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Abstract

We review briefly the Standard Model (SM), Left-Right Model (L-R) and Minimal
Supersymmetric Standard Model (MSSM). We study their specific symmetry breaking
mechanisms and particle contents. Finally, we calculate specific interaction vertices of
doubly charged Higgsinos in the Left-Right Supersymmetric model (L-R SUSY) and

their decay widths. A possible extension of this work is proposed.
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Chapter 1

Introduction

Ever since the time of Democritus, and perhaps earlier, people have tried to understand
the basic building blocs of matter. Things have changed dramatically with the discovery
of Quantum Mechanics and Special Relativity at the beginning of the century.

Later on, Dirac combined 5oth theories to derive his wave equation for the electron
which can be considered the basis for a new era dominated by Quantum Electrody-
namics (QED) and its extension, Quantum Field Theory (QFT).

We have also gone a long way trying to understand the forces acting on the par-
ticles. The first step, arising from the experiments of Oérsted and Faraday, were
Maxwell’s famous equations which put under the same roof, so to speak, electricity
and magnetism. The main characteristic of these equations is that they satisfy the
so-called Lorentz space-time transformations. Historically this was the main reason
that led Einstein to formulate special relativity, which ever since has been the cor-
nerstone of all theories that attempt to describe any aspect of the physical world. In
the 1960’s Glashow, Weinberg and Salam published a series of papers [1, 2, 3] which
successfully unified electromagnetism with the weak force (electroweak) and received

the Nobel prize for their work. The strong force is included with electroweak in an
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SU3)c x SU(2)L x U(1)y model but there still remain a lot of things to learn about
strong interactions since most of our results are based on approximations. The above
gauge theory is the so-called Standard Model (SM). We will clarify some of the termi-
nology later on. |

The SM is undoubtedly a very successful theory. It has been able to accurately
explain almost all experimental results, especially in the fermionic sector. For example
the calculations of the theoretical value of the anomalous magnetic moment of the
electron agrees with the experimentally obtained result to one part in 10° [4]! The
predictive power of the SM has also been proved, the gauge bosons being the best’
example, their existence (and their masses) were postulated as an integral part of the
theory in the early 1970’s almost 10 years before their experimental detection at CERN
in 1983.

Despite its phenomenological successes the SM has theoretical problems and this is
the main reason why theorists believe that it is merely a low energy limit of a larger
unified theory. The SM contains at least 19 arbitrary parameters so it is quite far from
every theoretician’s dream: a single unified theory with at most one undetermined

coupling constant.

1.1 Lagrangian Formulation

At present the most widely used field theory formulation is the so called Lagrangian
which, as is classical physics, is based on the principle of least action [5, 6]. We make

the transition from a point particle to a field through the replacement : z(t) — #(z*)



and proceed to find the equation of motion by minimizing the action:

s = [cs.a4)d's.

L is called the Lagrangian density but we usually refer to it as the Lagrangian. The

minimization of the action is expressed mathematically through the familiar Euler-

Lagrange equations:

g—ﬁ - % [a-(aa%] =0. | (L.1)
As an illustrative example let us apply the above ideas to the Lagrangian:

£ =L@ - T (1.2)
We then have:

and replacing in eq. (1.1) we get:

m?¢+3,(3"¢) =0

= (0O +m2)¢ =0.

Therefore, starting with eq. (1.2) we recovered the Klein-Gordon equation. In a
similar fashion
L =i Py, — miyp
gives Dirac’s equation (where we treat 1 and ¥ independently) and

= P Fu = A

F* =g9"A* — 3" A%
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gives Maxwell’s equations with a source j*.
Without formally deriving this assertion we can state the two basic rules to follow
in order to make the connection between the terms in the Lagrangian and the Feynman

rules of perturbation theory [7]:

1. The terms in the Lagrangian that are quadratic in the fields,
e.g.: ¢%, ¥, P(iv,0* — m)y, ..., determine the relevant

propagators’.

2. The other terms give the interaction vertices. In particular after taking away
the fields from a specific term of i£ what is left is the interaction vertex. For
example, if L = ---+ iey*h A, the vertex factor for the interacting fields VYA,

is: tey¥.

By carefully inspecting any Lagrangian we notice that it is invariant under a phase
transformation:

¥(z) = €y(z), aeR (1.3)

since, G,% — €A, and Y — ey,

If we extend this invariance requirement to any Lagrangian we can show that it
implies the existence of a conserved current and in particular a conserved total charge Q.
Incidentally this is an example of Noether’s theorem which states that invariance under
translations, time displacements, rotations etc. leads to conservation of momentum,
energy and angular momentum respectively. The above invariance is called global gauge

tnvariance®.

1For example, taking the inverse and multiplying by —i of the term (i,8% — m)¢ = (¥ — m)¢
gives i/ (ff— m) = i(f/+ m)/(p? — m?) which is one of the known forms of an s = } field propagator.
2]t is actually a phase invariance, but the word gauge has been established due to historical reasons.
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It would be interesting if we could generalize the above transformation (1.3) so that
the parameter « is a function of every space-time point, i.e. @ = a(z). The problem
arises with the transformation of the derivative: 8,9 — €@y + ie”*lYd,a. We
can clearly see that the last term breaks the invariance of £ . We could remedy this
situation with the construction of a covariant derivative D, which has an added vector

field term —ieA, : D, = §, —ieA,. We further demand that A, transforms as follows:
1
A“ — A“ -+ ;ﬂ,a (1.4)

where the last term of eq. (1.4) will cancel the unwanted term of the derivative. There-
fore the new Lagrangian containing the covariant derivative is invariant under the U(1)

phase transformation ( 1.3), and takes the form:
£ = P(i7,0* — m)p + ey P A,. (1.5)

Further on, regarding A, as the photon field we can add a (gauge invariant) term
corresponding to its kinetic energy: —1F*F,,. Therefore the final form of the QED

Lagrangian, which describes the interactions of electrons with photons, is®:
- . - 1
L = Y(i7,8" —m)Y +epr"PA, — ZF'“'F,,,,. (1.6)

This is indeed a remarkable result since the simple requirement of a U(1) gauge in-
variance led us to an interacting-field Lagrangian. The most general form of the
U(1) transformation is: e**(*)9, where Q is the charge operator with eigenvalues:
Q. = —1,Qu = +3, etc., and this gives rise to the general form of the electromag-

netic current: ji™ = ¥7,Qv, which applies to all charged matter particles. The

3Note that, as expected, the photon field is massless since the addition of a mass term ~ m?A3
would break the gauge invariance



electromagnetic character of the above group is emphasized by using the subscript em:

U(L)em-
1.2 GWS model and symmetry breaking

In 1956, in an attempt to put some order in a vast collection of experimental obser- '
vations and results, Lee and Yang (8] proposed that weak interactions violate parity’.
Soon after, their work was confirmed independently by Wu [9] and Garwin [10] in a
series of experiments.

Parity violation implies the non-existence of ‘right-handed’ neutrinos. With this in
mind we try to find internal symmetries of the Lagrangian that apply between particles
that have the same space-time properties. The first step is to arrange the leptons in

left and right-handed families as follows, the left-handed fields:

— Ve — V“ - Vs
() (22
e )’ B ] T /L

and the right-handed ones:

€ry Ry TR-

Then, in a similar to the previous section analysis we have the following groups of

transformations :
U(I)Y D Y — eip(z)Y¢L’ Yr — eiﬁ(:)Y,pR’

SUQ2Q)L: ¢.— e ATy, hp — Y
where T = -;-a and ¥,,a can be any member of the above families®. Next, we in-

troduce the following. vector fields: W* = (W, W2 W3) and B*, that couple to the

“Parity (left-right symmetry) was always thought to be one of the conserved symmetries of nature.
5The reader should be warned that in the literature there are small variations in the coefficients of
the exponents. Here we adopt the conventions of ref. (7).
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corresponding currents in a similar way that A couples to the electromagnetic current:

-igJ W = —ig¥L7, TW*yL,

.g . ., Y
—Z%J:'B“ = —tg'¢a7“§-¢nB“.
The generators of the two groups satisfy the Gell-Mann-Nishijima relation:
Y
Q=T+ 5 7 (1.7)

which translated into the current form implies: j™ = J3 + ;Y. Later we will show
in a more transparent way how the electromagnetic current is embedded in the two
currents. The new covariant derivatives needed due to the introduction of the four
massless fields W#, B# can be shown to be:

Yr: D,=(id —g'%B.),

Yo: Dy=(ig — oW, — ¢'7B,).
Therefore the new Lagrangian is:

_ 1
L = ipy, Dy — %w,,,w"" — gFwF™,

where :

W, =9,W,—-9,W, —gW, xW,.

1.3 The Higgs mechanism

The Higgs mechanism or spontaneous symmetry breaking mechanism ‘gives’ masses to
the massless fields introduced above without breaking gauge invariance [4, 6, 7]. This

idea is not new to physics. For example, a ferromagnetic crystal extended to infinity

7



is described by a rotationaly invariant Lagrangian. In the ground state though, all
spins allign in a particular (random) direction therefore breaking the original rotational
symmetry. In the electroweak SU(2). x U(1l)y model the spontaneous breaking of

symmetry is induced by a complex isospin doublet, the so called Higgs field:

+
¢=(‘$o

with Q=1,0, T3=+landY =1.

= (1.8)

) 713'(¢1 + i¢)
Z5(¢s +ida)

The next step is to add the appropriate kinetic and potential terms in the La-

grangian corresponding to the scalar field introduced :
Liggs = (Dud)'(D*¢) — V(4'9) (1.9)

where :
V =—u?(¢'¢) + A(¢'¢)* u*>0,A<0.

We choose the vacuum expectation value (vev) of the Higgs field to be :

1 0 B
=d¢p=—5 = ——. 1.10
This is the most natural and economical choice since we want the vacuum (¢°) to be

invariant under U(1)., transformations and thus the photon to remain massless. For

this particular choice, since Ty = —3 and Y = 1, replacing in eq. (1.7) we get the
following;:
1 1
Q=—3+5=0=2Qk=0,
and so: .
¢0' = ia(z)Q¢o = ¢o

8



therefore the transformed field remains the same as the original.
Before going further, it is a good idea to gather all the fields mentioned so far and
write down the full Lagrangian of the Standard Model :
Lo =$1*(i8, — ;9o W, — LB, )Y,

+9a7*(i8, — ¢’ T Bu)¥r

-tWeW,, — {B*B,, (1.11)

+|(8. - Lo W, — g5 B[ — V(4)

—(G1$.9¥r + GabdPr + hoc),
where | |2 = ()!( ). The first two terms represent quark and lepton kinetic energies
(depending on the contents of the ¥ fields) and their interactions with tt;e gauge bosons.
The third term is associated with the gauge boson kinetic energies and self interactions
while the fourth represents the masses and couplings of the gauge bosons to the Higgs
field. Finally, the last term is similar to the previous one since it is related to the fermion
masses and their couplings to Higgs. G; and G, are coupling constants similar to g
and ¢’, whose values are not predicted by the model. Later we will see the importance
of these terms in determining the various masses. Let us now substitute the vev of the

Higgs field ¢p into the relevant term of Lsy:

|(~igoeW — i¢'B.) 4|

3
(1.12)

I
(™

( W3+ 4B, y(W}-iW,f)) (0)
g(W} +iW3) —gW2: + 4B, v




If we define :

Wt = —(W, FiW}) (1.13)

1
V2

then eq. (1.12) becomes:

= (Gua)WiW* + L[ (WS) - 209 W2B" + 0*(B)

.1 1 ¢ o o
= (Evg)zw‘f W= + §v’(W3’ B,)

-9¢ 4¢° B»
1 1 ?+g* 0\ (2
= (Evg)zw;" W, + -8-v2(Z,., Au) . (1.14)
o o0/\A,

Notice that by diagonalizing the mixing matrix we get two new neutral fields. There-
fore, after symmetry breaking, we end up with four fields, three massive and one
massless: W}, W, Z* and A*. Assuming normalization of the original fields we have

to normalize the new ones:

= g‘Wa“ +gB“

A* ,
\/g’ + ?’

(1.15)

76 = gWs“ —-gB*
= ———-——-W T .

Comparing the mass terms in the above pari of the Lagrangian with the ones
expected for charged and neutral bosons we have :

My: = -.:;vg,

Mz = lv/g* + 47, (1.16)

10



And we define the Weinberg angle through the relation .
cosw = ——. (1.17)

It is interesting to note that the result M4 = 0 is not a prediction of the model
since the original Lagrangian had a massless photon. The GWS model though fixes
the parameter p = M3 / M2cos®0w, which specifies the relative strength of the neutral
and charged currents in weak interactions to be equal to unity. This result has been
confirmed by experiment (within a small error).

The above mechanism gives masses to the gauge bosons; let us now see how fermions
acquire mass in the SM. It can be shown that terms like —m% or } M2B*B, are not
gauge invariant, we can however use the same Higgs doublet as before and the last
term of eq. (1.11) in order to generate quark and lepton masses. In particular, in order
to get a mass term for the electron field we have:

L. =—G.6.den+h.c.
| =—G. [('7"5)1. ( :: )en + ér(47,4°) ( V; )L] : (1.18)

To break the symmetry we use the Higgs doublet with the following choice of its

\/g( v+3z(z) ) (1.19)

where h(z) is the neutral Higgs field and we have gauged away the three other fields®.

vacuum expectation value:

Replacing in £, we get :

Le= -% v (ELCR + éreL) — % (€Ler + €rer) h. (1'20)

SFor details see Ch. 14 of ref. [7].
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Incidentally, this is one example of the free parameters that have to be put ‘by hand’
in the SM. We know, for example, that the mass term is of the form: —myp, which
means that G.v/2 = m,. Therefore we have to experimentally measure m. in order to
determine the value of G.. Notice that the coupling of the second term is ~ m./v =
102 so it is quite small to produce a detectable signal and therefore evidence for the
Higgs boson.

We proceed in a similar way to get the quark inass&s; the only difference is that we
have to have an SU(2) transformed Higgs doublet in order to give mass to the upper

member of the quark doublet:

soziow = (L) = =3 ("1") (121)

Note that the Lagrangian can be written in diagonal form in order to include linear
combinations of flavor eigenstates.

As a final remark, we should emphasize that the Higgs sector is the least investigated

part of the SM mainly because, as we saw above, the Higgs couplings are proportional

to the fermionic masses and the only “easily” produced fermions are the light ones:

e”,u, etc.

1.4 Beyond the Standard Model

As we mentioned in the introduction, the SM cannot be the end of the story since
it builds on many assumptions and leaves many fundamental questions unanswered.
We do not attempt here to give a detailed list of all the drawbacks that the SM has
but merely overview some of them to justify the search for new models equipped with

solutions to some (or possibly all) of its problems.
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One of the most obscure aspects of the SM is the Higgs sector. As we saw in the
previous section, the choice and the vacuum expectation value of the Higgs boson is
totally ad hoc, its mass diverges quadratically if one includes higher order corrections,
and finally there is not even a trace of a possible experimental dete;:tion that would
support its existence. Secondly, the SM is based on the three gauge groups that we
mentioned before which are basically‘ postulated on a purely phenomenological basis.
In order for a theory to be complete it would have to provide an understanding of the
origin of these groups along with the values and correlations of its coupling constants.
Associated with this is the (arbitrary) choice of assigning left-handed fermions to dou-
blets and right-handed ones to singlets which is done to fit experimental observations
such as beta decay, the value of electric charge, etc. The above is related to the so-
called generation problem which basically asks the fundamental questions of why there
are only three (?) families and why their masses and mixings follow a hierarchical pat-
tern. Including to the above the possibility of a non-zero neutrino mass, CP violation,
quantization of electric charge, etc. then a new model or at least an extended one
becomes a neccessity.

Finally, if we are to believe that a unified theory éxists then we have to look for ways
to incorporate gravity into the SM or look for a totally different theory. In contrast to
all other interactions, gravity is totally outside the framework of gauge theories since
General Relativity does not follow from the principle of local gauge invariance and at
the same time General Relativity incorporates, contrary to all other interactions, the

principle of equivalence’.

7For different models that are suggested as a remedy for the various problems, together with their
own drawbacks, the interested reader is referred to Table I on ref. [11].
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Chapter 2
Left-Right Symmetry

According to the standard model all interactions except the weak, respect all space-time
symmetries. It would appear therefore natural to try and extend the SM to make it
left-right symmetric. But symmetry, although intuitive, is not the only concern. There
are three main reasons [11, 12, 13] for trying to incorporate right handed bidoublets in
order to extend the SM in the SU(2). x SU(2)r x U(1) group; the so-called Left-Right
Model (L-R).

The first reason is trying to understand parity violation, one approach would be to
assume that nature is intrinsically left-right symmetric and the observed asymmetry
takes place after some breakdown at low energies, that is the vacuum is non-invariant
under parity. This is why left-right symmetries involve some sort of parity breakdown
mechanism that takes effect at some energy scale Mp.

Another reason, closely associated with the first, is the neutrino mass which has
initiated many controversial experiments [14] and debates in the last decade. Astro-
physical problems involving the missing mass of the universe, galaxy formation, etc.,
would be easily resolved if the neutrino indeed has a mass in the eV range [15]. Hf

m, # 0 then the left-right symmetric model is the most natural framework to incorpo-

14



rate it. It has been shown [16] that such a particle in a left-right symmetric model is

a Majorana! particle with mass:

1
y.~0 .
i (Mﬁ)

Lastly, another reason is the lack of any physical interpretation of the U(1)y symme-
try [17], mainly due to the multiplicity of values of Y in the SM: Y (1) = —1,Y(eg) =
—2,Y () = §, etc. In aleft-right model U(1) becomes the B—L generator which is the
only anomaly-free quantum number left ungauged. With this inclusion the weak gauge
group becomes: SU(2) x SU(2)rxU(1)5-. and a similar to the Gell-Mann—Nishijima

formula holds:

B-L
Q=L++—— (2.1)

Then Y{g_r) = —1 for all leptons and +1 for quarks of all generations and helicities.

2.1 Description of the model

In defining the components of our model, we follow the same path as in the SM with

the addition, of course, of right handed isospinors. For one generation we have :

Qun = (: ) JLir= ( ‘; ) (2.2)
L/R L/R

with quantum numbers

Ql-: (%1()’%)’ QR: (0’%1% ]

L.:(%0,-1), La: (0,4,-1).

1A Majorana particle is identical to its own antiparticle [7].
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The third number in parenthesis is (B — L) and, as we saw above, corresponds to the

U(1) generator.
The fermion-gauge boson interaction part of the Lagrangian is given by :

£, = F[QmoQc+LiveL]W?
<+ % [QR‘Y“ch + z;‘y,‘ch] W: (2'3)

o T1 - _
+ ¥ [— Q1@ — L‘YuL] B*,
2 3
where in the last term of eq. (2.3) we imply both left and right contributions. Similarly,

the fermion kinetic energy terms are:
Liin = —Qu7,(8* — ZoWr - L B4)I, + Rh.p.
—L7,(8* — %oWP — L B*)[, + R.h.p. @4
Notice that if we want the Lagrangian to be invariant under a left-right interchange,
it immediately follows that: g7 =gr = g.
One of the possible minimal Higgs sets required to break the symmetry ‘down to’

U(1)em is the following: two triplets

(2.5)

5+/ﬁ §++
AL.R = 65,,,3 = ’
L.R

& 52
with quantum numbers (1,0,2) and (0, 1,2) respectively, and one bi-doublet

(4»: ¢r) |
¢ = (2.6)
& &

16



with (1/2,1/2,0). Using the above fields we can break the symmetry in the following

three stages:
SU(2)L x SUQ2)r x U(1)p-L x P

Mr, SU(2)L x SU2)r x U(1)8-1

Mwe sU@)L x U(1)y

M U(1)em.
With our particular choise of Higgs multiplets the parity P and SU(2) symmetry can
be broken at the same energy scale: Mp = Mw,.

The vev’s of the Higgs fields are chosen to be:

@e=( 0 7)

@=(5 v ):

where €'* is a CP violating phase.

and

With this background information we can go on and derive the charged and neutral
gauge boson masses in a similar way as we did for the SM. Also, certain arguments [11]
can show that k < vgr and vy < & which is essential in understanding why certain
physical parameters like, for example, the mass of the neutrino are small compared to
others. | .

Next, we will consider the Supersymmetric model (SUSY) where we will apply
many of the ideas introduced here to specific calculations. It should be understood
that the left-right mecdel introduced here is a complete model of its own, but in our
case it will be used as a basis for a more extensive model ba_sed on Supersymmetl;y,

the so-called Left-Right Supersymmetric model (L-R SUSY).
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Chapter 3

Supersymmetry

3.1 Introduction

We will attempt hereby to introduce the basic concepts of supersymmetry and try to
explain and analyze some of its predictions. This short introduction can by no means
be considered either an extensive or in depth approach to the subject. It is based
mainly on references [18, 19, 20] and the reader is encouraged to consult them.

According to our present understanding of subatomic physics all particles have
fermioris as their basic constituents (quarks) or they themselves are considered elemen-
tary (leptons). On the other hand all known forces are mediated by bosonic carriers
(v, W%, Z°,g).! Therefore, if we ever hope to unify particles and interactions into a sin-
gle self-consistent theory we will probably have to somehow unify bosons and fermions.
The basic idea of supersymmetry is that it.tra.nsforms bosons into fermions and vice
versa; we will later discuss the basic features of supersymmetry generators and some
of the implications of their algebra.

Supersymmetry (SUSY) predicts the existence of a superpartner for all known par-

1Gravitons have not yet been observed, possibly due to their weak strength, but it is believed that
they exist and have spin 2.
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ticles as we will show below. The total angular momentum (j) of the superpartner
differs by half a unit from the original field. . Therefore the superpartners of bosons
are fermions and vice versa. All the other quantum numbers are the same as tﬂme of
the original partner (color, lepton number, etc.). SUSY too, incorporates a symmetry
breaking mechanism, similar to the SM and L-R Model, which breaks the mass degen-
eracy between supersymmetric partners. After symmetry breaking the fields are mass
eigenstates and we can further proceed with possible generation mixings (super CKM
matrix) and even supersymmetric particle mixing between scalar léptons, quarks, etc.

One of the most serious problems of the SM which is inherited in the L-R model
is .the so-called gauge hierarchy problem (GHP). It manifests itself when we try to
calculate the masses of the Higgs particles. By doing so, using perturbation series
beyond tree level, we get quadratic divergences which would push the masses to the
order of Plank scale (Mp ~ 10'® GeV) unless the perturbation terms cancel to 26
decimal places(!) [13, 31]. Supersymmetric models on the other hand do not have
such a problem since, as we saw above, for every fermionic(bosonic) loop there is
a corresponding bosonic(fermionic) with the same mass and coupling strength but

opposite sign. Therefore, as shown in eq. (3.1) below, they cancel each other out?:

----Et’.--- + ---Q-- =0 8.1)

All particles in a supersymmetric theory obey a continuous global symmetry called

2In broken supersymmetry, due to non-equality of the masses, the divergences do appear but are
not quadratic. .
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R-symmetry. Certain conditions can break the continuity but nevertheless a discrete
R-symmetry almost always applies which in turn gives rise to a conserved quantum

number called R-parity, defined to be:

R = (_1)21-‘.'384'['-

All ‘ordinary’ particles have R = +1 and all supersymmetric partners have R = —1.
R is a multiplicative quantum number which, combined with the above observation,
gives rise to two fundamental consequences on any supersymmetric model:

Firstly, all supersymmetric particles must be produced in pairs since at any present
experimental situation incoming states consist only of ordinary particles, therefore the
final state has to contain an even number of supersymmetric particles.

Secondly, there must be a lightest and stable SUSY particle since any decaying
super-particle would not be able to decay only to non-supersymmetric particles due to
R-parity conservation®.

It is remarkable that supersymmetry has occupied so many theorists over the years
without a hint of experimental evidence. The two main reasons for this is the potential
resolution of the gauge hierarchy problem and a possible inclusion of gravity through
local supersymmetry. But there is an additional reason for hoping that one day we will
detect some sign of supersymmetry: according to our models almost all supersymmetric
partners, after synimetry breaking, acquire masses which are, in general, much heavier

than ordinary particles.

3The photino (), which is the photon’s superpartner, is one of the possible candidates.
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3.2 Supersymmetric Algebra

The generator(s) of supersymmetric transformations interchange fermions into bosons
and vice versa, according to the defining relations [4, 19].:
Q |fermion) = |boson)
(3:2)
Q |boson) = |fermion)

Applying the unitary operator U, which represents a 2x rotation, on the first relation

above we have:
UQ |fermion) = U [boson) = UQU~'U |fermion) .
But we know that for fermionic states:
U |fermion) = — |fermion),

therefore
UQU-'U |fermion) = U [boson) = |boson)
= Q |fermion) = —QU |fermion)

= uvQuU! = -qQ.
And similarly for the second equation.
We see that a 27 rotation of Q is accompanied by a change in sign; it can be
shown that for any Lorentz transformation the behavior of the Q’s is that of a spinor

operator. On the other hand, it can also be shown that Q operators are invariant under

translations which implies that:

Q. E]=[Q,P]=0 (33)

and the anticommutator of two symmetry generators is also a symmetry generator. Let
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us for example consider the eigenvalues of {Q, @'} applied to any state |s):
(s|{Q,Q'}Is)
= (s1QQ'|s) + (s| Q'Qs) (3-4)
=|Qs)P+QIs)?* = 0
and since [s) répresen_ts any state, the above Hermitian operator will have positive
definite eigenvalues, unless Q = 0.
The anticommutator of Q and Q! is a linear combination of the energy and mo-

mentum operators:

{Q,Q'}=aE +8-P, (3.5)

which suggests the connection of supersymmetry with space-time transformations and
therefore supergravity. We can also show that by summing over all generators of our
model the momentum terms cancel and we are left with one term proportional to the
energy: | _

2.{Q,Q"t=+E

Q

For a sensible theory, we want our energy eigenvalues to be bounded from above

and therefore (3.4) implies that: v > 0. As usual, we denote by [0) the state with the
lowest eigenvalue (vacuum). According to eq. (3.4), if @ |0) = Q1 [0) = 0 then E [0) =0
and vice versa. This means that any state |s), except the vacuum, will have at least
one ‘superpartner’ state: Q|s) or Qt|s) with a spin nﬁmber that differs by } from
the original state and they are all members of the sa.m;z supermultiplet. Combining
this result with eq. (3.3) we see that supersymmetric partners must have the same
mass. We know that this result is not supported by experiments, nwhich leads us to the

conclusion that if supersymmetry is to be a realizable theory we must provide it with
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a symmetry breaking mechanism, which although lifts fhe mass degeneracy it does not
affect the structure of the multiplets .

Different models have different numbers of generators (N) but all of the Q’s have
four components since, as we showed above, they are spinor operators. Therefore,
N = 1 supersymmetry is the simplest example of such a theory and it is called the
Minimal Supersymmetric Standard Model (MSSM). Other candidates are N = 4 and
N = 8 (supergravity) which have advantages and disadvantages: finiteness, particle
spectra etc. For example, for theories with V > 1 we would get an éxpression analogous
to (3.5):

{Q:,Q!} = &; (aE + BP)

In this work we are exclusively working with N = 1 supersymmetry.

3.3 Particle content and notation

Supersymmetric partners of ordinary particles are denoted by an overhead (~). Often,
weak eigenstates will mix in a similar to the SM fashion, giving mass eigenstates which
in Table 1 we put on a separate column. Fermionic superpartners of bosons are named
with a suffix -ino and bosonic superpartners of fermions are named with a prefix scalar
(or simply s-). Table 1 lists the most common superpartners and their names?.

A word of caution is appropriate here: the following table is only representative of
the particle content in the MSSM. The reader should be warned of the existence of
different notations and multiple mixing mechanisms (an example of which we shall see

in a following section) which give rise to different physical particles (mass eigenstates).

4We will not include mass eigenstates with specific couplings but the reader should be aware of
their existence.
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Ordinary particles Supersymmetric partners

Weak cigenstates  Mass eigenstates

fode rquak GG
l.,,l slepton U,1;

vV  s-neutrino ¥

g gluino g
W+ wino

H!  higgsino X,
Hy higgsino

¥ photino

Z° zino x?
HY higgsino

?  higgsino

s-quark
s-lepton
s-neutrino

gluino

charginos

neutralinos

Table 3.1: Most common supersymmetric partners.
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Incidentally, assuming the photino () is the lightest SUSY-particle, experimental
searches look for photino production which would show up as substantial fractions of
the total missing energy and momentur;l since, unlike neutrinos, its production is not
associated with any lepton. (e.g. for the reaction: I* — [*7 in the I% rest frame and

neglecting the mass of the lepton, half the energy of the event escapes).

3.4 Structure of the MSSM Lagrangian

Below we give the Lagrangian terms needed for an SU(2) x U(1) model of broken
supersymmetry [18, 21]. Supersymmetric Yang-Mills theories contain two basic types

of fields: gauge multiplets (A°,V,?) in the adjoint representation of a gauge group G



and matter multiplets (A:,v;) in some representation R of G. The A;’s are complez
scalar fields, the V,*’s spin-1 real vector fields and finally A and ¥ are two-component

fermions (see Appendix A). Employing the summation convention throughout we have

the following four main terms:

1. Kinetic energy terms

2. Self interactions of gauge multiplets similar to the SM giving the familiar

three and four-gauge-boson vertices (7] :

L, = -%F:,F:" (3.6)

where we borrowed the notation from the SM non-Abelian field strength tensor:

F3, = 3.V2 — 8,V — gfuV; V:. And the gaugino-gauge field interactions:

Lgg = igfasc 0" XOVE (3.7)
where f,;. are the structure constants of G.

We should note that there is no interaction between the U(1) singlets A" and V,

therefore in this particular case we set fu. = 0.

3. Gauge and matter multiplets interaction term which is important for this

work:

Lom = —gTEVa(Bio"d; +iA;8,A5) +igVETG(N ;A7 — XovA)) 69

+g}(T°T*);V VAL A;



where T is the Hermitian group generator in the representation R of G. Note
that for U(1) multiplets we have to perform the following replacements:
ViV,
9T — 39'Yisi5,
where Y; is the U(1) quantum number of the matter field (hypercharge).

(3.9)

. Finally, the fermion mass terms and Yukawa interactions are given by:

1 [ *wW ,
-3 (m) ¥iY; + h.c. (3.10)
The ordinary scalar potential is :
V= -;-D‘D" + FF,. (3.11)

Where the superpotential W is some cubic function of the scalar fields and we

define:
f‘,’ = BW/aA.-,
(3.12)

* = gAIT;A;
Another important piece needed is the soft-supersymmetry breaking terms which

do not introduce quadratic divergences to the unrenormalized theory. The possible

explicit terms are [22]:

MiR[A?] + M2S{A%] + ¢(A® + h.c.) + Ma(A*A® + 3°2%) + M(A'X + ¥X)  (3.13)

With A? and A3 being (gauge invariant) quadratic and cubic combinations of the scalar

fields®. The terms M3 and M, are Majorana mass terms for the gauginos, corresponding

to the groups G and U(1) respectively. We shall see the importance of the last two

terms in (3.13) later in our discussion of neutralinos.

5Note that R[] and J{] are the real and imaginary parts respectively.
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3.5 Chargino Mixing

3.5.1 Introduction

Before showing explicitly the Lagrangian terms responsible for the mixing of charged
gauginos and higgsinos, it is appropriate to say a few words about the model:

As we mentioned before, we deal with possibly the simplest model of broken SU(2) x
U(1) supersymmetry with the minimal Higgs set required, namely two Higgs doublets

H, and H; with vev’s:

(Hl)=';—‘§((l,),(flz)=%(?) (3.14)

where v; # va.

In order to obtain the Feynman rules we list the appropriate interaction terms and
then shift the scalar fields: H; — H; 4+ (H;), ¢ = 1,2 (unitary gauge). Finally, we
switch from two to four-component notation and we use the deﬁnitions of the mass

eigenstates (physical particles).
3.5.2 The Chargino Lagrangian

The Lagrangian term for chargino mixing is the following:
Lo= -")"—5 [0+, + vaA~9ly, | + MA*A™ — uth, ok, +hec. (3.15)

The first term in eq. (3.15) comes from (3.8) keeping only the a = 1,2 contributions
and taking o/2 as the SU(2) group generator for the representation R, where o are
the Pauli matrices. We also used the relation: A* = J=(A! FiA?).

The second term comes from the soft-SUSY breaking part of the Lagrangian (3.13)
where again we kept only the a = 1,2 contributions and defined M = 2M,. The last
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term com-es from an additional term in the superpotential of the form: pei; Hi Hj.
Let us now try and rewrite the above part in a more compact form, with the aid of
the following definitions:
¥ = (-0, vy, 97 = (=X, 90,),

sin 0., = 7"—;&-@', cos 0., = m, (3.16)
m3, = 1g%(v? + v).

Further, we can easily verify that:

. ' +T
Lo = -.12.(¢+,¢-) ( ;’( ’ff ) ( ﬁ_, ) +he.. (3.17)
Where:
_ M my V2 cos 0,
xa (L, et -

We then define the mass eigenstates as:
T =vEhT, ) =UE) (3.19)
where U and V are unitary and obey the following relation:
UXV™=M,. (3.20)

M, being diagonal with nonnegative entries: M,, M_, where by convention we choose

M, > M_. From the above definition we obtain a mass term form:

Lo = —3[p~Xy*T +¢*XTy~"| +he.

—1 [y U xv-tvg” (3.21)

+ (V)W XTU-'Uyp~T] +h.c..
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Now, due to eq. (3.20) and the unitarity condition we have:
M, = MY = (V)T XT(U")T = V' XTU™!

and so eq. (3.21) becomes:
Le

Ni~

Y UTMox*™ + ¥+ VT Mox™"| + bc.

[ 1]

:x‘MD T+ xt M, x"T] + h.c.
= — [x‘Mpx+T] + h.c.

= — [xr (Mo)isx] + bec.
where we used the first relation of (A.12).

If we now define the four-éomponent Dirac spinors:
+ +
= [ X1 - — [ X2
X (fcf) X2 (x;)
and use eq. (A.13) we can write (3.23) as follows:
c = “(M+flil + M—X:222)-
From (3.20) we can easily derive that:

M2 = VXXV = U XX (U")™!

L [ W) Mox*T + 4+ (V) MoxT] + b

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

which, by computing the eigenvectors of X'X and X X*, can give us the elements of

V and U* respectively.

We list here some of the formulas given in refs. [18, 23] for the resulting values

(under the assumption that M and p are real), the interested reader can find a more
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involved treatment in the references above.

1\.4: = %{M’+y2+2m:,i:[(Mz—p2)2+4m:vcosz20.,

+ 4md, (M? + 42 + 2Mpsin29,)] *} : (3.27)

Further, parametrizing U and V with respect to a parameter ¢ we get U = O_ and

V =0, (or V = 030, if detX < 0 €), where:

O*=( cos @y sin¢*)

—sing, cosdy

The above formulas attack the general case. In order to get explicit and simple expres-
sions for the charginos it would be instructive to consider the special case: x4 = 0 and

v, = v,. With this choice ¢_ = ¢,, collectively denoted as ¢ and

- 1,,.1'2 1 ( M v
=Imz + el ‘2 L (M)
M, = [mw+4M] :i:2M, cos ¢ ( - -)

The defining relations (3.19) and (3.24) will give:

. _ [ —idtcosp+P,sing ) . _ [ —idtsing— ¢}, cosd
-"“( - cos ¢ + U, sin ) xz_(—ii'sin¢+$§lms¢)' (3.28)

3.5.3 Feynman rules

We will now try to show the connection between the relevant Lagrangian terms, the
four-component spinors and the derivation of Feynman rules. We will take as an
example the following A—% — A term (see (3.8)) which is a supersymmetric version of

the familiar W*evr term in the SM:

Laga = \/L§ [go522] ¥iL; + bec.. (3.29)

$Under this condition both resulting masses M, are positive.
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Keeping only the a = 1,2 contributions we have
Lapa = 59|02 +030%] iL; +hec.
= zgl(M —iX)g2LE + (A +iN)YEL3] + bec.

= ig A+egl7‘ + A_VLE;, - x+égl~/ -_ :\‘17,,6,_] ’

(3.30)

where Table 14 of ref. [18] has been used and the notation conventions of Appendix A.

Following our usual strategy, we will try to convert eq. (3.30) into four-component

notation with the aid of the following definitions:

- (=i g [ ¥k
w-(3) 2= ()

In particular, using (A.14), eq. (3.30) becomes:

L""‘ = —g [WPLVEZ + '»_’PRWEL + vzchLei;‘ + EPRWCD] .

Expressing the above in terms of the chargino mass eigenstates we get:

Line = —g{(Unix: + Usi1X2) Povél + vPr (Unnxa + UniXz) €

+ (VisZs + VAZs) Peeo” + &P (VanX§ + VirX§) 7} -

(3.31)

(3.32)

(3.33)

We can then easily read the vertex factors for these specific interactions in the MSSM

which appear in 3.33, they are shown explicitly in Figure 3.1. Note that the arrows

indicate lepton and flavour quantum-number flow for leptons and quarks respectively.

Finally, for the last two diagrams the charge conjugation matrix C appears explicitly

in the vertex elements instead of the chargino spinors: X;.
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Figure 3.1: Feynman rules for some characteristic chargino interactions in the MSSM.
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3.6 Neutralino Mixing

Similarly to the chargino case, the contributions for the neutralino-mixing Lagrangian
piece come from the A — ¥ — A terms of (3.8) with a = 3, the additional superpotential
term and the relevant soft-SUSY breaking terms, where we have defined M’ = 2M,. We
should note here that some supersymmetric models, incorporated into GUT scenarios,

predict that M and M’ are proportional {18, 23}:

M= M

37 M (3.34)

similar to the 8., prediction. These models also predict that M = (g%/g?)M,, where M,
stands for the gluino mass and g, the SU(3). coupling constant. Let us show explicitly
the derivation of the A — ¢ — A terms (a = 3): '
Ln = igV2(0ii/V2)(N;HT) + V239 yidij(N'; HT) + hec.
= 5o\ [0} %V, + 03 %] + 59N vk, % + Vi, 3]
= S2gN[%vk, — BYE) + 9N MRS - v F-

Therefore, adding the other two terms, the neutralino piece becomes:

Ly = $g3%(vigh, — vadh,) — §0'X (nvh, — vavh,)
(3.35)
+ IMAN 4+ IMNN + pyly ¥, + hec.
Again, using the same approach as in the chargino case we define:
¥ = (=X, —iX3, ¥}, ¥i,) (3.36)
With this definition £, becomes:
Lo=—5 () Y¢° +he. . (337)
2
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where

M’ 0 —mgsinf,sinfy m;cosb,sinby
Y = 0 M mygsin @, cos@y —mgcosb,cosby
~ | —mzsinf,sinf, mzsinb, coslby 0 —p
mzcosf,sinly, —mzcosb,cosby - 0
(3.38)

The neutralino mass eigenstates are defined by the equation:
)T = N, (3.39)
where N is a unitary matrix satisfying the relation :
N°YN'=N,, (Np)j = M; > 0. (3.40)

Notice that Y is a symmetric matrix which is due to the Majorana nature of the
particles?, therefore we only need one diagonalizing matrix. Squaring the neutralino

mixing matrix Np we get (compare with eq. (3.20)):

N2 = NY'YN~L. (3.41)
We can then rewrite (3.37) as:
1 = =0
N= -‘é'M-'X?X?-

Summation over repeated indices is implied. This is clearly a mass term for the x?
Majorana spinors (see (A.17)):

- o0 :

2= ( ;-‘.(o ) . (3.42)

In an attempt to get a feeling for these results we consider the following simplifying

assumptions which yield a massive photino (A,) whose mass satisfies: M= M. We

o 7It can be shgv:n that for four-component Majorana spinors the following holds:
51 £7)% = (1 £1°)X3
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then redefine our basis as:

I nYl, — vl vl +univl
'ﬁ:’ -( tA.,, i)z, (v¥+vg)1/22’ (vfl_‘_vg)llzl .

In this basis the new mixing matrix simplifies to:

M 0 0 0
0 M m, 0

Y = 0 m, 0 0 (3.43)
0 0 0

and the mass eigenstates are defined by:
(XO)T —_ Nr(¢,o')1‘,
N"Y'N'-! = N,,.

(3.44)

From eq. (3.43) we see that we only need to diagonalize the non-trivial 2 x 2 submatrix

of the matrix Y, and by doing so we get the diagonalizing matrix:

cos¢ sing

N = ( —ising icosé )

1/2

where ¢ = arccos [AL,/ (M... + M.)] .
The fact that we have four neutralinos in the MSSM means that we can go on and
make further simplifying assumptions or try and see the effect of different limits on

spinor components and the corresponding Feynman rules [18].

3.6.1 Analytic results

We will not show any numerical results for the diagonalizing matrices U,V and Y since
it is beyond the scope of this work. The interested reader is referred to ref. [24] for
an extensive numerical analysis. We will however, for the sake of completeness, show

some approximate analytic results below.
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With the assumption that |M £ |, |M’ £ 4| > m_, which is a rather reasonable one
remembering that the origins of the masses M and M’ are from the soft-SUSY break-
ing terms and g from the additional superpotential, then the following approximate
relations hold [24, 25, 26]:

1 e
U~ (3.45)

1 mwj\/iMe:OZIFsinﬂu[
V>~ . (3.46)

_mw!fZMcosl::usinOg[ Sgﬂ(}l)

For the above we used the assumption that |Mu| > m2, sin 23, where

U2
tanf = —
B8 o

or equivalently that detX > 0, since sin23 = 2sin #cos 3 = 2cos 0, sin,. Using the

above matrices to diagonalize X, we finally get the following elements of M):

mg = M+m3v (%&%}E)a
mz = |u| +m?sgn(p) (EEEEE) .

" Note that if detX < 0 then we have to replace sgn(u) with —1.

(3.47)
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Finally, the neutralino mixing matrix is:

o

1 m2 sin 20 (M’ +usin20,)
MM (53 —M7)
m? -inzlw(hl«ﬂnin 20..) l
—SM-MGIA
—m z sin fy (cos Oy, ~sin 6. m z cos Oy (cos by, —sin b, )
Va(u+M’) 2(s+M)

-mz ﬁn‘}y(caﬁ.,i»sin 0s) mzcosfw(cosdy+sindy)

L 2(u—M’) 2(u—M)
(3.48)
~mgsin Ow%f::vi-uomﬂu) my eotow!:ll' C-::v"l’ll sinfy)
m z cos 8y (M sin 0+ 4 cos by ~m z cos Oy (M cos 8y 41 sinby)
z'___(ﬂ!—'!.“ tucosby) ME_,3
1 1
V2 vz
1 1
vz vz J

Similarly to the chargino case we use the above result to obtain the (approximate)

neutralino masses:

m3, (M’ +u sin 26, ) sin? G

mig o~ M’ + W—‘ﬂ ,
2 ’ .
mig ~ M + mz(M +I;;;n—2“0;)dlz ‘w’
~ m —8IN &0y JLH4 sin® 0w+ w)sgn(x
mﬁ - |I‘| + Z 2(M+u)(M’+“) ’
~ m2 (148in 260, ) (u+M sin? Oy +M’ cos? Oy )sgn(u)
mig - |#I + = 2AM+u) (M +5) ——

Before we close our short introduction to the chargino and neutralino mass eigenstates,
we should mention that, except from (3.34) which is true only if we impose SUSY-
GUT, there are no other ‘tight’ constraints on the different parameters associated with
the mixing matrix. Obviously different models put different constraints and make

assumptions about the ordering of the states. ‘We should emphasize that the column
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T~y

<M <M

mi: < mi“;

mig < mi‘,’ < mi‘,’.. mig" < mi? < mig

Table 3.2: Ordering of positive mass eigenvalues of charginos and neutralinos in three
possible u regions.

arrangement of U,V and Y is directly related to the mass ordering of the states (ordered
with increasing mass e.g. mgg > mys), simply because they are constructed this way.
So, for example, if any chargino or neutralino: x? (i = 2,3,4) is proﬂuced it will cascade
till the lightest-supersymmetric-particle® (LSP) X} is produced.

Finally, from (3.49) we clearly see that the relative size of myg and mys is a rather
sensitive function of u. It is therefore instructive to show the mass ordering in the three
distinct regions as shown in Table 3.2, always under the assumption that M < M.
Ref. [26] gives an extensive numerical analysis of the mass hierarchy and different
potential scenarios that may apply. Here we just skimmed the surface by borrowing
their table and mentioning the three different regions. As a last remark on this topic
we should say that in the limiting cases: M’ ~ M, |u| =~ M and |u| ~ M’, we get

degenerate eigenvalues and therefore we should use degenerate perturbation theory.

8As we have seen before %J is one of the possible candidates for the LSP.
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Chapter 4

Left-Right Supersymmetry

. We saw in the previous chapter that SUSY solves some of the problems of the MSSM
but unfortunately not all. One possible scenario is SUSY GUTs which are quite suc-
cesful in predicting unification of the coupling constants and give relationships be-
tween parameters of the SM. After having studied the basic characteristics of both
the L-R and MSSM it would therefore be natural to try and combine the two in a
fully left-right supersymmetric model (L-R SUSY). The proposed gauge group is the
SU(2)L xSU(2)rxU(1)p~L [13, 24, 27]. L-R SUSY could be a SUSY GUT but it could
also be incorporated in SUSY GUTSs among with other attractive features. As with
all newly proposed models the problem that arises is simply how to distinguish L-R
SUSY from the MSSM. The main direction should be to look for signals of particles
that are absent from the MSSM. Later we will see that the model predicts the existence
of doubly charged scaia.ts and higgsinos which, as we saw in the previous chapter, they
do not exist in the Standard Supersymmetric model.

As before, every field has a superpartner denoted by a (~) over it and the same
name conventions as in the N = 1 supersymmetric model apply. The model includes

the following types of fields:
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1. Left and right matter fields are assigned to doublets similarly to the L-R model

and their bosonic superpartners to singlets as shown on Table 4.1.

2. The SU(2)L.r gauge fields Wi p are the vector boson triplets ‘with AL.p being -
their superpartners. Similarly, the V* is the U(1)p-L singlet vector boson and

Av its superpartner!.

3. Finally, the Higgs sector of the theory consists of two bidoublets: ®4, responsible
for both the up and down quark masses, two triplets A, 5, and two additional
triplets &, » which do not play any role in spontaneous symmetry breaking but
are introduced to cancel triangle anomalies which would occur without their

presence[28].

In Table LR-fields we list the particle content of the model and their quantum numbers.
A complete and detailed description of the Lagrangian can be found in refs. [13, 24, 27].
We will not include it in this work since it is quite involved and we will only use the
required parts for specific mechanisms. Let us however list the individual parts of the

Lagrangian with a brief description of their function [27]:
L= Lguuye + cmattcr + £Y -V+ L:ao!t

where the first and second terms deal with the gauge and matter fields (kinetic energy
terms, self interactions, etc.), the third is the Yukawa piece involving self interactions
of the matter and Higgs multiplets. V is the scalar potential and L,os¢ ris the' soft
supersymmetry-breaking part which, among other things, gives Majorana mass to the

gauginos. We have reviewed all these terms when describing the MSSM in the previous

1The gauge bosons are the only exception to the notation rule.
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SU(2)L x SU(2)r xU(1)B-L

3(0) 0(3)

10) o(}) :
10) 0(}) -1
3(0) o(3) -1
T 2 0
T 2 0
1(0) o(1) 2
1(0) 0(1) 2
1(0) 0(1) -2
1(0) 0(1) -2

Table 4.1: Matter and Higgs field content of the L-R model.
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chapter. The main difference is that the left-right supersymmetric model contains both
left and right parts along with the.extra fields (Higgs sector, etc.). For illustrative
purposes let us write down the gauge terms of the Lagrangian:
Louge = —IWEWEF + IXFu(0y — igTuGE) A,
—iWRWE + 12Ar5,4(0u — igTaGp)Ar
=LV V™ + 1A 5,0,

and the soft SUSY-breaking ones:
Looft = My (ASAT 4+ AIAT) + mp(AGA; + A2A2) + my(AvAv + AvAy).

(Compare the above equation with (3.13)).
Below we will examine the mechanisms of symmetry breaking, which are quite

similar to the L-R model.
4.1 Symmetry Breaking

We clearly see from the group structure of the model that it contains three gauge
symmetries and therefore three coupling constants: g.,gr and g». By requiring the
first stage of symmetry breaking to involve Parity breaking at a mass scale Mp, we
end up with g, = g and the gauge fields W} p massless. The second step is to break
the ‘right-symmetric’ part, i.e. SU(2)r x U(1)p-r to U(1l)y, which is a.ccomplished
through the vev of Ag. It should be noted that by appro;;riately choosing the Higgs
multiplets both symmetries can be broken at the same scale: Mp = My, . Finally, since
certain arguments indicate that the breaking scale of supersymmetry is close to the
weak scale [13] in this model we break the ‘left-symmetric’ part, i.e., SU (2)r x U(l)y
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to U(1)em together with SUSY through the non-zero vev. of ®:
(SUSY) SU(2)L x SU(2)r x U(1)p-r x P

Ms  (SUSY) SU(2)L x SU(2)r x U(1)p-L
(4.1)

(@xl9  (SUSY) SU(2)L x U(l)y

@uslf gy |
In an analogous to the standard model fashion, we allow non-zero vacuum expectation

values only for the neutral Higgs fields. In particular the vev’s of the Higgs multiplets

are:

@a=( 0 o) @a=Gn=0

@r=(% o) w@=(72)

4.2 Mass eigenstates of Vector Bosons

(4.2)

In the first stage of symmetry breaking we generate masses for W, Wy and V. The

relevant term in the Lagrangian [28] is:

t .
Tr (-Eg,. oWE — zg\,V“) Ar (4.3)
If we now substitute the vev of A a.hd simplify, we get:
i | —i9eWe —2ig V. —ivigWE o o\|
. —iv2g:W;  igaWi—2igsV J\ va 0
(4.4)
2
= VAW W +vi (3993 ~ 0 V)
where, as usual, | |2 =( )t ( ). Notice that we have defined :
t= L sam2). (4.5)



From the first term of eq. (4.4) above, we clearly see that the mass of the charged
right-handed gauge boson, which is expected to be of the form Mg, WIW.Z, is:

_ Gt
M, = 922 (4.6)

Also, notice that we can write the second term of (4.4) in the matrix form:

1 @2 2% [ Wk
Zv:(W,g., V“) ( “2991 4¢ ) ( ve ) ’

which is off-diagonal and therefore suggests mixing of the W2 and V, fields. By
diagonalizing the mai:rix we see that it has the eigenvalues: (g2 +4g2) and 0 Proceeding
further by identifing the linear combinations of the original fields W2, and V|, with the
‘physical fields Z,» and B, we expect mass terms of the form: iM%Z2, and JMEB3.

Following similar steps as we did in the standard model (and normalizing the fields)

we finally get:
awW2o — 29V,
Zun = ———15, (4.7)
(92 +497)?
with mass:
1
Mz, = 72=vn(9§ +4g2)}
and similarly for the massless field B,, we get:
V..
“=2wm+&“, MB=0. (4.8)
(g2 +463)%

For the second stage of symmetry breaking the relevant term in the Lagrangian [13, 28]
is:

1 . . 2 1 . . 2

ZTt l(zg,,aw," + zgaa’“/‘f) Q.I + zTr I(zg,,c“/“" + zgnc“?"f) Q‘l . (4.9)
We would normally follow exactly the same procedure as above and replace the vev’s

of the two Higgs fields but there is an important observation to be made before. The
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first stage is energetically much higher than the second and therefore the right-handed
vector bosons W and Z,», decouple from the second stage leaving only the massless

B, contribution. With this in mind, eq. (4.9) simplifies to:
1 . . 2 1 . ., 2
ZTr I(lg,,a'sw‘o‘ + :gacm’) O.I + ZTx‘ l(tg,,g3u‘/‘u + ggacmﬂ) @‘I

2

i_TrI( ig!.“zo" +.'gnu‘/‘oa ig;%*”' ) ( k. 0 )

igl.u{,.‘ ;igLMOL - igkp“/‘on 00

2

. L - OR o +L
'*%T"l( ig W + igaW ig. W, ) ( g '2‘ ) (4.10)

igt.“{:‘ _igl.w;o" - igamoa

where, again, we have defined:

Wt =

M

1 .
W(W}L ¥ 'vvpzl.)'

From (4.7) and (4.8) we can write W* in terms of the two neutral fields:

- 9rZur + 29/ B,

MR (@443

Using the above we get the approximate result:
1
(59202 + D) Wt W
_1_ 2 2 a: —2g.4' W
et e B (g, Toed ) (' (@)

where :
= _—_—MV
T (@ +4g2)t |
Notice that this is not a strict equality since we ignored all terms containing the ‘heavy’

7,5 field. Comparing the first term of eq. (4.11) with that of eq. (4.4) we immediately
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recognize that it is a mass term for the charged vector bosons, similarly to the right-

handed case above. Therefore:
1
Mw, = —ﬁyz,("f +rhk. (4.12)

Finally, we see that the mixing matrix of (4.11) is off diagonal which again suggests
that W and B, combine to give physical mass eigenstates. Either by diagonalizing

the matrix or by simply rewriting the second term we get:

1(w? + x3) [@2(W2)? — 26.9/W3 B, + 447 B}]
(4.13)

2 2
= Ym2+s2)[aWS —2¢B,] +0[20W2 +aB,] .
Identifying the above with the expected mass terms for two neutral physical fields:

1M3Z? + ;M A3, we get the equivalent expression to relations (4.7) and (4.8):

aW.. — 298, (4.14)
(g +4y")= '

Z =

which has mass :

\/-(n +x2)¥(g? +49%)% .

Finally, the second term of (4.13) gives the familiar photon field:

29’WOL + 9. B,
= £ ; M4=0. 4.
A= @ ragt (419
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4.3 Gaugino-Higgsino Mixing

Let us now introduce the part which consists of the gaugino and higgsino mixing terms

which come from the familiar A — ¢ — A term of the Lagrangian. The terms involved

are the soft supersymmetry-breaking term and the scalar potential [13, 24, 27]:

Loy =

+

+

+

iv2Tr [(U A (geo - AL + 2900 )0 - A,,] + h.c.

iVETE [(2 - An)H(980 - An +20vA)0 - Ag] +hoc.

5 Tr [Q.'.(g,.c ‘AL + gro - ,\,.)&..] +h.c

7‘;’1‘1‘ [Qz(g,,tr ‘AL + gro - Xn)éd] +h.ec ' (4.16)
Tr [ua(er - Ao)(@ - 8.)] + Tr [a(o - As)(o - 52)]

mo(AZA + X2A2) + ma(AZAZ + A2A2) + myv(AvAv + AvAy)

Tr [[ll (01 6“01 )Téd] ’

where the fields are given in Table 4.1.

4.3.1 Chargino Mixing

Next, we substitute the vacuum expectation values of the Higgs fields from eq. (4.2)

into eq. (4.16). Keeping as usual the terms involving charged fields, we get:

L = {i'\; (\/Z‘]nvné}t + gnﬁd‘ZI)
+ "4\29;&451 + iA:gR"ué: + i'\t.‘h"ua:
(4.17)
+ 4Am AtA7 +4maAfAg

+ #151’4.5: + F1$I$I} + h.c.

Following the same principles as in the MSSM we rewrite the rest of the _charged
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terms in the following way:

T T .
Lc= ...;.(-p*‘,'p‘) ( )0( )((, ) ( ﬁtr ) + h.c. (4.18)

In this model we define the following fields:

vt = (—idt,—id}, %, 05, A,AL),

oL L. (4.19)
'ﬁ- = (—i’\:a -ik;s ¢;s ¢d-7 sz A;)'
With these definitions the mixing matrix is:
( 4m, 0 0 gixq O 0 \
0 dmp 0 grg 0 \/2-9303
gk grke O —u1 O 0
X= (4.20)

0 0 —m 0 0 0O

0 0 0 0o 0 0

Lo o o o0 0 o
Notice that in the L-R SUSY we have six charginos, instead of two. The mass eigen-

states are defined as follows:
T = vytT, x- T =vuy-T. (4.21)
With U and V being unitary matrices such that
U* XV~ =M,, | (4.22)

where M,, is a diagonal matrix with non-negative entries. With the above definitions

we can rewrite eq. (4.18) as:

Le=-~ [X.- (Mo)ijx;?] (4.23)

48



or using the first equation of (A.13) and define the following four component Dirac

spinors .
% XY i=1,....4 | 4.24
Xl=(i._—)"— AR ] . (' )
eq. (4.23) becomes:
Lc=— ii{iﬂ" (4'25)

where summation over 1 is implied.
Since M, is the mass matrix it is required to contain only nonnegative entries. We

follow the same path as in the minimal SUSY case and consider the following relations:
M2 =vXiIXV!=UXxXXY(U")"". (4.26)

Therefore, we have to consider the eigenvalue problem for XX and XX t in order to
compute the elements of the diagonalizing matrices U* and V.

The eigenvalue problem is complicated and must be solved numerically. We will
not quote any results since they are not particularly illuminating, Saif [24] has done an
" extensive work on both analytic and numerical solutions to the masses and elements
of the diagonalizing matrices and the interested reader is encouraged to consult this

work.
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4.3.2 Neutralino mixing

In order to obtain the neutralino part of the Lagrangian we once more replace the vev’s

of the Higgs fields into (4.16), but this time we keep only the neutral terms:
Lx= — iV2(\ogr —2)%gy)vrA% + boc.

+ i3:(A%g — A2gc)xuél, +hec.
— id(\%gn — A2g:)Ked3, +h.c. (4.27)
+ my(A220 + X0X%) + mg(A2AS + A%X%) + my(AvAy + Avdy)

+ p1(9B% + 63.8%) + hec.
As usual we define:

0 = (—i)?, —id%, —irS, 0., B3, Bhas F2as AR)- (4.28)

Then eq. (4.27) can be written as:

= —%¢°Y¢°" +he. (4.29)
where
([ m, 0 0 %g,,rc,, 0 0 Jz9ukd 0 \
0 Mme 0 dgrme 0 0 igaks —V2gavn
0 0 my 0 0 0 0 2V2gvvs
v A9k J39RRu 0 0 0 0 —m 0
0 0 0 0 0 —m O 0
0 0 0 0 —m 0 0 0
J59:84 HgrRd 0 —p1 0 0 0 0
\ 0 —v2gqx 2V2qva 0 0 0 0 0 )
(4.30)



The neutralino mass eigenstates are deﬁned by the usual form:
T = NeoT, (4.31)
with N being a unitary matrix which satisfies the relation:
N*YN~! = N,. | (4.32)

N, is a diagonal matrix with positive elements. Notice that since we are dealing with

neutral fields we only need one diagonalization matrix N, which obeys the relation:

N2 = NY'YN-L. (4.33)
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Chapter 5
Chargino Decay Widths

After having introduced the basic mechanisms of the Left-Right model and its particle
content we can now proceed and calculate specific decay widths of singly or doubly
charged charginos. As usual, we first have to isolate the relevant terms of the L-R La-
grangian and calculate the vertex factors of the interactions. It is then straightforward

to calculate the different decay widths.

5.1 Chargino-lepton-slepton vertices
Let us focus on the Yukawa piece of the Lagrangian and particularly on the term:
L= h;g (Zl:‘al(ﬂ' . AL)‘LL + i:al(‘ . AR)LR) + h.c. (5.1)

Replacing the explicit field structure on the above we get :

ena {((5)008) (B 52),(2).)
(208 (B ) (2))) e

(5.2)

™ T
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Now, using the fact that &, are scalars, the identity (né)t = 7€ and some trivial

algebra we end up with the following form:

_ - = T 44 _ T 44 _
L=hn (e,,A‘,'_""e,, +erALten + A, €8 + A, ErEq ).

(5.3)

The next step will be to convert eq. (5.3) into 4-component notation. In order to do

this we define the following fields!:

X zfn

( —iA++ )
iA .

es(g:).

With this at hand and using eqs. (A.14) and (A.16), we have :

=44\C - .« 2 -
(XL ) P,,ee,, e = 3AZ+CLCL,
EPLi;'*éR. == -ieRA;+én,
éPr(xt*)°er=---= e A, €,
- - - o S
X3t Pre€l = - -- = —iA, Eré}.

Using the above definitions eq. (5.3) becomes :

L = ihon (—(%E*)° Preé. + EP.x% Er — EPA(REY)°E; + X' Paet})

(5.4)

(5-5)

(5.6)

From the second and third terms of (5.6) we can easily read off the interaction vertices

which are shown in Figure 5.1. Notice that the charge conjugation matrix C is written

explicitly at the vertex factor. In Appendix B we give all the details of the decay-width

calculation.

1See eq. (C27) in [18).
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Figure 5.1: Chargino-lepton-slepton vertices.
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5.2 Chargino-neutralino-Higgs boson vertices

For the vertices involving the Higgs bosons we focus on the following terms of the

Lagrangian:
L =iV2Te{(e - A)(g.0 - A + 2002 )(0 - A,)} + Rhp. + hec.
Expanding the above using the explicit field structure we get:

JRATAN + A*ACA- + AAAY — AcACN
L = iﬁTr (]2

A AT — A+ A+ A~ — AtA+H\+ — % A+A+N\

LA+A* 4 AvAY ...
+2gvAv ( ) } + R.h.p. + h.c.

AOA'H» + %A"’A*

(5.7)

(5.8)

If we now expand further our expression and keep only the charged A terms, we end up

with the following:
Lo=iv2g. (B+A°A- +A°A*X+ — Ar+A*A- - A*AWAY),

+R.b.p. + hec.

Defining the 4 component spinors:

- —i)\t
Wir = ( i:-\° ) ’
LIR
v = Xf
XO - ( i..— ) I
D° =

( R )

=0 ’

A,

and following the diagonalization conventions of Huitu et al. [29], we have:

xt =V = Al =Vid +---+ Vesxd = Viaxt-
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In a similar fashion: . .
A% = Vexi

(5.12)
A% = N3x!

Before continuing, there are two points worth noting in the above formulas:
1. For compactness, we imply summation over repeated indices.

2. Notice that there is no expression similar to (5.12) for A? since it is not included

in our neutralino basis ¥°.

Therefore, replacing the above definitions in the expression (5.9) we get:
Lo= {ivV2g (ViaxiA®A~ + A°A*X* — A+A*A- — Vaxfartat),
+iv2gn (Viex? A°A~ + Npx?A*A* — A++A*A- — Vaxfarat) 1 (5.13)

+h.c.
Using (A.14) and (A.16), we have :

WumPixt == —idgnXts
J?:P I-WL(R) =cee= -iX?'\t(np
Win Pt = = —AmA*, | (5.14)
X PWem == —x{A@m»
DPW, =---= —irtA:.

Now, due to the unitarity of the mixing matrices we can easily prove that:
Wi Pe = (Up%5 )Pe
PWyq =P l:(‘/j.l(z)i; ) (5.15)
PWem = P (Up(%9)°) (= UpXy)) -
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Notice that we defined: (x?)¢ = x;- Lastly, using (5.15) and (5.14) the final form of

the Lagrangian is:
. . - e, =0
Lc= {"/i‘h (‘V.sU X5 TIPS +i aD PuxiAt
+ U3 lx, TP AL —iViUnit PLX-A++)
+iv2gn (VisUpT: PRt A% + iNGVRX P AL (5.16)
+ Upi} Pt AL —iVaUnit P35 044}

+h.c.

From (5.16) we can easily read off the interaction vertices which are shown in Figure 5.2.
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- Figure 5.2: Chargino-Neutralino-Higgs boson vertices in the L-R-SUSY model.
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Figure 5.3: Chargino-Neutralino-Higgs boson vertices in the L-R-SUSY model (cont’d).
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5.3 Chargino-neutralino-Vector boson vertices

Finally, let us look at terms of the Lagrangian that give us the Chargino-neutralino-

Vector boson interaction:
c=Tc{(s-A.) 5* Lo WE —ig, V. A R.h 5.17
= Q) o @-59!." s %vVu ("" l-) + -P- (5.17)

Again, we keep only the charged terms of (5.17). After some algebraic steps we get:

Lo=(~ia) [Baw-eas+B'5,wss |

(5.18)

A s, WorA+ — a**a“w+u,s+] _+Rbop.

Making the usual replacements with the charginos and neutralinos we have:
Lo =(~ia) [BlaWo (Vix)) + (Vaxt)z Wi A
~(Vsxh)au Wi At — AL 2, W (Vex?)]
+(—f9r) [(NsX)TWi*(Viexs) + (Visx?)E.WH(Njsx3)

—~(Vex! )7 W AL — AL 5 Wi (Vix?)|

(5.19)

. =0 -
= (—%g‘-) [Vj.SAL&uX;W:“ + Vsxto WAL
~Vaxt B AW — VAL W]
+(—4gn) [NaVariuxiWi* + VieNjxiaux;Wi*

~Vaxta A Wit - Vel s wi] .
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Note that according to our original definitions we can show that:
i:‘Y“P Li; = ig‘_’uX;,
XI1TPLXS = X TuXs
KPRt = —iXt 0Bt

_ et (5.20)
i::m7“P X = —iAL(ma'uX? ’

5"7“},1.2; = Zo‘-’ux;’
Xy P.D° = xt5,A.
Therefore we can rewrite L in four component notation as follows:
Lw = (—%9:.) [Vj'slz)o‘y“Pz.i;W,_' b4 Viskiv“ P DWr*
—VisRI PP W — VS P P W]
(5.21)
+ (-%gn) [N-'stB)-z:‘Y“ Py Wt + WGN;8§:7“P L X;Wi*
— ViR P PR Wik — iVaXat v Pt Wi -
Finally, from expression (5.21) we can easily read off the interaction vertices which are

shown in Figures 5.4 and 5.5.
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Figure 5.4: Chargino-Neutralino-Vector boson vertices in the L-R-SUSY model.
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Figure 5.5: Chargino-Neutralino-Vector boson vertices in the L-R-SUSY model (cont’d).
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5.4 Decay Widths

We are now in the position to calculate the lowest order decay widths for the dif-
ferent supersymmetric interactions. The details of a sample calculation are given in
Appendix B, in Tables 5.1 and 5.2 we will simply quote the results which are expressed

with respect to the initial particle’s rest frame.



Process

vt + o+
Xim ~F € Cn

Xt = X3 ALm

Decay Width Jl

LN m3 2
= SxMy s (ML + m3 - mg) Al/? (1! m‘:1 %

——

ol U; m?
= Rl (o s ) 25(1 3, 3)

X3 = XI0%

= BVl (2 2 — M2) 32(1, 24, %%)

x; = D°A

r = H%E (m2 + M2 - M2) 32(1,%%,%4)

- - 9miUna@P m2 M2
Xitn > XJALn | T'= Llsﬂz: (qu- +m} - Mg) A2 (1, ﬁf:, ﬁ&-)
- - ’2 U; V.' m’
Xt = XAt 1‘=_l-u9'_%ﬂ(m?+m§_Mz) ,\uz(l,m‘,%)

Table 5.1: Total decay widths for chargino decays into lepton, s-lepton and Higgs.



Il Process Decay Width "

mi)? —2M}]

P= iVl |Njsl? [ME(m2 + m2) + (m} —m3)? —2M}]
X5+ xXiWg ,
. x \1/2 (1’ %, %})
3 J
= ohoathrlVisl? (M3 (m? + M3) + (m? — M3)? — 2M]

Xt - DwW}

De - X; *W-

P= ookl Visl? [M2(M3 + m3) + (M2 —m})? —2M}]

x A1/2 (1, . Aﬂ,’qc)

D D

y

Ya o i VA 4
XZ(R) — Xl W:(R)

9%
r= 3%"/‘5(6”2 M3 (M, + m?) + (M, = m?)? — 2M} ]

1
16xMy

1/2 m? M‘*)
<32 (1,53 i

vt o++ -
Xi = XtmWan

= ok R Vis(a? [ME(m? + M2) + (m? — M2)* — 2M3]

lstm.

xAl/2 (1, %, %’?’-)

Table 5.2: Total decay widths for chargino and neutralino decays into Vector bosons.
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5.5 Conclusion

As we mentioned in the introduction, the Standard Model, successful as it is, is.most
probably not the final answer of theoretical physics for explaining and unifying the dif-
ferent ma.nifwta.tions: of matter and fundamental forces of Nature. The gauge hierarchy
problem (GHP), CP and Parity violation, seemingly unrelated structure constants, etc.
are some of the problems the SM is faced with. Different models have been proposed
in an attempt to remedy some or possibly all of the above drawbacks. We reviewed
some of these models and saw their differences and their similarities. We then intro-
duced the L-R SUSY model which, although retains all of the SM’s desirable features,
yet it provides solutions to many of the problems mentioned above (e.g.: GHP, Parity
violation.).

After explaining the basic structure of the model we have calculated interaction
vertices among various doubly and singly charged charginos and neutralinos. Further,
we used these interaction vertices to calculate specific decay widths.

In order to extend and complete this work the decays would have to be evaluated
numerically. This requires that certain values be given to some of the free constants
that would come from different scenarios and restrictions found in the literature. By
doing so we would be able to comment on what to expect for realistic decay rates.
Since the doubly charged Higgses and Higgsinos are not restricted by the theory, there
is a chance that they afe quite light and therefore we can hope that they may provide
a sign for L-R SUSY and enhance production rates. We believe and hope that further

study will concentrate on this direction.

67



Appendix A

Spinor notation and conventions

Let M ¢ SL(2,C), then the self-representation is defined as:
D(M) =M, V.MeSL(2, C).
The elements of the representation space transform as':
=M%, a,3=1,2.

Similarly, the representation D(M) = (M*~')7 is equivalent to the complex conjugate
self representation M* and F* is its representation space. The F* elements are dotted
(right-handed) Weyl spinors, whereas the elements of F' are undotted (left-handed)

Weyl spinors. We now define the direct sum of the two spaces F and F* as:
E=FegF"
‘where E is the four-dimensional complex representation space of Dirac spinors. There-

%s(g)eE

1The spinor notation and subscript-superscript conventions in this work are based mainly on
refs.[18, 30].

fore, if £c F and 7j € F* then:
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is a Dirac spinor. Further, we define a representation of SL(2,C) on E by the map:

M eSL(2,C) = S(M) = ( M ) . (A1)
Therefore,
o =sonw = %, ). | (A2)

Notice that the dotted and undotted indices refer to different (non-equivalent) repre-
sentations and should not be confused. Writing the index structure of the Dirac spinor
explicitly we get:

Y= (5): ), wherea=1,2and a=1,2 . (A.3)
In a similar fashion, the spinors £, and £ transform under M* and M~! respectively.

We now define the following conventions:

Qv = diag(1,-1,-1,-1),
= (E,P), ) (A4)

o*=(1,0), 6 =(1,-0).

In the so-called Wey! basis or chiral representation the ¥ matrices are as follows:
0 o*
=
7= ( 0 ) (A.5)

and furthermore:

_ _(-10
% =YY = ( 0 1 ),
(A.6)
- ol 1)
o = -[‘7“17"] =2 ( oa oy ) ’
8
where
o = Z(o53"" — akah), (A7)
—pva __ 1. _ aa ¥ —vaa
o"“’b = Z(a“ o), -7 a:“.'). (A.8)



Writing the complete index structure of expression (A.1) we see that any 4 x 4 matrix

I acting on Dirac four-spinors must have the following index structure:

s . .,
L= ( ég, gg‘b) where a,3 =1,2; &,8=1,2 and A,B=1,2,3,4. (A.9)

With this background material at hard let us rewrite the Dirac equation as follows:
(4*pu —m)Yp =0
=2 (YPu)as¥s = m¥a

> ( e (a"':)“)(;;): (%)

Therefore the Dirac equation in two-component notation becomes:
(3.p*)*%¢s = mi®, (0up*); 77 = méa. (A.10)

In order to raise and lower the spinor indices we define the antisymmetric tensor £**

which plays the role of a metric? in the spinor space F':

£ = - = —g,,=i0" = ( _?1 (1) ) . (A.11)

So, for example, £* = ¢*#£5 and similarly for the dotted indices: 7, = € “ﬁé . Finally

we define the familiar left and right projection operators:
‘ 1
, Por= ’2‘(1 F %)

and soifn/),_,nr_-ﬂ,_nt[:wehavetﬁ=("z" )

2Actually, eMe™ = M-'T, € ¢ GL(2,C). For further details see ref.[30].
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We will now state some characteristic and useful identities of the component spinors:

né = n°6. = n,

i€ = 7.€* = &,

hE* M = 1,20 s = —G*Th,
o€ = 7,5 € = —Ea*1],

no*€ = N0t Pl = —fo* .

Let us for the sake of clarity prove the second formula above:

7 = nb=-Eq= ’5&55-55547 = "5-3(51‘)“5&'7"'

= —&(—e)Besm = £ = (E7).

(A.12)

Using the above relations we can prove the following set of equations which are used

in ‘translating’ the four-component into two-component notation:

iy = m& + Rés,

vy = —mbs + b,
iy, = £:3°6 — L,
by vsds = =656 — L M,

-%i"l-’xa'w'ﬁz = mo*§; — i)',&‘“’f—,.

(A.13)

We clearly see that the indices 1 and 2 label different four-component spinors and

their tWo~component subspinors. Using specific combinations of the above equations

we get the following relations which are useful in building four-component spinors from

Lagrangians expressed in two-component notation:
'p—xPL¢’2 =né,

'LPR'/’: = '—hgn
$ 1 P, = 6,546,
'I’-n'YFPR'pz = —TRp0" 1.
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The charge conjugated spinor %€ is given by ¥¢ = C $T where (in the chiral represen-
tation):

C=—igiy = ( e 9 ) . (A.15)

sa

H¢=(;)wm

¢c=_,.=(i06’,‘ iaﬂh;)(z_:)=(z.:), (A.16)

A Majorana spinor has by definition the property ¢ = 4, and so, according to (A.16),

n = €. Therefore a Majorana spinor has the general form:

Yo = ( g. ) = (‘.;fsz ) : (A.17)

If now %, and ¥, are anticommuting four-component Majorana spinors, then from

eq. (A.13) and the defining relation (A.17) we can prove that:

!Zﬂbz = 'zz'/’u
'/-’1'75'1’2 = "Zz‘Ys'ﬁu
$17p'l’2 = —'/_’37p¢h (A.IS)

'/317.-75"’: = $27u75¢l )

'/;xa’:w"l’z = _$2auv¢l-
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Appendix B

Decay width sample calculation

Let us now, for illustrative purposes, have a closer look at a specific decay. We will use
as an example the process: x; = ;A% i > j. The tree-level diagram for this process
is shown in Figure B below together with the vertex factor. The letters in parentheses

denote the particle momenta.

X
Xi ® =), >
— 5% j - y ¢
) N ®) 29Vislii J
AN

Figure B.1: Decay diagram with momenta and vertex factor.

The amplitude for this process is clearly:

M= —ia(h) - (- Lv05,1 = 7)) - wto). (B.1)

Squaring the amplitude we get:

AP = LV Pl Te((k+m)(1 = P)F+m) 7). (B2)
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Evaluating the trace we have:
Te{---}
= kup Te{7*(v* + mi) + mj(y¥ +my)
— (1 + mi) = miyt (4 ms)

+r4(y* + mr® + mi(r” + mi)yt

1y + m)y® — mirt (v + mi)rt} (B.3)
= kup, Te{v*v* + 717"}

= k,p.8g""

=8k-p.

Here we used the standard trace theorems, see for example ref [7]. Now, according

to our momenta definitions we know that: p = k + k’. Therefore,

(p-kP=kK*=>p+k* ~2p-k=k"

= p-k =3P+ K - F?) = }(m? + m} - M3).

Working in the initial particle’s rest frame (center of mass frame) and using the appro-

priate formula [31], we get the following decay width:
[ = &&HIMP %"AI/Z(I, ;:;, ?_n{;)
| (B.4)
m32 2
= e alValtlUal (m +mi - M2) 272(1, 3 24)

where ) is the kinematic factor [26, 31].
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