QUEry Language) is a language'supported in INGRES
‘\fhich became first operational &n March 1976 [SEoneb?G].'

It has points in common with Data Language ALPHA and\\SQUARE

in that it is a complete language and frees users from
concgrhing how the data structures”are implemented and which

algorithms are operating on stored data. So it facilitates

)

aj considerable degree of data independence.
joN
’ PRTV\{S an interactive database system intended\to be

used either as a stand-alone system for simple data bases or
\ ,))
\ .
\
N\

“w

\

et

N

14
as a data subsystem for an application system ([Todd76].
ISBL is used as PR&V'é query languagei PRTV is ndt a
fullfledged database system, but rather an _evolving
_prototype which i$ expected to aid in solving some of the

problems that have been encountered in using databases.

[(Antona78] talked about AQL which will provide an easy

to se interface based on default options, synonyms, and

de'f¥nition of attributes, inferences, and the possibility of.

interactive completion of the query. 1Interactive method of
filling thé’incomplete information.in a query 1is further

discussed- in [Baxter78].

b

-

A query language that «can interfaée either with a
rel;tional or a network databdses was discussed in
{TaiminB8@] called'XQL(Exten&e&}Query Language 5. XQL uses
the relational calculus and a CODASYL-like data manipulation

language as target languages to map the user's query into

. the data model. XQL -has been imﬁlemented on a Honeywell

68/80 Multics system,
[

CASDAL (Su78] 1is a high level data languaée designed

and implemented for the database machine CASSM. The

)
language is used for the manipulation and maintenance of &

database using an unnormalized relational data model. | It

also has facilities to define, modify and maintain the data
. .

model definition.

sl Dret s Fasn ¥

'relationships.

'\/"\\~

A query language’ for PDF%@%\system was discussed' in

/ B
[Warner8l] called FQUERY. LIt‘fs a high level language that

3 !
applies. the concepts of thé‘ functional data model. The

system uses RISS relational DBMS.

TAMALAN [Vandij77] was designed to be a casual user

. intetrface with no complexity of mathematical background.

This language 1is also based on relational model. It was

designed as a supplem”ht to some existing query. languages

‘ ~ .
‘that were con51dered to have some difficult features such

Y

as:

1. The occurence of complicateé sentences .with nested
operations ﬁo formulate a query.

2. The‘qccurrenég of nested éuantifier.

3.. The ocFurrence of mafhematical variables.

In specifying A query, uséfs ongAMALANeshould follow some
procedural aspects that use commands which are Fombined yith

some descriptive elements,

Query languages discussed so far were mostly based on
the relational model of data. 1In the folipwing we discuss

network and hierarchical oriented query languages.

[SchlagBZl disscussed a query language based on

network model callea NOAR. This language allows to

~

formulate complex queries which among other-things, include

conditions for CODASYL-sets and conditions for n:m

S

e

T e i Tl et v
N

gy

i

e e

1

16

NUL °, is aﬂbther network oriented query lahguage
[Dehene76] which allows users fo navigate from one record
set to another one thradgh the sets of the dafabase. _NUL -
‘allqws an arbitra?y séarch paths proceés and ;s very
flexible in .expressing selgction conditioqs. The language
looks very powerful compared to NOAH but the set of queries
expressed in NUL is not a real superset of thosi expreésible

. \"o 13
in NOAH. Looking at its structure, this language seems. not

too easy to be.impiemented.
Y

QUEST (Housel79) can be applied to all three database

models: relational, hierarchigal and network. This query

4

.language, however, is meant to be a theoritical study only.

et : f
IDMS ,is a commercial database management system based

~ SRR
on a networ&/ﬁqdel and makes use of a CODASYL DBTG type of
language. FORAL is the query language used by this, system

which is a ' non-procedural data specification and

O

! . manipulation langﬁage based on binary
- associations[Goldsc78].

g . e \
2.2 Natural Language Like Query Languages” N

A language for Relational Associative Processor (RAR)

N

designed and implemented in 1976 is discussed in [Kersch76].
e : This | language is . called SYNGLISH
= : (A Synthetic English Query, Language). It is a very high

- -
\ \

9

Tevel aue;y language based

17 i

-

on natural English. Queries
/ «

sﬁecified in Synglish, are allowed ‘to be as complex as

possiblé without any regard

to the language structure. @

- Queries -written in Synthetic English are easily parsed,

" using semantic predication analysis and “underlying graph,

into primitive templates
kel

-

 which are in one-to-one,

correspondence with the high-level machine language for the

) RAP. Lo
N . ,-':
[Codd78] discussed
experimental system
version 1.

-~

Rendezvous

P

a problem concerning an

N

intended for query formulation:
It differs from -other natural

language queéry systems in the exteént to which it talks back

¥ to ,the user about the entered query before any data base

retrieval is executed. This

J

-

4
dialog supported by this

learnt from the experimental

2 i TORUS

intended

network,

for

kno&)gdge about’ the‘ databaselh [Mylopo76]. -

is

a natural

ommuriication

1

paper discussed the" types of

system and some other lessons

system. i

o

fanguage understanqing Dsystem

by casual users with a database

management system. Users' request is found using a semantic

Mylopoulus has researched on another languagé calked TAXIS

[Mylopu88] which was désigned primarily for application

database

subs%antially.r

7 : : :
systems that are highly interactive and make use of the

This language permits the

_specification of semantic integrity constraints, and handles

‘ . 'exGeptions arising out of it. While the notation retains

"~

¥

s

S tka sy s

\' . . -
. some programming copstructs' such as the concepts of .classes
F \, .

and propérties, its orientation 1is . toward %b,natural°

language. ‘ g B v,
R ' ey 0 “. . <@ -

~— o B . -

(Lacroix77a, Lacroix77b] discussed an English oriented

<

retrieval language _for relational data bases‘called ILL.

The language was designed to investigate the cor%espondence

. between’ natural langyage queries and queries in
: LN

¢ "

’domain-oriented predicate calculus languages. ILL was built

S . ' ‘.
on a structure of expressions nested»bné inside the other.

2 & ?B& .
< . w .

Another query /language originally designed ' and '

implemented to provide a powerful and structured interface

to a -CODASYL DBMS 1is -called FOQL [Bunema79). FQL is an

appiicative lanéuage*and'has'many of the. ideas concetrning

functional prog#%mming-systems. It vegards‘a°da&abase as a
, / ‘ '

’

collection ofﬂfuncfibnéjover various“data types.:G Users have

the freedom to qpmbing the functions. A queny‘iﬁ FQL is no
&, - -

moré than another funcpiqn over the databasd which can be

combined 'with othet‘quéries. FQL can serve both as 'a tool

1 -

\

to construct comp;éx queriesoand as an Ent%rmediaté 1ahgﬁage'

into whigh one's guery language may.be readily translated.

As an exa@ple it can be used as & database interface for

e ’) < T
na;ural,langﬂagq systems.

N e i s

o

-

°

L}

N

- / *

+

¢

% . ' . AN

e 2.3 Picture Query Languageé

v .

v
.

. . 2 2 . ~, !
There is an increasing ctncern in the area of image

processing‘aboup the QUer%-languages. Data bases of this
kind ' are galled Pictorial Databgée System{ PDBS).
Non—blphaﬁuméric information, such as digitized images,
neeés _ large amount of meqory Space. Efficient and
. economical storage, flexible retrieval, and ;he manipu1a£iop

of a wvast amount of pictorial ithformation have become
A . ,

problems that need to be carefully considered. ~ Digitized
imageé include: geographical data processing, computer—aided
desi%f, Temote sensing of earth resources, regional economic

and health data processing, and cartographic andxnapping
' applications. Conventional query fanguages for * retrieving

and manipulating alphanumeric data can still be used to find

"image locations through sbécified image fegistration. Query
such as: , " . Find that portion occupied by Concordia

. R . -
.'University/gh a map", however, can not be expressed using

‘any of the existing qugry.Languag?s; THerefore, Picture
Query L&Bguaées were develbped to express such a query. It
can have, additional capabilities such as; the retrieval of
1ﬂa§es through specified picture désqgiption .and . updating
the picture éescriptions. Data'@éhagement concept such as:

_.data indepqndence,'data integration, controlled reduﬁdancy,
security and privacy are also imposed in a picture Query

v

aanéuage. ' . ,

-pr

20 .

e ~

(.

IGL is an interactive end user language for inter face
-with a geographic information system ATLAS [TSURUT81]. The

" database will . contain geographic information concepts

. . . N
concerning semantic structure, topological structure anq

location structure. It can store vaﬁious' sorts £

geographic and statistics data. - IGL facilitates informatio

<

retrieval, map production and map modification. It can
express information retrieval <conditions which use the
relationships in geographic information structure concepts.

The database is based on CODASYL .type DBMS called ADBS.

¢

i
[bhangBl], talked -about existing picture query
languages to be used to retrieve information

non-alphanumeric database. Mos;‘pictute query langﬁages are.

based on ‘the relational data model. A list of the existing

picture query languages follows:
‘ ¢

1. OQPE,.used ‘in Pictorial Data-base system: IMAID.
~N - ‘ R * R
2. GRAIN} used in Pictoriai Data Base system:'GRAIN.-‘

3. IQ, used ' in Plctorlal Data base system IMDS.

-,

4. IDMS, used in P1ctor1a1 Data Base system-’IDMS.
f ¢ , Y
%. ARES, used in Pictorial Data Base system: ARES..

6. GADS, used in Pictorial Data Base system: GADS.

7. IDAMS, used; 1n Plctor1a1 Data Base system GADS.

‘

8. ADM, used in Pictorial DatahBase system : ADM.

-

9. AQL, used in Pictorial Data Base system: AQL.

A

Details of these languages and references to the work

*

concerned can be found in [Chang8l].

from

PO

e 3 S B Pt

T .

~
- CHAPTER 3 (% .

. - .

ﬁfﬁplémentation Detail of QFP o

QFP is the subsystem that handles the terminal
T control. This section will discuss the implementation

- , ‘detail of this subsystem,

S 3.1 QFP System Level Details

\ 4
a i I Py ~
0 ' ! l ’ ' “é

F{om the system point of view, QFP primar%;y performs

Qhe following functiqns: |

1, Host-QFP Command Intérface .
2\ Host-H19 Interface : -

3. \H19 Terminal Control

‘4, H Command Handler_— 4

A
!

Fiqure 2 shows ‘the /pictorial-rrepresentatioh of the

N

,interconneétion of the above functions.
\\ = .

v

I

. N .
1. Host-QFP Coqmand Interface:
*I1t is an interface t&\trahsfer informatiop in tpe form

v . of frames between QHP and QFP.

o

=

‘

Iy

T e .
. A kL -~ ’
, ° , ‘ > K N
-t N} i , r\ -
.
‘ " C * X
swey sAsqns_ 3dd ¢ @anby
- ¢« -
- N ' :
LA X
s . ’ .
.,
k] ~ l\\
v - N -
> . \\
v v * -
. S e
* N ' N
N
. ld
L. ,~a 3 .
» Lo - *
L & B -
o \ n. .
- \\
. . v

* (¥38A2)
1SOH

S, e
-
+ .
~
o
. ’ .
& s -
.
- 1
M||IV
I3
. ~
\ "
~
F .-
. R
se e, .
. N
- -
-

Vs
)]
'
»
H
—
B

et s 00 o
r
N
w

* ~
3 ' 4

2. - Host-HI19 Interfacer
' R K

o) J This, is an interface gogalloﬁ Hirect'communication
between Cyber and ‘H19 "terminal; [{thus H19 is used as an

) N ! 4
ordinary terminal to a mainframe.

3, Hi9 Terminal Control Interface:

n
8

v

14
e

This implements an interface to handle specific I/0

T ‘ wiphrHin This interface will also handle-Hlé mode changing

e

)capabiIit&‘which will be described in section 3.3.

-
v

Ve .. 4. H19 Command Handler Inter face:

-

“ 0

. It is an interface to read and interpret user commands

v

—entered'by pressing prégrammed keys as well .as displaying

inforhation in various wayﬁ.
‘ i A
{

v \ . 3.2 Data structures of QFP
’ N > ’ \

N . The pictorial representation of QFP data structures is

given in figure 3.

"1. Main Information Block

<
£
(R '

. ~0 . !
As already stated, QFP can accomodate upto four

‘relations at a time on the screen.

' LS

3
D R T D AT, 2o e

-

s
e

-
.
v v
’ e
-
-
i3
|ﬁ
[-
s 0
. . Z
N
[
.
¥
z K
- e
/
S
.
¢
.

v
ot

1\3‘21% .

c s e

]

- S8In30nI3S eIed 440 ‘€ oxnbTd © - -
w\.\, . | I—) N

T ' . '. v * I .

H . N - ..vm

- - .) : ' ’ -

- T ! B v

. . ~ e Y . R .
" R T : . o .
¢ G N ~ 4 RS -) — - Ild o . - . .
) ° Y "w ~ " SYILIVUVHI ! L .

N N n.. . ¢ e I}chzu ‘- . o

A T TR R -
S i A

el .. } # 31401 . :

P T -

: . s, ¥3INTOd SHI01G-AUINT | o——

) - : SINI®IALLOV 40 #

. ~ o - : - J9NVY-NHNT0D .

" A — - .

: . SNHN10D 40 #

: _ b | *39NVY-31dNL

L SuILIVUVD: STNLA0VF Y. .

¢ . 3WWN 700, L S¥ILIVIVHD *$700 ININIVWIY »
t HLOTA- NWA10) N EE uz<lmcb_n<dmz : $31dn1 ONINTVH3Y

HL9HIT 3WVN_ 103 ¢ | RT3 : Jj —
X X ¥3INIOd %016 NOIIWMOINT IIaVIWVA —
. , T . . »* Y3INKEOd %3078 NOILVWYOINI Q3X14
- - X - - ' , i X -
. . -) . [.

IA9-ALIAILIV]

AT YL T T

25

2 :

‘Eacﬁ of them is a;sociéted‘witp a 5 byte block that contains:
information‘ébout the relation. °

The following gives the description of each byte of thé
block. " '

Byte 1 : Activity Status Byte

Byte 2, 3 Poingér to Fixed Information Block o

Byte 4, 5 : Pointer to Variable Information Block

Activity Status Byte will indicate the presence of valid

data in the data structures of a particular relation.

2. Fixed Information Block:

A ~—

that do

This block consists of information abog& a relation
"not change very frequently.

Description ¢f the constants used:
. \ .
RNMC = maximum number of charactenf in the relation name.

({ = 40 currently)
4

¢

R

e s n a ey

v+ Description of the block:-

;J‘ Byte 1

<

¢ length

-

L)

b

1

\ ' ;
-~ Byte 2 to’'byte (RNTC) ¢ relation name

Byte (RNMC + 1) |

: number of tuples in the relation

J

Byte (RNMC + 2) ! : number of columns in the -

relation , -

Byte (RNMC + 3),(RNMC+4)~y Pointer to:column-names-block

f
. , -
-) .
»- . N
B o]
. . ‘ ‘ ',
- + .
7 s .

' .

.
!

Fia

i i LA

26

3. Column-names Block:

This block stores the column names and column widths.

Coﬁstants’ui?d : :) '

CNMC Maximum number of column names (currently = 15)

\

CMXM = Maximum number of characters in the column name

T

‘Each cq;umn”fg/associated with a (2- + CNMC) bytes block.

//
Describti?n of the block:
|

Byte 1 ; ’ : lepgth of column name in bytes

Byte 2 -~ : column width

" Byte .3 to\ (CNMC + 3) : Column name characters

1
1

v
|

4. Vﬁjj7ble_lnformation,Block: , i

2

This block consists of information which is subjectéd
to cﬁange‘wheneve?/the corresponding relation requires to be

manipulated.

B

Description of the constants:

'EMXM= max imum number of entries in the relation

(cufrently is 29) -

ENMC= maxidum number of characters in the entry

' ¢

(currently is 39) ' ‘

~

Description of the block:

Byte 1 Remaining tuples to be displayed

‘Byte 2

Remaining columns to be displayed

27

Byte 4 : Tuple range

Byte 6 : Column range - \
- \

. : numbpr of active entries in the re ation

Byte 9 : Pointer to entries block

5. Entries Block:

number as well as column number.

\

'

Description of the block:
Byte 1 : tuple number

Byte 2 column mzmber

.o

Byte 3 . : length of the entry

Byte 4 to (ENMC+3)

e

entry characters

6. Other Data Structures:

N

a'. y POINTR is a routine to access the various blocks in the;
QFP data strutture. Detail desc\ription of this routine is

in section 3.4.

v

- b, SUFFER is a buffer of 75 bytes to be used to keep the

framed' information to be sent or to be received from HOST.
\

BUFPTR points to' the next character available. BUFSIZ

contains the number of characters that are still left to be

read from the buffer. i
\

S e gm

28

- c. Main informatibn.blocks for all the four relations start

at label 'QBERLS' one after another in ascending order.

T

/ ~—

Fixed information blocks have a common 4 character prefix
'RELF', an@ variable information blocks have a prefix
'RELV'. Column-name blobks have a prefix 'RELC' and entries
block have a prefix 'RELEN'. At the specified labels the
cqgiésponding information begins. ‘

d. BEach of the relations is associated with. a 7 byte buffer
intended for keeping information about tuple operators.
Theée bpffers have a 5 character prefix 'ROWOP'., I-th Syte
in the 'ROWOP' bhffer corresponds to i-th tuple where
1¢= i <=7.)Each byte is used as a flag with a valﬁe ¢ or 1;

-

on which_ 11' indicates that a print operator 'p' has’'been

.-

initiated.

3.3 Design of the Display Format

QFP uses lines 1 to 23 on the screen to display the

, 7 ,
relations and lines 24 to 25 to display the status of the
relations.

The status of a relation is displayed in reverse video
| .

mode and contains information such as the number of tuples
and columns to be displayed, tuple range and column range of
the part of the relation that is currently displayed and

size of the relation in terms of tuples and columns.

\

.

gt e o B

/
/

29 |

p
/
=

A stqtué }iné is formatted as below:
RKXX,YY)"T(XX,YY) C(XX,YY)“S(XX,YY)

=

R(XX,YY) : there are XX tuples and:. YY columns for the

corresponding relation which are not displayed currently.

T(XX,YY) : tuples XX to YY are shown

§
C(XX,YY)\|: Columns XX to YY are shown .

v
o

S(XX,YY) * XX and YY are the actual number' of tuples and

columns respectively.

Due to space limitation, it |is "not always possible to
display the complete . sLaEus details of the relatians that
are maintained internally. Therefore, most of the time only
partial status is dﬁsplayed for each jrelgtion. If the
complete Status‘is required, function key RED (FRED) can be
pressed followed by the 1logical relation number of Lhe

relation (LRNB) for which full details are requiredl

~

In QBE system there are two main modes and two special
modes of display. These 'special modes are called SUBMODEs.

The two main modes are SELIT2 mode and SPLIT4 mode.

SPLIT2 main mode can display only two relations, one

‘theAlower half

is on the upper half and the other gﬁg)is on
of the screen with a seperation line in the middle of the

screen. Consequently, lines 24-25 (status area) are divided

\ - ‘ 30) * 4

into two halfs so that each relation is associated with. a
status area. The values for LRNB in thare mode is 'l1' or

lzl.‘

SPLIT4 mode is the same as SPLIT2 mode except that

SPLIT4 modé.allows.display of four relations, each of which-

occupies one of the four corners of the screen. Sepe;ation
lines are also. displayed and these lines form a''+' shape.
Lines 22—25 are now split into four parts. and each part
serves as .the status area for a relation. The LRNB values

for this mode range from 1 to 4. -

4

Not all columns in lines 24-25 are .used to display
status information. Columns 5 to 88 are allocated for
stétus-and the remaining is used for wuser communication
area. This area is further divided into 'command window®
and 'value window'. Thé former occupies coiumns iﬁto 3 of
line 24 while the latter occupies columns 1 to 3 of line 25.
Column number 4 is always blank and ishused to seperate user

“

communication area from status area.

In QBE system there is a facility to view thé tuples
of a displayed relation page by page through the so <called
'window! operation.j‘This operation allows a useé to move a
window across the relation 1in all four directions.
Sometimes however, it is desirable to see all the tuples and
.columné af a’re;ation. For this purpose, user can utilize

N

special feature provided (submode) to display the relation

Y

[P

PR,

s
" e =

pezec

g

[

31

and its ertire status on the whole s.c;eén, so more tuples
and more columns can be shown. This mode is known as SPLIT®
mode. Whenever only the entire status of a displayed
reiation is required, users can press function key red
followed by the LRNB of the relation. This is also

. . 3]
considered as a special feature, and it can be done,

L

.
irrespective of the current operating main mode. Since a .

sutfhode changes the screen display format, QFP provides
another command that allows suspension of a s}:ecia’li feature

and restore screen status. The selection of a special

feature is not allowed while one is in effect. Figures 8 to

. 19 describe the display format and LRNBs for the relations

.displayed for all the display modes,

3.4 Deséri'pti'on of QFP Modules

v

s £

This section will give detail descriptions of certain
major modules of QFP system. Thé pictorial representation
of the interconnections of these modules is given in ‘figure

4 to 7.

COLDS : This module per"forms QFP initialization as\the
followings:

- Initialize'stacl; pointer (U register set up)
- Initialize MAIN MODE tg SPL:;TZ and' set up Screen qisp‘l'lay

format

~ -

-

P Bt Rk e hgiiiod a0 o

S P gl 12

: o ,
PR S ‘ - L [
. - . o
. - . s, ° -
7 B v t 1 k-4
.) i) .o «
’ ” - ’ ~ b :
R “ ‘p @anbra . . s -0 -
- N i- i ’ . Y . . .
. . ° N3¥dsa s ‘
- ~ T < ~ ¢ .. . ° S - :
4 - W -~ -‘ 5 - \ﬁ °) « o
A g ' ' [] -
B J - vsaso | wawasiey 0 . -
-) .V . . \ . SR
.-) N ,iv v -Q. < - . . ’
. .} «
L4 ’ ~ N M
I3 o s,
<. 102344 JOILXN/ - . 30024) . 37d1yd - ATdLXN =
- . . \. .m N , R -~
v+ H ‘a*s L c .« 353 - e D »
T ,. - . [. , R -
" ’) vy o , ..)
. 0/1 6L-H ¢ ©0uINGD 3 : T
. - SR EE X I A s ’
. - . . > . ;
v ‘3 : N <7 ’ - -
30404 ~ . . 1_v.l.—.- , o « - y
- - . . ' \, L. : ¢ ~
- - o o . um &.ﬂ 23 : r. R
. ° . LN -)
. “- Wl K—— 6Ll > 1SoH- - A y3mn
, . ° } oot .
.. , -) 1¥v15-0700 -
. : CoL — T 3 | K
. -~ ’ . ﬁ Lt
R oY ‘ . . .
. . ’ » -) R S
- 5 r/. 4 ’) - .h ')
¢ v, C . - T - v T~
A . , N\ &, ot , O
~ % ’) R)) ‘ . ’ . oflp ‘ - -

e e ey T o . e . - g o T em——
. . - . . u._ v. - | .)
\\\\\ ot ¢ ¢ -
— Y . - -, - . -
. S @anbyg . @
\ R - * U\ A
T N U . .) 2 . - 1‘
. ; .
’ . (y, $15dSQ
. < : ot @
- . £ /A
~ - Qv k AMOSNY AYDANS , P !
- = S— . L i
i . - " s A . 3
’] . Q3y4 -
. X ‘ 1 | ‘oan : SR ,
. . .) £4
F
: u | - - 7T
NIWdSa S .
. N . .
- . ' e - . . - -
d—’ - \q . N -

e) -
134dSq TIYNIN niad

b—ro 30004 |—— &A_Gwp 1 - 8N¥13a 1N3S¥3,
. . — vd . ;e

, T T —

- - . @ wayesa ,] L

AVY9 64 SBUEL CIONT4
- @AII.

) @\—r \] " ‘ ,

7

g B
R B ’ (24)

" ~ isdsa Tubdsa 1SOH 150N . s 11¥201
W | -

- -] .
: o -l -

3N8A0M

.

N

‘

.
p
.
P
o
.
.
S A
\\ -
<~ ’
.

,] .
- 5 .
<
,y_ *
1
-
*9 aanbtg
. L .

J.

1

N S FTTVR §

JONO,
11,

.

\ﬁ —

rd

s NRJND -

Al

2

703LXN
[

ST 0 I A

. oo

-1
o o ®

‘e

BN

ESS

pr—

A A P
R e B

3

L1207

T

I

-

*L @2anbtg

NJddsa |||||¢L INIHAY I
e v

WITAHD

NdL13a k—————

"

-

— N () 31¥201

1sneay ™SdSaG | SdSd1d

36

SNOILVIIY H108 Y03 SVIUV SNLViS AU/

e

VYV NOILVIINQHKOD ¥3ISN
, . f‘l
AAXXTY (AR*XX)S CAATXX)D M:w:: (A" xx)y
<3WVN NOTLVIY> . L]< IWWN NOTLVIIY >
08 X AT :
- MOGNIA 3INTVA
i] MOGNIM GNVHHOD
. l. ‘ -
- N u‘ + N
. .
- 3NIY ¥0Av¥adis —
) - NO433NS / : i
, e
SIHWN NWNI0D - | . _ , -
404 3IVdS &} — L

Figure 8. SPLIT2 Mode

/

3

(AR XX)Y | (AR XY C(AACXX)Y . (AA*XX)¥
[¥] <3WvN NOILVI3Y> (€] . <3wvn NOILvI3u>]| | [2]< 3wvil wotivizu>| | 1]< 3WvN NOTLVITY >
: 3 29
a ‘)
.) . , —
' A
N v .
e] : .
¢
L~ B -
4 .
o .
- . -
£ \ .)
n m ,
. !

B ki

1 24

Figure 9. SPLIT4 Mode

38

[<omyi>]

CAASXX)S (AR XX)D (AA'XX)E (AR XX)Y

< JWVYN HOTLVI3Y >

v

K

Figure 10. SPLITO Mode

e e e ey A TR

&;«Ty

.- Clear all RELFS and RELVS

"WARMS: This module reads a command and” checks for its

transferred. 2

“»

& . P \ - 5 \ - S
- Save the data of all RELF's and RELV's inl'TéTBUF' ' ' '

¥

- Branch to WARM START e ‘ ¢

»

)

B e woa -
M b Tty Avn b e "

validity.

CTBLKP: Thi§ module performs table 1look up for command
character in the A register. It will set VLDCOM flag if
match found and reseﬁ it otherwise. ‘I ’ C
CMDLUP: Thi; module serves as the QFP command ';oop and, e
functions performed are‘reading a command, checking for its
validity, performing a table look up and branching .to an
abpropriate routine if command is vali%, or returning to the

beginning of the loop otherwise.

Modules called::
WARMS, to read a ba;id command chara:ﬁ§k

CTBLKP, to perform a table look up I

N

FCODE: This module services all function key commands. It

will determine where the program control should be

Modules called:
Fl1, to service function key number 1

F2, to service function key. number 2

14

\ message.

40 .

F3, to servicé function key number 3

.F4, to service function key number 4 \4%
Fs; to service fungtion key number 5
FBLUE, to service function key BLUE
FRED, to service function key REb
FGREY, to service function key GREY
CURFUN, to service cursor key commands
’ {

Fl: Transmit the query to HOST and display inférmation

) : ”
retrieved in the appropriate relation. The sequence of

functions pgrformed is as the following:
1. Determine the number of relations used for setting up a
query.

2. If the number = @, no query is set-up,‘output error

3. send '+Q+' command to HOST.

4. Wait for input prompt from HOST.
5. Send quefy in the following format. (shows the BNF):

QUERY::=1< of relations>i<relation block> {,<relation block}

<relation block)>::= <LRNB>i{<relation name>!

* <$¢ of active entries>! S

<entry block>!

<row operators block>!

1

<entries block§::=<entry block>{, <entry block)}
<entry bléck>::=<tup1e #>1<col #>l1<entryd>!

<row operator block>::=<¥ of row operators>!

<row #5{,<row $>}

A

6. Send a <cr> to indicate end of query transmission. .

7. Read HOST response. ' - e
é‘ If a positive acknowledgeme;t (;94@{) is not r;ceived,
there is an error in the query. Output error message.
9. Recgive the query answer in tﬂe following format:
Answer::=1<# of relations>I<relation block>!
{<relation block>!} . ’ - e
<relation block>::=<LRNB>!{<entries block> '
Refer to BNF shown in step number 5 for <entries block>
format.
1. As the information is received, modify the

o

corresponding relations.

11. Display the information received from HOST in terms of °

new entries in the appropriate relations.

, , .
© OUTINT: This module converts the value in A register ipto
characters and transmits them to HOST with '1';at the end of
the frame., This module is called from 'Fl°'.

Modules called: - ») .
CONCHR, to convert integer to chqracters

INPINT: This module reads digits until a 'I' is received

from HOST, converts the digit into aﬁ integer value and puts

it in A register. This module is called - extensively from

module 'F1l°',

Modules called: ‘ ¢

|

42

a
CONINT, to convert a string of characters to an integer. .

F2: This module services function key number 2. The
%unction performed is branching to a loop that -allows full
duplex \communication between H19 and CYBER. QHP on HOST is

terminated first by sending a '+T+' command to it.

QBEMES: This module displays a nice QBE start up message. ..

It is called from module 'COLDS'.

LRNB: This module handles commands '1', '2', '3' and '4' as
the followings:

1., If SPLI;z main mode is initiated and value in A register
(command) is > '2', display error message. -

2., If value in A register is < @ display‘error message.

3. . If value in A register is > 4 display error messagé.

4. Converts the command into its integer equivalent.

5. save it in 'LRNBV' indicating that the corresponding

“
relation is active.

17

TEST: This module is used for testing and alsi/;:;:lstrating

S

-

some of the fgétu;;s of QFP. ° This module handles 'T'
command which can be igsued only at the very begindﬁng right
after start up message.
Function performed is:
'Restoring data ip RELF's and RELV's which is saved in the

COLDSTART. Once this command is issued, QFP must not be

£Y 4

- n o m

43

L

used for any other commands except 'F!,.‘l'-}4', and cursor

s
it

funct&en key commands.

FORCE: This module is used to set the activity status byte

of a relation even though the relation is not explicitly

‘brouéht in by an 'FBLUE' command. This module services '§'

command and requires LRNB input from user. In using this
command, LRNB value can not be other fhan 1,

{

-

INIQBE: This\moduie initializes the ACIA of H19 and " the
~ A

modem and establishes communication channel with CYBER.

F3: This module services function key number 3. Functions
performed are as the followings:

\&. Read LRNB.

2. If valid LRNB, save the current status of the selected

relation.

, ,
3. Set up the screen for SPLITS mode.

4. Display the relation on the whole screen after computing
6 3

availablle number of rows and columns on the screen.

5. /Display status.

Modhles'called:
LRNB, to set LRNBV
DSPSKL, to display skeleton

DSPREN, to display entries

e b 7

Y s ithe © oRdeifomenburkall S B
. B

o

F4: This module services function key number 4 which is used
‘when query set up is required. | ‘

Functions performed are reading LRNB, c/earing th entries
-in the corresponding relation and allowing user to fill in
the entries.

X ‘ . \ . ‘

F5: This module services function key number} 5 which is ;sed
to switch between main modes. Function| performed is
di{playing as many rélations as possile in the current main

\ 2

(/
mode.

FBLUE: This module services function ker BLUE. Functions

performed are as the followings: \
’ }
1. Ask user to enter relation name. \

2. I1f user enters function keys BLUE égéin, display a menu
of all the relations in the \data base. and repeat the
question. .

3. if ;ser enters cursor function kéy,' diépla&s the
corresponding set of column names or. relation names if
péssible and repeat the question.

4. once the user enters the relatioén n%me, restore the
screen status if necessary and signal HOST that information

about a relation is required.

from HOST, ring

5. If negative acknowledgement is received
a bell and repeat the question.) |
6. Start reading information sent by HOST aLd insert in the

corresponding relation's data structure. [Information from

1

e e wepwre e Y

‘ N

.

- 45°

L]

. HOST is received in the following format:

3

1<relation ﬁame>!§# of columns>i<column name block>

{,<column name block>}
<colghn name block>: :=<column name>!<éolumﬁ width>!

7. Display skeleton of the relation.

3

Menu will be seniaby HOST.

L

FR@?g This module services the funcﬁ&on,key RED. Functions

peééb%med include reading the .LRNB and diéblaying its entire
status in rows 24 and 25.

<4
’

2

FGREY: ‘This module services the function key GREY. Function
performed is restoring the screen status that wés altered by

a spbmode.

.,

CRENT: This mddule creates an entry block in the ENTRIES

' block. of ‘the active relation depending on the inéut/

. parameters(guple $# and column %).' This module employs

insertion sort method. l .

- -
P ”

FNDLST: This module traverses entry list in the ENTRIES
block of the active relation and sets X register to Point to

the first byte after the last entry block.
4

-
-

FNDNBS: This module determines the number of bytes between

the first byte of the current entry block of the active

M'relation (X register has this value) and the last byte of

v
L4 . s . .

&

[N

- 5.
T e 4

»

DSPQRL: This module displays as many relations as. possible . .

1

\

'
,
i

S .<~s(f":-~ s 46 -
»‘ ' t

t £y 1
v

L4

‘the last entry block and returns this value in B register.

B s ‘ -
. P

RDADR: This module reads the address of CYRSOR and! makes: it

.available in A and B registers.) ' o :
i s & - : .ot X 2
b -

S /
+ - . P

-

DETRNB: .This module checks if the current address of the
cursor is.op one of skéleton lines or outside the 'relation

space and sets a flag accordingly.

N o
¢ . .

-
, .

ERSENT: This module ‘étases the ' entries displayed in the

acti&e relation, cqugs\tuple ranée and number of actjive
bytes” in the corresponding RELF and RELV. L

4

3

"' FINDIJ: This module determines the tuple numbe# and column

” , -

nunber of the entry that is be;ng.set «wp.

*

a

. , X \)
for Fhe current main mode. It also performs initiaglization,

-

of thgﬁscreeh if necessary.
.] 5

-

\ i . : . \

OUTCOM:fﬂ$is modile sends. the command pointéﬁ to by X

-

1

register to the HOST.
: -

, -6 . O ‘
RDRESP:' This module reads HOST respond which i% three bytes

long. o
7) o
.

v

:* CONINT: This module converts a stfing og\\characters whose

A

o !) ' .
| [
’ . W ~
N
. .
.

)]

’

a

\address' and length -.are specified in X register .and B

V:\

-

register into an inéeger.‘

1
RN

CREAD. This moedule handles CYBER communication protocol for
\X 1]

rrecelving frames of information. .

If" buffer is empty, it sends a command to HOST and reads
max imum 65 characters until '‘cr' is reached. This module
supplies next charactey from the 1nformation sent QSLHOST to

the calling routine.

b 4) ~ P
- . » S ' ‘ B ' t
CRDELY: This module creates a delay \épproximanely 10
millisecond /by executimg a memory *refefence instruction
several tiﬁes. N
DSPREL: This module reads LRNB from user and displays the ,
A . ‘
.skeleton, entries and status of the corresponding relation
% . » \
if‘possible. S
WRBLN: This module is used to £ill in status area with
blanks.
|]
- :/ . 2
. .4 ’ ’ (.o ‘
CURFUN:* This module ' handles the cursor function keys' < L
~ * '
command by transferring control to appropriate routine. T
A ‘—, - P ,
" READY: This module 'reads a value entered in the value
"window. ' | ‘ p I

- 48 , : \ -
‘ AN "", . P R

3
)
NXTUPLE: This module displays" the next set{cgf tuples if

-
L)

-possible and updates RELV parameters accordingly. !

-

PRTPLE: This module displays previous set of tuples if

.

possible and updates RELV parameters accordingly.

/ NXTCOL: This module displays next set of columns if p\ossible-
and dpdates RELV parameters accordingly.

L , r

2N v

- PRECOL: This module displays previous set of columns if

‘

possible and updates RELV parameters accordingly.

4 I

CLRSPS: This moddle blanks the screen épace needed by the

actiwe relation to be(displayed.g

!) ,_ T N ‘) ‘ «) / . l\
BS: This module checks the absence of submodes such that

-

no two submodes exists at the same\t‘ime. \

T 0 ' .

STATUS: This module sets up the status area in the internal
data structure(RELS) . B

o'

MOVBUF: This module handles m.ovem,\ent of data bytes in both‘:.'g

directions. . : e '

BLNKBF: This module is used to £ill in a huffer with blanks.

i

CONCHIR: This module converts an integer to string of

Y

49 ‘ ’ .
characters.

DIVIDE: This moéule"dividés vélue in A register and B
register, -leaving the value in A register and the remainder
in B register.

: ¥
DSPSKL: This module displays the skéleton for a relation and

. - . .
column names. Other modules; are called to compute tuple

)

-SADDR: This module éomputes the starting position of upper

range, column range etc.

- L]

o left corner of the relation which is active. -

DTCUL: This module computes the tuble range and column range
of the active relation which is to be displayed,

DETTPN: This module determines amount of free space in terms

of rows and columns for any main mode..

N

1 1] .
. . LOCATE: This module traverses COLUMN-NAME blocks until the
block with column number same as the one supplied in A
register is reached. A register contains the output

parameter.

LOCATT: -This module traverses the\gntry ‘\Qlock of the
currently active relation until the entry block with tuple

number same as the one in A register is reached. X registqm

1 4 ’) .

-

50

contains the output parameter. .

rTf

DSPREN: This medule = displays entries in’

(clears entries of) the active relation depending on
#
'DSPFLG' value.

-~

ADRENT: This module computes screen address for an éntry

whose tuple. and column numbers are supplied in A and B.

registers.

:

CHKLIM: This module checks if the value in A register\is

‘within the specified limits.

POINTR: This module retﬁfns the pointer value 'depending on

’

the value in 'LRNB' and the A register.

' The table below explains the input/ output parameters.

A-reqg. : POINTER VALUE
:Pointer to the corresponding activity status byte
:Pointer to the corresponding RELF
:Pointer to the corresponding RELV .
:Pointer to thé\numbeg of tuples in relations

(an address -in RELF)

:Pointer to the golfmn'names buffer.

5 :\Pointer to the tuple range in RELV
6 :Polnter to the column'range in RELV
7 :PoiRter to the number of active entries

¢ A
- f

L%

51

Ve

8 tPointer to the status area

-1 :Pointer to the row operator block

N ‘
i -

READC: Reads a command character until a valid character‘is
read.
Valid characters are 'A'..'Z', '8'..'9"'.
OUTMS1: Outputs an error message and branches to command
loop. -

4
OUTBUF: Outputs the contents of a buffer to the terminal. X
register has the address of the buffer while B register has

the length.

v o

ADRCUR: Sets the cursor to the address specified by A and B

»

registers.
ENBCAD: This module enables cursor addressing.

OUTESC: Writes an 'ESC' to the H19.

ENBRVD: This module gﬁigiggﬁgglerse vid€o mode.

* CLEARS: This module clears the screen’
f ' ! 3 N

ENBGRP: This module enables graph mode.

b, s e o S %

* Mot 4L o

L

- C 52

s -

ExrgRé: This module ewits the H19 from graph mode. -

ENB25L: This module enables line number 25.

-

.

DRWHLN: Draws a hoigzontal line whose length is specified in
B register. ‘ o o
DRWVLN: ertes the character in. A reglster n times in graph

mode where,n 1a,fhe number of times specxfied in B register.

LFR: wrftes a line feed. |
BSR: Writes a backspace.

INSPQ: Initializes the screen;for SPLIT@ mode.
INSP?: initializes the screen for SéLITZ mode.

INSP4: Initializes the screen for SPLIT4 mgde.

DRMDLN: Draws a horizontal line in the middle of scréen.

-~

b e o

53

CHAPTER 4

Implementatiqn Details of QHP

QHP is the ~software system that performs the
information retrieval from a data base and passes-the
retrieved information to the end wuser via (QFP. This
interface is written in- PASCAL and resides in CDC-172
mainframe. To test the system, RISS DBMS is wused to
generate a Host Database. This chapter will discuss the

implementation of QHP in detail. \ N

”~

4.1 QHP System Level Details
. &

M - ’

As stated above, QHP is an interface between QFP and

the database. There are two prime functions that QHP has to

perform:

N . ‘ \

1. QFP-QHP Command Interface

2. QHP-DBMS Interface

1. QFP-QHP Command Interface:
. \)

This interface will initiate QFP commands by sending a

code ('eme') to QFP. QFP will then transmit the query

/ ‘

a9

N

ot e At e s

54

. f —_— - -

1

' L 4
tuples in the form of frames. (; The BNF definition of the
framed information " was .givén in section 3.4). . Upon

r

receiving the framed informatigg from QFP, it is sepgrated e
into ¢ several tuples' inforéétion* Each tuple is named a ‘ ;
'query tuple' and it will bgkgranslated into its in'ternal

data structures. Further retrieval operations will base on

these query tuples. Syntax‘checking is also done at this

stage of anaiysis.\

Information grom QFP is classified into 4 different types of

' entry:

1, Constant entry . . ‘ \
2. Example entry

3. Print entfy

4. Keyword entry

Eéch entry has. its own internal buffer to keep the
associated parameters. The descripéi;n of these buffers can

be found in section 4.3. The answer to the query 1if any,

will be 'framed' by this interface and sent back to QFP.

3

2. QHP-DBMS Interface

This interface directly commynicates with the data
base. sSince in this major report RISS DBMS is-used as the
database, this interface makes use of some modules of the

Riss Application Level Interface by means of external calls.

Detailed description of these modules and how they can be

55 . -

used is given in [Risshdrgg].
*

There are four different types of queries on which the qth

base can be searched, each one is briéfly described below:

-

1. Simple Type of Query: This results in a retrieval
process where there is no constant entry in the query. This
type of query is answered by means of the projection

operation.

- * 1

2. Qualified type of query: This is a retrieval process in
which there is at least one constant entry in the query.

Query of this type needs select and project operations. -

\

v

3. Query Using Keywords: This is a retrieval process in

which there is at least one keyword in the query.

4. Query Using Common Example Elements: This is a retrieval
CN .
process in which there are one or more common example

elements between any two tuples within one relation or

‘betwe;n two different relations.

~

e

. 56

{ i {

Major Groupings of QHP Software System

4

QHP software systemlis divided into eight ﬁajor groups
based on the functions pefformed. Each group may Qork
independently depend on other groups. The déscfiption of
each group and the modules involved will be described below,
the pictorial representation of the modules caontol flow 'is

given in figureull.:

3
-

1. 1Initialization Interface: N

Performs the initialization process of the internal

‘ & " .

buffers. It also assigns the initial values of some fields
of these buffers. .

Module involved: Init.)

2. QFP-QHP Receive Command Interface:

This interface serves as QHP command loop interface.
It receives command sent by QFP, checks for a valid command\
and transfers control to an appropriate interface routine.
If command is 'M', ‘'A‘', 'B'; 'C' or ‘', control wiil be
transfered to group 3.
If command is 'R', control will be transfered. to group (.

If command is 'Q', control will be transfered to group 5.

3

e tsie aod St oot 2o

Initialization

- '{ead cozmand from FP

o &

Skeleton

|IM" ’ "B‘

"A" s

Hc" ' "Dll

Classify Zatries

of a query

Jisplay Menu

L

Chack type of the
guery and retrieve

information)

'Send answer of the

query to GFP

Return Temporary
Felations to storage

- : pool

Figure 11, QHP Systam Control Flow *

)

Conclude

query

I

o

e s

58

‘o
! \
- 3 .
-

If command is 'T", the qhéry session is concluded. ’

S

: %
Modules involved: Main and Readcommand.

3. Menu Display Interface:

.

Vi

This interface sends a set BR relations 1in the

‘ﬁ .database didiionary to QFP. It provides the facilities to

display the next set or the previous set of relations in thei
dictionary. as well as the next columns or previous columns
of the relations. _ ',

Q
Module involved: Menu.

4. Skeleton Display Interface:

This interface sends the skeleton of a particular’

relation in the dictionary to QFP.

Module involved: Skeleton.

—

5. ‘Entries Classifier;/

-

This interface will classify the queTy entries sent by

QFP into the appropriate types and store them into the:

respective internal buffers.
Primary Module: Checksyntax.
Supéorting modules: Qualifier, Keyword} . Example,

. ¥ .
Storeconstant, Storexample, jStoreprint " » Storekeyword,

\
wr

5 e s

A 5k i o e

- " 59

v

-

Relo’pprocess, Keyprocess, Exambleprocess, Initvaiue, Check.

6. Database Retrieval Interface:
!

This interface will classisy the query into the
appropriate type and ‘make retrieval based on the query type.

Primary Module: Checktypeg ‘ ‘

Supporting modules: Processkey, Report, Project, Select,

X o ,’.ﬂ‘

Processlink, Checktfnion.

. -

7. QHP-QFP Send Answet Interface: \ .

' J ! / .) \\ . >
This interfac‘e will send the answer of a query to QFP

*
in the form ¢f frames..
I vt .

NN ™y A

* i
Module involved: Transmit.

-

8. Garbage Collection Interface:
\

.

-

After each.query session, all temporary relations used

are returned to the gtoragé pool by this interface.

Module involved: Purgetemp.

bt

© o R it S Ml ot

e ke,

[T, S

< S
. N +
.
. R .
X - . i
’ ’ l ! - 4 . 3
“ ' 4
N
A
I ‘ Tﬂié\ séztion

“‘internal buffers use

'ghe‘ buffers. The

. sttuéturq is shown |
~ internal buffers
. EXAmpLdBdF, KEYBUF a

of these buffers

! o ‘ ’,ﬂ}
1. TUPLEBUF

-

4 .
o T -5
= ® *

N ' Framed informa

main internal buffe
. -
buffers are being us
quehy éﬁples.
The following will
L) [

this buffer.

i ,
w? o ‘
1 Q) /
RELNAME | -

t

TEMPNAME
d ¢

" STARTCONST, MAXCONST

STARTPRINT, MAXPRINT

- presented below: . .

v & . -

7‘3 o | .t s AJVL‘

60 - ')

ﬂaﬁé éifﬁct@tes dé}ai; . s,
I 4 . :
T
will discuss about the strui}Qqe ofvthé
d and the description of each field on
g&ctorial representation of the data
n figﬁre 12. There are currently five

used, namely: TUPLEBUF, CONSTANTBUF,

nd PRINTBUF. The complete descrgption

and ‘some other Asdﬁporting buffers is .

’

tion received- from QFP is kept in this

r tuple by tuple. Currently twenty such
ed to accomodate information of the

s
Ve
N .

give the description'of each field of

l:hinteger‘
K alfa ~ . ‘o
: alfa -

T3 ingfger.' _~ 1

: .integer T 4

\

E3
e i it

e SR it

.\\h‘

Acces 2it

61
CONSTRUF
. P ') Irelop
- Colrdun *
' ' éag\
< . 3 -
; Zotry 8
TUZLECT
: : FRINTELT
L3 : \
Colaunm
Relnone
. CJERINTRUE

o

bit 3it

Colnum

Print 3it .

EXAPLISF

Irelop
Level -
Colnun 2
Startconst -
Zxample Iniry
vaxconst
< — Length
Startprint
- KZYETF
Maxprint -
- Colnum
Startexample
- . Code
Maxexamzle
JKIIZUY
Startkey

. Colnunm
Haxiey . -
e Code-
L
[‘

) . o o

-
. ! T W

Figure 12. Data .Structu,r'es of QHP -

<

RS i e =

ML R)

‘ . - \/, - , . .
" 62 ~ ,
‘ -
/
STARTEXAMPLE, MAXEXAMPLE : integer
\ STARTKEY, MAXKEY : integer o
J‘ v * « \l
ACCESS, MBIT, PRINT : boolean !

LEVEL ¢ : integ\e{u_\

LRNB: Is the .logical record number of the relation. . .
»

RELNAME: Is the relation's name imposed by a user.

v

fEMPNAME: The result of a process like Select, Project or r
Join will be put in a temporary relation. The‘name of the '
temporary,6 relation 1is shown py this field. Tt is
initialized to 'zzzz222222' ;and - upon complegion\ of one
proceés, a function called NEWTEMP will be called to supply » .
the new name for thaé relation. This temporary gelation
' will always peﬁsgferred whenever the originai relation |is
;Qferenced.. w:\::”f,,ter a join process, the temporar& néye will ‘
start-with a 'j' to show that the print elements andi igy

elements of the relation if any, are.stored in JPRINTBUF and = ~

JKEYBUF respectively. s -

) \ ' ¢
STARTCONST: Is a pointer to buffer CONSTANTBUF to show the
first position of‘consfant(s) A particular query ﬁuple has.

‘ . ..

o

A" MAXCONST: Is the total nyber of constant elements a query 4

tuple has in CONSTANTBUF.

T

\ o . . -

.-

63

STARTPRINT: Is a pointer to buffer PRINTBUF or JPRIN%BUF to
show the first position of print element(s) a particular

query tuple has.

MAXPRINT: Is the total number of print elements a query

tuple has in PRINTBUF.

STARTEXAMPLE: Is a pointer to buffer EXAMPLEBUF to show the

- 4

first position of example element(s) a particular guery

tuple has.

o

4

 MAXEXAMPLE: 1Is the total number of example elements a quefy

tuple has in EXAMPLEBUF .

° %

STARTKEY: Is a pointer to buffer KEYBUF to show the first

position of key €lement(s) a particular query tuple has.

MAXKEY: Is the maximum -number of‘key‘elements a query tuple

. has in KEYBUF.

-

* ACCESS: Is a flag indicating the~presence'of valid 'data in

the particular position in TUPLEBUF. J N

<

!
information is still wvalid. It will be set in either

MBIT: Is " a flag to indicate whether. the particular tuple's '
; \ 8

, process JOIN, PROJECT, SELECT or . CHECKUNION A if the

4 '

b&rresponding process failed or the particular relation -will
'

A

#

2. CONSTANTBUF

f ¢ ‘.
. , R A

\

not be needed any ionger. \\

PRINT: Is a flag to indicate' whether a row operator is
initiated in the particular query Quple.

LEVEL: This field is used to determine the'level of a query
tuple which is important' in processing the common elements.

A query tuple with the lowest level will be processed first.

»

This bu%fer is used to store 1infofﬁation about a:
constant. There are currentiy twentQ:Such buffers.
The’follo§ing Will give the descripti;n of eaéh field of the
buffer. B |) ‘ ‘ ‘ - ‘ .‘ &

IRELOP : integer

COLNO : integer
TAG : char]
. oo)
ENTRY : depends on the'tag,‘thq value can be .

integer, .real, character or string

/s

&

IRELOP: Denotes a relaticnal operator used in a-,tdple4

encoded as follows:

‘C <\0 ! = 1

l>l = 2‘ !
¢n! =3 ‘ \
=t = 4 o ' . \ l ' N

P

R R OPSPee RETE Sl g

4

65

ll<>l

i
wn
O

Initially the IRELOP field of all quéry tuples will be

assigned to 6.

COLNO: Is the column number in the relation on which the

constant entry occurred.

TAG: Is a flag to indicate whether the constant entry is of

type integer, real, character or string .

ENTRY: Can be an integer number, a real number, a character

or a string depending on TAG field.

3. PRINTBUF: Is a buffer used to store the column number of
a print element that occured in a query tuple. There are
currently 20 such buffers. After the JOIN operation between

two particular relations, information on this buffer which

belongs to those relations is transferred to JPRINTBUF.

4. EXAMPLEBUF: This buffer 1is used to store information

about an example elemént. There are currently " 20 such
buffers.

The jfol}owing wil} dEive the description of each field in
this buffer. - o ‘

I8

& e r—r—— . T g

COLNO 1: ‘#integer ‘ f

SENTRY :string ’ '
LEN tinteger

IRELOP- :integer)

0

SENTRY: This is the example element without '~ prefix.

i
v

LEN: Is'the length in characters of the example element.
The definition of other fields fs the same as the ones

CONSTBUF. P

5. KEYBUF: Is uséd to store information about a

element. There are currently 28 such buffers.

The following will give the'deécriptionAof each field on
buffer. } ‘ ’
_ CODE . : integer -

°

COLNO . : integer

key

the

CODE: Is the keyword's code. The pre-determined keywords

1

\ L
and their codes will be shown below.

Keywords . Codes

‘
ave 1 |
CNT 2
MAX) 3 g , ;
" MIN \ 4 R
5 ,

-SUM

. Other Data Structures:-

. y
1. JPRINTBUF: Is used to store the column numbers of print

elements on query tuples after a Join process. This buffer
is réferred by module PROJECT and REPORT.
| i

2. JKEYBUF: Is used to store information about the key

<

elements of query tuples after a Join process. It is

f <
referg;d by module PROCESSKEY, PROJECT anq REPORT.

>

A

3. GCOLNUMBERS: Is used to store the column numbers of

{
print element§ of all query tuples currently imposed.
GTOTALCOLS will show the total number of.PRINT elements 1in
each query tuple. This buffer is referred by module

PROCESSLINK ‘and PROJECT. J) s
. ' N M -&.

4. TPOOL: IE a buffer to supply thg tgmpoiary .name of a .

4

relation. It is used by module NEWTEMP.

5. DBUF: 1Is a buffer-of 106 characteréfto load the framed
information from QFP that will be' verified later. It is
Used by module’ CHECKSYNTAX.

6. WORD: 1Is a buffer for the five pre-determined keywords

and is used by module KEYWORD.

S S - MM W

£

R

K

68 ' C.

4.4 Description oE‘QHP Modules
~ /

]

J

This section gives the detail description of the major

modules of QHP system.

QUERY

This module is called if command is 'Q’.

a

It ﬁerforms the following functions:-.
1. Initialize allrparameters qf the internal buﬁfers.
2. Read the number of relations to be querieq. o T
3. 'Loop and call module CHECKQYNTAX as many as the number
of relations. |
4, - Read and insert row-operatof into the appropriate tuple
of buffer TUPLEBUE. ' \
.CHECKSYNTAX .
' “'\
This module will perform tHe following funétions:\“
1. Read the various entries of éhe query. 4 ’
. 2. Check the type of the entry.
3. Check the' syntax of the query entries;
4. Insert the ehtrf in,the appropriate bhffer

(CONSTBUF, PRINTBUF, EXAMPLEBUF or KEYBUF)

5.

Insert the query tuple'é information in the appropriate

position in TUPLEBUF as shown below:

PSSR L

69

@ L Y

v

‘ p. "
- TCOUNT = the first available position ,in TUPLEBUF.

’

Initially is 1. ,

- "TPLNB = The position of a query tuple within one

relation. . . -

R ol b

- TOTALTPLS = position in TUPLEBUF on _ which

information about a tuple's entries will be placed. .

It is equal to (TCOUNT + TPLNB - 1). ' o .
. CHECKT YPE “
R i L. § o § ¥ modt.rle‘*wi‘l'l‘**detvsrtm';né"“ttﬂ-:-‘*"*typé“*bf'“a"’qtnﬂ'\[?*“ﬁ-‘—“w S

1

Retrieval can then Be made based on the query type. This

module has severél supporting modulés to service the four

different query types. .The pictorial reéresentation of the

modules flow of control.is exhjbited in figure 13 which in

turn is discussed below:

1., Service thé constant elements in the query if any, thple

by‘tuple by calling module SELECT.

2. When there is more than one query tuple in.the query,
. call module PROCESSLINK to process the éommon example

eiements in éhe query if any.

3. Process the key elémeqts in the query if any, tuple by

tpple by calling module, PROCESSKEY.

;

4. Union all query tuples associated with same origiﬁal'

query relation name. ' , Le

fny Constan

Yore than

Query Tuples

o
Y SELECT
Querys Tup
|
Y PROC ESSLINK
Y CHEC KUNION

REPORTCNT

greater than

Ertor

' [3

Y-—————3 REPORT

71

-

S. At this stage, there exists a set of query tuples which
have print elements. Module PROJECT is called' to éollect
the entries of some relations under which print elements
—
B were initiateg in certain columns.
6. If REPORTCNT > @, call module REPORT to frame the ogtput

‘of the query; send negative acknowledgement to QFP

otherwise.

_SELECT : o

*

This module wiqe do the selection process oé the
relation as appeared on the RELNAME field of TUPLEBUF
buffer. This process will use the constant entries in
CONSTANTBUF as pointed by STARTCONSTANT and as man; as

vy MAXCONSTANT. If MAXCONSTANT is greater tﬁah one, an 'AND!
= "predicate is used. Thejgﬁﬁput of the process if any will be
kept in a temporary relation. The name of the relation is

supplied by function NEWTEMP. "

If there is no answer to this process, the MBIT field of

. o \\\\\\.
TUPLEBUF will be set. ~ -

\ L ;L
Modules called: : P In

-~

SELECTTPL which returns true if a tuple in ‘the’ relation

satisfies the constant constraint, :false otherwise.

ey bl

a-~w

‘relation is

" PROJECT

-

This module will perform the projection process of all

,coiumhs of a query tupie which have PRINT entfies or a query

~

tuple 'which has a row-operator. If a row-operator is

initiated, the entire relation will be,,displayqd. The

relation used can be the original relation or the temporary

&

relation dépending on whether the namé® of the temporary

'zzz2z2z2zz222' or something else. If the

. N) ..‘
. temporary relation is used and the name starts with a. ']k,

JPRIND®BUF will supply the columns to be printed out. For

*

- : A"
any other cases, PRINTBUF will fo it. If there is no answer

to this précess, the MBIT field of TUPLEBUF will be set.
REPORT L, <
e | \

-

This module will send the answer of a query to QFP in

-~ .

the form of frames. Sipce the answer has been prepared by
module PRQJECT and. stored in a temporary|relation, this-
module will always refer to the temporary relation of the

query tuple.

NEWTEMP ~

N “

This is a function to supply tﬁe name of a

-

- temporary

N '
{
-
[}
.

=

-READNB

Thig module
a '1' is hit.

the corresponding
A

READREAL '
e

Thi§ module
a '1' is hit.

»
the corresponding

READSTRING

This module
"1'* Xs hit. It

of the_string.'

QUALIFIER

This is a function to return true if the first one 'or
L

73

will extract the characters

The characters will then be
.

integer number.

{
1§

Ll

”

will- extract the characters
The characters will then be

teal number. .

N

wiil extract characters in

will then return'the string

T

Y, A

,‘g‘

N

in DéUF. until

converted into

v

])

in DBUF until

converted into

N\ ca

DBUF until a

and the length

A

two characters available in DBUF is'a qualifier or false

otherwise.

The codes assigned to the quali

Qualifiers :codes Co K —

< 1 | '
> 2, " |

<= 3 . L
>m 17 S ’

g?:rs are as the following:

S
PN

&

1

i e S ——RRIRTN ST,
. R

LY

~,

1

KEYWORD - o 8
"—;}_. ' . X
. . ‘ R
, Thi’s iAS‘a/ functiop'_which wigl ber using a ‘sequentials - 4
search techﬁiqug"’td ,che’ck whether the first 3 characters
* ’ ' ° f
available in DBUF~is one of the pre-determined keywords in
s \[
buffer WORD.4 : o .
. - 4"'
) .] ; ' | o ’) ‘ /
 EXAMPLE | | ’ -
This is a function to decide whether-. the. first
character available in DBUF is the prefix for an example
entry‘ (l ‘A‘. ',h)) . 5 ,
- .
STORECONS TANT N
[N ! A-f\“m‘) *
This module stores the constant values supplied by a .
user_into puffer CONSTANTBUF and update - the corresponding
(ffer's parameters (CONSTCOUNT .and MAXCONST). @ ° ' ’ .
Modules called:
'READNB to read ghe constant integer number '
READSTRING to read tHe constant s‘tring . . - { '
READREAL to read the <donstant real number ;o a *
"b) ; N . .]
» 0.' B g ’“&‘ {“\")
! o - 1/’ ’
[l ¥
‘%\, J - . :

A " (, . r
. .
* ' fv 2 5 ‘ ’ -
a - 2 L - ,‘)\7'
. SN
. e . .
-) 3 .
o .5
= '6 - 8

’ . . ‘ ' M ‘.
A (SR

s ’ * ’
A -

]
K b b o S b 15

v e O g

A

* '
. \ [

This module will insert- the column number of PRINT‘-

STOREXAMPLE T

This module “extracts an EXAMPLE entry from DBUF and

insert it in buffer EXAMPLEBUF with the 1length &f the

a

EXAMPLE entry and the column number where it occured. The
. ¥
corresponding buffer's parameters | (EXAMPLECOUNT~ and

MAXEXAMPLE) will then be updated. b /
-
STOREPRINT
+ Y

entries in.bufgej PRINTBUF and upd;te the corresponding

”

N buffer's parameters (PRINTCOUNT and MAXPRINT). .

(

- of a keyword in buffer KEYBUF and update the buffer's

d

-

STOREKEYWORD - .

. .
v ' Y b Yy .

., This module will store the code .and the column number

Fl

parameters (KEYCOUNT and MAXKEY) . - '

-
RELOPPROCESS _ , - , ,
! " » J .’ [] . -

1

. / ¢
This module is called if the current token ig a

qualifier ('<', '>', !<=', '>=", 'O, 's'), "It will check

4

whether the next token following the qualifier is> & CONSTANT
or an EXAMPLE entry and store the token in the corresponding

buffer by calling STORECONéTAN'f or STOREXAMPLI:: respectively.
. . \ , Lot N

v "
3

A

4

KEYPROCESS f\“\\ - .

This ' routine is 'éhlled if the current token f§ a

\ke§word;} The next token can be an EXAMPLE entry or nothing

:
d »
\

at all. - . ' " I

Modules called: ’ ' . ‘ A

STOREKEYWORD to store the current keyword.

R T W S

STOREXAMPLE 'to store the next tokkn if itgis an EXAMPLE

entry. ‘ ' x

EXAMPLEPROCESS '

' - - -~ N

» e

\ .\\ R ; . MY
. This routine is called if the current token ~ig a ‘

’ ' -
fol¥owed by an EXAMPLE entry or a qualifier followed by

, B -
‘CONSTANT entry or nothing at all. -

VEXA:5}E entry. The expected next token is a 9ualifie

|
. - ~ 3 4 [
N Y

Modules called: T ' N .
. . l' _ + 4 . -"*
-

. STOREXAMPLE to ‘store the cﬁrreﬁt,éxample element. -)

\ .) i <
STORECONSTANT or STOREXAMPLE again depending on the type of

*’ s

the 3¢Xt entry. e o s ‘ |
INITVALUE ‘ . R] ; ;

4, ‘ , -' . 6 (

This module will initialize the value of each field on '
buffer TUPLEBUF. ﬂ . \

Lo ~! ' : , . ; , P
[4 . (‘ A i

77

CHECK ., ' | e N
. , . -’7\. {'.\

This module will check the type of current token and

go to the prrqpriate module.

Modul ‘ called:
e

ﬁ_;;~:;;\:::>bnt token is a qualifier.

the current token is a keyword.

EXAMPLEPROCE e current token is an EXAMPLE entry.

STORECONSTANT if the current token is none of the‘above;

r

»

GETCOLUMN- N

(N

This module will return a column number whigh entry is

the same ‘as the supplied’ entry. This ﬁodﬁ{; is'called

~

because there is\a possibility of changes in tﬂe position of

the column after either PROJECT process or JOIN process.

r
’

PURGETEMP

t
]

After each duery session, a garbége collection actién

is taken by this module. &All temporary relations used are
- N

returned to the storage pool. This action guarantees that a
. h' -

témporary relation is readily available.

L]

PROCESSLINK? L , :

This module will process thé linkage of two query

8

tuples within 1 relation or between 2 different relations.

Initially all query tuples are assigned to the highest
possible 1éve1 (HPL). They will 1later be demoted or
promoted to other ievels on the basis of dependéncieé
(I{nkages) with other tuples. The éteps in the sequencing
scgéme are shown in figure 14. All actions are taken on
these normal query tﬁﬁles which exist at the level which is
currently sgecifiéd as the lowest level. Each time the
lowest level is procéssed the “following will take place:

~

1. A test is made to determine if thére is any direct
linkage (common example elements) between any‘of the query

tuples at this level. If no direct linkage is found and the

lowest level is the HPL then the task 1is completed. 1f

there is no direct linkage and the tuples are at a level
below the HPL, the tuples frem this level are. reassigned to
the . next higher 1level where they will be processed with
tuﬁles which were previously at the next higher level. This
effectively chan?es what is designated as the lowest level

.]
for the next pass. Alternately, if tuple direct linkage 1is

found, then go to substep 2. .

-

2. A Jfrime tuple is lsélected from the set of tuples

existing at this level by calling module SELECTPRIME.

oK

{
i? - 9 :
1 . : . .
% o S ;
l‘ i ‘Y4 v '
{_ ‘ ’ 74
Co LT
¥ \ \
% 3) . ' 9 Al
) ‘ ‘Start .
"Bo Tuple Link ves ’ j
el . ’ - ,
10— Promote Select
. .| Tuple, Prime Tuple
' Istop)
- . . . mo
‘ y C
*
’ Decote
- -
.) Tuples
».rg‘ﬁr"ir
i , I“ ¢ v (‘
; . . -
\ " Figure l4. Process of Linked Tuples
: ks \ .‘ .
N M
. . \ .
‘ -

(S

80

3.‘ A query Eﬁplé dependencf gfaph is a graﬁh that consists
of a set of nodes which corresponds to queryhtuples, and a
set of edges whiéh indicates at least one direct 1linkage
(dependency) between the connected query tuples (nodes).
Direct 1inks exist between query tuples having the same
example elements., It is desired to join tuples to the prime
tuple only if a query tuple dependency graph can be
constructed for the tuples at this level which has a tree of
depth one with the prime tuple as the root. A test is made
to dete;mine if any tuples at this level whiéh do have
direct linkage with the prime tuple alsohhave direct linkage
to other tuples also at this level. If such direct linkage

is found, go to substep 4, otherwise go to substep 5.

4. An attempt is made to reassign all tuples .from this
level exéept the prime tuple to newly created lower levels.
All tuples with direct linkages to the prime are assigned to
the next 1lower 1level. All remaining tuples with direct

linkages to this new lower level are assigned to " the next

lower level, etc. Those tuples which cannot be demoted in’

this manner are left at the level holding the prime tuple.

5. The prime tuple (to be defined in module SELECTPRIME)

may now be joined with tuples at this level which directly

link to the prime level. All leaf tuples can be joined with

the root tuple in a series of binary joins between each leaf-

and the current root (the root tuple characteristics change

as a result of any prior joins).

81

The sequencing of joins resulting from substep 1-5 has
the ‘characteristic of assuring that joins involving the
query tuple with .the most”dﬁéput (pY- elements are dealt with

e

at the very last moment.‘ This delays the need to carry

columns involving output elements of at least one query

tuple in temporary relations, until late in the sequences of
join operations.
SELECTPRIME : -

" This module will return a brime tuple to module

PROCESSLINK. andidates for prime tuple must have direct

linkage with some other tuples at the level of interest. If

ﬁhe lowest level under examination is the HPL, then the
selection of the prime tuple is ﬁormally based on the query
tuple wh?ch has the most elements destined for user
output(e.g., 'pf elemehts or elements which will eventually
mapped to explicit join relations). If. the level 9f
interest is lower than the HPL, the selegtio; is based on
the query tuple having the most direct linkages with the set
of query tuples which care currently assigned to ‘the next

P
higher level. L

¢

ra 5

tuples ﬁaving one or more common example elements. It 1s
N A

v

%

This module will join the aétive columns of two query

82

:
}‘- C ' -

P ' f N -

calied by module PROCESSLINK. The result of the qoih‘
 process is.‘kept in a temporéry relation ~which.ﬁame is O
'sup$iied by the pool of names and will start with .a xj'.
The column. qumbers of PRINT élements of the two tuples are
/faoved to JPRINTBUF Eased on the lposition 6f thek PRINT
elements, in .the' temporary relation. As for the PRINT

‘elements, the column numbers of the KEY elements of the two

tuples are also ﬁovéd to JKEYBUF based on the position of) ¥

the KEY elements in the temporary relation.

!

83

- CHAPTER 5

Concluding Remarks and Further Work

-0 5.1 On Intelligent Front End Terminals:

Microcomputers‘are increasingly become popular and

~

fcost effective in many applications. Almost all of the

modern day intelligent CRT terminals contain at 1least one

microprocessor ‘resident in each . of ~ them. Such
< - .
microprocessor based terminals, invariably, have the
1 A
following features:

N .‘ P t \
1. Cursor addressability and cursor control keys.

2. Programmable function keys. '
K.
3. Limited graphics or business graphics support (ability

k)

to draw vertical - lines, horizontal “lines, arbitrary

piece—wfse linear curves, histograms etc.)
N
4. Scrolling. ~»
[

>

The Heathkit H19 terminal is one such' terminal. An
1n£elligent CRT terminal of this kind can be used to support
user communic?tion” through QBE. The graphics feature is
,use}ul to draw the skeleton of a relation in QBE; the
programmable .function ke?s ;re useful to invoke a
pre-programmed operation; tbe cursor facility‘ig useful ta

f . v J
(¥t .
- 5H

’

‘

enter a query on the displayed skeleton; and finally the

scrolling facilities aﬂg helﬁ%ul for the user to scan the

tuples of a retrieved relation when all its tuples are too

large to fit into the screen.

The resident microprocessor of an intelligent terminal
that is wused for user communication thrpugh QBE can be
ﬁrogrammed to take into account of several front epd

functions.
Following are some examples of such functions:

1. partition the screen into qjgjoint parts for displaying
e

the\multiple relations involved in query formulation.
t

2. Check and prevent the user typing across the 55rtition
when he types a constant or an example variable in a

selected relation. o

3. Display and control status details of the relations

displayed on the screen.
5

4. Perform scrolling (horizontally and vertically) with the

help of the 1locally stored information and exchange

information «in 'large chunks' with main ¢omputer.
, 1 e

»

The use of front eng processing for the functiods_

cited above has two major advantages:

a. It relieves the main computer free of some processing.

b. It will provide quicker response than otherwise 1is-
*3 .

possible.

[4

POVEEN
B v s s WA

[2S

85

4
v

; - ¢
The resident microprocessor of an intelligent terminal can

be programmed to perform such front.iiﬁm processing.
Optionally, an additional microprocessor with required
.amount of memory (RAM and ROM) can be added to the terminal

]

to take care of the front end processing.-

5.2 Contributions of This Project

-
~>

An° information' retrieval System based on QBE that

involves WO processes which communicate %o each other |is

«
{

proposed. . The first process takes care of the end user
communication and the second process performs the data base
retrieval operations.

The process that interacts with end users is named QBE Front
end Process (QFP) and the oné that communicates with the
database is named QBE Host Process (QHP). ‘The functions of
the Front end Process are:

1, Extract user commands from the terminal and transfer.the
information to QﬁP in the form of frames.

2. Allow direct communication between Cyser and H19
"terminal.

3. Handle specific I/0 with H19 terminal. It aiso handles
the changing of the diéplay modes; it can display one, two‘

or four relations at a time.

4. Read and interpret user commands entered ‘by pressing

1

P

86 ‘ - .

programmed keys as well as displaying statf® information in

various ways. ' , C , ‘ y
The Host Process, on the other hand, has the following

features:

1. Receive QFP commands and translate them into QHP

internal representation.-~ -
2, Check the type of user's queries and make retrieva

based on the quer§ type.

-

3. Send a set of relag}ons.in the database dictionary if ‘ ' l
requested. It also allows the display of the next set or} |
@revious sep:of the details of relations stored“in the d%ta &\\
dictionary. | ' .) \ \9\‘

4. Send the answer of the query to QFP, if any, or a

=

/

negative acknowledgement.

.
. The data structures involved in these processes are -~
distinct. Both processes however, have to be aware of the
3 j .
communication links that can occur at any time between them.

The communication data structure is the frame.

QFP was written for the MC6889 Microptocessor by Mr.
t(, -~ .
R. M. Kotamarti and QHP was developed in PASCAL for Cyber ‘
172 and tested with an example database supported by the ’ Ty

RISS database management system. ‘o '

I- .

(5.3 Further Work

-) R o

One further work could be aimed to integrate the (QFP

‘ i/
software with a terminal by incorporating an additional
microcomputer and to study and. evaluate the usefulness of

such a front end processing, ; ' \
. !

. . <
Modifications to QFP system can be made to. free , the

)
[}

system from the following bugs:

A

\

M

3

1. Sometimes “some relations could nét be displayedperhaps
due to an inherent 'bug'. However, after, the relations wete

renamed or some column names of the relations were renamed,

S
they could be displayed and query could be formulated_

»
accordingly.

2. In SPLIT2 mode, a'que‘ry involving twa relations were
formulaéed.' Only relation that was in LRNB 2,- however,
displayable.

*
/

& . l

'fhe abilit§ to h?nd}e‘mult‘le links with more than

two relati;ns in quei"y formulation would greatly increases
the applicability of the QBE system. Further work could be
done to provide QFP witim the facility to allow the display

of a new relation that results f}'om the retrieval process.

. -t
P . / [

.) y - & -

™~ N ~ -
N \“ l
>
¥ - - - .
. At . pe N
1] - — N h - T
F\ A \ . ,») \,\\\
P — . oo ’ .
. T . - 88) N .
* ' N . f N ~.
JUS— _____'__ f : * ! \\&
— - ey T T T — ¥)]
- B
T : . K / .
. r.t- [] - [N ' Y 5
? References . =+
. - » - —_ - g = e e 0
§ S ' . -, '\' /
VRN .1 . o L

l- [And&T&] .Anderson[N;D. [Burkl’;a’r\d' w.‘A- '~

'MiniseQuel'Relational Data Mafagement System"‘

Databases- Improv1ng Usability and Responsiveness

/
\

Schneiderman, B.. Academic Press, New York 1978 pp S# 76

, 'Spgcffying Quéries as\ Relational Expression: The,SQUARE

-~

' Data Sublanguage".

Comm,

. 3 . .
ACM," vol. 18, no. S11(nov 1975), pp.62a28.

-

'V\ v 2. [Anton78] 'Antonscéi, \F::\“Deil50rso,§.; Spadave?chia?
L VLN ' \ | ‘ ' ﬁ
, B "AQL: A Problem Solving Query Language for Relgpional Dgta*.
Bases \ ' S |
IBM Journal Res. Ds;slop;, vol 22, .n0,5, 1978, 'pE.
554-559. 4 - R LT
‘ _) »
[Baxter?B] Baxter, A. Q.. JOhnSOﬂ; R.' Q,
‘ "A Block Structured Query Languaqe‘ ‘fork: Accessing a'
| Relational Data Base". ‘ :‘ .
Proc. ACM-SIGIR, Int.‘“‘ . Conf. On. Inf. .Stor. _And
‘ Retiieval, May 1978, pp;1é9—13a._ ;. S o
| L T :
e 4. [Boyce75] Boyce, R. F., Chamberliﬁ,\w.y F., Hammer, ' M. -
) M. | ’lh ‘ | e

i & s o Z Sl o T

i

v

, > v N \
- ! ‘ . 4 : 89 .) * - “‘\
l / . . .I'
) . , R . ~ /\ . - . " N - e . . .
S. (Bunema?9] P. 'Buneman,‘§.E. Frankel.- , - \
. Dn : o .
"FQL-- A Functional Query Language"”. — T

2 .

ACM-SICMOD 1979, International Conf, _On Management of Data

N

S~ RN
6. (Chaiho8@] Chaiho C. Wang - S
. ‘) . A
. "A Pfobabilistic ' Approach to Storage Compression of Large .
Natural Language Data Bases". . oo T ; . : t . ;
Procgedings 4 COMPSAC 88, October 27-31, 1980 pp. 552-358.
‘ ’ . = S - o s - .
7." [Chambe74] Chamberlin, D. D., Boyce, R.. F. cooN
, oo ! . " T
‘"SEQUEL: A Structured English Query Language”. L N
. N R ™ P

N , - e,
Proc. 1974 ACM sigfidet "Workshop, Ann. Arbor, Michigan, -

April 1974, pp.249-264. ‘ o : . ’

v ‘ ¢
"

8. [Chambe?G]‘Chaﬁberlin, D. D.,,gx'él.
i T ‘ — - ;

“SEQUEL2: A. Unified approach- to s data. definition,

i

manipulation and control”.

5

IBM journal of ‘resegfch; and development, 20(6), Nov.

-

~ v

" 1976.pp. 568-575.

'

9. [Chang76] Chang, C.L. L X
“DEDUCE: a dédue;ive quety \laﬁguage, fér'relatiqnal.dqta
bases". : q w ' s : ' |

'P?ttern'Recognitiqﬂ and‘Artifiéial 'Intélligehce:',’hcademic

<
i ' ‘ “

Press (1976) pp.l08-134. » ‘ o SR
' 1. [Chang78] Chang, C.L. | . o
"DEDUCE2: " further investiéation of deduction in relational

v : [
r o
i

databases“. :Logic and ‘Defa' bases,‘?calleire end ~Minker

edftors, Plénum Press (1978). pp.201-236.
‘& . '. Lo " ’ 3

~-11. [Chang8l) Ning-Sar Chang and King-Sun Fu

[}

"picture Query Languages" - ° L ' .
N . . o . . S .
.Computer, Nov. 1981, pp.’ 23;33 o , Y

\) _ o L,

12. [Charle8l] Charles Welty. .o

'Human ‘ Factorsg - conpariscn of * a pro¢edural -and a

non-procequral query Ianguage"

ACM Trans. On Data Base System, vol.#& no. 4, Dec. - 198.

Pp. 626-649. -
B ‘»

.+ 13. - [Codd72) Codd, B. .F. . .

A

‘wp _Dat ,3Base' Sublanguage 'fdunded‘ucn the relacifnal
L calculus . ‘ _ o -

Proc. Of 1972 ACM S{gFIDET WORKSHOP oh Data Description,.

. -

Access and Control, pp.35-68." g

B \/ .
140 [COdd78,J Eo F.- .Codd- Q; ', !
"How about recently? "

(English dialog with relational data bases using RENDEZVOUS

Version 1) . ’) ; .

Databases: Improving Usability anq Responsiveness.
t N ' ' . ' i

-

. 15, [Dawei8l] Dawei luo and S. 'BingYao.
"Form Operation , By Examéle—Ja language for office
information processing. v o . S

4 “ A
4 -

ACM-SIGMOD 1981, Nat. Conf. On Management of data. .Ed.Y.

e gt - taa

e

[

LI

o

———

-

_Edmund Lien. Pp.203-223. o SN,
)) g .
N

16... [Dehene76} G:; Peheneffe and H. -Hennebert.

" NUL: A Navigational User's Langdage for network structured.
A) . - v

data bases". o B

" Proc,’ ACM-SIGMOD International’ Conf. on Management of

Data, June 1976. Pp.135-142. .

& t . '

17. [Greenb78] Greenblatt D., Waxman J.
"A«étudy,of Three Databése Query La¥guages".‘

Databases: ‘Improving Usability and Responsiveness. ‘ B.

L]

Shneiderman, Ed., Aéademic Press, New york 1978.

)

18. [Held75] Held, G. . H. Et al,

.
.
-g =~

" INGRES--A Relational data base system".

Proc. AFIPS NCC, vol. 44, May 1975, pp.489-416. :

19, T[Housel79]°§.‘ C. Housel

]

"QUEST: A high level datd'manipulatiéh language for network,
' 4

¢

hierarchical, and relational database".

>~ s
IBM Research Report RJ2%88, July 1979.° P .

” \

20. [Kémbay??]ikampayasbi, Y. Et al. e
' 3
"A Relational ' Data Language . with Simplified binary

relational hahdling capability". o s
§‘

Proc. Of 3rd Int. - Conf. " on VLDB, Tokyo Japan, Oct. 1977,

-

pp.338-35@. |' ‘ ~

AU

-

21. [Kameqy?B] I. Kameny, J. Weiner, M. Crilley, J.

Burger,'R. Gates and D. Brill

R PR A

‘
S st

ot o ot s o

cry

[—

\

.

Management Systems". = o . . o ' K)
VFourth’Int. Conf. On VLDB.' 1978. Pp.388-39l..

.

22. [Kersch76] L. Kerschberg, E. A. Ozkarahan.i

1 é

"A Synthetic English Query panguage\ for a Relational

[
o

Al

‘Associative Processor",
. t
-2nd Int. Conf. On Software Engineering 1976 pp. .565-519.

& -

K 23. [L&croix77a] Lacroix, M., Pirotte, A.

’

‘"pomain-oriented Relational Languages".

- Prog. Of 3rd Int. Conf. On VLDB, Tokyo Japan,.oct. 1977,

')pp.37ﬂ—378.

24.. [Lacroix?77b] Lacroix M., Pirotte A. -

-

"ILL: an English Structured Query ‘Language for Relational

data bases".

o

Proc. IFIP TC-2 working conf. On modélling in data base

. . -

mahégément systems, Nice(january 1977), Nijséép editor,

“EUFID: The End User Friendly Interface to Data Base

q

‘

e

B s s T VD
N

S —

. North-Holland (1977.), pp.237-268.
25. [Mcleod75) Mcleod, D.- J. And M.J. Meldman

- 0

'Ménagemené System™ :
!Prgceedings of National Computer Conference. May 1975.
’ < .
26. [Mcleod76] Dennis Mcleod '
~ "fThe Translation and’ Compatibility of Sequel, and Query By

Example"”.

-

" "RISS: A Generalized Minicomputer Relational Data Base

' 526:326.

abd thg Casual User".

*SLANG: a statistical. language".

. . .o
~

2nd Eht. Conf. On ;$oftwaré \Enéingering.' Oct 1976 pp.

A}

- ¢ . ‘ N . .
27. [Mylopo76] Mylopoulis, g.,= Borgida, A., Cohen,: P,

Roussopoulié, N., Tsotsos, J:, Wang, H.

"TORUS: a %tep- Towards Bridging the Gap Bétween Databases:

—

Information System (GB), vol.2, no.2, (1976), pp.49-64

-
°

28. [Mylopo8d] Mylopoulos, J. Bernstein, P. A., Wong, H.

K. T.

"AC Lénguage Facility for 'Designing Data Base Intensive.

Applications".
- o

. ACM Trané} Database Systems vol. '5,\no. 2, PP. 185-207.

\

June 1984, - vl -

29, [Nicola8I] M. Nicolai
‘ £

o,
-

Computer Bull'.(GB), Ser. 2, ho 27, pp.4-6 . (Margh 1981).

A

I
—— e

. e e e s 2 L5

38, [Pirott77] Pirotte A., Wpdon P.

]

"A Comprehensive Formal Query Language for a Relational

. DqtabaSe : FQLf

R.A.I.R.O. Informatique/ ‘Computer Science, vol. 11-2,

pPp.165-183, 1977.

31. - [Pirott79] A.- Pirotte

"Fundamental and Secondary Issues in the Design fof

_non-procedural Relational language”.

. :
. IR SN

. . ’o" . . - v /‘ ‘. .
prac. Fifth Int. Conf. On VLDB, Ac 1979 PP.239-250. - ..

4

"32, [Plath76] Plath, W. J. -

-

,"REQUEST: A Natural Language Questi%?—Answering %ystem' C.

| IBM j. Res. Develp. 20. (Julf 1976), pp: 326- 335.
t . : . .) . "‘ e u) .
33, [Reisne?5] Raiéner, P. Boyce, R.F. And Chamberlin, - v
. . . - / , c,
‘Dogo e ‘) = . _“ ‘ P -. .
f \/“Human Factor ° Evaluation ~ of ‘two Data Base Query
1 Languages-~SQUARE and SEQOEL". AFIPS Proc.’ Vol. 44,1975, -
! ‘pp. 447-452.. "
L o .
- ‘) . 4) . 2
. . 34. [Reisne79] Reisner, P. : - o
g "Use of Psychological xExperimentation ‘as an..aid to
development of a guery Ianguage .
} s ' S - <
' IEEE Trans. on Software-Engin. SE-3,3 (1977) pp. . 218-229. -
.0 35, [Risshdr]:Riss Applicahﬁon Level Interface Modules ' B
’ ' ‘ ! 9 . .] - .
Get, Risshdr/un=kesfell . i
L '. o, * ¢ . -
- 36. [Robert76] C. hdbert Carlson, Roberﬁ S. Kaplan
A Generallzed Access Path Model and its Application to a
Relational Database System". . o]
1976 Int. Conf. On Manégemeht bflpata, pPp.143-154.
, 37. [Schlag82] Schlageter, G., Rieskamp, 'M., Pradel, U.,’
Unland, R. = . . . oo -
A ¢
"Thé Network Query Language® '\\\\ﬁ?;\\\\: o ‘ T :ﬂ
ACM-SIGMOD 1982, Int. Conf. On Management-of\Data.
- e !
\ v | s 7
.o v

n

~

¢

-

38. [shipm8l] David W. Shipman

'The_Functional Data Model and the Data 1anguage Daplex

" ACM Tr_ans.~ On Data baso ‘System, vol. ' 6(1) march 1981,

pp.148-173.

39, [Stoneb76] M. Stdnebraker, et al.

"The Design and Implementation of Ingres".

/ ’ .
ACM .Trans. On Database Systems, vol. 1, no. 3, Sept-1976.

. A\

40. [Sue82] Sue M. Dinteélman, A. Timothy Maness.

"An 'Implementation of a Query .Language Supporting Path°

)

Y .
Expression”. : c - . - .

Int., 'Conf. On management of Data' , ACM Sigmod 1982. June

LEPEINN
.~

2-4, pp. 87-93. . ;

41. '[Su78] Su S. VY. W., Emam, A.

" 'WCASDAL: CASSM's data language". -

-

ACM Trans. On database Systems. .Vol. ‘3, no. 1, 1978,

PP.57-91.

"
42. [TAIMING8P] Tai-Ming Parng and Baw-Jhiune Liu
"Extended Relational Calculus--A Formalism for High Level
Relational Query Languages" &z

Proceed. ‘4 COMPSAC 80 Oct 27-31, 1988. Pp. 801-807.°
[§

43. [Theera8s] Theerachetmongkol, A., Montgomery, A, Y.,

“Semantic Integrity Constraints in the Query By Exampre Data
Base Management Language"
Australia Computer Joqrngl, vol.l2, no.l, 1989 pPp.28-42.

N

Pr—

P T e aiad

Y

)

- 44. [?homasiS]’Thdmas, J. c.. And;Gou%d, J. D.

"K Psyghoiogical study of Query By Example".

_AFIPS Proceed., vol.44, 1975, pp.439-445.

-

45. ([Todd76] §; J. Todd) ' - . .

A

"The =~ Peterlee - Relation Test’ Vehicle--A System

. overview” .{(PRTV) , o ¢

IBM System J. No.. 4(1976) - = |

16. (Tsurut8l] T. Tsurutani, X..‘kdsaharu, M.Naniwada.

"Data Structure and Language of the Goegraphic Information

'SBystem ATLAS".

NEC Res, . and Déveiop., Japan, no. 62, pp¢57—54

. (July 1981). .

47. (vandij77] vandijk, E. e
"Toward a more familiar relational language*h

Information System, vol. 2, no.4, 1977,,159-169.”"

48, [Warner8l] H. D. Warnef,'D.' Odle

"A h{gh—level Functional Query- Language for -a Small

t

., Relational System".(FQUERY)

“-SIGSMALL Newsl.(USA, vol.7, no.2, pp.98-5 Oct 1981)

-+ 858. [Zloof75] M. ‘M. Zloof

49. [Wonkim82]°Won kim ° .
"on optihizing an SQL-like Nested .Query" .

ACM Trans. On Data base systems. Sept 1982, wvol.7,

>

-

Pp.443-469,

no.3.

~

PSP oY DR

e o st £] e &

N

. - Y
N g -]
"Query By Exampl e”
AFIPS PROCEEDINGS, vol. 44, 1975, pp.431-438
"Query By Example:'A data base langua‘ge'.
\
IBM System j., vol.16, no.14, 1977. Pp.324-343

52. [Zloof77b] Zloof M. M., De Jong S. P.
"The.System for-'Business‘ Automat.ion (SBA)".

/ Comm. ACM, vol.28, no.6. June 1977 pp. = 385-396.

- b
~
1
.
¢
- - ‘
.
.
¢ ' ‘ ‘
.
[+]
H . N ~ N
~
] .
1
N
\
\
1
)
N * '
f -~
' i
N
) o
t
4 ’
-
>
’
A
Al 3
-
. —
Y f
)
'? ~ '
4
.
° -
N
. v
©
i
Al
\
li
- '
\
‘
N N

3

N

.98

USef Mariual

o

I. How to initiate QBE. <@,

.

operating system.
2. énter QBE.BIN.1 to initiate the system.

3. System will ask you' to set up commup{cation channel with
CYBER. ‘

4. Go to CYBER and execute procedureuQHP on cyber.

S A 'start up’ message will be displayed_andéipu are to

enter <cr> to start QFP command interface.

Note: the display format is SPLIT2 mode with no speciél'

-
feature selected.

6. Cursor-can now be seen in the. first column of row $24 on
the screen. You can enter any programmed Keys which will be

defined later. -
II1. Queiy Set Up:
1. -Initiate QBE as described in previous section.

2. Select proper main mode (SPLIT2 or SPLIT4) by pressing

function key #5.

'3. Press function key BLUE to bring in a skeleton of a

relation.

- 4. The system will ask you to enter a rplatibn name. Enter

1. Power ~up QBE system, turn on modem 'and load FLEX

%a

s
£ W Bl DR, sty

[P

AR

o e T
N

/ : 99 -

,"the relation name if known (backspacing is allowed; maximum

~

number of character you can input is 15). You can enter ESC

if you like to tgrn{inate the command entirely.:

\s

If the relation name. is not known, press function key

BLUE again to display a menu of relations in the database

dictionary. Cursor function keys are permitted to display

the next set or previous set of the relations.” The system

'will ask yoy-to enter the relation name again after

servicing the command. ’ i

5. Now the system will ask to ‘enter the LRMNB for that
relation (Refer to QFP" di:splay format -section ‘for exact
information) . If the rela.tion' x:equest;ed is in the database;,
itf skel’eton\ will bé displayed very shortly, othe’rwise a
be&l will be héard and -you will have to start all over, i.e.
press fﬁnctioﬁ key BLUE again. Once you have the skeletons
of the relatior;s on the screen, you can set up a query as

follows.

6. Press function key #4 follgowed by t‘hé‘ LRNB‘ of the

relation in which you would like to fill in entries. Now
you can see 'the cursor displayed in the first entry of . the

rela'tion; and you are to set up the entries. To move cursor -

s

inside the relation, use space bar, backspace, line feed and

up arraow Kkeys., To access the columns that are not

1

displayed because lack of room, use function keys '<-' and

toyt,

'

You can set up the entries in any order you like. Terminate
\

<t

o a—— vr————— A TR A
B

100
/ . ' -)) /»’ . § i
. , . . .
entry input by a <cr>. : QFP will warn you if you try to
' enter a character on any of the skeleton lines or outside

»

the relation. % , . :
Print ope‘ratér is small 'p' and should be used only as
. the first character of any entry. You can sp'eci’fy an-

A

. e:gafnple element as P~ XXX where' 'p' is the .pr int operator,

" ' is not echoed but inserted in the‘cox:responding entry
buffer. It affects the display sucl: that the rest of the.
er;try characters which you enter will be seen in reverse ' 5

/video mode.’ You can apply print oberato‘r té. the entire

‘tuple by entering a sma}i 'p' in the'cplumn just before the
first cyolu/mn, f.e. beneath LRNB. | .
7. After finish éetting up the entries for.; a relation,
enter, CDNTROL G. Set up all the relations you need to form
a query. Note: Yo\u are not allowed to edit a relation to.
mod i fy entries ‘%hich you have se"t up. |
8, bress function key #1 to/transmit query and retrievg.;

‘ information. The answer to the query i'f' any, .will .b‘é‘
displayed éhortly ‘or a beil is rung and command will be o

aborted. o < o ‘ . , . ‘ . .
Note: Pefore the retrieved 1nfo_rmation is displayed in a‘;

relation, entries that are cdrrently in that relation are

cleared. o) : _—

L]
<

If you would like to see one of the relations shown '

a e

partially on the ‘whgole 5creen', press function key #3 .

'

[
JUC .

ﬁn." N - ‘ . -
. . e ?_v <. 101 \»'\ﬂ\J "
§ . . - e
' N .o A] ‘ ; . Coe . T 'y ’
¥ followed by the corresponding LRNB. . *
’ @ ' , . .
\ . hq);):
f . . ' [3 { - \
. . " . \) . <
III. Description of: Programmeq Keys: _ . -
a‘ N .. ‘.' J}" . . . f
v 5 r | ‘ _’37 4
. s ./ « LY
¢ ‘ L
. " » l J I ,(W [" ' v
) Transmit the query that has been set up ahd . retrieve
~ }nformation from HOST then display the answer of the query
’ in the appropriate relatiop. '
. LY N ~
p . . .) 3 \
P *~ L. _ B . .
Function Key, #2: oL e - 4 7
“ . Te,rminatze @HP on C‘YB"ER'; ‘;nd allow the H19 te(rminal to -,
rad v . ‘ o < / _‘ -
be used as_an ordinary terminal to a mainframe. o
'\ ! \ | 1 = \ | ' e
. Function Key #3:- A . o4 :
. ~ ' : ' A
& Allow. a special feature to display a relation on ‘the ‘
& i . : R . \) s
whole screen such that at most possible .tuples and columns
can _be seen.]
: C s '
N L . . o oo .
. . Function Key/#4: co g -)
Initiate query set up for a selected relation.
1 Functiﬁon” Key #5; ' = ’) N
Allow sv{ch'l between the two main' modes

(SPLIT2 and SPLITY).

- ' o N L
Function Kéy BLUE: . - ’ ~ >

a s
a B .
. ~ . 9 ‘ ’
'

TE M S

- oprim TR

. s e e
.

' Function. Key GREY:

y 23

. 1p2 -

Dlsplay the skeleton of ‘a selected relation or display

e

a menu if pressed‘twice.’//

Function Key Red:

v ‘ . . . !)

~ . .
Display .complete status of a selected relation. This’

- | S
is considered as a special feature. ‘ i
< . .

L

~—

Suspend special features like SPLIT® mode or complete

status mode and restore screen Status.
e '

.))

4 bl

IV., How to Perform A Quick Test: - : ;

1. Initiate QBE as described before.

, : .
2. Enter 'T'.. . : . .

w—

(To store data in the internal data structures of the
relations)

3. Enter 'F! followed’by '1'

(To set the activity status byte of the specific relation)

~

=

H « .
'4,1§Bnter\:D' followed by '1'. . = |
(To display the specific r%latibn) o o (Y

~

[y
i
~

~

'y

- “ ;
- .
,.,
. . -
e St tpaan art 4 3n} g ety o o ' e e
L,
,
. 1
. \ .
3 \ I3 ¥ .
a
L]
b .
s .
. Al
A
.
N
- N

. Relations will'be di

you

cursor function keys. -

)

splayed with.
. ¢

i ~

»
- - ! A, ¢
Note: You CAN NOT test FBLUE ;nd Fl1.
%
S
.
J -
. 1
. s , -,
’ \\’) ! N ~1 N
v ¢ o~ 1
. N N . . ,
[. L. - -
. . '
. N \ .
e o i 14 v -
PO v) “‘,' N
, A . ' B
\ I3
. . N
‘ [T
A) N !
.
.
- » ¢ . -
. : [
13
~ *, . A N
s o ’ !
. . .
-
. B
B
- . . ‘- -
> 4 K .
') ;
' »
'
- .
- -
kY) - ~
) ® . [
- . ,
" . .
- - : b
T ’ il
8
. M ? r
- 3 -
a "
A ! v
! . . - . B
\ , . he . *
R s
- (% . ',
o . " - - R
,
‘ . Ve '
. ' B
\
. v
" .
. . -
. .
.
5 - e
N . . - #
. W !
- .
.o e _ -]
- R ' L} - o
y . -
.
o l’ »
'Y , h 4
va -~ :
’ .
Ad - .
.
e RN M
- [N ‘e
- - . ‘} r
» i
. , v : } . .
. L‘ 3 . "\ S .
e LY NI -
) .
. ° - - -
[N ' , -

i

S

cah test fupction key F5, F4; FRED, FGREY; F3 and all

- some entries, “Now:

4

o

.
)
\
!
ot
4
»
\
p
.
\
N
i
4
ol
-
PR
N
/ .

o
-
.
]
' -
- il
.
-
AN
.
.
7
o
*
3
i
.
PR |

P

R - R N . .
-~ . -
. BN SRR
Co L ' &) E'x,ample‘ Query Sessions —_ -
T . 3 LY , . ’ B . - ' AT =~
1. Main Mode = SPLIT2, LRNB .used = 1. : ’ °
| , . . . , .) W?
I , N . N ’ “ .
Print Subassémbly such as 'car' if assembly = train “ -

. ‘.'_, and quantity > 3. e . '

b

. . . | .
. . ’ ’ » ' \ ~ ’
(1) “ “Materil ;
™ .)] . i 'j i
° ******************;****************) ,
. _ . i - . . - .]
. * Assembly * Subassemb * Quantity.* B o : ' . X
. . . L R ' PO §
) ******,'****H*********************** '\
L - ~ ’ :\ y
-) g . ~ [I R) - \\ .) 1
. * train * picar ¥ > '3 q*‘ . A /
- & 'Y ok * @ , \ 1
i} \ i
~ A R . ° - , \ "' - [}
) ’ AR ARR AR AR IR kR IR RN ARk R I Ik hk e \
N ' 4 ‘ R - ' \ . }
¥ i 3 - - ’ . “ ‘ N ;u
~ - 2. Main Mode = SPLIT2, LRNB used = 2. ‘ .)
X s 1 .) . . ' - . to- . Tl .
‘\\‘ . R N M N L3 °
. Print Labcost if Assembly = car or caboose. L -
.- . s
. . R IS ’ o . . : [! ®
. H N \ " . P '
: C(2) Labcost . 5)
[v - - . > K
. ****************‘********* (f K . ' AT i . .
’ N ‘.) - Z ’ - , . N
- kAg: * Lk “ Y
Assembly * Labcost &=~ _ . , ; _ ,
. C kAR AR R AR AR AR R AR kR R N - iy L . =
* cafp * pTxxx .- * . ‘ : i . :
b e . : : .o -
\ . % cakdose * ptyyy oox .
R S * - - L
N)) N . ' . ' F | . -
- : BT L LI LT T roravurururpaan : o - T .
. 1 - - ox ., N . . - .
- A [g) s s *
- ~] »
’ \\ R
. —)
(. .
, . P . . ” , ,
r . N ‘ /~ . /
. : S . . T :
. - R -
; ly] \“I o y \,
. | . >y .

S > '

" 168 |
- ' T o qe\ , R
"~ .3. Mafn Mode = SPLIT2, LRNB used = 1. - SRR
\ Print .Subassembly if ‘its aséociated assémQ1y is the
same as assembly of 'truﬁkf. ‘ e o
~ 7 \ o ,

(1) . 'Materil | : :

AR RRA AR AR RN RR R RNRR RN R RRRA AR RR , Y

s

* Assembly * Subassemb'* Quantity * . . o -

NRARRERRRRRNR AR R IR NN RN R AR R Rk k& .)

2 v

* p~xxx * truck * * Ll
P \ .
° % pScar LA .

* p‘x)sx , *
= "
*

* *) *

Y

LRk A AR R R AR kAR ARk Rk kR kA ok e)

1 . .)) . - I~
* - f 4 ! 3
. 4 - N M
v ' * i .
. ‘
1 * -
N T N .
~ £ N 1 . -
. “
- -, - - I‘ IS
L ' - § -
B ; N f a
- . ‘ +
v i N o
- L P . , - LI - ,
. s, ¥ L I
. .
. . % .
L4 ©
“ :
' ‘ »
LY i -
.
L.) .
. * A t
.
y . -
RS N v %, ‘
L
N '
s il ,
i ' ¢ : . .
1 . N
o R v
~ - hY
s N ~ ' - .
[y / / N \ R s |
] - N '
v . .
, ! ' N e ¢
o ;
e . N . ‘ ’ EI *
f
- . - " L4
r “
e {
' - L o N 1 - -
v - - RN N ~
. - -
\
B - N - . ¢
. = . R
- - 1 [d ' - .
\ ~ ’ M Ve
1 \'\ . .
' ¢] N
. i N
. - . - * ' \ 2 K -
+ : ~
i -)
' P 3 - . M. [L
T . M -
H . l
) \ v . \ .
- '
) » A - 0
i . { < ‘ '
| \ N : N . .
-~ \ ~ - . .
. < ' RN ’
- -
- ! N -
. . '
~
)" Al P - ’ . .
. ; - T
P . o - 1 - [P
— s - v '

RVSSUIE W

[

1

.

.

146

’

’

&’

4.. Mdip Mode = SPLITAQ‘ LﬁNB used are 1 and.3.

“

What is the price of‘an assembly which subassembly 1is

»

a truck. .

(Theé common example elements will not be

answer) i

! ‘ N

(1) Materil

.

B 2222ZZ22223222 222232222222 222X 22

-

‘?'Assémbly * Subassemb * Quantity* ,

O T Y T 12132222 2 2112223
- - A N .

* p™xxx * truck * *
* * . % %*
Y M -

****}***‘*********i***************

f 3 q?“Pficé

-

3

;**********************f**********

7 -

*. Assembly A

£

* Price %

AR AR AR RRR AR AR RN R ARk kR

T

« u .
* pTxxx . *
;] . ' *

.

. -
.

L3

o

R e T T T T

kS

%

~ S

printed out in the

o
.
s
© N
.
’ n
-
‘
o
8
.
s
N
.
& ’
a «
R
s
]
'
' ¢
~
'
(. -
T
. .
&
1
¢ s
. t - -
+
¥
- 4
N
l
- ;
. . '
- s /
- N4
i
v »
['
R N
. ,
¢
-
B i s '
. , .
a . .
S '
N
N
5
® .
'
S
~
' —
A~
-
+
"

et R~

' o ' . 197 i
" . r-) N
‘.’ ' -
5. Main Mode = SPLIT2, LRNB. = 2. A
p & o
.‘E_ N .

=5

33
4

b

. .

[

Print the sum of quantit&es, fhe average .quantity, the

maximum guantity and the minimum quanﬁity of materil.

L 1) Materil

khhhkhhhhhhhkkhhhkhhhkhhdhhhhhhhkhhhhkhhrhhhhh

‘) .

% Assembly * Subassemb * Qua Eity - *

o

Ahhhhhhhhhhhkhhhhhhhhhhhkhhhhhhhhhrhhkth

x - * R *
v - "\psul'n -

* ‘ ' * % 'pavg u*

. C * * S pmax @ *

* ' - . * ‘ ~ * plnin ’ *

* * * .k
.- :) N .

. ’
»

*‘?*******************************f***tf

- s -
- . .
“
& .
. -
L
' . N
- A B '
! o,
.
.
. ¢
H
.
bk}
“
1
'
'
. ~
B
< . a
. "
.
v .
“
' ~ .
)
-
. . - ¥
3 . v
. kY
s v « 4 t ‘.
{ .
.
. .
3 . '
0
»
~ .
. v AT
oy -
’ €
»
3
-
.
.
. i i
. .
14
P
o

‘o

o
P

W e e (—

* Assembly * Subassemb * Quantity *

Materil

,************tﬂ**********************

LA AR R EZ LR LRSS RSl SRl LR

* train
Q

* train

¢

* train

* truck

* truck

* body

* plane

*“car
* car

* body

% truck

*,‘ca‘b’
* car

* car

.

* truck

* car

* caboose.
* body
* big

" % cab

* ‘body

s big
* truck .
* big o
* céboo;e
*qsaboose
* body

* cab

T X

"

% l-..

* 3

*
[

* 2

s

* .
®

1

2

2
* 4
Q-j/
* 5
* 4
* 3

4

*

*

*&

‘*******************************

[y

4

.

¥ | e ! . Price v . ’»

hkkkhhhkbhhhhhhhrhdhbhhhdd,

k. a 4 . .
* AsSembly * Fgprice * . -

Rk kkkk kb Ak Rk kR AR R R TN

-

- . * truck

* 11.99 - %

. * car’ Tk 6,45 * N

* caboose * 6.75) .o®

* train’ * 46.95 *
': - , ************************** .

- o . Labcost

- 5 .
o de e ok A o ok de e e e ok de de ok e e o o e e de ke e ke ok

I \J

* Assembly * Labcost * .

L RERR A AR AR AR AR TR R kR b kA h . !

* car’, * 92.00 *
!
* caboose * 64.00 *
. f - . /

. * base * 99,08 ¥

. %" body. K]

98.00 *

* truck. * 98.00 Lok .)
* train * 89,00 *
' AhAARRERNRA AR AR AR R AR R ARk .
Al N
. ,
? 3 C
b= . . .
, 4 . .o
. » 3
f . LN
l ~ - 3]
. ' ‘ A
h)
. - \

-

hY
- v
. .
.
I3 4 !
H
4 . !
P)
. '\ : '
,
- .
’“. ’ I}
~
. |
, N
.
v R
.
, L. . .
. . 2
.
. . . s
\
.
. .
f
4 ..
s "
¢ .
-
N .
. \ o
. . N
L} . £l
. .
N) '
PN #
'
» * ' -
. 0
.
!
i
v 3
. .2 %,
N a . N
’ -
. s
, .
. P
£ oL e
(- & &
N e
N \'F/
-
;
1 > - H
N %
- i
.
-~ @ 1
‘]
- i
s |
.
: I
3 o
.
, _ - . ,
. . |
L ‘ ‘
. i
i
.)
- i
i
L. . 2
I N vy
I
- }
L} 5
,
- L]
|
a }
i
'
’
]
.

