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ABSTRACT

The Forcing Relationship

for Maps of the Interval

Mai Chinh

The structures of Stéfan cycles discovered in 1977 [11] lead Misiurewicz, Block,
Hart, Baldwin, etc. (6, 7, 8] to a concept of ordering on patterns of orbits of one-

dimentional interval maps, called forcing (—).

This thesis introduces — as a partial ordering, studies Stéfan cycles along with

their minimality and discusses an algorithm which verifies the relationship —.

Finally, some results of orbits of block structures are exposed under the viewpoint

of —.
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Chapter 1

SARKOVSKII'S THEOREM

(STRATIFICATION OF ORBITS IN SIZES)

1.1  Introduction

In this chapter, we shall introduce a remarkable theorem which was proved by
Sarkovskii in 1964 This beautiful result classifies fanulies of maps i CP%R) by
arranging them in a certain order We are provided with some stiong conclusions

about a map (on R) by just assuming continuity

Definition 1.1 (Orbit of a map) By an orhit of size n of a map f. we mean a set
of ponts

X={a1<r< <z,}

in which f permautes all points of X, cyclically.

Notes:

1) If f has an orbit of size n then we say that f has a point of peniod n or viee
versa. Moreover, a fired pontis a point of period 1.
i1) We also denote
F(n) = {f € CO%{R)/[ has a point of period n}

m) From now on. we will always assume the continmty of f



1.2 Statement of Sarkovskii's theorem
F(3) C F(5) C F(1) C F(9) C -
. C F(2-3) C F(2-5) C
. C F(2*-3) c F2*-5) C
S CF2) C FE) C oo € AP C F(2) € FQ)

thus F(1) is the largest family and F(3) is contained in all. In other words, if

f € F(3) then f € F(n)foralln

As a starting point we are going to discuss this statement which is proved by Li

and Yorke {1] in 1976, independently of Sarkovskii.

1.3 Propositions

Proposition 1.1 (due to Li and Yorke) If f has a pont of period 3 then f has

posnts of all other persods.

In order to prove this proposition, iet us look at the following two lemmas.

Lemma 1.1 If J C f(J) where J ss a closed snterval then f has a fired posnt sn J.

Proof: Geometrically speaking, in figure 1.1, if J C f(J) then the graph of f

must cross the line ! at some point £ € J which is a fixed point.




Figure 1.1

Analytically, we can say that
If J = [a.b]and J C f(J) then there exists ¢,d € [a, 8] such that
a<c<d<b
and f(c¢)=a, fd)y=05b
therefore by the Intermediate Value Theorem

I eled] 2 f(§)=¢

Thus f has a fixed point £ in J. QED.

Lemma 1.2 IfJo, J1,, J2, ..., Ja 15 a sequence of closed sntervals such that f(.J,) D
Jiy1, then there exists a closed wnterval I C Jo such that
M) C Jyk=12,...,n-1

and Iy = Ja.

Proof: Using induction:




Step 1. The lemma is obviously true when n = 0.
Step 2. Assume now that it is true for n. Then in the case n+ 1, we can find a closed
interval I C Jy such that
ffd)y ¢ M, k=12,...,n-1
and Ay = J,
Since Jasr C J(J0) = ()
thus we can find a closed interval I' C [ such that
St = [UT)
and b M) o MY, k=1, n

Therefore we get our conclusion. Q.ED.

With these two lemmas, we can now prove Proposition 1.1.
Proof of Proposstion 1.1: Let {a < b < ¢} be an orbit of size 3 of f

There are only two possibilities:

Case 1: f(a)=b, f(b)=¢c, f(c)=a

RN

Case 22 f(a)=c, f(c)=0b, f(b)=a

N

a\/;\/;




Consider case 1, let | = [a,b] and J = [b, ¢]
then J C f(I)and JU f(J)
Look at the sequence I, J,J,...,J, 1.
\_V-""
n-1 times
By lemma 1.2, we can find a closed interval K C I such that f*(K)=1D K.
By lemma 1.1, there exists a fixed point z € K ¢ f".
Moreover, since f*(z) € J and Jn I = {b},
therefore {f'(z): $=1,2,...,n} is set of different points.

Hence f has a point of period n.

Similarly in case 2 which is "symmetric” with case 1, we also get the same con-

clusion. Q.ED.

We now introduce the concept of a Markov graph which will be used in our

subsequent discussion.

Definition 1.2 (Markov graph) By a Markov gvaph of @ map on pownts
{p1,.-.,Pns1} we mean a durected graph whose vertices are ntervals I, = [p,, piy1]

along with a~rows — defined by:

L= 1 iff f(L)D I,
Notes:

1) Using the result of the previous two lemmas, we can say that in a Markov graph
of f, if we have a (directed) loop of n arrows

5



then we hiave a fixed point of f*: f*(§) = €.

Moreover if the set of n points {f'(£), i =1,2,...,n} are all different then we
say that f has an orbit of size n.

it) Also note that f f™(1;) D I,, then there exists a path of length m from /, to

I,

1.4 Proof of Sarkovskii's Theorem

We present the proof in 8 -ieps. Steps 1 and 2 are valid for any n. Steps 3, 4,
and 5 deal with odd values of n. Finally steps 6, 7, and & complete the proof with
the case where n is even.

Step 1. Suppose f has an orbit of size n

X = {I1<.T2<...<l'n}

Since f(r,) < T,, we can pick the largest 1 such that

f(xl) > and f(‘rl-f-l) < i1

’/'(xiﬂ}
/ £lx;)
+ -© .
x; z X ;.4

Figure 1 2

6




Let I) = [r,, z,41], then figure 1.2 gives us Iy C f([})

By lemma 1.1 there exists a fixed point z € [;.

Step 2:
Claym: In the Markov graph of f, there is a path from I, to every subinterval (vertex)

Ii.

Proof: Let Iy =[xk, Tk 1]

*; Xisl *k Ty

K1 > I; then 3m 3 f™(z,) = 7441
Since f™(z) = z therefore I} C f™(1).
Similarly if I; < I then
Im' 3 fM(h) DI (f™(3u1) = 04)
By note (ii) following the definition of Markov graph, the proof is com-

plete.

Case n is odd:

Step 8: i n > 1 is odd, then there exists a number k such thay I, C f(1;)



(Thus in the Markov graph we can find a loop

Proof (Step 8): Consider the fixed point 2.
After one iteration of f, if every point x, switches sides about z, then z
must have an equal number of points z,’s at both sides, hence X has an
even number of points which contradicts our assumption.
Therefore there must be some point whose image under f is on the same
side of 2.
Moreover we know that z,,z,,y switch sides about z. Therefore we can
find 3,441 whose images are on both sides of z.

= 5L C f(&)

Consider the loop in the Markov graph of f

then we can pick the smallest loop (i.e. no inner loop) such that all




vertices are different.

Step 4: Il n is the smallest odd integer such that f € F(n) then k =n ~ 1.

Proof: Suppose that k < n — 1 then one of the loops
Lo, —» .. . =L -5L-1

or Lo —-. .- L-1
will provide a fixed point of f™ where m is odd, m < n.
Also that point must have odd period m (< n) under f (since I,'s consist
of only z,’s in common) which contradicts the assumption.
Therefore k=n-1
Moreover the above argument also shows us that in the Markov graph

there must be no short-cuts (see figure 1.3).

Figure 1.3

QED.
Step 5: Analyzing the type of orbit X (in step 4),
vie have Iy U I C f(I;) since there is no short-cut Thus there are only two

9



situations

or

b3 i+ i+

For the first situation we can see that f(/;) contains /3 and nothing else. This
implies that
f(xl—l) = &2

where I; = [Zis1, Tig2)

In-l = [11)3“2]

i with f(z1) =z, and f(:l:g)::v,,

We then can construct the type of orbit of X as follows:

10



Figure 1.4

along with its Markov graph.
Il
n-1 2

.
N/

(There are arrows from I,y to every I,, j odd)

Similarly for the second situation, the type of X locks almost alike with the order

reversed. On the other hand, X has the same Markov graph.

Now by using the Markov graph, we can see that there exist loops of length
k > n— 1, for any given k (by repeating I;). Also there are loops of even length

< n — 1 by considering arrows from I,_;.

11



In other words. we have proved that

F(3) C F(5) C F(71) C - C {F(even)}

Remarks:

i) We have shown that if the orbit X is of smallest odd size n then its Markov
graph has a certain structure and has only two possible forms.

These types of orbit X are called Stéfan cyclesand will be studied more carefully

in chapter 3.

ii) As a corollary, if X with odd size n is not of Stéfan type then we must have an

orbit of size n — 2.

Case n 18 even:
For the case of even n 1n steps 6, 7, and 8, we will borrow the concept of separated
orbst of order r which will be introduced in chapter 3.

Step 6:

Clasm: Suppose f has only points of even periods then every orbit X is separated

by a fixed point of f.

Proof: Recall in step 1, there exists an interval I, such that I, C f(I;)
and also there exists a fixed point z € I;.

Regarding that point z, if not all points switch sides around z (after one
iteration) then there must be an interval /; such that

L C f(Iy)

12
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However in step 2, we have concluded that there exists a loop

11—-*12-*...—*1;—,11 —011
Nemncmg— puro—

as many times as we want
In other words this loop coniradicts our assumption that f has only even

periods. Equivalently, all points z,’s switch around z.

- Y —_— A
Z
x’ xl._ xi'l'] xn
And thus X is separated of order 1 by 2. Q.E.D.

As a consequence, we have the following result:

Corollary 1.1 If f has any posnt of even period then f has a point of pertod 2.

Proof: In fact, if all periodic points of f are of even size then we have the conclusion

as above. Otherwise we have the proof of case n odd. Q.E.D.

Step 7 (Order on F(2™q), with q odd):

Proposition 1.2 If all orbits are of even size | X |= 2°q (9 odd > 1) then each of
them 1s separated of crder r by a periodic pownt of period 271, Also, f has a pownt of

persod 2.

13



Proof: We will use induction on .

1) r = 1is verified by step 6 and its corollary.
ii) Assume that it is true for 7.
Now for r + 1, each orbit X is separated of order 1,
X = 5U5,
and f? reduced on S, and S, satisfies the assumption, i.e. f? separates S, and
S, of order r — 1. Also f? has a point of period 2°.
Thus f separates X of order r and f has a point of period 2"*+1.

( Note: This type of orbit is of another Stéfan form.) Q.ED.
Step &:

Proposition 1.3 If f has a point of period 2™ then f has also a posnt of period 2!,

withl <m
Proof: The statement would be true if we show that
If f has period 2™ then f has period 2™}

We will use induction on m.

Suppose m > 2, then consider g = f2"~°

= g has a point of even period

By corollary 1.1 in step 6,

=> g has a point of period 2

14



which we can see is a point of period 2™~! of f.

Thus in this step, we have proved
LRy C Ferh o - € F(Q C A

which completes the proof of Sarkovskii's theorem. QED.

Note: For convenience, we also write the Sarkovskii's ordering as following

3p56...2-3v2-5p2"p ... 1

15



Chapter 2

FORCING ON CYCLES

(STRATIFICATION OF ORBITS IN PATTERNS)

2.1 Introduction

In this and following chapters, we will continue to study orbits of maps in C(R)
where their structures are taken into account. This new viewpoint creates certain
ordering on the orbits and is more complicated in the sense that we do not have

generally a relationship among orbits.

Some concepts such as cycles and forcing are basic ones and will be regarded

carefully.

2.2 Forcing on cycles

Definition 2.1 (Cycles) Let X = {¢, < x5 < ... <z,} be an orbst of a map f.
Letp= {1,2, . ,n} be a permutation on the set {1,2,...,n}.
Now sf we have

() =2, ffip(s) =

Then we call the set {1, p(1).p*(1),.. ,p"~Y(1)} sn this order a cycle of type p.
Notes:

1) Obviously, our notation now is on the hehaviour of the dynamics of X, ie. the




way it 1s arranged instead of its size, e.g.
{2y — 29— 3 — 1} and {£y — 13 — Iy — 11}
are different ones.
ii) Without loss of generality. from now on we mean rycle of type p every time we
mention orbit X.

iii) Denote by C, as the set of all cycles of size n then , has (n —1)! elements

Definition 2.2 (Forcing) Let p and q be cycles (which may be of different sizes).
We then say that p forces q, denoted by p — g if and only if for every continuous

map f € C(R), of f has cycle p then f has cycle q.

If we denote C as the set of all cycles, C = |JC,, then this concept of forcing

provides a binary relation which will be proved to be a partial ordering on (.

Moreover, by Sarkovskii's theorem, we know that each cycle p of size n must force

some cycle ¢ of suitable size m. Therefore — creates a network on C.

Our main target is to study the general picture of this network. What are 1ts
starting points as well as its end-points where — is regarded as a greater than

relation.

Definition 2.3 (Primitive map) Let p be a cycle of ssize n, p € €. The primtave
map of p, denoted by T, 1s a function 1n C(R) defined by
p(1) <1

T(x) = (pi+1)—p(i))e+ G+ 1)p(i)~ip(i +1) i <r<i+1

p(n) r2mn



In other words. T, 1s the precewnrse hnear map whach jon all the dots (i,p(s)) n

the ssmplest way.

Clearly 7, has p as a cycle and indeed is minimal (in the sense of the following

lemma)

Lemma 2.1 Let f € C(R) wsth cycle p, thus induces T,,.

If T, has g as a cycle, then [ also has cycle q.

Proof: Consider the simple case in figure 2.1.

A 4

7 2 3 k
Figure 2.1
Since f is continuous therefore
if I, C T(T,) then I, C f(I,) (1)

Now 1if 7, has cycle g, then the Markov graph of 7, must have a loop

Ly — 1, — ... — 1 — 1,
corresponds to g

1s




By (1), the Markov graph of f must also have this loop, i.e f also has cycle ¢

Q.ED.

Lemma 2.1 is a simple but critical result. It restricts our attention to primitive
maps in the study of —. These T,’s which have the same dynamics with respect
to forcing as any other f,'s, are nicely behaved maps whose monotonicity on each

interval Iz gives us some initial control.

2.3 Properties of —

Theorem 2.1 —+ 15 a partial ordering.

Proof:

1) Reflexitivity and transitivity are obvious from the definition of —.

ii) Antisymmetry: Suppose that p — g and ¢ — p. Now let f be a polynomial
which has an orbit of type p. Since each orbit must satisfy the equation f*(z) =
= which has only finitely many roots, we can see that f hasonly a finite number
of those orbits of type p. Pick arhit X = {21, #9,.. ,za} of stnallest diameter
Consider a modified function fy derived from f as follows:

19




ie., fo = fin[z1,2n)
~ illustrated constants outside [z, z,)
Now fo has an orbit of type p then it also has an orbit of type ¢:

Y = {ylny)"')yM}

and assume y; < 1 < ... < Y and [41,ym] C [21, 2}

Consider another function f, derived from fo as follows: fo is cut off by consider-

ing smaller intervals as when we squeeze fy from f.

1

l

v

&
Sl R
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Now f; has a cycle of type q. thus it also has a cycle of type p whose orbit is given
by

Xp= (e} <o 2}

n

Obviously,

[""Jl)x;n] C [y1~ym] C [-'131,:!7,.]

Moreover f; by construction, is identical with f in the interval [z}, ;] thus we

imply that f also has X as an orbit of type p.
However by minimality of X, we imply X, = X,. Therefore {z),z,] = [z}, 7).
Thus the endpoints y; ~ 7, and y,,, > z, and since fy = f in the intervals [z, 2,]) =

{¥1. Y], we imply that

thus P ~ q
and therefore our proof is complete. QED.

Notation: Let p€ C, be a cycle with primitive map 7,. Denote

z(max p) = # of locally maximum points of 7,
2(min p) = # of locally minimum points of 7,
z(p) = # of extreme points of 7,

If z(max p) = z(p) = 1 then we say that p is unsmodal

Theorem 2.2 Let p and g be two cycles such that p — q. Then

a) z{marp) > z(marq)



b) z(minp) > z(mungq)
and as a conseqrznce z(p) > z(q).

Proof: The proof is simple by merely using the graph in figure 2.2.

Figure 2.2

If p — g then 7, can be embedded as a piecewise linear map joining dots on

T,. From figure 2.2 we can see that between any two points which create a local

maximum point of Tp, there must be a local maximum point for 7y, i.e.
z(max p) > z(max q)
Smilarly for local minimum points we have
z(min p) > z(min q)
| Q.ED.

Geometrically this theorem tells us that if p — ¢ then T, must have a piece

whose shape “looks like” 7.




Thus the theorem gives us a way to rule out p — ¢ by looking at their variations.
Corollary 2.1 Unimodal maps can force only unsmodal ones.
Proof: By definitions and the above remaik.
Corollary 2.2 — 1s not totally ordering.

Proof: Consider the cycles (123) and (1432) in the figure below.

/
/

Then theorem 2.2 proves that neither of them forces the other.

However if we look at unimodal cycles only then — forms a linear ordering. This

is proved using the kneading theory [15]. QED.

Theorem 2.3 Let U be the set of all unymodal cycles. The (U, —) 13 a total order-

mng.

This theorem also gives us a fact that (U, —) has a largest element which can

be proved to be the cycle (1342). Also note that (1342) ¢ U.

23



2.4 An algorithm for —

This section presents a theorem due to SBaldwin [7] which is used to verify

whether p — ¢ or not.

Definition 2.4 (Balwin graph) A Balwin graph G, = (G, sgn) of a cycle p of size

n s defined as follows:

1) G 15 the Markov graph of p whose nodes are the set {1,2,...,n~1} and arrow
fromitoj f T, s +1]2 [5,7 +1].

1) sgn: G — {—1,1} 15 a function wrth

1 T, 1T wmli,i+ 1)
sgn(1) = i
-1 T, | wmfi,s+1]

Therefore Baldwin graph 1s merely Markov graph where monotonicity of the func-

tion (i.e. the primitive map) is considered.

Definition 2.5 (Closed walk) Let G, be a Balwin graph. A closed walk of length

K saloop(ay ~ay ~ ...~ ax ~ ay) = @ on the (directed) Markov graph of G,.

Definition 2.8 Let @ and b be two closed walk of same length K. Then we say that

(,:r[l(sgn(a,)) a < (,_l:ll(sgn(a,)) b,

where j 1s the least sateger such thata, # b,.

Note: < 15 then a total ordering on closed walks of the same length.

24




Definition 2.7 A shift-operation sh on closed walk (ay ~ a; ~.. —~ay) =a s

defined by
sh(&):(ag ~Gy T ..M, a‘)

s.e. sh(@) 1s the same loop whose first node ts the second one of a.

Definition 2.8 Let W be any (finste) collectson of m closed walks @ which ss closed

under sh (thus these walks are of same length).

The type of W, denoted by t(W), 1s a cycle q defined as follows:

a) Let ord: W — {1,2,...,m} be the unigue 1-1 onto order-preserving func-
tion, te., @< b 'f and Oﬂly tf Ord((_i) < or((B)_

b) Define g(i) = ord o sh o ord™'(i).

In other words, t(W) 1s a cycle q whose structure 1s defined by the shift-operation

on orders of the closed walks.

Definition 2.9 Let @ be a closed walk. Let W be the smallest set which contains @

and which s closed under sh. Then the type of @, defined by t(a) = t(W).

Note: We choose W to be smallest to prevent the situation where @ 1s a repetitive

loop.

Theorem 2.4 (Balwin’s Theorem) Let p € C, and g € Cy,. Thenp — g 3f and

only if esther p = q or for some closed walk @ of length m 1n Gy, t(a) = q.

The theorem then gives us a way to check if p — g¢.

25



ALGORITHM
Let p€ C, and g € Cp, with p # q.

Step 1: Construct the Balwin graph G, of p (by definition 2.4).
Step 2: Find all closed walks @ of length m from G,.

Step 3: For each g, construct t(a) (by definitions 2.7, 2.8, 2.9).

Thus the algorithm gives all cycles ¢' € Cp, such that p — ¢'.

Erample: Find all cycles of size 5 which are forced by (123).

Solutson: First of all by Sarkovskii's theorem, we know that there exists

such a cycle gq.

Balwin graph of (123)

.

Now there are only two relevant closed walks of size 5 (upto equivalent
modulo sh), namely (22121) and (21221). (Note that (22222) is repeti-
tive). We have

(12212) < (12122) < (22121) < (21212) < (21221)

26




therefore t(@) = (13425) with @ = (22121).

Similarly we aiso have t(3) = (13425) with b = (12222).
And since 4,5 are not equivalent (mod sh), this implies that there exist
only two distinct orbits of the same type (13425) which are forced by

(123).

However in practice even when p and g are of small sizes we still have to handle

a massive computation in order to determine whether p — g.

We now consider the end points of the chain — of the subnetwork on C given

by cycles of a given length m.

Definition 2.10 (Primary cycles) A cycle p of length n 15 said to be primary f
and only if p — q ymplies thatp = q for | p |=| q|, that 1s the only cycle of length

n which can be forced by a primary cycle of same size 15 stself.

We will see later that primary cycles in fact are the simplest ones in the sense of

Markov graph and have a certain structure.

It is also true that the primary cycles minimize a certain topological invariant
called the topologscal entropy [12, 13] which is usually considered to measure the

complexity of a given dynamical system.
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Chapter 3

SIMPLE AND STEFAN CYCLES

In this chapter, we will study cycles whose structures are arranged in a “nice” way.
These cycles have been referred to in the proof of Sarkovskii’s theorem in chapter 1.

Now we shall examine them in relation to the — ordering.

3.1 Definitions

Definition 3.1 (Block structure) Let X = {r; < 22 < ... < zn} be an orlst of
typep andY = {y) < y3 < ... < Ym} be an orbst of type q. We say that X has a

block structure over Y f and only sf

1) n=sm
1) We can write

X=Xx1UXU...UXn,
where Xy ={Tu41 < Tus2<... <38+ 8}

and p(X)=X, iff qoY))=Y;
In other words, the dynamics of X,’s under p are the same as of Y,’s under q.

Definition 3.2 (z-extension) Let z be a cycle. X s sasd to have a z-extension

over Y if

1) X has a block structure over Y,



1) p ts monotonic on all blocks X,’s except at exactly one k where

Notes:

i) For convenience, we shall also say that p is a z-extension of g.
ii) Extensions are not commutative, i.e., in general
z-extension of ¢ # g-extension of z.

as we can see in the following example.

Erample: Let z = (12) and ¢ = (123) then p; = z-extension of ¢ and p; = ¢-

extension of z are defined and graphed as follows:

3
12 34 56 W
n=
34 56 21 \
\
\
ﬂl
123 456
P =
456 231
4
R >




Note: Those p, and p; are not the only extensions from z, g as we will see in the

following theorem.
Lemma 3.1 Let z and q be two cycles of orders k and m respectsvely. Then

1) there are [(s — 1)!]™s™ "} cycles of order n = sm which has block structure
over q.

1) there are m - 2™ cycles which are z-estension of q.
Proof:

1) Let p be of block structure over g. Then each block (with ¢ points) of p has &'
ways to map to another block. However to make p into a cycle, the last block
has only (s — 1)t ways to go.

i1) Given z and g, there are m choices of the “special block” (which is not mono-
tonic), each of the others has 2 choices for monotonicity (either T or |). Also
the special block is determined by z and (m — 1) of others. Thus we have our

result. Q.E.D.

Note: The idea of block structure and z-extension is shared by Misiurewicz [8],

Baldwin (7], and Block [4].

Definition 3.3 (Separated orbit of order r) Let X = {z; < 2, < ... < 2.} be

an orbit,

1) We say that X s separated of order 1 1f n = 2m and X has a block structure
over cycle (12).
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11} Moreover we say that X s separated of order r sf X 1s separated of order 1

and each of the blocks X1 = {z1 < z:< ... < T} and X2 = {Tmy1 < Tmy2 <

... < T,} 85 separated of order r — 1 under f3.
Notes:

i) Obviously if X is separated of order r then 2"|n.
ii) By the proof of Sarkovskii's theorem, we can see that there exists a point of

period 2"~ which separates 2" blocks of X.

Definition 3.4 (Simple cycles) Let X be an orbst of f of s1ze n = 2"m, wsth m

odd. We say that X 1s of simple type f

s} X 1s separated of order r, and
1) We can write X = X, UX3U ... U X unth each X, contasns m posnts in
that order t. Moreover
X = {2(-yms1 < Tp-mi2 < -+ < T(i-1)m4m}
ss persodsc under f(*), usth an arrangement which looks like the one discussed

in step 5 of Sarkovskis’s theorem.

In 1983, Block and Hart [5] proved the following theorem.
Theorem A If f has a posnt of pertod n, then f must have a posnt of ssmple type

of pertod n.

Therefore from the view point of forcing we can see that every cycle of size n must
force a simple cycle of the same size. In other words, simple cycles are “smaller” in
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the subnetwork (Cn, —). We shall now examine those which are “smallest”.

Definition 3.5 (Stéfan cycles) An orbit X wsth sizen = 2"'m, wsthm odd 1s called

a Stéfan cycle of

1) X 1s separated of order r and
1) f 1s monotonsc on all blocks X,’s, except at exactly one block Xy, f*) 1s

ssmple of order 0.
Notes:

1) Stéfan cycles are obviously simple.
i) If n = 2" or n is odd, simple cycles are also Stéfan cycles.
iii) Stéfan cycles are r numbers of extensions of two-point cycles from a one-point

cycle and then an extension of at most one odd simple cycle.

In 1986, Block and Coppel proved a stronger theorem [6).
Theorem B If contsnous f has an orbst of ssze n then f has also a Stéfan orbit

cf the same ssze.

Ezamples: Cycles of order 6 (Stéfan and simple)
— ®
O—®
coc || l\ /]
\@* @

(153624 ) (163524)
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3.2 Minimality of Stéfan cycles

Theorem 3.1 A cycle p ss primary if and only sf st 1s Stéfan.

Proof:

a) (= ) Given p is primary then by theorem B, p must force a Stéfan cycle q of
the same size. By definition of primality, this implies that p is Stéfan.
b) (< ) Now suppose that p is a Stéfan cycle.

Case 1: H the size p = n with n odd, then recall in the proof of Sarkovskii's
theorem, the Markov graph of p has a certain structure, and the maximal
loop (closed walk) of length n is p itself. That is p cannot force any cycle
of the same length. (Note that in this case, we can also use the Balwin
Algorithm to show that p — ¢ then g ~ p, with ¢ of the same size )

Case 2: If |p| = n = 2™, lodd > 3, then consider the primitive map of
p: Tr =T,
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If |p| = n = 2™, then we can modify 7, as 7, by making the map expand

in one block

7 //\ -

A, g

}\ll

crucial blocks

We will show that 7, has no other orbit of size n, i.e. p forces no other

cycle.

Consider the following observations: Let X = {1 2.. . Ll 4+1142...} be

thecycle p. 'Y = {;1 <32 < ... < y.} be any orbit of _T_,, then

1) ¥'s are not integer.

11) y, cannot belong to those repelling intervals [kl, kl +1}. In other words
¥'s occur in blocks [1,1], [l + 1,2[],... only.

iil) In exactly -ne interval in the crucial block, 7, is expanding. In all
others, T, maps end points to end points, with length preserving, i.e.
in all other intervals, |z — y} = |T5(z) — Tp(y)l-

Therefore consider any interval [[y;], 3] with its inverse image _7—';", we

can see that

T,"lvlwl = [T, )T, ]

Z lvi). 0)

In other words, T, " squeezes the length of all intervals [[t], ). Therefore
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T;" cannot have any periodic point (fixed point) except at integer end
points. This implies that 7, has no interior (non integer) periodic point

of period n. QED.

3.8 Some counting arguments

Lemma 3.2 (Number of simple cycles) Let S(n) be the number of simple cycles

in Cp.

a) If n s odd then S(n) =2
b) If n =2™, §(n) = 2*"-m-1

¢) If n =2™(1), l odd, S(n) = (2¥"-™)(21)*" !
Proof:

a) The result is obvious from the definition of simple cycles.
b) The proof is done by induction on m.
i) When m = 1 then S(n) =1.
i1) Assume that the proposition is true when n = 2™-!. Consider simple
cycles of size n = 2™. They are separated of order m — 1, thus we can
write

X = X1|X2| ..ngm—l

where each X,’sis a 2-point cycle. Moreover the dynamics on blocks X, are
the same as a simple cycle of size 2™, Also on every block, except ezactly
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one, there are two possibilities to map to the other, { or |. Therefore
5(2™) = §(2m-1). 2277 -1 = gin -m-1
¢) n=2" with ! odd.

First of all, simple cycles are separated of order m, thus by part b) there are
22"-m-1 ways to arrange the blocks.

Next, there are 25 ways to map the points in each of the 2™ — 1 blocks in order
to get f2" be Stéfan on them. Moreover there are only 2 ways to map points
in the last block (since there are only 2 kinds of Stéfan cycles for f2" on this

block). And therefore we have our result. QED.

Lemma 3.3 (Number of Stefan cycles) Let S(n) be the number of Stéfan cycles

in Cp, then

a) Ifn ss odd or n ts a power of 2, then S(n) = s(n)

b) If n=2m1,1 odd then S(n) = 22"*'-1,
Proof:

a) The result is obvious from definition 3.4 of simple cycles.

2"-m-1 ways to arrange the blocks. Next there are 2™ ways

b) Again there are 2
to choose the "crucial block”. On the crucial block there are two kinds of odd
Stéfan type. On the other blocks, each can be either 1 or J. Thus

S(n)=2""m-1.gm . 2. 9271 2 o2

QED.
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Chapter 4

FORCING ON BLOCK STRUCTURES

In this chapter, we will study cycles which have block structures. Some relation-

ship will come up in the network (C,—) and we will examine the minimality of

Stéfan cycles from a different viewpoint.

For convenience, we will use capital letters to denote cycles, and small letters to

denote their sizes.
Recall (Block structures) Given a cycle R of order m. We say that a cycle P has

a block structure over R if

1) n = sm where n 1s the order of P;
1) We can write

P=B,UBU...UB,
where B, ={is+k k=1...5}

and P(B,) = B, iff  R(3) =3
Notes:

1) This definition is exactly the same as definition 3.1. We just want to simplify
the notation by taking the pattern of the indices instead of the orbit itself -
which is topologically equivalent.

ii) If P has a block structure over R then we write R| P or P SR



Remark: The relationship 2, isalso a partial ordering in C (the set of all cycles)

and is stronger than — in the following sense.
Lemma 4.1 If P 2, R then P — R.

Proof:  Define a function A : [1,n] — [1, m] as following

141 ts<z<1s+3
h(z) =

c4+t—-18 t8<zs<ts41
then A is a continuously non-decreasing function on (1, n]. Thus A is a semi-conjugacy
which squeezes blocks of 7, into points of 7;. And we can see that there exists a

point ¢ € B whose orbit is of type R. Q.ED.
Proposition 4.1 Let P 2 R If P — Q then

1) esther Q 2, R,

1) or R — Q.
Proof:  Since P — Q then T, must have a point z whose orbit is of type Q.

Now 7, permutes B, into B,, therefore if £ belongs to some block then its orbit
must stay in the blocks forever (since z is periodic). Otherwise, 7,’(z) lies totally

outside of B,’s.

Case 1: If z € B, then clearly the orbit of z is a block structure over R, i.e. Q Ny
Case 2: If £ ¢ B,, Vi, then consider the semi-conjugacy h defined in lemma 1, we
can see that 7, has a point y = h(z) whose orbit is of type @, 1.e. R — Q.
QED.
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Proposition 4.1 gives several interesting results as we shall explore in the following

corollaries.

Corollary 4.1 Let R} P. Consider Q € C; wherel 1s not a mult:ple of m. Then

P— Q tf and only +f R—Q

Proof: One way is clear since if P L, Rand R — Q then P — Q.

On the other hand, if P —+ ¢ € C) then Q cannot be a block structure of R.
Thus by proposition 4.1, R — Q. QE.D.
Ezample 1. Let R = (123) and P = (147268359) then although P is complicated
(in fact, it is a 6-modal map) but P can force only unimodal maps in Cy, since R is
unimodal.

Ezample 2 If R = (12) then we can say that any cycle which 1s forced by a cycle P

where R | P must have two blocks.

Corollary 4.2 Let R| Q and P — Q, where R 1s a simple cycle of size 2™. Then
esther @ has block structurc over R (ve., Q 1s separated of order m) or Q stself 1s

ssmple of stze 2/, s < m.
Proof:  Suppose @ does not have a block structure over R, then R — Q.

i) The size of @ must be less than the size of R, in Sarkovski’s order, 1¢., |Q] = 2',
s < m. Otherwise, Q must force some cycle of order 2™, and thus R must also
force that cycle of order 2™, which contradicts to the minimality of R.

ii) @ must be simple, otherwise by Block and Coppel [6], Q must force a cycle of
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size 3- 2°°2,
Therefore, by Sarkovski’s theorem, @ must force some cycle of order 2™ which

again leads to a contradiction.

Thus |Q| | |R| and @ is simple. QED.

Corollary 4.3 Let P, Q, R be as sn proposstion 4.1, and suppose that n = 2m.
Then

esther R—Q or Q=P

Proof:  Suppose R #— Q. Consider the point z whose orbit is of type Q in the
proof of proposition 4.1, then z € B, = [1,1 + 1] for some 1.

Since 7, is linear and the length of the blocks is equal to 1, this implies that the
orbit of r is either at the midpoints of B,'s (i.e. @ = R) or at the endpoints of B,’s
(e Q= P). QE.D.

In corollary 4.3, P is 2-extension of R. It is called the smmedsate successor of R

in the meaning that there is no cycle between them in the network (C, —).

Proposition 4.2 Given that P is a block structure over R. The P 1s an ymmediate

successor of R if and only sf P 15 a 2-extension of R (denoted by 2* R).

Proof: ~ The first part was proven previously in corollary 4.3. We now prove the

opposite direction of the proposition.

Suppose that the blocks B,’s of P are of s symbols. Consider P™ € C,, s > 3.
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P™ must then have a pomnt r of order 2

=% r has order 2m, since P preserves the blocks

Thus P has a point of period 2m whose orbit is of type Q # R, i.e 1f P1snot a

2-extension of R, then there exist a cycle such that P — @ 2R Q.ED.

The 1dea of smmediate successor was studied by Bernhardt [9] in 1986 who gave

a different proof on proposition 4.2.

Now using that proposition, we can also show the minimality of Stéfan cycles of

order 2" by induction.
Corollary 4.4 The Stéfan cycle 5(2"} 1s minsmal.

Proof: ~ When n =1, it is true that there is only one cycle of order 2.

Suppose that it is true for n Then consider any Stéfan cycle of order 2"*! which

1s a 2-extension of some Stéfan cycle of order 2" by definition.

Thus if S(27*1) — Q, with |Q| > 2*+! where > is the Sarkovski’s order

Then §(2") — @ which leads to a contradiction of Sarkovski's theorem. Q E D
Proposition 4.3 If P has block structures over cycles R and T' then esther T must

have block structure over R or vsce versa. We then can express the statement by the

followsng diagram

PR and T2 R
P ﬁ
p-2T R T

Proof:  We have P £ Tand P R, therefore
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i) either R - T, or
n) T <, R, but in this case we also have
PSR and P—T

therefore either R — T which implies R=T or T ey} QE.D.

Corollary 4.5 Gwen P 2, R and Q S, 7. Then tf P— Q then esther R— T

or R|T.
Proof: By proposition 4.1, if P — Q then

i) either R — Q and thus R — T, or
i) Q <, R, but then by proposition 4.3
- either T | R hence R— T, or

- R|T.

Thus we have this diagram

P 2 R and R—Q T

Q-9->T RS T o T—Qe»R

We now introduce a new concept of minimality.

Definition 4.1 Let F be a famsly of cycles and P € F. We say that P 1is primary
with respect to F of the only cycle (sn F) which 1s forced by P s P stself.

Note: If P s primary with respect to F then P 1s also primary wsth respect to F',
with F' be any non-empty subset of F.
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Proposition 4.4 Denote by S(n) a Stéfan cycle of order n.

Then §(n) 1s primary with respect to F =L‘J Ci, k > n where > s the Sarkovsks's

order.

Proof:  Suppose 8(n) — Q, where Q € F, with ord(Q) = k. Thus by Sarkovski,
Q must force a cycle of order n, i.e.

R 3 Q — R, ord(R) = n

Moreaver, Block and Coppel [6] (theorem B, chapter 3) proved that R must force

a Stéfan cycle of the same order.

Thus §(n) —> some other Stéfan cycle, which contradicts the minimality of S(n).

QED

Proposition 4.5 Let P be a z-extension over R and that P™ | B, Vi 15 pramary wth
respect to F,.

Then P s primary usth respect to F = F'JF" where
F' = {Q: R0}

and F!

{Q@:R|Q and Q™ | B, € £}

Proof: ~ We use the same notation as in proposition 4 1.

Clavm 1: Ty = (T,)7
Proof: Consider all the integral ponts i = 1,2.. .,n  Then clearly T~ =
[T )"
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Now at every subinterval of length 1 I, = [1,i + 1}, 7} is linear, therefore (7)™

18 also linear on every I,.

On the other hand, by definition, 7~ is linear on I,.

Therefore we have T,m = (T,)™.

Claym 2: P is primary with respect to F.

Proof: Assume that P is not primary with respect to F, i.e. there exists a

cycle Q € F such that P — Q. Then we have two cases:

Case 1: ) € F', i.e., R 4= Q. But then this implies that R | @ by proposi-
tion 4.1.
Now in the proof of proposition 4.1, 7, has a point z whose orbit is of
type Q. Also, £ must belong to some block B,, otherwise we 1nust have
R — Q.
Consider the primitive map 7 = 7=, then by claim 1, we have T = (7)™,
1.e., T has a point of period of type Q™ on every block B,.
By the given condition that P™ is primary on each of the block, this implies
P™ and Q™ are isomorphic on each B, i.e., P and Q are isomorphic.
Hence P can force only itself in this case.

Case 2: H Q € F", i.e.,, if R | Q, then again P has a point z whose orbit of
type Q lies totally either inside or outside of the blocks B,’s.
In the first situation, we then have case 1, i.e. Q = P.
In the latter case, we have R — Q, hence R = Q.

However, R™ on any block is a fixed point, i.e. R™ 3 F" which completes
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our proof. QED.

Note: The inverse of proposition 4.5 is not true, ie.,

If P— R and P is primary with respect to F then it is not sufficient to imply
that P is a z-extension of R.

Erzample: Take P = (162435) and R = (12)

Then P which is a simple cycle, is not a z-extension of R and we still have P is

primary with respect to F.
Corollary 4.6 P =S(n) is prumary on C,.

Proof: Suppose that n = s - 2™, where s odd > 3. Then P has a block structure

over R, where R is a simple cycle of order 2™.
If P— q€C, then we must have Q 2, R, since R issimple.

Howzver P?" is an odd Stéfan cycle, which is primary with respect to C, by
Sarkovski’s proof, i.e.

P is primary with respect to C,,. QE.D.
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