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ABSTRACT

The Design and Implementation of an
Advanced Robot Controller

Jonathan N. Brodkin

This thesis describes an architecture for implementing an Advanced Robot
Controller (ARC). The ARC has been designed and built as a replacement for the
controllers of conventional industrial robotic systems. The need for such a device arises
because most industrial robots are constrained by ti.eir controllers' hardware and software
to performing in a simple, pre-defined manner. The ARC hardware consists of a
hierarchically-designed dual-processor operating in a master-slave configuration and
communicating via dual-port RAM, a bank of quadraturé decoders/counters, and a bank
of digital to analog converters. A software library has been established consisting of
various control and path planning algorithms. This library also contains a set of
functions to facilitate algorithm coding and testing. The ARC was integrated with an IBM
7545 Manufacturing System and proved extremely successful in achieving tight control

over the 7545's four joints.
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CHAPTER 1

INTRODUCTION

1.1 INDUSTRIAL ROBOTIC SYSTEMS

Since the early 1960s, robotic systems have steadily been replacing traditionzl
automation techniques. Successful applications of robot manipulators have included
manufacturing and assembly, materials handling and inspection in fixed automation
environments. This type of automation involves the repetition of a specific sequence of
operations for the continuous high-volume production of identical or nearly identical
parts. Industrial robots intended for use in the fixed automation environment have been
designed to perform relatively simple tasks in a preconceived manner. To perform these
tasks, the robots require few if any sensors and practically no intelligent decision-
making ability. Controllers for these systems, therefore, are based on weak processing
hardware and unsophisticated control and trajectory generation software. These types of
robots are generally referred to as "dumb" robots since they are inflexible to changes in

their workspace and product design.

A characteristic of dumb robots is their high-level, application-oriented user-
interface which enables the operator to specify a small variety of "move-type" commands.
With this type of user-interface, the operator has little control over the desired trajectory
and virtually no control over the servoing of the joint motors. In some cases, this
limitation may adversely affect the robot's efficiency. For example, there exist dumb
robotic systems whose application languages do not permit the specification of via points; to
negotiate around an obstacle, the user must specify a piecewise path and the robot stops at the

end of each segment.




Although there will always be applications for dumb robots, there is presently a
growing demand for industrial robots which can operate in a flexible automation
environment. This type of environment is dynamically complex, often containing
moving obstacles and/or other manipulators sharing the same workspace. To perform in
this environment, a robot must possess a significant level of intelligence as well as an
assortment of advanced sensors. Although there will always be applications for which
dumb robots are well suited, many may soon prove to be obsolete as the demand for more
efficient and intelligent industrial robotic systems increases. This is unfortunate when
one considers that relatively expensive robotic manipulators will go to waste simply

because of the shortcomings of their controllers.

In addition to the industrial domain, robots are frequently found in research
environments. Here, they are being used for testing modern advanced control strategies
for the purpose of both basic research and prototype development. Once again, the
limitations associated with the controllers of dumb robotic systems render them
inadequate to serve in such a domain. The research presented in this thesis was conceived

in order to overcome this problem.

The IBM 7545 Manufacturing System that was used in our research is
representative of a large class of industrial robotic systems and can be classified as a
dumb robot. Although the 7545 system is an older generation IBM system, its kirematic
configuration is essentially identical to that of current IBM robotic systems; the difference
being the intelligence of the controllers. Because the intelligence of the 7545 controller is
markedly lower, it does not possess some of the features that have been incorporated into
latest generation systems, e.g., the ability to specify desired trajectories. What these two
generations of systems do share, however, is their inability to evolve as advanced

requirements arise. This inability can be attributed to the design philosophy of the 7545




controller which like most robotic controllers makes it inherently difficult to modify the

hardware and software.

1.2 SUMMARY OF THE RESEARCH WORK

One solution to overcoming the shortcomings mentioned above is to bypass the
manufacturer-supplied controller with an alternate controller possessing sufficient
processing power to execute various advanced robot control strategies and an architecture
which would support future enhancement. This controller could then be programmed for
use in an industrial or research environment. This was the solution adopted for the IBM
7545 Manufacturing System.

The Advanced Robot Controller (ARC) which has been designed and implemented
incorporates a master/slave paradigm that assigns to the slave processor the tedious yet
essential elements of implementing servo control (e.g., robot state acquisition and limit
checking such as joint overruns and excessive torque demands). The slave takes over a
significant percentage of the computations required for servo control and thus allows more
computationally complex control strategies to be executed on the master. Although the
roesults presented in this thesis reflect work undertaken on a particular commercial robotic
system, the approach taken is easily applicable to virtually any robot. It is worth
mentioning that an important constraint in the design and implementation of the ARC is
that the resulting hardware/software is inexpensive (a small fraction of the cost of the

robot) and relatively easy to develop and maintain.

Other researchers have recently reported developmenis of specialized robotic
controllers for the same purpose [1-4]. The systems in [1] and [2] are based on simple single
processor architectures. In [1] a robot controller based on an Intel 310 (6 MHz, 80286
processor) running XENIX and with ite servo control algorithm linked to the Kernel was

introduced. The controller was implemented and evaluated on a six degrees of freedom



PUMA 560 robot and was able to execute PD control for the PUMA's six joints at a servo rate
of 100 Hz [5]. In (2] a specialized computer-robot interface was designed. The interface was
used to link an IBM AT to a Mitsubishi RM-501 robot for the evaluation of simple and
advanced control strategies. A 6.0 millisecond sampling period was achieved for PD
control of the robot's first two joints [6). The methodology and design philosophies which
were adopted by us independently of [1] and [2] are in accordance with the suggestions
found in the conclusions of these references. It should be noted that the cost of the ARC is of
the same order as those for the architectures proposed in [1] and {2]. The systems described
in [3]} and [4] consist of host SUN workstations directing the efforts of multiple (3-5) VME-
based 68000-series processors. These systems exhibit superior performance but at very

significantly higher cost.

1.3 THESIS ORGANIZATION

An introduction to the limitations associated with typical commercial industrial
robot systems has been given in this chapter. Chapter 2 describes the IBM 7545
Manufacturing System which was used in this research. The required hardware
modifications to the 7545 system are also described. Chapter 3 presents a complete ARC
hardware description, justifying the ARC's adequacy for controlling the 7545
manipulator. The ARC software description is given in Chapter 4. This covers the high-
level master software consisting of control and path planning algorithms as well as the
low-level slave algorithms that were developed to increase the performance of the system.
Suggestions for future extensions are included in both Chapters 3 and 4. Chapter 5 presents
the results of experiments that were designed to show the ARC's effectiveness in executing
various control strategies, including proportional-derivative and decentralized adaptive
controllers and various path generation schemes. Concluding remarks are given in

Chapter 6.




CHAPTER 2

THE IBM 7545 MANUFACTURING SYSTEM

2.1 INTRODUCTION

The IBM 7545 Manufacturing System (Figure 2.1) consists of a control unit, an
operator control panel, a manipulator which consists of a four-joint, DC servo-actuated,
Selective Compliance Assembly Robot Arm (SCARA) [7], and an application programming
device (not shown). The contents of these components are shown in the block diagram in

Figure 2.2,

The control unit houses a power supply, drivers for the servo motors, a motor control
board (MTCB), and an interface and power distribution board (relay board). The MTCB
contains a Z80 microprocessor, memory, communications interface circuits, and robot

motion control circuits.

The 7545 system is pre-programmed by the user for a particular application using
the AML/E (A Manufacturing Language/Editor) programming language which runs on
the application programming device (e.g., IBM PC or compatible). The application
program is compiled by AML/E and then downloaded to the MTCB and executed. AML/E
supports simplistic high-level commands such as "move" and "grasp”. All trajectory
planning and joint motor control is performed by the MTCB in a predefined fashion.
Inherent in the MTCB design are the shortcomings described in Chapter 1; consequently
the MTCB is the sole 7545 component which needs to be bypassed. All other 7545 components

can remain operationally intact.
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Figure 2.1. IBM 7545 Manufacturing System [7].
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Figure 2.2. Block Diagram of the IBM 7545 Manufacturing System [7].




This chapter provides the necessary information on the 7545 system to effectively
bypass the MTCB with the ARC that has been designed. This includes the 7545

specifications as well as the required modifications to various 7545 system components.

22 THE IBM 7545 MANIPULATOR

The manipulator of the 7545 Manufacturing System (Figure 2.3) is a four-degrees-

of-freedom mechanism with rigid links. The first two revolute joints of the arm, the

shoulder (8,) and the elbow (8), give two degrees of freedom in the horizontal x-y plane. 0,

is measured with respect to the x-axis (see Figure 2.3) and its range of motion is 0-200°. 65

is measured with respect to the radial axis of link 1 and has a range of motion of 0- 135°,

Located at the end of the arm is a prismatic joint giving one degree of freedom
along the vertical z-axis. Attached to the end of this z-axis shaft is a pneumatic gripper. In
its uppermost position, the gripper lies in the x-y plane and the joint variable Z (uppercase
denotes joint variable) is zero. The shaft can extend 250 mm in the negative z direction.

This is the only joint motion affected by gravity.

The Roll joint consists of the revolution of the z-axis shaft (gripper) providing one
degree of orientational freedom. The Roll angle, 0,011, is measured with respect to the x-

axis and as will be shown in the following section, is independent of 8;, 69, and Z. The

range of motion for this joint is from -180° to +180°,

The forward kinematic equations for the manipulator are:

x = [y cos( 0y +6g) +1[; cos 6,
y = Lpsin( 8, + 85) + [, sin 6, (2.1)

z = -h

where {; = 400 mm and {5 = 250 mm are the lengths of links 1 and 2, respectively.
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Figure 2.3. IBM 7545 Manipulator [7].



The inverse kinematic equations are:

0; =Atan2 (y, x) + Atan2 V2 - y2 - 02, ) (2.2)

6 =Atan2 (-xsin 8, +y cos 0y, x cos 8; +y sin 8y -[;)

The dimensions of the manipulator's work envelope are shown in Figure 2.4. The

manipulator's HOME (reference) position is located in joint space at 8 = 65 = 68,4 = 0°,

Z = 0 mm, or in Cartesian space at x = 650 mm, y =z = 0 mm,

Y

f

-

2 All Dimensions are in mm

Figure 2.4. IBM 7545 Manipulator Work Envelope [7].



The manipulator has no positional redundancies, i.e., for any point in the work
envelope, there exists a unique set of joint values to position the gripper at that point.

Orientationally, there is redundancy in that the gripper can rotate a full 360 degrees, i.c.,

Broll = -180° is equivalent to 8, gy = +180°.

As indicated in the block diagram in Figure 2.2, each joint of the 7545 manipulator
is equipped with a DC servo motor and driver (the latter located in the control unit), a
transmission device, an incremental encoder, and various sensors. These components
are described in the sections that follow. For reference, the wiring diagrams of the

connections between these components and the MTCB are included in Appendix A.

2.2.1 Motor Location and Transmission System

Each link of the 7545 manipulator is driven indirectly by a DC servo motor. For
joints 1 and 2, the motors are mounted on their respective joint axes. The transmissions
for these joints are harmonic drive assemblies with gear ratios of 157:1 and 80:1,

respectively.

The joint Z motor is mounted at the distal end of link 2 with its axis parallel to the z-
axis. A belt and a ball-screw mechanism transform the rotational motion of the motor into
translational motion along the Z-axis shaft. The transmission ratio is 6.2381 revolutions

per mm,

The Roll motor and its associated harmonic drive transmission is located in the
base of the manipulator. A drive belt transfers motion to the joint axis. Due to this

configuration, the orientation of the gripper is independent of arm position, i.e., joint

variable 8.,)) is independent of 8; and 05. An interesting consequence of this

configuration is that the drive belt dynamically couples the distal end of the arm to the base

10



of the manipulator. The harmonic drive together with the drive belt provide a reduction

ratio of 51.2:1.

2.2.2 DC Servo Motors and Drivers

The DC servo motors are permanent magnet type motors manufactured by
Yaskawa Electric Mfg. Co., Ltd. The motors for joints 1 and 2 belong to the Print Motor
series [8] while joint Z and Roll motors belong to the Minertia Motor series [9]. Their

ratings and specifications are given in Appendix B.

Each motor is driven by a Yaskawa DC Servomotor Controller or Servopack [10].
Power for these units is obtained from the 7545 power supply via the relay board. Servopack
power is controlled by the manipulator power key on the control panel which energizes a
relay on the relay board. The Servopacks for the Print motors of joints 1 and 2 provide

outputs of up to 200 W and for the Minertia motors of joints Z and Roll, up to 100 W.

Figure 2.5 shows a Servopack's internal block diagram. The output (between
terminals A and B) comes from a full bridge transistor switching circuit, the driver of
which is controlled by the Pulse Width Modulation (PWM) generator. The PWM
generator is fed by the output of the Current Amplifier. This amplifier constitutes an
armature current controller. The armature current setpoint is located at the Cpef testpoint
and the control loop is closed by feedback from the Current Detecting Amplifier. Crefis set
by the output of the Speed Amplifier which constitutes an armature speed controller. The
setpoint of this amplifier is located at the speed reference input terminals of the Servopack
and is driven by a digital to analog converter on the MTCB. The feedback for the speed
controller is provided by the MTCB which performs a frequency to voltage conversion on
the encoder signal. This feedback signal is fed to the TG (tachogenerator) Feedback input

of the Servopack.

1
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Figure 2.5. Servopack Internal Block Diagram [10].

The Servopack, in its manufacturer-supplied form, is incompatible with typical
control strategies whose output driving signals are computed torque values. The
Servopack does not support a torque input because of its speed control amplifier. The
solution is to disable this speed controller. By doing this, the torque output signal from a
robot controller such as the ARC would reach testpoint Cref undistorted. At Cref, the
driving signal would be recognized as a desired armature current. (Note that armature
current is directly proportional to motor torque.) The Speed Amplifier can be modified (by

opening the speed control loop) to serve as an adjustable gain amplifier for calibration

purposes. The following is a list of the required modifications.




(a) Transform the Speed Amplifier into a simple inverting amplifier by shorting-
out its integrating capacitor (refer to Figure 2.5).

(b) Short the TG feedback input.

(c) Add an external potentiometer at the speed reference input for gain adjustment.

(d) Connect a wire from the internal testpoint Cref to a point outside the Servopack
for easy access during calibration. (The calibration procedure is listed in

Appendix C.)

A wiring diagram of the modifications for one joint is shown in Figure 2.6. Note
that the modifications are implemented using a SPST for (a) and SPDT selector switches
for (b) and (c) so that the Servopack can be easily configured (by throwing the three

switches) to serve either the MTCB or the ARC.

'
CONTROL UNIT 1 MANIPULATOR
]
MICB '
— = w— —‘ )
SERVOPACK N5 +5V |
¥4 A - 1GGround | \
tocho 4 rou !
Genetotor l 3K9 f
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€3 o 16 Feedback | '
N7 oS
£ | 1  FromEncoder.
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Speed [}
Reference DAC Output ' A
)9 ! RELAY BOARD
SPOT | :
1 N2 CNER
See
Integrating _]_ 1 Appendix C l & . From HOME
Caopacitor SPSY for Sensor
Adustment '
] | i
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from ARC DAC To ARC |

Figure 2.6. Modified Servopack, Encoder and HOME Sensor Connections.




2.2.3 Incremental Encoders

An incremental optical shaft encoder is mounted on the motor shaft of each joint to
provide relative joint position information. Channel A and B outputs are in quadrature
(90° out of phase) and have resolutions of 500 pulses per revolution for joints 1 and 2 and 400
pulses per revolution for joints Z and Roll. Each encoder also has a one pulse per

revolution index output.

The MTCB contains a counter for each encoder. On-board logic decodes the
incoming pulse streams to determine the count direction. The counters increment for
positive and decrement for negative joint motion. The counters are clocked only by a
single transition on a single encoder channel (e.g., the rising edge of channel A).

The MTCB sets the counters to zero when the manipulator is initialized to the
HOME position. The counters then give joint positions relative to the HOME position.

Joint pnsition resolutions in pulses per degree are calculated by multiplying the encoder

13;3:" (not necessary for joint Z since it is translational) and the

resolution by

transmission ratios given in section 2.2.1. Table 2.1 lists the joint position resolutions of

the four joints of the 7545 manipulator.

Table 2.1. 7545 Joint Position Resolutions.

L Joint Resolution
—
21805 Dulses
1 degree
1117 Bulses
2 degree
95.24 pulses
Z mm
56.8 pulses
Roll degree
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Because robot control strategies generally require joint position feedback, the ARC
must have access to the outputs of the encoders when it is controlling the manipulator. A
potential access point is at a test point on the MTCB (labelled CN16 in [7]) where the two
channels and the index of each encoder are conveniently available. Unfortunately, it was
discovered that this is not a feasible point for extraction of these signals for the following
reason. When manipulator power is switched on, the MTCB's control scheme tries to
maintain the manipulator in position. However, while the manipulator is under ARC
control, the MTCB's control efforts are futile since its output signals have been prevented
(by the SPDT switches mentioned in the previous section) from reaching the Servopacks.
The problem arises when the ARC moves a joint to a point where the MTCB's computed
tracking error becomes excessive. At this point, the MTCB shuts down manipulator power

as a safety feature.

A solution to this problem is to extract the :ncoder signals before they reach the
MTCB and to prevent them from entering the MTCB. Actually, preventing only one
channel (channel A for joints 1, 2, and Roll and channel B for joint Z) from entering the
MTCB and pulling the MTCB input for that channel to +5 V is sufficient to fool the MTCB

into thinking that there is no motion.

To accomplish this, a small circuit board was built to extract the encoder signals at
MTCB connector CN7 where the signal levels are TTL compatible. SPDT switches were
used for selection of either MTCB or ARC mode. Figure 2.6 illustrates the circuit
modification for one joint. (Note that for joint Z, channel B is the channel which is to be

interrupted.)

An added benefit to the above approach is that the encoder outputs are available at the
extraction point whether or not manipulator power is on while at MTCB testpoint CN7 the

signals are provided only when manipulator power is on. The benefit is that the ARC can




continually monitor joint position and that reinitialization of position counters is not

necessary if manipulator power is switched off and the manipulator is moved manually.

2.2.4 Sensors

Each joint of the manipulator is equipped with overri.n and HOME sensors (see

Appendix A for wiring details).

The overrun sensors are limit switches that detect joint hyperextension. When an
overrun sensor is tripped, manipulator power is turned off. This safety feature protects the
links from hitting their mechanical limits and must remain intact. The ARC does not

interfere with this safety feature.

The HOME senscrs are proximity switches which are activated when a joint is in
its HOME or reference position. Referring to Figure 2.3, the respective sensors indicate a
HOME condition when link 1 becomes collinear with the x-axis, link 2 becomes collinear
with the radial axis of link 1, the gripper point lies in the x-y plane, and the Roll angle is
anywhere in its negative region. The HOME sensors are used in initialization of the joint
position counters. The MTCB has a find-HOME routine that consists of moving a joint
away from its HOME position if the sensor is already active and then moving it back
towards the HOME sensor. When the HOME sensor becomes activated, the position

counter for the joint is set to zero and the joint motion is discontinued.

The HOME sensor signals are extracted for use with the ARC from the ribbon cable
connecting CN5R to CN12 as illustrated in Figure 2.6. HOME condition is indicated by 0V

and not HOME condition by 22.5V.
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23 SUMMARY

This chapter described the IBM 7545 Manufacturing System and identified the
MTCB component as the source of some of its limitations. It was indicated that to overcome
these limitations, the MTCB must be bypassed with a more powerful processing system
such as the ARC which is presented in subsequent chapters. The chapter described
important details of the 7545 system and outlined the modifications to be made to the system

in order to bypass the MTCB.
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CHAPTER 3
HARDWARE DESCRIPTION

FOR THE ADVANCED ROBOT CONTROLLER

3.1 INTRODUCTION

This chapter discusses the design philosophy of the ARC and describes the

hardware that was developed for its implementation.

The ARC was conceived primarily as a replacement for the MTCB in the IBM 7545
Manufacturing System for the purpose of converting the 7545 into a testbed for robotic
research. For this purpose the following ARC design objectives were adopted:

*  The ability to execute both simple and sophisticated robot control algorithms at
respectable servo rates (baseline of 1000 Hz for PD control).

¢  Basic functions to facilitate the development and implementation of robot control
strategies.

* An environment conducive to robotic research,

¢  The cost of the overall system a fraction of the cost of the 7545 system.

To achieve these objectives, a hierarchical dual-processor architecture was chosen
(see Figure 3.1) whereby the master processor is used for developing and executing control
strategies and the slave serves as an intelligent interface between the master and the robot.
Good performance from this type of architecture is achieved since the slave relieves a
significant portion of the computational and 1/0 burden from the master. The slave
handles some of the tedious yet essential functions associated with servo control. For
example, the slave can be programmed to keep track of joint positions by continuously
reading the joint encoder signals emanating from the robot and test for overrun

conditions. It can also verify that the output motor torques as computed by the master are



within the limitations of the robot. All the functions handled by the slave are invisible to

the user and thus facilitate the development of the master software.
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FACILITY y SLAVE ‘
INTEL 80C196KA
MICROCONTROLLER ‘ J
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Figure 3.1. Block Diagram of the ARC Hardware.

The IBM Personal System /2 (PS/2) model 50 computer and the Intel 80C196KA

microcontroller were chosen as the master and slave, respectively. The PS/2 model 50 is

adequate for initial needs and can easily be substituted by the more powerful model 70 or

model 80 for future needs. The Intel 80C196KA has many features which suit the ARC's

needs. These will be discussed in Section 3.3.

The block diagram of Figure 3.1 also shows the remaining ARC hardware

components: a dual-port RAM (DPR) for communication between the master and slave

processors; four digital to analog converters (DACs) to drive the 7545's Servopacks; four




position counters to read the 7545's joint encoders; and an input buffer for reading the

7545's encoder index and HOME sensor lines.

The following sections of this chapter describe each of the components mentioned

above and the manner in which they interconnect.

32 MASTER PROCESSOR AND DUAL-PORT RAM (DPR)

The master processor of the ARC is an 80286-based IBM Personal System /2 (PS/2)
model 50 {11] which features the Micro Channe!l architecture and an 80287 math co-
processor. As indicated in Figure 3.1 the master communicates with the slave via a dual-

port RAM (DPR).

The dual-port RAM, as its name implies, is RAM that can be accessed by two
processors, one at each port. The DPR was chosen over other types of data communication
methods (e.g., FIFO) as it can store control program variables required by both the master
and the slave processors and it can hold predefined semaphores for timing purposes thus
eliminating the need for hardware interrupts. Variable that are passed between the two
processors via the RAM include the robot state from slave to master and computed torques
from master to slave.

For implementation, an Integrated Device Technology's IDT7132/1DT7142,
master/slave pair [12] was chosen. In parallel, these two 2k x 8 dual-port static RAMs form
a 2k x 16 memory that interfaces directly tothe 16-bit word width of the PS/2. The PS/2-DPR
interface circuit that was designed is shown in Figure 3.2. This circuit was constructed on
a Micro Channel prototype adapter card which can be inserted into an expansion slot inside
the PS/2. The critical timing parameters of the Micro Channel's memory cycles are
shown in Appendix D while the timing waveforms of the DPR are given in Appendix E. A

short description of the circuit is given next.
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Referring to Figure 3.2, the twelve DIP switches enable initialization of the starting
address of the DPR. ICs Ul and U2 decode the upper 12 address lines A(12-23) along with

the M/I/O and MADE 24 signals to produce the unlatched address decode signal. This

signal provides the required feedback to the master on lines CD DS 16 and CD SFDBK,
The unlatched address decode signal, along with the lower 12 address lines A(0-11) and the
control signals S0, S1, and SBHE, are latched by U3 and U4 on the leading edge of CMD.
The latched address decode signal then enables the left port of the dual-port RAM and,
together with CMD, enables the data bus buffers, U8 and U9. SO and SI are the write and

read enable signals, respectively.

The IDT7132 has on-chip port arbitration logic to resolve the situation in which both
ports simultaneously address the same memory location. When this situation occurs, the
IDT7132 determines which processor has access and holds the operation of the other
processor through the use of a BUSY flag. For example, the IDT7132 sets BUSYL to

indicate right port priority. This signal is then used to delay the PS/2 by setting its

CD CHRDY(n) (channel ready) line.

Unfortunately, implementation of the above is complicated by the fact that the
propagation delays of the IDT7132 and the other interface circuit components cannot

guarantee generation of the BUSYL within the time required by the PS/2. Referring to

Figure 3.2, the solution is to automatically set the CD CHRDY(n) signal at the beginning of
the memory cycle and reset it on the leading edge - "CMD using gates U7A, U5D and U7B.
This affords the circuit extra time to set the .- oSYL signal. In this configuration, the
hardware extends the Micro Channel's default cycle to the 300 nanosecond synchronous
cycle given in Appendix D. It should be noted that the PS/2 model 50 automatically extends
the default cycle to the 300 nanosecond synchronous extended cycle. It is performed by the

interface hardware, however, to assist portability to other systems.




The starting address of the left port of the DPR is set by the DIP switches to 0CO000H.
An 18 inch twisted pair ribbon cable is connected to the header of the circuit board and links

the right port of the DPR to the microcontroller which is described in the next section.

3.3 SLAVE PROCESSOR

The slave processor chosen for the ARC system is the Intel 80C196KA
Microcontroller [13]). To simplify the design of the slave system the Intel EVS0C196KA
Microcontroller Evaluation Board [14] was employed. This evaluation board consists of
the 80C196KA 16-bit embedded microcontroller, 16k x 16 static RAM, 16k x 16 EPROM and a
UART for communications with a host IBM or compatible. Edge connectors on the board
provide easy access to the microcontroller's system (data, address, control) bus. For

reference, the EVB0C196KA schematic diagram is given in Appendix F.

The EV80C196KA also facilitates software development as it contains a system
debug monitor (SDM) for loading, executing and debugging code. The SDM is actually
composed of two separate programs. One resides in the EPROM on the evaluation board
and executes on the EVBOC196KA and the other runs on the host computer, in our case an

IBM compatible. The two programs communicate via an RS-232 channel.

3.3.1 The EVBOC196KA Interface

As illustrated in the ARC block diagram of Figure 3.1, the microcontroller
communicates with the DPR, the digital to analog converters, the position counters, and the
robot overrun and HOME sensors. Each one of these components is viewed by the
microcontroller as external memory residing somewhere in the upper half of the
80C196KA's 64k address space (8000H-FFFFH). Referring to Appendix F, the
EV80C196KA's main interface is located at the JP2 memory expansion connector where the

system bus is available. The timing diagram of the bus is given in Appendix G. The
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schematic diagram of the first stage of the interface circuit which was designed to connect

directly to JP2 is shown in Figure 3.3. A short explanation of the circuit follows.

US buffers all output control lines and is always enabled. U1 and U2 latch the 16-bit
address from the multiplexed address/data bus (AD0-AD15) on the trailing edge of BALE,
U3, U4 and U7 are bidirectional data bus buffers. Their direction is controlled by the BRD
signal. DO has its own buffer so that two position counters can be accessed simultaneously
(this will be explained in more detail in the section 3.5). U8, a 3-8 decoder, generates the

chip enable signals for the components of the ARC and is enabled for addresses in the

range 8000H-FFFFH (A15 high). The outputs CE1, CE2, CE3, and CE4 enable the position
counters, the digital to analog converters, the HOME and overrun sensors buffer, and the
DPR, respectively. Since the chip enable signals are generated by a latched address
decode, they are active for the entire memory cycle of the 80C196KA. In light of this, data
transmission timing is controlled by the pulse width of the 80C196KA's read (RD) and
write W,WT{T) lines. For ARC devices that require longer pulse widths than these
lines provide, an antedated read/write signal AR/W is generated. The AR/W pulse
begins earlier, on the trailing edge of ALE, and ends on the trailing edge of either

RDor WRL.

U21B, the D flip-flop, is set and reset by RD and WRH , respectively. The output of
the flip-flop, LR/W (latched read/write), drives the R/W line of the position counters. This
will be explained in greater detail in section 3.5. An additional requirement of the
position counters is a 2 MHz clock. This clock is generated by dividing the 80C196KA’s 6
MHz CLOCKOUT signal by three using the dual J-K flip-flops of U10. The clock signal, as

shown in Figure 3.3, is termed DBCLK.



 § T Y T 1 T T T L} I X I y 4 I T
< I=ATID
o~ . A <DICTTO OS>
N v el
3 uoall A 1( oy TSI
N va o4 HE- ]
"4 0s o 41 4
05 & ]
b oe ee H< juzen b
241 4 —
6¢ L 1
FTACTTT 3 VARETL
AALE 1 cE27
1 14+ 9.0
u2
N o1 o GEAL A
> 02 e2
1 63 o3
3 g &
o
ce o6 /
07 o7
o8 ee
H A H
_F‘Q ocC
kL8 144 yea <
ul ['unsoa
a1 w1 |4 { | maeEczc vz18
o o % l 2
Ae Ba 3 % LE » o g e = A/
= as 95 4 A8
= ac  BE — N beLK
- L3 X4 “A [ I3
“a N BRGZ 1| y £ si-s
k. 740874 <
43d ¢ AHBL, 2
3L 1 5 1
AL1I8 41
\A26 =HD® A228
e UeD
483> YT
N¢ > “«2 w2 A 740504 ]
a4 a3 83 7
= “e B4 ¢ vee
N&-xgTd as  as
i & T
1 =al e Bi ’ 74a504 |
Lazd
10
IETH usa
k]
N7 A
\AR&—AD0 38 | o DO 748
a1 1 |8 u218
SEBE | e
s Y.,
“Syac :; :; R1? —A21p : Y
ae Be jE a 7n _I:“- LK
w7 B ¢
4 Ris a8 @8 jt: 13U = K I d
740574
ix Sin 1x gne P
Lywceas 104 V109
% 4,523 C2MHE)
—dtly P 20 o 2
BOLK CEHHRD Ad cix L—Sdcix
T S « £ s «&x
8] £1-T8 9% a1 v L
i a2 1v2 i LYY *SVdc
Sy =nFL 3 a3 Mg LAy,
NI =FI ine  ira 4 {_’—j .
[l Q3a=C3lry SES M b | |
202 2v2 p—
§4 203 2v3 -
=l 20e 2vars u268 u26a
16 uen 23
1 74RS04 0.5 pz> 9TC S2le—120a 5
kLIS +21) Lk 5 cLKd *Sydc
ol £ « .mJ Aaly € o«
<TFR-USLECARY)-
IR-YTTIXY L:__‘F
3 . 3
CE _CONCORDIR UNIVERSITY: JONATMAN QROONIN
it
EVEOC 196KA MICROCONTROLLER INTERFACE
‘e Pocumen i *r
3 EV196.85CH 3
ale Bpra]l 18 } ] £l ol i
X I ~ I 1 I L1 1 L T X "’_l_‘_L!! e

Figure 3.3. 80C196KA Interface Schematic.
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TIMER? is a 16-bit counter on the 80C196KA which is used by the ARC as a sample
period timer. TIMER2 increments on any transition at the T2CLK terminal. The desired
TIMER2 counting frequency is 1 MHz and the required 500 KHz clock for the T2CLK input

is generated by dividing the 2 MHz clock by four using the dual J-K flip-flops of U26.

34 DIGITAL TO ANALOG CONVERSION

Digital to analog converters (DACs) are the means by which the computed motor
torque values are converted into analog voltage signals to drive the Servopacks. In its
present configuration, the ARC employs four Analog Devices AD667 12-bit double-buffered
DACs [15), one for each joint of the 7545 manipulator. The double-buffered digital inputs
enable all DACs to be simultaneously updated without the need for external latches and the
12-bits provides adequate resolution. The AD667's digital and analog circuits are

discussed below.
3.4.1 Dipgital Circuit Details

The AD667 functional block diagram and write cycle timing diagrams are given
in Appendix H. The AD667 bus interface logic consists of four independently addressable
registers in two ranks. The first rank consists of three four-bit registers controlled by
address inputs A0-A2. The second rank register holds all 12-bits and is controlled by

address input A3,

The AD667-80C196KA interface is shown in Figure 3.4. The first rank register
address lines (A0-A2) on each of the four DACs are tied together and connected to 80C196KA
address lines A1-A4, respectively. The second rank register address line (A3) on all
DACs are tied together and connected to 80C196KA address line A5. In this configuration,
the first rank registers of each DAC can be loaded separately with their respective torque

data as per Write Cycle #1. The transfer from first to second rank is then performed

2



simultaneously on all DACs as per Write Cycle #2. This double buffered organization
eliminates spurious analog outputs originating from data bus activity while the DACs'

chip select inputs (cs) are low.

The ¢s inputs are driven by CE2 whose base address is AOOOH. The CE2 signal is
gated hy the AR/W signal to provide the longer pulse width required by the DACs. The DAC

addresses are listed in Table 3.1.

Table 3.1. Digital to Analog Converter Addresses.

DAC # RANK 80C196KA
REGISTER ADDRESS
1 1 AFFCH
2 1 AFFAH
3 1 AFF6H
4 1 AFEEH
ALL 2 AFDEH
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3.4.2 Analog Circuit Details

The DAC's internal output amplifier supplies up to 40 mA of current to drive the
7545's Servopack. Each AD667 is configured to produce bipolar output voltage ranges of
+10V. Two 10092 potentiometers are used in calibrating the outputs. The calibration
process is described in Appendix C. A 20pF capacitor is connected across the feedback

resistor to optimize dynamic performance.

3.5 POSITION COUNTERS

As mentioned in the first chapter, the joints of the 7545 manipulator are equipped
with position feedback devices in the form of optical incremental encoders (see
Section 2.2.3). To recover the encoded position information, the ARC employs four Hewlett
Packard HCTL-1000 General Purpose Motion Control ICs [16]). These ICs were chosen as
they contain quadrature decoders and 24-bit counters for reading the 7545's joint encoders
as well as 3-bit state delay digital filters to remove noise spikes on the encoder lines. Each
HCTL-1000 takes the place of a multitude of ICs used in [1] and {2] for the same purpose.
Another feature of the HCTL-1000 is that a count is produce? for both transitions (low—high
and high—low) on Channel A and Channel B. Therelore, the 500-count encoders on the
first two 7545 manipulator joints are decoded into 2000 quadrature counts per revolution,
As a result, the HCTL-1000s give four times better resolution than the counters on the MTCB
as well as the counter described in [1] and [2] which count on one transition of one encoder
channel only. In addition, the 24-bit capacity of the HCTL-1000s is sufficient to hold the
pulse counts corresponding to the maximum range of motion of the joints. Thus no special
software is required to keep track of the total pulse count. The schematic diagram of the

HCTL-1000 circuit is shown in Figure 3.5. A description of the circuit is given below.
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The HCTL-1000s are clocked by the 2 MHz DBCLK line as are the D flip-flops in
U25. The flip-flops ensure that all encoder pulse transitions occur at the HCTL-1000
encoder inputs coincident with the clock, thus preventing any possibility of erroneous

encoder counts as explained in [16].

The 24-bit pulse count is located in three of the HCTL-1000s 64 8-bit internal
registers. The registers are accessed over the HCTL-1000s multiplexed 6-bit address/8-bit
data bus. The bus timing diagram for the HCTL-1000 is included in Appendix I and a

description of the 1/0 operation follows.

On the leading edge of BALE the HCTL-1000 begins sampling the bus into an
internal address latch. This bus information, which represents the 6-bit address of one of
the HCTL-1000's 64 8-bit registers, gets latched on the trailing edge of BALE. Next, on the
leading edge of CS, the HCTL-1000 begins sampling the bus into an internal data latch. On
the trailing edge of CS the HCTL-1000 checks the LR/W line and performs one of two
operations. In the case of a write operation, the data in the data latch is written into the
addressed location. In the case of a read operation, the data in the addressed location is
sent to an internal output latch which can then be enabled onto the bus by setting OE.
Because the HCTL-1000 takes a relatively long time (minimum 1.8 microseconds) to
transfer the data to the output latch, the read operation is performed by two microcontroller
read instructions. The first read instruction sets the LR/W line high, selects the desired
register and begins the transfer process by asserting the appropriate CS line. The second
read instruction asserts the OE line to enable the data onto the bus to be read by the

microcontroller.

The CS and OE signals are generated by U20, a 3-8 decoder, which decodes address
lines A6, Al4, and A7. U20 is enabled by the CE1 and by the AR/W which provides the

longer CS and OE pulse widths required by the HCTL-1000s.
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To increase the ARC performance, the 8-bit HCTL-1000s are connected in pairs to
the 16-bit bus of the EVB0C196KA microcontroller. The upper and lower HCTL-1000s that
make up a pair are connected to bus lines D8-D15 and D0-D7, respectively. The first pair is

controlled by CE1 and OE1 and the second pair is controlled by CE2 and OE2. Two other

sets of control lines are generated by U20, CE3, OE3 and CE4 OE4, for future expansion.

The memory map for these control signals is given in Table 3.2.

Table 3.2. Memory Map for the HCTL-1000s.

CNTRL ADDRESS
SIGNAL | A15 A14 A13 At12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
_(_f_1 i 0 0 d d d d d 0 0 d d d d d O
g 1 0 0 d d d d d 0 1 d d d d d 0
CS1 1 0 0 X X X X X 1 0 X X X X x O
cs2 [1 o o «x X x x x 1 1 x x x x x 0
@_ 1 1 0 d d d d d 0 0 d d d d d o0
OkE4 1 1 0 d d d d d 0 1 d d d d d 0
g_g_—s 1 1 0 x X X X X 1 0 x x x x x 0
CS4 1 1 o X X X X X 1 1 X X b { X x 0

d-don't care
x-HCTL-1000 register address

Since address line A13 is always O only the first 32 registers on the HCTL-1000s can
be accessed (i.e. registers ROOH - R1FH). This does not pose a problem as the 24-bit actual
position count is held in the three 8-bit registers R12H (MSB), R13H, and R14H (LSB) and
the only other register of interest is RO5H. Writing 01H to RO5H commands the HCTL-1000
to enter the Initialization/Idle mode where it simply keeps track of joint position. Upon
writing 00H to RO5H, the position counter registers (R12H, R13H, R14H) are cleared and

the Initialization/Idle mode is entered.

As seen in Table 3.2, address line A0 is always 0. This is due to the fact that the
microcontroller requires an even operand in all instructions which refer to word (16-bit)
memory locations. This would dictate that only even registers on the lower HCTL-1000

can be addressed. This limitation, however, is overcome by providing bus line DO with its




own buffer (U7) as shown in the schematic diagram in Figure 3.3. When the buffer is
enabled, DO takes the level of ADO and when the buffer is disabled, D0 is pulled high by the
pull-up resistor R17. It is presumed that the microcontroller addresses the same location in
both the upper and lower HCTL-1000s. Therefore, the DO input of the lower HCTL-1000
should always be the same as D8 on the upper HCTL-1000 during addressing. Hence,
during the addressing portion on the multiplexed bus (i.e., if AD8 is high duringmthe
buffer will be disabled by U22B and DO will be high even though ADO is low. If ADS8 is low,

the buffer will be enabled and D0 will take on the value of ADO.

As was mentioned previously, the OE line which enables the output of the HCTL-
1000s onto the data bus begins with the antedated AR/W line on the rising edge of BALE.
Bus contention could occur at the beginning of this period when the microcontroller is
asserting an address on AD[0..15]. The contention would last until the BRD line goes low
and the direction of the data buffers changes for a read instruction. The contention is
avoided by means of U234, U22D, U6A, U9A, and U9D, which act to disable the data buffers
if the HCTL-1000s are being accessed (CE1 is low), if it is a read instruction (A7 and OE are
low), and if the BRD line is high. This buffer disabling period begins on the address

decode and ends with the start of the read pulse.

The final timing requirement of the HCTL-1000 is that its R'W input remain
asserted for a short period after the CS pulse. This is accomplished by latching the BRD
and BWRH lines in the D flip-flop, U21B. The output of the flip-flop, labelled LR/W

(latched read/write), drives the R/W inputs of the HCTL-1000s.

3.6 HOME SENSORS, ENCODER INDEX AND DUAL-PORT RAM CONNECTION

As described in section 2.2.4 the extracted HOME sensor signals have a voltage of

approximately 22.5 V when the joint is not HOME and 0 V when the joint is HOME. These



voltages are converted to TTL levels by the circuit in Figure 3.6 which consists of a voltage
divider, a Darlington transistor and pull-up resistor, and for buffering an opto-isolator.
The HOME signals along with the index pulses generated by the optical encoders (TTL
compatible) are made availuble to the microcontroller through buffer U15. The buffer is

enabled by CE2 and BRD and its address is BOOOH.

Also included in Figure 3.6 is the edge connector for the dual-port RAM. Because
the dual-port RAM has a very fast access time it can be connected directly to the basic

interface circuit in Figure 3.3. The dual-port RAM is chip-enabled by CE4 and has a base
address of EQOOH.
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3.7 HARDWARE IMPLEMENTATION

The circuits of sections 3.3 - 3.6 were wire-wrapped on a prototype board. The
EV80C196KA microcontroller evaluation board was attached along side the prototype beard
and was electrically connected via a ribbon cable. The assembly was mounted on a
Plexiglass base for attachment inside the 7545's control unit housing. As mentioned
previously, connection to the dual-port RAM (residing in the PS/2) was via an 18 inch, 64

conductor, twisted-pair ribbon cable.

3.8 SUMMARY AND FUTURE WORK

This chapter described the hardware that was designed specifically for the ARC.
The dual-processing nature of the ARC provides the processing power needed for advanced
control strategies and also enables some of the basic functions executing on the slave to be
invisible to the user. The system also serves as a basis for future hardware expansion. For
example, supplemental hardware such as force sensor feedback circuits (required for
impedance control) and circuitry for additional degrees of freedom can be easily
interfaced to the slave system bus. As for the master processor, greater processing power
can be easily achieved in two ways. The first is to replace the PS /2 model 50 by the model 70
or the model 80. The second is to add one or more transputer (processor) boards inside the

PS/2 .



CHAPTER 4
SOFTWARE DESCRIPTION

FOR THF. ADVANCED ROBOT CONTROLLER

4.1 INTRODUCTION

As mentioned in Chapter 1, the ARC was conceived to enhance the operation of the
IBM 7545 Manufacturing System and, in the process, transform it into a testbed for robotic
research. The previous chapter described the hardware that was designed to achieve this
objective. This chapter presents the master and slave software that has been developed for

the purpose of creating the research environment.

Figure 4.1 shows a block diagram illustrating the role of each processor in the
overall system. Note that the user interfaces only with the master processor; the slave is
completely invisible. The slave software performs the function of I/O handler for the
master and some basic safety features such as limit checking of variables. The slave also
contributes by maintaining the sample period timer. Perhaps the most valuable function
of the slave, however, is the reading of the joint position counters (HCTL-1000s). This
function, as detailed in Section 3.5, is both complicated and time consuming. The slave,
therefore, performs some of the tedious yet essential tasks associated with robotic control
and enables the master (and user) to concentrate on higher level issues. The slave

software is described in Section 4.3.




MASTER PROCESSOR
USER - SLAVE PROCESSOR ROBOT
1. Control Mode:
ROBOT CONTROL ALGORITHMS 1/O Handilet for the Master
PATH PLANNING ALGORITHMS
USER INTERFACE FUNCTIONS -robof stale acquisition
-joint postiion imMW checking

-forque demand KkmPk checking
-sampie period timer

2. FIND-HOME MODE
Autonomously Locates The
Home Posltion of Each Joint

Figure 4.1. Block Diagram of the ARC Software.

The master processor is used for developing, storing and executing path planning
and robot control algorithms. So far, a library consisting of two path planning algorithms
and two control algorithms has been coded in the C language. Each of the four functions in
the library resides in its own separate file for developmental purposes. Once debugged, a
function is linked to a main program for execution. The main program, also residing in a
separate file, is composed of menu, display, and user-interaction functions. These
functions help to create a user-friendly environment conducive to robotic research.

Details of the master processor software are included in Section 4.4.

The following section describes how the dual-port RAM is set up to handle the flow

of data between the master and slave processors.

42 DUAL-PORT RAM UTILIZATION

The DPR of the ARC constitutes the ARC's shared memory system and is used for
the passing parameters and variables between the master and slave processors. Each
parameter and variable is assigned a specific location (register) in the DPR. The address

and name of each register in the DPR is listed in Table 4.1.




Table 4.1. Dual-Port RAM Register Reference Table.

ADDRESS SIZE NAME USER ACCESS
Master Slave Master Slave
CO0000H E000H | word sample_period w r
C0002H E002H [word timing_A riw r/w
C0004H E004H | word timing_B r/w r/w
C0006H EO006H |word command r/w r/w
C0008H E008H | word error r/w r/w
C0010H EO010H | double word | actual_position_joint_1 T w
C0014H EO014H | double word | actual_position_joint_2 T w
CO0018H EQ018H ! double word | actual_position_joint_Z T w
C001CH E01CH | double word | actual_position_joint_R T w
C0020H EQ20H |word torque_joint_1 w r
C0022H E022H | word torque_joint _2 w r
C0024H E024H |word torque_joint_Z w r
C0026H E026H |word torque_joint_R w r

The function of each of the registers listed in the table is described below.

4.2.1 Sample_Period Register

The sample_period register is loaded by the master with a value corresponding to
the controller sampling period. As mentioned in Section 3.3.1, sample period timing is
handled by TIMER2 on the 80C196KA which counts up at a frequency of 1 MHz. Therefore,
multiplying the value in the sample_period register by 10-6 yields the actual sampling
period in seconds. The slave maintains the sample period timer by resetting TIMER2

when it reaches or exceeds the value in the sample_period register.

The reset is

accomplished by subtracting the value in the sample_period register from TIMER2.




4.2.2 Timing_A Register

The timing_A register contains two semaphores which are set by the slave to
initiate the master's sampling period and to indicate to the master that joint positions have

been read and stored in the DPR. The semaphore indications are specified in the table

below.
Bit Number Indication
0 Begin new servo loop
1 Joint positions available

The master resets both semaphores after completing the computations for the

sampling period and then waits for bit 0 to become set indicating the start of the next period.

4.2.3 Timing_B Register

The timing_B register contains one semaphore (bit 0) which is set by the master to
indicate to the slave that the joint motor torques have been computed and stored in the DPR.

The slave resets the semaphore after reading the torques.

424 Command Register

As will become clear in Section 4.3, the slave processor can execute in one of two
modes of operation: the find-HOME mode, and the control mode. The master indicates the
desired mode by setting a semaphore in the command register. The slave reads the

command register while in a waiting loop and performs one of the actions specified below.

Bit Number Set Indication
0 Enter the Control Mode
7 Enter the Find Home Mode
None Continue Waiting




4.2.5 ErrorRegister

The slave processor informs the master of any error conditions that have been
detected by setting flags in the error register. The flag indications are specified below.

The errors will be described in their proper context in Section 4.3.

Bit Number Indication

0 Joint 1 in positive overrun

1 Joint 1 in negative overrun

2 Joint 2 in positive overrun

3 Joint 2 in negative overrun

4 Joint Z in positive overrun

5 Joint Z in negutive overrun

6 Joint Roll in positive overrun

7 Joint Roll in negative overrun
Excessive torque for joint 1
Excessive torque for joint 2

10 Excessive torque for joint Z

11 Excessive torque for joint Roll

12 Motor torques arriving too late

13 Master processor too slow

4.2.86 Actual_Position Registers

The slave processor reads the HCTL-1000 position counters and stores the count

values in the long integer or double word (32 bit) actual_position registers.

4.2,7 Torque Registers

The master computes the joint motor torques and stores them in the torque registers.
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43 SLAVE PROCESSOR SOFTWARE

The tasks of the slave are shown in Figure 4.1. These tasks are fundamental to
virtually all robot control strategies and therefore do not require modification. By
assigning these tasks to the slave, they in effect become invisible to the user. As shown in
Figure 4.1, the slave software is designed to execute in one of two modes of operation: the
find-HOME mode and the control mode. The first mode is used for locating the
manipulator's HOME (reference) position, the second mode contains the tasks which
assist the master's control program. An operating mode is selected while the processor is
looping in a main program. The main program, the two operating modes and the common
procedures are described in the following sections. Flow charts are included in the text
and source code listings can be found in Appendix J. The slave processor software is

written in 80C196KA assembly language and resides in a single module.

4.3.1 Main Program

The flow chart for the slave's main program is shown in Figure 4.2. The
initialization sequence consists of program variable and pointer initialization, resetting
of the HCTL-1000 position counters and putting the 80Ci96KA's TIMER2 into fast
increment mode to enable it to count at the desired 1 MHz frequency. The slave then clears

the command register in the DPR and enters the waiting loop.



START

Initialize

/ Clear command register /

Turn off servo motors

'

get_joint_positions

Acquire joint positions
and store them in DPR

'

Check jaint positions for
overruns and set
corresponding error flags
accordingly

YES any
overrun errors
?

NO

did
master set bit 0 of YES control mod

command Reg. Enter the contro/ mode
?

NO

did
‘ NO master set bit 7 of YES find-HOME mod

Comma;d Reg. Enter the find-HOME mode

Figure 4.2. Flow Chart for the Slave's Main Program.



While in the waiting loop, the slave calls procedures to zero the DACs so that no
torques are fed to the Servopacks, to acquire the joint positions, and to check joint positions
for overruns. If no joint overrun conditions exist, the command register is polled.
Depending on the value in this register (see Section 4.2.4), the slave either enters the
control mode, enters the find-HOME mode, or restarts the waiting loop. If, however, a joint

overrun is detected, command is not polled and the waiting loop is restarted.

4.3.2 Find-HOME Mode

The find-HOME mode is entered if, while in the waiting loop, the slave detects a
value of 0080H (bit 7 set) in the command register. In the find-HOME mode, the slave
autonomously moves the 7545's joints in order to locate the reference position of each joint.
As mentioned in Section 2.2.4, the HOME sensor signals are generated by proximity
switches mounted on the 7545 manipulator. Because of the imprecise nature of proximity
switches, the ARC recognizes a joint's HOME position as being located at tne first encoder
index pulse following activation of the proximity switch. The sequence of find-HOME is

depicted in the flow chart of Figure 4.3 and is described below.




START

< For joints 1 j,z, Roll >

HOME sensor set
?

Set joint in mou~n
away from HOME sensor

Did

HOME sensor reset
?

Wait for about 2 seconds

Turn off servo motors

Y

Set joint in motion
toward the HOME sensor

encoder index pulse
arrive

?
YES

/ Reset joint position coumerj

e oecd

Turn off servo motors

Crem

Figure 4.3. Flow Chart for the Find-HOME Mode.

The find-HOME sequence commences with the reading of the joint's HOME

sensor. If the HOME sensor is activated (active low) the slave applies a positive constant

torque to the motor in order to move the joint away from the HOME sensor (open-loop



control). The torque continues to be applied for a period of approximately 2 seconds

(governed by the delay procedure) following the deactivation of the HOME sensor.

Hence or otherwise, the slave applies a negative torque to the motor in order to move
the joint toward the HOME sensor. The slave polls the HOME sensor during this motion.
When the slave detects activation of the HOME sensor, it begins polling the encoder index
line. When the index pulse is detected, the slave processor first instructs the HCTL-1000 to
perform an on-chip software reset which among other things resets the 24-bit position
counter to zero, and then instructs the joint motor to stop. In the first instruction, the second
HCTL-1009 of the pair (recall from Section 3.5 that the HCTL-1000s are accessed in pairs)

is instructed to remain in its Idle/Initialization mode.

Joint motion during the find-HOME sequence is the result of a constant torque
applied in an open-loop configuration. The torque is of sufficient magnitude to move the
joint at a constant slow speed. Because of inertia, motion does not cease instantaneously
and there is always slight overshoot of the HOME position. The find-HOME procedure,
therefore, does not leave the manipulator in the HOME position; it simply locates HOME
and initializes the position counters at that point.

Upon completion of the find-HOME procedure, the slave processor reenters the
main program at the point where command is cleared. A clear command register

indicates to the master that HOME was found.

4.3.3 Control Mode

The control mode is entered if, while in the waiting loop, the slave finds a value of
0001H (bit 0 set) in the command register. In the control mode, the slave processor serves as

an intelligent interface between the 7545 manipulator and the master processor which is




executing the robot control algorithm. The control mode procedure is shown in the flow

chart in Figure 4.4 and is described below.

| Reset sampio period tmer |

Reset timing_A register
Raset liming_ 8 register

Write 0001Ht0 timing_A
{Signal master to begin)

Acquire joint posttions and
store them in DPR

Check joint positions for

overruns and set

corresponding error flags
accordingly

Ary YES
overrun erors PETURN
?

NC

Did YES
sample period end Set ‘motor torques arriving
? 100 late' evror flag

NC

Did
YES
ma: ignal
ster signa RETURN

slop
7

NC

Did
tomues armve
0001H In tming_B,
7

YES
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ck lor excessive 10rques
and set corresponding  emror
flags according

Clear timing_B
(Acknowledge receipt

Set 'masler processor
foo siow' error flag

D
master finish
timing_A dlear)
?

YES

Did
sample penod end
?

YES

r Reset sample perod imer |

Figure 4.4. Flow Chart for the Control Mode.

Upon entering the control mode, the slave resets the sample period timer (80C196KA

special purpose register TIMER2) and the timing_A and timing_B registers. Following

this, the slave begins its servo loop and tells the master to do the same by setting the ‘begin

servo loop' semaphore (bit 0) in timing_A. The slave then calls the get_joint_positions

procedure whereby the position counters are read and stored in the actual_position registers
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and a semaphore set in the timing A register to indicate to the master that the joint positions
are available (the procedure get_joint_positions is described in detail in Section 4.3.4.1).
The slave then calls the joint_overrun_check procedure (see Section 4.3.4.4) where the
pulse count of each joint is checked for excessive values and the error register updated.
The slave returns from this procedure, checks the error register, and exits the control mode
if any semaphores are set. This immediately halts manipulator motion by turning off the

servo motors (see Figure 4.2).

Continuing in the control mode, the slave tests for the end of the sampling period
and for the motor torques to arrive from the master processor. The end of the sampling
period is when the sample period timer, TIMERZ2, reaches the value in the sample_period
register and the arrival of the torques is indicated by a semaphore in timing_B . If the
servo loop ends before the torques arrive, the slave sets the ‘torques arriving too late' flag in
the error register and exits the control mode. If the master commands the slave to stop

during this process, the slave exits the control mode.

The slave proceeds in the control mode by calling the check_torques procedure (see
Section 4.3.4.5 and Figure 4.4) which checks for excessive torque values and sets the

corresponding flag in the error register.

Returning from this procedure, the slave checks the error register and exits the
control mode if it is not clear. If all torques are within range, the slave continues by

clearing timing_B and outputting the torques to the DACs.

The slave then tests for the end of the sampling period and for the master to indicate
completion of its control loop (clearing of timing_A). If the sampling period ends before
the master completes its loop, the slave sets the 'master processor too slow' flag in the error
register and exits the control mode. If the master finishes its loop in time, the slave enters

another loop where it waits for the end of the sample period.
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When the sampling period ends, the sampling period timer value will equal or
exceed the value in the sample_period register. The slave resets the timer by subtracting

from it the value in the sample_period register.

4.3.4 Additional Procedures

This section describes in more detail the procedures mentioned in the previous
sections. Flow charts are provided for most of the procedures and the source code is

included in Appendix J.

4.3.4.1 Get_dJoint_Positions

This procedure reads the three 8-bit actual position registers of each HCTL-1000,

sign-extends the 24-bit position data to 32 bits, and stores them in the DPR actual_position

registers.

As mentioned in section 3.5, reading of an HCTL-1000 8-bit register actually
requires two read instructions (the first to generate the chip select signal and the second to
generate the output enable signal 1.8 microseconds later). In addition, it was mentioned
that the HCTL-1000s are read in pairs. Because of this, the 16-bits of data obtained by the
second read instruction must be sorted. In light of these requirements, the two read
instructions are interlaced with instructions that sort the data and sign-extend them to 32

bits. The exact instruction sequence can be found in the source code listing in Appendix J.

Sign-extension enables the 24-bit position data to occupy the double word
actual_position registers and still retain their positive or negative sense. To accomplish
sign-extension, we recognize that each joint can move a finite distance into its negative

region and even in their most negative positions, the most significant byte of their 24-bit




position count will be FFH. Therefore, sign extension is easily accomplished by first
clearing the most significant byte of the 32-bit register and then setting it to FFH providing

the second most significant byte (i.e., the most significant byte of the 24-bit count) is FFH.
The final step in the procedure is the storage of the 32-bit joint positions in the

actual_position registers and setting the semaphore in timing_A.

4.3.4.2 Delay

This procedure generates a delay of roughly 2 seconds for use in the find-HOME mode.
The delay is generated by instructing the processor to count down from FFFH to 0 eight

times. The flow chart is given in Figure 4.5.
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START

TEMP2 = 8H
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TEMP1 = FFFFH

~

Decrement TEMP1

NO
YES

Decrement TEMP2

NO
YES

RETURN

Figure 4.5. Flow Chart for Delay Procedure.

4.3.4.3 Zero_DACs

This procedure simply sets all the DAC outputs to zero. The slave begins by writing
800H (the bipolar offset value) to the first rank register of each DAC. Then the second rank
register of each DAC is loaded simultaneously with one write instruction. The flow chart

is shown in Figure 4.6.




START
Wirite 800H to 1strank
reglster of DAC 1
Wiite 800H to 1st rank
reglister of DAC 2
Wirite BOOH to 1st rank
register of DAC Z
Wilte 800H to 1strank
register of DAC Roll
Simultaneously transter

data from 1st to 2nd rank
registers on all the DACs

Figure 4.6. Flow Chart for Zero_DACs Procedure.

4.3.44 Joint_Overrun_Check

This procedure constitutes software limit switches for the detection of joint overrun
conditions. A negative joint position is compared with MIN, a positive joint position is
compared with MAX. If a joint position is more negative than MIN or more positive than
MAX, a flag is set in the error register. The values for MIN and MAX are chosen so that the
software limit switches activate before the 7545's hardware limit switches. This prevents
unnecessary shut-down of manipulator power by the 7545's control unit. Figure 4.7 shows

the flow chart for this procedure.
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o Y
Make a note of the error J

Update error register J

Figure 4.7. Flow Chart for Joint_Overrun_Check Procedure.

4.3.45 Check_Torques

This procedure reads the torques from the DPR and verifies that they are within the
12-bit range (0-FFFH) of the DACs. Each torque is logically ANDed with FOOOH. If the
result is non-zero, the torque is excessive and the corresponding flag is set in the error

register. The flow chart is given in Figure 4.8.
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Figure 4.8. Flow Chart for Check_Torques Procedure.

4.3.4.6 Torques_Out

This short procedure sequentially writes the torques to the first rank of each DAC
and then simultaneously writes them to the second rank registers. The flow chart is given

in Figure 4.9.
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Figure 4.9. Flow Chart for Torqres_Out Procedure.




44 MASTER PROCESSOR SOFTWARE

As indicated in Figure 4.1, the master software consists of path planning
algorithms and robot control algorithms. So far, two control and two path planning
algorithms have been implemented. These algorithms have been coded as functions in the
C language. Each of the functions resides in its own separate file for developmental
purposcs and once debugged, is linked to a main function for execution. Together, these
files form a growing library of robotic control strategies. The library also contains a
utility file which consists of the main function and various user-interface functions.
These functions were designed to create an environment conducive to the development,
integration, execution and evaluation of path planning and control algorithms. The

library source code can be found in Appendix K.

The following sections outline the operation of the master processor. The first
section describes the sequence of events that lead up to the execution of a move and hence
the manner in which the library files are tied together. The second section lists the
operations that are performed by the master during the move. This is followed by a

description of the various control and path planning algorithms currently in the library.

4.4.1 Master Sequence of Operation

The sequence of operation of the master software is shown in Figure 4.10. The

events are listed chronologically and are displayed in their respective files.
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UTILITY FILE TYPICAL CONTROL PROGRAM FILE TYPICAL PATH PLANNER FILE

mamn -Display Default Parameters -Call dsplay_cumen{ posibon

-Call. find-HOME -For each parameter -Prompt for the following

-Call. controller_menu Call. choose_new_gain -prelerred space (Cart or joint)
. -number of via poinis
tind-HOME -Display sampling period -location of via points

-Signal slave 1o enter its and prompl for a change -desied lime to reach via poinls

find-HOME mode and wait . -end point

for compietion -Call  robol_error_check -duration of the move

controlier_menu “Call  painp I;anner menu {points are entered by caling
pass sampling penod )
.Display control programs ( pling penod) either gel_cartesian_position
-Allocata memory for on-line or £al_joinl_posibon )

-Call: selocted program
Prog sampled dala file

Allocale memory for the path
choose_new_gain
-Signal slave to enter control

-Compute path
-Display current gain and mode Execule move as per mpule p
prompt for a change the conlrol scheme -Retum to control program
(generate sampled data files) (return address of start of path)

path_planner_menu
-Display Path Planner ~Call" - display_errors

programs -Save sampied date 1n Matlab-
-Call. seleclad program readable format

(pass sampling penod)
-Free allocaled memory

display_current_pos:tion
piay- - -Return 1o Main

-Display robot position in
both Cart. & joint space

get_cartesian_position

-Prompt for entry of desired
Cartesian peint
-Perform inv. kinematics

get_joint_position

-Prompt for entry of desired
joint positions

robol_error_check

-Check error register and
alert user to any joint
overrun er/ors

-Request manual correction

display_errors

-Check eror register and
display any errors

Figure 4.10. Sequence of Operation of the Master Software.

The sequence begins in the main function with a call to the find-HOME function.
This function clears the DPR error register, commands the slave to enter its find-HOME
procedure by writing 0080H to the command register, and waits for the slave to clear the

register indicating that HOME was found.




Following the find-HOME function the controller_menu function is called
whereby the user is prompted for the selection of a control algorithm. The menu also

includes the find-HOME option

The control algorithms typically begin by displaying the parameter (gain) default
values and then prompting the user for changes. Parameter changes are handled by the
choose_new_gain functicn. The control algorithm proceeds by displaying the sampling
period (calculated from the value in the sample_period register) and prompting the user for
a change. Next, the robot_error_check function is called whereby the error register is
checked and the user alerted to any joint overruns. The function requires that the overrun
joints be manually moved to correct the error. The control algorithm then calls the
path_planner_menu function where the user is prompted for the selection of a path

planning algorithm.

The path planning algorithms typically begin by calling the
display_current_position function which displays the manipulator's current point in both
Cartesian and joint space (the term "point” refers to both position and orientation). The
user is then prompted for the preferred space (Cartesian or joint) in which to enter desired
path points. The user is then prompted for entry of the path end point, the duration of the
move, and if the planner has via point specification capability, the number of via points,

their values, and the desired time between successive points.

The input of a path point is handled by one of two functions: get_joint_position or
get_Cartesian_position. The latter function solves the inverse kinematic equations. Both

functions warn when the desired path point lies outside the manipulator's workspace.

Once all the necessary information has been entered, the entire path (the position of

each joint at every sampling period) is computed off-line and stored contiguously in




memory. A flag indicates the path end-point. The arrangement of the path in memory is

shown below.

sample period 1, joint 1 pulse count

sample period 1, joint 2 pulse count

sample period 1, joint Z pulse count

sample period 1, joint Roll pulse count

sample period 2, joint 1 pulse count

last sample period, joint Roll pulse count

end-of-path flag

Lastly, the path planner algorithm returns to the control algorithm, a pointer to the
first path point. In the control algorithm, the master allocates space in its memory to hold
the data that will be obtained during the move for future analysis. The control algorithm
then checks to make sure there are no joint overruns and prompts the user to begin or abort
the move. If the user aborts the move, control passes to the controller_menu function. If the
user specifies to begin the move, the master signals the slave to enter its control mode (sets
bit 0 in the command register). The succeeding sequence of operations is described in the

following section.

4.4.2 ServoControl Loop

The master waits for the slave to signal the start of a new sampling period (0001H
in the timing_A register). When the signal arrives, the master begins by storing certain
variables from the previous period for use in the present sampling period (e.g., joint
positions from the previous period are employed to compute joint velocities using the
difference method). When the actual joint positions become available (indicated by 0003H

in timing_A), the master computes the required tracking errors. The master then




computes the torques using one of the two control algorithms (see Section 4.4.3). It stores
them in the torque registers and sets the 'torques available’ semaphore (bit 0) in timing_B.
At this point, the slave verifies the desired torques and the master saves the relevant data
(e.g., actual and desired joint positions, torques) in data files for future analysis. If the
slave finds the torques are acceptable, it clears timing_B; and the master subsequently
clears timing_A. The master ther waits for the start of the next servo loop. If the slave
indicates an error, the master exits the control mode before the start of the next sampling

period.

If the entire move is successfully executed (no errors), the control program saves
the sampled data files on hard disk in MATLAB readable format for later analysis using
PC- or PRO-MATLAB. If the move ends prematurely due to an error, the display_errors

function iz eriled which alerts the user as to the nature of the error.,

4.4.3 Robot Control Programs

The library at present contains two robot control algorithms: Proportional-
Derivative (PD) control, and decentralizzd adaptive control.
4.4.3.1 PD Control

The PD control algorithm provides error-driven, independent joint control
whereby each joint is controlled separately by a simple position-velocity servo-loop with

predefined constant gains. The joint torque at a sampling instant N is given by

UN) = kp ep(N) + ky ev(N) (4.1)
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- -1
where ep(N) =desired joint position(N)-actual joint position(N) and ev(N) = (_a_px_N_)_'FeL(I_‘I_)
]

are the position and velocity tracking errors, and kp > 0 and k, > 0 are the position and

velocity constant scalar feedback gains.

The PD controller's main attribute is that it requires few mathematical

computations and thus can be implemented at high servo rates.

4.4.3.2 Decentralized Adaptive Control

The decentralized adaptive controller is based on an algorithm developed at the Jet
Propulsion Laboratory by Seraji [17]. The control scheme is based on the independent joint
control concept, does not use the complex manipulator dynamic model, and each joint is
controlled simply by a PID feedback controller with adjustable gains. The reader should
note that the control scheme as presented in [17] features a position-velocity-acceleration
feedforward controller (with adjustable gain). However, in our implementation (as in
Seraji's practical implementation), the feedforward controller is not included to reduce the

on-line computation time.

The control algorithm for each joint is as follows. The motor torque t computed at a

sampling instant N is given by

UN) = fiN) + kp ep(N) + ky ey(N) (4.2)

where f(n) is an auxiliary signal produced by the adaptation scheme to improve tracking

performance and partly compensate for disturbances, k;, is the proportional feedback gain,

ky is the velocity feedback gain, ep(N) = desired joint position(N) - actual joint position(N)
ep(N) - eP(N‘l)
TS

is the velocity error formed by the

is the position error, and ey(N) =

software. The auxiliary signal and the controller gains are obtained by the following

recursive adaptation laws:




f(N) =fIN-1) + 8% [r(N)+r(N-1)] + p [r(N)-r(N-1)] (4.3)
kp(N) = kp(N-1) + o.p%g [r(N)ep(N) + r(N-Dep(N-1)] + Bplr(N)ep(N) - r(N-1)ep(N-1)]

ky(N) = ky(N-1) + av% [r(N)ey(N) + r(N-Dey(N-1)] + By[r(N)ey(N) - r(N-1)ey(N-1)]

where r(N) = wpep(N) + oyey(N) is a weighted error with {wp, wy) being positive constant

scalar weighting factors which reflect the relative significance of the position and velocity

errors, (5, oy, ay) are positive constant scalar integral adaptation gains, and (p, Bp: By) are

non-negative proportional adaptation gains.

4.4.4 Path Planning Programs

The path planning algorithms are called by the control programs and compute the
entire path off-line prior to the execution of the move. This affords the master processor
more time during the move to execute computationally intensive control algorithms. Two
path planning algorithms have been coded for the library: a cycloid function-based
generator and a cubic spline generator. The latter features via point specification

capability.

4.44.1 The Cycloid Function

This path generator plans a path of duration T seconds between the initial point 6(0)

and the goal point according to the function

o(t) = 9(0)+-2‘-3;:- [t - sin ot], 0<t<T (4.4)

where @ =2 /T and A = 8(T) - 6(0). The cycloid is a smooth trajectory with a bell-shaped

velocity profile and a sinusoidal acceleration profile given by



o) = %[l-cosmt]
b® = 2 sinot, 0st <T (4.5)
o(t) = &t)= 0, 12T,

4.4.4.2 Cubic Spline

The algorithm for this path generator enables the specification of via point
locations and also provides automatic selection of joint velocities at the via points. The
velocities at the via points are computed according to the following simple heuristic
scheme. First, the slopes (average joint velocities) between adjacent via points is
calculated. The velocity at a via point is then chosen to be zero if the two slopes on either

side are of opposite sign. If the slopes are of the same sign, the velocity is computed as the

average of the two slopes.

Now that both position and velocities for the joints at the via points are known, the
algorithm determines the cubic splines linking adjacent via points. The cubic splines are

governed by the following four constraints

80, =6,
8(tp = 6y, (4.6)
6(0) =6y,
0ty = 6y,

where 0 and 8¢ are the joint positions at the beginning and end of the spline, 0 and O are
the joint velocities at the beginning and end of the spline, and ty is the time duration of the

spline. The four constraints can be satisfied by the third degree (cubic) polynomial

8(t) = ag + ayt +aqt? + agts. 4.7




The joint velocity and acceleration are given by the first and second derivatives

(1)

aj +2ay t + 3agt? (4.8)

fi(t)

282 + 6&3L

Substituting the four constraints into equations (4.7) and (4.8) gives four equations

in four unknowns:

8 = ap

O = ap + apty + agt+ agtd (4.9)
8 = ay,

8 = a; + 2agtr + 3agt2

The solution of these equation for the coefficients a; is

ag = 6o,

8o, (4.10)
3 2. 1.
ag =42 ®r-69) - Q"o - Qaﬁ

a3

a3 =-$ (6 - 90)4"52‘(@{4‘60).

Expression (4.10) is sequentially evaluated at all adjacent points to derive the cubic
splines. The end result is a smooth continuous path linking the initial point, all the via

points and the goal point together.

45 SUMMARY AND FUTURE WORK

This chapter presented the software that was developed to implement a testbed for
robotic control strategies. The slave processor software was designed to support a variety of
control algorithms and therefore does not require any immediate modifications. Of

course, implementation of some of the hardware suggested in Section 3.8 would demand



modification to the slave software. This would also be the case if the ARC were to be used to

control a robotic system other than the IBM 7545.

With regard to the master, future work may consist of expanding the library
through the implementation of other advanced control strategies. An interesting project
here is the provision for on-line path planning. This would allow the researcher to address
the problem of collision avoidance (this, of course, would require hardware for workcell
operation). Other areas for future work include the enhancement of the user-interface
software in the utility file. This may be accomplished through the use of specialized

programs such as C-Scape.

With suitable development, the ARC could serve in the industrial domain. This
would require a compiler or interpreter for the translation of an existing (eg., AML) or

custom-designed high-level application language.



CHAPTER 5

EXPERIMENTAL RESULTS

This chapter presents the results of three experiments which were conducted to
verify the operation of the ARC and to judge its effectiveness and performance in robotic
control applications. The experiments involved the use of both the cubic spline and cycloid
function path generators, as well as the PD and adaptive control schemes. The servo rates
for these latter controllers was set to 1 KHz and 250 Hz, respectively. It should be noted that
although the controller gains were tuned, no effort was made to optimize the gains for the
experiments. Furthermore, comparisons between the control schemes are not given. It is
not the purpose of this project to make value judgements reguarding the control schemes but
simply to show the effectiveness of the ARC for implementing such schemes. A
comparison between the performance of the ARC and the MTCB would have been desirable.
Unfortunately, the MTCB does not provide the means for acquiring data during execution
of a move. The mere fact that the ARC provides this feature makes it a valuable research

tool for the evaluation of robotic control strategies.

In first experiment, the ARC was used to evaluate a controller's ability to
compensate for unexpected disturbances. A path was planned by the cycloidal function
generator for joints 1 and 2 to move from 0° to 90° in 2.5 seconds and for joints Z and Roll to
maintain their position. A disturbance was applied at approximately mid-path when the
end-effector came into contact with a movable object which was constrained to move only
along the x direction. The end-effector was required to push the object as it proceeded
toward its goal position. The experiment was performed under both PD and adaptive
control. Figures 5.1, 5.2, and 5.3 show the joint 1 tracking errors, the joint 2 tracking

errors, and the torque outputs for the PD controller. Figures 5.4, 5.5, and 5.6 show the




corresponding results for the adaptive controller. The effect of the disturbance is clearly
shown in each graph. However, despite the disturbance, both controllers are able to

compensate and reduce the tracking error within a finite period of time.

In the second experiment, the ARC was used to demonstrate a controller's ability to
track a closed path. The cubic spline generator with its via point capability was used to
plan a closed path for all four of the manipulator's joints. The duration of the move was 8
seconds and three via points were specified at 2 second intervals. The set of joint variables
(a1, q2, Z, Roll} for the start point, the three via points and the end point were (0°, 90°, 0 mm,
0%}, (90°, 0°, -70 mm, 135°}, (180°, 90°, -210 mm, -30°}, {90°, 135°, -140 mm, -15C°}, {0°, 90°, 0
mm, 0°), respectively. Figure 5.7 shows the desired path in the x-y plane (Cartesian space).
Figures 5.8, 5.9, 5.10, 5.11, and 5.12 show the joint tracking errors for joints 1 2, Z, and Roll
and the torques for the PD controller, respectively. Corresponding results for the adaptive
controller are shown in Figures 5.13, 5.14, 5.15, 5.16 and 5.17. Despite the fact the gains

were not optimized, tight control over all four joints was achieved.

The third experiment demonstrated the ARC's effectiveness in handling slow and
fast trajectories. In this experiment, the starting point was {90°, 90°, -70 mm, -35°} and the
goal point was (10°, 30°, 0 mm, 0°). The cubic spline generator was used to generate a 3 sec.,
a 2 sec., and a 1 sec. trajectory between these two points for use by the adaptive controller.
The results are shown in Figures 5.18 - 5.32. As expected, the joint tracking errors and the
torque demands were highest for the 1 sec. trajectory. Attempts at trajectories faster than

1 sec. were met with excessive torque demand errors.

The finite processing power of the ARC imposes a limitation on the maximum
servo rate of the controller (e.g., 1000 Hz for PD control, 250 Hz for adaptive control). This
limitation reflects on the maximum trajectory that can be executed without changing the

controller gains. A faster servo rate will generally produce smaller tracking errors and




thus smaller torque demands for a particular sampling period. This in turn will allow for
faster trajectories to be executed. For a fixed servo rate, faster trajectories may be achieved
by detuning the controller gains. The detuned gains prevent the demanded torgues from
reaching the limits for the robot. The faster trajectories, however, come at the expense of
accuracy since the detuned gains will degrade performance by increasing the tracking

errors.
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Figure 5.1. Joint 1 Tracking Errors, PD Control, Experiment 1.
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Figure 5.3. Torques, PD Control, Experiment 1.

o




100

[\
[=]

81(t), ©44(t) (degree)

__ ol
3
=~ 0.05
i
2
s--0.05
¢ ,
0 0.5 1 1.5 2 2.5
_91 (t)’ ''''' 91d(t)
100 Y T T T

0,(t), 0;4(t) (degree/sec)

._4 —_ —

0 0.5 i 1.5 2 2.5

ey () (degree/sec)

Time (second)

Figure 5.4. Joint 1 Tracking Errors, Adaptive Control, Experiment 1.



B,(t), Bp4(t) (degres)

epz(t) (degree)

0,(t), 6,4(t) (degree/sec)

ey (1) (degree/sec)

——8,(), —==== B4t
100 T T y 2 r 2d
i / |
0 j/‘ A |
0 0.5 1 1.5 2 2.5
0-4 ¥ T T ¥
0.2} -
0
-0.2¢ Ty
._0_4 L ‘ — .
0 0.5 1 1.5 2 2.5

100

3
(=]

(=]

|
w

I
1Y
(=]

MWAWwWWM;
r

—

o

0.5 1 1.5 2 2.5
Time (second)

Figure 5.5. Joint 2 Tracking Errors, Adaptive Control, Experiment 1.
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CHAPTER 6

CONCLUSIONS

An architecture for implementing advanced robot control strategies has been
presented. The work that was done is a contribution to the effort that is being made to
enhance the operation of conventional industrial robotic systems. The primary goal of the
work has been to create an inexpensive (relative to the cost of the robot) environment for
implementing robot control systems which is easy-to-develop and maintain and applicable
to a variety of robotic systems. The resulting ARC system has been designed as a
replacement for manufacturer-supplied controllers to provide greater flexibility. In the

design process, we have considered the following aspects of the controller:

1) the design of the hardware component;
2) the design of the software component; and
3) the application of the above-mentioned components to the IBM 7545

Manufacturing System.

From the hardware standpoint, we have created a system possessing sufficient
processing power to execute advanced robot control strategies at respectable servo rates.
From the software standpoint, we have constructed the building blocks to facilitate the

development and implementation of these control algorithms.

In the system design process, we have recognized the fact that there exist common
low-level tasks associated with all robot control algorithms, such as robot state acquisition,
torque verification, joint overrun checking, and sample period timing. As a result, the
controller has been designed to incorporate a slave processor which executes the procedures

associated with these tasks. The slave unloads a significant percentage of the
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computational burden and thus allows the implementation of more computationally

complex control schemes on the master processor.

Through experimentation, we have demonstrated the effectiveness of the ARC to
control the 7545 manipulator. We have shown that the ARC is capable of replacing the IBM-
supplied controller (MTCB) and is capable of executing both simple and sophisticated
control and path planning strategies at respectable servo rates, e.g., 1000 Hz for PD control
and 250 Hz for decentralized adaptive control. The experimental results given in Chapter
5 show that the ARC delivers good performance for a variety of control strategies for

various types of trajectories.

In its present form, the ARC is well suited for use in research environments for the
implementation and evaluation of new control strategies. It was for this purpose that the
project was undertaken, and the above conclusions show that this intention has been fully

realized using a typical industrial robot.
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APPENDIX A

IBM 7545 WIRING DIAGRAMS

provide the necessary

The wiring diagrams in this appendix, taken from (7],

details to bypass the MTCB component of the IBM 7545 Manufacturing system.

NOVEA33d GNV HOLONW | V13HL

. m————— -
§ i
t } inainoava -
1 ' [R7ENT ' AT T 9
! ! QNNOUD s € 1l
[ ! 1 v13H1 @\‘ H
1 |
NOILYIWHOINI NYHOVIO DNIHIM BOJ DOOM OL ¥333Y 10N 1 . TR
t ' |
] ] '
1 1 I
1 i
{
1> 2 5 > 9 v nv A 51> % “
N f )
> 3 AZL+ > ¢ Az n Azi+ |7 sz M €lA
[
) a > P n > 2
vid . . 8210 "
b e rv ? o .
13HY lv * > @ [}
N N |
> 2 Tid > € rft e ] 1\ ° xzamt” 1
ALY A A Y
> o Zia > ¢ H.|~&|~u 517 © |
3 y 3 YSNmLf, I
> v Tid ? a7 v’ |
| ] ONINI "
HEEND HIND (5] "
! -
'
1
i
1
}
i
]
_ !
> 2 537 r vrM_Ou
A
> @ i > 2 IN > a
HOLONW “ S 3
LYL3HL > v TN 7t N ? 0
WEND WEND (5]

w
[orm .- - -

Q
z

- e - m o -

2N

106



MNOVEQ33d ANV HOLOW T Vi3HL

1 [ i |
' 1
1 i
1Na1N0 2va _
b r=—Q
! ! Zviani 2 €T 6
1 I awnouo 8 & 1 z ¢
i i 2Vi3HL ZZA X
NOHYHEOINI NYHOVIO ONIBIM BO4 00CM O4 B3434 310N | | 7Y s 9
i i 9ND
1 | ! s
] ) !
' ! !
—~ . v
4 > A vz !
? G O Nt ¢ ! s
> 3 AZi+ 4 AL T >N rFIee el “ €2n
N
i ved i i 2 o BOIN ! T 1
ot | i !
e I I ! 1o o
\lv d > n I | |
b o AN Pary 3 M m | 31 1
£2d 7 Trn €2d \h \ 4 X3AN) i [} |
> € > —> > st 1 |
Z2d 4 H.u zed ck. 4 CRES !
, S v N S H oNmiul, o | 1 i
12d 7 = tzd - v17 | 1 1
ONInLL | 1 |
HYEND HEND %) 1 | O/N| 2uy
“ - Lo} -J
1
— 7'\'/
| r— q ¢ b a
| el ! “ il Q.M
1 v
" Wz 1/ Rl (T T
- | €21 d ZA
= 333 Z14 3 SONIONIM
_ o 3 >x<:_m“
N [Z2] ° o
)2 53 Y € X3 2°1 soamass
210 NP T
> o > > e Lubod
Zn YN 4 23] Zzn
worom — WPz e
v > > 3 L L 2 v
ZVAIHL P TN 2> TN ? ten et Zh NPz 9T ¢
ZAS 141 P
HEEND HPND v_u ND¥d OABIS
HOLYINAINVA Y¥31I08INOD

107



NIOVEA3IId ANV HOLONW SIXV-Z

| e——————
1 t
] ! insinoova
! | SIXV-Z
[ 1
NOLLYWHO4NI WYHOVIQ BNISIM HO3 00GM OL #3438 LON . anpou =
\ t
I i N0 EEA
! | '
1 | :
1 [ i
"
1
(N AN |
° 9 9 ) + 2 0z
7 7 7
|
3¢ S s / .\.\ ) g > 412 ]
7 / 7 “AZi+ - Az |7 X cEA
3 - ) 2c
> Y > K ¢ o5 1 “. H
S i
u3Q00N3 D e > ot ! | _
\..w v > 82 1 ” ] |
S 5 AN | 3l |
> € € ? € V( nnaac.h\ ?r X3ONI 1€ i 1 |
b ¢z e > 2 > H > 62 | !
4 o 117 817 !
£ . y 5 yoNmuly ] | J
' D o e = v | " |
ONINLL . ( ‘
WIZND HYZND HEND E) N5 | [O/NfeRd)
! -
-|z [ B | | N I |
“ o AN
I SiND ~
[ +=y —Q€
. 261 H ! AP O
]
1 T.Iou
X TeL T \hn P Yee
_ | €EL e A
T SES O] 264 4 SONIONIM
T = o i
>0 ¥ ¢ =1 € Xg3 ¥eS | 22°4 coama3s
€0 ] sarans
N N
PeXPdwy? YR 7 H w0 N a .
P I
HOLOM LN
. “'E.I‘l'b
Sixv-Z DY X Xt G > 2 €N ETRTY itn Y il = K (
€AS [T
HBIND HSZND HSND v_o XOvd OAH3S

BOIVINdINYN H3ITIOHINOD

108



NOvaa33d4d ANV HOLON 1708

1 F====="-
1 1
! ! ingainoova
1 1 104
1 ! annous <
H 1 0y
NOLYPOAN! NYHOVIO DNIHIM O3 00GM O1 H333H JLON | | Per 9
1 1 9ND
1
] ! ' H o
! § i »30
| i — v
| —~—i ! YO\ -
, “ @
] e oz
) > v/ \.W 9 {7 1 YHL by
> s T > s > 6 1 3\
AZi+ A2+ AZL1+ \ | EPA 600M
P > v > 4 >0 . rt- .“
D 3 > v aoun ! !
H300ON3 1 | [
04 /r \nv a > 3K | u ! l
>3 > x > g | 3l i
£vd 7 ﬂVa evd ~ .\ [ LETT K i ! !
> ¢ —r —>n > 2 1 1 |
2rd [4 P.c Zvd ~N 4 1k
\ \ \ ONINLY ! f |
1rd 2P e A I | !
ONINLL| I i |
HOIND (5] udu ( 1 O/N|Pds
“ [ "¢ |~ Lo .f -d
] J
| SIND (\I/
i = dq €
i ers N bl e nniw
i v
i vl i N‘_ P o
| €rL hd
- -
i 1 SrS Zv { SONIONIM
T op } A
51 > € Xog *S 1273 soam33s
r10 NP5 9o
> 2 > N [}
7 7 -
o (24 YN S Olﬂlo o
HOLOW: AN LN W
1 r s ————(g Vv 1n p——¢
104 ;) 4 4 e 31714 1N 3 ¢
¥AS [F TR
HOND (=)
NOvd OAH3S
HO1VINJINYN ! H31104INOD

109



NN 4INO
oY

3n0H

NNH H3A0
[R7ELTS

INON
[ JE T3 8

SHOSNIS TI0H ANV | V13HL

P ¢
- g ="
'
]
+
..... ) )
tte
||||| 4 '
1
:
uuuuuuu P
HOSNIS O10Md |
5P 2 t
“ NOILYNEOINI NVHOVIQ ONIHIM HO 4 00aM OL H3438 UON
SN R !
. t
] 1
lllll ) ] 1
ft. ' |
' e ey e e -
T 1 i 1
4 i , 1
1 | !
S —~, —~_ ~ "
ar 17 \
HSIND |
|
1
N N N
> 7" > 6t o Al |
€0)zoam :
Gr3 7 * rdd or ra t
1
T w > v - > 0 [
1a)200m 1
5 17 ¢ T e 7 o Bl > o “
i
=) BUND HSND ZiND 1
t ' i
1 i |
Siam 1 ] i
1 1] 1
_ 5P ¢ ram ' Quvoa Avi3y ! !
v L Guvosare TR, B
siam i
i
I3 > M fiom 1
HPIND !
BOLVINdINVEY 831I041N0D

110




SHOSN3S SIXV-2

' | 1 r
—_ v . s .
SUCANIS S 2 t € : . ' ,
o N [ ' '
183130 Javed T 4 > 2 v X .
Sisvz & 0,\. r4n3 > ~mu.|.poo.u‘ .. ' ..
NEEND L) BT 1 . “
— "
¢ 2§ A ? " r£74 Al >0
7 o |7 At
T %a
H z0am
.
NN 8380 )
3117 '
\
rdk4 '
'
. '
>+ A .
'
HOLND '
)
, [
rdi LA d rdR i > 02 r X1 r &L
ot ot
[ Z00m
L}
L}
b
NN BIAO '
siv2z i
1]
L}
3 7 E L}
BOSNIS 010Hd X
AL s !
A |
1’
HBZND '
‘
N
o > € ? 0 o . v‘l‘@ 3 ra > 2z z
%) HIND usN %)
1 1 ]
1) + ] 1)
] ] ] 1
L L} Ll 1
) [} + L}
) ’ . .
) 3 1 .
4 1
>z >z >z v||.||@ viam . . !
] ]
H ¥ [ e Pl —
15 ! Quv0a Av13d
' ' ' l|. viam
e | i e [ ’ \
HEZND HEZND HZIND
HOLYINAINYIY HITI08INOD

NOUYABO NI YHDVIL ONIBM 8O3 D00M O. 83338 110N

111



SHOSN3IS TVL3IHL

]
[}
1
i
[}
I
1
i
i
anwwes 2 ¢ W |
1
i
NAR HIAD - L
ViR e X " NOILYAHO NI WVHOVIQ ONIHIM HOJ 000M O1 H343Y 210N
]
HOENIS ALWNIXOUY i
i
> 1 !
[}
HZIND “
! rommm—— e 1 ===
L ! ! 1 1 '
QuHM Tynoes |7 \ H n " “
i ! ! ] '
n " I { i
NNeU3AD ¢ Sy 2 ) [\ N \1(“_ . 1 m
e rardl > ! e > o 7 % P % ]
HOBNIS ALINIXONd \._/0 !
03 > 200m “
3 AFZ AN hY N N N
rrnrdid 8 ; 3 1 > & > 2% !
HIZND °c H
z0aMm |
N N aY N N
Gurm s 7 © 5 |7 ? d 5% > 9 > S rA 0 m
4
[ :
*O0M “
3noH S N N S BEND ZIND
zvi3nl vovais |7 ¢ 51° ¢ v 5 > ¢ to “ ! n
2o €OaM \ ' H
HOSNIS ALIIXOM z V 1 ! '
rigm H “ 1
N LY N N []
03 AvE ¢ X33 (i 70 L3 > ) 6 ! : !
»oam 1 H "
HOZND HIIND = UOND i ' H
] 1 H ] "
[N\ H i 1 '
b e e o e - | S, -
ayvoR AV 13y [0

[
®

HINM0UINGD

112




APPENDIX B

JOINT MOTOR RATINGS AND SPECIFICATIONS

The fo'owing table contains the ratings and specificaticns for the Yaskawa Print

motors [8] used in joints 1 and 2 and Minertia motors [9] used in joints Z and Roll.

Parameter Joint 1 Joint2 |} Joints Z and Roll

Rated Output (W) 200 100 n/a
Rated Torque (kgecm) 6.5 2.43 57.3
Rated Speed (rpm) 3000 4000 3000
Rated Armature Voltage (V) 42 % n/a
Rated Armature Current (A) 6.4 5.5 n/a
Power Rate (kW/sec) 2.4 1.3 4.45
Torque Inertia Ratio (rads/sec2) 4300 5200 12600
Max. Torque / 1 sec (kgecm) 36.4 14.4 n/a
Max. Armature Current/l sec (A) B 9 22.1
Max. Safe Speed/1 sec (rpm) 4950 6600 4000
Armature Inertia (kgecm?2) 1.5 0.46 n/a
Armature Resistance (Q) 0.68 0.54 0.94
Armature Inductance (mH) 0.06 0.02 0.9
Voltage Constant (mV/rpm) 115 52 8.5
Torque Constant (kgecm/A) 0.23 0.11 0.83
Mech. Time Constant (msec) 8.5 10 4.0
Elec. Time Constant (msec) 0.09 0.04 0.96

n/a - not available
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APPENDIXC

CALIBRATION

Calibration of the ARC system is a two part process. The first part involves the

calibration of the DACs. The second part involves the calibration of the gain of the Speed

Amplifier of the Servopacks. The calibration steps listed below should be performed for all

four joints.

DAC Calibration

1. Disconnect the DAC from the Servopack input.
Connect a digital voltmeter (DVM) to the DAC output.
Write OH to the DAC and adjust the potentiometer at the DAC's REF OUT
terminal to obtain a -10.0000 V dc output.

4. Write OFFFH to the DAC and adjust the potentiometer at the DAC's REF IN
terminal to obtain a +9.9951 V dc output.

5. Reconnect the DAC to the Servopack input.

Speed Amplifier Calibration

1. Disconnect the motor from Servopack. This can be done by unplugging
connectors CN3H, CN4H, CN5H, and CN6H for joint motors 1, 2, Z, and Roll,

respectively.

2. Determine the saturation point of the Servopack's Speed Amplifier as follows:

2.1,

2.2,
2.3.

24.

2.5.

Disconnect the ARC from the Servopack.

Ground the TG Feedback input on the Servopack.

Connect a DVM to the Servopack's Cpef testpoint. This point is at the
output of the Speed Amplifier.

Connect a variable DC power supply in series with a 220K (1/4 W)
resistor to the Servopack's Speed Reference input.

Starting at 0 V dc, increase the power supply voltage and note the
voltage at Cporjust before the Speed Amplifier saturates. The voltage
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should be approximately -4.4, -4.0, -3.2, and -3.0 for joints 1, 2, Z, and
Roll, respectively.

2.6. Disconnect the power supply and resistor and reconnect the ARC. The
DAC should now be connected through the potentiometer to the
Servopack Speed Reference input and all selector switches should be

set, for ARC control (see Figure 2.6 for details).
3. Write OFFFH to the DAC and adjust the potentiometer until C,o¢ reaches the
voltage noted in step 2. For better resolution, a resistor can be inserted in series

with the potentiometer. The potentiometer can then be substituted by one of a
lower value.
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APPENDIX D

PS/2 TIMING DIAGRAMS

This appendix gives the I/O and Memory cycle timing diagrams for the IBM PS/2

model 50 computer as they appear in [11).

Default Cycle

-80, -81

TiH——T2—-—f¢-T10-—|<——T24
_.L-'ra-—l-‘u-bl fa—ei T8 —’H
' _,‘ Tzsalc——ﬂ\

T5 w-»je- 76 >ta—T7

A (0-23)

w0 K X<
| e ey |

-SBHE \ /
I re—T12 ~» ‘

-CD DS 16 m I
-CD SFDBK *_—\__/
- |

T14 -+
=~ 723 (CMD TO CMD) -
T25 —-I -
to— T23A —»
T16
-CMD \ /
T15 ——»

T17——| te— T8 —» |¢—
WRITE DATA,
DP(0-1) —F D
| fe——T120—| 7121 |
READ DATA,
OP(0-1) :)

| jae———— g ———| fe—wi122
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Timing Parameter Min/Max Note

T Status active (low) from ADDRESS,M/-10,-REFRESH 10/ - na
valid

T2 -CMD active (low) from Status active {low) 55/ -ns 2

T3 -ADL active (low) from ADDRESS M/I0,-REFRESH 45/ - ns
valid

T4 -ADL active (low) to -CMD active (low) 40/ - ns

75 -ADL active (low) from Status active (low) 12/ - ns

T6 -ADL pulse width 40/ - ns

T Status hold from -ADL inactive (high) 25/ -ns 2

T8 ADDRESS,M/-10,-REFRESH,-SBHE hold from -ADL 25/ - ns 2
inactive

T9 ADDRESS,M/-10,-REFRESH,.-SBHE hold from -CMD 30/ - ns 3
active (low)

T10  Status hold from -CMD active 30/ - ns 2

T11  -SBHE setup to -ADL inactive 40/ - ns 2

T12  -SBHE setup to -CMD active 40/ - ns 2

T13  -CD DS 16 active (n) (low) from -1/ 55ns 3
ADDRESS,M/-10,-REFRESH valid

T14  -CD SFDBK active (low) from -/ 60ns 1
ADDRESS,M/-10,-REFRESH valid

T15  -CMD active (low) from Address valid 85/ - ns 2

T16  -CMD pulse width 90/ - ns

T17  Write data setup to -CMD active {low) 0/-ns

T18  Write data hold from -CMD inactive (high) 30/ - ns

T18  Status to Read Data valid (Access Time) - 1125ns

T20  Read data valid from -CMD active {tow) -/ 60ns

T21  Read data hold from -CMD Inactive (high) 0/-ns

722  Read data bus tri-state from -CMD inactive (high) -/ 40ns

T23  -CMD active to next -CMD active 190/ -ns 4

T23A -CMD inactive to next -CMD active 80/ - ns

T23B -CMD inactive to next -ADL active 40/ - ns

T24  Next Status active (low) from Status inactive 30/ - ns

T25 Next Status active (low) to -CMD inactive -/ 20ns

Figure 2-34. 1/0 and Memory Default Cycle (200 nanoseconds minimum)

1. All slaves must drive -CD SFDBK whenever selected either by the
system microprocessor or the DMA Controller. The slaves do not
drive -CD SFDBK when they are selected by the ‘setup’ signal.

2. Itis recommended that slaves use transparent latches to latch
information with the leading or tralling edge of -ADL or with the
leading edge of -CMD.

3. -CD DS 16 and -CD SFDBK must be driven by unlatched address
decodes because the next address may come early into the
current cycle.

4. Any master in any system, including the system microprocessor
or DMA controller, can operate at a performance less than the
level specified. Designers should not design to a given
performance leve! as this level can be reduced by CD CHRDY, a
lower microprocessor rate, a lower DMA controller rate, or
system contention.

5. Mode! 50 and Model 60 automaticaily extend all default cycles to
synchronous extended cycles. Adapter designs should support
the 200 nanosecond default cycle to assist portability to other
systems or drive CD CHRDY regardiess of the system
synchronous extension cycle.
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Defauit Cycle Return Signals

-CD DS 16 (n)

T13RL I——— ——‘ r—nam
-DS16RTN \_—_/——

CD CHRDY (n)

CHRDYRTN \__—/——

Timing Parameter Min/Max Note
T13RL -CD DS 18 (n) low to -DS 18 RTN low -/120ns 1
T1IRT -CD DS 16 (n) high to -DS 18 RTN high -/20ns 1
T26RL CD CHRDY (n) low to CHRDYRTN low -120ns 2
T28RT CD CHRDY (n) high to CHRDYRTN high -/20ns 3

Figure 2-35. Default Cycle Return Signals (200 nanoseconds minimum)

Notes:

1. This signal is developed from a negative OR of signals received
from each channel connector.

2. CHRDYRTN becomes active 40 nanoseconds maximum after ~ADL
becomes active.

3. This signal is developed from a positive AND of signals received
trom each channel connector.

2-84 Micro Channe! Architecture, Channel Timing
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Synchronous Speclal Case of Extended Cycle

A Synchronous Extended cycle occurs when a slave releases

CD CHRDY synchronously within the specitfied time after the leading
edge of -CMD. The slave provides the Read data within a specified

time from -CMD. The timing sequence Is illustrated by the following
figure.

S0, 81 yd \

-CMD / /

CD CHRDY (n)

READ DATA a
fo——— 1280 ———»

Purely Synchronous Speclal Case

Figure 2-36. Timing Sequence for the Synchronous Special Case of
Extended Cycle
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Synchronous Extended Cycle (300 nanoseconds minimum - Speclal
Case)

.50, -§1 —|\ / ‘\‘:1‘;.._
-ADL ' \ £ |

A (0-23)
e 07/ —
-REFRESH,

MADE 24

|
.SBHE \ / I
-CDDS 16 _M I

e—| 713

-CD SFDBK M
o T14 -] [-———— T16A ——-—!

-CMD l\ e
|

WRITE DATA

READ DATA




Timing Parameter Min/Max Note

T13  -CD DS 16 (n) active (low) from -/ 55ns 2
ADDRESS,M/-10,-REFRESH valid
Tt4 -CD SFDBK (n) active (low) -/ 60ns 2
ADDRESS,M/-10,-REFRESH valid
T18A -CMD pulse width 180/ - ns
T26 CD CHRDY (n) inactive (low) from ADDRESS valid -/ 60ns 3,
See
T27
T27 CD CHRDY (n) inactive (low) from Status active 0/30ns 3

T28 CD CHRDY (n) release (high) from -CMD active (low) 0 / 30ns 1
T28D Read Data valid from -CMD active
{when used along with 728) 0/180ns 1

This figure shows only the parameters additional to the detault cycie. All other
parameters are the same as the default cycle

Figure 2-37. Synchronous Extended Cycle (300 nanoseconds minimum -

Special Case)

1. CD CHRDY is released by a slave performing a 300 nanoseconds
extended cycle synchronous with the ieading edge of -CMD.
Since CD CHRDY is generally an asynchronous signal, this is
referred to as a purely synchronous special case.

2. This is the same as default cycle timing (listed here for
emphasis).

3. T27 is valid only when Status becomes active 30 nanoseconds or

more after the address is valid.

4. If Status overlaps with previous -CMD, then CD CHRDY state is not

valid during the overlapped period.

5. Slaves must not hold CD CHRDY inactive (low) in excess of 3.0
microseconds.
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APPENDIX E

DUAL-PORT RAM TIMING WAVEFORMS

This appendix gives the timing information for the IDT7132/IDT7142 dual-port

RAMs as found in [12].

1IDT713218A/LA AND IDT71421SA/LA
CMOS DUAL-PORT RAMS 16K 2Kx 8-BIT) WITHINTERRUPTS MILITARY AND COMMERCIAL TEMPERATURE RANGES

AC ELECTRICAL CHARACTERISTICS OVER THE
OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE

TII1BNLAIS® | T1321SASLALS T1321SA/LASS T1321SA/LATON
SYMBOL PARAMETER T1421SALAISD | 71421SA/LALS T1421SA/LASS T1421SA/LATOD | UNIT
MIN MAX. | MIN MAX. | MIN, MAX. | MIN MAX.
READ CYCLE
tae Read Cycl Trme - 45 - - | 170 - ™
Yaa Aadrees Acosss Time - 35 - 45 - 55 - 70 ns
Yace Crup Enable Acoess Time ~ 35 - 45 - 55 - 70 ns
Yo Output Enable Acoess Time - 25 - - 35 - 40 ns
Lony Output Hold From Address Change 0 - 0 - 0 - 0 - ns
iy Output Low 2 Time ' 4 5 = ] - 5 - 5 - ns
Yz Output High Z Tirme 1 4 - 15 - 20 -~ 0 - 35 ns
e, Chup Enable 10 Power Up Time (4 0 - 0 -~ 0 - 0 - ns
o Crip Disable to Power Down Time 14/ - 50 - 50 - 50 - 50 ns
NOTES

1 Transton s measursd 1 500mY from low or high IMpPecance volsge with load (Fgures 1, 2 and 3)
2 0°C 10 470°C wmperature range only

3 -55'C 1o + 125°C temperature range only

4 This puametsr guaraniesd but not iestad

TIMING WAVEFORM OF READ CYCLE NO. 1, EITHER SIDE %

ADDRESS :}( T.
[P
'm—u—bi 'on-—OI
DATA oy " gxx
PREVIOUS DATA VALID X Xxx DATA VALID

TIMING WAVEFORM OF READ CYCLE NO. 2, EITHER SIDE " ?

tace
Y '
& N A
ie
taoe Y
E
1, — [ tuz ]
DATA o =t VALID DATA

——
[
t o | e "O
ee o= leue)
CURRENT 50% 50%
" 7
NOTES

t RAW % high tor Raad Cycles

¢ Dewvios 8 contnuousty snabied TE = v,

3 Addresses vakd POt 10 0 COMCIIeNt with CE Sansibon low
4 UE.v.




TIMING WAVEFORM OF WRITE CYCLE NO. 1, R/W CONTROLLED TIMING -2-* 0

twe

ADDRESS )( )(

1" ———ned
3
'A*
CE N //
tas \ h tam o
- ~
RW . N //
DR T
!W
CATAG, = " 2 " —
tow Yom
DATA,,

TIMING WAVEFORM OF WRITE CYCLE NO. 2, CE CONTROLLED TIMING %+ %)

ADDRESS xX X

RW \ y4

tow ton
DATA,,

NOTES,

1 WE must be high during ai sddrees transrons

2 A wimm occurs cunng the overlap (tpw of sl of o low CE and e tow R

twn & Measured rom the sarmer of CE or A/W going high to the end of witte cycie

Dunng this penod the 170 pins are 1n the output state and mput SigNals must not be applied

1t the TE iow banstion occurs simuttansously with or after the R/W low transiion the outputs remain in the tigh impedance ttale
Transthon 15 messured = 500mV from steady state with & 50F load (Including scors and pg) This parameter 18 sampied and not 100% tested

1t O m iow dunng & R/AW controiied winte Cycle e wiTie Duise must be 1he larger of lyp O Tz + Low! 10 sllow the 110 drivers 1o tum off data 1
e piaoed on the bus tor the required i, 1 OF » mgn dunng an R/W controlied wime Cycie Tes requirement Goss not APHly aNa e wine puise
can be as short as the spechied tyy

N a W

AC ELECTRICAL CHARACTERISTICS OVER THE
OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE

TIZ21SALAISD | 713218A/LA4S T1321SA/LASS | 713218A/1LATO™
SYMBOL PARAMETER TIAISLAISD | 71421BA/LA43 TIA21SA/LASS T14215A/LATO'Y | UNIT
MIN MAX. | MIN MAX. | MIN MAX | MIN. MAX
WRITE CYCLE
Y wrme Cycie Time {3/ 35 - 45 - 58 - 70 - n
tew Chip Enable to End of Write 30 - 35 - 0 - %0 - m
[ Address Vahd 1o End of Wrte 30 - 35 - [’ - 50 - n
s Address Set-up Time ] - [} - 0 - 0 "
twe Wme Pulse Wia 30 - 35 ~ 40 - 50 - n
twm wiie Recovery Time 0 ~ 0 - 0 - 0 - ™
tow Dats Vaha 1o End of Wrve 20 - 20 - 20 - 0 ™
ty Ouput High Z Time ' & - 15 - 20 - 0 - 1% m o
tom Dals Hold Time [} - [ - 0 - 0 - |
| R Osan - TR o | - » | - s | m
tow Output Active From End of Wre ¢ 0 - 0 - 0 - 0 - m o,
NOTES:

1 Tranerson i measured 1500V from iow Or hgh voRAQe with load (FiQuree 1 2 and 3)
2 0°C 1w +70°C emperaturs range only

3 -55°C 10 +125°C wmperature range onty

4 Ths parameter guaramsed but not ested

§ For MASTER/SLAVE combnston tye = taaa * twe



TMING WAVEFORM OF READ WITH BUSY

ADDRy X MATCH j(
TA ]K /(
OATAN B * VALID X
ADDR, X-\ MATCH
/ taoa = )
B, A
twoo
DATAqur. VALID
to00 -

TIMING WAVEFORM OF WRITE WITH BUSY

R

BUSY

ly N

N\

AC ELECTRICAL CHARACTERISTICS OVER THE
OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE

713218A/1A351" | 713215ALA45 71321SA/LASS | 71321SA/LA70D)
SYMBOL PARAMETER T1421SAZLAIS™Y | T1421SA/LAAS T1421SA/LASS | 71421SA/LATO™ | UNIT
MIN. MAX. | MIN, MAX. | MIN. MAX, | MIN. MAX,
BUSY TIMING
™ Write to BUSY 1 @ 0 - 0 - -10 - | -10 - s
Tt Wirite Hoid Atter BUSY 7! 20 - 20 - 20 20 - ns
Taar BUSY Access Time (o Address - 35 - 35 - 45 - 45 ns
‘aon ‘BUSY Disable Time to Address - 0 - 35 - 40 - 40 ns
taac BUSY Access Time to Chip Enable - 0 - 0 - 35 - 35 ns
Tanc BUSY Disable Time to Chip Enable - 25 - 25 - 30 - 30 ns
twoo Write Puise to Data Delay ¢ - 60 - 70 - 80 - 90 ns
o0 :"’: g:‘; ‘l!,‘.‘"‘.’y'f’., - as - 45 - 56 -~ 70 ns
Les Arbitrabon Pnortty Set up Time 5 - 5 - 5 - 5 - ns
Va0 BUSY Disable to Valid Data 1% - Note 5 - Note 5 - Note 5 - Note 5 ns
NOTES.

For SLAVE part (IDT71421) only

~ WA W N -

0°C to + 70°C temperature range only
-85°C to + 125°C ternperature range only

Port to-port delay through RAM ceils from writing port to reading port
1800 18 & calculated parameter and is the greuter of 0 twpo - twe (8ctual) OF toop - tow (8ctual)
To ensure that the write cycie is inhibited dunng contention
To snsure that & wite Cyche 18 compieted aftar contenton




TIMING WAVEFORM OF CONTENTION CYCLE NO. 1, CE ARBITRATION

CE | VALID FIRST:

ADDR x
LANDR ADDRESSES MATCH

TE,
tams

CEn 3

K.
jo—— tauc
BUSYR

[*— tsoc —*]

TEpR VALID FIRST:

LD R T ADDRESSES MATCH

s

=

CE, 3

X
| tm
BUSY, *

'—'noc‘j

TIMING WAVEFORM OF CONTENTION CYCLE NO. 2, ADDRESS VALID ARBITRATION ™

LEFT ADDRESS VALID FIRST:

| tac OR typ ———r—
ADDR, £ ADDRESSES MATCH

ADDRESSES DO NOT MATCH X

tA-I‘S
ADDRp X :
[ C— 'BM 'BDA
BUSYs Vi
RIGHT ADDRESS VALID FIRST:
-——e 'NC OR 'wc ————————t
ADDRg Y ADDRESSES MATCH {  ADDRESSES DONOT MATCH X
Yaps
ADDR, x

- g
USY,
NOTE: BUSY,

1 CE = CEym v,




The following schematic diagram for the INTEL EV80C196KA evaluation board is

taken from [14].
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EV80C196KA SCHEMATIC DIAGRAM
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APPENDIX G

80C196KA BUS TIMING

The following information regarding the timing of the INTEL 80C196KA

Microcontroller IC is taken from [13].

System Bus Timings

Tosc ——0]

XTALY

l tCLCL - {XHCH —tCHCL
war N
-

tCLLH  —=f b= tLLCH
tLHLH

po— HLHLL ~—etwue (LLRL ——sfo—— {RLRH —ota— (RHLH —od

feo —\ /
r—— tAVLL -—J

o tLLAX ——~d 1RLOV o -tRHDZ
Bus ADDRESS U1 DATA INHNIVY
= VDY ' ' '
b tLLWL AWLWH——ta— (WHLH —=l
WRITE q /
I = tOVWH —f=twHOX~{
us = ADDRESS OUT X DATA OUT X ADDRESS
| ! M I
GHE, INST = VALID -

270428-18

Tose —
i
b — O, —————— L 1XHCH tCHCL
] |
CLnouUY

t
=t e (CLLKH r‘———'LLYX
) ]
awe [ \ ll

1 g
—wwe - ’» tcLYx

RLADY i
. AVYV

UVEY e —= s (CLGX

-

BUS WIDTH
: - LGV -

sus = ADORESS 0U1 - ————( DATA »)

READ T\ yaR

270428-17




A.C. Characteristics (Over specified operating conditions)
These are ADVANCED specifications, the parameters may change bufore intel releases the procuct

for sale.

Test Conditions Capacitive load on all pins = 100 pF, Rise and fall tmes = 10 ns, fosc = 12 MHz

The system must meet these spec.fications to work with the 80C198:

Symbot Description Min Max Units Notes
Tavyv Address Valid to READY Setup 2Tosc —- 55 ns
Tuwy ALE Low to READY Setup _Yosc - 55 ns
Tyiyw NonREADY Time No upper Iimnt ns
Telyx READY Hold after CLKOUT Low 0 Tosc — 30 ns {Note 2)
Tiivx READY Hold after ALE Low Tosc+5 2Tosc - 40 ns (Note 2)
TavGv Address Valid to Buswidth Setup 2Tosc — 55 ns
Tugv ALE Low to Buswidth Setup Tosc — 55 ns
TeiGx Buswidth Hold atter CLKOUT Low 0 ns
Tavov Address Vald 10 input Data Vahd 3Tpsc ~ 60 ns
Triov RD# Active to Input Data Vald Tosc - 25 ns
TeLov CLKOUT Low to Input Data Vald Tosc — 55 ns
TRHDZ End of RD# to input Data Float Tosc - 20 ns
TRxDX Data Hold atter RD ¢ inactive 0 ns
NOTES:
1 Typcal specrficaton not guaranteed
2 ¥ max 15 exceeded agdibonal wait states will occur
The 80C 196KA will meet these specifications: _
Symbol Description Min Max Units Notes
FxTaL Frequency on XTAL1 3s 120 MHz |
Tosc 1/FxTaL 83 286 ns
TxHCH XTAL1 High to CLKOUT High or Low 40 10 ns i@c_)!_e_})_ |
TeweL CLKOUT Cycie Time 2Tosc | _ns ]
TencL CLKOUT High Period Tosc - 10 | Tosc + 10 ns_ |
Towr CLKOUT Falling Edge to ALE Rising -10 10 ns
Tiick ALE Falling Edge to CLKOUT Rising -10 10 ns
TLHLH ALE Cycle Time 4Tosc ns .
TLHLL ALE High Penod Tosc - 10 | Tosc+ 10 ns
Tavit Address Setup to ALE Falling Edge Tosc — 25 ns ~
Toiax Address Hold after ALE Falling Edge Tosc— 15 ns
TwAL ALE Faliing Edge to RD Falling Edge Tosc - 25 ns |
TALcL AD Falling Edge to CLKOUT Falling Edge 0 20 ns
Tawan RD Low Period Tosc~ 5 ns
Trn | PD Rising Edge to ALE Rising Edge Tosc - 15 | Toge+15 | ns | (Nole2)
Tuwe ALE Falling Edge to WR Falling Edge Tosc — 10 ns | 1
Tewwe CLKOUT Low to WR Falling Edge -5 15 ns
Tovwn | Data Stable to WR Rising Edge Tosc - 20 ns
ToHWH CLKOUT Rising Edge to WR Rising Edge -10 10 ns |
Twiwr | WR Low Period Tosc - 20 ns_ e —
TwHOX Data Hold atter WR Rising Edge Tosc — 20 ns
TWHLH WR Rising Edge to ALE Rising Edge Tosc - 20 | Tosc+20 ns (Note 2)
TwHBX BHE, INST HOLD atter WR Rising Edge Tosc - 30 ns
NOTES:

Tosc = 833 ns at 12 MHz, Togec = 125 ns at B MHz
1 Typcal specification not guaranteed
2 Assuming back to-back bus cycles

13
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APPENDIXH

AD667 BLOCK DIAGRAM AND TIMING DIAGRAMS

The information in this appendix regarding the AD667 has been taken from [15].

AD667 FUNCTIONAL BLOCK DIAGRAM

msa ({8 1}
0811 === D08 08 -~ = D84 08) ~=- -~ D8O
b ).t ] NXDN 2K 200191017
8
a1 (s anrg LY At amrs
1) 20V SPAN
[ARAL P
$1]
20 (% i 2) 10V SPAN
o 0; 21T PARALLEL LATCN ] $ ™ sumscr
Tame I TITTT TTITT [ e
mw {7 12817 MIG= SPEED DAL / . D vos
o (8 actnence AD867 e 1 <
4) WPOFF
Ve rowtr Ve
GND
TIMING DIAGRAMS WRITE CYCLE 2
WRITE CYCLE #1 (Load Second Rank from Furst Rank; A2, Al, A0=1)
(L.oad First Rank from Data Bus; A3=1)
r‘-————l.‘ ——u‘ I———lu —d
- Y X A U VA
"—‘.__.l g,__—l‘
OBt DBO x l k-]
-1 f"- - ———s]
a8

=1

TIMING SPECIFICATIONS

1VL88

(All Models, T = 25°C, Voc = + 12Vor + 15V,

Vee=-12Vor - 15V)

Symbo! Parameter Min Typ Max

toc Daus Valid to End of CS 0 - - bs
tac Address Valid to End of TS 100 - - ns
o CS Pulse Width 100 - -~ o
ton Daus Hold Time 0 - - D
tserr Output Voltage Setdling Time - 2 4 i




APPENDIX I

HCTL-1000 BLOCK AND TIMING DIAGRAMS

The information in this appendix regarding the HCTL-1000 is taken from [16].

PROF INIT

—=|-—————"
|
|
|
|
|
|
I
I
|
|
|
i
|
|
1
|
|
I
!
l o—
|
|
i

POSITION
PROFILE EMERGENCY STATUS
ADy DBy @———of GENERATOR FLAGS FLAGS L mCo
ADy DB|Q—T-—.‘ ‘ _:_. MC,
] INPUT
AD;,/DB; COMMAND _!—. MmC,
AD DB MOTOR —:—. MC,
1 commano | !
AD4 DB, C—I—. PORT ——'—. MC,
1
405 0B, =——= DIZ) = MCa
i 110PORT . |
DBg - — MGy
DIGITAL
087 Cz > "l wten —l‘—. mc,
ALE - 1 :
& I' - ‘——-‘—-' PULSE
= |
O ———= FEEDBACK PORT | : SIGN
AW
PHA
| —-:—- PHB
| COMMUTATOR
QUADRATURE PHC
extoLk ——f SIPLE DECODER/
] COUNTER PHD
' [
l I
b e e .J

CHA CHB

Figure 2. Internal Block Diagram




HCTL-1000 1/0 Timing Diagrams

There are three different irning configurations which can be used to give the user flexibility to interface the HCTL-1000 to
mast microprocessors See the (/0 interface section for more details

ALE/CS NON OVERLAPPED
Write Cycle

®
G[S

Read Cycle

® ) | :
o/ o
¥




A.C. Electrical CharacteristiCs .- o°cto7°c vee =5V + 5% Unis = nsec

Clock Frequency
2 MMz 1 MN2
1D#| Signal Symbol Min. Max. Min, Max.
1 | Clock Perniod tcPer 500 1000
2 | Puise Width, Clock High tcpwH 230 300
3 | Pulse Width. Clock Low tcpwL 200 200
4 | Clock Rise and Fall Time tch 50 50
5 | Input Pulse Width Reset tinst 2500 5000
6 | Input Pulse Width Stop. Limit tp 600 1100
7 | Input Pulse Width index. Index tix 1600 3100
8 | input Pulse Width CHA, CHB tia 1600 3100
9 | Delay CHA to CHB Transition fag 600 1100
10 | tnput Rise/Fall Time CHA, CHB, Index tiagR 450 900
11} tnput Rise/Fall Time Reset, ALE. CS, OE. Stop, Limit n 50 50
12| Input Pulse Width ALE. CS tipw 80 80
13| Delay Time, ALE Fall to CS Fall tac 50 50
14 | Delay Time, 'ALE Rise o CS Rise tca 50 50
15 | Address Set Up Time Belore ALE Rise tasp1 20 20
16 | Address Set Up Time Before CS Fall tasr 20 20
17 | wnite Data Set Up Time Before CS Rise tosh 20 20
18 | Address/Data Hold Time t 20 20
19| SetUp Time. R/W Before CS Rise twes 20 20
20 | Hold Time, R/W After CS Rise twh 20 20
21 | Delay Time, Write Cycle, CS Rise to ALE Fall tesaL 1700 3400
22 | Delay Time, Read/Wnte, CS Rise 1o CS Fall teses 1500 3000
23| Write Cycle, ALE Fall to ALE Fall For Next Write twe 1830 3530
24 | Delay ime, CS Rise to OE Fall tesoe 1700 3200
25 | Delay Time, OE Fali to Data Bus Vaid toEos 100 100
26 | Delay Time, CS Rise 1o Data Bus Valid tesos 1800 3300
27 | Input Pulse Width OE LewoE 100 100
28 | Hold Time, Data Held Atter OE Rise {ooEH 20 20
29 | Delay Time. Read Cycle, CS Rise to ALE Fall tesatr 1820 3320
30 | Read Cycle, ALE Fall to ALE Fall For Next Read tac 1950 3450
N g:flg:glsagv:gg PROF, INIT, Pulse, Sign, toF 500 1000
32 SHuZL:HRE:si/‘Eag:;me. PROF, INIT, Pulse, Sign ton 20 150 20 150
33 | Delay Time, Clock Rise to Output Rise tep 20 300 20 300
34 | Delay Time. CS Rising to MC Port Valid tesme 1600 3200
35 | Hold Time, ALE High Atter CS Rise tALH 100 100
36 | Pulse Width, ALE High ALPWH 100 100




APPENDIX J

SLAVE SOURCE CODE

SR PRAR AR IR R AR AR R AR R R R AR A AR R R AR A R R A A AR R R AR A AN A AN RN AR R RN R RARR R RARR R A AR A AR AR X

-~ =

H SLAVE.A96 - BOC196KA ASSEMBLY CODE FOR THE ARC SLAVE PROCESSOR.

;..ﬂkﬁ'.‘Q.ﬂ!t‘l!il.ﬁ"Q.ﬁ.ﬁtﬂﬁl.ﬁttQ!iQlﬁﬁﬂtﬁtﬁ't’tﬂl.tk!i'i!lﬁtkt't"lttltl

SCGE ; Expand all MACROs in slave.lst listing
$include (8096, inc) ; Include symbolic definitions from file 8096.inc,

H {listing of 8096.inc follows this listing)

; Storage Reservation for Program Variables and Pointers in the 80C196KA's
; 232-byte Register File. These reqisters reside on the B0C196KA chip and
; should not be confused with the so-called dual-port RAM registers.

e ws we we wa
Se we we we ™

rseqg at 4Ch : Registers are allocated beginning at 40H

TEMP1: dsw 1 ; Temporary registers,

TEMP2: dsw 1

NOO0O1: dsw 1 ; Registers to hold frequently used

NO0O3: dsw 1 ; numbers.

SAMPLE_PERIOD: dsw 1 : Registers to hold pointers to

TIMING At dsw 1 ; dual-port RAM registers.

TIMING B: dsw 1

COMMAND dsw 1

FRROR: dsw 1

POS: dsw 1

TOR: dsw 1

SENSORS: dsw 1 ; Register to hold pointer to the buffer
; for HOME and encoder index signals

POS_1: dsl 1 ! Registers to hold actual joint

POS 2: dsl 1 ; position information,

POS_2: ds) 1

POS_R: dsl 1

pPOs_1L: dsl 1 ; Registers to ltold the actual joint

POS_2L: dsl 1 ; positions from the previous (last)

POS_2ZL: dsl 1 ; sampling period

POS5_RL: dsl 1

TORQUE_1: dsw 1 ; Registers to hold joint terques

TORQUE_2: dsw 1

TORQUE_2: dsw 1

TORQUE_R: dsw 1

PC22_R14 C5: dsw 1 ; Pointers to HCTL-1000 gosition counters

PCZ2_R13 Cs: dsw 1 ;i 22or 1R => joints Z 6§ 20or 1 ¢ R

PC22_R12 CS: dsw 1 ; R12, R13, R14 => register 12, 13, 14

PCZ2_R14_OE: dsw 1 ; CS => chip select

PC22_R13 OE: dsw 1 ; OE => output enable

PC22_R12 OE: dsw 1

PCIR_R14 CS:  dsw 1

PCIR_R13 CS:  dsw 1

PCIR_R12°CS:  dsw 1

PCIR_R14_OF: dsw 1

PCIR_R13 OFE: dsw 1

PCI1R_R12 OE: dsw 1




PC_1 _PC: dsw 1 ; Registers to hold pointers to the

PC_2 PC: dsw 1 ; Position counters' program counters

PC_z_PC: dsw 1

PC_R_PC: dsw 1

PC_1_RESET: dsw 1 ; Registers to hold values to be to

PC_2_ RESET: dsw 1 ; sent to position counters'

PC_Z_ RESET: dsw 1 ; program counters

PC_R_RESET: dsw 1

DAC 1: dsw 1 ; Registers to hold pointers to the

DAC_2: dsw 1 ; first rank registers of the DACS

DAC_Z: dsw 1

DAC_R: dsw 1

DACS_OUT: dsw 1 ; Register to hold pointer to the

; second rank register of each DAC

FATEIIII IR NI NI i IR
il INITIALIZATION iiiiid
R R RIRIR IR RN
cseg at 2080h : Code segment begins at 2080H

;¢ initialization of Program Variables and Pointers

DAC_1, #OAFFCH 3 DAC first rank addresses
DAC_2, #¥OAFFAH

DAC_2, #OAFF6H

DAC_R, #OAFEEH

DACS_OUT, #OAFDEH ; All DACS second rank address

56

PC22_R14_Cs, #09494H ; Position counter addresses
PCZ2_R13_CSs, #09392H
PCZ2_R12_Cs, #09292H
PCZ2_R14_OE, #09414H
PCZ2_R13_OE, #09312H
PCZ2_R12_OE, #09212H
PCIR_R14_Cs, #094D4H
PCIR_R13_CS, #093D2H
PCIR_R12_CS, #092D2H
PCIR_R14_OE, #09454H
PCIR_R13_OE, #09352H
PCIR_R12 OE, #09252H
BC_1_PC, #085C4H

1] ; Address of program counter register
PC_2 _PC, #08584H

; on the position counters,
PC_2_PC, #08584H ; 1 ¢ R, 26 Z are equal
PC_R_PC, #085C4H ¢ since they are accessed in pairs.
PC_1 RESET, #0100H ; 0100 resets 1 but leaves R idling,
PC_2_RESET, #0001H ; 0100 resets 2 but leaves Z idling,
PC_Z RESET, #0100H ; 0100 resets Z but leaves 2 idling,
PC_R_RESET, #0001H ; 0001 resets R but leaves 1 idling.

NOOO1, #0001H
N0OCO03, #0003H

SP, #100H ; Init stack at top of reqg. file
B 10C2, #00000001B ; Put TIMER2 into fast increment. mode

EE BE5 GBEBLEBELEEBEEEEEEEEEEEEE BEE

1D SAMPLE PERIOD, #0EQOOH ; Addresses of dual-port RAM reqgisters

D TIMING_A, #0E00ZH

D TIMING_B, #O0EOO4H

D COMMAND, #0OEQO06H

D ERRCR, #0EO08H

D POS, #0EO10H

D TOR, #OE020K

D SENSORS, #0B0O0OOH ; Address of buffer for HOME and
; encoder index signals

ST 0, [ERROR]} ; Clear error register

ST 0, [pPC_1_pC] ; Software reset all position counters by

ST 0, [pPC_2 pcC] H writing 0 to their program counters.
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ST 0, [COMMAND] ;
wait_for_command:
CALL zero_dacs H
CALL get joint_positions H
CALL joint_overrun_check
ar 0, [ERROR) ;
JNE wait_for_command H
LD TEMP1, [COMMAND] ;
31241 TEMP1, 0, control H
HiS TEMP1, 7, find_home ;
BR walt_for_command ;
PRI ISR iRI iR
piiiii FIND HOME
FESIRIRIITIIIIRIiiiiNiriiviii i
FH MACRO
LOoCAL  nh, fh_ 1, fh_2, fh_3
D TEMP1, [SENSORS]
JBs TEMP1, home_bit, fh_ 1
D TEMP2, #positive_torque
ST TEMP2, [DAC_s&joint}
ST 0, [DACS_OUT]
nh: | #)] TEMP1, (SENSORS]
JBRC TEMP1, home_bit, nh
CALL delay
CALL zero_dacs
th 1: 1D TEMP2, #negative_torque
ST TEMP2, [DAC_&joint]
ST 0, {DACS _OUT]
fh 2: D TEMP1, [SENSORS)
JBs TEMP1, home_bit, fh_2
fh_3: LD TEMP1, [SENSORS]
JBC TEMP1, index bit, fh 3
ST PC_sjoint&_RESET, {PC_&joint&_PC)
CALL zero_dacs
ENDM
find_home:
FH Z, 900, 640H, 4, O
FH 1, 900H, 700H, 7, 2
FH 2, 900H, 700H, 6, 1
FH R, 920H, 6AOH, 5, 3
BR main
FESTRE R IRIie iRl
Piiiis CONTROL
FREEEPEIRIi IR iR iariiievi i
cont rol:
CIR TIMER2 H
ST 0, [TIMING_A) ;
ST 0, [TIMING B]

cont rol_loop:
ST
SCALL

SCALL
m}
BNE

wait _for_torque:
op

Clear Command register

Turn off all servo motors.
yet state of robot.

If there is a joint overrun error
keep waiting until corrected.

Read Command register
If bit 0 set, enter control_mode.
If bit 7 set, enter find home mode.
Otherwise keep waiting
FRPEIiiiEiiiivisiiiiiii

;
MOD
;

we [T~

-
~
-
~
-
-~
-

. $es0 s ss s ssset 0
’ PEFEP LRI NI IIII ST RN PT S

joint, positive_torque, negative torque, home bit, index_bit

NO0O1, [TIMING_A]
get_Jjoint_positions

joint_overrun_check

0, [ERRCR)
main

TIMER2, [SAMPLE_PERIOD]

~

~

; If HOME sensor not set, goto fh 1.
: else move joint away from HOME,

.
’
.
’

If HOME sensor still set, goteo nh
else keep moving away from HOME
during 'delay' period (~2 secs).

Stop the motor.

; Move joint toward home,

~ =,

. we we we

~e W wa

Wait for home sensor
to set.
Wait for index pulse.

~ v
Se we we e

. we e v

Set pos. counter to zero.
Remove the torgue.

-~ =

Clear the sample period timer
Clear the timing registers

Signal master to begin its loop
get actual joint positions

Check positions for overruns.
End if an overrun error was found

; Wait for torques but end (with
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JGT torques_too_late

ar 0, [COMMAND]

BE main

AND TEMP1, N0OO1, [TIMING_B]
JE wait_for_torques

SCALL check_torques

awr 0, [ERROR]

BNE main

ST 0, [TIMING_B]

SCALL torques_out

wait_for_master:

Q¥ TIMER2, [SAMPLE_PERIOD)

JGT master_too_slow

ae 0, [TIMING_A)

JINE wait_for_master
wait_next_period:

ar TIMER2, [SAMPLE_PERIOD]

JLT wait_next_period

s5UB TIMER2, [SAMPLE_PERIOD]

BR control_loop

torques_too_late:

)] TEMP1, [ERROR]

CR TEMP1, #1000H

ST TEMP1, [ERROR]

BR main
master_too_slow:

1D TEMP1, [ERROR]

OR TEMP1, #2000H;

ST TEMP1, [ERROR])

BR main
FEREIII I aiviiidieeaviie
IXRERL) GET_JOINT_|
I RN R N NN NN NN RN !
get_joint_positions:

1D TEMP1, [PCIR_R14_CS]

b TEMP1, [PC22_R14_Cs)

ST POS_1, POS_1L

ST POS_2, POS_2L

ST POS_2, POS_ZL

ST POS_R, POS_RL

1D POS_1, [PCIR_R14_OE]

b POS_2, [PCZ2_R14_OE]

ST POS_1+42, POS_1L+2

ST POS_2+2, POS_2L+2

b TEMP1, [PCIR_R13_CS]

1D TEMP1, (PCZ2_R13_CS)

ST POS_1+1, POS_R

STB POS_z+1, BOS_2

D TEMPF1, [PCIR_R13_OE]

STB TEMP1, POS_1+1

STB TEMP1+1, POS_R+1

D TEMP1, [PC22_R13_OE}

ST POS_2+2, POS_ZL+2

ST POS_R+2, POS_RL+2

1D TEMP2, (PCIR_R12_CS)

b TEMP2, (PCZ2_R12_CS)

STB TEMP1, POS_2+1

S8 TEMP1+1, POS_2+1

j#)] TEMP], [PCIR_R12_OE]

STB TEMP1, POS 142

S8 TEMP1+1, POS_R+2

D TEMP1, (PC22_R12_OE)

S8 TEMP1, POS_2-+2

.~ =,

-~ . we . v ~. we we

~. ~.

-

-

error) if they arrive too late,
End (without error) if master
clears command register,
Check for arrival of torques.

w. wa W

Get. and check torques.
End if excess torque found.

~

.~

Tell master torques wete acceptod,
; Output torques.

-~

; Wait for master to finish leop,
; End if master is too slow,

-

Wait for next sample period

Reset the sample period timer

~.

1st read of R14, pos. counters 1&R

1st read of R14, pos. counters 762

Store ‘'last® positions - low word
and kill > than 1.8 uscc.

2nd read of R14, pos. counters 16R
2nd read of R14, pos. tounters 7242
Store 'last' positions - high word

Ist read of R13, pos. counter«s 14R
1st read of R13, pos. counters 267
Sort data and kill > 1.8 usec,

2nd read of R13, pos. counters 14R
Sort data

2nd read of R13, pos. counters 242
Store 'last' positions - high word

1st read of R12, pes. counters 14K
Ist read of R12, pus. cuountoers 262
Sort data and kill > 1.8 usec.,

2nd read of R1?, pos. counters 1&F
Sort the data

2nd read of R12, pns. counters 7467

Sort data
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ST TEMP1+1, POS_2+2

CLRR POS_1+3 ; Clear the most significant byte
CLEB  POS 243
CLRE  POS_2+3
CLRB POS_R+3

CMPB  POS_1+2, #OFFH Set most sig. byte to FF if 2nd most

JNE pos2 ; significant byte is FF, i.e.,

1¥02) POS 143, #OFFH : sign-extend to 32 bits.
pos2: &0 153 :) POS_2+2, #OFFH

JINE. posZ

180 2] POS_2+3, #OFFH
posZ:  CMPB PO5_2+2, #0FFH

INE posR

LDB POS_Z+3, #CFFH
posR: e POS_R+2, #OFFH

JINF pos_end

L1 POS R+3, #0FFH
pos_end: -

ST POs_1, [POS]) ; Save positions in dual-port RAM

ST POS_ 142, 2[POS] H actual_position registers

ST POS_2, 4(POS]

ST POS_2+2, 6|POS)

ST POS_2, 8(POS|

ST POS_2+2, OAH([POS]

ST PO5_R, O0CH[POS!

ST POS_R+2, OEH[POS)

ST NOCO3, [TIMING_A] ; Signal to masterthat joint positions

H are available

RET
R RN N RN N N RN NN NN R NN N R R R S R R R RN NN NN R RN
AR DELAY PROCEDURE HA
FIRIVIINIINIININN NIl Nii iR iiNiiviiRiiiNiiiiiid
delay: LD TEMP2, #8H ; Generate ~2 sec, delay
dclayC: LD TEMP1, #0FFFFH H by counting down from FFFFH
delayl: DEC TEMP1 H 8H times.

(oyid TEMP], 0

JNE delayl

DEC TEMP2

o TEMP2, 0

JINE delay0

RET

zero_dacs: ; Reset all DACS to 0 Vdc {offset = BOOH)
LD TEMP1, #800H
ST TEMP1, [DAC_1] : Load first rank registers of all DACS
ST TEMP1, [DAC_2)
ST TEMP1, [DAC_zZ)
ST TEMP1, [DAC_R]
ST 0, IDACS_OUT} ; load 2nd rank registers of each DAC
RET ; simultaneously

OVERRUN MACRO JOINT, <IN, MAX, NEG OVR_FLAG, POS_OVR_FLAG, NEXT_JOINT, MsSB
LOCA.. or_a, or b
e POS_&JOINT+2, #OFFSFH ;; If joint is not in negative region
JNE or_a 7 goto or_a
ar POS_SJOINT, #MIN ;; Else compare its position against
X or_&NEXT JOINT i¢ the specified MIN,
OR TEMP1, &NEG_OVR_FLAG I If position is < MIN, make note of
BR or_&NEXT_JOINT : neg ovrrun error, then next joint

or_a: awy POS_§SOINT+2, #MSB ;s Compare 3rd byte against MSB:
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JLT or_&NEXT_JOINT il IF position < MSB, check next joint
XT orb i IF position > MSB, goto or b
(o) 3 POS_&JOINT, #MAX HA Else compare position against MAX.
JNH or_ GM-'.XT JOINT i IF < MAX, check next joint

or_b: OR TEMP1, #POS_OVR_FLAG  ;; Make note of positive overiun errcr.

ENDM

overrun_check:

CIR TEMP1
or_l: OVERRUN 1, OEEF7H, OBO3CH, 2H, 1H. 2, 2H
or_2: OVERRUN 2, OF752H, OEB3EH, BH, 4H, Z, OH
or_2: OVERRUN Z, OFF83H, 07585H, 20H, 10H, R, 1H
or_R: OVERRUN R, O05F1DH, OAOE3H, BOH, 40H, end, OH

or_end: 1D TEMP2, {ERROR) ; Update Error Reaister

STB TEMP1, TEMP2

ST TEMP2, [ERROR]

RET
R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R
R R CHECK_TORQUES PROCEDURE sieii:
AR R R R R R R R R R R R R R R R R R R R AR R R AR R R NN R
CT MACRO JOINT, OFFSET, NEXT_JOINT, ERROR_FLAG

s} TORQUE_&JOINT, OFFSET{TOR} ;1 Get torque from DPR register

AD TEMP1, TORQUE_&JOINT, #OF000H ;; Mask-out all but most sig, byte

JE ct_&NEXT_JOINT s+ If result is not zero

OR TEMP2, #E‘.RROR FLAG :: make a note of the error

ENDM
check_torques:

CLR TEMP2
ct_1l: CT 1, 0, 2, 100H
ct_2: CT 2, 2, Z, 200H
ct_2: (T Z, 4, R, 400H
ct_R: (T R, 6, end, BCOH
ct_end: OR TEMP2, [ERROR} ; Update Error Register

ST TEMP2, [ERROR]

RET
PEIINIINNININIiidtdN iiviiiiNddaiisiva i iiiiianiiiiiiiiiiiiiaziind
H TR TORQUES_OUT PROCEDURE s
FRECEIIIIIII ISR iR ai iR

torques_oit:

ST TORQUE_1, [DAC_1} ; Load first rank registers of DACs,
ST TORQUE_2, [DAC_2]

st TORQUE_Z, [DAC_Z]

T TORQUE_R, [DAC_R]

ST 0, [DACS_OUT} ; Load second rank register of DACs,
RET

END

Al
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8096.1NC - DEFINITION OF SYMBOLIC NAMES FOR THE I/0 REGISTERS OF THE
8096 AND THE B0C196
{C) INTFL CORPORATION 1983

[EA SRS NER N R RN SRS EEEER N E S N R R R R R R R E R S R R R

. we v

o s e e we =

/ﬂ
* 8096 & BOC196KA SPECIAL FUNCTION REGISTERS

P/
RO EQU OOH : WORD : R CONTAINS THE VALUE 0000H
AD_COMMAND EQU  02H:BYTE s W NOT USED BY ARC
AD_RESULT_LO EQU 02H:BYTE ;R " " " "
AD_RESULT_HI EQU O03H:BYTE i R " n n "
HSI_ MODE EQU 03H:BYTE ; W " " " n
HSO_TIME EQU O4H:WORD ; W " " " "
HSI_TIME EQU O04H:WORD ; R " " " "
HSO COMMAND EQU 06H:BYTE H W " " " "
H31_STATUS EQU 06H:BYIE s R " " " "
SBUF EQU O7H:BYTE : R/W " " " "
INT_MASK EQU OBH:BYTE : R/W " " " "
INT_PENDING EQU 09H:BYTE : R/W " " " "
WATCHDOG EQU OAH:BYTE H W WATCHDOG TIMER
TIMER] EQU OAH:WORD : R NOT USED BY ARC
TIMER? EQU  OCH:WORD ; R USED AS SAMPLE PERIOD TIMER
BAUD_RATE EQU OEH:BYTE ; W NOT USED BY ARC
JOPORTO EQU OEH:BYTE ;R " " " "
IOPORTI EQU OFH:BYTE : R/W " " " "
IOPORT2 EQU 10H:BYTE : R/W " " " "
SP‘CON EQU 1 1 H B BYTE ; w ” L] L1 n
SP_S'I‘]\']‘ EQU 11H:BYTE : R " n " "
10CO EQU 15H:BYTE : W " " " "
1050 EQU 15H:BYTE : R n " " "
10C1 EQU 16H:BYTE : w " " " "
1051 EQU 16H:BYTE ;R " " [ "
PWM_CONTROL EQU 17H:BYTE ; W " " " "
sp FQU 18H:WORD : R/ STACK POINTER
.
A
H SPECIAL FUNCTION REGISTERS FOR 80C196 ONLY
;e
10C2 EQU OBH:BYTE ; W PUTS TIMER2 IN FAST INCR. MODE
IPEND] EQU 12H:BYTE ; R/W NOT USED BY ARC
IMASK] EQU 13H:RYTE ; R/W " " " "
WSR EQU Z4H:AYTE ;s R/W " " " n
1052 EQU 17H:BYTE : R " " " "
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APPENDIX K

MASTER SOURCE CODE

/.'lﬁti*kltﬁﬁ“tﬁ'tiitﬁ!‘*it‘i‘ili“i‘iii‘t'.lﬁlilk'i'.l!li'!lﬂ.liﬂlt.ll.t.!.ﬁi
®

* UTILITY.ROB — C PROGRAM CONTAINING ARC MAIN AND OTHER FUNCTIONS

*
ﬁl"'ﬁ‘l*ﬁiﬁ!ﬁﬂ'ﬂﬂ#‘i‘ll'*‘ﬂkiitliﬁﬂ'lﬂtl""‘ll'."'Ql“iil'ﬂtlﬂtljll.ltil‘l/

#include "stdlib.h"
#include "math.h"

#include *"alloc.h"
#include "stdio.h"®

/* GLOBAL VARIABLES (begin with a capital letter) */
double Duration; /* Duration (in sec.) of the move */
int Home_fecund = 0; /* A flag which is set to 1 when home is found */

/ﬁi!*fi*iﬁiil'til*itt!ﬂﬂltﬁiﬂﬁt'.ﬁiit*'ﬁitﬁttilﬁﬁ.tittﬂ!tt.!.‘ﬁ‘i.lltll'l.ti.l/

main{)
{
for(:;) {
clrser() ;
controller_menu();

}

/iiii*iit‘i"ﬁii'.iiﬁﬁllﬁlitiii!ﬁk.iﬁﬁih'ﬁtﬁﬁ‘ﬂﬁt.llli!ﬂiitﬂllﬂﬁ.tlﬂ.lliﬂ!lﬁﬂl/
int check_home_found flag(); /* function prototypes */

prop_control {);

prop_deriv _control ();

seraji_decen_adapt_ctrl();

find_home();

controller menu() /* Display menu of available control algorithms */
{

char ch;

printf("Choose controller\n\n");
printf("{1) FIND HOME\n");
printf("{2] PROPORTIONAL AND DERIVATIVE CONTROL\n");:
printf(" (3] SERAJI-DECENTRALIZED ADAPTIVE CONTROLAn"};
printf("(0] QUIT\n\n");
printf ("ENTER YOUR CHOICE: ");
do {
switch{ch = getch()) {
case '1': find_home(};
return;
case '2': check_home_found flag();
prop_deriv_controll);
return;
case '3': check_home_found_flag();
seraji_decen adapt _ctrll();
return;
case '0': clrscri();
exit (0);
default : delline();
print £ ("\rINVALID ChOICL. TRY AGAIN: *);

} while(ch != '1' ¢t ch != '2' &6 ch != '3' g ch '= '0');
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/tli'l’l.ﬂiﬁ.ilt"90D"..ﬂ.'.lt"'..ttlt!t."!’.!ﬁ’.tﬁii'tﬁ‘it.ﬁﬂtit"l."t‘iﬂ/
find_homa() /* tells slave to enter find-HOME mode */
{

int far *command = O0xCO0D0006;
unsigned int far *error = 0xCO00C008;

terror = 0x0000; /* clear the error register */
*command = 0x0080; /* give 'find-HOME' command */
clrscri);
printf ("\t\t\tFINDING HOME, PLEASE WAIT");
while (*command) ; /* wait for 196 to finish the move */
Home_found = 1;
dellinel();
print{{("\r\tHome was found. Press any key to continue “);
while('getch());

}

/lt'l.ttﬁﬁi!tlhtt.!tniltt.ttti.nﬂﬁtiQ't.hl'iiiﬁtﬁt.’ﬁ‘ttiitﬁtltii'ﬂttti'tiii.t/
/* check home_found_flag and warn if home was not previously found */

check_home_{ound_flagf{)
{
{f ('Home_found) {
printf("\r\t\t Robot will first FIND HOME.\n\n");
printf("\t\t (P)roceed or (Qluit? *);
if (tolower (getch()) == 'p') find_home (});
else exit (0);

}

/tﬁ'.'.Qhﬂt.i.iii'iﬁliﬁiﬁ'ﬁ‘il*!!ﬂ!tiﬁﬂﬁﬂ'i#i‘*i‘.‘ﬂ“ﬁ.ﬂ'ﬁﬁttﬂﬁ't‘.tlﬁittitil/

/* Display menu of available path planning algorithms */

long int huge *cubic_spline (double); /* function prototypes */
long int huge *cycloid(double);
long int huge *step_function(double};

long int huge *choose_path_planner(double sample_per)
{
char ch;

clrscr{);
print f ("\n\nChoose path planner\n\n");
printf("(1] CUBIC SPLINE\n");
printf("[2] CYCLOID\n");
printf("{3] STEP FUNCTION\n");
printf(*[(0] QUIT\n\n");
printf ("ENTER YOUR CHOICE: ");
do {
switch({ch = getche{()) ¢
case ‘1': returnicubic_spline(sample per));
case '2': return(cycloid(sample_per));
case '3': return{step function{sample_per));
case '0': clrscr(};
exit (0);
default : dellinel();
print f ("\rINVALID CHOICE. TRY AGAIN: ");
}
} while(ch != *1' &6 ch !'= '2' g§ ch != *3' gs ch '= '0');
}

/ﬂ.tﬂ!ﬁQ‘.Qﬂﬂt‘lﬁtt“nﬁﬂiﬁt.it!i.i‘!ﬂ!lﬂ.iitkiﬁi‘ﬂi'l*iQtl'!ﬁtkktﬂtiitﬁiittﬁﬁ'/

/* display current position and orientation of robot */

current._position()

{
int out_of_workspace;
long int huge *p = 0xCO010000;
long int i_lp = *p;

long int i 2p = *(p+1);
long int i _zp = =~ *(p+2);
long int { rp = *(p+d);
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double i_1 = {_1p / 872.2222;
double i_2 = i 2p / 444.4444;
double i_z = i_zp / 380.96;

double i_r = i_rp / 227.5556;
double i_1r= i_1 * M_PI / 180;
double i_2r= i 2 = M PI / 180;

printf("Current position:\n\n");
printf ("Cartesian space \tJoint space\n\n");
printf ("X = %8.41f mm.\t", 250*cos(i_lr + i_2r) + 400*cos(i_lr));
printf("Joint 1 = %06li (%081xH) pulses or ", i_lp, i_1p);
printf(*%10.6f deg.\n", i 1);
printf("Y = %8.41f mm.\t", 250*sin(i_1r + i_2r) + 400*sinti_i1});
printf{»Joint 2 = %0611 (%0BlxH) pulses or ", i_2p, 1 2p);
printf(*%$10.6f deg.\n", 1_2);
printf{("2 = %8.41f mm.\t", i 2);
printf{"Joint z = %0611 (%081ixH) pulses or ", i_zp, i _2p);
printf ("$10,6f mm.\n*, i _z);
printf{"R = %8.41f deg.\t", i_r);
printf("Joint R = %0611 (%081xH} pulses or *, i _rp, i rp):
printf ("$10.6f dr .\nm\n", i_r);

}

/*‘lii‘l‘!it“'tttﬁ‘ﬁtiii.ikt..*ﬁlttititktﬁ‘ﬂﬂﬂﬂ‘llﬂ‘ﬂﬁltnﬂltn!tt!i!tnnﬁ.l!llill/

/* prompt for the entry of a cartesian point., Verify that points arc
* within robot workspace. perform inverse kinematics to find joint angles */

get_carteslan_position(p)
long int *p;
{
int out_of_workspace;
double w, px, py, p2, pr, jl, j2;
do {
do {
pris.f("\n\tEnter x (in mm.,}: ");
scanf ("$1f", &px);
if (px<~650 |{ px>650) printf("\trange of x: -650 to 650 mm.\n");
} while( px < =650 || px > 650 );
do {
printf("\n\tEnter v (in mm.): ");
scanf ("$1f", s&py):
if(py<~386 11 py»650) printf({"\trange of y: =386 ro 650 mm.\n");
} while( py < -386 || py > 650 );
w= (px * px + py * py + 97500.0)/800,0;
if (px*px+py*py >= w*w) {
j1 = atan2(py,px)+atan2( -sqrt (px*px+py*py-w*w),w); /* inv. kin, */
1141 < 0) 31 = 41 + 2 * M_PI;
j2 = atan2(-px*sin(jl)+py*cos(jl), px*cos{jl)+py*sin(jl1)-400);
*p = (long int) (j1 * 180 / M _PI * 872,2222 + 0.5);
* (p+l) .long Int) (j2 * 180 / M_PI * 444.4444 + 0.5);
}
else { /* out of workspace */
ﬂp = _1;
*{p+l) = -1;
out_of workspace = (*p<0 || *p>174445 |1 *(p+1)<0 [[ *(pt+]) >60001);
if (out_of_workspace} print{("\n\LQUT OF WORKSPACE IN X-Y PLANEAR");
} while(out_of_workspace);
do {
printf{"\n\tEnter z (in mm.): “);
scanf ("$1f", &pz);
if(pz < =250 || pz > 0) printf ("\trange of z: -25%2 te 0 mm.A\n");
} while( pz < =250 || pz > 0 };
*{p+2) = (long int) (-pz * 380.96 + 0.9);
do {
printf("\n\tEnter r (in deg.): ");
scanf ("$1f", &pr);
if(pr ¢ =180 || pr > 180) printf("\trange of r: -180 to 180 deg.\n");
} while( pr < =180 || pr > 180 );
t(p+3) = (long int) (pr * 227.5556 + 0.5);
printf("\n\t Equivalent joint-space destinatijon:\n");
printf("\tjoint I = $li\n", *p):
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Slivn", *(ptl));
Alikn", *(p+2));
Sivn", *(p+3));

printf{("\tjoint 2
printf{"\tjoint 2
printf{"\tjoint r

}

/‘.‘.Q.'ﬁl..ﬂ.lt....’Q.‘!'!Q.".!".t.t!”'.'.tﬂ'lt‘ﬂ‘tﬁﬁ'!"'ﬁ.i."i!"kt’tﬁﬁ/

/* prompt for the entry of joint positions */

get_joint_position(p)
long int *p;
{

double jv;

do {
printf("\n\tEnter joint 1 (in degrees): ");
scanf ("MLf", &jv);
1f(Jv<0(13v>200) printf("\tjoint 1 range: O to 200 degrees\n");
} while (jv<0]|4v>200);
*p = (long int)(jv * 872.2222 + 0.5);
do {
printf("\n\tEnter joint 2 (in degrees): "“);
scanf ("ALf", &jv);
1f (jv<011jv>135) printf("\tjoint 2 range: O to 135 degrees\n");
) while (jv<0[][jv>135);
*(pt1) = (long int) (jv * 444,4449 + 0.5);
do {
printf{"\n\tEnter joint z (in mm.}: "“);
scanf ("s1f", &iv);
1f(jv<-250114v>0) printf("\tjoint z range: -250 to O mm.\n");
} while (jv<=250]( [ jv>0);
*(p+2) = (long int) (-jv * 380.96);
do {
printf("\n\tEnter joint r (in degrees): ")
scanf ("s1f", &3jv);
if(jve-180113jv>180) printf("\tjoint r range: -180 to 180 deg.\n");
} while (jv<-180113v>180);
*(pt3) = (long int) (jv * 227.5556);
)

/.'..ﬂtt.....ﬁi‘t..ﬁti..Q'l“ﬂﬁiﬁﬁ! itttﬂ.iti’t!iittﬂt!ttti.*ﬁ'i!.ﬂttiﬁﬂiittﬂii/

extern double Duration;
get time(p)
double *p;
{
printf("\n\tLength of time (in sec.) to reach this point: ");
do {
scanf ("§1f",p);
if (*p <= *(p~1) || *p > Duration) {
printf("Must be greater than that of the ");
printf{"previous point and less than the ");
printf("Duration.\nReenter: ");
}
} while(*p <= *(p-1) | *p > Duration):
)

/‘ilttﬁﬂt‘ﬁﬁﬁiiﬂtttlﬂt'ﬁttﬂﬂﬁt*ﬁttiit‘ﬁtittﬁtttititiiﬁﬂ!it'tiaitiltt ttttttitit/

/* check for joint overuns */

robot._error_check ()

{
int far *error_pointer = 0xC0000008;
int error;

*error_pointer = (*error_pointer) & (Ox00ff);
if(*error_pointer) {
do (

error = *error_pointer;
clrscr();
printf("\t \t\tROBOT ERRORS\n\n");
if(error & 0x0001) printf("Joint 1 in positive overun\n"):
if (error & 0x0002) printf("Jeint 1 in negative overun\n"};
if(error & 0x0004) printf("Joint 2 in positive overun\n");
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if(error & Ox0C08) printf("loint 2 in negative overun\n");
if(error & Ox0010) printf("Joint z in positive overun\n");
if (error & Ox0020) printf("Joint z in negative overun\n");
if (error & 0x0040) printf{®Joint r in peositive overun\n');
if (error & 0x0080) printf("Joint r in negative overun\n");
printf ("\nMANUALLY MOVE THESE JOINTS BACK INTO THi WORKSPACE™);
while(error == *error_pointer};
} while(*error_pointer);
print £("\n\nAll overun errors fixed. Press any key to continue ");
while (!getch());
return;

}

/l'*iﬁiik*i‘liiiﬁ‘itﬁl!t"i'ii.'ﬁiﬁtﬁ'ﬁ!ltil“!'i‘ﬂQl““ﬂﬁﬁ!l-!lQ‘llllttﬂﬂt‘lt/

/* display errors */
display errors()

unsigned int far *error = 0xC0000008;
unsigned int temp;

temp = *error;

if (temp & Ox0001) printf{"\tjoint 1 entered positive overun\n®);

1

if(temp & 0x0002) printf("\tjoint 1 entered negat.ive overun\n");

if (temp & O0x0004) printf("\tjoint 2 entered positive overun\n");
if(temp & 0x0008) printf("\tjoint 2 entered negative overun\n");

if (temp & 0x0010) printf("\tjoint z entered positive overun\n");
if(temp & 0x0020) printf("\tjoint z entered negative overun\n®);

if (temp & 0x0040) printf("\tjoint r entered positive overun\n");
if(temp & Ox0080) printf("\tjoint r entered negative overun\n");
if(temp § 0x0100) printf("\tToo much torque was applied to joint t\n™);
if(temp & 0x0200) printf("\tToo much torque was applied to joint 2\n");
if(temp & 0x0400) printf("\tToo much torque was applied to joint 2\n%);
if(temp & 0x0800) printf("\tToo much torque was applied to joint r\n");
if (temp & 0x1000) printf("\tPS/2 did not provide torques in timc\n");
if(temp & 0x2000) printf("\tPS/2 did not finish its loop in time\n"};

)

/.ii'lt‘lﬂtit'iﬁ*ttﬁ.ﬁﬁttttllt‘lliﬂtﬂﬁﬁﬂlﬂitﬁiltittilt!tﬂﬂi.‘ﬁttlﬁﬁ'.!ﬁlhittll‘/
/* compare two numbers (double precision).

* return 0 if their signs are the same.

* return 1 if their signs are different or if at least onc number is zero. */

cmp_sign(double num_l, double num_ 2}
{
if(num_1 && num_2){ /* if neither number is zero */
if( (num 1 > 0 &6 num_2 > 0) !} (num_1 < 0 && num_2 < 0) ) return O;
}

else return 1;

)

/t*k!it'ti!*iﬂ‘il*ﬂ*ﬂtttﬁﬂﬂﬂttﬂ'ttﬂtﬁ*!tﬁ*iiiA.!Qﬂtﬁiﬁﬁﬁ.’!lﬂttll.lﬁlﬁﬁ‘ﬂiltﬂ‘/

/* change the value of a gain or paramcter */

double choose_new_gain(char *name, double gain)
{
print £ ("Change %s? [y/n}: ", name);
if (getch() == 'y*'} |
printf("\tFrom %1f to: ", gain);
scanf ("%1f", sgain);
}
else printf({"\n");

return(gain);
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* Proportional, Derivative (PD) Control Algorithm
*

t.l'...ﬂﬁt'.ﬂ"""ﬂ.ﬁ‘.'.ﬂ.ll'ﬂtﬁ'!'.lhtﬂ!!ti'tit'!ittﬂ!'t.lf‘iiifiﬁ'!"'Iit/

#include "alloc.h"
#include "stdio.h"

long int huge *choose_path_planner(double); /* function prototypes */
double choose_new_gain(char *name, double gain);

extern double Duration; /* Global variable declared in utility.rob */

prop_deriv_control()

{
static double kp_ 1 = 5, kp_2 = 7, kp_z = 5, kp_r = 5; /* controller gains */
static double kv_1 = .02, kv 2 = .02, kv_2z = .02, kv_r = .02;
double kvl, kv2, kvz, kvr;

double e_1=0, e 2=0, e_z=0, e_r=0; /* joirt position error */

double el 1, el 2, el z, el r; /* previous (last) Jjoint position error */
static double sample_per; /* sample_period */

char ch;

int not_enough_memory;
long int huge *pp; /* pointer to array of desired path points */
long int huge *s pp; /* a place to save this pointer */
unsigned int far *sample_timer = 0xC0000000; /* pointer to DPR sample_period Reg. */
double num_samples;
unsigned int num_captures;
unsigned int capture_counter = 0;
unsigned int capture_intrvl;
int far *error = 0xC0000008; /* pointer to DPR error Reg. */
long int far *act_pos_1 0xC0000010; /* pointer to DPR actual pos. Regs. */
long int far *act_pos_2 = 0xC0000014;
long int far *act_pos_z = 0xC0000018;
long int far *act_pos _r = 0xC000001C;
int far *t 1 = 0xC0000020; /* pointer to DPR torque Regs. */
int far *t_2 = 0xC0000022;
Int far *t_z = 0xC0000024;
int far *t_r = 0xC0000026;
int far *timing_a = 0xCO000002; /* pointer to DPR timing A reg. */
int far *timing b = 0xC0000004; /* pointer to DPR timing B reg. */
int far *command 0xC0000006; /* pointer to DPR command reg. */
long int *c_a_l; /* pointers to arrays of sampled joint positions */
long int *s _c a_1; /* a => actual, d => desired */
long int *c d_1;
long int *s ¢ d 1;
long int tc_a_2;
long int *s c_a 2;
long int *c_d 2;
long int *s_c_ d_2;
long int *c_a_z;
long int *s c_a_z;
long int *c_d_z;
long int *s ¢ d_z;
long int *c_a_r;
long int *s_c_a_r;
long int *c_d_r;
long int *s ¢ d_r;
int *c t 1; /* pointers to arrays of sampled torques */
int *s c t_1;
int *c t 2;:
int *s c t_2;
int *c_t_z;
int *s c t_z;
int *c_t_r;
int *s_ c t_r;
int i, counter = 0;
FILE *fp;
typedef struct{ /* header for MATLAB file */

long type;

long mrows;

L I |
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long ncols;

long imagf;

long namlen;
} Fmatrix;
char *data_file name="xxxx";
Fmatrix x;

/* DISPLAY THE GAINS */
clrscr();
printf ("\t\t\tPROPORTIONAL + DERIVATIVE CONTROL\n\n");
printf ("The error gains are: Kp 1 $1f\n", kp_1);

printf (" Kp_2 = 81f\n", kp_ 2):
printf (" Kp_z = %1f\n", kp_2):
printf (" Kp_r = 81f\n\n", kp_r);
printf (" Kv_1 = &lf\n", kv_1);
printf (" Kv_2 = %1lf\n", kv_2);
printf (" Kv_z = Vlf\n", kv_z};
printf(" Kv_r - $1f\n\n", kv r):

/* CHANGING THE GAINS PROMPT */
printf ("Change any of the gains? (y/n): “);
if(getch() == 'y') {
printf£("\n\n");

kp_l1 = choose new _gain("Kp_1", kp_1);
kp_2 = choose_new_gain{"Kp_2", kp_ 2);
kp_z = choose_new_gain{("Kp_z", kp_z):
kp_r = choose_new_gain("Kp_r", kp_r);

ptzntf(“\n“);

kv_1 = choose_new_gain("Kv_1", kv_1);
kv_2 = choose_new_gain("Kv_2", kv_2);
kv_z = choose_new_gain("Kv_z", kv_z);
kv_r = choose_new_gain("Kv_r", kv_r});

}

/* DISPLAY CURRENT SAMPLING PERIOD AND PROMPT FOR A CHANGE */
sample_per = (double) (*sample_timer)/1000000;
printf ("\n\nThe sampling period is: %1f sec.\tChange? [y/n]: ",sample per);
if(getcht) == 'y'y {
printf("\n\nEnter new sa1ple period (in sec.): "};
scanf ("$1f", &sample_per);
*sample_timer = (unsigned int) (sample_per * 1000000);
printf(“"sample timer = $x \n", *sample_timer);
printf("press any key to continue *);
while({!getch{)):
}

/* CHECK ROBOT FOR OVER RUN ERRORS */
robot_error_check{);

/* GET TRAJECTORY */
pp = choose_path_planner {sample_per);
5_pp = pp;

/* ALLOCATE MEMORY FOR DATA CAPTURE
* Data from at least 1000 equally spaced samples are captured */

num_samples = Duration / sample per;

if (pum_samples < 1000) capture_intrvl = 1;

else capture_intrvl = (unsigned int) {num_samples/1000);

num_captures = {unsigned int) (num_samples/capture_intrvl);

if(!{c_a_l=s_c_a_l=(long int *)malloc({num_captures * 4 + 20})){
printf("Not enough memory available. Aborting\n\n");
goto terminate; )

if(!(c_d_1=s_c_d_1=(long int *)malloc(num captures * 4 + 20))){
printf("Not enough memory available. Aborting\n\n");
goto terminate; }

1f(!(c_a_2=s_c_a_2=(long int *)malloc(num_captures * 4 + 20})}{
printf("Not enough memory avallable. Aborting\n\n");
goto terminate; }

if{!{c_d_2=s5_c d_2=(long int *)malloc(num_captures * 4§ + 20))){
printf("Not enough memory available. Akorting\n\n");
goto terminate; }

if(!(c_a_z=s_c_a_z=(long int *)malloc(num_captures * 4 + 20}}){
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printf("Not enough memory available. Aborting\n\n");
goto terminate; }

ift! tc_d z=s_c_d_z=({long int *)malloc(num_cap ures * 4 + 20))){
printf({"Not enough memory available. Aborting\n\n");
goto terminate; )

if(!'(c_a_r=s_c_a_r=(long int *)malloc(num_captures * 4 + 20})){
printf("Not enough memory available. Aborting\n\n"};
goto terminate; )

if(t(e_d r=s_c_d r={long int *)malloc({num_captures * 4 + 20)}){
printf("Not enough memory availabl'e. Aborting\n\n");
goto terminate; )

if('(c_t 1= s _ct 1= (int *)malloc(num_captures * 2 + 20))){(
printf("Not enough memory available. Aborting\n\n");
goto terminate; )

if('(c_t 2= s_c t 2= (int *)malloc(num captures * 2 + 20))){
printf{"Not enough memory available. Aborting\n\n");
qoto terminate; }

if{!(c_t 2= s _ct z = (int *)malloc(num captures * 2 + 20))){
printf("Not enough memory available. Aborting\n\n");
goto terminate; }

If{'(c_t_ r=s_ct r= (int *)malloc(num captures * 2 + 20})){
printf("Not enough memory available. Aborting\n\n"};
goto terminate; }

/* PROMPT TO BEGIN EXECUTION */

delline();
printf ("\r(A)bort or (B)egin the move? \n");
do {
switch{ch = tolower(getch{})) {
case ‘a': goto terminate;
case 'b': break; /* continue */
default : dellinel();
print f ("\rINVALID CHOICE. TRY AGAIN: ");
}
} while(ch '= 'a' &§ ch != 'b');

/* BEGINNING OF THE MOVE */
clrscr();
kvl = kv_1 / sample_per;
kv2 = kv_2 / sample_per;
kvz = kv_z / sample_per;
kvr = kv _r / sample_per;
printf ("\t\t\tEXECUTING");
*command = 0x0001; /* have 196 begin its i_o loop */
while( (*pp !'= Oxffff0000) && (*error == 0) ) {

/* wait to for start of sampling period */
while('(*timing_a & 0x0001));

/* update uint position errors */
el 1=e1l, el2=e2,elz=ez el r=cr;

/* wait for joint positions */
while{!{*timing a & 0x0002));

/* compute joint torques */

*c_t 1 = *t 1 = (int) (0x0800 + kp_1l*(e_1 = ((*c_d_1 = *pp++) - (*c_a_l
*act_pos_1))) + kvl*(e_l-el_1));

*c t 2 = *t_2 = (int)(0x0800 + kp_2*(e_ 2 = ({{*c_d_2 = *pp++) - (*c_a_2
*act_pos_2))) + kv2*(e_2-el 2));

*c_t_z = *t_z = (int) (0x0800 + kp_z*{e_z = ((*c_d_z = *pp++) - (*c_a_z
*act_pos_z))) + kvzt(e_z-el_2z));

*c_t_r = *t_r = (int)(0x0800 + kp_r*le_r = ((*c_d_r = *pp++) - (*c_a_r

*act_pos_r))) ¢ kvrt(e_r-el_r));
*timing b = O0x0001; /* tell 196 that torques are ready */

/* capture data every capture interval */
if (!capture_counter) {
c_d l+4;
c d 24+
c_d z++;
c_dres+;
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c_t_r++;

counter++;

capture_counter = capture_intrvl - 1;
}
else {

capture_counter--;
}

/* indicate end of sample period */

}

*timing_a = Ox0000;

/* INDICATE END OF COMMAND */
*command = 0x0000;
*timing_b = 0x0000;

/* DISPLAY SUCCESS OF EXECUTION */
delline();
if (*error) |

/t

/t

/*

/a

/!

printf("\n\n\tCommand terminated prematurely becausc:\n\n");
display errors{();

else {

open

save

save

save

save

print f ("\n\n\t\t\tCommand executed normally.\n\n"};
printf("\t\tSaving ${ data samples to disk. Please wait.\n\n", counter);

c_a_l =sc a_l; /* reset the pointers */
cdl-=s_cd]l;
ca 2 =-s_ca_2:
cd2=scd2:
caz-=scaz
cd z =s5_cd z;
car-=scar:
cd r=s5_cdr;
ct 1=sct_1;
ct 2=s5ct 2
ct_z=5ct_z;
ct r=sctr

file for saving to disk */
if ((fp=fopen("robot.mat", "wb"))==NULL) {
printf(“cannot open file. Aborting\n");
goto terminate;
}
X.imagf = 0;
X.namlen = 5;
X.mrows = counter;
a vector called '‘te.1' {(jount 1 torque) to disk */
x.type = 30; /* data is signed int type */
x.ncols = 1;
data_file name = "torl”;
fwrite(sx, sizeof(Fmatrix), 1, fp):
fwrite(data_file name, sizeof(char), x.namlen,fp);
fwrite(c_t_1, 2, counter, fp);
a vector called 'tor2' (joint 2 torque) to disk */
data_file name = "tor2";
fwrite(&x, sizeof(Fmatrix), 1, fp);
fwrite(data_file name, sizeof(char), x.namlen,{p);
fwrite(c_t_2, 2, counter, fp);
a vector called ‘'torz' (joint z torque) to disk */
data_file name = "torz";
fwrite(sx, sizeof(Fmatrix), 1, fp);
fwrite(data_file name, sizeof(char}, x.namlen,{p};
fwritel(c_t_z, 2, counter, fp);
a vector called ‘torr' (joint r torque) to disk */
data_file name = "torr";
fwrite(&x, sizeof(Fmatrix), 1, fp);
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furite(data_file_name, sizeof(char), x.namlen,fp);
fwrite(c_t_r, 2, counter, fp);

/* save sample period and capture interval to disk */
%.Lype = 0; /* data is double precision */
X.mrows = 1;
data_file name = “sper":
fwrite(sx, sizeof (Fmatrix), 1, fp);
fwrite(data_file name, sizeof(char), x.namlen,fp);
fwrite (§sample_per, 8, 1, fp):
x.type = 40; /* data is unsigned 16-bit */
data_file_name = "intv";
fwrite(ex, sizeof (Fmatrix), 1, fp);
fwrite(data_file_name, sizeof(char), x.namlen,fp);
fwrite(scapture_intrvl, 2, 1, fp);

/* save a matrix called 'posl' (joint 1 position) to disk

column 1 = desired position of joint 1

* column 2 = actual position of joint 1 */
%.type = 20; /* data is long int type */
X.ncols = 2;
X.Mrows = counter;
data_file name = “posl"™;
fwrite(sx, sizeof (Fmatrix), 1, fp):
fwrite(data_file_name, sizeof (char), x.namlen, fp);
furite(c_d 1, 4, counter, {p);
fwrite(c_a_1, 4, counter, fp);
/* save a matrix called 'pos2' (joint 2 position) to disk
* column 1 = desired position of joint 2
* column 2 = actual position of joint 2 */
data_file name = "pos2";
fwrite(&x, sizeof (Fmatrix), 1, fp);
fwrite(data_file_name, sizeof {char), x.namlen, fp);
fwrite(c_d_2, 4, counter, fp);
fwrite(c_a_2, 4, counter, fp);
/* save a matrix called 'posz' (joint z position) to disk
* column 1 = desired position of joint z
* column 2 = actual position of joint z */
data_file_name = "posz'";
fwrite(sx, sizeof (Fmatrix), 1, fp):
fwrite(data_file_name, sizeof (char), x.namlen, fp);
fwrite{c_d_z, 4, counter, fp);
fwrite{c_a_z, 4, counter, fp);
/* save a matrix called 'posr' (Jjoint 2 position) to disk
* column 1 = desired position of joint r
* column 2 = actual position of joint r */
data file _name = "“posr";
fwrite(&x, sizeof (Fmatrix), 1, fp):
fwrite(data_file name, sizeof (char), x.namlen, fp);
tfwrite(c_d r, 4, counter, fp);
fwrite(c_a_r, 4, counter, fp);

fclose(fp);
}

/* FREE ALLOCATED MEMORY */
terminate:
if(s_pp) farfreel(s_pp):
if(s_c_a_1) free{s c_a I
if(s_c_d_1) free(s c_d 1
if(s_c_a 2} freels_c a 2
1f(s_c_d 2) free(s c d 2
if(s_c_a_2) free(s c_a z
if(s_c_d z) freels_c_d_z);
if(s_c_a_r) free(s c_ar
if(s_c_d_r) freels c_d_ _r):
if(s_c_t_1) free(s_c_t_1);
1f(s_c_t_2) free(s_c_t_2);
if(s_c_t_2) free(s_c_t_z);
if{s_c_t r) free(s_c_t_r);
printf{("\t\t\tPress any key to continue “);
while(!getch());
return;

)

):
):
):
)3
)I
):
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*

* SERAJI.ROB - Decentralized Adaptive Control Algorithm */
* From Trans. Robotics & Automation, April 1989, vol, 5, No. 2, pp. 183-201
®

iiﬁt"'iitﬁ.ﬂﬁl'.‘!ﬁlttﬁiiitt'ﬁi!'v.ﬁ‘l'ltﬂlﬁ!.‘ﬁ'tttll“.Q‘!t.!tt.-nn!itl!l‘t/

#include "alloc.h"
#include “stdio.h"

long int huge *choose path planner{doublej; /* function prototypes */
double choose_new_gain(char *name, double gain);

extern double Duration; /* Global variable declared in utility.rob #/

seraji_decen_adapt_ctrl{)
{

double kp 1=0, kp 2-0, kp_z=0, kp_r=0; /* position gains */
double kp_ll, kp_21, kp_zi, kp rl; /* last " " L
double kv_1=0, kv_2=0, kv_z=0, kv_r=0; /* velocity gains */
double kv_11, kv 21, kv_ _zl, kv rl; /* last ® wooy
double e 1 =0, e 2 =0, e_z =0, e_r =0; /* position errors */
double e_11, e 21, e_zl e_rl 0; /* last ® " */
double edot_1=0, edot 2=0, edot _z=0, edot_r=0; /* velocity errors */
double edet 11, edot_21, edot_zl, edot_rl; /* last ® " ./
double r_1=0, r 2=0, r_2=0, r_r=0; /* weighted error */
double r_11, r 21, r zl, r_rl; /* last " "o
double f 1=20,f_2=20,f 2z=20, f_r = 20; /* auxiliary signals */
double f_ll, £ 21, £ z1, f rl; /* last " " */
static double wp_1=80, wp 2=8, wp_z=1, wp_r=1; /* weighting factors */
static double wv_1=40, wv_2-2, wv _2=1, wv_r=1;

static double d_1= 175,d_2= 175,d_z= 175, d r= 175; /* inteq. adapt qains */
static double a0_1=350,a0_2=350,a0_z=350,a0_r=350;

static double al_1=8, al_2=8, a1_2=8, al r=8;

static double rho_1=0, rho_2=0, rho_z=0, rho r=0; /* prop. adapt. gains */

static double b0_ 1= 0, b0_2= 0, bO_2= 0, bO_ T=0;

static double bl_ T1= 0, bl 2- 0, bl _z= 0, bl r= 0;

double d_1lspo2, d_Zspoz, d_zspo2 d_rop02'

double a0 _lspo2, a0 2spo2, ab_zspo2, al_rspo2;

double al_lspo2, al_2spo2, al_zspo2, al_rspo2;

static double sample per; /* sample period */

double spo2;

char ch;

int not_enough_memory;

long int huge *pp; /* pointer to array of desired joint positions #/
long int huge *s_pp; /* a place to save the value of this pointer */
unsigned int far *sample_timer = 0xC0000000; /* ptr to DPR sample period Reqg, 47
double num_samples;

unsigned int num _captures;

unsigned int capture_counter = 0;

unsigned int capture_intrvl;

int far *error = 0xC0000008;

long int far *act_pos_1 = 0xC0000010; /* pointers to DPR actual position Regs. */
long int far *act_pos_2 = 0xC0000014;

long int far *act _pos_z = 0xC0000018;

long int far *act pos_r = 0xC000CO01C;

int far *t 1 0xC0000020 /* pointers to DPR torque reglsters */

= |
int far *t_2 = 0xC0000022; |
int far *t_z = 0xC0000024;
art far *t_r = 0xC0000026;

int far *timing_a = UxC0000002; /* pointer to DPR timing A register */
int far *timing_b = OxC0000004; /* pointer to DPR timing B register */
int far *crommand 0xC0000006; /* pointer to DPR command register */
long int *c_a_1; /* pcinters to arrays of sampled joint positione #/
long int *s_c_a_1; /* a => actual, d => desired */

long int *c_d_1;

long int *s_c d_1;

long int *c_a_2;

long int *s_c_a_2;

long int *c d_2;

long int *s_c_d_2;

long int *c_a_z;



leng
loneg
long
long
long
lan
loneg
int
int
int
int
int
int
int
int
int
FILE

type

int *s_c_a_z;
.nt *c_ d_z;
int *s_c_d_z;
int *c_a r;
int *s c a_r;
int #*c d_r;
int. *s ¢ d_r;

‘et 1;

*s ¢t 1;

fc t_2;

*s c t_2;

*c L z;

*s c v _z;

c t 1}

*s_c_t_r;

., counter = 0;
tip;

def struct{

long type;

long mrows;
long ncols;
long imagf;
long namlien;

} Fm,

char *data_file_name = "2222%;

Fmat

atrix;

rix x;

/* pointers to arrays of sampled torques */

/* MATLAB header information */

/* DISPLAY PARAMETERS */

clrs

cr);

printf ("\t\tSERAJI DECENTRALIZED ADAPTIVE CONTROL\n\n");

printf {("Joint\t Weighting Factors

printf ("Prop Adaptation Gains");
tE(" W\t Wp\t

prin
prin
pri
05,21\t

ntf(* I\t

Wvit\tdelta alpha0 alphallt
tf (" betal betal\n\n"};
$05.2f

$05.2f\t305.2f $05.2f

wp 1, w 1, d1, a0 1, al_1, rho 1, b0 1, bl 1);
printf (™ 2\t

104.2f\n

"
'

$05.2f

$05.2f\t %05, 2f 205,2f

wp 2, wv 2, d 2, a0 2, al_2, rho 2, b0_2, bl_2);

pri
$05.2f\n

atf(* 2\t

%05.2f

$05.2f\t305.2f %05.2f

wp_ 2z, wv 7, d 2z, a0_z, al_z, rho_z, bO_z, bl_z);

pri
$05.2f\n

ntf (" r\t

305.2f

$05.2f\t%05.2f %05,2f

wp_r, w_r, d r, a0_r, al_r, rho_r, bO_r, bl_r);

/* CHANGF. PARAMFTER PROMPT */

printf ("\nChange any parameters? (y/n): ");

if(g

etch() == 'y')

printf("\n\n");
printf ("Change Weighting Factors? (y/n): ");

if (getch{) -= !

{

y') |

printf ("\n\n");

wp_l
wp 2
wp ¢
wp T

[ |

#

printf{("\n");

wv_1 = choose_new_gain("wv_1", wv_1)
wv_2 = choose_new_gain{"wv_2", wv_2}
wv_z = choose_new_gain("wv_z", wv_z)
wv_r = choose_new_gain("wv_r", wv_r)

}
printf ("\n");

choosc_new_gain("wp_1", wp_1);
cheose_new_gain{"wp_2", wp_2);
choose_new _gain("wp_z", wp_z);
choose _new_gain(“wp_r", wp_r);

.

-~

.
’
.
’

.
h

printf(*Change Integral Adaptation Gains? (y/n): ")
if (getch(}) == 'y*}) |
printf("\n\n");

d 1

C oo
“ NN
T

choose_new gain("delta 1", d_1);
choose_new _gain("delta_ 2", d_2);
choose_new_gain (“delta_z", d_z2);
choose_new_aain("delta r", d_r);
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rho");

$05.2f\¢t

$05.2f\¢t

$05.2f\t

$05.2f\t

")

$05.2f

$05.2f

$05.2f

%05.2¢f

$05.2f

$05.2f

%05, 2f

$05.2¢f



printf (*\n");
a0_1 = choose_new_gain("alpha0_l", a0_1);

a0_2 = choose_new_gain{"alpha0_2", a0_2);
al_z = choose_new_gain{"alpha0_z", a0_z);
a0_r = choose_new_gain(“alpha0 r", a0_r);
printf("\n");

al_l = choose_new_gain("alphal 1", al_1);
al_2 = choose_new_gain("alphal 2", al_2);
al_z = choose_new_gain("alphal z", al 2z):
al_r = choose_new_gain("alphal 1", al_r);

}
printf("\n");
printf("Change Proportional Adaptation Gains? (y/n}: ");
if (getch() == 'y') {
printf{"\n\n");
rtho_l = choose_new_gain("rho_1", rho_1);

rho_2 = choose_new_gain{"rho_2", rho_2);
rho_z = choose_new_gain("rho_z", rho_z):
rho_r = choose_new gain{“rho_r", rho_r);

printf ("\n");

b0_1 = choose_new_gain{“beta0_1", b0_1);
b0 7 = choose_new_gain("beta0_2", b0_2);
b0_z = choose_new_gain("betaO_z", b0_z);
b0_r = choose_new_gain{"betaO_r", b0_r);
printf ("\n");

bl 1 = choose_new_gain("betal_l1", bl 1);
bl 2 = choose new_gain{"betal_ 2", bl_2);
bl_z = choose_new_galn("betal_z", L1_z);
bl r = choose_new_qgain{"betal _t", bl_r);

}

/* DISPLAY INITIAL VALUES OF THE AUXILIARY SIGNALS */
printf ("\n\nAuxiliary signal 1 initially $1f\n", {_1):

printf (" A" \" 2 \" $1f\n", f 2);
printf (" \" \" 2z \n t1f\n", f_2):
printf (® \" \" r \" $1f\n", f 1)
printf (“*\nChange? (y/n): ");

if{getch() == 'y*)y |

printf{"\n\n");

f 1 = choose_new gain(™aux. sig. 1", {_1);
f 2 = choose_new_gain("aux. sig. 2", f_2);
f_z = choose_new_gain (“aux. sig. 2z", {_7);
f_r = choose_ncw_gain(™aux. sig. r", {_r);

}

/* DISPLAY CURRENT SAMPLING PERIOD AND PROMPT FOR A CHANGE */

sample_per = (double) (*sample_timer) /1000000;

printf ("\n\nThe sampling period is: %1f sec \tChange? ly/n]: ",wample per);

if(getch{() == 'y*') {
printf("\n\nEnter new sample period (in sec.): "):
scanf ("$1f", &sample_por);
*sample_timer = (unsigned int) (sample_per * 100000"7);
printf(“sample_timer = %x \n", *sample timer};
printf("press any key to continue ");
while(!getch()}:

}

/* CHECK ROBOT FOR OVER RUN ERRORS */
robot_error_check () ;

/* GET TRAJECTORY */
pp = choose_path_planner (sarple_per) ;
s_Pp = PP;

/* ALLOCATE MEMORY FOR DATA CAPTUKE
* Data from at least 1000 egually spaced sarpies are captured */
num_samples = Duration / sarple_per;
if (num_samples < 100C) {
capture_intrvl = 1; }
else {
capture_intrvl = (unsigned int) {nu~ samples/1000);}
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num_captures = {unsigned int) (num_samples/capture_intrvl};

1f{'{c_a_l=s_c a_l=(long int *)malloc(num_captures * 4 + 20})){
printf ("Not enough memory availablc  Aborting\n\n");
goto terminate; )

ifi!'{c_d_1=s_c_d_l=(long int *)malloc(num_captures * 4 + 20))){
printf ("Not enough memory available. Aborting\n\n"):
goto terminate; }

if(!{c_a_2=s_c a_2=(long int *)ralloc(num captures * 4 + 20))){
printf ("Not enough memory avuilable. Aborting\n\n");
goto terminate; }

if{t{c_d_2=s_c d 2={long int *)malloc(num_captures * 4 + 20))){
printf ("Not enough memory available, Aborting\n\n");
goto terminate; }

if(!{c_a_z=s_c_a_z=(long int *)ralloc(num captures * 4 + 20))}}{
printf ("Not enough memory available. Aborting\n\n"):
goto terminate; }

1f(!(c_d_z=s_c d_z=(long int *)malloc(num captures * 4 + 20)}){
printf ("Not enough memory avallable. Aborting\n\n");
goto terminate; }

if{!{c_a_r=s_c a_r={long int *)malloc(num_captures * 4 + 2U))){
printf ("Not enough memory available. Avorting\n\n“);
goto terminate; }

if(!tc_d_r=s_c_d r=(long int *)malloc (num_captures * 4 + 20))){
printf ("Not enough memory available. Aborting\n\n"};
goto terminate; )

if('c_t 1 = s_c t 1= (int *)malloc(num captures * 2 + 20)}){
printf ("Not enough memory avallable, Aborting\n\n");:
goto terminate; )}

if('(c_t_2 = s_c_t_2 = (int *)malloc(num _captures * 2 + 20))){
printf ("Not enough memory avallable. Aborting\n\n");
goto terminate; |}

If('{c_t_z = s_c t z = (int *)malloc(num captures * 2 + 20))){
printf ("Not enough memory avallable. Aborting\n\n");
goto terminate; }

if(!fc_t_r = s_c_t_r = {int *)malloc(num_captures * 2 + 20))){
printf ("Not enough memory available. Aborting\n\n"}:
goto terminate; |}

/* PROMPT TO BEGIN EXECUTION */
delline();
printf ("\r (A)lbort or (Blegin the move? \n"};
do {
switch({ch = tolower{getch())) {
case 'a'; goto terminate;
case 'b': Dbreak; /* continue */
default : delline();
print{ (*"\rINVALID CHOICE, TRY AGAIN: ");
)
} while(ch '= 'a' && ch '= 'b');

/* BEGINNING OF THE MOVE */
clrser();
printf ("\U\t\tEXECUTING");
spo2 = sample per / 2;

{f(*(pp+28) - *(pp+0) < 0) =~f 1;
if(*(ppt29) - *(pptl) < 0) = ~f 2;
if(*(ppt30) - *{pp+2) < 0) = -{ z;
1f(*{pp+31) - *{pp+3) < 0) = -f r;
d_lspo2 = d_1 * sample per ;
d 2spo2 = d_2 * sample_per H
d_zspo2 = d_z * sample_per H
d_rspo2 = d_r * sample_per ;

a0_2spo2= a0_2* sample_per
a0_zspo2= a0_2* sample_per
a0_rspo2= a0_r* sample_per
al_lspo2= al_l* sample_per
al_2spo2= al_2* sample_per
al_zspo2= al_z* sample_per
al_rspo2= al_r* sample per
*command = OxC001;
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while( (*pp != Oxffff0000) && (*error == 0) } {

/* wait for signal from slave to begin a new sampling period */
while(! (*timing_a & 0x0001));

/* store current parameters as previous (last) parameters */
fll=f€1, £21=¢f2, f 21 =f 2, frl="¢fr;
ril=1r1, r2l=r2 ral=rz rrl=rr;
kp_l1 kp 1, kp 21 = kp_2, kp_zl = kp_z, kp_rl = kp_r;
kv_11 = kv_1, kv_ 21 = kv_2, kv_zl = kv_z, kv_rl = kv_r;
ell=e 1, e2l'=e2, e 2l =e_c, etl =e_r;
edot_11 = edot 1, edot_21" = edot_2, edot_zl = edot_z, edot_rl = edot_r;

/* wait for position */
while{!{*timing a & 0x0002));

/* compute joint position error in degrees and capture robot state */
el = ((*c_d_1 = *pp++) - (*c_a_1 = *act_pos_1))/872.2222;

n

e2= (('c_d_2 = *pp++) - (*¢c_a_2 = *act_pos_2))/444.4444;
e_z = ({*c_d_z = *pp++) - (*c_a z = *act_pos_z))/380.9600;
er= ({*cdr =1*pp++) - (*c_a_r = *act_pos_r))/227.55b5;

/* compute joint velocity error */

edot 1 = (e_l - e_ll)/sample_per;
edot 2 = (e 2 - e_2l)/sample_per;
edot_z = (e_z - e_zl)/sample per;
edot_r = (e_r - e_rl)/sample_per;

/* compute weighting errors */
rl=wp l*e_ 1 + wv_l*edot 1;
wp_ 2*e 2 4+ wv 2*edot 2
wp_z*e_z + wv_z*edot z;
wp_r*e_r + wv_r*edot_r;

r2
r_z
rr

/* compute auxiliary signals */

£1=1¢f11 + d_lspo2*(r_l+r_11) + rho_1*(r_l-r_11);
£2= €21 +d _2spo2*(r_2+r_21) + rho_2*(r_2-r_21);
£ 2z="f 2zl +d_zspo2*(r_z+r 21} + rho_z*{r_z-r_zl);
fr=1f rl + d_rspo2*{r_r+r_rl) + rho_r*(r_r-r_ri);

/* compute gains */

kp_l = kp_11 + a0_lspo2*(r_l*e_1 + r_ll*e_11) +
bO 1*{r_1%e_1 - r_il*e 11);

kp 2 = kp_21 + aO_ZspoZ"(r_Z‘e_Z + r_2l*e_21) +
b0_2*%(r_2%e_2 - r_2l*e_21);

kp_z = kp_zl + a0_zspo2*(r_z*e_z + r_zl*e_zl) +
b0_z*(r_z*e_z - r_zl*e_zl);

kp r = kp rl + a0_rspo2*(r_r*e_r + r_rl*e_rl) +
bO0_r*(r_r*e r - r_rl*e_rl);

kv_1 = kv 11 + al_Ispo2*(r_l*edot_1 + r_ll*edot_1') +
bl_1*(r_l*edot 1 -r 1l*edot_1l1);

kv_2 = kv_21 + al_2spo2*(r_2*cdot_2 + r_2l*edot 21} +
bl_2*(r 2*edot_2 - r_2l*edot_21);

kv_z = kv_zl + al_zspo2*(r_z*edot_z + r_zl*edot zl) +
bl_z*(r_z*edot_z - r_zl*edot_zl);

kv_r = kv_rl + al_rspo2*(r_r*edot_r + r_rl*edot_rl) +
bl_r*(r_r*edot_r - r_rl*edot rlj;

/* compute torques */

*c t 1 = *t_1 = (int) (0x0800 + e 1*kp_ 1 + edot 1*kv 1 + f 1};
*ct 2 = *t 2 = (int) (Ox0800 + e _2*kp_2 + edot_2*kv 2 + f 2);
*c t z = *t_z = (int) (Ox0800 + e_z*kp_z + ecdot_z*kv ¢ + {_7);
*c t r = *t_r = (int) (0Ox0800 + e_r*kp_r + edot_r*kvr + f{ r);

*timIng_b = 0x0001; /* tell 196 that torques are ready */

/* capture data every capture interval */
if(!capture_courter) |{
*c_d_1+4+;
*c_d_2++;
*c d | ze+;
*c d T++;
*ca 1+4;
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*C_a_2+4;
*c_a_z2+4;
*C_a_r+4;
tc_t_144;
fo_t_2+4;
fo_t_z+e;
fc t_r+¢;
counter++;
capture_counter = capture_intrvl - 1;
)
else {
capture_counter--;

}

/* indicate end of sample periou */

}

*timing_a = 0x0000;

/* INDICATE END OF COMMAND */
*command = O0x0000;
*timing b = 0x0000;

/* DISPLAY SUCCESS OF EXECUTION */
delline();
1f(*error) {

YA

/Q

/*

/*

/Q

)

printf ("\n\n\tCommand terminated prematurely because:\n\n");
display_errors (};

else |

open

save

save

save

save

printf ("\n\n\t\t\tCommand executed normally.\n\n");
printf ("\t\tSaving %i data samples to disk. Please wait.\n\n", counter),
cal=s_cal; /* reset the pointers */
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ctr=s_:tr;
file for saving to disk */
if ({fp=fopen{"robot ,mat","wb"))==NULL) {
printf(“cannot open file. Abortirg\n");
got.o terminate;
}
X.imagf = 0;
x,namlen = 5;
X.mrows = counter;
a vector called 'torl' (joint 1 torque) to disk */
X.type = 30; /* data is signed int type */
X.ncols = 1;
data_file_name = “torl®;
fwrite(sx, sizeof (Fmatrix), 1, fp);
fwrite(data_file_name, sizeof(char), x.namlen,fp);
fwrite(c_t_1, 2, counter, fp);
a vector called 'tor2' (joint 2 torque) to disk */
data file name = “"tor2";
fwrite(&x, sizeof (Fmatrix), 1, fp);
fwrite(data_file name, sizeof(char), x.namlen, fp);
fwrite(c_t_2, 2, counter, fp);
a vector called 'torz' (joint z torque) to disk */
data_file_name = “torz";
fwrite(&x, sizeof (Fmatrix), 1, fp):
fwrite(data_file_name, sizeof(char), x.namlen, fp);
fwrite(c_t_z, 2, counter, fp);
a vector called 'torr' (joint r torque) to disk */
data file_name = “torr";
fwrite(&x, sizeof (Fmatrix), 1, fp):
fwrite(data_file_name, sizeof(char), x.namlen,fp};
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fwrite{c_t_r, 2, counter, fp);
/* save sample period and capture interval to disk */
X.type = 0; /* data is double precision */
X, mrows = 1;
data_file_pame = "smpl";
fwrite(sx, sizeof (Fmatrix), 1, fp);
fwrite(data_file_name, sizeof(char), x.namlen,fp);
fwrite(&sample_per, 8, 1, fp);
X.type = 0040; /* data is unsigned 16-bit */
data_file_name = "invl";
fwrite(sx, sizeof(Fmatrix), 1, fp:;
fwrite(data_file_name, sizeof (char), x.namlen,fp);
fwrite(ecapture_intrvl, 2, 1, fp);
/* save a matrix called 'posl' (joint 1 position) to disk
* column 1 = desired position of joint 1
* column 2 = actual position of joint 1 */
x.type = 20; /* data is long int type */
X.ncols = 2;
X,.mrows = counter;
data_file_name = “posl";
fwrite(sx, sizeof (Fmatrix), 1, fp);:
fwrite{data file_name, sizeof{char), x.namlen,fp);
fwrite(c d_1, 4, counter, fp);
fwrite(c_a_l1, 4, counter, fp);
/* save a matrix called 'pos2' (joint 2 position) vro disk
* column 1 = desired position of joint 2
* column 2 = actual position of joint 2 */
data file name = “pos2“;
fwrite(sx, sizeof (Fmatrix), 1, fp);
fwrite(data_file_name, sizeof(char), x.namlen,fp);
fwrite(c_d_2, 4, counter, fp);
fwrite(c_a_2, 4, counter, fp);
/* save a matrix called ‘posz' (joint z position) to disk
* column 1 = desired position of joint 2z
* column 2 = actual position of joint z */
data_file_name = “posz";
fwrite(&x, sizeof(Fmatrix), 1, fp):
fwrite({data_file name, sizeof {char), x.namlen,fp);
fwrite(c_d_z, 4, counter, fp);
fwrite(c_a_z, 4, counter, fp);
/* save a matrix called 'posr' (joint r position) to disk
* column 1 = desired position of joint r
* column 2 = actual position of joint r */
data_file_name = “posr";
fwrite(sx, sizeof (Fmatrix), 1, fp):
fwrite(data_file_name, sizeof(char), x.namlen,fp);
fwrite(c_d_r, 4, counter, fp);
fwrite(c_a_r, 4, counter, fp);
fclose(fp):
}

/* FREE ALLOCATED MEMORY */

terminate:
if(s_pp) farfree(s_pp);
ifis_c_a 1) free(s_c a_1);
if(s_c_d 1) free(s_c_d_1);
if(s_c_a 2} free(s c_ a_2);
if(s_c_d 2} free(s_c d 2);
if(s_c_a_z) free(s_c a_z);
if(s_c_d z) free(s_c d z);
if(s_c_a r) free(s _c_a_r);
if(s_c_d r) free(s_c d r):
if(s_c_t_ 1) free(s_c t_1);
if(s_c t_ 2) free(s c t_2);
if(s_c t_z) free(s _c t_2);
if(s_c_t r) free(s c t_r);
printf ("\t\t\tPress any key to continue ");
while(!getch(});
return;

159



/t’ttﬁ..’...’.'.’i.' R RN PN R R AR AR I AR R AR R AR R A AR RN N R AR P AN R AR AR AR A AR R AR AR AR KRR AR AR
»

* CUBIC.ROB -~ A cubic spline path generator that incorporates via points,

* Velocity at the via points is automatically chosen.
*
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#include "alloc.h"
#include "stdio.h"

void get_cartesian_position(); /* function prototypes */
void get_joint_position();

void get_time();

crp_sign(double, double);

extern double Duration; /* global variable declared in utility.rob */

long int huge *cubic_spline(double sample per)
{
char ch;
int i, 3, error, num_via_points;
double s1, s2; /* slope 1, slope 2 */
long int pos(10][4}; /* A two dimensional position array.
* A row for each specified path point.

* column 0 = joint 1 pulse count

* " 1 = " 2 " "

* " 2 = " z L} "

* " 3 = " r " " * /

long int position(41;
double vel[10][4} = { /* A two dimensional velocity array */

' 'O, /* A row for each specified path point */
’ .0, /* column 0 = joint 1 velocity */

' ) /* " 1= " 2 " */
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double al4]{4}; /* two dimensional array of coefficients */
double time{l0];
double t, t2, t3, tf, tf2, tf3;
long int huge *path point; /* pointer to starting address of path */
long int huge *s_path_point; /* a place to save this value */
unsigned long int num_bytes mem_reqg;
long int far *current_pos = 0xC0010000;

/* DISPLAY CURRENT POSITION */
clrscr();
printf ("\tCUBIC SPLINE PATH GENERATOR WITH VIA POINT CAPABILITY\n\n");
printf ("Features: *current robot position is automatically taken ");
printf{"as the initial\n");
printf (" position of the move\n");
printf (" *velocity at the via points is automatically computed\n\n");
current_position();

/* GET CURRENT POSITION (from DPR) */
pos (0] [0] = *{current_pos++);
pos|{0]{1] = *{current_pos++);

pos{0} (2] = *{current_pos++};
pos{0]{3] = *{current_pos);
time{0} = O;

/* GET # OF VIA POINTS AND CHOICE OF SPACE */
printf{"\nWill you be entering data in {C)artesian or (J)oint space? ");
ch = getch();

printf("\nEnter total number of via points (Max. B): “):
scan{ ("%i", &num_via_points};

/* GET DURATION OF THE MOVE AND CREATE STORAGE AREA FOR THE PATH */
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printf{"Enter duration of the move (in sec.}): ");
do {
scanf ("$1f", stime[num_via_points+1]);
Duration = time({num_via_points+l};
num bytes_mem_req=(unsigned long int) (4*4*Duration/sample por+20+100);
/* 4 = four joints
* 4 = four bytes per joint per sample
* Duration/sample_per = total # of samples
* 20 = four bytes extra per joint + 4 byte flag
* 100 = safety margin */
path_point=(long int huge *)farmalloc(num bytes mem_req);
if ('path_point) |{
printf("Insufficient memory for a %1f",Duration);
printf ("second move.\nEnter a shorter duration: *);
}
} while (!path_point);

/* PROMPT FOR VIA POINTS AND FINAL POINT */
for(i=1; i<=num_via_points+l; i++) { /* for each via point */
1f{i != num _via_points+l) printf{("\nVia point no. %i:\n", 1i);

else printf ("\nFinal point:\n");
if(ch == 'c') get_cartesian_position(&pos(i][0]):
else get_joint_position{spos(i]|0]);

if(i != pum via_points+l) get_time(stime(i]);
}

/* COMPUTE THE VELOCITIES AT THE VIA POINTS */
for(i=1; i<=num _via points; i+4) { /* for each via point */
for{j=0; 3<=3; j++}{ /* for each joint */
sl = (double) (pos{i+1][jl-posli) 3]} / (time([i+1]) - timelil]):
s2 = (double) (pos(i}[j}-pos{i=11{]l) / (time[i} - tim (i-11};
if(cmp_sign(sl,s2)) vel(i}[jl = O;
else velli)[j] = (sl + s2)/2; /* the average of the two */

}

/* COMPUTE AND STORE THE PATH */
printf ("\n\n\t\tCOMPUTING THE PATH. PLEASE WAIT")};
s_path_point = path point;

t = 0.0;
tf = 0;
for (i=0; i<=num_via points; i++) { /* for all points (beginning at 0) #*/
t=t -tf;
tf =t ~[i+1] - timel(i];
tf2 = .7 * tf;
tf3d = tf2 * tf;

for(j=0; j<=3; j++) { /* for each joint */
a(31(0] = pos(i](3}:

alj}l] = velli)[jl}s
atyi(2} = 3*(pos(i+1}ljl-alj]i0))/ef2 - (2*a(j][1)+veliisi][3])/LL;
aljl (3] = -2*(pos[i+1]{j)-aljl(0})/tf3 + (vellitl]ljl+alfl 1N /tl2;

}

for(; t <= tf+sample_per/2; t += sample_per) ({
t2 =t * t;
t3 =t2 * ¢;
*path_point++ =(long int) (al0] [0)+a[0]{1]*t+a[0)[2j*t2+al0][3]*L3+0.9);
*path_point++ =(long int) (a[l]{0)+all)(l]*t+all]{2)*t2+a(l][3]*L3:0.%);
*path_point++ =(long int) (a{2] [0}+a{2]11)*tvaf2}{2}*L2+a(2]13)*L3:0.9);
*path_point++ =(long int) (al3] [0)+a(3](1)*t+al3}(2]*L2+al3]([3]*LY);

}
}
*path point = Oxffff0000; /* end-of-path flag */

return(s_path_point);
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*

* CYCLOID.ROB - Cycloidal path generator

*
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§include "alloc.h™
#include "stdio.h"
#include "math.h*

void get_cartesian_position(); /* fucntion prototypes */
vold get_joint_positior();

extern double Duration; /* global variabl declared in utility.rob */

long int huge *cycloid{double samrle_per)

{
char ch;
long int pos(4); /* a vector to hold desired final position */
long int huge *path point; /* starting address of path */
long int huge *s path_point; /* place to save this value */
unsigned long int num_bytes_mem_req;
long int far *initial_pos = 0xC0010000;
long int i _1p = *(initial_pos + 0);
long int i 2p *(initial _pos + 1);
long int i _zp *{initial_pos + 2);
long int i_rp *(initial_pos + 3};
double d1, d2, dz, dr;
double t, w, factor;

/* DISPLAY CURRENT POSITION */
clrser();
printf ("\t\t\tCYCLOIDAL PATH GENERATOR\n\n");
current_position();

/* GET FINAL POSITION */

printf ("\nWill you be entering data in (C)artesian or (J)oint space? "});

ch = getch();

printf ("\n\nFinal point:\n");

if(ch == 'c') get_cartesian position(&pos{0]);
else get_joint_position(spos|0]);

/* GET DURATION OF THE MOVE AND CREATE STORAGE AREA FOR THE PATH */
do {
printf("\n\tEnter Duration of the move (in sec.): ");
scanf("$1f", gDur-tion};

num_bytes_mem reg-(unsigned long int) (4*4*Duration/sample_per+20+100);

/4 four joints

* 4 four bytes per joint per sample

* puration/sample per = total # of samples

* 20 = four bytes extra per joint + 4 byte flag

* 100 = safety margin */
path_point={(long int huge *) farmalloc(num bytes_mem_req) ;
if (‘path_point) printf ("Not enough memory in far heap\n");

} while ('path_point);

[

/* COMPUTE AND STORE THE PATH */

printf {("\n\n\t\LtCOMPUTING THE PATH. PLEASE WAIT"),

s_path_point = path_point;

w =2 *MPI / Duration;

dl = (pos|0}-i_1p)/{2*M_PI), d2 = (pos{l]l-i_2p)/(2*M PI);

dz = (pos[2]=-i_zp)/(2*M_PI), dr = (pos|{3]-i_rp)/{2*M_PI});

for{t = 0.0; t <= Duration + sample per/2; t += sample_per) {
factor = (w*t - sin(w*t));
*path_point++ = (long int) (i_lp + dl*factor + 0.5);
*path_point++ = {long int) (i_2p + d2*factor + 0.5);
*path_point++ = {long int) (i_zp + dz*factor + 0.5);
*path_point++ = {long int) (i_rp + dr*factor + 0.5);

[ R N ]

)
*path_point = Oxf{ff0000; /* flag at end of path */
return(s_path_point);
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