N
Bl e

Acquisttions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographijues

395 Wellington Street
Ottawa, Ontano
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governad by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

il

Canada

395, rue Wellington
Ottawa (Ontaro)

Your e Volre reterence

Our tle Note 1 e e

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec [l'université
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

THE DESIGN OF DISTRIBUTED SYSTEMS USING
PARTIAL CONSTRAINTS

Ramesh Ahooja

A Thesis
in
The Department
of

Electrical Engineering

Presented in Partial Fulfillment of the Requirements
for the degree of Doctor of Philosophy at
Concordia University
Montreal, Quebec, Canada

June 1991

©Ramesh Ahooja, 1991.

Bl e

Acguisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions el

Bibliographic Services Branch des services bibllographiques

395 Wellington Street
Ottawa, Ontano
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Your hier Vol ioferem e

Our bie Notre ieforemc e

L’auteur a accordé une licence
irrévocabie et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celleci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

[SBN B-315-80980-9

Canada

ABSTRACT

The Design Of Distributed Systems Using Partial Constraints

Ramesh Ahooja, Ph.D.
Concordia University, June 1991

Ergineering the design and formal specification of 'open’ Distributed Systems and
Protocols is considered. The complexity of Distributed System behaviour makes design
difficult, often resulting in intractable algebraic specifications. Verification of infinite
behaviour using Bisimulation Equivalence has been shown to be undecidable. The partial
constraint methodology of design and specification is elaborated in this thesis. The novel
and original notion of partial constraints is used in the strategy of designing systems with
distributed behaviour. Partial constraints result in partial specifications tractable to
verification analysis. The design strategy relates actions of a distributed system in a
communication environment to requirements and system architecture. A satisfaction relation
between partial constraints and generic process algebraic behaviour expressions is defined.
The design relation provides guidelines for system design and specification, while the
satisfaction relation forms the basis of verification. The method proves to be powerful
enough to capture complex procedures of important protocols such as the OSI Transport
protocol in algebraic specifications. The tractability of verifying resulting specifications is

illustrated by means of the OSI Transport and the Alternating Bit protocols.

iii

DEDICATED T0 MY PARENTS
BALWANT XAUR AND RAMSINGH.
AND T0 MY WIFE JOSEE AND OUR CHILDREN

iv

Acknowledgements

Acknowledging the contribution of all the people who made the writing and
completion of this thesis possible is an immensely gratifying task for myself. In the time it

took to write this ihiesis, I received the support and encouragement of many people.

Without the help of Professor P. Ziogas-Chairman, E.E. Department, this thesis
would not have seen the light of day. My heartfelt gratitude goes to him. Professor Ziogas
is that rare academician, whose extremely sensitive and just attitude towards graduate

students w.ll always be remembered.

I thank Dean M.N. Swamy for his crucial support. His support enabled me to

finish my program in a very successful manner.

I thank my supervisor Professor Dr. K. Thulasiraman. Professor Thulasiraman
encouraged me throughout the writing of this thesis. Support from a person of such
immense technical competence and ability were a major motivation for me to complete this
thesis. I thank Professor R.P. Zeletin, for generously allowing me to work in execellent

facilities for research activities in open communication systems.
I thank Professor L. Logrippo-University of Ottawa, for being a friend and
mentor (even though he is reluctant accept the mentor role). Dr. Logrippo gave me the idea

of writing a thesis on system design.

I thank Dr. B. Sarikaya, for supervising me in the early part of the program.

I thank Dr. Anindya Das, for spending a lot of his valuable time, reading and
commenting this rhesis. His suggestions were extremely insightful, sometimes leading to

discussions which greatly improved the quality of this thesis.

[also thank S. Palacherla and R. Prasad for providing me with logistical support

during my frequent trips to Moistreal for this thesis.

And finally, I thank, Professor C. Vissers, G. Scollo, E. Brinksma, E. Najm, T.
Bolognesi, and all the colleagues and friends associated with LOTOS in Europe and north

America whose work in the area of formal specifications made this thesis significant.
Of course this acknowledgement would not be complete if I did not thank my

comrade in life, my wife-Josee Biard, whose constant help, and backing through thick and

thin with unceasing care of our children, made it all possible.

Vi

Table of Contents

LIST OF FIGURES AND TABLES..........ccociiiiiiiiiiiiinciie e xi
LIST OF SYMBOLS.......ootiiiiiiiiiceicnen e X
LIST OF ACRONYMS o XV
CHAPTER
1 INTRODUCTION..ciiiiiiiiiiiiiiaiieraererieenanin, Ceeeseisiieeneeasiiaes 1
1.1 Nature of the thesis ..., 1
1.2 Motivation For The Thesis.....ccoivviiiiiiniiniiiiiiis 2
1.3 The Scope Of The Thesis.....cccocioimmmiiriiiii 4
1.4 ContribUtIONS . coiiiiii e 6
1.5 The Development Of Open Distributed Systems........c.ccovviivriincinnnne 7
1.5.1 System Design Developmentcccoooviiiniiiiiiiiiniiinniin, 7
1.5.2 Formality Of The Model For Design.......cccccooviiiininiiniininnn. 7
1.5.3 Criteria For Model Selection.......ccccococeniiiiiiiiiiniiiiinninnnn, 8
1.6 Essential Features Of Distributed System Behaviour.........ccooceoeenieiin. 10
1.7 Design ODbjJeCtives......ccoviiiiiiiiiiiiiiiiiniiiinr s 13
1.8 Contents Of The Thesis.....cccccoiiiiiiiiiniii e, 17
2 Models For Behavior Specifications.......cccoivieeiiiiriiiinenniiiannnns 18
2.1 Formal Models......ccc. coviiiiiiiniiiiiii 18
2.2 General Requirements for Formal Models...........occooiiniin 22
2.3 Application Specific Requirements.........c.cccoovviiviiii o, 23
2.4 Domains of Formal Models..........ccoviiiiiinnnn, 25
2.5 A Conceptual View of Validation and
Verification....oocooiiiiiiiii i 28

3 Distributed System Behaviour............... revseees Crereeseraseniieesnrane 32
3.1 Behaviour Models Of Distributed Systems.......c.covviiieniiiininiinnieninn, 32
3.2 Process Algebraic Models.......ccccovcecneieniiiiiiiiiiiiine 37
3.3 Behaviour Expressions Of Processes.......cccocvviiiiiiiiinnnniiniienneenn, 42
3.4 Observational Equivalenceooevimiiiiiiiiiiiiiiiiiii e, 44

3.4.1 Definitions Of Observational Equivalence.........c.cccoevvnvininnnae, 45
3.5 Initial Algebra Semantics And Behaviour.........c.ooiiiiiiiininnninn 50

4 Distributed Systems - Services And Constraints.........ccoieeeeenn. .54

4.1 Service Requirements And ArchiteCtures......ccoioviiniiieniiiieininnn, 54

4.1.1 Formal Notions of Service........cccccooviiiiiiiiiiniiiniiiiniiennnnnnn. 56
4.2 Service SpecificatiOnS......cocciiiiiiiiiiniiiiiiii 56
4.2.1 Algebraic Type Specifications........coccevnviiiiiniiineniiiiinnennnnnns 57
4.2.2 Finite State Machine Based Specifications........cccccecvvivececnennnne 58
4.2.3 Process Algebraic SpecificationS.......ccoviiviiiiniiiniiiiiinenne, 58
4.3 Service Design And Specifications........ccccviririciiinnieniiciinecininnne 58
4.3.1 Constraints And DeSIgN ..occcvveeirrmieiiiiiiiiiiiieieneesennns 59
4.3.2 Constraint-oriented Specifications...........ccccccvvmeeevennnnnne 59
4.3.3 CoONSIaINTS..ccoceeeiniiiinr et serirtteeenrineasesen s 63

4.3.4 Non-determinism, Communication
And The EnvVirONMENt.....c.cocoivrrinnciniiieieenrinnnenceennnne 66
4.4 Constraint RelationsS.......occceruuiiiiiirineiiniiiiii e cenieeeesesennns 70

viii

[-

Pl 7 7 T

5 Open Distributed System Architecture - A Logical View.................. 94
5.1 Constraints And ArchiteCture........cooeivmiiiieiieririiiniieeee e, 94
5.2 Minimum And Maximum Constraints........ccccccevviiiie vveviiiiieevnneennns 100

5.2.1 Uni-directional Communication...........cccocouvivvivnriimnininnnnennnnn. 101
5.2.2 Bi-directional Communication.........cccccoeiiiiiineeiiniiiinneen e, 105
5.3 Functionality Of Behaviour EXpressions.....c....ccccceieveeiiniinnvennnnnann, 111
5.4 Partial Constraints And Design Criteria.....ccccccoeeerviciiniinin v, 117
5.4.1 Constraints And Algebraic Specification........cccc.covvivvinnnnnnn. 17
5.5 Design And Specification Using Partial Constraints............cccovvvenne.. 120
5.5.1 Design Criteria...cccciieiiiieii i e 121
5.5.1.1 Partial Constraint Construction.........ccceeeevvvreennneenn. 121

5.5.1.2 Architectural Constraint Construction............ccc.uuuu..... 122

5.5.1.3 Behaviour Specifications FFrom
Partial Constraints........cco.ovieieeiiniiinniiiiiee e, 124

5.6 An example - The Alternating Bit Protocol........cccceeeevvvvviieeevvennee, 128

6 Distributed System Specification - Validation And

Verification..ciiiieereiiiiiiiiiiiiiiiiiiiiiiiiiiciiiiiiiiisinisissennes 147
6.1 Validation And Verification.........cceoeiiiiiiiiiiiiiiiiniiiiic e, 148
6.1.1 Program COrreCtnessS...ccvieiiieiiriiieiiriiieeneeeeirieenieeeereraeeenns 149
6.1.2 Validation Of Partial Specifications.........ccceceeveiiiiviiiniennnnnn.n. 149
6.1.3 Verification of Partial Specifications.........c.ccccoeevnviviniieereinne. 151
6.2 Validation of the Transport protocol..........cccecovvervrinniniieeinerenneens 157
6.3 Validation Method.......cccooviiiiiiiiiiiiiiniii e, 164
6.4 A Proof technique For Verification.........cccccoevrinieiinniiiiniiniieneennnen. 183
6.4.1 Proof Technique........c.ccviiiimmmmiiiniiniiiiiiciciiecnceiieene 183
i X

6.5 Verification Of The Alternating Bit Protocol.........cccccvvnniiniinninnene, 191

6.5.1 VerifiCation ProofS. . it iie ettt eteireeareeeatirneaeenenenns 195
7 CONClUSIONS. . iiiiireeiereenersenssesconons vececnas vesesses Ceeestteneaneanne 201
References
X

L AR O DI

LIST OF FIGURES AND TABLES

FIGURE

1.1 Layerzd Architecture of the OSI reference model.......overiniinnninnnnnnnn, 10
2.1 Domain of formal models of behaviour..........cccovviiiinniiininiiiiiin 25
2.2 Formal specificaion of a circle........ccccoviiiniiiiinnniniieniniiiiin, 29
2.3 Conceptual tools of a description model..........ocooiniiniinnnninnin, 29
2.4 TFormal specification of a circle with graphic schemata.............cooeiiiiin. 29
3.1 State transition diagram of the Transport protocol...........cccoiiniiiiiiinnnnnn 36
3.2 The DT for the expression for P, 43
3.3 The action tree of P..oooociiiiiiiiiiiiniiii i e 43
3.4 Deadlock due to T-action in an action trEE.......cccceevivniiiiininiiinioninnieennnnee 44
4.1 Interactions at Service Action POINts.........ccccceeriininiiniiniiininininne e 393
4.2 Action trees of Pl and P2......ccccciiiiiiiniiiiiii 65
4.3 Poset diagrams for Pl and P2........cooiiniii 68
4.4 A computation in a communication environmenl........ccoveeierniiareenineaeenenne 82
4.5 Minimum and maximum action trees at depth 1 and 2............cccovviniiinnnnn 88
4.6 The (UEUE PIOCESS.....cciiiimiiiiiiiiiieniiniiiier e ae e sreereesbanniees 88
47 Decomposition Of QUEUES........coiviiiiieiiriiiiiiiiiie e s 90
5.1 AN '0F' CONSITAINL..c.iiuiiiiiieeiotiiiiei it iiri e e e e ra s eaen e 98
5.2 Process architecture of system behaviour..........cccoeiiiiininiinniiineennnn, 98
5.3 Distributed Architecture of Process S........cccvirmiiinniiiiniiiii. 99
5.4 A precedence constraint as a behaviour action tree.......ccoeevveniiiiniinnnnne, 100
5.5 Choice and precedence trees of a two way COMMUNICALION.......cvrerrveneiunec. 106
5.6 Process graphs for parallel composition........cocvoveriiiniiinenieiniiiniininne 114

Xi

5.7 The Alternating Bit Protocol.....ccccoiiiiiiiiiiiiinn e, 129

6.1 Logical structure of the OSI Transport protocol........ccceeeeviiivenninenninninnnns 158
6.2 Successful TC establishment.........cociiiiininii, 167
Table 3.1 State labels in an LTS description-Transport.........coouiimnieiiiinniinnn 37
Table 3.2 Action labels of an LTS - Transport........cvieciiiinnnninneeieece e, 37
Table 3.3 CCS expressions = Sy aX.......cccccieiiiereriiiinreinin e, 41
Table 3.4 Semantics of CCS....iiiiiiiiiiiii e 41
Table 3.5 The se: of operators £2 of ACP........ccociviiiiiviiiiiiiiiiiiiiinn 51

Table 3.6 Axioms of ACP

Xii

—-Qt-->

o,B.y...

{Ai)

®

NIL

LIST OF SYMBOLS

Xiii

Modal operator 'henceforth’
Modal operator 'eventually’
Transition of a process from with

observation of an action a.
Atomic actions of an Environment
Belongs to

A Heterogenous Algebra

A collection of Operations of a
heterogenous algebra

An operation of a heterogenous
algebra

The silent unobservable action of a
CCS process

The silent unobservable action of a
LOTOS process

The CCS,ACP Choice operator
The CSP,LOTOS Choice operator
Parallel Composition of CCS,ACP
Parallel Composition of
LOTOS,ACP

The LOTOS interleaving operator
Successful termination action of
The null action

Guarded Recursion Equations
LOTOS, or encapsulation operator of
ACP

X1iv

A CCS behaviour expression
"0-equivalence" of Processes

"K-equivalence" of Processes
Set Intersection
Congruence

Non-deterministic ‘or'
Communication 'and’
Derives, satisfaction relation
implies
equivalent to
For all
There exists
Less Than
Less Than or Equal To
well-formed formulae
The Non-deterministic relation
between actions
The Communication relation
between actions
The Concurrency relation
between actions

LTS
ISO
OSI
BRM
PE1
PE2
FDT
LOTOS

ESTELLE

SDL
CCS
CSP
ACP
OBJ
ACTONE
FTS

DT
ASP

SAP
FSM
ADT
ABP
Pc

pc

LIST OF ACRONYMS

Xv

Labelled Transition System
International Standards Organisation

Open Systems Interconnection

Basic Reference Model

Peer Protocol Entity 1

Peer Protocol Entity 2

Formal Description Technique

Logic Of Temporally Ordered
Systems

Extended Finite State Machine
Specification Language

System Description Language
Calulus of Communicating Systems
Communicating Sequential Processes
Algebra of Communicating Processes
Data Type Specification Language
Data Type Specification Language
Finite Transition System

A CCS Derivation Tree
Abstract Service Primitive

Service Access Point
Finite State Machine
Abstract Data Type
Aliernating Bit Protocol

A set of Partial Constraints
A partial Constraint

"Wipe your glosses with what you know"

- James Joyce

Chapter 1

INTRODUCTION

1.1 Nature Of The Thesis

This thesis is on the design and specification of Open Distributed Systems.
Computer Systems with parts distributed over geographically separate computers which
use underlying services provided by physical communication networks, to commaunicate
and co-operate, are called distributed systems. The International Organisation for
Standardisation (ISO) considers a system to be 'open’, if it adheres to recommendations
contained in ISO-Standards documents for Open Systems Interconnections (OSI). OSI
standards describe behaviour mechanisms which enable real computer systems to
communicate and interwork in a network of heterogeneous computers to achieve a
common (distributed) task. To support the development of open distributed systems 1SO
has provided standardised architecture in the form of the seven layered Basic Reference

Model (BRM) |41]. Architectural details of the BRM are discussed in the sequel.

Two decades of maturing coupled with a profound integration of two distinct but
complimentary technologies has resulted in an explosion of communication services. The
breathless pace with which the modem computer has come of age in computational power
is equalled only by the unimaginable capacity and variety of communication services
offered by the other, the telecommunication network. The new integrated technology

1

called "telematics' in turn has led to widespread activity in the development and use of

distributed systems.

In telematics, underlying telecommunication networks provide communication
services to distributed systems. Distributed systems development implies the combination
of computer and network services. The issue of design and implementation of such
systems gives rise to simultaneous orthogonal challenges: that of developing a powerful

tool, indispensable to information systems, and yet complex to design and analyse.

Users of a distributed system make use of an information system with a
distributed implementation. On the one hand, the system appears to be virtually
homogenous, though, in practice, it is made up of heterogenous parts distributed over a
wide variety of real systems with different capabilities and resources. On the other hand,
the parallel orocessing which inevitably occurs on the geographically separated real

systems, enforces complex concurrency constraints on system design and analyses.

Distributed systems have found popular application in the arcas of database
systems, parallel processing systems and communication systems. Communication
systeme exchange information between remote systems, in the form of voice, video and

data.

1.2 Motivation For The Thesis

Distributed systems are designed to provide services to users. The characteristics

of the service provided is determinable by composing the services provided by the

differcnt component sub-systems. The objective of obtaining the required service makes
distributed systems difficult to design, and complex to specify.

It is widely accepted that specifications which are rigorous and well-defined,
compared with informal ones, are easier to analyse for validating system services.

Distributed system services are validated by checking for correct designs and
complete specification relative to user requirements. User requirements are usually
obtained from requirement descriptions. A demonstration, that system design features and
system behaviour specification is of correct intention with respect to user requirements,
validates the system. Proving that system operation, as derived from the specification is
correct, verifies the system. Verification results in determining which logical properties are
possessed by the system. Logical properties of systems can be used as the basis of

validation.

Rigorous and well-defined system specifications are obtained by using
specification techniques based on formal models of describing distributed system
behaviour. The Finite State Machine (FSM) model [11] and the Algebraic model
[75),[13),145],170], are the two principle models used in formal description techniques of

distributed systems.

Validation of formal model based system specifications is also called 'model
checking'. The tractability of a formal system specification is of concern in model
checking. Strategies for reducing the number of states in reachability analysis of FSM
based description techniques have resulted in tractable verification analysis of systems.
However, reachability analysis becomes intractable in the case of systems with large

numbers of states.

For process algebraic model based specifications, the notion of observational
equivalence of communicating processes introduced in [54] was anticipated to be the most
useful for verification. This idea forms the basis of deciding the degree to which two
system specifications are similar. However, deciding observational equivalence of
algebraic specifications describing complete behaviours of distributed systems, appears to
be difficult [44]. Attempts to verify algebraic specifications of simplified or partial
behaviours has met with some degree of success. In [12] and [59] for example, the use of
observational equivalence for verification purposes, proceeds with the generation of FSMs
of the given algebraic specification. Such an approach to validation of algebraic behaviour

specification ultimately relies on verification analyses of FSMs.

A method of validation of algebraic specifications of processes using Modal Logic
[39] has been described by R. Milner in [55]. In [55], he has also shown that Modal
Logic assertions satisfied by observationally equivalent behaviour specifications are
equivalent. The results reported in [55] form the main inspiration for the writing of this

thesis.

1.3 The Scope Of The Thesis

This thesis is concerned with issues emerging in the development trajectory of
Distributed Systems software. Design and specification forms the first phase of the
development trajectory of distributed systems software. The second phase usually includes
validation and verification of the specified system. The third and last phase is
implementation of a real system, which has to be validated by testing. These last two
phases are intended to gain a measure of confidence in the final output of the development

trajectory - usable software.

Each phase of the development trajectory has a corresponding identifiable phase
objective. Techniques found to be simple and useful for the objectives of design,
specification and verification of distributed systems, are developed in the following

chapters.

The distributed system design and specification techniques developed herein are
elaborated in the framework of the OSI BRM. The BRM describes a seven layered
architecture with each layer providing a communication service to the layer above it. The

model is detailed in Section 1.5.3 of this chapter.

In most Engineering disciplines system design and specification proceeds on the
basis of constraints on system behaviour. Constraints are obtained from user
requirements. This thesis develops the Partial Constraint Methodology for design and
validation of Distributed Systems. Formalisation of the notion of partial constraints
presented in Chapter 4 is a new and an original contribution of this thesis. A fermal
definition of partial constraints on the events associated with a distributed system in a
communication environment, serves as a t~nl to specify system behaviour. The design of a
distributed system based on the Partial Constraint Methodology, results in specifications
which satisfy the objectives of design. If validation is the objective of system design, then
Partial Constraints aid in the statement of a set of design criteria for validation. A
validation method based on partial constraints is developed in Chapter 5. If verification is
objective of system design, then Partial Constraints aid in the verification of the logical

properties of the system. A verification method is developed in Chapter 6 of this thesis.

This thesis does not concern itself with issues of distributed system performance,
or issues involving the stochastic analysis of either the systems or the efficiency of
protocol implementations and the physical networks they use. Nor is it concerned with

issues related to the implementation of distributed system software in specific, real

computer environments.

1.4 Contributions Of The Thesis

The main contribution of this thesis is in the area of Distributed Systems and
Communication Protocols. The contribution takes the form of a design methodology for
distributed systems called the Partial Constraint Methodology. The Partial Constraint
Methodology is guided by the view that system design must be constrained by the design

objectives of validation, verification and testing.

Specifically, this thesis makes a contribution to the area of Distributed System
and Communication Protocol design by:

1. Relating design objectives to design methodology.

2. Formally defining the notion of partial constraints on distributed system
behaviour. Partial constraints are used as design and specification tools.

3. The development of a methodology for obtaining process algebraic service
specifications from protocol specifications.

4. The development of a methodology which uses formal partial constraints to
validate specifications in the design-to-specification phase of the development

trajectory.

5. The development of a methodology which uses formal partial constraints to
verify specifications in the design-to-specification phase of the development

trajectory.

1.5 The Development Of Open Distributed Systems

Open distributed system development begins with the design and specification
phase. Validation and verification concerns are usually treated in the next phase, followed

by implementation and then testing of the 'real’ (physical) system.

1.5.1 System Design Development

System design consists of mapping requirement intentions and notions onto
formal expressions of system behaviour. System behaviour is expressed in a specification
language which is based on an underlying model of behaviour. Structuring specifications
of large systems improves the tractability of analysis. Experience [63] shows that stepwise
refinement of the specification structure by the gradual addition of more detail relevant to a

target implementation environment helps in implementing large systems correctly.

1.5.2 Formality Of The Model For Design

All computer programming languages are based on formal models. The formality
of a program language model is dependent on the environment in which it is implemented.
This implies that all software systems are specified formally, even though, the level of
abstractness of the formalism is commensurate to its implementation environment. Proper
concern for the formal model used in every phase of the development trajectory improves

7

the quality of the output obtained from that phase. The level of abstractness of the formal
model, and therefore its degree of independence from the implementation environment, in
each phase of the trajectory can be determined by the level of abstractness of the required

output - a formal "specification” of the behaviour of the system.

In the design and specification phase, the formal model used for specification
must be as abstract, or as independent as possible from the physical and system
application environments in which the system is targeted to be implemented. This is due to
the heterogenous nature of the physical sys.ems and application environments which
communicate and interwork via open systems interconnections. An abstract model
determines the design, and forms the basis of analysis of system behaviour specifications,
and their use in the form of different implementations in varying environments.
Independence of such a model is obtained by abstracting away from (suppressing
irrelevant information details) dependencies considered to be irrelevant to the design and

specification task.

Thus, for example, physical dependencies include specific computer architectures
and their machine languages, and at the next higher level of abstraction, even computer
programming languages. While system application specific dependencies may include the
essential characteristics of real-time systems, data base systems, knowledge based systems

and even that of distributed systems.
1.5.3 Criteria For Model Selection
The main criteria for the selection of a particular formal model are, that it be

compatible with design objectives and provide a set of convenient design tools. The formal

8

model should not only permit abstraction from dependencies, considered to be
unnecessary in the design phase, but also support system description with its ability to

precisely model features considered to be essential to the specification of the system.

For distributed system design, the abstract formal models which are of interest to
us are those which are independent of physical dependencies, and all inessential
application specific dependencies. Therefore, the abstract model used for design must

express the essential features of abstract behaviour.

System architecture is the feature which dominates all other features which are
required to be formally modelled. The essential characteristic of distributed system
architecture is distribution of system parts. Communication and cooperation between
distributed system parts occurs with the participation of an underlying service - a non-
distributed entity. The combination of system components and underlying services provide

the required service to users of the system.

For example, the OSI BRM architecture forms a framework for open distributed
systems design. The layered architecture of the reference model assumes an underlying
service provided by each layer to protocol entities of the layer above. The combination of
protocol entities and the underlying service provides the required service to users in the
next higher layer. Requirement descriptions of layer service and protocol entities are
described in the OSI standards documents in terms of behaviour mechanisms (see for

example: [41)).

PEl |p—e————— PEZ

(n)-layer

UNDERLYING SERVICE
layers O...(n-1)

Figure 1.1. Layered architecture of the OSI reference model

Figure 1.1 shows the OSI reference model seven layered architecture, in which
the service consisting of the combined services of layers 0 to (n-1) is shown as the
underlying (n-1)-service. PE1 and PE2 are protocol entities which communicate and
cooperate to form the (n)-layer protocol. The line connecting PE1 and PE2 represents the
logical link constituting the (n)-layer protocol. Communication and cooperation behaviour
between PE1 and PE2 logically takes place via this protocol link and physically via the
underlying service. The combined behaviour of the protocol entities and the underlying

service results in the (n)-service, shown as the outer dotted-line rectangle of Figure 1.1.

The seven layers of the reference model are well known as the physical, data link,

network, transport, session, presentation and application layer respectively.

1.6 Essential Features Of Distributed System Behaviour

In a layered environment such as OSI, design activity begins with requirements
and ends with a formal definition of system behaviour. The formal definition of
behaviour, called a formal specification of the system is based on a selected formal

behaviour model.

10

A reference architecture for distributed systems such as the one described in
Section 1.5.3, and the need for formal specification of system behaviour has aided in the
identification of features [55],[13] considered to be essential in a model for distributed

systems design. These features are well known as the concepts of:

I. Non-determinism

A distributed system exhibits non-deterministic behaviour. This means that, to an
observer, the system appears to choose between alternative behaviours autonomously; The
choice being made without any apparent (to the observer) causal relation between a

chosen alternative, or between the system and its environment.

2. Concurrency (sequentiality)

Concurrent behaviour is the reduction of non-deterministic alternatives to a
simpler non-deterministic choice between sequential behaviours. The system chooses
between either of two alternatives concurrently. The chosen alternative precedes the other -
followed in sequence by the other. That means that the possibility of only one of the
alternatives occurring without being follovved by the other, is removed from the possible
non-deterministic choice of behaviours. Sequential behaviour is a further reduction of
concurrency, to that of a sequential crder. The presence of a causal relationship determines

the ordering of behaviour into an appropriate sequence.

11

3. Communication (Synchronisation)

When two concurrent behaviours have common elements they can communicate
(or synchronise) on the basis of sharing or exchanging the common element. The common
element could be an interface or a data message or both. Since different parts of a
distributed system must communicate and cooperate, a model of synchronisation between

behaviours whereby messages and data values can be exchanged is essential to formalise.

4. Composability

The behaviour model should allow the composition of behaviours of different
parts of the system in a consistent manner. That is, the composed behaviour should
consistently represent the combined behaviour of the individual parts withou contradicting

the original parts.

5. Distributability

Distributability is a structuring property, whereby a monolithic system is
decomposed. That means it should be possible to structure behaviour into independent
and dependent parts such that complexity becomes manageable, with dependencies clearly
represented by the structure. Independent parts can then be separated and developed by

autonomous agencies.

12

1.7 Design Objectives

A behaviour model selected for design and specification must have some
additional features as well. One of the aims of this thesis is to show how design objectives
play an important role in the design and specification process of each phase of the
development trajectory. The lack of a clear identification of design objectives in any phase
of the development trajectory adds to the complexity of system development. A proper
concern and identification of clear design objectives in every development phase, results in
well-defined and correct formal specifications - in a style suitable for the satisfaction of

such objectives.

The proper choice of a behaviour model and associated tools, such as a

specification language, considerably ease difficulties of system design.

The OSI BRM architecture serves as an exemplary basis for the design of open
distributed systems. In the context of such an architecture, the following design objectives

are important:

1. Service Specification

Service specifications [69], [79], [71], [80] describe the services obtained by the
users of the system. Users in a certain layer, use the service provided by the system
consisting of a combination of services provided by the underlying layers. A convenient
architecture of the system viewed as a service provider, is that of queues transmitting

messages between users (see for example [42]).

13

2. Protocol Specification

Specification of the protocol [11], [74], [71] for message exchange in a certain
layer, which provides services to users in the layer above. To account for the distributed
structure of the protocol, the behaviour definition of the system consists of the behaviour
definitions of the protocol entities of that layer. The protocol is defined in such a way that
it uses the services of underlying layers to provide the service required by users in the next

higher layer.

3. Combined Specification Of The Protocol And

Underlying Service

Combination of the behaviour definitions of the protocol entities and the

underlying layer service, define the services provided to users in the next higher layer.

4. Verification

The concept of verification of distributed systems evolved from verification of
computer programs [27], [36]. Verification implies correctness of system behaviour.
Proving that logical properties of the service required from the system, are indeed
properties of the system's behaviour as it is specified - is verification. Verifiable logical
properties of behaviour can be reduced to generic properties of distributed systems called
Safety and Liveness properties [61], 131], [49]. Safety properties have the form "bad
things will not happen" and Liveness properties have the form "only good things will

happen”. A safety property asserts what the system is allowed to do according to its

14

specification, or dually, what it may not do. Liveness properties describe what the system

must do (eventually) according to its behaviour specification [54], [48].

5. Validation

Validation is interpreted in this thesis, to imply a demonstration that the
behaviour specification resulting from the combination of the specification of the
components of the distributed system provides correct service to users. Validation,
therefore implies both, syntactic and semantic consistency, between specification of
components. Techniques for demonstrating validity include simulation and testing
methodologies. For protocols, consistency between protocol specification and underlying
service specification (third objective above) implies validation of the system specification.
If additiona'ly, the system specification is also consistent with the service specification,
then the system is considered to be valid against intended behaviour. That is, the combined
behaviour is the one which was intended, in order to provide the required service. This

amounts to validation of the protocol behaviour against correct intentions.

6. Testing

Testing the physical implementation of a distributed system by experimentation
under laboratory conditions also validates system behaviour against requirements. Test
experiments on implementations usually have the form of stimulus-response sequences
[28],135]. Stimulus-response sequences are obtained either from a 'reference’ behaviour
specification, from which an implementation is assumed to be derived, or from

requirements descriptions. Testing a system in order to validate its behaviour against

15

standardised requirements, such as those of ISO-Standards is generally refcrred to as

conformance testing [14].

7. Testing Protocol Performance

Testing physical implementations using stochastic models of behaviour with the

objective of improving the quality of service is referred to as performance testing.

The relative importance of these design objectives in the design of a distributed

system provides valuable hints for a judicious selection of design tools and methods.

Thus, the first design objective stated above implies that the specifica”"~n of
system behaviour resulting from the design process must be in a formal lanpuage (or
description technique) which is able to express those concepts which are important to the
environment of user requirement descriptions. The second and third objectives stress the
need for a model which allows composability of simple behaviour structures into more
complex ones. Composability also implies its converse, namely - abstraction. Abstraction
mechanisms reverse in some aspects the effects of composition. In some contexts, they
reduce the information about the system by those details which are considered to be
irrelevant to furthering the design. The reduction effects both the structure and semantics
of the specification. Design objectives number four and five imply that it should be
possible to have the resulting specification, and indeed specifications intermediate to the

design proress, in a language and form which allow us to reason about the system.

The sixth design objective is left for future elaboration. The seventh design
objective is considered to be outside the scope of this thesis.

16

1.8 Contents Of The Thesis

The rest of chapter 1 is devoted to outlining the contents of tne following
chapters. Chapter 2 introduces the necessity of selecting a behaviour model for generating
formal specifications. Such a model must also, accurately capture the essential notions of
distributed behaviour. Chapter 3 briefly surveys existing behaviour models and interprets

them uniformly using the semantics of heterogenous algebras.

The development of the methodology of distributed system design and formal
specification is begun by summarizing the concepts of system services and their relation to
architectures in Chapter 4. The relationshio between services, design and constraints is
also explored in this chapter. The chapter ends with a formal definition of partial
constraints followed by illustrative examples of the design of simple systems. Chapter 5
develops the relationship hetween partial constraints and formal specifications in process
algebras. The methodology of partial constraints for system design and behaviour
specification is shown to be intimately linked to validation of formal specifications.
Chapter 6 develops the validation and verification methodologies - illustrated with real
benchmark protocols - the Alternating Bit Protocol (ABP) and the OSI Transport Protocol.

Chapter 7 provides the conclusions and possible directions of future work.

17

e ASENRER J

" ‘Fetch me from there a fruit of the Nyodgradha tree’
‘Her: is one, Sir’
‘Break it’
‘It is broken’
‘What do you see there?’
These seeds, almost infinitesimal’
‘Break one of them’
‘It is broken’
‘what do you see there?’
‘Not anything, Sir’ "
- From the Chandogya Upanishiid
Chapter 2

MODELS FOR BEHAVIOUR SPECIFICATIONS

In this chapter formal models for distributed systems behaviour specifications are
discussed. Characteristics which are important for a behaviour model intended for use in
design and specification, are identified. The domains of model application are defined.

Simple examples are used to illustrate the notions of validation and verification.

2.1 Formal models

Formal models for behaviour specification relate semantical domains of notions
and intentions to formal specifications. The theory of computation underlying the model
defines the semantic concepts required to express essential ideas of system design.
Computation theories, such as Automata theory [38], Net theory [66}, Mathematical Logic

and Function Theory [16],[17],[51], have been used to model the concurrent behaviour of

distributed systems.

The complexity of system behaviour has led to the study of different models and

techniques of design and specification. Transition system models [2] have been widely

18

used to design and specify concurrent behaviour. Examples of description techniques
based on a transition system model are Petri-nets, FSMs and the OSI Formal Description
Techniques (FDTs) [23] - LOTOS [25], ESTELLE [24] and SDL [26]. Formal

specification languages are called FDTs within 1SO.

Logical models of specification, such as the Temporal Logic [66] and Predicate
Logic [52] are based on the mathematical theory of Modal logic [39] and Predicate
Calculus [51] respectively. Logical models are mainly used to verify those properties
which a system is required to satisfy. Examples of the use of Temporal logic models and

Predicate Calculus models are discussed in {31] and [17] respectively.

Among the models based on transition systems, Petri-net models model
concurrency adequately, but net uescriptions of system behaviour invariably have to be
reduced to their state machine equivalents for verification analysis. Thus, the inadequacies

of state machine models becomes unavoidable for verification purposes.

The development of a Calculus of Communicating Systems (CCS) [54], a
process algebraic model, marked the beginning of the study of a paradigm for concurrent
computation in order to "treat concurrency on its own terms” (Milner in [55]). CSP [35]
another process algebraic model for concurrent systems highlighted the importance and
power of using the method of defining systems of equations of algebraic processes in

system modelling. Process algebras are discussed in Section 3.2 of Chapter 3.

The application of algebraic theory to the specification of computational systems,
began with the development of Abstract Data Type Specification (ADT) techniques [29].

This seminal work applied the wide experience and knowledge of algebraic methods of

19

mathematics, "with full force" [50], to provide a rigorous semantical basis, via Initial
Algebra semantics, to the specification of data types. Algebraic Type specifications have
been used in early computational systems such as OBJ and Alphard [83]. Initial Algebras

are explained in [29]

Computational systems semantically, are mathematical objects in algebraic model
based system specifications. Type parameterisation |77} and value passing [34] between
type specifications enhances the power of the algebraic type model of specification. These
powerful specification techniques are complimentary to the constructive type specification
methods found to be useful in the design, validation and verification of algebraically

specified distributed systems. Examples of the use of such methods are reported in [30].

The most significant use of a type specification model based on initial algebra
semantics is the FDT ACTONE [22]. ACTONE is a specification language which provides
a complete set of notational constructs for the specification of typed objects.
Parameterisation and type combination is also possible in ACTONE, making it a very
powerful and flexible specification langnage. An example specification in ACTONE is

given in the latter part of this section.

More recently, an Algebra of Communicating Processes (ACP) {7} has
contributed towards an initial algebra semantics for concurrency in process algebraic

models, in an attempt to parallel developments in abstract data type theory.

The FDT LOTOS, is an example of the use of an algebraic model based definition
of a specification language intended for open distributed systems. It consists of two

complimentary components, both are based on algebraic models of system specification.

20

One component models system behaviour in terms of a process algebra. The process
algebraic component of LOTOS is based on CCS and CSP. The other component is
ACTONE, used for communication of data values when processes synchronise. The
behaviour part of LOTOS provides axioms and inference rules for semantical

interpretations of the dynamic behaviour of processes.

In the algebraic framework, a formal model is a set of mathematical expressions
and rules for the creation of abstract objects. Abstract objects can be manipulated according
tc such rules, given in the form of axioms or equations. For distributed systems, an
algebraic model is a set of operations and expressions with rules and/or axioms defining
the results of manipulating expressions of system behaviour. Systematic assumptions and
properties of a model derivable from methodologies are called 'theories' * 't e model. For
example, the assumptions of a given model of benaviour specification may support the
development of a technique (as we shall see later), to verify logical properties from

expressions of system behaviour.

In this thesis, the framework used for the description of models of distributed
system behaviour is that of heterogenous algebras [S0]. A heterogenous algebra is an
abstract operational model of a system. It views the system as an algebra defined with
operations on many different carriers. Carriers are characteristic sets of values of a certain
type of mathematical object. A precise definition of a heterogenous algebra is given in the

sequel.

In what follows. some general requirements expected of a formal behaviour
model for distributed systems are discussed. This is followed by a toy example to give a

"feel" for some of the abstract notions related to formal models.

21

2.2 General Requirements For Formal Models

The objectives of system design as well as the essential features of distributed
system behaviour were identified in the previous chapter. A consequence of such an
identification is a characterisation of the general requirements on behaviour models used

for the specification of system behaviour.

General Requirements:

1. Well-definedness

A formal model should be well-defined. That means, behaviour expressions

based on the model should result in unique and unambiguous interpretations of system

behaviour.

2. Comprehensibility

A formal model should have a few simple but precise conceptual tools for

comprehensibility. The conceptual tools must be casy to use and simple to understand. The

tools should also, precisely capture notions and “ntentions for which they are designed.

22

3. Generality

A formal model should be powerful enough to capture a broad range of concepts,
but alsc be flexible, for representation of a wide variety of intentions and notions for

generality.

4. Orthogonality Of Concepts

A formal model should permit orthogonal concepts for extensibility and
reducibility of semantic information in a specification. A specification based on such a
model should be extendible by the consistent addition of semantic information. Abstraction
mechanisms should allow the reduction of semantic information from the specification
without leaving the resulting specification with conflicting elements.

5. Structuredness

The model should include structuring concepts for dealing with complexity [20],

to aid in analytical activities such as verification, validation and testing.

2.3 Application Specific Requirements

For distributed system design a formal model should incorporate the following

concepts:

23

ST

1. Expressiveness

The model should have the expressive power to express notions of non-

determinism, concurrency (sequentiality), and communication between behaviour parts.

2. Composability

A model should observe the principle of composability for consistency over all

parts of a distributed system in order to permit validation of specifications.

3. Distributability (Vertical Decomposition)

The requirement of distributability on a formal model, though similar to that of
structuredness (horizontal decomposition) and implied by that of composability is
distinctly identified here to stress the importance of being able to view a distributed
system, virtually, as a monolithic system from the point of view of the service obtained
from it. And also, the model should provide methods which would hint at proper internal
structuring of a virtual monolithic specification. The internal identifiable structures should
aid in the eventual independant and distributed implementation of independent

components.

4. Completeness

A formal model should be complete. Completeness ensures that no essential

concepts of distributed systems have been excluded from the model. An associated

24

property is exactness, which implies that the model allows for mechanisms to avoid over

or under specification.
2.4 Domains Of Formal Models
The domains of formal models of behaviour are represented by a mapping

diagram in Figure 2.1. In Figure 2.1, system specifications are semantical objects built

with the conceptual tools provided by a model for behaviour description.

Notions! M l

v

Correct
Intended
specifications

= Semantic Model for Specifications

Logical functions

M
¥ = Validation or Yerification
L
T

Truth Fonc tions

Figure 2.1. Domains of formal models of behaviour

25

In Figure 2.1, M, V, L and T are relations between pairs of values from the
domains of notions/intentions (informal), formal specifications, logical predicates or

assertions and correct or intended specifications.

A behaviour model M is a relation which is able to associate notions and
intentions of design to formal specifications of system behaviour. An example of M is the

process algebraic model of CCS.

V is a verification relation on correctness properties of system behaviour. A
verification technique V proves a satisfaction relation between properties of system
behaviour as derived from its formal specification and required logical properties derived
from descriptions of intentions. That is, V can take a required behaviour property (or an
intention) and a specification pair, and return a boolean value of true or false, depending
on whether the formal specification satisfies the required logical property or not.
Verification techniques depend on both, the behaviour model and the technique of relating

specified behaviour to logical assertions.

Usually the generic functional properties - Safety and Liveness are verified [31].
For example, given the behaviour specification of the (n)-service in Figure 1.1, correct
delivery of data sent by one distributed user to another is a verifiable safety property. And
eventual delivery of data sent by a user is a verifiable liveness property of the provided

service.

If the formal specification has an implementation, then V is a validation relation
between the implementation and correct intentions of desired service. A system

implemcntation can be in the form of a formal specification. The validation function V,

26

demonstrates, by simulation for example, whether the behaviour as represented by the
specification is correct as intended. That is V can take an implementation specification and
intended specification pair, and return a a boolean (true or false) depending on whether the
implementation specification is syntactically and semantically consistent relative to the
intended specification. For example, showing that the (n)-service, obtained by the
consistent composition of the behaviour of system parts (the protocol entities and the
underlying service in Figure 1.1) is syntactically and semantically consistent with an

independent description of the intended (n)-service constitutes validation.

L is a logical model of behaviour which can correctly relate notions and intentions

of systems design to logical predicates and assertions on system behaviour.

An example of a logical model is the temporal logic description of the Alternating
Bit protocol in [31}]. In such a model, system behaviour can be described in terms of
temporal operators. Temporal operators correspond to predicates characterising future
behaviour of the system from a given starting point. The predicates describe system
behaviour in terms of the operators: henceforth (denoted as @) and eventually (denoted
as '0"). The semantics of 'henceforth' is that a given property will henceforth (from a
given point in the computation) always be true. And that of 'eventually', is that the given

property will become true sometime (including the present time) in the future.

T represents a system of truth functions associating logical and predicative
descriptions oi behaviour to intended specifications. The truth functions are able to take a
logical assertion (or predicate) on system behaviour and intended specification pair, and
return a value of true or false according as the assertion satisfies the intended specification

or not.

27

For example, given a logical asscrtion in terms of first order predicate logic, the
Lambda Abstraction Functions [56] can be defined to return a value of true or false for the

given assertion.

The composed relations V-1M-1 and T'lL'l' if they exist, relate correct and

intended specifications to the original notions and intentions of design.

The existence of undecidable problems in computational theory often lead to
specifications in any behaviour model which are impossible to verify or validate. It
becomes therefore necessary to make suitable assumptions in the model to allow only the
class of decidable problem domains for specifications. This can be done in the axiomatic
approach for example by making suitable assumptions to restrict the specifications

generated by the model to the class of decidable computations.
2.5 A Conceptual View Of Validation And Verification

From the above it becomes clear that a model provides conceptual tools usable for
formal behaviour specifications. A formal specification language is one such conceptual
tool. The formal specification language determines the form of the specifications it
generates, but it is the behaviour model which substantially influences the methods used

for the validation and verification analyses of the specification.

In order to illustrate and concretise some of the concepts discussed above in a

non-technical manner, a 'toy' example is given below.

28

Example 2.1
To illustrate that the form of a system specification is determined by the

conceptual tools provided by a formal model, a "toy" example is given below:

The first example consists of a blank paper on which curved lines can be drawn
possibly with the help of other tools such as a pencil and compass. Then Figure 2.2

shows the formal specification of a circle based on the given model.

Figure Z.2. Formal specification of a circle

Assume that the tools of a second model consist of certain graphic schemata

shown in Figure 2.3.18

A4\ J

Figure 2.3. Conceptual tools of a description model

Then the formal specification of a circle in this model is given in Figure 2.4.

Figure 2.4. Formal specification of a circle with graphic schemata

29

Any circle has the property that, it has the same curvature throughout its
circumference. This property can be verified by superimposing the circle of Figure 2.2 on

Figure 2.4,

If the circle was specified as two distributed halves, with each half consisting of
one piece of the schemata of Figure 2.4, then composition of the two halves and a
demonstration that the resultant specification corresponds to the circle either of Figure 2.2
or that of Figure 2.4 would validate the specification against correct intention.
In this case, correct intention is the requirement of obtaining the appropriate
semantical object - a circle.

[end of example 2.1]

The circle specification provides a useful illustration of how proper description

tools of a given model can support design based on verification and validation objectives.

For example, the conceptual tools for specifications shown in Figure 2.3 can also
be considered to be 'constraints' on the semantical objects which are the target of
specification. The specification tools of Figure 2.3 "constrain" the specification of a circle

given in Figure 2.4.

The idea of using constraint descriptions as a guide to the design and specification
of distributed systemn has been widely used [79], [60], [81] albeit without a formal
definition of the notion of constraints. Constraint-Oriented specifications form the basis of
showing relationships between styles of specifications and proving behavioural

equivalences between processes for verification [81].

30

In chapter 4, a model of partial constraints is introduced as a conceptual tool to
aid in the design and specification of distributed systems. The notion of partial constraints
is new and original. Logical relationships between events of a system are defined in a
communication environment. Definition of event relationships on system behaviour

formalise the notion of partial constraints .
The partial constraint method of specification maps partial constraints onto
process algebraic behaviour expression constructs, such that specifications induced by the

process algebra systematically satisfy partial constraints defined during design.

In the next chapter behaviour models for distributed systems are summarised in

order to lay the basis for partial constraints defined in the next chapter.

31

"A different name has a different meaning, a different meaning has a different

name, for - for that one person. But the same name has a different meaning for different
people, and different and opposite names may have the same meaning for different
people".

- R. H. Blyth

Chapter 3

DISTRIBUTED SYSTEM BEHAVIOUR

In this chapter, behaviour models of distributed systems are discussed. Important
features of distributed systems, viz: non-determinism, concurrency, sequentiality and
communication are examined in the light of descriptions in state machine models, data type
models and process algebraic models. The underlying similarities in the description
parameters of the specification models are presented in the framework of Heterogenous

algebras.

3.1 Behaviour Models Of Distributed Systems

From the point of view of logical behaviour formalisms, distributed systems are
no different from any other kind of system (cf. [49]). However, algebraic analyses of
distributed systems often involves transformations made on non-detcrministic
specifications. For example, non-deterministic choices in a specification may be reduced to

concurrency ‘n an implementation or even sequential behaviour.
Transformations on different specifications based on different models, lead to

different interpretations of the notion of non-determinism. The differences are manifested

in the parameters of the behaviour model.

32

Different models of behaviour use different combinations of notions for actions,
processes and states (parameters of system descriptions). Indeed, different categories of

models can be identified according to the description parameters used.

Thus, calling the mathematical abstraction of a system or a component of the
system, a process P, the following notion of Labelled Transition Systems (LTS) for

system behaviour can be used:

Definition 3.1
A Labelled Transition System (LTS) is a quadruple <S,L,T,s0>, where

S: is a countable set of states of P,
sOeS: is the initial state;
L: is the set of action Labels o, such that « € L and

T <SxL xS is arelation called the transition relation.

[end of Definition 3.1]

The notation s --o-->s' with o € L is often used whenever (s,a,s') € T, to
describe the transition of P from state s to s' with the observation of the action o. If S is

finite, the system is called a Labelled Finite Transition System (LFTS).
A different style of describing an LTS is one in which the action o is replaced by

an input and an output action. This is often the case in descriptions using system states as

the main parameter of description.

33

A labelled transition system can be described in terms of a heterogeneous algebra.
This means that a heterogenous algebra can simulate an LTS specification. A heterogenous

algebra is defined as:

Definition 3.2

A heterogenous algebra [{A;)j ¢ I; 2] consists of a family of different 'types' Aj
of elements, together with a collection Q of operations defined on these types in the
following way: Associated with each n-ary operation ® € Q (n = n(w) is a (n+1)-tuple
(i1reoin+1) € In+1; is then a mapping (a heterogencous operation):

w: Ail X .. X Ajp > Ain+1'

thus the kth operand of is taken from Aik (k=1,...,n) and the value ® lies in Ain +1

[end of Definition 3.2]

The definition characterises the set Aj, Hof data values called a sort created by
the mapping . The notation '---->' can be read as 'maps to'

A heterogenous algebra simulates an LTS with the algebra defined by the tuple
<S,L,T,s0>. Sand L are carriers and T and s() are operations:
sO: e > S is a constant element of §

T: § xL x §----> § is the transition function T(s,ot,s') that maps the

system state s tos with an action .

System behaviour can be represented by sequences of transitions, such as:

P(s0) --a.1--> P(s1) --002--P(s2) --a3-->...

34

where the o are atomic actions. The process P is parameterised by the state variable sj
corresponding to the set of states of P. The state sj contains all information necessary to

determine the future behaviour of the system.

The OSI Transport protocol specification in [41] is an example of an informal
description using states and state transitions. The transport protocol is implemented in
layer 4 of the OSI reference model architecture. The protocol can establish and release
connections for the end-to-end transfer of data between remote user entities of the session
layer above. Connection establishment and release as well as data transfer is accomplished
by exchanging service primitives with session users and the underlying network service.
End to end indications of connection establishment and release requests are given by

protocol entities. The reception of data is acknowledged.

A heterogenous algebra which describes the state transitions of a transport
protocol entity simulates an LTS description using input/output actions with state
transitions. That is, the definition of the transition function has four arguments instead of

three. The algebra is defined by the tuple [S,1,0,T] with three carriers and one operation:

§ is the set of states,

lis the set of inputs,

O is the set of outputs;

and one operation:

T:Sx IxOx S ---->§ is the transition function: T(s,i,0,s') which maps the state

s to state s' when the input and output actions i and o respectively, are observed to occur.

35

The transition function of the Transport protocol entity with four arguments given
above, has a typical value given by: T(closed, TCONreq/s_CR, wait_for_CC), where the
arguments represent the previous state, the input/output actions and the next state
respectively. The slash between input and output arguments is syntactical, denoting that
the input action is followed by the output action is uninterruptible during the state

transition of the system. The transition is assumed to be atomic.

The set of all states, the input and output action labels and the set of transition

values are illustrated in Figure 3.1. This is the familiar state transition diagram of an LTS.

r_CR/TCONind

wait_for_T
ONresp

r_DC/T E ISconf

~ DR/TDISind
@r DC

TDISreq/s_PR

r_CC/TCONconf

s_AK,r_AK r_DT/TDATind
TDATreq/s_DT

Figure 3.1. State transition diagram of the OSI Transport protocol (class 0)
Tables 3.1 and 3.2 list the states and input/output labels respectively, of the state

transition diagram of Figure 3.1. The column of corresponding comments provides an

informal explanation of what the states and labels are meant to represent in the system.

36

STATE COMMENT

idle Initial state of the system

wait_for_CC Wait for a Connect Confirm primitive

open A connection has been established and
data can be exchanged

wait_for_TCONresp Wait for a Transport Connect response

wait_for_DC Wait for Disconnection

Table 3.1. State labels in an LTS description-Transport protocol

ZTransport
INPUT/OUTPUT LABEL COMMENT
TCONreq(resp) Transport connection request or response
service primitive received from (sent by)
session user.
TCONconf(ind) Transport connection confirm or
indication service primitive sent by
(received from) session user.
TDISreq(ind) Transport disconnect request or
indication service primitive received from (sent to)
scssion user.
TDATreq(ind) Transport data request or
indication service primitive received from
(sent to) session user.
s(r)_CR Send or receive a Connect request
to (from) a peer protocol entity.
s(r)_CC Send or receive(a Connect
Confirm to (from) a peer protocol entity.
s(r)_DT Send or receive a data (from) a
peer protocol entity.
s(r)_Ak Send or receive data
Acknowledgement to (from)
a peer protocol entity.
s(r)_DR Send or reccive a Disconnect request
to (from) a peer protocol entity.
s(r)_DC Send or receive a Disconnect

Confirm to (from) protocol entity.
Table 3.2. Action Labels of an LTS

3.2 Process Algebraic Models

It is possible to unfold a state transition diagram into an acyclic linear graph in the
form of a tree [55]. The linear tree represents the sequences of state transitions
corresponding to the different paths identifiable in the transition diagram. The tree repeats

itself after the first complete unfolding of the transition graph.

37

If the states at the nodes of such a tree are assumed to be unobservable by the
environment, removal of state labels from the nodes of the tree, transforms the state

transition model into a black box process model [54].

In the black box model of a CCS process, state transitions are unobservable by
the environment and any of its agents. Actions performed on such a black box are
experiments conducted on the process by the environment. The process to be described
reacts non-deterministically to the experiment offers made by the environment.
Synchronisation of the process with the environment for a given experiment results in the

successful occurrence of an action, or deadlock.

System descriptions in such behaviour models take the form of algebraic
equations of processes. Process behaviour is defined by expressions on observable
actions. Internal actions, unobservable by the environment are modelled as internal non-
deterministic behaviour of the process. Non-deterministic behaviour of the process and the
environment is usually modelled as non-deterministic choices between alternate behaviours

of the process. Such descriptions are called process algebras.

Recently, there has been an increasing interest in applying process algebraic

specification techniques (CCS,CSP, ACP and LOTOS) to distributed systems.

Process algebras are labelled transition systems, which may include an action that
is not in L, known as the silent action "t" in [54], "' in [57], and "i" in |25]. The actions
"t" and "i" may be interpreted as an internal step of the process which is unobservable or
hidden from the environment. Such actions are used to model "internal” non-determinism
in CCS and LOTOS. Non-determinism of observable actions is modelled by a choice

38

operator in CCS, ACP and LOTOS, denoted by '+, '+ and '[]' respectively. In CSP two
kinds of observable non-determinism are identified. One type of non-determinism assumes
no explicit participation of the environment in making the choice between alternate
behaviours, by the use of the 'I' operator. The second kind of non-determinism defined in
CSP, is one in which the environment can control the choice between alternate behaviours.

Alternate behaviour in this case is expressed by using the general choice operator ([]).

In these systems (except in CSP) the set of action labels is given by L'=L U {i}
and the transition function T is defined over L. In LOTOS L' =L U {i,8} where & is an

internal action representing successful termination.

Behaviour descriptions are given in terms of behaviour expressions o/er the set
of actions in L'. Transition functions in the form of axioms and inference rules for the
derivation of behaviour provide the operational semantics of behaviour expressions.

Definition 3.1

A process algebra is a heterogenous algebra [S,B,L',T, Q] with the carriers:

S is the set of states;

B is the set of behaviour expressions B defined over action labels and behaviour

expressions;

L' is the set of action labels;

 is the set of operations on behaviour expression from f3

nil ---->

:PBxL'xP ---->f

T:BxL' xP---->B

T is the transition function. The transition function T(B,o,B") transforms B into

B’ with the occurrence of action . It is defined by a set of axioms and inference rules

39

relating a behaviour expression B and action labels from L' to behaviour expressions. B is
defined by operators from €.
[end of Definition 3.3]

Behaviour expressions define possible behaviours of the system. Inferred system
behaviour depends on the form of the expression determined by the operators of Q and

the occurrence of actions.
To illustrate, Table 3.3 lists the type of expressions which can be formed by the

operators Q with behaviour expressions E € B and p £ L' in CCS. The inference rules of

the transition function T of CCS are given in Table 3.4.

40

Operators Syntax
lnaqtion NIL
Action prefix Ww.E
Choice El + E2
Composition E1|E2
Restriction E\u
Relabelling E[D]
Recursion recX.E

Table 3.3. CCS expressions - Syntax

Remarks

an action followed by an
expression E

a choice of behaviours E1
or E2

a composition of
behaviours

a restriction on |

O L' ----> L', arelabelling

recursion of the expression
X inE, with X=E

l. L.E --p--> E
2.El --y-->E' 2 —-p—->E'
EI+E2 ----> E'

3. El--p-->El'
ENE2 --p-->ET'E2

E2 --u--> E2'
ElIE2 --p--> ElIE2'

El --u-->El' E2--) -->E2'
E1E2 --t-->ElE2
4. E--yt--> El' (Rp*xe A)
ENA --p--> ENA
5.___El --u-->El'

E|®] --®(w)--> EP]

6. El{recX.E2} --y—->E'
recX.E2 --pu-->E'

Note 1: u,u* are complementary actions in L' which can synchronise

when two expressions are composed.

Note 2: recX.E2 is obtained by substituting the expression E2 for X
simultaneously in all occurrences of X avoiding clashes of bound variables.

Table 3.4. Semantics of CCS

41

A Pl e AR e w

In Table 3.4 each inference rule is stated in the form of a transition which
transforms one expression to another accompanying the occurrence of an action. The
implication of the transition is given below the line. Given a behaviour expression and a
transition on an action, an appropriate inference rule can be used as the basis for rewriting

the behaviour expression.
3.3 Behaviour Expressions Of Processes

Behaviour expressions define abstract processes. The axioms and inference rules
which form the transition function of a process algebra provide the operational semantics
for the interpretation of behaviour expressions.

A behaviour expression B can be represented by an action tree. The root of an
action tree represents the entire possible behaviour of a process P. Possible behaviours arc
derived from the axioms and inference rules of the transition function T. The trees thus

obtained are called Derivation Trees (DTs).

Example 3.1

An example of a behaviour expression in CCS and its DT is given below.

Let a process P be defined by the expression:

P = o.(B.NIL + 1.y.NIL) + c..y.NIL (3.1)

42

The entire behaviour of P can be inferred from its defining expression on the

RHS of Equation (3.1).

Thus, we can infer P --a--> P1 and P--0.-->P2, where P1= B.NIL + 7.y.NIL
and P2 = v.NIL. Further, we can infer P1 --B--> NIL and P1 --1--> P2, and P2 --y-->Nil.

Figure 3.2 shows the form of the DT for the behaviour expression for P.

NIL

o B.NIL—H.'y.NILy
. el T —eyNIL —Y—eni

a\x Y

Y.NIL =———= NIL

Figure 3.2. The derivation tree (DT) for the expression for P

Figure 3.3 shows the same DT with the node information omitted, and is called

the action tree of P.

Figure 3.3. The action tree of P

[end of example 3.1]

A consequence of expressing internal non-determinism in terms of the internal

action 1, is that the observed behaviour of two processes is "sometimes similar" implying

43

that they may be equivalent. For instance, the two action trees in Figure 3.4 behave

B

and

Y y

Figure 3.4. Deadlock due to t—action in an action tree

"sometimes similarly".

An B or a yexperiment with the process represented by the leftmost tree of Figure
3.4 will always be successful, while that of the second will some times deadlock with a
evperiment. The deadlock is due to the execution of a T (an internal) action by the system,

making it impossible for a § experiment to succeed.

The basic question which emerges about system behaviour from such

experiments is the observational equivalence of processes.

3.4 Observational Equivalence

Observational equivalence of process behaviour is based on the idea that system
behaviour is determined by the way it interacts with external observers. "It defines a
monotonically increasing set, upto a maximum fixed point, of equivalence relations

between states of two specifications” [55].

Intuitively, two processes are considered to be "observationally equivalent if they
are indistinguishable by experiments of an observer. That means two such behaviours

may simulate each other when interacting with an experimenter, in a manner such that

44

their observable behaviour is indistinguishable. As a result an observer may conclude that

the two expressions are ‘equivalent’.

Interpretations of equivalence are provided by the theory of equivalence.
Equivalence classes for weak bisimulation equivalence, congruence [54],[55], testing
cquivalence [60] determine whether given behaviour expressions belong to the same
equivalence class. The method of achieving this determination involves the use of
transformation laws based on axioms and inference rules of the process algebra under

consideration.

Two fundamental notions of observational equivalence defined in [54],[55] are
called 'strong observational equivalence' and 'weak observational equivalence'. The
difference between them is that of granularity of the equivalence relation. For given states
of two processes, strongly equivalent processes simulate each other step-by-step for a
given action sequence, while weakly equivalent processes simulate each other for
transitions, with respect to a given action sequence, from equivalent states to equivalent
states with possible intervening T actions. The notion of congruent processes results from
strongly equivalent processes with every state of one being equivalent to a corresponding

state of the other.

3.4.1 Definitions Of Observational Equivalence

For an LTS <§,L,T,s0>, the formal definitions characterising strong and weak
equivalences based on [55] are given below.
Let the integer K index the set S of an LTS and define a function:
F: 2KxK ___.5 2KxK' 35 follows:
45

Definition 3.4
Let R be a binary relation over K. Then:
F(R) = [(p,.9Q)lp.q e K and forevery p e £
(@) ifp--u-->p' then(3I qq --p—>q and p'Rq")
(i) if q --p--> q" then (3 p": p --p--> p" and p" R q")})

Function F possesses the following properties (proofs are in [55}:

Proposition 3.4
(a) R1€R2 ===> F(R1) £ F(R2).
(b) If R is an equivalence relation, then so is F(R).

[end of Definition 3.4]

Strong equivalence is defined inductively as follows:

Definition 3.5

The binary relations ~k, k 20, are given inductively as follows:
@)~=KxK

(b) ~k+1 = F(~k), k0.

If p ~k q we say that p and q are k-strongly equivalent.

[end of Definition 3.5]

It can be shown on the basis of Proposition 3.4 that the relation ~y4] is a

refinement of ~, i.€.~(k+1) is included in ~, k2 0.

46

Definition 3.6

States p and q are strongly equivalent, written p ~g, g, if p ~k q for every k0.
That is:

(~w) = N~ k20.

[end of Definition 3.6]

It is also easy to show that ~, k20 and ~, are true equivalence relations over

transitions of system states.

Weak Observational Equivalence is similarly defined as follows:

The function F: 2KxK ____5, 2KxK j5 modified and denoted by G to account for

T-actions.:

Definition 3.7
Let R be a binary relation over K. Then:
G(R) = {(p,9)! p.q € K and for every s € T*
(1) if p =s=> p' then (q": q =s=>q'and p' R q))
(ii) if @ =s=>q" then (p": p =s=>p" and p" R q")}
Function G can be strictly smaller than, equal to, or strictly larger than R. Also
proposition 3.4 holds for G as well as F.

[end of Definition 3.7]

Weak observational equivalence, or simply "observational equivalence” is

defined inductively as follows:

47

Definition 3.8

The binary relations =y, k 20, are given inductively as follows:
(a) =0 =KxK

(b) =(k+1) = F(=x), k20.

If p =(k+1) q we say that p and q are k-observationally equivalent.

[end of Definition 3.8]

Definition 3.9
States p and q are observationally equivalent written p =, q, if p = q for every

k=0. That is:
=g = N=g k0.

[end of Definition 3.9]

The notions of strong and weak observational equivalences can also be defined in

terms of weak and strong bisimulation relations [55].

All the above equivalences are defined in the environment of a CCS context given

Definition 3.10

A CCS context C[| is a CCS expression where some sub-expressions have been
replaced by "holes".

[end of Definition 3.10]

48

Definition 3.11

We say that CCS expressions E1 and E2 are observationally congruent (have the
same meaning), written E1 =€ E2, iff for all contexts C[], C[E1] = C[E2};
Where C|E] represents the expression obtained by filling the holes in C[] with expression
E.

[end of Definition 3.11]

It turns out that E1 =€ E1' and E2 =C E2', then E1 = E2 iff E1' = E2'.
In other words the observational equivalence of two expressions E1 and E2 is not

affected when they are algebraically transformed without leaving their respective
congruence classes. The main reason for introducing =¢ i to allow such safe syntactical

manipulations of behaviour expressions.

In principle, in order to obtain a state transition diagram which is equivalent to a
given behaviour expression, the entire expression B0 defining the process P is mapped to
the initial state sO of the corresponding state machine. Then each transition: B --y-->B’ of

expressions is mapped to a corresponding state transition of the form: s--y-->s'.

This is difficult to do in the case of infinite expressions. Algorithms such as the
unfolding algorithm {S5] and other such algorithms surveyed in [12] exist for mapping

finite DTs to state transition diagrams.
CSP is similar to CCS but uses trice equivalences and refusal sets to prove

logical properties of the system. Also, there are some differences in modelling non-

determinism and synchronisation semantics of CCS and CSP.

49

3.5 Initial Algebra Semantics And Behaviour

ACP provides a unified view of existing process algebras by using an axiomatic
model. In the axiomatic approach used in ACP, axioms on the operations of Definition
3.2 are intended to model notions required to define the distributed behaviour of

processes.

Thus, the set of operations include operators which model non-deterministic
behaviour in terms of the alternative composition operator (+), and concurrent and
communication behaviour in terms of the merge (or parallel composition) operators (11, ||

and I). The possible behaviours are terms generated by the application of terms in Q. The
set of axioms, define relationships between the operators which induce an initial algebra

semantics in to ACP behaviour specifications.

Example 3.2

As an illustrative example a data type specifying the initial algebra of natural

numbers is given below, in the notation of ACTONE [44].

type nat_numbers
sort nat
opns 0: ---> nat
suce: nat ----> nat
+ :nat,nat ---> nat
eqns For all x,y nat:
x+0=x
succP(0) + succ™(0) = succ(P*M)(Q)
X + succ(y) = succ(x+y)

[end of example 3.2]
50

In this example, the set of operations are 0, succ and + , and their essential
properties are given in terms of three equations. The superscripts n and m are integers
denoting the successive application of the succ operation n and m times respectively.
These three equations are the axioms of the algebraic system of natural numbers which

induce initial algebra semantics into the specifications.

Example 3.3

The set of operations used in ACP are given in Table 3.5 below:

OPERATOR SYMBOL COMMENT

+ alternative composition (sum)
sequential composition (product)
parallel composition (merge)

| |_left merge o
communication merge

oy encapsulation

1 abstraction

S deadlock (failure)

T silent (internal) action

Table 3.5. The set of operators £ of ACP

In relation to CCS, the operators +, ||, and T have exactly the same meaning;

multiplication is more general than the prefix multiplication of CCS; | |_ and | correspond
to partially to the interleaving operator and the notion of parallel synchronisation. 8 is

similar to NIL in sums (but not in products). dy used for hiding the set of actions H
from the environment, so that it cannot communicate with the environment. And 1yin CCS

(i in LOTOS) is used to abstract from internal actions used in an expression.

The initial algebra semantics of ACP is given by the set of axioms given in Table

51

X+y =y+x Al

X+ (y+z) = (x+y)+ 2z A2
X+x=x A3
x+y)z=xz+yz Ad
(x.y)z=x.(y.z) AS
x+d = x A6
dx =d A7
alb =bla Cl
(alb)lc = al(blc) C2
da=d C3
XMly=xl_y + yll_x + xly CM1
al_x = ax CM2
(ax) Iy = a(xlly) CM3
x+yl_z=xl_z +yl_z CM4
(ax)lb = (alb).x CMS
al(bx) = (alb).x CM6
(ax)l(by) = (ab).(xl'y) CM7
(x+ylz = xlz + ylz CM8
xiy+z) = xly +xlz CM9
dH@) = a ifaeH D1
¢H(a) = d ifaeH D2
oH(x+y) = dH(x) + dH(y) ifaeH D3
oH(x.y) = oH(x).0H(y) ifae H D4

Table 3.6. Axioms of ACP

In these equations:

(i) a,b,c,....e A, the set of atomic actions (also called 'steps' or 'events'). A is
also referred to as the alphabet. A is assumed to be finite.

(ii) x,y,z,... are variables, ranging over the domains of processes (process
algebras).

[end of example 3.3]

One useful property which results from a behaviour definition based on the

axioms of ACP is that of a system of guarded recursive equations:

If X = {X]1,...Xn} is a set of labels of formal process variables. and a system

Ex of guarded fixed point equations (or guarded recursion equations) for X is a set of n

52

equations { Xj = Ti{X1, ..Xn) | 1 = 1,..,n} with Tj(x) a guarded term then the

following theorem has been proved in [7}:

Theorem : Each system Ex of guarded fixed point equations has a unique solution
in (A*)n,

ACP is extended to ACP¢ by introducing additional axioms related to the

abstraction mechanism.

Issues related to proving correct system behaviour are discussed in Chapter 5.

53

"When I use a word", Humpty dumpty said, in a rather scornful tone, "it means
Just what I choose it to mean - neither more nor less.”

“the question is" said Alice, " whether you can make words mean so many
different things"

- Lewis Carroll in ‘'Through the Looking Glass'

Chapter 4

DISTRIBUTED SYSTEMS-SERVICES AND CONSTRAINTS

In this chapter, services provided by distributed systems are considered. The
"service" concept naturally leads to the consideration of requirement descriptions. The new
notion of partial constraints is introduced in this chapter. The idea of partial constraints
evolves naturally from requirement descriptions. The design methodology based on partial
constraints is then introduced by means of several examples. Partial constraints are

demonstrated to be useful conceptual tools in system design.

4.1 Service Requirements And Architectures

Providing distributed services to users is the primary objective of distributed
system design. The twin concepts of computer system architecture and services provided to
users emerged with Operating system theory [32] in computer science and was refined in
software engineering (see for example:[63;) Integration of communication networks with
computer systems carried over these concepts to the area of distributed services and
architectures - one defining the other. Any description of distributed systems services
subsumes system architecture and a description of architecture assumes system scrvices.
This in turn implies that the level of ~' .tractness and formality of description of cach -
complements the other. For exampl:, in [70] communication services are described in

terms of abstract machines. That means an implementation independant description.

54

The layered architecture [86] of the OSI reference model define services in terms
of interactions at layer boundaries. Layer boundaries are abstract interfaces between service
provider and service user. Interactions between user and provider occur in the form of
abstract service primitives executed at abstract interfaces. In Figure 4.1 interactions
between user and provider are shown by double-headed arrows at layer interfaces. Abstract
service primitives are parameterised operations by means of which communication services
are requested and provided. In ISO documents the abstract service primitives and abstract
interfaces are called ASPs and SAPs (Service Access Points) respectively (cf. [40]). ASPs
are operations executed by users and the service machine at the SAPs. The system resulting
from the composition of the protocol entities and the underlying service is called the service
machine. Transfer of data hetween user entities and underlying protocol entities is also

accomplished by the use of ASPs.

PE1 PE2
Service n i
UNDERLYING SERVICE

(service 0...n-1)

Figure 4.1. Interactions at service access points

Services and protocol descriptions contained in ISO standards documentation are
informal and therefore prone to ambiguities. The abstract service machine is interpreted to

be an abstraction of the protocol and the underlying services it uses. The need for formal

55

notions of an abstract service machine and its environment are an immediate consequence

of informal descriptions.

4.1.1 Formal Notions Of Service

The importance of the service concept in OSI systems and its relation to the
service machine was pioneered in [79]. In |80}, the idea that abstract service definitions be
independant of protocol descriptions was proposed. Standardisation of formal service
descriptions based on system architecture was also proposed. The provision of verification
proofs of service obtained from protocol/underlying-service combinations in the

appropriate standards was recommended.

Informal, or semi-formal, descriptions make system design and analysis difficult.
Standardisation of the FDTs, LOTOS, ESTELLE and SDL now point the way to
standardised formal service, as well as, protocol specifications. In principle, formally

specified standards should facilitate verification and validation proofs.

4.2 Service Specifications

Formal specification of system behaviour presumes a behaviour model and a
design methodology. Many different models of behaviour used for the specification of OSI
system services are described in the literature. The principal models of interest are the
Abstract Data Type model [75],[13],{45], the finite state machine model [11] and the

process algebraic model [70].

56

4.2.1 Algebraic Type Specifications

The essential feature of the algebraic type specification approach is apparent from
the syntactic structure of the abstract data type specification given in Example 3.5.1. The
set of user service primitives are specified as the signature of a type, with service properties
expressed by the semantical (or equational) part of the specification. The user operation
interface is abstract. Logical properties of a service can be derived from the equational part
of a type specification. A type specification may abstract from an implementation
architecture. For example, the Last-In-First-Out (LIFO) service properties of a stack can be
derived from the equational part of a stack specification. An implementation of a stack may
consist of a list structure constrained to provide the LIFO behaviour of a stack. On the

other hand, a structure such as a list or a queue may also be specified.

In {76] for example, the Alternating Bit protocol and Stennings data transfer
protocol [74] are specified as a combination of ADTSs and state transition systems. System
architecture is implicitly assumed to be that of a queue connecting two users. User service
primitives include the send (add) and receive (remove) operations on the queue. Data is
transferred as arguments of the send and receive operations on the queue. Service

properties expressed in the type equations relate user operations to the state of the queue.

The OSI transport service specified in [46] is wholly a data type specification. The
set of SAPs and the system are modelled as list and queue structures respectively.
Connection endpoints are modelled as tuples of predefined data type values and an
enumeration type is defined to model states of the system. Equations relate service
operations to each other from which allowed sequences of interactions (or traces) can be

directly derived.

57

4.2.2 Finite State Machine Based Specifications

In [9], the OSI transport service specification results in a state transition diagram
very similar to that provided in the standards. However, state transitions which are
instantaneous and atomic do not accurately model the finite computations which accompany
such transitions. Additionally, two distinct FSMs simultaneously making transitions
(assumed to be synchronised) at the SAPs, considerably weaken the expressive and
analytical power of the model of specification. The global state space explosion under
composition is a well-known problem of state transition descriptions. However, strategics
of reachability analysis of FSMs demonstrated in several papers (cf. for example [86])

provide for a satisfactory verification technique.

4.2.3 Process Algebraic Specifications

The process algebraic model based FDT LOTOS is used to describe session
services and transport services in [19] and [65] respectively. In these specifications the
architectural framework is that of the OSI reference model. The transport service, for
example, is modelled as a process with a single LOTOS event gate - the transport SAP,
interfacing the process with the environment. The environment consists of session users.
Service is described in terms of a behaviour expression relating the possible interactions of
the provider (service) process with that of session user processes. However, verified

transport and session service specifications do not exist at the time of writing this thesis.

4.3 Service Design And Specification

The examples cited above specify a communication service. In general, a clear

relationship between architecture and service requirements is difficult to deduce from

58

specifications. That means that the specification does not directly provide a means to verify
whether system architecture and specification is consistent with service requirements. An
analysis of the relationship between architecture and service requirements would be helpful

in the design process.

4.3.1 Constraints And Design

In this section, the notion of constraints and a design method based on
constraints, for distributed system design is proposed.

The principal guide to system design in all engineering disciplines is the set of
constraints which provide the limits for the dynamic behaviour of the system under design.
Constraints on system behaviour are obtained from requirements and the fundamental
characteristics of system behaviour. The fundamental characteristics of distributed system
behaviour are (Chapter 1): Non-determinism, Concurrency (Sequentiality),
Communication (Synchronisation), Composability and Distributability.

As an introduction io the evolution of the idea of constraints, a brief description of

constraint-oriented specifications is given below.

4.3.2 Constraint-oriented Specifications

The "divide-and-conquer” approach to design, in the context of traditional
programming languages allows the programmer to structure his program. Similarly, the
constraint-oriented style permits the separation of system concerns into a collection of
separately defined smaller processes which together, are intended to specify system
behaviour. Each process is presumed to define a separate concern or 'constraint’ of the
system. Though only observable interactions of processes are represented in a constraint-

oriented specification, their temporal ordering relationships are composed together as the

59

conjunction of separate constraints. Each constraint is defined on the relevant subset of the

set of interactions being specified.

A simple example taken from [10] illustrates the ‘constraint-oriented’ approach:

Example 4.1
Given a process P defined by the LOTOS behaviour expression:

P:=a;b;c;stop!]b;a;c;stop 4.1)

where the operator '[]' denotes a non-deterministic choice, we may say that P satisfics the

constraints:

CO1:
"a precedes b precedes c precedes inaction”
or

"b precedes a precedes ¢ precedes inaction” 4.2)

Where a,b,c belong to the alphabet of events associated with the behaviour
defined in Equation 4.1 and the null event stop is inaction. The 'or’ in COl is presumed to
be non-deterministic, in the sense that an observer in the environment records either of the

traces <a,b,c> or <b,a,c>, the choice being made autonomously by the process P.

A trace [35], is the observed behaviour of a process in terms of a finite sequence
of symbols, recording events in which the process has engaged in, upto some moment in

time. The set of traces {<a,b,c> and <b,a,c>] is denoted as Tr(P), where P is a process

60

defined by an algebraic behaviour expression as in Equation 4.1. The set Tr contains all

possible observable traces of the process.

If the action ¢ in both parts of the expression of Equation 4.1 is unique and
synchronisable, then Equation 4.1 can be rewritten as Equation 4.3 by using the inference
rules of LOTOS, in terms of the parallel (ll) operator of LOTOS:

P:=a;c;stoplclb;c; stop (4.3)

Axioms and inference rules of LOTOS may be used to rewrite given behaviour
expressions into equivalent expressions by repeated replacement modulo a desired level of

equivalence.

Inversely, Equation 4.3 can be reduced to Equation 4.1 using the expansion
theor=m for parallel expressions in CCS. Behavioural equivalence of the two expressions
implies that their trace sets are the same. The converse however is not necessarily true.

Equivalent trace sets do not necessarily imply observational equivalence.

An example of two expressions which are trace equivalent but not observationally
equivalent is:

Pl:=i;(a;stop|]b; stop)

and

P2:=i;a;stop|]i;b; stop (4.4)

|li||

where the internal event is represented by "i". Here, an experiment offer of "a" or "b" by
the environment could result in deadlock with P2 but not with P1, even though their trace
sets are equal. Deadlock in the case of P2 is due to 't', which may cause the process to
'silently’ (unobservably) slip into a state where it offers either the experiment ‘a' or 'b'

but not both. This is not the case for the 'i'-step in Equation 4.4.

61

The process of Equation 4.3 offers a and b in either order followed by c, where ¢*
denotes synchronisation of the event-offers ¢, common to both parts of the behaviour. The

notation "c*" has been used in an ad-hoc manner.

The expression for P in Equation 4.3 may again be presumed to define the
constraint:

CO2:
"a precedes c* " and " b precedes c* " (4.5)

The conjunction of these two components gives the constraint-oriented

specification of the behaviour in Equation 4.3.

The behaviour expressions of Equation 4.1 and Equation 4.3 have the same trace

set - <a,b,c*> and <b,a,c*>

A further constraint such as "x precedes c" can be added later to this behaviour

expression thus:

P:=(a;c;stoplclb;c;stop)lclx;c; stop (4.6)

The expressions in Equation 4.3 and Equation 4.6 are a conjunction of
interdependant constraints. If the action "c" is deleted from Equation 4.3 the parallel (i)
operator may be replaced by the interleaving (lll) operator to represent the independence of
each component of the corresponding constraint - CO2

fend of example 4.1}

62

4.3.3 Constraints

System design is based on statements of requirements. Intuition of system
behaviour based on service architecture and functionalities of system components help in
the design of the system. Intuitively, the idea of constraint oriented design is to consider
assertions on system behaviour as constraints or limits within which system behaviour can
be specified. An aid to the design process is the identificaticn of possible orders on sets of

related communication events which satisfy functional and architectural requirements.

Viewed in this way, system behaviour is circumscribed by constraints. For
example, a constraint may be constructed to derive a behaviour specification such as the
one in Equation 4.3. Conversely, given a behaviour specification like that of Equation 4.3

it should be possible to show that it satisfies the constraint CO2.

In what follows, constraints are assertions relating events of a communication
environment, in which the system participates. Related constraints can be combined to
yield again - constraints. That means the system of constraints is closed with respect to the

relations between events.

A consequence of Definition 3.1.2 of the previous chapter is that an LTS is an
algebra represented by the tuple <S,L,T,s0>, accordingly a distributed system is defined as

follows:

Definition 4.1 A Distributed System
A distributed system is an LTS - S, such that a decomposition of S into
component systems Pl, P2 and uS exists, with:

S=Pl xP2xuS 63

s

where P1, P2 and u$ are represented by the algebras <P1,L1,T1,p10>, <P2,L.2,T2,p20>
and <uS,uL,uT,us0> respectively. The LTSs satisfy the following conditions:

(i) sO = [p10,p20,us0]

(i) P1 "P2=® and L1 " L2 =®; where & is the empty set

(i) LI nuL#® and L2NulL 2.

[end of Definition 4.1}

Condition (i) simply ensures a unique initial state in the event that it is possible to
obtain a consistent combination of states of the components of the system. Condition (ii)
states that P1 and P2 have no common states or interactions, while condition (iii) states that
both L1 and L2 have common actions (interactions) with uL. Distributed architecture is
implicit in conditions (ii) and (iii) in that P1 and P2 represent independant distribuied
components, with no direct interactions, and uL the non-distributed component of the
distributed system S. The non-distributed component uL is capable of independant as well
as joint actions with P1 and P2. The definition given above may be extended to allow for

the decomposition process to result in many components in the usual manner.

Partial Constraints are introduced with an example from [55].

Example 4.2

Let processes P1 and P2 be defined by the behaviour expressions:

Pl=o.(a.B+7v)+ a.p+ a.y)
and
P2=a.(a.(B+v)) + a.(a.p+a.y) 4.7)

The action trees of P1 and P2 are given in Figure 4.2.

64

Figure 4.2, Action trees of P1 and P2
[end of example 4.2]

CCS action trees grow as associated communication events occur. Action tree
growth is linear according as new actions occur in temporal relation to previous actions.
Branching or non-linear growth occurs, if a new action is non-deterministically related to

previous ones.

Constraints can be constructed from trees as follows. Linear growth of an action
tree along a path of the tree is related by a precedence relation on actions. Branching
growth corresponding to non-deterministic choices between actions is related by the non-

deterministic 'or' relation.

For the action trees of Figure 4.2, the behaviours of processes P1 and P2
respectively must satisfy the constraints:

Co03:

o precedes

((a precedes (B or 7))

or

(o precedes P)

or

65

(o precedes v)) 4.8)
Co4:

(o precedes (o precedes (B or 7))

or

(o precedes (o precedes B) or (o precedes 7)) 4.9)

Constraints CO3 and C04 have been constructed stepwise (action by action) with a
precedence relation for new actions in a given path and the choice relation (non-
deterministic 'or' relation) for actions on different branches. Actions in constraints are self-

referential.

But distributed system behaviour manifests two other aspects. Communication
between actions in an environment - an aspect of non-determinism, and system
architecture. Non-determinism is discussed in the next section while system architecture is

treated in the next chapter.

4.3.4 Non-determinism, Communication And The Environment

For example, CCS actions represent communication between a process and its
peers in the environment, synchronising on matching event(experiment)-offers. Thus
traces represent sequences of successful communication events (actions) of the process
under definition with respect to the environment. Reducing a specification to behaviour
expressions consisting of sequential terms only represents satisfaction of precedence
constraints, provided non-determinism does not alter the behaviour properties of the

system.

66

Indeed, precedence relations on a given set of actions in an environment defines
classes of behaviours which are trace equivalent. Each trace satisfies the logical property
represented by the sequence of precedence related actions in a constraint. Examples of
traces satisf;ing logical properties represented by precedence relations on actions in a

constraint are given in Chapter 5.

Thus for example, the properties:

PRO1:

a precedes o precedes B (4.10)
and

PRO2:

o precedes o precedes 7y 4.11)

are satisfied by both P1 and P2 of example 4.2.

But the property stated as:

"An a-action is possible such that after any further o action it is necessary that
both a B-action and a y-action are possible”

and expressed as:

PRO3:

Ja s.t. (select an @ s.t.")

not (a precedes (o precedes (B or ¥)))

is satisfied by P2 but not by P1.

Satisfaction of PR0O3 by P2 is proven in terms of partial order diagrams shown in

Figure 4.3.

67

Posetof P1 Posets of P2

Figure 4.3. Poset diagrams for Pl and P2
The posets of P1 and P2 of Figure 4.3 are obtained as follows:

The occurrence of an action is represented by labelied nodes (dots) going bottom
up. Nodes represent corresponding action edges of the DT. Branching is represented by
edges in the poset leading to different nodes at the sume level of the poset. Initial branching

yields a forest of posets as is the case in the poset of P2 in Figure 4.3,

Thus the poset of a DT grows bottom up, sequential edges or branching edges
leading from action to action. An initial choice between a actions is represented in the poset
of P2 as the beginning of two different chains starting with the same action, each growing
bottom up autonomously.

Assuming that the posets of Figure 4.3 have been obtained from the DTs of Pl
and P2, satisfaction of PR0O3 by P2 is proved as follows:

Proof: (Satisfaction of PRO3 by process P2)

The posets of Pl and P2 show that initially, P2 can choose the action o of the
second alternative poset (chain) in the poset forest of P2. This choice implics that it cannot
choose any further o action whereby both a P action and a vy action are possible. The posct
of P1 shows it cannot make such a choice of a actions initially, since it must choose the
only a action offered. Therefore, PR0O3 is satisfied by P2 but not by P1.

[end of proof]
€8

Alternatively, examination of C04 shows that property PR03 can be derived from
C04 by selecting the second alternative component of CO4. This implies that if the
behaviour of P2 is derived from the requirement constraint C04, P2 will satisfy the logical

properites of C04 as expressed by the component constraints of C04, but not CO3.

It follows that PRO3 also distinguishes P1 from P2. That means P1 and P2 are not
observationally equivalent. But is that true in every sense? The answer is no! PRO1 and
PRO2 are satisfied by both, but PR03 is not, which implies they are trace equivalent, but

not observationally equivalent.

Indeed, P1 and P2 are k-observationally equivalent (k=2). K-equivalence implies
observationally cquivalence upto depth two of the DT. The 2-equivalence can also be seen
in the precedence constraint description upto depth two. If the depth of the constraint is
assumed to be the depth of its logical formula. The depth of a logical formula is the depth
of the tree obtained by writing the expression in prefix notation. But P1 and P2 are not
observationally equivalent to depth three of the tree. This is because of non-determinism,

represented by branching in the DT going "top-down’, and going 'bottom-up' in the poset.

The non-observational equivalence of P1 and P2 shows that process behavicur
cannot be captured solely by the satisfaction of precedence constraints. For example, P2
satisfies the non-deterministic constraint ‘o or o' initially, but either choice leads to
different chains. Also, deadlock and livelock properties - a consequence of non-
determinism cannot be captured using trace semantics. Equation 4.3 is an example of non-
satisfaction of deadlock properties in the presence of trace equivalence of two processes.
The obvious conclusion is that trace semantics do not provide a sufficient set of tools for
system design.

69

4.4 Constraint Relations

Indeed, a stronger result can be derived by examining typical DTs and posets,
such as those of Figure 4.2 and Figure 4.3. It is shown in the sequel, that the non-
deterministic relation between actions cannot be adequately captured only by partial orders

on communication events.

In the poset representation of process DTs, the logical 'or’ used in the constraints

implicitly models non-determinism. But first, what are communication actions?

Recall that in the CCS model of process communication, the actions in Figures
4.2 and 4.3 represent synchronisation of event offers between the process under definition
and other processes of the environment. In CSP matching input/output action value-offers
of different processes result in communication with exchange (by input and output) of
values. In event algebras [18] a synchronisation event of different histories of an
environment result in a communication move (or action). A history can be viewed as a

computational structure.

Indeed, we can assume that communication events are modelled by a form of
action sharing as in ACP. This means that processes in an environment share an action (or

actions) to communicate.

In this and the following chagpter, we define a communication environment in
terms of algebraic relations and formally define partial constraints on communication
behaviour. The notion of partial constraints forms the basic notion on which a set of

conceptual design tools is developed in this thesis. Illustrative examples are used to

70

demonstrate the use of design tools with respect to the first five design objectives stated in

Chapter 1.

In what follows it is assumed that communication is an action (or a
communication event), resulting from synchronisation or an interaction between actions. A
computation due to communication is the result of an interaction. Communication between
processes may result in a definable cornputation. A computational system has a structure,

both temporal and architectural.

The above notions are elaborated below by using concepts of modal logic [39].
The four modal notions are that of 'necessity’, 'impossibility’, 'contingency' and
'possibility’. A proposition that is bound to be true is called 'necessary'; one that is bound
to be false is termed 'impossible’. A 'contingent’ proposition is neither necessary nor
‘impossible’. A proposition that is not impossible is 'possible’. The phrase 'bound to be
true' can be interpreted in different ways.

In order to elaborate the partial constraint design methodology, we proceed as

follows:

1. Given an environment E of communication events called actions, a set of
relations called partial constraint relations are defined on the actions of E. The actions of E

are assumed to be self-referential.

2. Behaviours in E are functions defined on the actions of E. Assertions called
partial constraints obtained from partial constraint relations on the actions of E, are
derivable from behaviours by a definition of provability of the expression (satisfaction

relation), B I= pc. Where B is a behaviour expression and pc is a partial constraint on the

71

actions in E. B I= pc can be viewed as a boolean, where B |= pc => that pc is true for B

and B I= not pc ==> pc is false for B.

3. A method of constructing partial constraints for system specification is given.

4. The satisfaction relation |= between partial constraints and process algebras is
defined providing a mapping from partial constraints to process algebraic behaviour

expressions.

5. For verification purposes, the satisfaction relation |=is interpreted in terms of
the modal operators @ (henceforth') and ¢ (‘eventually’) are defined such that:
(i) If Bl=0Opc =V B'such that B==>B’, then B'l=pc
(ii) If B I= Opc =3 a B1,B2 (behaviour expressions)
and pcl,pc2 (partial constraints) in E
such that (B1 'op' B2)==>B and (pc! '0' pc2) ==>pc,
and Bll=pcl and B2 I=pc2.
Where 'op’ is an operator of the process algebra under consideration and '0' is a
relaiional operator for partial constraints defined below.
The operator & is similar to the temporal logic operator 'henceforth'. It implies
that pc is "henceforth” (always) true for all transformations of B, via interactions (or
transitions). And the operator 0 corresponds to the temporal logic operator 'eventually’. It

implies that pc will "eventually” be true for a transformation (B! 'op’ B2)==>B.

6. A method for validation and verification of specification is elaborated based on

the modal operators defined as in step 4 above.

72

Steps 1,2 and 3 are described in this and the next chapter, while 4 and 5 are

discussed in Chapters 5 and 6.

Assumption 4.1

If E is an environment consisting of communicating actions, then there exists a
modality of determination (a systematic process of determination is modally 'possible’) by
means of which behaviours and related assertions on behaviours of communication

systems can be determined.

If B is a set of behaviours and Pc a set of partial constraints on behaviours in E,
then the assumption implies that:

(i) Ja method of determining partial constraints pc and behaviours B in B

(ii)..Vv B € B 3apc ePc,s.t. Bl=pc.

[end of assumption 4.1]

Example 4.1

Examples of methods of modal determinations are:

(i) Given a communication environment E, a method of determining partial
constraints or behaviours could be based on observable traces of system behaviour.

(ii) A system of canonical transformations on informal requirement descriptions of
bechaviours in E could be the basis of modal determinations.

(iii) Observed behaviour resulting from testing experiments could also be the basis
of determinations.

An example of a definition of provability is any formal definition of the
satisfaction relation Bl=pc

[end of example 4.1]

73

Assumption 4.2

The partial constraint operators: 'or', 'and’, 'not', V and 3, defined by the
definitions given below, relate the actions of an environment E (defined below) and
properly extend the semantics of the corresponding operators of First Order Predicate
Logic (FOPL).

This implies that these operators can also be manipulated as FOPL operators in the
elaboration of proofs of properties of behaviour specifications derived from partial
constraints.

A similar remark applies to the operator 'precedes’ which corresponds to the
mathematical operator "less than" (<).

[end of assumption 4.2}

Definition 4.1 An Environment E
An environment E is a set of atomic actions labelled by a finite set of labels

{a,B,y,...}, in which it is possible to encode a set of behaviours B on the actions of E,
and a set of assertions called partial constraints (a set Pc), relating the actions of E. As per
assumption 4.1, a definition of provability exists s.t. partial constraints are derivable from
behaviours on E. i.e.

VB e, Japc €Pc,s.t. Bl=pc,

the boolean function B |= pc means that pc satisfies the behaviour B.

[end of Definition 4.1]

Partial constraints are defined next.

74

Definition 4.2 Partial Constraints

The set Pc contains the following well formed formulae (wff) on the actions of an
environment E and the partial constraint operators 'or', 'precedes’, 'and', 'not’, 'V’ and
'J". They are called partial constraints and denoted by pc:

VofeE

(i) "' (the empty pc® is a wff

(i) 'a’,'aora’,oor o or a...' are wff

(i) ‘o or P' is a wit

(iv) ‘o precedes o' is a wff

(v) 'a precedes B'is a wff

(vi) 'oc and o' is a wff

(viiyoand B' is a wif

(viii) If pc is wff then so is ‘o or pc’

(ix) If pc is wff then so is '® precedes pc'

(x) If pc is a wff then so is "o and pc'

(xi) If pc is a wff then so is 'not pc' is a wff

(xii) If pcis a wff then sois' V o € E pc' is a wff

(xii)) If pcis a wff thensois' 3 o € E pc' is a wif

(xiv) If pc' is defined within pc, then if pe is a wff then so is pc'

(xv) nothing else is a wff

[end of Definition 4.2]

Definition 4.3 An Environment Of Non-deterministic
Actions
An environment E of actions is non-deterministic if 3 an equivalence relation

called the non-deterministic relation v = {(a,B) | &¢,p € E s.t. pc(a,B) =" 'aor ' " is

75

p T

true}. The pc(a,B) ='a or B'is true if it is not possible to state which one of ‘o’ or '’
is true during a determination. Actions are self referential in the relation. It follows that:

Havo=>"'oora "istrue
(i)avB=>PBvaoa==>""aorp "is true
(i)avPandPv y=>av y==>"'aory" is true

[end of Definition 4.3]

The pc: ‘o or B' is true implies that it is possible to make the determination tha
one of the actions ot or f3, can occur. Non-determinism implies that is not possibie to say
which one of o and B will occur. The relation v induces an equivalence class of non-
deterministic actions containing o and B in E at the time of determination. Note, that the
modality of determination yields the truth value of the ‘or’ constraint and not necessarily

the occurrence of an action.

The equivalence classes [at]y] and [a]y2 may be disjoint if the corresponding
determination is made at different times, or if the pc "not 'ty] or ay2' " is true. Since the
first determination identifies the class of actions which are v|-related and the second
determination identifies the class of actions which are v2—related. Note that in any
determination, if o is the only pair, then [a]y = {at} and ‘o’ is true and 'a or o' is true. If
'a’ is true and ‘oL or o' not true, then E is not non-deterministic. This means that E is a

deterministic environment with respect to the determination 'ot'.

Example 4.2

In Figure 4.3 the poset chains of process P2 are a representation of a nion-
deterministic environment, while the o of P1 is in a deterministic E. If we make ‘o or o

not true, i.e. only 'a’ is true initially in P2 then F1 and P2 become observationally

76

equivalent. Such a behaviour can be defined by superimposing the initial 'o’'s and the rest

of the two chains of P2,

[end of example 4.2]

Definition 4.4. An Environment Of Concurrent Actions

An environment E of actions is concurrent if 3 an ordering relation called the
concurrent relation x = {(a,B) |V a,BeE s.t. pc(o,B) ="' <P or'B<a’ "istrue}.
The pe(o,p) is true,

if 'a. precedes B or P precedes o', It follows that:

Moy p=>Pxa==>

"a<BorB<a" or "f<aor'a< B

[end of definition 4.4]

The 'or' is the non-deterministic 'or' defined in Definition 4.3. The proposition "o
< B is interpreted to be true if ‘o precedes B'. That means that a determination of
concurrent action in E results in the assertion:

"'‘a< B or'f <o "being true. As aconsequence,

'y P ==>'aor P'is true, but not necessarily vice-versa.

Example 4.3
The actions a and b in (4.1)

[end of example 4.3]

Definition 4.2 and Example 4.3 lead to:
Lemma 4.1

The concurrent relation refines the non-deterministic relation.

77

Proof:
We must show that [aly 2 [a]y,
Action o=y fp==>"'a<forB<a’ "

==>""a precedes -an action-' or ‘P precedes -an action-' "
==>"0t or B is true

==> o=y B

==> [aly 2laly

[end of proof]

Example 4.4

If the actions o ard [represent input/output actions, then a possible behaviour
description of a one place communication buffer can be described by:

Buf = a.f + B.ax (4.12)
where if o is an input action then P is an output action and vice versa.

Assume that a satisfaction relation between the process algebra of the specification

in Equation 4.12 and partial constraints exists, Equation 4.12 then satisfies the pc: " ‘o

'

precedes B' or 'B precedes o' ", which implies that it satisfies the pc: ‘o or ' is true, from
Lemma4.1.

[end of example 4.4]

Definition 4.5 An Environment Of Communication

A non-deterministic environment E is a communication environment, if 3 an
equivalence relation called the communication relation p = {(c,p) | a,B € E s.t. pe(a,p) =
"a<Por 'B<a”is true}.

oapo <==> "'asao "istrue

(oapp=Pppoa<==> "'a<for'psa "is true

78

(i)apuP andPppy=>apy<=>"'as<yor'ysa"istrue.

[end of Definition 4.5]

The ‘or' is the non-deterministic ‘or’ defined in Definition 4.3.2. The proposition
'wgP' is interpreted to be true if " ‘o precedes B' or 'c and B' " is true. That means that a
determination results in the pc " "o € ' or 'B < a™ being true. Equality is interpreted as
the possible simultaneous occurrence of both o and P. As a consequence, '0. and p' ==>

‘o, or B' is true, but not necessarily vice-versa.

Example 4.5

In Figure 4.3, If the initial as of the two chains of P2 occur simultaneously (or
synchronise), represented by superimposing the initial o nodes, then ‘o and o' is true for
P2,which implies 'a or o' is true.

fend of example 4.5]

Lemma 4.2
The communication relation refines the non-deterministic relation.
The proof is similar to that of Lemma 4.1

[end of Lemma 4.2}

Lemma 4.3

The actions of a communication environment cannot be totally ordered.

Proof:

It is required to show that for a total ordering on E, it should be possible to find a
least element. Suppose, o is the least action in E, then we can obtain the single chain:

ie. a <P <y<8.. forall the actions of E

79

l

but from Lemma 4.2 E is also non-deterministic ==> o v & is true, which implies we can
obtain at least two chains with two least elements one with o and another (also) with a.
Therefore, E cannot be totally ordered. It is only possible to partially order E.

[end of proof]

Example 4.6

The Buf of the last example can also specified as:

Buf=0.p + o0t 4.13)

[end of example 4.6]

Definition 4.6 A Computational Environment E

A communication environment E is a computational environment, if a function f
can be defined on Es.t. 3 o,B,YEE s.t.

@oapnpPand flaf)=7 <==> "a<Bor'p<sa or'y"

[end of Definition 4.6]

Example 4.7

Again for the buffer of the last example, if 7y is an action such that

"o <y< B or'B <y< o ", and if the behaviour of the buffer is specified as:

Buf =a.p + B+ 4.14)

Then a function f can be defined such that the fuactionality of 'Buf’ is equivalent
to any one of the the terms of Equation (4.14). And if each term computes the same
functionality then by a satisfaction relation similar to that of Example 4.5, the truth of "o <
B'or'B <o or'y" can be derived.

Additionally, if yis omitted in " 'a <Y< B'or 'B <Y< ' ", we obtain the
constraint " 'a £ ' or 'B < o' ", which implies a p B.

Also, if o ju B, and o0 = B, then "o <y< B or B <y o' ==>a =P =Y.

80

The behaviour of 'Buf' can also be represented as a multigraph in which each
node corresponds to a point in the computation and an edge from that node corresponds to
an action transition leading to the next point in the computation. Branches in the graph
represent non-deterministic choices. The graph for communication behaviour is given

below:

[end of example 4.7]

Theorem 4.1

f is well defined but not totally defined.

Proof:

(i) By definition the image of f under { is defined as:
Fora puP, flo,p)=y<==> "'a<PorP<a ory"
As in Example 4.7, v can be chosen such that:

"o <Y< B or'p Sy o

Similarly,

for ooy B and f(o,B) =y* <==>
"a<PorPpsa oryM "

and y* can be chosen such that:

"o <Y P or B Sy o

From which

"y<yYWor'ynsy ™

Therefore: Y=y

(i) fisnot totally defined.
81

Take o, € Es.t. ot (not 1) B but o v B, f(ar,P) is undefined and therefore not
total.

[end of proof]

The following is another example in which two concurrent actions do not have the
same functionality.

Example 4.8

Suppose o corresponds to an input action only and B an output action only then
the behaviour of buffer can be represented as:

Buf= a.f # .0 (4.15)

The terms o and P.o do not have the same functionality.

[end of example 4.8]

Indeed, communication is intrinsic to the non-deterministic occurrence of events in
a partially ordered behaviour,

Theorem 4.2

The intersection of the communication relation | and a partial order relation n
(obtained from the DT of communicating actions) defines a computation in E. See Figure

4.4

computation

Figure 4.4 A computation in a communication environment
Proof:
Suppose, a,fep==>"'a<P or'B<a"istrue, and a <x B or B<r a.

82

Since, a,pep ==>a,Bev=>"a orf is true ==>

3 an action ys.t. a partial order & on E can be defined given by:

a<y<p<Ly<as..

or

Bsy<sa<ysps<...

where " 'a< B or B <o " is true, and o <g P or P < ot is true.

We can now choose a partial function f s.t. f(a.,) = y. Hence, g N 1 defines a
computation.

[end of proof]

Corollary 1.

For a finite number of communicating actions in E, intersections of partial ordevs
on E define computations of partial communication behaviour.

Proof:

Consider two partial orders on the actions of E:

ol <P1 <yl <81... and

02 <P2<y2<82.. and

suppose that al g a2, 1 p B2,... then a partial order can be defined s.t.:

ol <02 <Pl <P2gyl €2 <81 <82....

or (4.16)

o2<al <P2<Plsy2 <yl £82<81...

Taking intersections | M 1 of equal, finite lengths of Equation (4.16) results in a
computation of partial communication behaviour: So that (4.16) can be written as:

ol=02 < PI1=P2 <y 1=y2 ..

Replacing al=02 by o, $1=p2 by P and so on we get:

o £ Bgy< ...

a partially ordered computation.

[end of proof] 83

The theorem shows that a computation can be defined as the intersection of partial

orders on E and a communication relation .

Hence, if we take intersections of a finite number of partial orders and
communication relations on actions, a finite number of computations result, thus providing
a partial order structure to a communication behaviour in E. Therefore, if a process algebra
is selected for mapping this behaviour, a process in that algebra represents the structure of

such a computatior..

Corollary 2.

The computational structure of the communication behaviour of a finite number of
actions can be represented by an infinite recursion of processes.

Proof:

For a finite number of actions in E, consider the infinite partial orders:

al <02 <Pl <Pyl <Y2<81<82...

or 4.17)

02 sal P2 <PIy2 <yl £32<6l....

To define a process, we assume that the set of actions ol,
«2,81,82,y1,y2,61,62.... is finite. This implies that in an infinite partial order of the type
in Equation (4.17) the finite number of labels begin to recur. From which we deduce that
there exists some finite length sequence in an infinite partial order beyond which the partial
order is periodic modulo that sequence length. That means that every finite portion of the
partial orders is repeated infinitely often.

But by the theorem, finite parts of the infinite partial orders can represent a finite
computation. From which it follows that communication behaviour can be represented by
infinitely recursing processes.

[end of proof] 84

We illustrate by means of the simple one place communication buffer.

Example 4.9

(i) Assume that the buffer of Example 4.7 outputs whatever is input, so that it o3
are input/output actions and o p B, with a function f(a,f) =7, then every intersection of
the communication relation and the partial orders:

asy<PB<y<a<y<p..

or (4.18)

B<y<asyPsy<ac<y..

gives the constraint: " 'a < y< P or'p <y< o "and the process algebraic
behaviour:

Buf = o.p + .o+ y (4.19)

This behaviour is finite and therefore terminates.

The recursive behaviour:

Buf = (a.p + .o + 7).Buf (4.20)
of the buffer process, also, always satisfies the constraints, although it is non-terminating

behaviour.

The functionality of the buffer process is given by any one of the terms of
Equation (4.20), i.e. the action y or the cross-product of the functionalities of the actions
o,B. Therefore, omitting 'y does not reduce the functionality of the specification, so that the
partial order can be written as:

asPpsasp..

or (4.21)

B<asBsa <.

85

Intuitively, the omission of y in the behaviour specification is related to the ‘depth’
of the determination. The depth of a determination can be measured by the depth of the
associated constraint.

[end of example 4.9]

Formally:

Definition 4.8 Depth Of A Determination

The depth of a determination is measured by the depth of the associated partial
constraint on a given set of actions. The depth of the associated partial constraint is the
number of atomic actions bound by the precedence operator, or the depth of determination
is 1.

[end of Definition 4.8]

Example 4.10
If a determination on the actions o.,B in E results in the assertion that

(i) 't or B' is true, the depth of the determination = 1

o

(ii) ‘e precedes o or 'B precedes B' is true, the depth of the determination =
(iii) ‘o precedes B or P precedes o' is true, the depth of the determination = 2.

(iv) ‘o precedes B precedes ¥ is true, the depth of the determination = 3.

Note that the first two terms in (4.19) and Equation (4.20) are the result of a
determination of depth two, while the last one is the result of a determination of depth one.
That means the behaviour of the Buf at depth one is: o+ B +y. So that the action 7y
appears at both depths. Consistency between the determinations depths 1 and 2 is achieved
by choosing v to be an internal, unobservable action which is equal to both a and P. This
is further explained later.

[end of example 4.10]
86

Thus, partial constraints on system behaviour, considered from the point of view
of depths of determination, represent the limits within which distributed system behaviour
can be specified.

Theorem 4.3

Non-determinism and communication represent a minimum and a maximum

constraint (boundary) respectively on the partial definition of communication behaviour.

Proof:
1. For actions a.B: auf and f(a,B) =¥, we can choose ys.t.:
"o <k Y<n B or B<gvp o
==>"'a<g P or B<ra' "
==>""'a< B' or B<at' or 'a=f""
Where the omission of y implies that the functionality is the product of the
functionalities of the actions o and B, or the functionality of &, or of B.
If'a< P’ or 'B<a’ is true, the functionality is that of the product of o and P - a
maximum for the behaviour.
If 'o=f' is true, the functionality is that of of oo, or of B - a minimum.

[end of proof]

This result can be interpreted in terms of action trees as follows. A determination
associated with action tree growth starting from the root node, will result in determination
of depth one corresponding to the tree given by 'a + 3, and a determination at depth two
is given by " ‘o precedes ' or 'B precedes o or 'a=P' or 'Y". The corresponding trecs

are shown in Figure 4.5.

87

Minimum Maximum

Figure 4.5. Minimum and maximum action trees at depth 1 and 2

The architectural implication of a determination at depth=2 means that, if a
determination is made on a system globally, components of the system may exhibit the

behaviours: o, BP, aff,po,apf + Pa, ..., at depth of determination=2

Example 4.11

Consider now the example of a one place queue which can be used to input an
clement of data, transmit it via the queue, and output that element.

Let o denote the input action, Y the transmission and B the output action.

The behaviour of the queue satisfies the pc:

" ‘o precedes y precedes ' " ;

a total order corresponding to this constraint can be described as:

o <y<P<a<y <f<a<y<p... 4.22)

and its process algebraic behaviour can be described as:

Que = o.y..Que (4.23)

Figure 4.6 represents the queue process as:

—f Ty -

Figure 4.6. The queue process

88

Suppose now, that we are able to make determinations of input actions and output
actions separately (in a distributed manner), then the behaviour of the queue satisfies the
constraint:

"'a precedes ¥ and "y precedes B' " ;

with the partial orders:

O<Y<OLYLOLYL . ..

and 4.249)

Y<PB<y<p<y<P<y...

respectively.

The behaviours:

Inque = o..y.Inque

and (4.25)

Outque = Y.p.Outque

satisfy the constraints, where the queue is distributed between two processes: the
Inque process, whereby a user-queue interaction (at the queue interface) leads to
determinations implying that input precedes transmission, and the Outque process, which

leads to determinations implying that transmission precedes output.

It is not readily apparent how the two processes of Equation (4.25) can be
composed together to obtain the behaviour of the queue process in Equation (4.23). What
should the operational semantics of the composition operator be? In other words:

Inque "operator” Outque = Que (4.26)
where "operator" is some operator which results in ‘Que’ on the RHS of Equation 4.26.

One approach may be to consider only finite behaviours of each process (se¢

Figure 4.7) by defining:
89

Que = a.v.p 4.27)

and:

Inque = 0.y

and (4.28)
Outque = 7.3

For this finite case, a solution is:
Que = Inque.Outque
= oy.y.p
= a.y. 4.29)

Obtained by reasoning that v.y gives Y again, since 7y is the same action. But
Equation 4.29 is obviously an awkward solution. Another approach would be to parallel

compose the two, where the operator (1I') composes common actions and interleaves

others:
Que = InquellOutque
= a.ylyp
= a.y.p (4.30)

Obviously this expression satisfies the service required from the queue.

T L p
a BW;J_“

Inque ‘

S S S S e B ey
Inque med Outque

Figure 4.7. Decomposition of queues

90

Suppose now that we decompose the queue and distribute the transmission action

y as follows (see the second part oi Figure 4.7):

Let y1 denote the send action and y2 denote the receive action, or the beginning

and the end of transmission, s.t. Y1.y2 (i.e. send precedes receive) or yl=y2=y.

occur:

Now the queue process can be defined as:
que = Inque + Outque 4.3
where

Inque = a..yl.que

and

Outque = 72.p.que
and

med = y1.Y2.med
and

usr = usrl + usr2

usrl = o.usr
and
usr2 = B.usr

and define a closed form of parallel composition where only common actions can

Que = quell(med + usr) (4.32)
or

Que = (Inque + Outque) | (usrl + med + usr2)

= (o.yl.que + ¥2.p.que) Il (a.usr +y1.¥2.med + B.usr)

= (.yl.que + ¥2.B.que) Il (.usr + yl.y2.med + B.usr)

(o is the interaction)

91

= (.que + Y2.p.que) It (.usr +.y2.med + |- .usr)

(y! is the interaction)

= (.que + .p.que) Il (.usr + ..med + P.usr)

(y2 is the .nteraction)
= (.que + ..que) Il (.usr + med + .usr)

(B is the interaction)

(4.33)

Common actions are in a communication relation and their occurrence corresponds
to communication behaviour. Equation 4.33 replaces actions which have already occurred
by dots. Traces of interactions show that recursion occurs with the actions:

o,y1.y2,B

or

oy, (if y1=y2=y) (4.34)

If yis structurally hidden in this computation, the partial order of actions in
Equation (4.34) can be written as:
o <p<o<P<a<P... (4.35)

which satisfies the pc: " ‘o <f' or y".

Altemnatively, if the entire computational structure is hidden, i.e. the actions input
and output are somehow now internal actions than it suffices to specify the whole structure
by the internal action action 7, and the partial order can be represented by:

YSYSYSYSYSYSY...

or (4.36)

= FEYEEEYEY--

92

Note that the same result can be obtained from the following parallel composition:

usrlllinquelimedllimed2!iOutquellusr2 4.37)

[end of example 4.11]

Internalisation or hiding of some events in a distributed system implies that
consecutive determinations would obtain observable actions or hidden actions. Observable
actions of a distributed system are, in general, non deterministic actions, while internal
actions are related to communication interactions with an underlying service. This fact
suggest the statement of the following:

Theorem 4.4

Communication behaviour can be computed partially such that it satisfies non-

determinism and communication constraints in alternation.

Proof:

Suppose ¢ P and 3 an f and ys.t f(a,B) = ¥ and,
==>"'0L < Y<re B' or ‘B <p v o' " and o
==>""'0<g B' or B<Sxa' "and aup

where 'Y is omitted from the partial order relation between o and B as in Theorem

4.2,

Therefore:

"‘aorPor'a<P or B<a'or'a=por'y "is true.

Therefore, the computational structure of f can be represented such that
consecutive determinations alternate between components of the computational structure.
That means determinations derive the pc'aor ' or'a < B or B< o' or 'Y depending on
which component of the structure is involved in the determination.

{end of proof]

93

" The truth has no distinctions; These come from our foolish clinging to This h‘(lznd
T t "
- Hokleyo

Chapter 5

OPEN DISTRIBUTED ARCHITECTURE-A LOGICAL VIEW

In this chapter, the specification of distributed systems using partial constraints is
illustrated by means of realistic protocols. The design strategy provided by the partial
constraint method relates computational structures of system behaviour to system
architecture. Process algebraic specifications resulting from partial constraints are partial
with respect to the set of requirements. Validation and verification analysis can be carried

on these specifications even though they are partial specifications of system behaviour.

5.1 Constraints And Architecture

Design and specification strategies manage complexity of system behaviour. In
chapter 4, example 4.1.1 showed how constraint-oriented specifications in LOTOS
decompose complex temporal ordering relations on events of system behaviour into

simpler relations. Simpler relations are then composed into compound expressions.

Compound expressions of temporal ordering relations on events are assumed to
satisfy given requirement constraints [81]. However, such an assumption presumes a
methodological demonstration of satisfaction. Obviously, repiacement of the presumption
by an explicit definition of the satisfaction relation would aid the design and analysis of

system behaviour.

94

Such a satisfaction relation is given for CCS in [54]. A set of modal formulae are
defined on system actions, which can be derived from the transition relations on behaviour
expressions of CCS. Therefore, if non-determinism can be included in such formulae,
then a definition of derivability of assertions from behaviours would provide the means to

define a satisfaction relation which include non-determinism in behaviour expressions.

In Chapter 4, a set of relations between the actions of an environment E were
defined to construct partial constraints satisfied by behaviours in E. In this chapter, a
satisfaction relation is defined on behaviours of E, expressed as expressions in a generic

process algebra, as well as in terms of partial constraints on the actions of E.

Intuitively, constraints constrain communication behaviour. In the engineering
sense, constraints on design are boundary values of system functionalities. In this chapter,
constraints are viewed as logical limits of specified communication behaviour. That means
given constraints on system behaviour, design should result in a specification of
behaviour, within the margins established by those constraints. The notion of margins of

behaviour and its consequences on system architecture is further examined in the sequel.

But what are the implications of constraints on system architecture? Examination
of the architectural implications of constraints is begun by means of the following simple

example.

Example 5.1
Suppose, we are required to design a system which communicates messages
between users. One user can insert a message into the system which can be subsequently

extracted by another user.

95

Let action . be the result of user-system interactions in an environment E. The
action o is associated with both operations: (user)insertion-(system)insertion and

(uscr)extraction-(system)extraction.

Assume that the pc: ‘o’ is derivable from a determination of behaviour in E. This
implies that the behaviour of the system satisfies:
Partial Constraint

‘a' (5.1)
‘o’ is true implies that either the operation 'insertion’ or the operation ‘extraction’
(of a message) is always true. To keep the example simple we do not describe the

‘message’ parameter of the operations.

The Partial Constraint (5.1), constrains the behaviour of the system under design.
Choosing the CCS process model for example, specification of system behaviour involves
the mapping of constraints onto a CCS behaviour specification. The behaviour so specified

in turn, must satisfy this constraint.

Satisfaction of the constraint by the behaviour S implies that, S must always

satisfy the Partial Constraint (5.1).

If the messaging system is represented by the CCS process S, the behaviour
satisfying the Partial Constraint 5.1 can be expressed as:

S=aS (5.2)

S is intended to satisfy the required communication service:

(1) users may insert a message into the system (action o)

(ii) users may extract a message from the system (action o).

96

But, the specification S does not distinguish between a user inserting a message,
and a user extracting a message. More importantly, if S represents the communication
service obtained from a distributed system, then S is in fact a composition of distributed

processes, S1 and S2 (say).

If the system S is distributed into processes S1 and S2, then the communication
service implied by the Partial Constraint 5.1 is that users may use process S1 or S2 for
insertion/extraction of messages via the action o.. And the specification:

S=S81+82

oS + oS

]

(o + o).S

= a.S (5.3)
where S1 = 0..S and S2 = @..S, and S = S1+82, describes the intended service. But since
S is distributed, users using process S1 cannot use S2 and vice versa. The architectural
requirement which must be satisfied by the behaviour description is that user interactions
with S1 must be distinguishable from those with S2. And a determination on the behaviour
of S must express behaviour of S1 or S2 - non-deterministically. The distinguishing of

usage of S1 and S2 can be accomplished by distinguishing between the actions of S1 and

S2.

Therefore, we let the messaging system be represented by process S, and the

actions o and B denote both operations, insertion and extraction. Accordingly, a
determination of the behaviour of S must satisfy:

Partial Constraint

'‘aor P (5.4)

The behaviour equation:

97

S = (a.+ B).S (5.5)
and the distributed expression:
S= S1+82
= o.S + B.S (5.6)
satisfy the Partial Constraint (5.4). Where S1 = ¢..S and S2 = B.S. The corresponding

action tree for the constraint is shown in Figure 5.1:

S
8

Figure 5.1. An 'or' constraint as a behaviour action tree

The Partial Constraint (5.4) is a logical assertion which describes requirements on
system behaviour, without implying any system architecture. Equations 5.5 and 5.6

however specify CCS processes and hence implicitly suggest system architectures.

Figures 5.2 and 5.3 show the non-distributed and distributed processes, S, S1
and S2 respectively. In the figures, a process is represented as a box and the actions ¢ and
B by the double-headed arrows. The actions o and B occur at user-process interfaces.
Users are considered to be part of the environment and not explicitly represented. The line
connecting S1 and S2 in Figure 5.3 indicates the possible insertion (say), of a message via
action o with S1 and extraction (say) of that message via action B with S2.

V3ers

'‘oor 3

Behaviour Process S

Figure 5.2. Process architecture of system behaviour

98

users users
‘aor

1 1
; !
: S1 52 :
E !

]
E Behaviour Process S !
D e cmmmmmmmmm e eemmmmammm e

Figure 5.3. Distributed Architecture of Process S

In this way, architecture can be viewed as the spatial projection (implicit or
explicit) of logical constraints. For example, the architectural requirements of the Partial
Constraint are satisfied by the behaviour of the process specified in Equation 5.5. The
process in Figure 5.2 can be interpreted as an architectural model of S. Similarly, the
architectural requirements of the Partial Constraint 5.4 are also satisfied by the processes

of the behaviour in Equation 5.6 represented in Figure 5.3.

Suppose now, that a determination of depth 2 is made on the behaviour of S,
whereby an insertion via action a or B is followed by an extraction or insertion via action
B or .. This behaviour satisfies the:

Partial Constrain

o precedes B' or 'P precedes o' (5.7)
Consider now, only part of the Partial Constraint (5.7):
ial Constrain
'o. precedes f' (5.8)

which can be expressed as:

99

S=a.pS (5.9)

for the monolithic system S. And its action tree as:
S

o

Figure 5.4. A precedence constraint as a behaviour action tree

[end of example 5.1]

The truth of the precedence constraint at depth of determination 2 implies that a §
(associated with an extraction operation) action must be preceded by an o (associated with
an insertion) action in order that the system provide the required communication service to

uscers.

Intuitively, the 'or' constraint on two actions, may be interpreted as being satisfied
by the behaviour's action tree (Figure 5.1) upto depth one (what the system may do).
While the precedence constraint (Figure 5.4) is satisfied by the behaviour's action tree upto

depth two (what the system must do).

In terms of limits on system behaviour, what the system may do represents a
minimum constraint or a lower bound, and what the system must do corresponds to a

maximum constraint, or an upper bound.

5.2 Minimum And Maximum Constraints

Comparing the non-deterministic constraints of Figure 5.1 and the precedence

constraints of Figure 5.4 with those of Definitions 4.4.3, 4.4.5 and Theorem 4.4.3, it can

100

be seen that they represent the minimum and maximum functionalities of system

behaviour.

Indeed, the architectural constraints are just the minimum and maximum (Theorem
4.4.3) of the communication constraint. The minimum and maximum functionalitics must
be satisfied by the corresponding computational structure of specified behaviour, and
hence by its architecture. This means, whereas a monolithic computational structure may
be used to satisfy the constraint with maximum functionality only, a distributed
computational structure may allow some of its components to satisfy a minimum

functionality of the system.

But how do we obtain the maximum functionality of the system from distributed

components with minimum functionality?

§.2.1 Uni-directional Communication

In case system architecture is distributed with processes S1 and 82, a
determination of depth 2 for the same service as that satisfying the Partial Constraint (5.8)
necessitates the definition of a dummy action y corresponding to the transmission of the
message from S1 to S2 (see Example 4.11). Consider the following example:

Example 5.2

Partial Constraint

(‘o precedes Y or 'y precedes B) " (5.10)

must be satisfied by the behaviours S1 and S2.

101

But the action ¥ has to be distinguished when associated with either of the
processes, S1 or S2. Therefore, let y=yl=Y2 and the Partial Constraint 5.10 can be written

as the Partial Constraint (5.11):

(‘o precedes y1' or Y2 precedes f§) " (5.11)

Accordingly, the processes S1 and S2 can be defined as:

Sl =o.y1.S
and
S2=Yy2.8S; where S =81 + 852 (5.12)

Alternatively, S1 and S2 can also be defined as:

S1=o.y1.S1
and
S2=v2.p.52; (5.13)

The difference between the two forms of distribution is examined in the sequel.

Distribution of the architecture of S implies its decomposition into two sub-
processes. But the two sub-processes must communicate in order to provide the intended

service. Therefore, distribution also imposes another, seemingly contradictory,
architectural constraint - that system architecture must contain a non-distributed component
to enable the distributed sub-processes to communicate. That means the architecture must

contain a single undivided process - the underlying service to be used for communication.
The transmission action 7 is the result of a determination on the behaviour of such a single
undivided process, the 'med' (say) s.t. yis the result of communication between two
actions yl and ¥2. The process 'med' must satisfy the constraint:

‘Y1 precedes y2' (5.14)

and the definition:

102

med = y1.y2.med (5.15)

This seeming contradiction of constraints is a basic characteristic of the

specification of communication behaviour, but is reasonable.

The reasonableness of such a constraint becomes evident if it can be shown that
Equation (5.9) can be obtained from Equation (5.12) and Equation (5.15), for this will
prove that the distributed system satisfying contradictory constraints provides the same

service as the monolithic one.

Consider first, the margin of behaviour between these twe limits? Since the upper
limit expresses the intension of the computation and the lower limit the extension of
computation, there exists a behaviour which relates the two behaviours. That behaviour is
the realisation of communication between the distributed and non-distributed components

of the system and the computation of the functionality of the system.

The pc which must be satisfied by the system can be expressed as the:

Partial Constraint

(‘o precedes yl' or 'y2 precedes B')

and

"yl precedes 2’ (5.16)

The Partial Constraint (5.16) must be satisfied by a behaviour expression which
computes the functionality of the distributed system such that the functionality of the
monolithic system and its intended service is obtained. Mapping the ‘and’ of the constraint
to the parallel operator (I) of CCS gives the expression:

(S1 +8S2) I med (5.17)

103

This CCS operator interleaves actions which are not common to the two
components of the parallel operator and synchronises common actions, selecting an action
from either side recursively. Interleaved operations are assumed to synchronise or
communicate with common actions in the environment of the system S. Therefore:

(S1+S52) I med

= (o..y1.S + ¥2.B.S) | (yl.y2.med)

= (y1.S + 72.5.S) | (y1.y2.med) (o is interleaved)
= (.S + Y2.5.8) 1 (y2.med) (vl is a communication)
= (.S + p.S2)1 (.med) (Y2 is a communication)
= (.S + .5)! (.med) (B is interleaved)

(5.18)
where once an interaction involves a selected action of a term in an expression, it is
equivalent to a commitment that the behaviour will follow that path till it can again recurse
to the original expression. The synchronisation of actions in the two paths is shown by

replacing the actions on the two sides of the parallel expression with dots.

Therefore:

(S1+S2) ImedI=
(o,¥1,¥2,B) (a trace expression)
==> (o.y1.72.B) (a behaviour expression)
==> (o.7.y.p) (since yl=y2=y)
==> (0.3) when ¥ is structurally hidden
==> (o..3) recursively

(5.19)

104

Equation (5.19) shows that the behaviour (a.) can be recursively obtained for

the system S.

The partial behaviour (of S):
S = (a.p).S (5.20)
satisfies the Partial Constraint (5.8).
[end of example 5.2]
With the alternative definition of S1 and S2 as given in Equation (5.13) the

intended service given in Equation (5.20) can also be obtained from the expression:

S1imediS2 (5.21)

The difference between the two is in the efficiency of simulation. The Equation
(5.17) provides for a lesser search time for synchronisable actions than Equation (5.21).

But the latter provides a cleaner distribution of the sub-processes S1 and S2.

5.2.2 Bi-directional Communication

But a distributed S, consists of the processes S1,S2 and 'med’, and the
environment of S also contains distributed users of S1 and S2, which must be able to
insert and extract messages. This means both S1 and S2 should be able to perform a a and
a P action. So that the constraint on the behaviour of S can be written as in the following
example:

Example 5.3

Partial Constraint

o precedes ' or 'B precedes o'" (5.22)

105

The Partiai Constraint (5.22) is the result of a determination of depth two on the

system S, whereas the Partial Constraint (5.4) is the result of a determination of depth 1.

Corresponding action trees for both the partial constraints (5.4) and (5.22) are

shown in Figure 5.5.
S S
(A} and Y,
B
Figure 5.5. Choice and precedence trees of a two-way communication

The behaviour of the system satisfying the Partial Constraint (5.22) is given by:
S=(p+ P.a)S (5.23)

In a manner similar to the above, we can now consider a distributed architecture
and define the processes S1,52 and the underlying service (the medium) as the:

Partial Constrain

"yl precedes y2' or 'y2 precedes y1" (5.24)

The two partial constraints jointly constrain the system such that they can be
expressed as the:

Partial Constraint

"o precedes y1' or 'yl precedes o
or
'B precedes ¥2' or 'y2 precedes B' "

and

vl precedes ¥2' or 'y2 precedes y1'" (5.25)

106

BRI T

The behaviour expressions in the distributed architecture which satisfy the
different parts of this constraint are given by:

S1=(o.yl +y1.0).S;

$2=(B.v2+7v2.p)S;

med = (y1.y2 + ¥2.y]).med (5.26)

and the behaviour satisfying the partial constraint (5.24) is given by:

S1+S21med
= (a.yl +71.0).S + (B.y2 +¥2.8).S Il (y1.Y2 + Y2.y1).med
= (¥ +yLo)S + (B.y2 + ¥2.0).S Il (.42 + y2.y1).med
(o is a possible interleaving action)
= (.+7La).S + (B.y2 +¥2.8).S Il (.Y2 + Yy2.y]).med
(yl is a possible interaction)
= (.+7vLa).S + (B.y2 +.B).S N (.. + ¥2.¥1).med
(Y2 is a possible interaction)
= (. +yLa)S + (By2 +.).SH (.. + y2.y1).med
(B is a possible interaction)
(5.27)
So that a possible behaviour of the system is derived from the parallel composition
expression:
(S1+82)Imed =
(o.y1.Y2.8) (behaviour expression)
==> (o.7.y.p) since yl=y2=y
==> (ou.f3) If yis structurally hidden
==> (ot..3).S is a partial behaviour of S

(5.28)

107

Similarly:
(S1+82)Imedl=
B.y2.vl.00) (behaviour expression)

==> (B.y.y.) since yl=y2=y

=> (f.y.o0)
==> (B.ov) If yis structurally hidden
==> (f.).S is the recursive behaviour of S

(5.29)

Evidently other possible behaviours can also be derived from this parallel

composition:

S1+82Imed
I= (a.yl +y1.0).S +(B.y2 + ¥2.0).S 1 (y1.y2 + y2.y1).med

= (oYl +.0).5 + (B2 +Y2.B).S Il (42 + y2.y1).med

(vl is a possible interaction)

(ayl +.)ST + (B.y2 + ¥2.B).52 i (.Y2 + ¥2.y1).med

(o is a possible interleaving action)

(oyl +.)S + (B2 + .B).S21(.. + y2.¥1).med

(y2 is a possible interaction)

oyl +.).8+ Py2+.).S1(+ y2.y1).med

(B is a possible interleaving action)

(5.30)

108

From which the partial behaviour of the system S: (yl.0.y2.B).S can also be

derived.

Such behaviours do not satisfy the Partial Constraint (5.16). This implies the
component partial constraints of the Partial Constraint (5.22) from which the distributed

architecture of S was obtained is not uniquely distributed.

However, suppose we consider the medium process to be also distributed into
two processes such that it satisfies the constraint:

"yl precedes ¥2' or 'k2 precedes K1'". (5.31)

This clearly distinguishes the side: S1 or S2 which initiates interactions. The
composed partial constraint describing behaviour constraints on the sysiem can be
expressed as:

"o precedes yl' or '] precedes o'
or
'B precedes k2' or 'y2 precedes ' "
and

v1 precedes ¥2' or 'k2 precedes k1" (5.32)

The distributed architecture of S gives the sub-processes S1,S2 and med1 and
med2, where:

S1=(o.yl +xl.a).S;

S2 =(B.x2 +v2.8).S;

and

med = med1 + med2

109

where
med] =yl.y2.med ;
med2 = k2.x1.med (5.33)

And the parallel composed behaviour is given by:

(S1 +82) I (med] + med2) I=

(o.yl + x1.a).S + (B.x2 + ¥2.B).S
I
(y1.y2.med + k2.x1.med)

(a.yl + x1.a).S + (.x2 + y2.B).S
|
(yl.y2.medl + x2.x1.med2)

(B is a possible interleaved action)

(ayl + xl.a).S + (.. +Y2.p) S
!
(yl.y2.med + .x!.med)

(x2 is the interaction)

(ayl +.).5 + (.. +¥2.B).S
I
(yl.yY2.med + ..med)

(x1 is the interaction)

110

(oeyl +.).S + (.. +v2.8).S

I

(yl.y2.med + ..med)

(o is an interleaved action)
(5.34)

From which the partial behaviour of the system S: '(B.x2.x1.a).§' is derived.
With ¥2=k1=x hidden, this behaviour becomes: '(§.a).S'. Similar considerations lead to
the partial behaviour: (ct..).S. So that the behaviour of S can be expressed as:

S =(a.p).S + (B.a).S (5.35)

which is the same as Equation (5.23).

Again the alternative formulation of the processes of Equation 5.33:

S1 =(oy1 +xl.0).S1;

S2=(B.x2 +72.8).52;

and

medl =vyl.¥2.medl ;

med2 = x2.x1.med2 (5.36)
and the parallel composition:

S1imed1imed2iS2 (5.37)
leads to the same intended service of S as given by Equation (5.34).

[end of example 5.3]

5.3 Functionality Of Behaviour Expressions

The behaviour of the system as defined by Equation (5.5) or Equation (5.23)

provides a certain service. The functionality of Equation (5.5) is a minimum and that of

111

Equation (5.23) is a maximum (Theorem 4.4.3). That means the maximum functionality f

of system behaviour can be expressed as:

functionality(S) = maximum functionality(o+B, o.p + B.ot)
with
maximum functionality(o:+f, o.p + B.ot) =
functionality(a.p + B.o) = f(a,B) =y (say)
(from Theorem 4.4.2).

From which it can be shown that if a pair of concurrent actions participate in a
computation then they are also able communicate. Recalling that the precedence relation is
a '<' relationship between actions and the communication relation is a '<' relationship

between actions, the following lemma is proved:

Lemma 5.1

A computation by a pair of concurrent actions induces an equivalence class on E
which is equal to the equivalence class of communicating actions induced by the pair in E.

Proof:

Let o y Bin E and suppose, there is some action ¥ inE s.t.

"'a<fB' or B<a’™ and f(a,B) =Yy (5.38)
f(aB)=y =>0af=7y; From Theorem 4.4.2

=>"aandPf=y"
Action y can be chosen s.t.
"'asy<p or Psy<ar’ (5.39)
Therefore,
"'a<y<p’ or 'Bsy<a’” and f(a,B) =y (5.40)

112

==> o from Definition 3.4

== :u == (5.41)
[end of proof]

Which means communication and computation by a pair of actions in E induce the

same equivalence class.

Since S satisfies the Partial Constraints (5.4) and (5.22) the process algebraic
operator mapping the "and" should result in a behaviour expression which yields a

functionality given by "a..p" or "B.a" or "y". That means that the behaviour of S should

satisfy the constraint: " 'a precedes P'or 'B precedes o™ or'y' ". That means

functionality of S should be given by:

(0+P).S ‘operator’ (a.p + B.a).S =a.p +Pa+7y (5.42)
where each term on the RHS of Equation (5.42) computes the functionality of S. The
symbol 'operator' represents that process algebraic operator, which, when used for

composition of the components on the LHS yields the RHS of Equation (5.42).

Mapping the ‘and’ of the Partial Constraints (5.4) and (5.22) by the parallel (1)
operator and the logical 'and’ of 'a. and B' by the communication (1) operator respectively

of ACP, allows Equation (5.42) to be rewritten as follows:

(a+PB) || (@.p +p.a)=0.p+P.o+7y
or

(0+B) || (a.p + B.o) = a.p + P.a + @l (5.43)

113

where the LHS represents the functionality of S and the RHS the possible behaviours of S

which compute that functionality.

The intuitive interpretation of this result is that 'internalising' a computation in
which two actions o and P can interleave corresponds to hiding the computation from the

environment and replacing it by the 'silent’ or unobservable action 'y

Indeed, representing the two processes on the L.H.S. of Equation (5.42) as
process graphs and composing them gives the process graph for the R.H.S. as shown in

Figure 5.6.

a o__ o
B and () B B = B \‘uuz B
y \
o o

Figure 5.6. Process graphs for parallel composition

Process graphs are directed multigraphs as in [7]. Thus in Figure 5.6 the first
process graph representing the process (a+8) and the second representing (ow.p + P.ot) are
parallel composed to give the third process graph on the R.H.S. representing o. + B.ot +
alf. The dotted edge representing alf and the edges for a.B and .o terminate at the
same computational point on the graph. Thus, if o.p + B.o is hidden from the

environment then ol results in the same computation.

The following theorem can now be stated:

114

SSeTEETT

Theorem 5.1
Communication and computation equivalence define the same class of actions in

a non-deterministic environment.

Proof:
Equation (5.41) of Lemma 5.1 shows that for actions o and B in E:
a=f B <=>oa=yp

[end of proof]

Theorem 5.2
The functionality of the behaviour of a distributed process is given by the

composition of the functionalities of distributed and non-distributed parts.

Proof:

The LHS of Equation (5.42) typically, represents the composition of the
functionalities of distributed and non-distributed parts of a distributed system S. The
functionality of S is given by the functionality of the behaviour'y (or alf) ora.p or

B.aon the R.H.S.

This means that whenever the actions o and J participate in a computation in
'parallel’ then the functionality of the computation is given by the functionality of the RHS
of Equation (5.43). As a consequence the behaviour on the RHS satisfies the constraint
"'aw<PB'or'Pp>aor'cand P ". The same is true for participating actions of
communicating processes.

[end of proof]

115

Corollary 1.

A process algebraic system defining communication in terms of interleaving

semantics is not closed under parallel composition (ll).

Proof:
In Equation (5.43), ol => o SpP=> A=fpP=>0 Il B, from which by

Definition 4.4.3:
alip=afp+po+ap
=B+ .o + ofip (5.44)
which shows that the Il operator is divergent. And therefore a process algebra with
interleaving semantics is not closed under parallel composition.

[end of proof]

Replacing o|p by v in Equation (5.43) gives:

alip=oap+Ba+y (5.45)

and if O represents the encapsulation of communication between o and B i.e. & (o || B) =

v then the observable part of Equation (5.45) can be written as:

allp=ap+pa (5.46)

where 7y is not part of the observable behaviour description.

Also, comparing Equations (5.43) and Equation (5.44) gives:
(o+f) Il (.p+ Bor) =l B (5.47)

116

Recall that the observable system behaviour alternately computes the minimum
and maximum functionalities. And the composition of the two behaviours in Equation
(5.47) satisfies both the non-deterministic and the concurrency constraints, but at difterent
depths of determination. Therefore:

(c+B) | (0.B+Po)y=allP

= (o+f) determination depth one and

(o.p + B.o) determination depth two (5.48)

5.4 Partial Constraints And Design Criteria

The relation between partial constraints and behaviour specifications in a generic

process algebra follows. Design criteria are deduced from these definitions.

5.4.1 Constraints And Algebraic Specifications

Recalling that partial constraints are a system of modal logical assertions on the
actions of a given communication environment E, the following definitions are stated:

Assumption 5.1 A 'fair' Environment E

A computational environment E is a 'fair’ environment iff:

For actions o, e E:

(i) "o precedes B" is true ==> the occurrence of o means that B will gventually
occur next (i.e. the occurrence of o means that an action will eventually follow o, and that
action is). The precedence constraint is a strong fairness constraint.

(ii) "ou or B" is true ==> the occurrence of o (or f3) means that B (or o) will
eventually occur. The "or" constraint is a weak fairness constraint..

[end of assumption 5.1]

117

The strong and weak fairness constraints on two actions (o,,8) of an environment
E can be distinguished by means of a determination of depth two on E. In the case of
satisfaction of a strong fairness constraint, a depth two determination must always yield
the action o followed by the action 3. While in the case of satisfaction of a weak fairness
constraint, a depth two determination may yield the action a followed by the action p or

the action f followed by the action o

This assumption implies that mapping "strong" and "weak" constraints onto the
behavic ar expressions of a given process algebra lead to the following definition:

Definition 5.1

(i) If B is an action prefix behaviour expression satisfying a "strong" partial
constraint, with B = a..p, and if a is true (occurs) now, then f must eventually be true and
if B is true (occurs) now then « is also true. That is the ti. h of o precedes thato. ..

(ii) If B is choice behaviour expression satisfying a "weak" partial constraint, with
B =a || B, and if o is true (occurs) now, then P will eventually be true, and inversely, if
B is true (occurs) now then o will eventually be true.

[end of Definition 5.1]

Definition 5.2

In a communication environment E, the actions in behaviour expressions and
partial constraints are self-referential. We let Pc be the smallest set of well-formed partial
constraints pc (Definition 4.2) s.t.:

(1) If pc € Pc then —pc € Pc

(ii) If pc(i) € Pc V i € some countable set I, then N pe(i) € Pc

Now, let IT be a set of behaviour specifications in a given behaviour model

(process algebra), and for each o € E, let IT x I1 2 '--a-->' be a relation s.t. for B £ I1 the

118

set { BIB --a--> B' and B==>B'} is countable, where the notation B==>B' implies the
composition of (one or more) relations s*"ch as:

--g-->' with ' --B-->' with '--y-->' ..
Pc is interpreted by defining the satisfaction relation I= 1 x Pc as follows by induction on

the structure of Pc:
(i) The behaviour expression BO (inaction) I=""' (the empty pc)
(ii) B 1= pc ==> B satisfies pc (always)
(iii) B I= —pc iff not B I= pc
(iv) B I=npc(i) iff B l=pc(i) V i€, the set of integers
(v) If Bl I=pcl and B2 |=pc2 iff B=B1 'op' B2 |=pcl '0' pc2

Where the partial constraint operators O are related to the operators: 'op' of the process
algebra under consideration as follows:

If 'op’ = - non-deterministic or- then, 'op' |="or’;

If 'op' = - sequentiality-, 'op' 1= "precedence’;

If 'op' = - parallel composition-, 'op' I= ‘and’;

If 'op' = - inaction-, 'op' I="'";
The operators 'V','3' and 'not’ are indirectly related to the operators of the process

algebra as seen below. Other operators of the process algebra are not considered.
(vi) The modal operators @ and ¢ are defined such that:
(a) Bl=pc <==>B I=0Opc
(b) If Bl=tpc =V B, such that B==>B', then B'l=pc
() IfBI=90pc =3 a B1,B2 and pcl,pc2 in E such that:
B = (B1 'op' B2) and (pcl '0' pc2; ==> pc,
and Bll=pc1 and B2 |=pc2.

The implication '==>' is according to the inference structure of partial constraints and
FOPL.
[end of Definition 5.2)

119

With CCS as the process algebra considered, the following are examples of partial
constraints satisfied by CCS expressions:
Example §.4
(i) (a+p) =0 or '
(i) (a+P) I= 0'a’ and (o+P) 1= ¢'B'
(ii) (a.p) I= @' precedes P, then (o.p) I= 0'B'.
Since (a.p) --o--> P and B I="§'
(iii) (o) I=C'ax or B
(If o,,8 are not complimentary labels, i.e. they do not communicate)
(iv)(aUB) = Q' and B' is true
(If o, are complimentary labels)
(v) o.B.¥IB.y.0. => deadlock |=0' ' ==>(assuming full synchronisation)

[end of example 5.4]

5.5 Design And Specification Using Partial Constraints

Recall the first design objective is that of providing a service to users. The service
may appear to be distributed or monolithic to users. The users themselves may be
distributed (spatially separated) or there may be users at a single location of the distributed
system. The former is the case in the lower six layers of the OSI reference model and the
latter typifies a user of the OSI application layer. An example of users of the former type
are user session layer protocol entities which use a transport service provided by the
transport layer. A user transferring a file from a remote file server by using application
services such as that of the message handling system X.400, is an example of a user of the

latter type.

120

The second design objective is that of describing the behaviour of the protocol
which uses a given underlying service in order to provide the desired service to the users.
System design must take into account the joint perspectives of the environment E, which
includes users of the types mentioned above, observers and undefinable agents which are
the source of non-determinism, but which nevertheless may affect system behaviour, and
the system itself. Design activity must result in a behaviour specification which is

consistent with this conjoint view.

5.5.1 Design Criteria

5.5.1.1 Partial Constraint Construction

Partial constraints are constructed by simple canonical transformations of given
requirement descriptions for each process on a requirement by requirement basis. The
partial constraints on the actions of the processes have the atomic forms of relationships
between actions defined in chapter 4. viz: the non-deterministic relationship, the concurrent
relationship, the communication relationship and the computation relationship. The rules
for constructing well-formed partial constraints are also given in Chapter 4. The
transformation rules from requirements to partial constraints are assumed to be a user
defined simple set of consistent conventions. In the examples that follow, such simple

conventions are assumed and easily inferred from the partial constraint constructed.

Given requirements, guidelines to aid in the construction of partial constraints are

explained.

In the first step, architectural constraints on the distributed system are identified.

121

5.5.1.2 Architectural Constraint Construction

It is assumed that all the actions related to the requirements targetted for
specification are defined by the set of partial constraints constructed. The guidelines given

below aid the architectural design of a distributed system:

A distributed system S and its component processes are identified. The system S
consists of a protocol process P distributed into component processes 'PE1’ and 'PE2'
(say), and a non-distributed process 'med’ (say) providing the underlying communication
service. The process 'med’ may itself consist of decomposed processes 'medl’ and
'med2'. The system S operates in a communication environment E in which user

processes called 'usr' (say) use the services of the distributed system.

Consistent interactions between processes are obtained with pcs defined on

common actions having the same labels.

1. Partial constraints are constructed for the protocol process P, PE1 and PE2
consisting of the constraints pc, pcl and pc2 respectively, on a constraint by constraint

basis, and given by the:

Partial Constraint
pc = 'pcl or pc2' (5.49)

where pcl and pe2 must satisfy the processes PE1 and PE2 and pc satisfies 'P'. The pcs:
pcl and pe2 must be alternately consistent with the user constraints and the underlying
service constraints. Note that the ‘or' is the non-deterministic ‘or’ which may be refined to

the communication relation ‘and’ in case true concurrency exists in the system.

122

2. The non distributed underlying service process 'med’ interacts with both PE1
and PE2 of P. Therefore, the constraints 'pcm'’ (say), must be consistent with pcl and pc2
above. The decomposition of the underlying service into two or more sub-processes may
be intended for unidirectional functionalities, serving either of PE1 and PE2 as initiator of
data transfer. If the underlying service constraints are labelled 'pem’, 'pem1’ and '‘pem?2’

respectively, then they are given by the:

Partial C .
pcm = 'pcml or pem2' (5.50)

where 'pcm1' and '‘pcm?2’ may be independant or dependant on each other. Note that the
‘or' is the non-deterministic ‘or’ which may be refined to the communication relation ‘and’

in case 'pcm1’ and 'pcm?2’ are independant of each other.

3. The user process 'usr' constrained by the constraint 'pcu’ obtains services from
the processes 'PE1' and 'PE2' of 'P". It may be distributed into components 'pcul’ and
'pcu2’, whose constraints are given by:

Partial Constraint

pcu = 'pcul or pcu' (5.51)

where 'pcul’ and 'pcu? should be as independant as possible.

Common actions between processes can be assumed to occur at common
interaction points or gates defined for each process intended to interact with other
processes in the distributed environment of the system. Thus, 'PE1" and 'PE2' interact
with 'userl’, 'user2’, and with 'med1’ and 'med2'. Common interaction points between
'PET', 'PE2 and 'userl, user2 respectively are defined, and similarly for the other

processes.

123

Additional interaction points can be optionally defined between the usr and the
protocol, and the protocol and the medium as a design choice. The additional interaction
points serve to differentiate classes of interactions. For example, each process PE1 and
PE2 may be defined to have two interaction points in common with the medium to
distinguish between the class of 'send’ actions and 'receive' actions. An example of such a

design choice is given for the protocol design and specification of Section 5.6.

5.5.1.3 Behaviour Specifications From Partial Constraints

Behaviour specifications in the form of guarded recursion equations are
constructed to satisfy the partial constraints so obtained, using Definition 5.4.1. The
behaviour expressions are recursive because the associated partial constraint must always
be satisfied. They are guarded in order to obtain expressions which do not diverge,
according to the Recursive Definition Principle (RDP) [7]. All the behaviour specifications

are partial, in that the complete set of requirements is not specified.

Assuming that the process algebra CCS is used for behaviour specification, the

following formulae are used to construct the recursive processes:

1. The protocol processes P, PE1,PE2 are guarded recursive processes satisfying
the partial constraints pc, pcl and pc2 respectively given by the:

Process Formula

P = PEl + PE2

or

P = PEl || PE2 (5.52)

124

2. The processes 'med’, 'med1’ and 'med2' of the underlying service are guarded
recursion equations satisfying the partial constraints, 'pem’,'pcml' and 'pcm?2’
respectively. They are given by the:

Process Formula

med = medl + med2

or

med = med] || med2 (5.53)

3. The processes 'usr', 'userl' and 'user2' are guarded recursive equations

satisfying the partial constraints: 'pcu’, ‘pcul’ and 'pcu2’ respectively. They are given by

the:
Process Formula
usr = userl + user2
or
usr = userl || user2 (5.54)

Assuming all the processes of E have been specified with respect to the

requirements, the following generic formulae are used to validate and verify the

specifications:
Process Formula
S =usr || P|| med (5.55)
or
S = usr || PE1 || PE2 || med (5.50)

125

Where full synchronisation is assumed for all the actions participating in the parallel (Il)
composition expression of the Formula (5.55). The Formula (5.55) or a variant of the type
given in the Formula (5.56), should result in deadlock-free traces. The variant (5.56)
provides deadlock free traces in systems with true concurrency or parallelism. Validation
and verification of specifications obtained from the above formulae are discussed in

Chapter 6.

The above criteria imply the following general principles of design:
1. A system S is decomposed into pairs of distributed processes. The behaviour

of each entity in a pair of processes is independently described.

2. Distribution of the system implicitly assumes a non-distributed component
(underlying service). The behaviour of the distributed processes and the underlying service
must be consistently specified according to the criteria above. The Formulae (5.54) and

(5.55) must yield consistent traces without deadlock.

3. Functionality of the system is obtained from computations derived from the

Formula (5.55).

4. Partial constraints on sysiem behaviour are constructed in terms of actions
(interactions). System behaviour alternates between the behaviour of distributed
components and non-distributed components of the system. i.e between the external
(observable by the environment) and the internal (not observable by the environment)

behaviour of the system.

5. System behaviour satisfies both external and internal constraints.

126

6. Internal behaviour specification must be consistent with external behaviour
specification and vice versa when evaluated against the constraints satisfied by the

specification.

7. The externally observable behaviour of the system, viz: that of the distributed
system components with user processes in the environment, is in a communication
relation. In other words the process 'P' and 'usr' are parallel composed to compute

communication behaviour.

8. Similarly, internal behaviour of the system, viz: that between 'P' and 'med’ is

also in a communication relation.

9. System behaviour can be expressed as a closed system of equations,
representing external and internal constraints. External Constraints are those satisfied by
the process 'P' and the process 'usr’. Internal constraints are those satisfied by the process
'P' and the process 'med'. Actions between 'P' and 'usr’ and between 'P' and 'med’ pair-

wise, are in a communication relationship.

10. All specifications obtained are partial, but can be extended on a requirement by
requirement basis. Each requirement, however is completely defined. Mutual consistency
of requirements is ensured by the well-formed of the partial constraints associated with the

requirements.

specification such that every specification has a fini r ntable) number of non-

deterministic choice expressions. Each component expression however can have infinite

127

5.6 An Example - The Alternating Bit Protocol

To illustrate, A version of the Alternating Bit protocol [6] and the service it

provides to users, is specified.

The service provided by this protocol consists of transmission of messages from
one user to another remote user. The protocol encodes messages with a binary sequence
number, a 0 or a 1. Messages sent are acknowledged by the remote protocol entity. The
sender entity alternates between message sequence number values 0 and 1. The receiver
entity acknowledges each message with an acknowledgement of the same number. In the
version of the protocol specified here, user A (say) sends messages, while user B receives
the messages sent by A. The protocol returns an acknowledgement with the same sequence

number as the message received.

Note that another version of the protocol can also be specified wherein, the
piotocol returns an acknowledgement with the sequence number of the next expected
message. This differs slightly from the original version of the protocol, in that the
acknowledgement of a message with sequence number 0 has the number 1 (instead of 0)
and vice versa. This change does not affect the reliability of the protocol, rather it makes it
easily extendible t the sliding window protocol. In the sliding window protocol, the
acknowledgement always bears the sequence number of the next expected message by the

receiver.

128

The medium is unreliable and can lose messages. Retransmission of lost messages
after a timeout period must be handled by the protocol.

The architecture of the AB protocol - medium system is shown in Figure 5.7:

user user | -
su ru
S1 S2
s0 rack sackl 0
sl rac sackl 1
medium

Figure 5.7. The Alternating Bit protocol

For user-protocol interactions:

Let su,ru denote the 'Send' action and 'Receive’ action by users.

For protocol medium interactions:
Let sO and s1 denote the sending of messages with sequence number O and 1

respectively and let 10 and r1 denote corresponding receive actions.

For acknowledgements, let sack0 and sack1 represent send actions and rackQ and

rackl corresponding receives.

The correct functioning of the protocol requires that:

129

1. The protocol send a message with a given sequence number only if it has
received the acknowledgement for the previous message sent with the alternate sequence
number. For example, rackQ must precede sl.

2. In order that the sender always alternates between the sequence numbers 0 and
1, the partial constraint constraining the sending of s1 (say) must precede that of sending
s0).

Therefore, the constraints for the distributed processes are stated as follows:

1."'te 1 precedes su precedes sO precedes pesl'

or

'rackQ precedes su precedes s1 precedes pesO' " (5.57)
where

pcsO="rackl precedes su precedes sO precedes pcs1’

pesl= 'rackO precedes su precedes s1 precedes pcs0'
2. " ') precedes ru precedes sackO precedes perl’

or

'r] precedes ru precedes sack1 precedes perQ' " (5.58)
where

perO="r0) precedes ru precedes sackO precedes pcrl’

perl="rl precedes ru precedes sackl precedes pcr('

The non-distributed constraints are stated as follows:

1. " 's0 precedes i)' or 's1 precedesrl' " (5.59)
2. " 'sackO precedes rackO' or 'sack] precedes rackl' " (5.60)
3. " 'rack() or 'rackl' " (5.61)

Note that constraint (5.61) has been added to satisfy correctness concerns for the

initial conditions of the protocol behaviour, where initially rackQ or rack1 is true.

130

versa.

The user constraints are stated as follows:

1. 'su or ' (5.62)

The distributed processes satisfying these constraints are given by:

where

S1=S810+S11 (5.63)
and

$2 =820+ 521 (5.64)
where

S10 = rackl.su.s0.S11
S11 = rack0.su.s1.510
$20 = r0.ru.sack0.521
S21 = rl.ru.sack1.520

The process S10 recurses to S11 and vice-versa. Similarly, S20 to S21 and vice

The non-distributed processes satisfying the non-distributed constraints are given

med = med1 + med2 (5.65)
where

med1=s0.rf).med + sl.rl.med

med2 = sackO.rack(.med + sack1.rackl.med + rack().med + rackl.med

and the user processes are given by:

usr = userl + uscr2 (5.66)

131

where
userl = su.usr
user2 = ru.usr

The composition of all the processes using the Formula (5.55) gives:

S11S2 1 (med1 + med2) | usr

rack(.su.s1.510 + rackl.su.s0.S11

I

r0.ru.sack0.521 + rl.ru.sack1.S20

|

sO0.r).med + sl.rl.med

+

sack(.rack(.med + sackl.rackl.med + rackO.med + rack 1.med
!

su.med + ru.med

.su.s1.510 + rack1l.su.s0.S11

I

1{).ru.sack0.521 + rl.ru.sack1.520

!

s0.r0.med + sl.rl.med

+

sack(.rackQ.med + sackl.rackl.med + .med + rackl.med
I

su.usr + ru.usr

132

(rack0 is an interaction)

..s1.510

I

r0.ru.sack0.S21 + rl.ru.sack1.520

I

s0.r0.med + sl.rl.med

+

sackQO.rack(.med + sack!.rackl.med + rack(.med + rack 1.med
I

.UST + ru.usr

(su is an interaction)

...510

I

r0.ru.sack0.521 + rl.ru.sack1.S20

I

s0.r0.med + .rl.med

+

sackO.rackO.med + sackl.rackl.med + rack(.med + rack 1.med
|

SU.UST + TU.UST

(s1 is an interaction)

rackl.su.s0.S11
|
Ju.sack1.520 133

..med
|
SU.UST + ru.usr

(rl is an interaction)

rackl.su.s0.511

|

..sack1.520

I

s0.r).med + sl.rl.med

+

sack0.rack0.med + sack 1.rackl.med + rack0.med + rack1l.med
I

su.usr + .usr

(ru is an interaction)

rackl.su.s0.S11

|

..520

I

$0.r0.med + sl.rl.med

+

sackQ.rack0.med + .rack l.med + rackl.med + rackl.med
I

SU.UST + ru.usr

134 (sackl is an interaction)

.su.s0.S11

|
r0.ru.sack0.521
|

..med

[

Su.usr + ru.usr (rack1 is an interaction)

..s0.511

I

r0.ru.sack0.521

|

s0.r0.med + sl.r1.med
+

sackQ.rackQ.med + sackl.rackl.med + rackO.med + rack1.med

.UST + ru.usr
(su is an interaction)

...511

|

r0.ru.sack0.521

|

10.med + sl.rl.med
+

sackO.rackO.med + sackl.rackl.med + rack(.med + rackl.med

135

|
SU.UST + ru.usr (s0 is an interaction) (5.67)

Note that the interaction in boldface is a possible interaction, indicated

in the equation by replacing the corresponding action of the interacting processes
by a dot. However, once the first action of a recursive term participates in an interaction,

then the next possible interaction must be the one following that action.

So that a possible behaviour trace derived from (5.67) is the:
Trac

S I= <rackO,su,sl,r1,ru,sackl,rack1,su,s0,S10> (5.68)

Stmilarly, we can obtain the:
Trace
S |= <rack1,su,s0,r0,ru,sack0,rack0O,su,s1,511> (5.69)

where S10 and S10 give traces appropriate to their definitions.

No other deadlock free traces can be obtained from the composition.

The traces permit the construction of corresponding partial constraints which are
satisfied by system behaviour expressed as:
S = rackl.su.s0.r0.ru.sack0.rack0.su.s1.511
+ rackQO.su.sl.rl.su.sackl.rackl.su.s0.510 (5.70)
Note that the actions rack1 and rackO initially are 'dummy’ actions to generate the
correct recursive behaviour of the protocol.

Alternatively, the behaviour definitions:

136

-

S1 = rack0.su.s1.510 + rack1.su.s0.S11

S2 = r0.ru.sack(0.S21 + rl.ru.sack1.S20 (5.7
where S21 = rl.ru.sack1.520 and $20 = r{.ru.sack0.521

The non-distributed processes satisfying the non-distributed constraints are given
by:

med! =50.r0.med!l + sl.rl.med!

med2 = sackQ.rack0.med2 + sackl.rack 1.med2

+ rackO.med2+rack 1.med2 (5.72)

and the user processes defined as before with the parallel composition:

S = Slimed 1imed2IS2luserlluser2 (5.73)

will derive the same service for the system S.

R ission On Ti I

To specify behaviour which includes retransmission on timeout due to lost

messages the following constraints must be satisfied:

The constraints for the distributed processes are stated as follows:

Pcl2:

1. " 'rackO precedes su precedes sl - -cedes tstart] precedes
('toutl precedes s1 precedes tstart’ or pcll)
or

'rack1 precedes su precedes s() precedes tstart() precedes

137

(‘tout(precedes s() precedes tstart() or pc10)' " (5.74)
where
pc10 = 'rack] precedes su precedes sO precedes tstartQ precedes
(‘tout(precedes sO precedes tstart0' or pc10)' "
pcll = rack0 precedes su precedes s1 precedes tstart] precedes
('tout] precedes sl precedes tstart' or pcll)
Note that the constraint within the quotes in the parenthesis is a nested constraint.

The constraint is defined upto depth 7. No further weakening of constraints (from

‘precedes’ to ‘or’ is possible).

2. " 'f) precedes ru precedes sack(precedes pcrl’

or

'r] precedes ru precedes sack1 precedes pcr(' " (5.75)
where
perO="r() precedes ru precedes sack0 precedes pcrl’

peri='rl precedes ru precedes sack1 precedes pcr(f

The constraints (5.74) and (5.75) show that the sending of messages with
sequence numbers 1 and 0, as well as their reception are mutually constrained due to
alternation in the two protocol procedures. Therefore their behaviour is defined with
mutual recursion on processes $10,S11 as before:

S1 =810+ S11 (5.76)

where

S10 = rackl.su.s0.tstart0.(tout0.s0.tstart1.LO + S11)

S11 = rackQ.su.sl.tstartl.(toutl.sl.tstartl.L1 + S10)

with LO = tout().s0.tstart1.LO and L1 = toutl.s1.tstartl.L1

138

S$2 =820 + 821 (5.77)
where
$20 = r0.ru.sack(0.S21
S21 = rl.ru.sack1.520
The constraints related to the timer are:
2. " 'toutQ’ or 'tstart0' "
or
"'toutl’ or 'tstartl' " (5.78)
where, for the timer: the actions tout(, toutl, tstartQ and tstart]l represent timeout and

timestart for messages with sequence number () and 1 respectively.

The timer process is specified as follows:

T = tstartO.T + toutQ. T + tstartl. T + toutl. T (5.79)

The non-distributed constraints are:

1. " 'sO precedes ('r0 or sO') or 's1 precedes (1l or st') " (5.80)
2. " 'sackQ precedes (rackQ or sack0)'
or 'sack] precedes (rackl or sackl)'" (5.81)

3. " 'rackO' or 'rackl' " ; (initial conditions) (5.82)

with the behaviour of the medium:
med = medl + med2
med1 = s0.(r0 + s0).med + s1.(rl + sl).med
med2 = sack0.(rackQ + sack()).med + sackl.(rackl + sackl).med

139

+ rack0.med + rack1.med (5.83)
so that the composition of the behaviours:
S11S2l {(med1 + med2) | T | usr
= rackO.su.s1.tstartl.(toutl.sl.tstart].L1 + S10)
+
rack1.su.s0.tstartQ.(toutQ.s0.tstart0.LO + Sl11)
I
r().ru.sack0.S2] + rl.ru.sack1.520
|
$0.(r0 + s0).med + sl.(rl + sl1).med
+
sack0.(rackO + sack0).med + sackl.(rack1 + sack1).med
+ rack(O.med + rack1.med
!
tstartQ.T + tout0.T + tstart1.T + toutl.T
l

SU.UST + ru.usr

1

.su.sl.tstart1.(toutl.sl.tstartl.L.1 + S10)

+

rack1.su.sQ.tstart0.(toutQ.s0.tstart0.LO + S11)
|

r0.ru.sack(0.S21 + rl.ru.sack1.S20

I

$O0.(r0 + s0).med + s1.(rl +sl).med

+

140

sack0.(rack0O + sack(0).med + sack1l.(rack1 + sack1).med
+ .med + rackl.med

I

tstart0.T + toutQ.T + tstart].T + toutl.T

|

SU.uST + ru.usr

(rack0 is the interaction)
= ..sl.tstartl.(toutl.sl.tstartl.L1 + S10)

|

r0.ru.sack0.S21 + rl.ru.sack1.520

I

$0.(r0 + s0).med + s1.(rl + sl1).med
+

sackO.(rackO + sack().med + sack1.(rack1 + sack1).med

+ .med + rack1.med

I

tstart0.T + toutQ.T + tstart1.T + toutl.T

!

.UST + ru.usr

(su is the interaction)
= ...tstartl.(toutl.sl.tstartl.L1 + S10)

!

r0.ru.sack0.S21 + rl.ru.sack1.S20

I

s0.(r0 + s0).med + .(rl1 + s1}.med

+

141

sack(.(rackO + sack0).med + sack1.(rackl + sack1).med

+ rackO.med + rack1.med

I

tstart().T + toutO.T + tstart].T + toutl.T

I

SU.UST + ru.usr

(sl is an interaction)
=(toutl.sl.tstartl. L1 + S10)

|

r0.ru.sack(.521 + rl.ru.sack1.S20

l

$O.(r0 + s0).med + .(r1 + s1).med
+

sack(.(rack0 + sack0).med + sack1.(rackl + sack1).med

+ rackO.med + rack1.med

I

tstart).T + tout0.T +.T + toutl.T

I

SU.UST + ru.usr

(tstartl is an interaction)

...(toutl.sl.tstartl.L1 + S10)

I

rQ.ru.sack0.S21 + .ru.sack1.S20
|

142

e ——. T

$0.(r0 + s0).med + .(+ sl).med

+

sackO.(rackO + sack0).med + sackl.(rackl + sackl).med
+ rackQ.med + rack1.med

I

tstartQ.T + toutQ.T + tstart1.T + toutl.T
|

su.usr + ru.usr

(rl is an interaction)
= ...(toutl.sl.tstartl.L1 + S10)
I

..sack1.S20
|
$0.(r0 + s0).med + .(+ s1).med

+

sack0.(rackO + sack0).med + sackl.(rackl + sackl).med
+ rack0Q.med + rack1.med

tstart0. T + toutQ.T + tstart]. T + toutl.T
|

SU.UST + .usr

(ru is an interaction)

= ...(toutl.sl.tstartl.L1 + S10)
I

..520

143

$0.(r0 + s0).med + s1.(r1 + s1).med

+

sackQ.(rack(Q + sack0).med + .(rackl + sackl).med
+ rack(.med + rackl.med

I

tstart0.T + toutQ.T + tstart].T + toutl. T

I

SU.uSsr + ru.usr

(sackl is an interaction)

= su.s0.tstart(.(tout0.sQ.tstart().LO + S11)

520
!

sO.(r0 + s0).med + s1.(r1 + s1).med

+
sack0.(rack0 + sack0).med + .(+ sack1l).med

+ rackQ.med + rackl.med

[

tstart0.T + tout(.T + tstartl.T + toutl.T
I

Su.usr + ru.usr

(rackl is an interaction)

.Su.s0.tstartQ. (tout(.s0.tstart0.LO + S11)

144

..520

I

$O.(r0 + s0).med + sl.(rl + s1).med
+

sackQ.(rackO + sackQ).med + .(+ sackl).med

+ rack0.med + rackl.med

I

tstartQ.T + toutQ.T + tstart].T + toutl.T

I

SU.UST + Tu.usr

(su is an interaction)
(5.84)
and the next interaction is s0. So that it is easy to see that the following traces can be

obtained:

<rackO , su, sl , tstartl ,rl, ru, sackl, rackl , su, s0...
or
rackQ , su, sl , tstartl , toutl , sl , tstartl , toutl , sl , tstartl..>
(5.85)

and a similar set of traces starting with rackl.

Obtaining the associated constraints from (5.85), the following behaviour
expression for the system can be deduced:
S = rackO.su.sl.tstartl.(toutl.sl.tstart1.L1 + rl.ru.sack1.S10')

+

145

rack 1.su.s0.tstart0.(toutQ.s0.tstart0.L0 + r0.ru.sack0.S11")
(5.86)
where
LO = toutQ.s0.tstartQ
L1=toutl.sl.tstartl
S10' = rack1.su.s0.tstart(.(tout0.s0.tstart0.LLO + r0.ru.sack0.S11")

S11' = rackO.su.s1.tstartl.(toutl.sl.tstartl.L.1 + rl.ru.sack1.510")

Note that there are no other traces possible.

The advantages of this method of design are that this specification is tractable and

lends itself to validation of the service and verification of protocol behaviour properties, as

we shall see in the next chapter.

146

Be sure of it, give me the ocular proof.

Make mie 10 see't, or at the least so prove it
Thas the probation(proof) bear no hinge ncr loop
To hang a doubt on,...

Othello, Act 11, Scene iii, (lines 360-366)
Chapter 6

DISTRIBUTED SYSTEM SPECIFICATION,
VALIDATION AND VERIFICATION

The objective of validation and verification activity in the design-to- specification
trajectory is to gain a measure of confidence in the formal specification of a distributed
system. The partial constraint method of design and specification developed in the
previous chapters is used validation and verification of distributed systems. A method for
validation and a method of verification is developed in this chapter. Both methods can be
used in the design-to-specification phase of system development. In this chapter, a
simplified OSI Transport protocol class(0) is validated and the Alternating Bit protocol is
verified to illustrate the methods. The Transport protocol is validated against required
service. Some safety and liveness properties of the Alternating Bit protocol specified in
Chapter 5 are verified. The specifications used for validation and verification are partial
specifications. Specifications are considered to be partial if only a subset of the entire set of
requirements are used for specification purposes. That means that the specifications do not
necessarily define the complete set of requirements. Therefore, the validation and
verification method presented in this thesis demonstrates correctness of partial
specifications only. This implies that a specification is correct with respect to a relevant
subset of the requirements. The proof technique uses the modal operators defined in

Definition 5.4.1.

147

The OSI transport service obtained from the composition of the protocol entities
and the underlying service is specified as an example of a real distributed system, and then
validated against correct intentions. Verification is illustrated by means of the classic

example of a 'real’ protocol - the Alternating Bit protocol.

6.1 Validation And Verification

Software validation and verification techniques are based on Floyd's notion of
program correctness [27]. Some well known methods include the method of inductive
assertions [27], the method of invariants [36], proof of equivalence of assertions on

hierarchical programs [68], subgoal induction [58] and predicate transformations [83].

Nearly every method involves the formal definition of assertions either as
mathematical predicates or assertions in a formal language created for this purpose. Proof
of consistency between program behaviour with respect to a given logical property, stated

as an assertion is considered to be verification of the program with respect to that logical

property.

Verification methods analogous to program verification methods have also been
applied to distributed systems. Verification of distributed systems are based on proving
assertions defined on system states [85], in a programming language [76] or temporal
logic [31]. Verification by transformation of formal system specifications based on notions
of behavioural equivalence has been discussed in [72]. Verification during the design and

specification phase has been demonstrated in [21].

148

The underlying motivation for validation and verification of system behaviour is
correctness concerns. The issue of correctness of distributed system behaviour is

analogous to the issue of correctness of program behaviour.

6.1.1 Program Correctness

"A program is considered to be correct if program output satisfies output
requirements for every input specified by the input requirements” - [67] . For inputs
consistent with requirements, correct program behaviour should result in output satisfying

output requirements.

The concept of program correctness was first defined in [27]. A program P is
correct with respect to an input assertion ¢ and an output assertion y if it can be proved
that for ¢ true at the start of a program, is true at its termination. This view encapsulates
the most important notions of verification. Given ¢ true at the start of the program Floyd
used a method called the method of inductive assertions to prove the truth of the assertions

V.

6.1.2 Validation Of Partial Specifications

Recall from Chapter 5, that the class of partial specifications generated by the
partial constraint method of specifications generates specifications which have only a finite
(or countable) number of non-deterministic choices. This means although individual traces
generated by a given partial specification may correspond to infinite behaviour, each partial

specification can generate only a finite (or countable) set of such traces.

149

For distributed system behaviour, validation implies a demonstration that the
system behaviour as specified is of correct intention. That means that system behaviour
has been consistently specified - syntactically with respect to the syntax of the specification
language used, and semantically with respect to intentions. Syntactic consistency can be
validated by static syntax checking methods. Syntactic consistency will not be considered
here. Semantic consistency of the system can be demonstrated by a consistent composition
of the system's component descriptions. For example, consistency of a protocol's
behaviour can be shown by composition of protocol components with the underlying
service. For distributed systems, semantic consistency can be demonstrated either, by
composition of the system with the users (user processes) in the environment, (as we shall
sce) or, by comparison of system service with intended service. Simulation of the

behaviour of the composed svstem is often used to validate a system.

Validation Using Partial Constraints

Behaviour simulation of composed processes, is based on the inference rules for
composition given by the semantics of the process algebra used. If composition of system
components yields deadlock-free observable traces, the specification can be interpreted to
be semantically consistent. A deadlock is detected during trace recording if at any point in
the computation, the next action (which is not a svccessful termination action) cannot occur
and the remainder of the system behaviour satisfi *s the empty partial constraint. Using the
observed traces as the basis of determinations (see Chapter 4, Assumption 4.1) made on
the actions of the communication environment, associated partial constraints can be
constructed. And if system services as interpreted from the partial constraints are
consistent with intended services, then the specification is semantically validated. Or, if

composition of system components with user processes, for which the service is intended

150

yields deadlock free traces, then the service is consistent with intentions and the

specification is semantically validated.

System service requirements are semantically analogous to the assertions v,
above. If system behaviour as specified, can be demonstrated to be consistent with service
requirements, then the specification is validated to be of correct intent. The specifications
of system components from which valid behaviour can be inferred, are thereby also

validated.

In the partial constraint method of validation explained below, simulation is the
basis of partial constraint determinations (Assumption 4.1). The depths of determinations
are assumed to be finite. Partial constraints are used to define a partial specification of the
target system and user processes. Composition of all the processes should result in
observable deadlock-free traces of behaviour. The traces so obtained form the basis of a
systematic mode of determining partial constraints on behaviours in E at a predefined
depths of determinations (see Definition 4.7). Behaviour expressions satisfying partial
constraints (Definition 5.2) are constructed. Consistency of the behaviour expressions so
obtained with service requirements of the system validates the system. Note that the

validation results are true only for finite depths of determinations.

6.1.3 Verification Of Partial Specifications

Verification of distributed sy<tem behaviour is analogous to proving logical
properties of program behaviour. A verification method analogous to the Floyd-Hoare
method of proving program correctness is developed below. Partial constraints are used as
assertions in the verification process described below. In the partial constraint method of

verification, the assertion ¢ is replaced by the partial constraint pc. (corresponding to input

151

assertions on input requirements), and is replaced by the partial constraint PcO
(corresponding to output assertions on output requirements). The logical property to be
verified is represented in terms of the partial constraints pcl and pcO. So that, if pcl is true
at the start (instantiation) of system behaviour then pcO must be true at its termination, if

the behaviour terminates.

Verification Method

The verification method proceeds as follows:

1. Partial constraints for a required logical property to be verified are constructed
from requirement statements of that property. This corresponds to determinations
(Assumption 4.4.1) made on the environment E of the system. The sets of partial
constraints so obtained are assumed to correspond to input assertions pcl (¢) and output
assertions pcO (y) for the processes whose behaviour is to be verified.

2. For a given process, if the associated partial constraint pcl is true at process
instantiation (the start of system behaviour), and pcO is true at its termination (if it
terminates), then the logical property is interpreted as being verified.

3. To verify a given component process of the distributed system, it is composed
in parallel with all other component processes and user processes in the environment. The
environment is assumed to be 'fair’ (by Assumption 5.1 in Chapter 5).

4. The set of all possible traces of behaviour are derived from the composition.
This is possible because the specifications are partial, yielding a finite (or countable) trace
set. Only finite prefixes of each infinite trace are considered.

5. Deadlock-free traces yield partial constraints which hold true for system
behaviour at finite depths of determinations. The set of partial constraints so obtained

when composed together yield pcO.

152

6. PcO true implies that the property represented by (pcl,pcO) obtained from
(d,y) is verified.

The two types of logical properties to be verified are Safety and Liveness. Safety
properties properties generally specify that: "nothing bad will happen". That means if some
behaviour occurs it will be safe behaviour (corresponding to required behaviour). Liveness
properties specify that: "Only good things will happen”. That means useful behaviour

(corresponding to desired behaviour) will eventually happen.

System behaviour is considered to be safe, with respect to ¢ and W, if and when,
the behaviour terminates. Proof that indeed, the behaviour will eventually terminate makes

the safety property a liveness property.

6.1.4 Safety And Liveness

Proving safety and liveness properties amounts to proving the following:

Safety
Given a functional statement of a safety property, proving safety implies that

system behaviour if it terminates, terminates successfully. Successful termination means

that on termination the partial constraint pcO (or the assertion) is true.

Safety Properties Of Finite State Transition Descriptions

For state transition descriptions, if there exist transition paths, with no intervening

deadlock states, in which ¢ is true at the initial state and Wy is true at the final state, then

the system is considered to be able to operate safely with respect to the given property.

153

Deadlock states are non-final states which prevent control from reaching the final state
along a transition path. States (or set of states) from which there are no transitions leading
out are deadlock states. That is, in traversing deadlock states control either steps
abnormally or loops indefinitely. System safety with respect to the property under
consideration implies that, there exist safe transition paths through which the system can
traverse. However, there is no guarantee that there may be other paths which have
deadlock states or infinite loops when they are expected to be terminating paths. Note that
termination is not proved for safety properties, rather the truth of assertions in case of

termination, is proved.

For non-terminating systems, if ¢ and are replaced by an invariant I (say), and
I is true each time control reaches the beginning of a looping transition path, (without

intervening deadlock states) then safety is verified.

Safety Properties Of Algebraic System Descriptions

For algebraically specified systems, if the partial constraint pcl (¢) is true at a
given behaviour instantiation. and if pcO (y) is true at behaviour termination (i.e.there
exists an observable trace - with no intervening deadlocks), the system is interpreted to be

safe with respect to the logical property represented by pcl and pcO.

Conditions For Deadlock

Deadlock occurs if any action of a component process is unable to synchronise (or
communicate) with an action in the environment. Or, if all the processes under
composition wait forever for synchronisation. Deadlock causes the behaviour to terminate
abnormally preventing control from reaching action(s) after which the behaviour is

considered to terminate successfully.

154

For non-terminating processes, safe operation must be proved on the basis of
every finite prefix of an infinitely recurring trace expression. Partial constraints are
constructed on the basis of determinations of finite depths made on sets of the potentially
infinite traces. Deadlock causes the behaviour to terminate abnormally, preventing control
from reaching action(s) which guard re-instantiation of recursive processes. If ¢ and y (or
I) is true before the initial action on behaviour instantiation, and is also true for the
recursive instantiation of that behaviour (without intervening deadlocks), then safety is
verified. Note that safe operation of recurrent behaviour implies that every finite prefix of
an infinite trace is safe.

Liveness

Proving liveness means proving that system behaviour progresses. That means
the system performs useful work at every step in its behaviour. That amounts to proving

eventual successful termination, or that eventually the system executes useful behaviour.

The Liveness Property Of State Transition Descriptions

For state transition systems, if it can be shown that ¢ is true at the initial state, and

that every transition path leads to the final state, without intervening deadlocks, i.e. the

behaviour eventually terminates with y true, then the system is livelock free.

For non-terminating systems, if it can be shown that ¢ and wy (or I) is true at the
initial state, and that every transition path loops back to the initial state with I holding true,
without intervening deadlocks, i.e. the behaviour eventually recurs with | true, then the

system is livelock free.

155

The Liveness Property Of Algebraic System Descriptions

For algebraically specified terminating behaviour, if ¢ is true at behaviour
instantiation, and the behaviour eventually terminates, without intervening deadlocks, with
y true, then the system is live with respectto ¢ and .

For non-terminating algebraically specified systems, proving that the system will
eventually recurse with ¢ and y (or I) true, verifies system liveness. However, complete
algebraic specifications of protocols and distributed systems usually exhibit non-
terminating behaviour with potentially infinite number of infinite traces. This makes
verification difficult. Complete protocol and distributed system specifications based on the
algebraic model generate infinite transitions systems. Such systems are usually difficult to

verify.

Partially Specified Algebraic Systems

In order to make algebraic systems tractable to verification analysis, it becomes
necessary to restrict the form and structure of algebraically specified systems. The partial
constraint methodology restricts algebraic specifications to a subset of the complete
requirement constraints on the behaviour of the system. This restriction is further
emphasized with a specification structure limited to non-deterministic choices of guarded
recursive equations (see Chapter 4 and 5). Partial constraints lead to partial specifications

which are tractable to verification analysis.
For non-terminating partially specified algebraic systems, proving that the system

will recurse, with ¢ and y (or I) eventually true for all sequences of actions guarding the

recursion of a process, verifies system liveness.

156

In terms of system functionalities, proving safety implies partial correctness and

liveness implies total correctness.

Verification of system behaviour implies 'actual’ behaviour. In the following,
observable traces derived from the composition of behaviour expressions are associated
with the ‘occurrence’ of actions (or behaviour transitions). They are assumed to represent
actual behaviour. Transitions or actions occur when common actions of parallel composed

processes synchronise.

6.2 Validation Of The Transport protocol

Example 6.1

Consider the Connection establishment phase of the OSI transport layer protocol
(class 0). (This example is an extension of the example given in [1],[3}). To keep the
presentation of ideas simple and comprehensive, a subset of all the required behaviours is

considered. Initially, Disconnect requests or indications are not considered.

Figure 6.1 shows the architecture of the system. The distributed system
environment consists of user processes, a protocol and an underlying service. The logical
structure of the protocol consists of two protocol entities PE1 and PE2 respectively. The
combination of PEI and PE2 is the protocol process, with two pairs of interaction points
tl and t2, and p1 and p2 respectively. The interaction points t1,t2 are shared with user
processes of the environment - usrl and usr2 respectively. While pl and p2 are shared

with the underlying service.

157

usert user2

3t1 itz
PE1 PE2
ip1 Layer 4 tpz

UNDERLYING SERYICE
Layer 0...3

Figure 6.1 Logical structure of the OSI Transport protocol.

It is assumed that the actions of an environment E can be indexed by values of
predefined data type sorts, and that the set of values of all data types are countable. For

example:

The partial constraint

“pl(send/output)CR TPDU precedes p2(receive/input) CR TPDU"
(6.1)

constraints a generic action p1 (the action occurs at the interaction point p1 of the process)
indexed by a value: '(send/output)CR TPDU' to precede a generic action p2 (the action
oceurs at the interaction point p2 of the process) indexed by any value of the CR TPDU
sort. The index values come from countable sorts (for example, the CR TPDU sort),
making the actions unique. An index value represents a typical, well defined value of the
associated predefined sort. Note that the indexes are not parameters as such, but

interpreting them as parameters makes the specification readable. In principle system

158

behaviour can be specified by a unique labelling of all the actions. But this would make the

specification unreadable.

By convention we assign the symbol ! to the ‘(send/output)’ component of the

index and ? to the '(receive/input)' component of the index.

A second convention is the same as the matching convention followed in LOTOS
for synchronisation of actions. In LOTOS, actions with common generic labels can

synchronise if action parameters have the form:

1. type_name and ?type_name (i.e. same type_name)

2. type_name and !value_id (i.e. value_id is of sort type_name)

3. lvalue_expression and !value_expression

(i.e. the same value_expression)

In the specification given below the LOTOS type of synchronisation convention is
assumed for the indices of actions. This implies that synchronisable indexed actions are in

a communication relation with each other.

Requirement descriptions are obtained from the standard for the OSI connection
oriented transport protocol - [41]. It is assumed that simple canonical transformations of
the behaviour mechanisms described in the standard yield partial constraints (as in the
Partial Constraint 6.1). For example, the procedure describing Connection establishment

(cf.clause 6.5.4 of [41]) contains the following statement:

159

"A transport connection is established by means of one transport entity (the
initiator) transmitting a CR TPDU to the other transport entity (the responder), which
replies with a CC TPDU."

Where CR TPDU and CC TPDU are a connect request and connect confirm

transport protocol data units respectively.

By assigning roles of initiator/responder to both the gates p1 and p2 we deduce

the following partial constraint on the actions of p1 and p2:

"p1(send/output) CR TPDU precedes p2(receive/input) CR TPDU
precedes p2(send/output) CC TPDU
precedes pl(receive/input) CC TPDU"
or

"p1(send/output) CR TPDU precedes p1(receive/input) CC TPDU

In a similar manner we obtain partial constraints for PE1 and PE2 as follows:
PE1 partial constraints:

" 't17TConreq precedes p1!NDatareq!Conreq'
or

't1?TConresp precedes p1!NDatareq!Conconf’
or

'p1?NDataind?Conreq precedes t1!TConind'
or

'p1?NDataind?Conind precedes t1!TConconf" " (6.2)

160

PE2 partial constraints:

" '127TConreq precedes p2!NDatareq!Conreq'
or

't27TConresp precedes p2!NDatareq!Conind '
or

'p2?NDataind?Conreq precedes t2!TConind'
or

'p2?NDataind?Conind precedes t2!TConconf’ (6.3)

Using a LOTOS-like notation for the specification of processes satisfying the

|
\
\
|
} partial constraints we get:

protocol[tl,p1,t2,p2] = PE1[tl,p1,12,p2] Il PE2[t1,p1,t2,p2]
6.4)

where
PEI1[tl,pl,12,p2] =

t1?TConreq ; p1!NDatareq!Conreq ; PE1|tl,p1,i2,p2]
[

t1?TConresp ; p1!NDatareq!Conind ; PE1[t],p1,2,p2]
[l

p1?NDataind?Conreq ; t1!TConind ; PE1[t],p1,t2,p2]
[l

p1?NDataind?Conind ; t1!TConconf ; PE1[t1,p1,t2,p2]

161

PE2jtl,pl1,2,p2] =

t2?TConreq ; p2!NDatareq!Conreq ; PE2[t1,p1,t2,p2]

[l

t27TConresp ; p2!NDatareq!Conind ; PE2[t1,p1,t2,p2]
1

p2?NDataind?Conreq ; t2!TConind ; PE2[t1,p1,t2,p2]

[l
p2?NDataind?Conind ; t2!TConconf ; PE2[t1,p1,t2,p2]

The partial behaviour of the underlying service processes obtained from its partial
constraints is given by:

unds[pl,p2] = unds1|pl,p2] Il unds[p1,p2]

p1?NDatareq?Conreq ; p2! Ndataind!Conreq ; unds1{p1,p2]
(1l

p1?NDatareq?Conind ; p2!Ndataind!Conind ; unds1[p1,p2]}
I

p2?NDatareq?Conreq ; p1!Ndataind!Conreq ; unds2[p1,p2]
fl

p2?NDatareq?Conind; pl1!Ndataind!Conind ; unds2[p1,p2]

(6.5)

The partial behaviour of the user processes must satisfy the intended service. The
user processes are given by:

usr|t],t2] = user[t],t2] Il user2ftl,t2] (6.6)

162

where
userlftl,t2] = t1!TConreq ; t1?TConconf ; userl|tl,t2]

[
t1?7TConind ; t1?TConresp ; user1{t1,t2]

user2[t],t2] = t2!TConreq ; t2?TConconf ; user2{tl1,t2]
(1
t27TConind ; t2?TConresp ; user2[t1,t2]

The system S is obtained from the parallel composition of all the defined
processes. Parallel composition is the same as in LOTOS, so that stepwise synchronisation
of matching events of two processes occurs, at common interaction points. For example,
two actions at the interaction point 'p1' can synchronise with exchange of messages if the
two processes offer: ''NDatareq!Conreq' and '"?NDatareq?Conreq' respectively. Where
"?Conreq' for example is an index representing a predefined sort of a pdu (protocol data

unit) type and '!Conreq' an actual value in a manner similar to that of ACTONE data types.

However, note that since deadlock occurs in a system only when all processes are
blocked forever, the parallel composition of all the partially specified processes must
allow for all synchronised interactions which can occur, to indeed occur. Other processes

with event offers wait for synchronisation until a peer becomes ready to synchronise.

The partial specification of Equations (6.2) and (6.3) allow for true concurrency
between connections, i.e. both sides may initiate connect requests concurrently, however
the specification is transparent to crossovers.

[end of example 6.1]

163

6.3 Validation Method

The composed distributed system is valid if it is syntactically and semantically
consistent. Syntactic consistency can be checked either manually or automatically.
Syntactic consistency is demonstrated by paralle’ .omposition of the protocol process with
the underlying service. If the composition results in deadlock free observable traces then
the system is syntactically valid. Semantic consistency is demonstrated by parallel
composition of the protocol-underlying service with user processes in the environment. If
such a composition results in deadlock-free behaviour traces, then consistency with

intended service is validated.

If formal specifications of the service (or user processes) is not available, then
parallel composition of the protocol process and the underlying service yields traces.
Partial constraints are constructed from the observed traces, from which behaviour
expressions satisfying them are obtained. Partial constraints satisfying the behaviour
expressions are compared to partial constraints obtained from service descriptions for

consistency.

As an illustration of the validation method, consider the following;

Example 6.2

Parallel composition of the processes of Example 6.1 (see also Figures 6.1 and

3.1) gives the expression:

S = usr{t1,2] {t1,2]I protocol[tl,p1,2,p2] I[p1,p2]l unds(p1,p2] 6.7

164

Common actions with matching events of the two processes result in interactions.
Interactions are possible at each recursion of the processes. Those actions not common to
any of the processes are not synchronised, but interleaved. The composition results in
traces which yield partial constraints consistent with those traces. Behaviour expressions
satisfying the partial constraints represent possible behaviours of the system. The set of

observable traces for the behaviour specified in Equation (6.7) are:

<

t1!TConreq,
pl!Ndatareq!Conreq ,
p2!NDataind!Conreq,
t2!TConind ,
t2!TConresp ,
p2!NDatareq!Conind ,
pl!NDataind!Conind ,
t1!'TConconf

or

t2!TConreq,
p2!NDatareq!Conreq ,
p1!NDataind!Conreq ,
t1!'TConind ,
t1!TConresp ,
pl!NDatareq!Conind ,
p2!NDatareq!Conind ,
2!TConresp > (6.8)

165

In a given system of determination of partial constraints from traces,
determinations of actions can be made upto a predefined depth of determination. The set of

traces (6.8) represent possible behaviours of the connection service.

The trace (6.8) forms the basis of determining the constraint:
" 't1!'TConreq precedes
p1!Ndatareq!Conreq precedes
p2!NDataind!Conreq precedes
12! TConind precedes
t2!TConresp precedes
p2!NDatareq!Conind precedes
p1!NDataind!Conind precedes
t1!'TConconf
or
'12!'TConreq precedes
p2!NDatareq{Conreq precedes
p1!NDataind!Conreq precedes
t1!'TConind precedes
t1!TConresp precedes
p!!NDatareq!Conind precedes
p2!NDatareq!Conir ! precedes
12! TConresp' " (6.9)

The constraint (6.9) can be compared to the time sequence diagrams of the OSI

Transport service definition standard (cf. pps. 9, Figure 4 [42]).

166

For example, the time sequence diagrams of the transport service contain the

sequence of transport service primitives given in Figure 6.2:
T-CONNECT

indication

T-CONNECT "p~~
request
T T-CONNECT
T-CONNECT response
confirm

Figure 6.2 Successful TC establishment

The following partial constraint based on the time sequence diagram of Figure 6.2
describes successful TC establishment when TS userl (interacting with TS provider at
interaction point t1) or TS user2 (interacting with TS provider at interaction point t2) is

calling/called TS user:

" (t1/t2)! TCONreq precedes (11/t2) TCONconf " (6.10)

It is easy to deduce the partial constraint (6.10) from (6.9) and trace (6.8), since
(6.10) is consistent with (6.9). Thereiore, the protocol as specified in Equation (6.4) is
valid with respect to intended service provided to the user as specified in Equation (6.6).

[end of Example 6.2]

Example 6.3
The previous example can be easily extended to include the service consisting of
rejection of TC establishment requests by a called TS user or TS provider (see also

Figures 6.1 and 3.1).

167

Di { R and Indicati

The additional intended service to the user is expressed by the following partial
CONStraint on user processes:
" '(t1/12) T_Conreq precedes (T_Conconf or T _DISind)'
or
'(t1/42)T_Conind precedes (T_Conresp or T_DISreq)" " (6.11)
So that the user processes of Equation (6.6) are modified as follows:
usr{t1,t2] = user1|t1,t2] Il user2|tl,t2] (6.12)
where
userl|tl,t2] = t1!TConreq ; (11?TConconf [] t1?TDISind) ; user![t1,t2}
(]
t1?TConind ; (t1?7TConresp [] t1?7TDISreq); user1[t1,t2]
user2[tl 12] = t2!TConreq ; (12?TConconf [] 27TDISind) ; user2[t1,t2]
[l
127TConind ; (2?TConresp [] t27TDISreq); user2[t1,t2]
and the partial constraints for PE1, PE2 and the underlying service are modified as
follows:
PEl:
" 't17TConreq precedes p1!NDatareq!Conreq'
or
't17TConresp precedes pl!NDatareq!Conind'
or
't17TDISreq precedes p1!NDatareq! TDISreq’

or

168

'‘p1?NDataind?Conreq precedes t1!TConind'
or

‘p1?NDataind?TDISreq precedes t1! TDISind'
or

‘p1?NDataind?Conind precedes t1!TConconf "

PE2:

" '127TConreq precedes p2!NDatareq! Conreq’
or

't2?TConresp precedes p2! NDatareq!Conind'
or

'127TDISreq precedes p2!NDatareq! TDISreq'
or

'p27NDataind?Conreq precedes 12! TConind'
or

'p27NDataind?TDISreq precedes 12! TDISind’
or

'p2?NDataind?Conind precedes t2! TConconf™ "

Accordingly, the specification in Equation 6.4 is modified as follows:
protocol[tl,p1,t2,p2] = PE1[t]l,p1,t2,p2]} I! PE2[t1,p1,12,p2]
where
PE1[t]l,pl1,t2,p2] =
t17TConreq ; p1!NDatareq!Conreq ;
PEI1[tl,pl,t2,p2]

169

(6.13)

(6.14)

(6.15)

l
t17TConresp ; pl!NDatareq!Conconf ;

[l
t17TDISreq ; p1!NDatareq!TDISreq ;

{1
p1?NDataind?Conreq ; t1!TConind ;

1l
p1?NDataind?TDISreq ; t1!'TDISind ;

[l
p1?NDataind?Conind ; t1!TConconf;

PE2[tl,pl,12,p2] =

127TConreq ; p2!NDatareq!Conreq ;

[l
t2?7TConresp ; p2!NDatareq! Conconf ;

§
t27TDISreq ; p2!NDatareq!TDISreq ;

170

PE1{t],p1,t2,p2]

PEI[t1,p1,12,p2]

PE1[t1,p1,t2,p2]

PE1{t1,p1,12,p2]

PEI1[tl,p1,t2,p2}

PE2[t1,p1,12,p2]

PE2[t1,p1,t2,p2]

PE2[t1,p1,t2,p2]

(]
p2?NDataind?Conreq ; t2!TConind ;

PE2[tl,p1,12,p2]
[l
p2?NDataind7TDISreq ; t2!TDI1Sind ;

PE2jtl,p1,12,p2]
[l
p2?NDataind?Conind ; t1!TConconf ;

PE2[t],p1,t2,p2]

the underlying service is also appropriately modified:

unds{pl,p2] = undsl{pl,p2] Il unds2|{pl,p2]

p1?NDatareq?Conreq ; p2!Ndataind!Conreq ; unds1{pi,p2]

[l

p1?NDatareq?TDISreq ; p2!Ndataind! TDISreq ; undsl|pl,p2]

(]

p1?NDatareq?Conind ; p2!Ndataind!Conind ; unds1|p1,p2]

[

p2?NDatareq?Conreq ; p1!Ndataind!Conreq ; unds2[p1,p2]

(Il

p2?NDatareq?TDISreq ; pl1!Ndataind! TDISreq ; unds2[pl,p2|

[l

p2?NDatareq?Conind ; pl1!Ndataind!Conind ; unds2{p1,p2]

(6.16)
Once again the intended service can be validated by means of Equation 6.7 and its

observable traces.

171

Collision Detecti

Collision of connect requests can occur if PE1 or PE2 receives a connect request
from the other side before or after it sends a connect request via the underlying service.
This can occur only if the underlying service delivers a connect request before or after
cither side sends a connect reques'. In order to detect and avoid this collision, both entities
non-deterministically ignore the incoming request and proceed to establish the connection
for the connect request it has accepted from its own user. To implement this, the protocol
entities as specified in Equation 6.14 are modified as follows:

PE1|tl,pl,2,p2| =

t17TConreq ; (pl!NDatareq!Conreq ;
(p1?NDataind?Conreq' ; protocol[t1,p1,t2,p2]
[l
PE1|tl,p1,t2,p2])
[l
p1?NDataind?Conreq' ; p1!NDatareq!Conreq ;
PE1[t1,p1,t2,p2]

l
t17TConresp ; pl!NDatareq!Conconf ; PE1[t1,p1,t2,p2]
[l
p1?NDataind?Conreq ; t1!TConind ; PE1{t1,p1,12,p2]

tl
p1?NDataind?Conind ; t1!TConconf ; PE1[t1,p1,t2,p2]

with PE2 defined similarly. (6.17)

172

A possible deadlock or race condition ensuing from both sides respectively
ignoring repeatedly the other sides request is resolved by a 'fair’ environment assumed in
Assumption 5.4.1. In a fair environment one side will eventually get through, when the
other side stops sending connect requests.

Data transfer is now introduced in the example:

Data Transfer

The data transfer phase of the protocol is always preceded by the connection
establishment phase, therefore we specify the protocol including the data transfer phase as
follows:

protocolftl,p1,t2,p2] =PE1[tl,p1,t2,p2] II PE2[tl,pl,t2,p2] (6.18)

where

PEI1[tl,p1,t2,p2] = conPE1|tl,p1,t2,p2] [] dtrfrPEl|t]l,p1,t2,p2] ;

PE2[tl,p1,t2,p2] = conPE2[t],p1,t2,p2] [} dtrfrPE2[t1,p1,t2,p2] ;

Where PE1 and PE2 are modified to obtain conPE! and conPE2 respectively as
follows:

conPEl1[tl,pl,t2,p2] =

t17TConreq ; p1!NDatareq!Conreq ;
conPEl|[t]l,p1,t2,p2]

[
t17TConresp ; p1!NDatareq!Conconf ;

conPE1{tl,p1,12,p2]
(]
t17TDISreq ; p1!NDatareq!TDISreq ;

conPE1|tl,pi,t2,p2]

173

(l
p1?NDataind?Conreq ; t1!TConind ;

[l
p17?NDataind?TDISreq ; t1! TDISind ;

()
p1?NDataind?Conind ; t1!'TConconf ;

conPE2[t1,p1,12,p2] =

t27TConreq ; n2!NDatareq!Conreq ;

li

t27TConresp ; p2!NDatareq!Conconf ;

[l
t2?7TDISreq ; p2!NDatareq! TDISreq ;

]
p2?NDataind?Conreq ; t2!TConind ;

¥

p2?NDataind?TDISreq ; 12! TDISind ;

174

conPE1{t1,p1,t2,p2]

conPE1[t1,p1,t2,p2]

dtrfrPE1t1,p1,t2,p2]

conPE2{t1,p1,t2,p2]

conPE2[t1,p1,t2,p2]

conPE2[t1,p1,t2,p2]

conPE2[t1,p1,t2,p2]

conPE2[t1,p1,t2,p2]

(]
p2?NDataind?Conconf ; 12! TConconf ;

dtrfrPE2]t1,p1,2,p2]

(6.19)
And the data transfer process is defined as:
where
dtrfrPE1[t1,p1,t2,p2] = t17TDatareq ; p1!NDatareq!Datareq ;
dirfrPE1[t],p1,12,p2]

[
p1!NDataind!Datareq ; t1!TDataind ;
ditrfrPE1(t1,p1,i2,p2]
(1
p1!NDatareq!s_AK ; dufrPE1[t1,p1,t2,p2]
(1
p1?NDataind?r_AK ; dufrPE1ftl,p1,t2,p2}
with dtrfrPE?2 similarly defined on t2 and p2.
The underlying-service can be similarly modified to consist of two processes such
that the data transfer process component is defined as:
dirfrundsf{pl,p2] =dtrfrunds1[pl,p2] Il dtrfrunds2[pl,p2]
dtrfrunds1{p1,p2] = p1?NDatareq?Datareq ; p2!NDataind!Datareq ;

dtrfrunds1|p1,p2|
[i
p1?NDatareq?s_AK ; p2!NDataind!r_AK
dtrfrunds1{p1,p2]

Il
p2?NDatareq?Datareq ; pl!NDataind!Datareq ;

175

dtrfrunds2[p1,p2]
4!
p2?NDatareq?s_AK ; p1!NDataind!r_AK
dtrfrunds2{p1,p2]
(6.20)
The user process definitions are analogous. Once again the composition of
processes as in Equation 6.7 can be shown to satisfy the intended service, in a manner

similar to the above.

Expedited Data

However, the transport service standard imposes special constraints on data
transfer. The special constraints are that of re-ordering and deletion. We will consider re-

ordering.

Expedited TSDUs are expected to be delivered ahead of any normal data which is
already in the service queue, and is in the process of being transmitted (cf. clause 9.2 of
[1S2]). This can be expressed by the appropriate partial constrzints and the corresponding
process dtrfrPE1 is defined as:

durfrPE1[t1,p1,12,p2] = t1?TDatareq ;

((t1?TExpdatareq ;
p1!NDatareq!Expdatareq ;
p1!NDatareq!Datareq)

[l
(t17TDatareq' ;
pl!NDatareq!Datareq ;
176

pl!NDatareq!Datareq")) ;
dtrfrPE1[t1,p1,t2,p2]

]

pl!NDataind!Datareq ; t1!TDataind ;
dtfrPE1|t1,p1,t2,p2]

[l

p1!NDataind!Expdatareq ; t1!'TExpdataind ;
difrPE1{t1,p1,t2,p2}

with dtrfrPE2 similarly defined...
6.21)

Note the primes on the value expression indexing the aciions imply a value

different from the previous one of the same sort.

The service processes are appropriately modified as follows:

dtrfrunds[pl,p2] =
p1?NDatareq?Datareq ;
(p1?NDutareq?Expdatareq ;
p2!NDataind!Expdatareq ; p2! NDataind!Datareq ; dtrfrunds!{pl,p2]
]
p1?NDatareq?Datareq’ ;
p2!NDataind!Datareq ; p2!NDataind!Datareq' ; dtrfrunds1{p1,p2])
!
p2?NDatareq?Datareq ;
(p2?NDatareq?Expdatareq ;
177

pl!NDataind!Expdatareq ; p1!NDataind!Datareq ; dtrfrunds2|pl,p2]
(I
p27NDatareq?Datareq' ;
p1!NDataind!Datareq ; p1!NDataind!Datareq' ; dtrfrunds2{p1,p2])
(6.22)

And the user processes:

usr[t1,t2] = useri[tl,t2] I user2|tl,12] (6.23)

where

user1{t1,12] = conuser1[t1,t2] [] dirfruser1{tl,t2];
user2[t1,t2] = conuser2[t1,t2]{] dtrfruser2]t1,2]
and

dtrfruser1(t1,t2] = t1!TDatareq ; dtrfruser1{tl,t2]

(1l
t1!'TExpdatareq ; dtrfruser][t1,t2}]

with dtrfruser2[t1,12] similarly defined.

Flow Control By Backpressure

Internal conditions of the receiving user or the service during the data transfer

phase or of the provider may cause flow control to be exercised by the transport protocol.

Flow control results in the user being unable to add normal data to the service queue when

that would prevent addition of an expedited TSDU (Transport service data unit) (cf. clause

9.2 [42)).

178

The adding of normal data to the queue, is preceded by an action denoting flow-control-
rcady in the process dirfrPE2. The flow-control-not-ready condition is interpreted as
representing the condition: the receiving end user is not ready to accept another NDatareq.
The flow control not ready condition is also true when the service queue is full but for one
more data element (which must be reserved for expedited data). We denote the flow

control conditions by the following actions:

que_full:
denotes service provider is ready to receive only one more element
(expedited data)
que_ not_full:
denotes service provider is ready to receive data requests
usr_rdy:
denotes receiving protocol entity ready to receive data
usr_not_rdy:
denotes receiving protocol entity not ready to receive data
but for an expedited data
flow_control_rdy:
denotes the receiving user is ready to accept data from the service
flow_control_not_rdy:
denotes the receiving user is not ready to accept data

from the service, but for one expedited element

179

For the sake of simplicity, if we assume that only userl initiates TDatareqs, the
process dtrfrPE2 is modified as follows:
dtrfrPE1[t1,p1,12,p2] =
que_not_full ;
(t17TDatareq ;
((t1?TExpdatareq ;
pl!NDatareq!Expdatareq ;
p1l!NDatareq!Datareq)
[
(t1?7TDatareq' ;
p1!NDatareq!Datareq ;
pl!NDatareq!Datareq')) ;
dirfrPE 1{t1,p1,12,p2])
(1
que_full ; (dt{rPE1[t1,p1,t2,p2]
(1
t1?TExpdata ; p1!Ndatareq!Expdata ;
dirfrPE1[t1,p1,12,p2])
(6.24)

The under-lying-service is modified as follows:

dtrfrunds[pl,p2] =

usr_rdy ; que_not_full ;

(p1?NDatareq?Datareq ;
(p1?NDatareq?Expdatareq ;

180

p2!NDataind!Expdatareq ; p2!NDataind!Datareq ; dtrfrunds[p1,p2]

fl
p1?NDatareq?Datareq’ ;

p2!NDataind!Datareq ; p2!NDataind!Datareq' ; dtrfrunds{p1,p2])
f
p2?NDatareq?Datareq ;
(p27NDatareq?Expdatareq ;
p1!NDataind!Expdatareq ; p1!NDataind!Datareq ; dtrfrunds[p1,p2]
[l
p2?NDatareq?Datareq' ;
pl!NDataind!Datareq ; pl!NDataind!Datareq' ; dtrfrunds[p1,p2])
(l
usr_not_rdy ; que_full ;
(dtrfrunds{p1,p2]
}
p1?NDatareq?Expdatareq ; p2!NDataind!Expdatareq ;
dtrfrunds[p1,p2])
(6.25)

The receiving entity dtrfrPE2 is modified as follows:

dirfrPE2[t1,p1,12,p2] = flow_control_rdy ; usr_rdy ;
(p2?NDataind?Datareq ; t1!TDataind
(1
p2?NExpdataind?Expdataind ;
t1!TExpdataind) ; dtrfrPE2(t1,p1,12,p2]
181

[l
flow_control_not_rdy ; usr_not_rdy ;
(p2? NExpdataind?Expdataind ;
12! TExpdataind ; dtrfrPE2
1]
dtrfrPE2) (6.26)

The user process user? is also modified as follows:

dtrfruser2{t1,t2) = flow_control_rdy ;
(227TDataind [| 27TExpdataind) ; dirfruser{t1 2]
[l
flow_control_not_rdy ; t1?7TExpdataind ;

dtrfruser2|t],12)

(6.27)
The Equation 6.7 is modified as follows:
S = usr{tl1,t2] I[t1,t2]l protocolftl,p1,t2,p2]
I{p1,p2]l undsipl.,p2] (6.28)

The observable traces of Equation (6.27) yield behaviour expressions which

[end of example 6.3]

182

|
|
|
|
satisfy the service constraints with respect to flow control.

6.4 A Proof Technique For Verification

The proof technique used for verification of logical properties of specifications is

based on Assumption (5.4.1) of a 'fair' environment and the method of Invariants

[36],]21]. It is bricfly described next.

6.4.1 Proof Technique

Assumption 6.1 Partial Specifications

Process algebraic specifications obtained from partial constraints generate partial

specifications in the form of guarded process algebraic equations with no hidden actions.

[end of Assumption 6.1]

The class of partial specifications treated by the proof technique described below
is the class of process algebraic guarded recursive equations which generate Finitc State

Transition (FST) systems (see also Chapter 3 Definition 3.1.1).

Process algebraic guarded recursive equations which can generate FSTs can be
shown to have a finite (or covntable) set of infinitely recurring traces. The partial constraint
proof technique is used to verify logical properties of system behaviours on the basis of

finite (or countable) sets of infinitely recurring traces.

183

Proof Method

The proof technique is based on inference rules for partial specifications given
below:

A guarded recursive process algebraic equation has the form:

Pla,B,...] = a.p. ... P[17y.6. ... P|].. (6.29)
where o,f3,y,0 are actions which belong to the alphabet of the process. The process P may

have sub processes with a similar structure.

In a 'fair' communication environment E:

Let pc,pcll,pel2...pcO1,pcO2,... denote well formed partial constraints
(Definition 4.4.2) on the actions of E.

Let {a,B,y,...} € E

Let P,P1,P2... be guarded recursive processes defined on the actions of L
satisfying partial constraints on behaviours in E. And for any process P, let P---->1"
denote the transition of P to P' with the occurrence of an action.

Then, the following inference rules are used for verification of the processes of I:

1. If P = o..P then

If the partial constraint pcl = 'o true before instantiation of P

then

pcl P 1= pcOis true

where pcO = pcl (1) is true after every recursive instantiation of P, and

P I= the trace <o,0,@,...>.

Note that the trace <o,0,01,...> ==> pcO at depth of determination 1. (6.30)

184

2. (i) If P= a.p.P then

If the partial constraint pcl = "o precedes [is true before instantiation of P
then

IfP--o-->B.P ==>

pcl 'P --a--> B.P' |="ot" is true now and pcO will eventually be true

where pcO = pcl (1) is true after every recursive instantiation of P, and

P I= the trace

<af,aB,...af,... etc.>

Note that the traces imply pcO at depth of determination 2. (6.31)
2. (ii) If P = o.3.P then

If the partial constraint pcl = "o precedes B' is true before instantiation of P
then
pcl ‘P --B--> P' |= pcO is true now

where pcO = pcl (1) is true after every recursive instantiation of P, and

P |= the trace

<af,ap,...af,... etc.> (6.32)
Note that the traces imply pcO at depth of determination 2.

3.If P=(a[] B).P then

If the partial constraint pcl ='a or ' is true before instantiation of P

then

pcl 'P--a-->P' I= 'a'is true now and pcO will eventually be true

where pcO = pcl (1) is true after every recursive instantiation of P, and

1856

P I= the trace

<oa,od,...fB,... or
BB.BB....aq,... or
oo,od,...af,... or
ao,o0,...Ba,... or
BB.BB,...ap,... or
BB.BB....Ba,... etc. >.

Note 1: that the traces imply pcO at depth of determination 1 and 2.

Note 2: A similar inference rule holds if 'P--B-->P'

4. Sequence rule:
If
pcI1'P1---->P2' |= pcO1 and pcOl 'P2---->' |= pcO2 then

'‘pellprecedes pcO2' is true for Pl

5. Choice rule:

If

pcI1'P1' I= pcO1 or pcl2 'P2' = pcO2 then
'‘pelt or pcl2' 'P1{] P2’ I="pcO1 or pcO2'

6. Conjunction rule:

If

pcll'Pl' I= pcO1 and pcl2 'P2' |= pcO2 then
'‘pclland pci2' 'PUIP2’ 1= 'pcO1 and pcO2'

186

(6.3

(6.34)

(6.35)

(6.36)

7. Now let 'proc’ be a behaviour process, and pcl a partial constraint defined in E
such that pcl is true at the instantiation of 'proc’.

Let 'Spec' be the set of processes in the environment of 'proc’;

Let process 'proc’ be parallel composed with all the other processes of its
environment E in accordance with the Formulae (5.54) of Chapter 5. The parallel}
composition of the processes is assumed to instantiate the processes. Then if the parallel

composition is denoted by Parallel(Spec), and:

pel Parallei(Spec) I= trO ==>pcO’ (by determinations of depths 1 and 2)
and

beO be s.t. beO |= pcO' ==> pcO (6.37)

where the partial constraint pcl is true at instantiation of the processes of Spec. The trace
set rQ is the set of all observable traces derived from Parallel(Spec) which can eventually
be observed. The set of traces trO forms the basis of determinations at depth 1 and 2 of the
partial constraints pcO'. The partial constraints pcO' turn out to be finite sequences of
actions in rfO mapped onto precedence relations of actions(at a given depth of
determination) to form guarded recursive sub-processes. The sub-processes so obtained
for the traces in trO are related by the ‘or’ relation. The behaviour expression beO is
constructed s.t. beO I= pcO’ (see also Chapters 4 and 5). The construction of beO from trO

is also illustrated in the validation examples above.
If the partial constraints pcO obtained as a result of applying the inference rules
(6.30-6.37)) are consistent with the logical property to be verified, then the process 'proc’

1s said to be verified with respect to that property.

187

Deadlock

Note that fairness of an environment E implies that, E is an operational
environment which does not deadlock on any of the actions of the processes specificd in

Parallel(Spec) due to an action not in Parallel(Spec).

However, deadlock can occur if an action in Parallel(Spec) cannot occur now or

eventually. In such acase parallel spec satisfies the empty (' ') constraint.

For example the parallel(spec):

‘o precedes B o Bip.a |= deadlock ==>"" constraint from rule (6.32)

(where o and B do not communicate)

Example 6.4

Consider the CCS partial specifications:
Sl=a andS2 =a (6.38)

and
‘o' S = S1IS2 |=<o> =>"'a' from the inference rules (6.31) and (6.36)

(6.39)
In (6.38), S1,S2 satisfy the constraint "ot in a fair environment E, since "&" is

always true. Hence, the behaviours S1 and S2 are safe with respect to the property "a".

The expression (6.39) shows that S satisfies the liveness property 'o’.

188

That means for the behaviour S, ‘o’ will eventually be true. But the safe operation
of S cannot be asserted from (6.39). However, since 'a’ was true before instantiation of
S, and ‘o' is eventually true on termination of S. Therefore, S = .S (as constructed from

the trace <o> and rule (6.37), is also safe.

Verification of the property safety property ‘o’ can be proved inductively:

If the partial constraint '’ is true before the instantiation of S, then it is true when

S terminates successfully. i.e. S is verified to be safe w.r.t. the property 'o'.

Since:

‘o' ajo = <o> (the trace o is observable) (by rule 6.37)
==> « (the behaviour) (by rule 6.37)
==> 'o' is true (the partial constraint '’ is true)

(by rules 6.36 and 6.37)

therefore: S is verified w.r.t. the safety property ‘o

And

For S$=S1I82:

‘o’ S1IS2 I= <o> (the trace o of S is eventually observable)

==> ‘o' is eventually true (by rule 6.36,6.37)
(the partial constraint '/’ is eventually true)

therefore: § is verified w.r.t. the liveness property o',

If S1 and S2 are recursively defined to be:

S1=0.S1 and S2 = @.52 (6.40)

189

and
S = 81182 |= <o,0,c,0,00....> (6.41)
==>"'0l eventually true (for every finite prefix) by rules (6.36,6.37)
==>"q' always true (for every finite prefix)
(since 'ol' is true at instantiation of S and when it terminates)

therefore: S is verified w.r.t. the safety property ‘o'

In (6.41) S satisfies ‘o', since for every finite prefix of the sequence of as, "o is
true. Therefore, ‘o’ is always true. Hence, the behaviour S is safe with respect to the
property ‘o',

[end of example 6.4]

Example 6.5

The partial constraint 'o.or B' is a 'weak' constraint satisfied by the behaviour S:

S = (o + B).Slli(o + B).S2 (6.42)

where

S1 = (o + B).S1

S2 = (o + B).S2

To prove that S behaves safely w.r.t. the property ‘ot or B', we write the
expression:

'o or B' (o + B).S (e + B).S2

I= <aa,00.,...B,... or
BB.8B,...aa,... or
ac,od,...o,... or
oo,oa,...pa,... or
BR.BB,...aB,... or
BB.BB....pa,... etc. >
(by rules 6.33,6.35,6.36 and 6.37)

190

|= O'c or B' (is eventually true)

==> 't or B' (is always true)
since it is true before instantiation and after each recursion
==> (o + B).S (6.43)

therefore: S = (a+ B).S I= 2'a or B, and S is safe w.r.t. the property 'a or p'

Also, since:

‘cor B (o+ B).Si{a + B).S2
I= <(o + B).(ax + B),(at + P),(c+B),...>
I= <(ax + Bp + af + Ba), (@ + B)..>
==> <a... or 3B... or af... or Pa...

(possible behaviours traces>

(by rules 6.32,6.35,6.36 and
6.37)
==>"o precedes O... or
'B precedes B... or
‘o precedes B... or
'B precedes ct... (by rule 6.32) (6.44)

Therefore, if a occurs now, then B will eventually occur and vice-versa. Therefore, S is
live w.r.t. the 'strong’ property "o precedes ' or ' precedes o'". But S is not safe
w.r.t. this property since it is not true for every finite prefix of the traces of S.

[end of example 6.5]
6.5 Verification Of The Alternating Bit Protocol

The method of verification is illustrated by means of the Alternating Bit protocol

specified in Chapter 5.

191

The protocol is verified for safety and liveness properties. Safety is proved by
showing that safety invariants transformed into partial constraints are always true
throughout the operation of the protocol. i.e S I= safety constraint pcl ==> pcl is always
true. Liveness is proved by showing that a given property will eventually be true i.c S
satisfies the pc before instantiation, and S I=liveness constraint pcl, pcl will eventually be

true after instantiation.

For ease of comprehension, the denotational meaning of the actions of the AB

protocol is reproduced below (from Chapter 5):

For user-protocol interactions:

Let su,ru denote the 'Send’ action and 'Receive’ action by users.

For protocol-medium interactions:

Let sO and s1 denote the sending of messages with sequence number () and 1

respectively and let 10 and r1 denote corresponding receive actions.

For acknowledgements, let sack() and sack1 represent send actions and rack() and

rack] corresponding receives.

For the timer let tout0, toutl, tstart0 and tstart] represent timeout and timestart

actions for messages with sequence number 0 and 1 respectively.

192

Safety
Safety properties for the sender process (S1), the receiver process (S2) and the
medium are stated. These properties are converted into partial constraints by simple

canonical transformations (the transformation rules are the designers choice) as follows:

A safety invariant of the sender process (S1) is:
Safetv Invariant 6.1
"A message is not sent until an acknowledgement has been received for the

previous message”

Partial Constraint

" not ('sO precedes rack1') "
and
"not ('s1 precedes rackQ') " (6.45)

For the receiver process (S2) is:

Safety Invariant 6.2

" A message is acknowledged only after it has been received”

" ') precedes sack("
and

rl precedes sackl'" (6.46)

For the medium is:

Safety Invariant 6.3

"The output sequence of messages is at all times atmost one shorter than the input

sequence” (6.47)

193

Definition 6.1 Message Extraction Function
Define m to be a function which extracts a message sequence from a partial
constraint as follows:
m(s0/s1) = msO/ms! and m(rQ/r1) = mr(/mrl
so that:
m('s0 precedes 10 precedes sl')
==> ms0,mrQ,msl".
==> minput (number of input messages) =2 and
moutput (rumber of output messages) = |
and
m('sO precedes 10 precedes sl precedes rl precedes s()')
==> ms(,mr0,ms1,mr1,ms0'
==> minput < moutput with minput = moutput +1 for all
values of minput,moutput (6.48)
where s0,s1 can be considered to be input and r0/r1 as output actions respectively. The
primes distinguish different messages with the same message sequence number. And if an
input action follows an output action it is assumed that the message is a new one, different
from the one output in the preceding output action.

[end of Definition 6.1]

Therefore, in order to prove the property stated in the Safety Invariant 6.3, we

have to prove the partial constraint associaied with the safety property.
Partial Constraint
"i

sO precedes r0 precedes s1' " is always true (6.49)

and a similar property with sl as the first action.

194

The safety property for the system is:
Safety Invariant 6.4
"The output sequence of messages is at all times an initial sub-sequence of the
input sequence” (6.50)
The function m when applied to the constraint:
" 'us precedes ur'"' ==> msu,mru,msu,mru,msu....
where each pair of su’s preceding ru refer to the same message.
6.5.1 Verification Proofs
1. Proof Of Safety Invariant 6.1
"not ('s() precedes rack1’)"
and
"not('s1 precedes rack(’)" (6.51)
Proof:
Consider the observable traces of the service, derived from 5.82 and construct the
partial constraint:
" ‘rackl precedes su precedes sO precedes tstart() precedes
('tout(precedes sO precedes tstartQ precedes
tout(precedes s0 precedes tstartQ precedes

L

or ') precedes ru precedes sackQ precedes pci1' 'y

or
'rack() precedes su precedes s1 precedes tstart] precedes
('toutl precedes s! precedes tstarti precedes

tout! precedes sl precedes tstartl precedes

or 'rl precedes ru precedes sackl precedes pc10' ') *

195 (6.52)

The behaviour constructed in (5.84) of chapter 5 satisfies the partial Constraint
(6.52):
S = rackO.su.sl.tstartl.(toutl.sl.tstartl.L1 + rl.ru.sack1.S10)
+
rackl.su.sO.tstartQ. (toutQ.s0.tstart0.LO + rO.ru.sack(.S11")
(6.53)
where
LO = toutQ.s0.tstartQ
L1=toutl.s1.tstartl
S10" = rack1.su.s0.tstart0.(tout0.s0.tstart0.LO + rQ.ru.sack0.S11")
S11' = rackO.su.s1.tstartl.(toutl.sl.tstartl.L.1 + rl.ru.sack 1.S1()")
6.52) ==>
"‘'rackl precedes su precedes s(precedes tstart() precedes
('toutQ precedes s() precedes tstart() precedes
toutC precedes sO precedes tstart() precedes
o)
or
rack1 precedes su precedes s0 precedes tstart() precedes
10 precedes ru precedes sackQ precedes rack(precedes su
precedes sl..." " (6.54)
where both constraint terms within the parenthesis will eventually occur in a fair E.
Ignoring intermediate actions in both terms of the constraint:
(6.54) ==>

"‘'rack1 precedes s0 precedes sl precedes rackl' " (6.56)

Applying the message number extraction function m 1o both parts of the constraint

we get the message sequence:. 4196

mrackl,msO,ms1',;mrl’... | (6.57)

In the sequence (6.57) mrack11 refers to the reception of an acknowledgement to
a message with sequence number 1, preceding the sending of the message ms0, with
sequence number (. The message msl’ refers to the sending of the next message with
sequence number 1, which follows the sending of the message with sequence number 0.

(6.56) and (6.57) ==>

" not ('sO precedes rackl')" is always true.

Similarly, " not ('s1 precedes rack(')" is always true.

And therefore, property (6.51) is proved.

[end of proof]

2. Proof of Safety Invariant 6.2
" ') precedes sackQ"™
and
" 'rl precedes sackl' "

Proof:

Again, ignoring intermediate actions from both terms of the partial constraint
(6.51) we get:

"' or 's0 precedes 10’ " ==>

"t

sQ precedes r)' " is always true.

Similarly, " 'st precedes r1' " is always true. Therefore, proposition (6.2) is
verified.

[end of proof]

3. Proof of Safety Invariant 6.3

L1}

$s0 precedes r{) precedes s1' “ is always true

197

Proof:

Ignoring intermediate terms not of interest the partial constraint (6.51):
==>

"

s0' or 'sQ precedes r precedes s1' " is always true

" 's0 precedes 10 precedes s1' " is always true
(6.58)
Applying the message extraction function m to the partial constraint (6.54) we
get:
msO(input), mrQ(output),ms1(input),... (6.59)
the sequence (6.59) ==> minput = moutput + 1

Therefore, proposition 6.3 is proved.

[end of proof]

4. Proof of Safety Invariant 6.4

“The output sequence of messages is at all times an initial sub-sequence of the
input sequence”

Proof:

Ignoring intermediate terms not of interest in the Partial Constraint (6.51) we
obtain the constraint:

“'us precedes ur' ",

applying the function m we get the sequence:

m(su(1)),m(ru(1)),m(su(2)),

The input sequence is: m(su(1)),m(su(2)),

198

The output sequence is: m(ru(1))... where m(ru(1))=m(su(1))

Therefore, the output sequence is always an initial sub-sequence of the input
sequence.

[end of proof]

Liveness

The liveness property:

Liveness Invariant 6.5

"Each message input into the system is eventually output”

is proved in the following.

The proof will be made in two parts:
(i) A message that is input is eventually output
(ii) A message that is output was previously input.
Proof of Liveness Invariant 6.5
The Partial Constraint (6.51) can re-written as:
' 'rackl precedes su precedes sO precedes tstartO precedes
({ "toutl) precedes s0 precedes tstart0 precedes tout'}*
or
Q) precedes ru precedes sackQ precedes rackQ precedes su

precedes sl... precedes rack1')" (6.60)

The asterisked curly bracketed constraint in the expression is a notational
shorthand to denote the fact that the system may loop through that sequence any number of

times.

199

Since E is fair, either term within the parenthesis will eventually occur. That
means if the curly bracketed term occurs now, then the other will eventually occur in the
future and vice versa.

Therefore, (6.60) ==>

" ‘rackl precedes su precedes s0 precedes tstartO precedes

({ 'tout0 precedes sO precedes tstart) precedes tout()'} *

precedes r0 precedes ru precedes sack0 precedes rackQ precedes su
precedes sl... precedes rack1’)" (6.61)

This implies that that the curly bracketed term in (6.61) will occur 0 to n times
before the action r) occurs.

Therefore (6.61) ==>

" 'us precedes s0 precedes r(} precedes ur' " is eventually true (6.62)
(i) Therefore applying the function m on (6.62), for a given message 'm':
msu(input),ms0,mr0, mru(output),...
is eventually true (6.63)
Therefore, msu(input) = mru(output).
Therefore, a message that is input is eventually output.
(ii) Suppose, we are given a message 'm' output via the action 'ur', Since, from
(6.56) the strong constraint (6.62) is eventually true,
==>(6.63) (was already) is true for the same message,
==>mr0 (was already) is true for the same message,

==>ms0 (was already) is true for the same message,

therefore, the output message is the same as the one input by the action su.

A similar proof can be made for messages with sequence number 1

200

Noie that it can be shown that there do not exist any branches within the two
alternative paths which wiil eventually occur in system behaviour. This is due to the
precedence constraints determining the sequence of events.

Therefore, the liveness Invariant 6.5 is proved.

[end of proof]

201

Chapter 7

CONCLUSIONS

This monograph is about the design and formal specification of distributed
systems. The OSI Basic Reference model architecture is the source of most of the ideas
and notions of protocols and distributed systems which have been analysed in the partial

constraint design methodology developed in this treatise.

The motivation for this thesis emerged from complexity issues in the process
algebraic design and specification of protocols and distributed systems. Protocol and
distributed system behaviour is complex. Specifications of systemy behaviour in the
currently available process algebras CCS, CSP,ACP and the standard FDDT LOTOS prove
to be extremely complex to comprehend|{3},[4],{5]. This makes behaviour analysis of
process algebraically described systems difficult. Attempts at validating the swrvice
provided by OSI protocols in particular and distributed system in general proves to result
in combinatoric complexity. Using Bisimulation equivalence as a tool for verification has
yet to overcome the hurdle of undecidability. This is due to the np-completeness of any
procedure designed to show the equivalence of two algebraic processes with infinite

behaviours , infinite recursions and infinite values of data.

Decidability therefore imposes the neccessity of developing design methodologies
for distributed system specification which generate piece-wise complete Transition
Systems such as FSTs. This then was the motivation for developing the partial constraint

methodology.

202

The partial constraint methodology allows the designer to design and specify
communication protocols and distributed systems and the services provided by them, in a
simple picce-wise user-friendly manner. Use of partial constraint design methodology
results in partial specifications which encapsulate only a subset of system behaviour
requirements. The choice of requirements chosen for specification remain the designer's
choice. Presumably, " - designer will choose those requirements which are of primary
interest in the tasks of validation and verification of specifications Partial specifications

generate FSTs.

The first objectives of this thesis is to contribute by relating design objectives to
design methodology for protocols and distributed systems behaviour. To characterise the
essential features of distributed system behaviour, anc provide a uniform framework of

interpretation of existing behaviour models of distributed systems.

Chapter | characterises non-determinacy, concurrency and communications -
essertial features of distributed system behaviour. Chapter 2 identifies attributes which
would make a behaviour model suitable for the formal specification of distributed systems.
Existing behaviour models are interpreted uniformly as simulations of heterogenous

algebras in chapter 3.

The second objective of the thesis is to contribute by formally defining the notion

of partial constraints for use as design and specification tools.

In chapter 4, the new and original notion of partial constraints is introduced and
formally defined. The relationship between events of a communication environment are
formally defined in terms of the basic notions of distributed behaviour: non-determinism

and communications. lustrative examples show how simple partial constraints can

203

_

capture distribuied behaviour - structure it and transform it into process algebraic

specifications.

The third objective of this thesis is to contribute by developing a methodology for

obtaining proces algebraic service specifications from protocol specifications.

Guidelines for the construction of constraints for protocol entities and the
underlying service are given in Chapter 4. Mapping the partial constraints to partial process
algebraic specifications, and then parallel composing three entities yields specification of

the service

The fourth objective of this thesis is to contribute by showing how partial
constraints can be used to validate specifications in the design-to-specification phase of the

development trajectory.

The partial constraint design methodology is elaborated in chapter S with the
formulation of process algebraic formulae for the specification, validation and verification
of distributed system behaviour. The classic example of the Alternating Bit protocol is

used as an example of a real protocol to illustrate the design methodology.

The fourth objective of this thesis is to contribute by showing how partial
constraints can be used to verify specification in the design-to-specification phase of the

development trajectory.

The essence of the partial constraint methodology is encapsulated by chapter 6. In
this chapter the complextiy of validation and verification is identified and a validation
procedure is elaborated. The validation procedure is applied to the connection

establishment phase of the OSI transport protocol (class 0).

204

A veritication procedure based on the classic Floyd-Hoare inductive assertion

technique is also formulated in chapter 6. The Alternating Bit protocol is then verified for

some s (fety and liveness properties by the application of this procedure.

The partial constraint method restricts the designer to use the basic structures
permitted by partial constraints. However, the advantage is that the specifications can be
developed partially and proved to be correct independant of future incremental extensions

to the specifications.

Future work

Future extensions to this work will be an attempt to allow a more flexible
structure of partial constraints, which is consistent with the basic partial constraint
structure. It is hoped that structural extension of partial constraints will allow for proving

more flexible, freer and hence more complex process algebraic specifications correct.

Another logical extension to the partial constraint method of design would be to
develop the method for modularly extending partial constraint specifications such that

complete specifications can be treated for verification analyses.

Another extension which is more logical and practical is the development of a test
specification architecture for specifying and testing distributed systems, wvith tools to

support distributed system development activities.

References

{1] R. Ahooja, J. Burmeister, J. de Meer and Axel Rennoch, " Open Systems Testing, a
method, a language and a tool", proceedings of the second IWPTS conference held
in Berlin, W. Germany, October 1989.

[2] A.V. Aho, J.E. Hopcroft, J.D. Ullman, "The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974.

[3] R. Ahooja, "Towards Verification of Communication Pro.ocol Specifications in
LOTOS", Canadian Conference on Electrical and Computer Engincering,
Vancouver, Canada, 1989.

[4] R.Ahooja, "Comparing Normal Forms in LOTOS and ESTELLE Specifications”, 6th
IFIP WS on Protocol Specification, Testing and Verification, Montreal, June, 1986,
North-Holland, 1987.

(5] R. Ahooja and J. deMeer, "Protocol Validation Using Process Algebraic Guarder!
Recursive Equations”, Proceedings of the COMNET '90, Budapest, Hungary, May
1990.

[6] K.A.Bartlett, R.A. Scantlebury, and P.T. Wilkinson, "A notc on reliable full-duplex
transmission over half-duplex links,"CACM,vol. 12, No. 5 1969.

[7] J.A.Bergstra, J.W.Klop, "Process Algebra: Specification and Verification in
Bisimulation Semantics”, in CWI Monographs 4, North Holland 1986, pp. 61-94.

[8] J.A. Bergstra, J.W. Klop, " Verification of an alternating bit protocol” by means of
process algebra”, Report CS-R8404, March 1984, Department of Computer Science,
Centre for Mathematics and Computer Science, (CWI), NL.

[9] G.V. Bochmann, "A General Transition Model for Protocols and Communication
Services", IEEE Transactionson on Communications, VOL. COM-28, No. 4, April
1980.

211

————-r

[10]) T. Bolognesi, E. Brinksma, "Introduction to the ISO Specification Language
LOTOS", Computer Networks and ISDN Systems, Vol/ 14, No. 1, 1987, pp. 25-
59.

{11} G. Bochmann and C. Sunshine, "Formal methods in communication protocol
design”, IEEE Trans. Commun. vol. COM-28,pps. 624-631, Apr. 1980.

j12} T. Bolognesi, S A. Smolka, "Fundamental results for the Verification of
Observational Equivalence: a Survey”, Seventh IFIP international meeting on
Protocol Specification, Testing and Verification, Zurich, May 5-8, 1987, (North-
Holland 1988).

[13] M. Broy, "Specification and top down design and distributed systems", (invited
talk), In H. Ehrig et al. (eds.) Formal Methods and Software Development, Lecture
Notes in Computer Science 186, Springer 1985.

[14] E. Brinksma, R. Alderden et al., "Formal Notions in Conformance Testing",
Proceedings of the 2nd International Workshop on Protocol Test Systems,

Berlin(West), Germany, October 3-6, 1989.

[15] E. Brinksma, L. Logrippo, et. al.,"The OSI Transport Service and its Formal
Description in LOTOS", COMNET 1985.

[16] R.M. Burstall, "Formal Descripticn of Program Structure and Semantics in First-
Order Logic", Machine Inteiligence (Vol. 5),New York: American Elsevier, 1970,
pp. 79-98.

[17] R.M. Burstall, "An Algebraic Description of Programs with Assertions, Verification
and Simulation", Proceedings of CACM on "Proving Assertions about Programs",
SIGPLAN Notices, 7(1), January 1972, pp. 7-14.

[18] P. Degano, U. Montanari "Distributed Systems, Partial Orderings of Events, and

Event Structures”, in Control Flow and Data Flow: Concepts of Distributed

212

Programming, M. Broy (ed) NATO ASI, Series Vol. F14, Springer-Verlag, Berlin,
1984.

[19] ISO/IEC JTC 1IN, "Formal Description of ISO 8072 in LOTOS", 1989.

[20] E.W. Dyjkstra, "Notes on Structured Programming", in O.J. Dahl, E'W. Dykstra,
C.A.R. Hoare, Structured Programming, Academic Press, New York, 1972, pp. 1-
82.

[21] E.W. Dyjkstra, "Guarded Commands, Non-Determinacy and Formal Derivation of
Programs”, in CACM 18, 19775, pps. 453-457.

[22] H. Ehrig, B. Mahr, "Fundamentals of Algebraic Specification 1 - Equations and
Initial Semantics”, EATCS Monographs on Theoretical Computer Science, Vol. 6,
W. Brauer, G. Rozenberg, A. Salomaa (eds.), Springer-Verlag, 1985.

[23] FDTs, "Formal Description Techniques", Proceedings of the First International
Conference on Formal Description Tecniques”, K.J. Turner (ed), Stirling, Scotland,
6-9 September, North-Holland, Amsterdam, 1989.

[24] ESTELLE, "The Formal Description Technique ESTELLE - Results of the
ESPRIT/SEDOS Project”, M. Diaz, J.P. Ansart, P. Azema, V. Chari (eds.), North-
Holland, Amsterdam, 1989.

[25] LOTOS, "The Formal Description Technique LOTOS - Resuits of the
ESPRIT/SEDOS Project”, P.H.J. van Eijk, C.A. Vissers, M. Diaz (eds.), North-
Holland, Amsterdam, 1989.

[26] CCITT, "Functional Specification and Description Language (SDL)",
Recommendation Z100-104, VIII Plenary assembly, Malaga-Torremolinos, 1984

[27] R. W. Floyd, "Assigning meanings to programs", Proceedings of Symposia in
Applied Mathematics XIX, pps 19-32, American Marthematical Society, 1967.

[28] J.B. Goodenough, S. L. Gerhart, "Toward a Theory of Test Data Selection”, IEEE
Transactions on Software Engineering, Vol. SE-1, No. 2, June 1975.

213

129} J.A. Goguen, J.W. Thatcher et al., "Initial Algebra Semantics and Continiuos
Algebras”, JACM 24, 1, pp. 68-95.

130} J.V. Guttag, E. Horowitz et al., "Abstract Data Types and Software Validation",
CACM, Vol. 21, No. 12, December 1978.

[31] B.T. Hailpern, "Verifying Concurrent Processes Using Temporal Logic", in Lecture
Notes in Computer Science, No. 129, G. Goos and J. Hartmanis (eds), Springer-
Verlag, Berlin, Germany i982.

[32] P. B. Hansen, "Testing Multiprogramming Systerus”, Software Practice and
Experience, April-June 1973,3, pp. 145-150.

[33]) E.C.R. Hehner, L.E. Gupta, A. J. Malton, "Predicative Methodology", in Nato ASI
Series, Vol. F36, Logic of programming and Calculi of Discrete Design, ed. M.
Broy, Springer-verlag, Berlin, Heidelberg 1987.

i24] M. Herlihy, B. Liskov, "A Value Transmission Method for Abstract Data Types",
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4,
October 1982,pp. 527-551.

[35] C.A.R. Hoare, "Communicating Sequential Processes", Prentice-Hall International,
Englewood Cliffs, New Jersey, U.S.A., 1985.

[36] C.A.R. Hoare, "An Axiomatic basis for Computer Programming", CACM 12,(10),
Oct. 1969, pps. 576-580,583.

[37] W.E. Howden, "Algebraic Program Testing", Acta Informatica, Vol. 10,1978,

[38] J.E. Hopcroft, J.D. ULLman, "Introduction to Automata Theory, Languages, and
Computation”, Addison-Wesley, Reading, Mass., 1979.

[391 G.E. Hughes, M. J. Cresswell, "An introduction to Modal Logic", Methuen and Co.
Ltd., London, 1968. Distributed in the United States by Harper and Row.

140] 1SO/157498, International standards Organisation, Open Systems Interconnections -
Basic reference model 1988.

214

[41]) ISO/IS8073, Intemational standards Organisation, Open Systems Interconnections -
Connection oriented transport protocol specification 1988.

[42] 1SO/IS8072, International standards Organisation, Open Systems Interconnections -
Transport Service definition 1988.

[43] ISO/1S8807, International standards Organisation, Open Systems Interconnections -
"LOTOS - A Formal Description Technique based on the Tem|poral ordering of
Observational behaviour” - 1988.

[44] B. Jonsson J. Parrow, "Deciding Bisimulation Equivalence for a class of Non-Finite-
State Programs.” In Proceedings of the Sixth Annual Symposium on Theoretical
Aspects of Computer Science, 1989. Lecture Notes in Computer Science 349, pp.
421-433. Springer-Verlag, Berlin 1989

[45] J. de Meer, "Introduction t the Formal Description Technique LOTOS", in
proceedings of the International Congress on Terminology and Knowledge
Engineering, H. Czap, C. Galinski (ed)s), Indeks Verlag, Frankfurt, W. Germany.

[46] J. de Meer, K. P. Hasler,"OSI Transport Service considered as an Abstract Data
Type", 1985, internal report, Hahn-Meitner Institute, Berlin GmBh.

[47] J. de Meer, "Derivation and Validation of Test Scenarios based on the Formal
Specification Language LOTOS", 6th IFIP WS on Protocol Specification, Testing
and Verification, Montreal, June, 1986, North-Holland, 1987.

[48] L. Lamport, ""Sometime” is Sometimes Not "Never": On the temporal logic of
programs”, Seventh Annual ACM Symposium on Principles of Programming
Languages, Las Vegas, Nevada, Jan 1980, pp. 174-185.

[49] L. Lamport, "Basic Concepts", in Distributed Systems, Lecture Notes in Computer

Science, No. 190, M. Paul, H.J. Siegert (eds.), 1985, pp. 19-30

215

150} L. Lamport, F.B. Schneider, "Formal Foundation for Specification and Verification",
in Lecture Notes in Computer Science, No. 190, "Distributed Systems”, G. Goos
and J. Hartmanis (eds), Springer-Verlag, Berlin, Germany 1985,

[S1) J.D. Lipson, "Elements of Algebra and Algebraic Computing", Addison-Wesley
Publishing Company, Reading Massachussetts, 1981.

{52} Z. Manna, ""Properties of programs and the First-Order Predicate Calculus”, JACM,
16(2), 1969, pp. 244-255.

[53] Z. Manna, "Mathematical Theory of Computation”, New York: McGraw-Hill. 1974.

[54] Z. Manna, A. Pneuli, "Axiomatic approach to total correctness of programs”, Acta
Informatica, 3 pps 243-263, 1974.

[55] R. Milner, "A Calculus of Communicating Systems", Lecture Notes in Computer
Science No. 92, G. Goos, J. Hartmanis (eds), 1980.

|156) R. Milner, "The Calculus CCS And Its Evaluation Rules", in Control Flow and Data
Flow: Concepts of Distributed Programming, M. Broy (ed) NATO ASI, Series Vol.
F14, Springer-Verlag, Berlin, 1984.

[57] R. Milner, "Fully abstract models of typed lambda-calculi”, Thoretical Computer
Science, 4, 1(Feb. 1977), pp 1-2°

[58] R. Milner, "Calculi for Synchrony and Asynchrony” Th. Computer Science, 25,
1983, pp. 267-310.

[59] J.H. Morris, B. Wegbreit, "Program verification by subgoal induction”, in Current
Trends in Programming methodology, R.T. Yeh (ed), Vol. II, 1977, pp.197-227.

[60] E. Najm, "A verification oriented specification in LOTOS of the Transport Protocol",
Seventh IFIP international meeting on Protocol Specification, Testing and
Verification, Zurich,May5-8,1987 (North-Holland 1988).

[61] R. De Nicola, M.C.B. Hennesy, "Testing Equivalences for Processes", Th. Comp.
Sc. 34, 1984, pp. 83-133.

216

[62]) S.S. Owicki, D. Gries, "Verifying properties of parallel programs: An axiomatic
approach”, Comm. of the ACM, 19 (5), pps 279-285, May 1976.

[63] D.L. Parnas, "On the Criteria to be Used in Decomposing Systems into Modules",
CACM, Vol. 15, No. 12, Dec. 1972, pp.1053-1058

{64] D. L. Parnas, "Designing Software for Ease of Extension and Contraction”, in
Proceedings of the third International Conference on Software Engineering, IEEE-
ACM, May 1978, pps. 264-277.

[65] ISO/IEC JTC 1N, "Formal Description of ISO 8073 in LOTOS", 1990.

[66] C.A. Petri, "Concepts of Net Theory”, Mathematical Foundations of Computer
Science: Proceedings of Symposium and Summer School, High Tatras, Sept. 1973,
Mathematical Institute of the Slovak Academy of Sciences, Bratislava, 1973, pp.
137-146.

[67] A. Pneuli, "The Temporal logic of programs”, The 18th Annual Symposium on
Foundations of Computer Science(providence, Rhode Island), pp. 46-57, IEEE,
October, 1977.

[68] C.V. Ramamoorthy, S.F. Ho, "Testing Large Software with Automated Software
Evaluation Systems", in Current Trends in Programming methodology, R.T. Yeh
(ed), Vol. I1, 1977, pp.112-150.

[69] L. Robinson, K. Levitt, "Proof Techniques For Hierarchically Structured Programs”,
in Current Trends in Programming methodology, R.T. Yeh (ed), Vol. 11, 1977,
pp.173-196.

[70] S. Schindler., U.Flasche, and D. Altenkruger, The OSA project: Formal specification
of the ISO transport service, " Proceedings of the Computer Networking
Symposium, National Bureau of Standards (USA), December 198().

[71} G. Scollo, C.A. Vissers, A. Di Stefano, "LOTOS in Practice”, Proc. IFIP 86, 10th
World Congress, Dublin, Ireland, Sept. 1986,(North-Holland 1986) pp. 869-875.

217

172] G. Scollo and V. Sinderen, "On the Architectural Design of the Formal Specification
of the Session Standards in LOTOS", in G. Bochmann, B. Sarikaya (eds.) Protocol
Specification, Testing, and Verification, V. North-Holland, 1986.

[73] N. Shiratori, H. Kaminaga et al., "A Verification Method for LOTOS Specifications
and its Application", 9th IFIP WS on Protocol Specification, Testing and
Verification, U of Twente, Enschede, NL, June 1989.

[74] N.V. Stenning, "A data transfer protocol”, Comput. Networks, vol. 1, pp 99-
110,Sept. 1976.

[75] C.A. Sunshine, "Formal modelling of communication protocols," in Computer
Networks and Simulation, S. Shoemaker (ed.), North-Holland, 1982.

[76] C. Sunshine, "Four automated verification systems", 2nd IFIP WS on Protocol
Specification, Testing and Verification, New York, North-Holland, 1982.

[77] C.A. Sunshine et al, " Specification and Verification of Communication protocols in
AFFIRM using state transition models”,in IEEE Transactions on Software
Engineering, Vol. SE-8, No. 5, September 1982,

[78] J.W. Thatcher, E.G. Wagner et al., "Data Type Specification: Parameterization and
the Power of Specification Techniques”, ACM Transactions on Programming
Languages and Systems, Vol. 4, No. 4, October 1982, pp. 711-732.

[79] A.J. Tocher, OSI Transport Service: A Constraint-Oriented Specification in Extended
LOTOS, (ESPRIT/SEDOS/41), Nov. 85.

{801 C. A. Vissers and L. Logrippo, "The Importance of the Service Concept in the
Design of Data Communications Protocols"”, in Protocol Specification, Testing, and
Verification, V, M. Diaz (ed.) North-Holland, 1986.

{811 C.A. Vissers, G. Scollo, M. V. Sinderen, "Architecture and Specification Style in

Formal Descriptions of Distributed Systems”, Invited paper, Eighth IFIP

218

international meeting on Protocol Specification, Testing and Verification, Atlantic
City, June 7-10,1988.

[82] C.A. Vissers, G. Scolio, M. V. Sinderen, "Architecture and Specification Style in
Formal Descriptions of Distributed Systems”, Revised version - unpublished.

[{83] W.A. Wulf, R.L. London et al., "Abstraction and Verification in Alphard”, In New
Directions in Algorithmic Languages-1975, S.A. Schuman (ed), IRIA, 1976.

[84] R.T. Yeh, "Verification of programs by predicate transformations”, in Current
Trends in Programming methodology, R.T. Yeh (ed), Vol. 11, 1977, pp.197-227.

[85] P. Zaforopulo et. al., "Protocol analysis and synthesis using a state transition
model," in Compauter Networks and Protocols, P.E. Green, Ed. New York: Plenum,
1983, pp. 645-670.

[86] J.R. Zhao, G. Bochmann, "Reduced Reachability Analysis of Communication
Protocols”, 6th IFIP IWS on Protocol specification, Testing and Verification,
Montreal, June, 1986, North-Holland, 1987.

[87] H. Zimmermann, "OSI Reference Model, The ISO Model of Architecture for Open
Systms Interconnections”, IEEE Transactions on Comm. Vol. COM-28, n4, April,

1980, pp. 425-432.

219

