s

4]

. oo - ‘

”
L 4

'The Implementation of the Run-time System of
A Concurrent Programming Language, Pascal-C

Yin-lam Wong

A Thesis)

in © |
The Department
’ of

Computer Science

/

/

I3
~ /

‘pPresented in Partial Fulfilment of the Requirements
for the degree of Master of Computer Science at.
Concordia University
Montréal, Québec, Canada

January 1985

© Yin-lam Wong, 1985

* v [4

.
o+
&

h G Ao -t o

- I _ " absTRACT

-

%\ The Implementation of ‘
B the Run-time SyBStem of
A Concurrent Programming Language, ¢
\ Pascal-C ’ -
o
. Yin-lam Wong (
.
toy
6 ¢tThis thesis describes a multiérocessor,
projeqt specific to combinatorial computing. An
overview of its system architectu;e, the software
and the hardware is provided. A detailed
description of the implementation of the
- 1 communication subsystem of, the network and the *
implementation of the run-time system of a)
: concurrent programming language, Pascal-C, is ///"~’
¥, given with emphasis on their programming

methodologiés and the problems encountered.

b Y ' [
Acknog}edgemenx .

’/ .

I woulﬁa like to express my sincerest thanks to my ‘
thesis supemwisor Dr.C.Lam, who guided 'and encouraged me
throughout +the preparations _of this thesis. ﬁe also readv
the several. drafts of this thesis, making numerous
suggestions for its improvement. The final version’ of this
thesis owes much to him;' the mistakes are my own.

.) . : ‘
*1 thank Mr.S.Cabilio who modified ‘the run-time system
of Parallel Psascal. His work was very helpful for the
preparations of this thesis.
' N
I am grateful to Mr.L.Thiel foruthe discussion and the

advices, to Mrs.P.Dubois for her technical/ expertise,

cooperation and help.

L

- Chapter 1.,

Chapter 2.

Chapter 3.
3
R 3.2

T o33

, 3.4
3.5

-

Chapter 4.

“‘ﬁ‘-{:”\ _') : 411

Kﬁ;a phépter 5.
' " 5.1
5.2

R A
| 54

Chapter 6.

i

Aot b e 4.2.

L&

Contents

Introduction
General description of the pfbject

Description of Pascal-C

. Down Procedure

. Wait Statement C N
. Terminate statement

. Critical Proceudure

. Copy Section

Implementation of the Pascal-C System
. Brief description of each 'layer'

in Pascal-C

.

Interfacé between Preprocessor and

Run-time system

Description of Run-time system

. Data structures

. Master Processor

) Slan Processor

. Cooperation of the master processor and

the slave processor

!
4

Implementation Techniques used in the

v

ruﬁ;time systen

[ESNEUTSIUI SUUINISN W - - B U —

29

1"

15

16
18
19
20
22

24
24

34
35
40
41
52

56

6.1. Update the actual variable pafamétbr of a
down procedure
6.2. Running a critical procedure reﬁuested by
a slav; ’
6%. Implementation~of the Terminate statement
Chapter 7. Description of the Communication subsystem
°

.1. Overview of the Communica%ion subsystem

.2. User-CSS interface ‘ o

R I

3. Ipternal etruciures of the CSS

Chapter 8. Testiné the RTS and running a Pascal-C
L4
& program '
8.1. Testing the Run-time system

8.2. Running program on the Pascdl-C system
preee
Chapter 9. Conclusién
References. \ . ‘ . »

\\

Appendix 1. Examplé‘Progr\

Preprocessor-RTS\.-interface

d

56
60
63
66
66

68
70

82
85

90 -
94
99

119

- .

. @iAPTER 1. INTRODUCTION. " / ~

+ The objective of this thesis 1is to describe .a
multiprocessor gpproject specific to combinatorial computing,
with emphasis on the implementation of the run-time systém
of a parallel programming language, Pascal-C.

Motivation of the project:

N b

/

There are many problems ‘ff combinatorial nature for
which the only known solutions require exhaustive search ‘of
many possibilities [Lam et al 83)]. For example, examining
all sequence S of N moves in a chess game would require
operating in a seérch 'space~in which'thé number of nodes
Erows expénentially with N. The critical problem of search
is the amount of time and space necesear; to find a solution
[Feigenbaum 81].

/’;\\ o

A 1arge<;ain—%¥gg;,computer is often used to solve
these proble;;\”#jcause of its speed. However, it also
offers fast floating goint calculations; it is able to
handle a 1large volume of input/output operations and it is
usually associated with a gophisiticated operating system.

These features are unnecessary in solving many combinatorial

problems. /IQPB, it is often not economical to use a 1large

. computer for solving these problems. On the other hand, a

single m}nicomputer cannot provide the necessary speed.

-7 -

. ;oo
rd

» R

‘ - ﬁT €, -
However a network of mini- or milro- proceMgors may saf!afy

the speed requirement. %aieover, the special nature of a
. .
problem allo:g it to be partitioned into many

comﬁinatorigl
small individual subproblems. Thus, it is not difficult to

g assign jobs to each processor in the network.

3 »

The'syetem that we have designed to solve combinatérial
problem is a network of computers. Each node of the network
contains a mi;i- or a8 micro- processor, with its own
independent memory. One or more nodes of the network aisd
possess other peripherals such as terminals, printers and
disk drivess# so that the system can communicate with +the
outside world. TQ&vfact that the problem can be {E?Tttioned
into many small subproblems suggests that it ies suitable to
have a hierarchical (master-slave like) architecuture. 'The

master proceséor takes a problem and divides it into many

subproblems. It then assigns the subproblems to its slave

processors. The slave processors find the solution and

return the ansvers to the master processor.

Given the ﬁultiprocesaor network, it is important to
_ design a high level programming language which is suitable
for solving combinatorial problems on such a network.
"Several parallel programming languages have been, intended
ag general purpose language. However, they only provide
constructs for a low level process creation and

communication suitable for real-time computation, and 1/0

\

synchronia@tioﬂf It is difficult to wuse them for

péfg}iel'sm‘ feund in many high lievel algorithms"
[Opatrny 84§.L‘Our project team have designed a high level
language, called Pascal-C which ie a dialect of Pascal

described in chapter 3.

This multiprocessor project was proposed and directed
'by Dr. Lam [Lem et al 82]. The .designs of the system
architecture and the c;ncurrent programming language,
' Pascal-C, were done by a team consisting Dr. Atwood,
Mr. Cebilio, Dr. Desai, Mr. Grogono, Dr. Lam, ;Dr. Opatrny
and Mr. Thiel. During the first implementation, a Pascal-C
preprocessor was implemented by Mr. Cabilio [Cabilio 85].
The original version of +the communication subsystem was
written by Dr. Lam. The top level design of the run-time
system was also discussed in length by the team. My
contribution to the multiprocessor project is the refinement
of this top 1level design of the run-time system and the
final implementation of the run-time system of Pascal-C as
well as the implementation of the communication subsystem.
My work on the implementation of +the run-time system of
Pascal-C 'was also helped by Mr. Cabilio who modified the
run-time system of Parallel Pascal and Dr. Lam who wrote a

program for the extended memory management.

~

A ya By il
r ’, -

.
Organization of the thesis: .

L - v oK

Chapter 2 gives a general description of the
multiprocessor project. Chapter 3 describes +the Pascal-C
features in detail. These are the extensions of Standard
Pascal for parallel «computations. Chapter 4 is an overview
of the implementation of the whole sysfem. Chapters 5 and 6
describe the run-time system in detail. Cpapter 5 describes
the organization of the run-time system and its handling of
the distribluted features of Pascal-C. Chapter 6 describes
some of the techniques used in implementing the run-time

system. Chapter 7 describes the communication subsystem.

" Chapter B describes the testing of the system and running of

a Pascal-C program on the system. The conclusion is given
in Chapter 9. Moreover, Appendix 1 shows a sample program
written in Pascal-C language while Appendix 2 shows the
action codes Iused for the interface between the Pascal-C

preprocessor and the run-time system.

| maar s e e o ettt e e

CHAPTER 2. GENERAL DESCRIPTION OF THE PROJECT. ‘ e :
. / *

‘ -‘ . , - \‘ .
In this cMapter, 'we describe the objective of , the

project, +the architecture of the multiprobessor system as

o 0 .

well as the software and hardware used in this project. - «f

5
Objective. . '

The objectivg of °this‘ project 1is "t$o construct a
multiprocessor 1system’ for solving combinatoriai problems.
The system should be powerful enough to solve a problem in a
reasonable amount of time aqdfit should be eagsy to use.

N)

The problems for which the system can appropriately .be

used have the following ch¥racteristics [Lam et al 82].

1. “éhey are processor-bound: the amount of calculation
required 1is- large in comparison to the amount of
input and output and is also 1large in; absolute
terms. Thesknown solutiohs of the problems require

processing time that -increases exponentially with

‘the size of the input.” “Jj'

2. "The given original problems can be partitioned into
. many subproblems which can be g80lved indepéndent of .

* one another."

o s

" We have * decided to have a network of mini- or

<

micro-processor. These processors will co-operate to solve

4

the problems.

/

Architecture of the system.

L]
Since the given problem can be divided and subdivided

into many smalley independént subproblems, we decided to
have &a hierarchical architecture : a problem is given to a
'master"processor and the master“proéessor partitions ‘the
,originél problem into many subproblems and asks its 'slave'
processors to sofve these subpreblems. In a multi-level
system, +the slave processor subdivides the given subproﬁlem

a

into sub-subproblems and ask its own slave processors to

"solve them. The processor, which is both a slave and a .

master processor, is‘called an intermediate level processor.

4

The processors in this system'are logically connectéh
as a 'tree' with the 'root' beiné/the master procebsor t6
whom the user's original problem . is giyen. The systen
ans;sts of the folléwing charateristics:

t

1. A processor is a master, a slave or both.

5

‘2. A processor can communicate with. its master and

slaves only. No communication. should +take place

-12 - o

s vl
¥

. between slaves.
3. Every . processor ﬁemory and no memory is
shared betweep processors.

. , : w

Softwdre.

. -

Our goal in this area is to provide spftware that

- o
1. is easy to learn. :

2. allows the user to write efficient programs to solve

combinatorial problems.i /n_

3. can be implemented in a reasonable amount of time.
We have decided to extend the existing language Pascal
with features for parallel processing. Pascal-C is Standard
'Vgascal with . some extended features that enéble programmers

IS

to exploit a - tree-structureé[mﬁltiprocessor " gystem.
"Moreover, to write programs in“Pasca;;S}4fhe progranmers do
not have to worry ”about-'the comfiunication . and the 3
synchronization between processofs. Ail the users have to -

umber of levels of the system.

»

e

-

know about the syifem is th

Hardware.

, Cufiently, the configu;ation consists of a DEC
-% . . . PDP—11/34aané several LSI-11/23's. ‘The PDP-11/34 is used as
" a master and the 1SI-11/23's are used as slaves. Each
| processor has at legst three serial lines with baud rate
between 1200 and 19200,

In this first implementation, every processcr has a
console terminal and a random access system device. It
‘makes debugging easier, because programs do not have to be
do#nloaded at run-time and Dbecause the console terminal

N

~allows us to trace the actions of all the processors.

[

3
3 o G .
v

CHAPTER 3. DESCRIPTION OF PASCAl-C.

Pascal-C "is =a programming - language specifically
designed to solve combinatorial problems on a multiprocessor
system with a tree structure. It contains most of the
features of Standard Pascal. In addition, we have added
some new featﬁres which allow programmers to exploit a
tree-structured multiprqcéssor architecture. The new
features are as follows:

1. Down Procedure <DP>. &

2. Terminate statement.
3. Wait statemenp.

4, Critical Procedure <CP>.

5

5. Copy Section. i .

Al »

- This chapter describes the new features (Pascal-C

features) which are not in Standard Pascal. In each

section, we describe briefly a Pascal-C feature as well ée
its syntax and semantics. For a more detailed description

about Pascal-C, please read the Pascal-C Report

[Lam et al B2].

_ 55 5

=\

Section 1. 'Down Procedure <DP>.

When & master processor is given a problem, it usually
partitions the problem into many subproblems and then
agsigns these subproblems to its slave processors. The way

that a programmer assigne subproblems . to the slave

~ processors is by using a Down Procedure (DP’for short) call.

A DP is like a normal procedure in Standard Pascal except
that it is executed by a slave processor rather than by the
master processor. Moreover, the master processor can

continue with its execution right after the down procedure

has been assigned to a slave,- without having to wait for the
completion of the execution of +the DP. Thus, many

processors can work' in parallel.

v

Syntax.

<DP declaration>::=

1%

down <procedure heading> <copy section> <block>;

tdown <procedure heading> <block>;

In this and subsequent productions, undefined
non-terminals . are assumed to be those of Pascal. The <copy

section> will be described later in this chapter.

- 16 -

Semantics.

The master processor at the 'root' of the ‘'processor
tree' 1is called the level O processor and its slave
processors are the level t processors. Their . slaves are
level 2 processors, and so on. In general, down procedures
invoked by processor5 in level K will be executed by
processors in level K+1. Calling a DP causes initiation of

a process at level K+1.

Moreover, a down procedure P can be invoked as many
times as the user wishes. The slave processes, which are
.concurrently executing the down procedure P, are said to be

in the same DP cless (class P).

A down procedure. can access only its parameters,
locally declared variables, procedures and funétions as well
as objects defined 1in its Copy Section. "It also can call
Critical Procedure (CP for short) mentioned in its procedure
heading. These CPse will be executed in its master

) »

processor. Criticel procedures are described in Section 4

in this chapter.

The new values of the actual parameters corresponding

to variable formal.parameters will not be updated until all

the proeesses executing procedures Of +this.class P have
- -
finished their tasks and a WAIT(P) statement is executed for

- 17 -

s At e o o m o e e b A ot . e e

this DP class.

Section 2. WAIT(DP) statement.

It is obvious that there must be a mechanism by which a
master process can be suspended until the outstanding

slaves, who are eiecuting DP in tﬁie class, complete their

tesks. The statement WAIT(DP) is designed for this purpose.

Syntax.

<wait-statementd::= wait (<DP class name})°

Semantics.

L‘After the maatpr o processor has distributed a ‘dpwn
procedure class to its slave processors, it must gxedhte a
WAIT(DP) statement for this DP class before it leavés. the
environment where the actual parametgrs passed to the DP are
declared. In'addition, only a master can execute a WAIT(DP)-
statement. The effeé% of the e;ecution of a WAiT(DP)
statement is as follows:

~

1. When a WAIT(DP) statement is executed by a process,

©

- 18 -

e

this process will be suspended until all siave

processors exeéuting DP in this class have finished
their jobs.

2\ When the process resumes exgcution, it updates the

\variable parameters of this DP .class if this DP

class is not in the 'terminatgd' state. The meaning

of the 'terminated' state is explained in the next

\
sgction.

3. It brings <this DP class out of the 'terminated'
~»
_state if this DP class was there. .

Section 3. TERMINATE(DP) statement. .
‘ | ro
Therenare occasions when the master processor:pgeds v to
terminate its slave processors whether or not the& h;ve
comp}eted tgéir current tasks. For }nstance, some‘ problems
are considered solved as soon as any single solution is

found. The user can use the TERMINATE(DP) statement to

terminate a class of DP when the probleﬁ is solved.

»

Syntax. v

)

<terminate-statement>§;= terminate (<DP clases name))

+
i

- 19 -

" Semantics.

When =a TERMINATE(DP) statement is executed, the class
of DP is terminated. All slave processors working on this

DP class, are to be.fréed.

e

\

Moreover, it bringé this DP class into a 'terminated'

state. While a DP is in a 'terminated' state, all further

‘invocations to this DP class will not be sent to =& slave.

However, any parameter evalution implied by the DP call will

‘still be carried out. Thié DP class will not eiit from the

'terminated' state until a2 WAIT(DP) statement is execu'ted
for this DP class.
1
Only =a master can execute a TERMINATE(DP) statement.

This is similar to the WAIT(DP) statement. .

Section 4. Critical procedure <CP>.

A critical procedure is & procedure defined 1in the
master process and which may be éalled by the master itself
or by its élaves. However,’only the master procesao; can
execute a CP. While executing a CP, it should not be
inferrupted by the master process or any other CP. “

*

The slave process can report some useful information

v

- 20 -

oy

a
-
» \

before the end of its execution by invoking a critical

e
[

procedure. It is particularly useful for geporting
intermediate results. In the case where only one single
solution is reduired, the slave processor can invoke a

critical procedure in the master process to report -the
answer a;\wéll as to terminate this DP cless.

~)
Syntax.

{CP declaration>::= critical <{procedure heading>

<block>;

Semantics.

A

. 4
A critical procedure declared at process level K
can be invoked by process at IQVel K or K+1. However, in
order to maké a CP at level K available for the process at
level K+1,] the CP's name must be passed as a parameter to

-

the DP executing at level K+1.

%

If a CP at level K is called by a process at level K,
it will be exécuted immediately since no other process is in

the critical section when the level K process (thg

master process) is active.

- '21‘ -

i..

If a CP at 1level K is called by a slave process at
level K+1, it has to wait until the master -processsor is not

executing another CP.

A CP can have only value parameters and can access
objects local to +the CP itself or which are declared

globally.

Section 5.‘ Copy Section.

Since a down procedure is indeed executed by & slave
processor, all non-local procedures, functions, variables.
end types invoked in the down procedure as vell as the
parameters of the down proceduré must be downloaded to the
slave processor before execution of the down procedure. To
benefit both the readers of the program and. the compiler,
all non-local procedures, functions and variables used in a
down procedurg must be mentioned in the Copy Section of the

down procedure.

' antax;

/\S | ¢

<copy section)::£‘¢o§y¢<identiiier>“{,(identifier)} :

- 22 -

Semantics. .

All data (variables) mentioned in the copy section of a
DP will be downloaded to the slave when a DP of this class
is invoked. The curreht values of the variable will be
downloaded to the sf;ve processor while initiating a DP. A
slave processor can change thelvalues of these variables
duriné execution but i? does not affect these vagiaples in

the master side.

The functions, procedures, types declared in the copy
section are used by the Pascal-C preprocessor. They are
copied into the program in the slave side in order to give a

complete and self-contained program. The preprocessor 1is

described in [Cabilio 85].

‘ S
o .
o
u
- 23 - ;
, .
‘

e e e e i .-y - - y.

.

CHAPTER 4. IMPLEMEE}TION OF THE PASCAL-C SYSTEM.

In this : chapte;: ve will look at the 'whole
multiprocessor system from the viewpoint of implementation.
The system consists of five 'lajers'. Section 1 contains
the brief descriﬁtion of the functions of each layer. In

Section 2, we describe the interface between the layers.

In this first version of implementation, the
multiprocessor systed contains only two levels. The first
level contains only the master 'processor and the second

level can contain an arbitary number of slave processors.

~4

B ' i
Section 1. Brief description of each 'layer'.

v

The five ulayers' of the systeﬁ are listed below:

1. The 'Pascal-C' 1layer : code generated by the

Pascal-C preprocessor.

2. The run-time system layer ‘(Rf%) : code from the

run-time library of Pascal-C.

3. The 'CSS' 1layer : code for the communication

subsystem.

4. The '08' 1layer : code belonging to the opefating

gystem.

5. The lowest layer is the hardware 1ayer.—
-
Each layer calls upon the ser;ices of‘the layers below
it but can be defined independently of the layers abéve it

" [Lam et al 82]. BFach layer” is transparent to,,the layer

above it. The furction of each layer is described in this

section.

Compiler of Pascal-C. e -
- ~

e
. €

In order to execute a Pascal-C program in our target

machine, we need a translator which. takes a.Pascal-C program
as input and translates it into an assembly language program
or object codes'of the target machine. It is not aisimple
task to write a Pascal-C compiler. Since there .is. an
existing -Parallel Pascal system [PP 82] for the target
machine (PDP-11), we have decided, in the first nveréion of
,implementation -of the Pascal-C system, to make use of the

Parallel Pascal system. .

We have implemented a Pascal-C preprocessor which takes

a Pascalic program-as input source progrem and translates it

into Pascal programs as output. Then, we use the Parallel

Pascal compiler to compile the resulting Pascal programs.

- 25 - ‘ ~

L4 ¥

. The. Pascal-C pr;;?bcessor output can be divided into

two parts.‘]

v
1. the Master Pascal-C: the output program for the

15
. .master processor. .

2. the Slave Pascal-C: the output programs for the .
slave processor. ‘

L ‘“

In Chapter 8, we shall dgscribe the Pascal—é preprocessor

output in detail.
4
-" "Q;
i l N~
.Constuition. of +the preprocessor was a master thesis
project of S.Cabilio, and a detaileq‘ description of the

preprocegsor of Pascal-C is contained in [Cabilio 85].

+*

A

to

Run-time system of Pascal-C.

w

Predefined procedures' of a high 1level pfogramming'
language (e.g. READ and WRITE in Standard Pascal) may he

stored in +the run-time library. The compiler will ingért
’ 7

.codes to call these predefined procedures from the run-time

I

library while compiling. Without a run-time librar§, we may

need a very sophiciticated compiler to generate very

" complicated &tode. The existing Parallel Pascal run-time

systém supports all Standard Pascal features needed to beé
/

implemented in the run-time system. Thus, to implement the

{

©

- 26 ~ .

Q

Pascal-C run-time system, it is sufficient to implement the

library functions Ghich support the Pascal-C features.

To implement each Pascal-C feature, the Pascal-C
preprocessor (or compilér) inserts one or several calls +to

the run-time s}stem and then the run-time system will

perform the necessary actions.

In brief, Pascal-C run-time system does the following:
ot
1, Logical communication between processors (master
processor and slave processor).

;v

2. Allocating down procedures to slave yrocessors.
3. Initiating and terminating processors.

4. Updating variable parameters of down procedures.

’ .
5. Implementing critical procedures called by slaves.

]
I :
6. Schedul%ng the executions of critical procedures and

. protecting the critical section,

The implementation of Pascal-C run-time system wiil be

described in detail in Chapter 5.

- 27 -

Communication subsystem (CSS).

An_ efficient implementation of +the communication
between processors strongly affects the efficiency of our
multiprocessor system. This is because messagés and data

have to be sent often between master and slave.

The communication subsystem supports& the physical
communication between the run-time system processes. In
other words, the run-time system 1is a wuser of the CSS.
Messages and data communication between a master processor
‘and a slave processor -are done via the CSS. The CSS. uses
the physical link between two processors to provide séveral
virt@al channels which can be opened or closed indiviéuallya

The CSS contains several external procedures which can be

called by its users to do the following: -

1. Initiate/terminate the CSS. I

2. Open/close the virtual channels.

3. Send/receive message through a specific channel.

The user does not have to be concerned with ‘the
internal stmpcture of the CSS and cﬁn consider the CSS as an
error free communication system. Indeed, error recovery is

done within the CSS. In Chapter 7, the CSS is described in

‘ detail.

Operating sygtem layer.

The operating system used is RT-11. The Parallel
Pascal run-time system will call the operating system
library to implement 1/0 operation whenever an I/0 ip

necessary,

In this version, every processor must have its own copy
of the operating system RT-11 because each of them possesses
at 1éast.a terminal and a random access system device.

Section 2. Interface between Préprocessor and Run-time

-

system.

To implement the Pascal-C features, a Pascal-C compiler
or a préprécessor must insert code into its output programs
to call the run-time system in order to take the appropriate
actions. Thus, the interface between Pascal-C
compiler/preﬁrocessor and run-time systenm mus% be vefy

clear. No misunderstanding or ambiguity is allowed.

v

Sinpe Pascal-C is implemented as a brepréceseor rather

~than as a compiler, calls to the run-time syétém cannot be

~——

inserted in the same way as is usually done'in a compiler.
All the run-time system calls inserted into- the preprocessor
output programs ‘are declared as external proceduresy For
each type of run-time system call, a separate action code is

associated with it. Each run-time system call supplies the

. action code and the required parameters. The action codes

wvere proposed by Mr. Cabilio.

The action codes are grouped according to the number of
paremeters associated‘with it and whetﬁer the parameter is a
value parameter or a variable parameter. This idea was
suggested by Dr. Lam. A list of the action codes and éhe

meaning of their associated parameters is shown in Appendix

2.

Since all run-time system procedures are external
procedure to the Pascal-C preprocessor output programs, type
chécking is defeated. This is an important simplificat4on.
The following example shows how the RTS exploits this fact.
Here, tﬁe action code is 64 and it tells the RTS to download
the value . parameter P1 and the length of the parameter is
P2. The RTS proceéure fof this action group is RTS3.

N

The RTS procedure declared in the preprocessor output

program is as follows:

- 30 -

VAR A:type for P1;
LENGTH:integer;
PROCEDURE ZZPRO! .(ACTION:INTEGER; VAR Pi:type for Pi;
" © P2:INTEGER); ‘
' PROCEDURE RTS3 (ACTION:INTEGER; VAR Pi:type of Pi;
' P2:INTEGER); EXTERNAL;
BEGIN) |

RTS3(ACTION,P1,P2);
END;

N

2ZPRO1(64,A,LENGTH);

<
]

Procedure RTS3 defined in RTS is as follows:

.PROCEDURE RTS3 (ACTION:INTEGER; ADDR:INTEGER; L: INTEGER);

"Two points should be noted in the above exémple.
First, the Procedure RTS3 declared in the preprocessor
output program is within the Procedure ZZPRO1. Using this
method we can call RTS3 to download parameters with
different types. -Secondly, the second parameter of the RTS3
declared in RTS is a value parameter with Integer type.
Since Pascal passes the address of the variahfé parameter,
the RTS can treat it as an integer type variable and thus

Al

- 31 -

Pick up +the starting address of the parameter. The actual
o .
data type of the parameter P1 is not important to the RTS.

For a master processor, the preprocessor inserts RTS

calls under the following conditions:

1. When +the main ‘Erocesé has to get into or to exit

from the critical section.

2. When it needs to reserve a slave processor to run a

down procedure.

3. When it wants to inform the reserved slave processor

to execute a down procedufe.
4. When it has to download data.

For a slave processor, RTS will be called under the

following conditions:

1. When +the slave processor is ready to receive a job

(to execute a down procedure). i

2. When it needs to call & critical procedure.

.

3. When it wants to upload variable parameters whose

. values have changed since downloading. “ .

- 32 -

-
o 7
El
-
x
1 -
LS
,

= e - 2 ~ -
i R 3 .
N . Ty
-) - L e
. e - . .
. \
" - ~ £
2) . v Al >
B A ° B
e - 'R . . 2
- JE o PR ol
. . . s, > - .
. . - = R - .
« R - *
. - - - -
- . Tlolean o .
- E) - - B
» R . . . «

"
f

data from +the mester

receive

s

4to

a - - s,] . .
o . / :
[. . R]) .
- m N . N N - - -
- - . N -
: . Lot R -
2 .
+£ o . : . .
o .
. @ A .
e (=4 (4] .
- @ o .
£ &
.w Lo . . -~ - ’
»
. -+ . . .
3 . L s
, .. .
I3 & n(k K = t .
R - o .
B N ,w m“ ° N o . ¥ o
P r b - 2
~ . & PO - - v . - - - :
’ . o R . . R N
R D S T - - ’ .
R > 825 ge . ' . .
o T e %, - .
> * > * g - e
- <o s s 3 . -
..
- o (\ .ﬁ-x - ” E - - - .
P T I N, - - - "
o = i) - - - o . :
s et we - . - :
. B e e B N .
. N T =0 ¢ = . 1
P - ° - *
- . N M o . -
- - . - . . -

B R e R L A A - - -

Ry

. B
°
°
<L s v
©
s g
.=
‘

Ly

-

%
s

CHAPTER 5. DESCRIPTION OF THE RUN~TIME SYSTEM.

Overview of the Run-time System.

[

I'4
The Pascal-C programmiﬁgulanguggé is designed 1nbsuéh a

vay that the users do. pét have, to worry about the

<

communication between processors or the synchronization“ of

processes.

©

The Pascal-C run-time:- system has

major fuﬁcfions.

1 Responses to the RTS calls from the' Pascal-C"’

4

preprocessor or compiler. ~ e
To implementi Pascal-C features, thé Pascal-C"
v e compile; or preproceséor generateé apprqPriate‘ RTS
calls. The run-time system will then taie the
éppropriate action. \.
2. Communication between processors.
Communication between the master process and ‘the

slave process takes place in the RTS level.

In this chapter,. we first describe gode’ of +the
1mportan£ data structures used in the RTS (Sectfon 1. _ Ve
then deécribe the run-tiﬁe sjstém from the yiewpéint of a

.

o - 34 -

W b v Ay P T I T e

the following two -

©

T

0

N
By
o

¥

. - master (8ection 2) and then from the viewpoint of a. slave
" (8ection 3). 'In eacdh section, we describe what the run-time

system vill do'for different RTS calls from the Pascal-C

code; and héw the RIS responds to the message received from

its master or s&lave. ..Since' the implementation of some

Pascaf—c features requires +the cooperation of the master
“‘prqqeqsor 'and the slave processor,, we describe their
. cooperation in Section 4. ,Some implementation techniques

" will be described in’ Chapter 6.

[S

Section 1. Data Structures.

In order to do its job properly, the RIS has to keep

dnd updete some information about the status of slaves, down

" procedures, critical procedure. More specifically, it has

to keep the following information:

&. SLAVE-STATUSwRECORD.
Thie record keeps the gurrent. status of slave
processor. The master kee::\ a SLAVE-STATUS-RECORD

for each of its slaves. A SLAVE-STATUS-RECORD
contains the following fields:

1. STATE: it indicates what the slave is currently

" doing. There are three possible states: a. idle.

b. dead. c¢. busy.

- 35 -

H

2. DP-ID: if the slave is runniﬁgle ngh procedure,
this .is the identification. number of the down
procedure it is running. If thiaweleve is idle,
DP—ID'; indicatee the down procedure it was
previously running. This implies that the cbdegof

this down procedure is still in the memory of the

slave.

’u3. CAPACITY: uthis_(contains informationq aeouf the-
slave, for example; whether- it has its owe slaves
_or what peripherals it has. This %iela will be'
useful for the later vergions and is not used in

the current vefsion. J :
b.. DP-STATUS- RECORD
‘Thls record keeps the’ current status of a DP class.
:The master process keeps a DP—STATUS-RECORD for each
DP class. A DP-$TATUS-RECORDucontaips the following
fields: " 2 L |
oy, WAir;FiAG: it is.set by executing a WAIT(DP).
, statemeﬁf. Righf‘after execution ‘of the WAIT(DP)rH;
* dtatement, it' is cleareﬁ by reinitializing the
'DP~STATUS-RECORD. ’
2. TERMINATE-FLAG: it is seﬁu b§ executing a“”
TERMINATE(DP) statement and is cleared vhen the DP

1

, - 36 -

[N
o . .y
N

o P 9

£e o e . »
“ b '
M 2 B
° 1

claess exits from the"terminated; statg;

. ACTIVE-NO: it contains: the number of slave

processors curfenﬁly executing DP in +this DP

- class. It is initialized to O. Add 1 to it when

a slave starts executing a DP in this DP class and
subtract 1 from it when the slave has ”ginisﬁed

execution of the DP. .

¢

. ACTIVE-FLAG: it 'is set by activating & DP in this

DP class and cleared when both +the WAIT-FLAG 1is
set and ACTIVE-NO is zero.

SLAVE-OCCUPIED: it keeps information about which
slaves are running down procedures in this class.

An array of bits is used. Each bit corresponds to

..a slave processof. For instance, bit 0

corresponds to slave number O, bit 1 corresponds
‘to slave number 1, and so .on. The corresponding

bit is° set if the slave is running a DP of this

“class and is cleared when the slave has finished

executing the DP.

HEAD-OF-VAR-PARA-LIST: it is the pointer to the

N

afray éontaining the address of =actual parameter

" 1ist in the extended memory. Figure 6.1 shows the

.data structure of this variable.

.)
-
- 37 -

\

\
\
"\
\

\,

\\,

7. NUMBER-OF-VAR: indicates the number of variable

parameters in the formal parameter list in this

T DP.

c. CP-DESCRIPTOR.

. It contains part of the information required by the
master processor in order to execute a CP invoked by

a slave processor. It conatins only two fields:
1. ENTRY-POINT: the entry point of the CP.
2. STATIC-LINK: the static link of the CP.

d. CP-PACKAGE.
This package contains the information necessary for
the master processor to execute a CP reqﬁested by a

slave processor. A CP-PACKAGE contains the
following fields:

1. the CP-DESCRIPTCR.

2. PARAMETERS: all value parameters of the CP.

e. UPLOAD-VAR-PACKAGE:
This ©package contains the information of the actual
vatiable parameter whose value has changed during

£

execution of a DP. It 1is .prepared by the slave

- 38 -

processor exécuting the DP and it will be sent to

the master. It contains the following fields:

5

1. FORMAL-VAR-NUMBER: an identification number for -
the formal parameter whose actual parameter is to.
N . ' rd

be uploaded. :

2.. ACTUAL-PARAMETER-ID: +the identity of the actual
parameter. It is indeed the ﬁemory address of the
actual parameter and its value is supplied by the

i

master processor. . -

3.OPOSITION: the position of the.element whose value
has changed. . . ’

]

4: NEW—VALUE:lthe new value of the element.
5. LENGTH: the 1length. (in bytes) of the element
chénged.
We will explain how and when to use or update the.
information in. the above data structure later in this

chapter and Chapter 6. - 3 .

1@

~— .

-39 -

Section 2. Master Processor.

.
u . .- .

Run-time system call from the Pascal-C in-line code.
B - 3 R

-~

~ " .
A

Pascal-C ﬁrepfoceésor generates RTS calls for each of

the following conditiénsi

-

1. The magter process wants to call a down. procedure.

s

¢
1 °

| b

-

. , ;. '
2. The master needs to g%nd data to the slave
N 4

*

’ processor. ; . ’ .
3. fThe master executes a WAIT(DP) statement.
B . 'a"f' ’ L ' .
‘ ‘ Q:é;'é". .
4. The master executes a TERMINATE(DR) statement.
r ' ' ' ;
= - Ay .o
5. ACP is gdingxto be invoked. | s
- ol
6. During initialization of the Pascal-C system.
Down procedure call.

4
AN

v
I

If the called DP clems 1is not terminated; the main

process is blocked until tpe RTS cean find a free slave
< : .

« processor and reserve_this slave -processor for running this-

') :
down procedure. When such a processor is available, the RTS

sets thg ACTIVE-FLAG and updates the,SLAYE—OCCUPIED field in

~

RS

< 4o -

Vol

the DP-STATUS-RECORD. It also-updates the STATE and LP—ID‘

-
fields in the SLAVE-STATUS-RECORD.

"The run-time system checks if this down procedure call
is done in a critical section. ‘If so, an error is detected

because Pascal-C does not'allow a DP being .invoked from

within a eritical section.

-

It +then gets into a critical seétion and informs thg///
reserved: slave processor to prepare for the execution of tﬁ;
down procedure. The r;ason that it gets into a critical
section is to prevent tﬁe data, which are to be. sent to the
slave processor, from-being changed ?y other slave processor «
who may ' execute a critical procedure.

[¥4 “(% ,
" In the case that the DP class is in. the 'terminated’

»

state, the RTS does nothing and returns immediately.

Dgwnloading data to slave processor.

B

XY

' The data needed to be downloaded +to the slave are
1) the parameters of the DP, 2) the variables mentioned in

B [
the copy section of the DP and 3) CP-DESCRIPTOR(s).

o

Two kinds of parameters may be downloaded to the slave
processor, - namely, &a variable parameter' and a value

parameter. Sending value parameter to the slave processor

\ -41 -

&

*a

is simpler because all that has to be done is to s8end the

current value of the actual - parameter to the glave

processor. .

For a variable parameter, th;re is more to be done
besides sending the current value of the actuml parameter to
the slave processor. The language definition of Pascal-C
requires the actual ©parameter +to be updated only wheﬁ a
WAIT(DP) statement is executed for this DP class. Thus, we
need to remember the address of the actual parameter and
reserve some temporary sﬁaces to store the returned valugs.
Ve wi%l also send the ACTUAL-PARAMETER-ID +to the slave
processor. In Section 4, we describe how variable

parameters are updated in detail.

The downloading of the CP-DESCRIPTOR and of data

mentioned in the Copy Section is the same as the downloading

of value paKameters. .

]

After all the data are sent to the slave processor, the.

main process exits from the critical section.
Executing a WAIT(DP) statement.

The RTS will first set the WAIT-FLAG for this DP élass.

The main process is blocked until there is no active process

extcuting a down procedure in this DP class. When there is

- 42 -

!

[)
- v s N A
{9 e . ©

no slave processor executing ‘a down procedurekln this DP

. cless, the RTS will update all the actual parameters 1f the

* TERMINATE-FLAG is not set. Flnally, the RTS. will
reinitialize the DP- STATUS-RECORD for this, DP ciass. o It

Bl

will: also return to the space pool the temporary space used

to store the returned vealues of the variable parameters. RN
In the case where thé ACTIVE-FLAG' is not "set, the’
"execution of a WAIT(DP) statement will have no effect except a

that qptlonally a warning message is printed. ‘i ¢

¥

Executing a TERMINATE{(DP) statement.
. ‘ .

The RTS will first set the TERMINATE-FLAG for this DP
class and then s8end g ¢'terminate' signal 1o .the slave
processors shicﬁ are executing the dows procedure ;n this DP
class. Lastly, all the spaces reserved for sporing‘the

returned values of variable parameters are released.

Similiar to the execution of a WAIT(DP) statement, the’
execution of a TERMINATE(DP) statement will have no effect
if the ACTIVE-FLAG is\not set.

+

Executing a CP.

The Pascal-C preprocessor inserts code to call the

appropriate RTS routines for getting into a critical section

- 43 -

Gt

.

N

N \
[}

rightﬂbefore a CP is invoked. After the execution of a CP,_‘
it will also 1invoke the RTS in order to exit from the
critical section. By doing 80, it guarantees +that the.

execution of the CP will not be interrupted by another CB.
Initialization of RTS.

Before the user program starts execution, the RTS first

initiates the processes in both the master and the slave

processors which handle communication. It also initializes

the global variables such as SLAVE-STATUS-RECORD and
DP-STATUS-RECORD.

Communication between the master and the slave Processors.

The CSS _ uses the physical link between two processors

" to provide several virtual channels while the RTS uses these

channels to send/receive messsages and data to/from its

buddy. The two processors connected by a physical link are
Buddies of each other. We provide a physical link for each
pair of master processor and slave processor. Moreover, the
RTS opens +two channels for each pair. One channel is used
to send/receive messages while the other is wused to:

a

send/receive data.

Since @ processor cannot predict when a message will be

\
»

. - 44 -

received from its buddy (master/slave), we need to have a-

process, which is dedicated to receive messages from its

’

buddy. For a slave processor, a prqcéss FROM-MASTER is)

dedicated +to .receiving messages from +the master. The
messages received by the procesé FROM-MASTER will' be
described ihb the next' section. For a master processor, a
process FROM-SLAVE is dedicated to receiving. messages from
its buddy slave. We now 1list the type of message the
process FROM-SLAVE may receive. In fhe rest of this

seétion, we describe what actions the Master RTS will take °

after receiving these messages.

1. The slave wuploads a new value of a variable

parameter of a DP.
2. The slave requests to execute a CP.

3. The slave uploads the CP-PACKAGE.
: r

4. The slave has finished its current task.
The slave uploads variable parametérs. -

When the slave uploads the new values of variable
parameters, the Master RTS ‘will temporarily store the new
values in the extended memory. The actual parameters are

not updated until a WAIT(DP) statement isuexecuted for ‘thie

- 45 -

class of DP. The whole process of updating vardiable

parameters of down procedures is described Chapter 6.
The slave request to execute a CP.

Since critical procedures must be executed in a
critical section, +the request should not be accepted right
away if the master process i; in a criticel section.
However, the Master RTS implements a Pending-CP-Queue to
enqueue the request (in the current version, this queue hcan
take only one element). If the Pending-CP-Queue is not
full, the RTS puts the request in the queue and then sénds a
'go-ahead' signal to the slave to tell it that the request
is accepted. Otherwise, the master ignores this request and
the slave has 1o keep on requesting until the request is

accepted.

The slave uploads the CP-PACKAGE.

N .
Havﬂng received the 'go-ahead' signal, the slave will

send the,CP—PACKAGE\to the master processor. The Master RTS
will then store it in the extended memory. This CP~PA¢KAGE -
will not be opened unt&l the RTS actually schedules to run
the CP. °

- 46 -

The slave informs.that it has finiehéd the current: task.

-

In this case, the master will update the ACTIVE-NO and
the SLAVE-QCCUPIED fields in the DP-STATUS-RECORD as well aB
the STATE field in the SLAVE-STATUS-RECORD.

L 4

Section 3. Slave‘grocessor.

Run-time system calls from the Pascal-C in-line code.

Pascal-C preprocessor generates RTS calls in the

following situations:

1. The slave is ready to execute a new task given by

the master.
2. The slave neegsvto receive data ffom the master.

3. The slave needs to wupload the new values of =a

variable parameter.

4. The slave wants to execute a .CP in its master:

processor.

- 47 - -

“t

Ready to execute a new task givén by the master.

When the slave processor is ready to execute a new
task, the Slave Pascal-C will get into an idle loop until

the master has assigned a new task to it.

Receiving data from thé.master processor.
' ’

There are four kinds of data the slave may receive from
its master. They are 1) variable parameters, 2) the value
parameter, 3) data mentioned in the the Copy Section of this
DP in the wuser program and 4) CP-DESCRIPTOR for those
critical procedures mentioned in the heading of the DP.

L

The preprocessor is responsible for reserving enough
spabe to store thg received data. The starting address and
the length of the data are part of the parameters in the RIS
call. All the Slave RTS has to do is to call the

appropriate routine of CSS to receive the data.

However, since. we may need 10 wupload a variable
parameter later on, the RTS - will receive the
ACTUAL-PARAMETER-ID of the actual parameter so that it bwill
be possible to upload the variable parameter. The Slave RTS
will save the ACTUAL-PARAMETER-ID for each variable formal

parameter. This is described in detail in Chapter 6.

- 48 -

Uploading Vvariable parameters.

\
4

‘When the Slave Pascal-C-invokes the RTS for uploading a
variable parameter, it supplies the variable formal
parameter's ID number,” the position of the element being
chapged, the new value of the element and the 1quth (in
bytes) of the element. The RTS will _use the given

information to prepare the UPLOAD-VAR-PACKAGE.

For every variable parameter, only those elements whose
values have changed, will be uploaded. When the slave
processor uploads the new values of a variable parameter, it

sends to its master the UPLOAD—VAR-PACKAGE.

Executing critical procedures.

{
When the Slave Pascal-C wants to call a CP, it supplies

the CP-PACKAGE while invoking the Slave RTS.

To exeéute & CP in the master processor, the slave
first sends a request to the master, and kéeps on doing 80
every 2 seconds until it receives the 'éo—ahead' signal from
its master. Then, it sends its master the CP-PACKAGE for

the CP it wants to execute. Finally, the Slave Pascal-C is

resumed.

- 49 -

Communication between the master and the slave processors.

¢
|

In order to communicate with the master processor, the

slave processor will open the two communication channels on

 its side.. One is to send/receive messages to/from its

master processor while the other is to send/receive data

, '
to/from the master processor. : .

The process FROM-MASTER is' dedicated to receive control
messdges in the slave side. The messages that FROM-MASTER

may receive are listed below:

1. The master informs +the slave to get ready for

executing a certain down procedure.

2. The master informs the s8lave to terminate the

]
current task.

%: The master'informs the slave to close the system.

A’
1)!

4. The master wants to know if the slave is alive.

5. The master tells the slave +that the request for

executing a critical procedure is accepted.

+

- 50 -

—

——a o

. v

e

Getting ready to execute a down procedure.

The Slave RTS receives a parameter from its master that

‘ indicates which down procedure is to be executed. The Slave

RTS passes control back to the Pascal-C user program with
this ' parameter. In Chapter 8, we will describe how the

Pascal-C program loads the down procedure code into memory.

Termination of the current task.

In a two-level system, the élavé proceé%or will simply
terminate the current task and get ;ack to the sta;e‘in
which it waits for & new task. However, in a multi-level
system, the s8lave processor must terminate its own slave

processor before it can terminate its current task.
Closing system.

The system should be closed only at the‘ end of ?pe
execution of +the user program. In other words, it clbses
the system when the whole problem is solved and thus no
processors should be working on any gpbproblems.

; :

The Slave RIS will first check whether it itself is in
the idle state (waiting for new task). If so, it tells its -
master that it agrees to close the system. If it istrunnlﬁg
a Dp, it will iﬁform the méster that it is an error to close

LY

> _51_ a

the system.

The master wants to know if the slave processor is alive.
In +this case, all the slave processor has to do is to

signal the master that it is fine.
Request to execute critical procedure is apccepted.

When the request to run a CP is accepted, the Slave RTS
uploads the CP-PACKAGE of +the CP it wants to execute and
thex*sumes the Slave Pascal-C.

Séct;on 4. Cooperation of the master and the slave
processor.

This section provides a stéb—by—step description o{ a
DP-Dand a CP call. Here the term Master Pascal-C a;E\Siave”
Pascal-C refers to the preprocessor output for the master
program and the slave program respectively. The calls to
. the Master RTS and Slave RTS are embedded in-line in the

program.

MDown Procedure Call:, A

Master Pascal-C: The wuser program ‘calls a DP and the-

parameters of the DP are evaluated.- Then

- 52 -

Master RTS:

4

Master Pascal-C:

Master RTS:

Pascal-C:

0%

it calls the RTS. ')

If the TERMINATE-FLAG is not set, it~

reserves a slave processor for this DP
before it resumes Pascal-C. Otherwise,
the Pascal-C is resumed immediately.

It first gets into a eritical section and
then Bsees if the DP G¢lass is terminated,

if not, it calls the RTS.

" Informs the reserved slave processor +to

gstart execution of the DP called.

()

_Master Pascal-C informs the Master RTS to

send data to the slave processor.
Méanwhile, Slave Pascal-C informs +the
Slave RTS to receive data. Communication
will not be done until both sides are

willing to send and receive.

°

[Some time later... Assuming that this class of DP is not

terminated]

Slave Pascal-C:.

3

)

Informs the Slave RIS to uploed the

¢

changed values of the variable parameters,

if any.

- 5% -

ki

.
<+t

’
!

o
) A

%Slave Pascal-C:

Slave RTS:

~Master RTS:

Slave RTS: Uploads the UPLOAD-VAR-PACKAGE. . -

Master RTS: Stores the uploaded new values in the

extended memory. | . _!
Slave Pascal-C: Completes the process and passes control
! to the Slave RTS.

. Slave RTS: Informs the Master RIS that it has
finishéd its current task and is waiting
for the mext task.

’ L

.«
.

Mestesr RTS: DP-STATUS-RECORD -and the

Updétgs the
. ..
SBAVE-STATUS-REGORD. Finally, sets this

« glave free. : .

~

» . ¢

0 . . ,
Critical Procedure Call: o - .

Requests the Slave RTS to execute a CP in

' //.'] the paster. Co . '1&(“

1 . ' ‘ ' ‘
Signdls the Master RTS that it réquests to
execute a CP.

-

Puts the. request in the Pending-CP-Queue
' if the queue is not full; it signalsy the
Slave RTS that +he request is éccgpted.

- 54 -

Slave RTS:

R .
Master RTS:

4

o

If the queue is full, the Slave RTS does
not receive the ﬁérmission and goes back

to the previous step to summit the request

¥
again uq;il the request is granted.

Sends up ' the CP-PACKAGE. Then it can

resume the Slave Pascal-C. s

Stores the CP-PACKAGE and runs the CP as

¢

soon as no one is in.the critical 7ﬁ%tion._

.= .55 "':)

. .
—— bt v e i c b e e m o Se b g e &

© Mg

CHAPTER 6. IMPLEMENTATION TECHNIQUES USED IN THE RUN-TIME
SYSTEM. ‘ '

In this chapter, we describe how the RTS is actually

implemented. In particular, three items are described.

1. How the variable parameter of a down procedure is

updated.

2. How a critical procedure called by a slave processor
is run.,
3. Implementation of the TERMINATE(DP) statement in a

slave processor.

Section 1. Update the variable parameter of a down
propedure.
\

In Pascal-C, the variable parameter of a@down procedure
has to be updated in the master after the down procedure has
been executed. This is because we do not have shared membry
in‘the system. Therefore, it is not sufficient to pass the
memory address of the variable parameter to a slave
processor when a down procedure is called. In fact, the

actual parameters of a class of .DP are not updéted until a

WAIT(DP) statement is executed for this DP class. On tbé

o

other hand, it 1is possible that a slave returns the new
values of variable parameter before a WAIT(DP) statement is
executed for the class of DP. Moreover, Pascal-C does not
allow aﬁy element of an actual parameter to be changed more
than once. Thus, we need to store the returned values of a
variable parameter +temporarily until all the siaves
executing the DP in this class has finished their tasks apd
a WAIT(DP) statement is executed for this DP class. To

implement the requirement mentioned above, we decided to do

the following:

1. The ACTUAL-PARAMETER-ID of the mctual parameter is
, downloaded to the slave during the downloading of a
variable parameter. The slave can use it to
identify the -.actual parameter when it returns the
"new values of a variable parameter. Since the
addresg of an actual parameter 1is unique, the
ACTUAL-PARAMETER-ID contains this address only.

2. Since it may take a Iarge amount of space to store
the returned value of =a variable parameter, we
decided * that +the returned value of a variable
parameter would be temporarily stored in the
extended memory to reduce the chance that +the user
will run out of memory space. (The term 'extended
memoyy' refers to physical memofy above the 64K byte

boundary that can be accessed only by using special

- 57 -

&

hgrdware). The extended memory is treated as a heap

“.area. Before activating a slave to execute the DP,

the master RTS will first reserve some space in the
extended memory for storing the returned values of

[

the variable parameters of the DP.

-

. Figure 6.1 shows how the returnéd value of a

variable parameter of a DP is kept. The element
HEAD—OF-VAR~PARA;LIST in the DP-STATUS-RECORD points
to the ° dynamic array FORMAL—VARS‘ wvhere
FORMAL-VARS[i] points to the ACTUAL-PARAMETER-LIST

" for the ith formal variable parameter. There can be

several distinct actual parameters for a single
formal variable parameter. All the actual
parameters passed as the same formal parameter =are
linked together in- the ACTUAL-PARAMETER-LIST.
However, the same acfual parameter passéd to
different formel parameters will be considered as a
distinct acutal paramefer. A BIT-MAP is wused +to
keep track of which elements in the actual parameter
have changed. Each bit corresponds to an élement of
the actual parameter. All bits are set to zero at
the beginning. When the slave returns a new value
of variable parameter, the Master RTS will first
gheck if the ‘value of the eleﬁent has already
changed by 1looking at the bit which corresponds to
this element. If theobit is gero, change it to ’one
Y ":.

- 58 -

T and store the new value. If the bit is dlready oA€,

the RTS will report the error.

heap area extended“memory
DP-STATUS- FORMAL- . ACTUAL-
RECORD VARS PARAMETER-LIST
- FORMAT] s [FCTUAT-FARA-ID|
. VARS[1] T — BIT-MAP
------------------ INFO > |- ———
HEAD-OF-VAH e em—————— EW-VALUES
~PARA-LIST . NEXT |
~{FORMAL— [ACTUAL-PARA-1D
VARS[n] L p
INFO —_—t— | —————
N R e e : EW-VALUES
EX? | : ;
: ¢
: NIL
—> [ACTUAL-PARA-ID]
-------------- IT-=MAP
INFO —_———— e———————
—————————————— EW-VALUES
NEXT |
@ v
o NIL
Figure 6.1. Data structure of storing variable parameter.
. Rationale. .
\ ‘
\
During the implementation of the updating of the
. variable parameter of a down procedure, we did consider

other alternatives.-
, all variable

_ have changed or not.

+

Pe
/

7

For example, it is possible

to upload

parameters regardless of whether their values

v]

- 59 -

In this_ case, the slave RTS would not

need to keep the information about the UPLOAD-VAR-PACKAGE.
Some computation time and working space in the slave side
can be saved. The original values of the actual parameters

would be kept by the Master RTS rather +than by the Slave

Pascal-C. The comparison'of the original values and the ney/

values of the actual parameters wotild be done by the Mastér
RTS rather than the Slave Pascal—C.. Howevér, the Master RTS
would have fo Tecord the current values of +the actual
parameters during each invocation of a down p}ocedhre: This
could lead to using a much larger working space in the
master.side.

The worﬁload of the master is quite heavy especially
when the number of slaves is large. Moreover, the memory

space on the master side is limited. Thus, we rejected this

alternative.

Section 2. Running a critical procedure called by a slave.
.

In order to run a CP called by a slave, the entry point
an? the static 1link of the CP and the parameters (if any)
must be known to the master processor. Moreover, all the
CPe nmust be executed in a critical section and use the main

0

process stack. We describe how it is done below:
1. In order to have sufficient information to run & CP

- 60 -

a -

called by a slave, the preprocessor inserts some
code which sends the CP-DESCRIPTOR (containing the
entry points and the sta%ic‘link) of all CPs which
may be called from within a DP, to the slave
processor, when the DP is activatgd. When the slave
processor requests to execute a CP; it will send +to

the master “the CP-PACKAGE (containing the

. CP-DESCRIPTOR and all the parameters of the CP) so

that .the master processor will be able to execute

the desired CP.

Since 'a CP may need to use a large stack during the
execution (e.g. a CP may be a recursive procedure),
the CP should use the main process stack. In other
words, to execute a CP called‘by a slave process,
the Master Pascal-C has to be suspended while the’

main process is executing the CP.

When the process FROM-SLAVE receives the request to

6wi11 schedule %o run a CP according +to
(4 [N

'g situations:
{
a. The crit?

run a CP,\

the follow

cal section is not occupied.

\

In' thislj case, it first gets into the critical

\

, (D
section %nd then calls a' routine (in Parallel

Pascal), ; which changes the program counter (PC)

of . the L
|

{

ain process to the entry point of

J‘:?f T

|
'Run-CP' (2 routine which will invoke the CP

i
1

5.

called by a slave). Thus, the main process will"
execute the CP called by the slave before
executing the Master Pascal-C when the main

o

process is resumed.

b. The critical section is occupied.

Since only the main p;ocess may execute a CP, the
process occupies thé critical section must be the
main process. Thus, in this case, the Master RTS
will reserve the critical %gction for running the
CP called by the slave. ’When the mairi process
tries to exit)from the critical section, the
Master RTS will check if the critical section is
reserved for running a CP called by a slave. If
80, 1instead of resuming the Master Pascal-C, it

schedules the main process to run the CP by

calling the routine 'Run-CP'.

Procedure Run-CP is a macro routine. When it is in
control, it first picks up the information in +the
CP-PACKAGE and loads the entry point and the static
link as well as parameters of the CP into the main
stack. It then calls the CP.

After ‘the execution of the CP, it passes control
back to the RTS. The RTS will then schedule

whatever should be done next.

A.

. Rationale. 'f

3 We have considered another altérnative to implement the -

P

running 6f a CP requested by a slave. We <can create a
process, called 'Pr?cess—CP', which is dedicated to running
the critical procedure called by a slave. The advan?age of
adopting { is alternative is +that it is not necessary to
make chdnges, such as changing the program counter, at the
very low_level of the system. In other words, the coding of
the RTS would be cléaner and it would make the program more
transportable.

However, we would need go reserve a very large stack
for the process 'Process-CP'. Otherwise we would have the
risk of running out- of stack sbace, especially when the//ﬁ\\\‘
critical procedure is a recursive procedure. Since memory .
space for +the Pascal-C user 1is already very limited, we

decided not to use this alternative.

. 1 3
Section 3. Implementation of the TERMINATE(DP) statement.

The execution of a TERMINATE(DP) statement for a class
P, in “fact, affects the slave processors who are execﬁting
the DP of class P. These slaves should terminate execution
of. the DP and return to the idle state where the slave

processors are waiting for new tasks to be assigned by its

¥

4

master processor. In order to do 80 1in a proper way,
wi%hout spoiling things in the RTS and the f%yers below RTS,

we have to take care of the fdllowing things:'

1. In a mnmulti-level system, an intermediate 1level
. processor must set the TERMINATE-FLAG for all its

DPs and must signal its own slaves to terminate.

2. It makes sure that no process other than the slave
main pfocess occupies any space in the heap area,

and then restore the Heap Pointer.

3. Restore +the program counter (PC) and the stack
pointer (SP) of the main process so that thé main
process can get back to the idle state and wait for

a new task.

4. Initialize the global variables in the RTS so .that

it is ready to take care of a new task.

In order to reé£ore the PC and SP of the main process
and the Heap Pointer to the point where the slave is in an
idle state, we need to store their values when the systenm
has just started up. There are two routines (written by
S.Cabilio) which are used to store these values at the
beginning and ‘to restore them when needed, in the Parallel

"Pascal RTS.

- 64 -

T

.
« \ . . s

.In, this version, the CSS uses the heap area’ to keep
temporary data. Thus, before restoring the Heap' Poinfer,
. the Slave RTS has to verify that &1l the pending messages

>

has been sent/received and the CSS is in & 'stable' state

(No traffic ié going on). - Then, the RTS will rai;e theu

" .-priority of the current process and restore the SP and PC of
| jthe main process and the Heap Pointer. Raising the priority
. of the current process gaurantees that the current process

will not be interrupted.. v

a

- 65 -

-

e

CHAPTER 7. DESCRIPTION OF THE COMMUNICATION SUBSYSTEM.

In this - chafﬁer, we describe the communication
subsystem (CSS). Section 1 gives an overview of the CSS.
Settion 2 describes the interface between the user and the
CSS (User-CSS interface). Section 3 describes the internal

structures of the CSS.'

Sectio? 1. Overview.

The CSS is organized into two parts. 1) the User-CSS
interface and 2) the internal structures of the CSS. The
internal structures of the CSS are transparent to the user.
Thus, the users need to know only the User—QSS interface in
order to use the CSS.

The function of +the CSS is to pass messages befween
processors. However, it does not interpret +the message
itéelf. Tﬁe basic concept of the User-CSS interface is'the
idea pf a frame dand a channel.

_ 4

Channels are used to pass information between two
processqrs. Several channels can be open on the sape
physical link between two processors. Tﬁe two processors
connected together with e physicai link are said %o be

buddies of each other.

- 66 -

Q

.
- .
£ '
— . i
.

Frames are used to contain the messages tha; rieed to be
sent between the two p;ocessors; G A frame in our C8S
consists of two parts: 1) the- length of +the message - (in -
bytes) and 2) the message itself. A maximum 1limit is.
imposed on the length of a messagé so that the C(SS can
‘expect the size of the frame.
| (o9

When a processor wants to send/receive a: message
to/froﬁ another processor, it specifies the identity of the
buddy and the channel number. The message will be actually
 tansmitted when both the sender and the receiver has issued
‘a send aﬂd a receive request respectively. In other wofds,

the sender and the recejver processes are blocked until the

message has transmitted. ‘

o . . \

Erpﬁ the users' viewpoint, the channel appears to be -’
errdr free; all messages are sent cofrectly. In fact, it is
the CSS which detects the transmission errors and tries to
retransmit the messagéjif aﬁ error has occufred. In case
that it cannot. ' correct thg error . ~after several

retransmissions, it will report the error to +the wuser and

hal% the system.

- 67 -

Section 2. User-CSS intérface. Y
1 il - \
This part describes the six procedures that can be
inyoked by the users of the CSS. These procédures " are
” . N
described below. : ’ L K

/

-

1. Procedures to, start/stop the CSS. ‘

Procedure‘étartcss;

Procedure Stopcss; B

)

Before u81ng the CSs, the user must call 'Startcss’

its processes and varlables. -

80 that the CSS can have .8 chance to 1n1t1allze all .

. _nJZWhen the user has finished using- the CSS, he/she ;

should call 'Stopcss' so that the CSS can delete all

the processes it has created and return all the

L A

’

memory space that it has used.
, .

2. Procedures to open/close a virtual.channel.
. \ »
‘Procedure Openchannel {bid, cno : byte; var
. ' receivgyframe Elframe; var errorflag : boolean);
* J‘\ . ' .
?roeqdure Closechannel (b1d cno byte, var
' receiverframe : frame; var errorflag : boéleah);

» Al N
/ . N
v :
. ‘g +* < ;’-,,.
“ N -

To open/close a bidirectional virtual channel; the
. s ! 1 ‘ . .

13

<

- f
user needs to specify tO'which.buddy‘(bid) and for
which channel (cno) he/she wants to. open/c198e' a
channel.

In order to know where to store the received frame,

the user has to let the CSS know the address of the

receiver frame (reqeiver:rame). Every time the CSS

receives a message for the user, it stdres- it in the

'receiverframe' and the user can pick it up.

In case that"%he CSS finds an.error during the.

opening/closing of the specified channel, it’signals]

the user by raising the ‘'errorflag'.

L

Procedures to send/receive frame. T
L a -

Procedure Sendframe (bid,ono,traffiocode:byte; ‘
. .
var outframe:frame);

Procedure Receiveframe ﬂbid,cno:égte);

-

To send/receive a data frame, the user must specify
to/from which buddy (bid) and via which channel
(cno) it wants to.send/&eceive thé message.

Since the receiver has already sbecified where the

receiving frame is, there is no need for him to

specify +the receiving frame again. However,.the

sender has to specify where the 'outgoing message

3]
. -

(outframe) is.

+ The valke of the ~'trafficcode' in prééedure

<~ .
R ’

f

.

A
'
\ '
. 4 ~. M
w « 7 “fa\ ’
’ . v
f N . O

”»

Sendframe can be either 1 or 2. In:case that a user

keeps on sending messages to the second user and

does not expect to receive any message in return,

~the - first user should set the parameter

Section

'trafficcode' to 1. When the (CSS. sees that
'trafficcode' is 1, it will inform the second user
to send back the acknowledgment frame right after he
has received the message without waiting for the
acknowledgment~time-out to occur since there is no

outgoing frame in the second user's side. This
- ,
aspect of improving the communication efficiency

>

will be explained in detail in Section 3.

I~“j

a

3. Internal structures of the CSs.

s
- I

-

The CSS 1is organizéd in thngq léyersc They are ‘as

v foll§ws:

v,

v, o
Physici& layer : ii{ does the actual transmission
< ' .
based on bytes.
-~ '

{f? A ! - §

. Datalink layer : it handles error detection and

: >
recovery. ‘ ' -~ -

'} ¢ ’ ——

Y

. Routing layer : it controlg the traffic '(dgcides

& ~
when to send a user's frame).
. ¢

s e
- 70 -

:

Equivalent layers in +two different processors may
communicate with each other. Each layer will interpret only

the information supplied by the same layer of its buddy

processor.
4
USER LEVEL L T T —— > USER LEVEL
ROUTING LAYER (oo ——————— -> ROUTING LAYER
. «
DATALINRK LAYER Cmmmmmm e :——> DATALINK LAYER
E I I °
PHYSICAL LAYER e > PHYSICAL LAYER

¥
Figure 7.1. Layers and their interfaces.

Y
Physical layer. \

It consista of several interrupt processes to do the
actual .transmisgion. The major‘interrupt procesgesg are the
Transmit procese and the\Receiyef process. These interrugp
processes are mgétly device dependent. .

; o

The actual transmission ,is 'doné one byte at a time.

Since they‘are interrupt driven, thé& eend/recefﬁe a byte-

-7 -

<

t

.
o
-~

wheneyer an interrupt occurs. They also counts the numbeg
of the bytes that they have sent/received .for a frame. The
recegiver signals the datalink layer when a whole frame is
reéeived. These)processes have no capabilities of doing

{ :
error detection or error recovery.

Data-link layer.

In ofder t?ﬂJﬁetect error and to do error’}ecoveky
whenever possible, & header and a trailer are added to +the
user's message frame. The header and the trailer are used
to contain information whicﬁ is for the purpose of detecting
errors. fhe datalink layer of thg?receiving processor will.

look at the header and the trailer when a frame is received.

+If 1the message is a good one, it takes away the header and

the trailer and pasées only the message to its host (the

_process that, the CSS is servicing).

]

The" header contains the length of the padded message,
the ré;eiﬁiﬁg processor's iﬁentity, the sequence number of
thew frame and the acknowledgment number. %he trailer
coédginé\the checksum. The use of the above informafion
will ©be discussed below. There are two major error
detecting and error recovery methods. They are as follows:

o

1. Compu%e the checksum by using CRC (Cyclic Redundancy '
: ' <*

-T2 -

. | b
Checking) method. / -

2. One bit sliding window protocol.) i

CRC checksum. '

In order for the receiver processor to see if any
transmission error has occurred in a frame, we use the CRC

method-/ﬂith the CRC-16 as the genefator polynomial. Before

v

a frame is sent, the sender calculates the éhecksum.and puts

the result in the trailer of the outgoing frame. VWhen the'

receiver processor receives the frame, it will recompute the

che¢ksum. If the checksums do not agree, a transmission

i

error has occurred. ,
<
We had tried the byte-wise CRC calculation both with
and without the look-up table. With the look-up table, we

need 0.5 kilobytes of memory space to store the table. But,
it works 2.85 times faster than the version without the

look~up tjgle. Figure 7.2. shows their results.

-3 -

U

Number of Clock ticks (60/sec)

Byte in | BIT WISE BYTE WISE BYTE WISE
message (without (with
look—up table) look-up table)

1200 101 57 20

Figure 7.2. Comparison of the CRC routines

Sliding window protocol.

With a sliding window protocol, every processor Kkeeps
information about which frames are permitted to be sent
(Next-frame-to-send) and which frames are expected to be
received (Frame-expected) . Next-frame-to-send and
Frame-expected are usually a sequénce of numbers which range
from O to N. The maximum numbequ 0of Next-frame-to-send

implies that the processor has reserved N buffers in memory

for frames being sent but not yet acknowledged.

.Uhen. the sender sends out a frame, it inserts the
sequence nunber bf the outgoing frame into the header. This
sequence number is the same as the Ne%t—frame—to—send in the
sender's side. After the receiver has receivéd a frame, it
checks if the sequence number in the received frame is the
‘'same as the value of Freme-expected in the receiver's side.

If 80, the reé@iver will accEpt this frame and pass the

- 74 -

~

message to its host. [The receiver will also advance the
l

value of Frame—expejted. Finally, the releiver has to

acknowledge this received frame. When the sender sees that
\

>

an outgoing frame has been acknowledged, it advances the

Next-frame-to-send.

A one bit slidi%g window protocol 1is, in fact,
stop-and-wait. Both ﬁext—frame—to—send and Frame-expected
hay only be O or 1. Thus, after s;nding out an outgoing
frame, the sender has to wait until the acknowledgment is
received befo%e sending out the next frame.

- ¥

Piggyback acknowledgment.

In order not to waste time to send out a frame with no
message but the only acknowledgment gsignal, he
écknowleﬁgmept is hooked onto the hegjer of the next
outgoing data frame. However, there mgy/not be any outgoing
frame when a processor has received a frame. Thus, we may
need to send a frame with no message but the acknowledgment

signael to inform the sender in this case.

L3

Timers.

To be able to recover from error and to make the
_ communication subsystem. run smoothly,»ie make use of three

"timers. They are transmitter <timer, receiver timer and

- 75 -

acknowledgment timer.

" When a sender sends out an outgoing frame, it turns on
the transmitter timer. The ackﬁovledgment of this outgoing
franme is expecfed to be received Dbefore the
transmit-time-out occurs. Thus, when the +transmit-time-out
occurs, the sender will retransmit the previous outgoing
frame again if the acknowledgment has not been received yet.

When a receiver has received the first byte of a data
frame, it turns on the receiver timer. In case that the
rgceiver cannot¥ receive the whole daté frameysbgfore the
receiver-time-out occurs, .the receiver will reopen the
physical receiving channel and to wait for ‘the sender to
sénd this frame once again.

When a data frame is recéived correctly, the receiver
will turn on thenacknowledgment timer. In case that there
is no outgoing frame before the acknowledgment-time-out
occurs, thé receiver will send out a special ’acknowledgment
frame to the sender.

‘The length of {ime set f&r these timefrs ie an i;}ortant'.
factor in keeping the CSS rﬁhning smoothly. For instance;
the time 1length of the transmitter timer should be greater
than the expected amount of actual transmission time for two
messages of maximum length. Thus, we can bé sure that the

- 76 -

*

3

acknowledgment can reach the sender ©before the Bender's

transmitter timer times out.

. -

Routing layer.

_The routing layer GECides- vhen "to send a user's
message. Synchronization between ﬁuddies is done in this
layer. ;3 order to decide whether a user's message should
be sent or not, the rzgting layer uses &a special channel
(channel. 0) to cgimunicate with the routing layer of its
buddies. The messages that are sent via channel zero are

listed as follows:
1. Request %o send a message.
2. Request to wait before sending a message.
3. Give permiséion to send a message.

When a sender wants to send a message, the routing
layer will first send the message 'request to send a
messﬁge' to the receiver.. The receiver will then return the
message 'give permission to send a me%sage' after its host
has «informeﬁ it to receive a message. Only when the sender
has received the messdge 'give permission to send a message'

will the routing layer of +the sender decide to send the

‘

- 77 -

i

message to the receiver.

The following example shows what the routing layer does

in order to send a message from User! to User2.

USER1 ' . USER?2
lCall SENDFRAME . lCal_l RECEIVEFRAME
CSS~USER . CSS-USER
INTERFACE INTERFACE
»
Signal (Event = Signal (Event =
WantToSend) WantToReceive)
N
o 'RequestToSend’ ‘
_____________________ 3
ROUTING LAYER ROUTING LAYER
'GivePermissionToSend'
e e 4

USER'S MESSAGE

Figure 7.3. Functions of the Routing layer.

Layers Synchrdnization.
Integer semaphores are used to synchronize the
operations of the layers in the CSS. There are four major

semaphores used in the CSS.

i

1. Datalinksig : to wake up the datalink layer.

- 18 -~

.

e

?h Routingsig : to wake up the routing layer.
3. Receiveready : +to unblock the receiver when the
.message is received and thus the receiver can pick

up the received message. *

4. Transmitready : to unblock the sender after the

message has been sent.

»

Neither thg datalink layer nor fhe,"routing layer are

active until a maphore signal has been received. Since an

integef semaphofre is used, no signal will be 1lest even if
several signals are sent to a layer before this layer gets
the chance +to handle +them. Moreover, since both the
datalink and +the routing 1layers handle several different
events, an event set is associated with the 'Datalinksig'
and to the 'Routingsig'. When someone wants to signal these
layers, it should also specify what the évent is in +the

event set so0o that the routing layer or the datalink layer

will know what event it is.

Figure 7.4. shows what each layer does in order to pass

a data frame from a user to the othér.

Sender's side Recéiver's side

"HOST | ——===—- > | user's message| ——————- > HOST

'routingsig'’ Co
‘receiveready'

JROUTING LAYER ROUTING LAYER
l' datalinksig' - T' routingsig"
DATALINK LAYER|-->| head-|user's |traill -=->| DATALINK LAYER
er message |—-er
turn on , | 'datalinksig’

Transmit Interrupt

PHYSICAL LAYER. - > | PHYSICAL LAYER
A (one byte at a time) S

y . .
" Figure 7.4. Passing a data frame from a sender to a

receiver. . f

Performance. .

We Have recorded the ‘transmission speed of the CSS by
éxécuting a program which opens two bidirectional ‘qhanhels.
It sends and receiQes a certain number of messages to and
from its buddy simultaneously via each chanhel. ConnectinéL
the processor ?DE-11/34 and the processor LSI-14+473 by a
serial line with 9600 baud rate, we have recorded that the
transmission spped ié 673 byteg/second (including -the

overhead). The overhead includes tbe header and the trailer

- 80 - ' .

.

.

in each data frame as yell as the messagéé passing through

channel zero. '

an

~

¥
e
®
“
.
'
¥
]
v
.
t
q
.
t e
¢
.
v
. a
)
-
o
a
’. - e
.
)
.
4
.
"8
Sy -
3
-
Q
.

Y

v
.
, . .
R .
.
R .
.
. ’
: 0
. . . L
v - .
0 N !
H
'
, N
B + .
. .
. °
M . . A
5
. ° ¢
«
. .
f
9
- .
A
v -
< L.
. \
., - .
< ; :
"
» - ‘
’ ‘ TR
i -~
B " . -
+
- o
. « R
"
. \ K
. .
e .
,
: e
. .
o
o ‘ .
‘o " .
R .
- ®
- .
“
. N .
. .
' - ¢
° ~
.
- .]
. - Y
. .
. = 13 Al
. Ny »
N
<
.
s - 8%
4
! «
M el .
. ‘ ’
. . °
.
: -
. .

-
gy
>
LY
-

© - [Al

CHAPTER 8. TESTING THE RTS AND RUNNING, A BASCAL-C PROGRAM.
’ . ‘° \\ ' M ' l_r_m

. R \ -
Lo . N7

In this chapter, we first: describe \how the

! .

\

e ¢ \
g ' system was tested and then we descrlbé\ H%Y

run-time - b
3 4 i P

PascaI—Cg'ﬁ# o
\ . program is actually.run on the systém. '

\ ¢ - C.e
[. Lo . Lo s : d

s, . ’ . ' i : ‘
(\\ A N / R - . , . . -
\ e .
. . / .
", N \ . .) " .
. < .

Ve
|94

Section 1. \Egsting the Run-tine systen. ~ - \

Fi ‘\\a‘ : i N .(' ! : {

- s\ L ' ” e -
? A ‘ T bugxthe run- tlm%/ system itself, we focused on ’ ‘

¢ . » .
’ testlng.‘he correctness ?f the 1qplementatlon of each of the,) A
o L :
I Pascal-C ftature to be dlscussed below " We wrote up a set
| : " .

of test programs to test the‘RTS . Some of these testlng

[4
programs ape//simple ang - d§51gned to " test one Pascal-C

g _\~£ﬁa£uré at a‘time whlle spmes others ?re more'complicated and

‘ may triggé}\many different levents;f Since Pascal-C’ is a

' Qpncurre:t pr%gramming langﬁage ¢ the tﬂﬁing of the events
,F h may get the syétém int}differnet'étyatioﬁs. V&e ~describe .- - ' !
- ' the things that werg tested for each ias:;1~c feature. /

3 -

. . ‘ \

™

1. Down procedures. : ~ s
4

. A ! ' . K‘A
—~ . . R 3 ¥
. .

. %éiﬁ , We ‘tested the. downloading and uploading of (data
' (including value paraﬁeters and variable parameters; 9Lr F- e
o v DP. We ' use different parameters which occupied one byte, l?
’ L

gnesword dnmpre than ' 128. bytes (since'’ ﬁ%_ had set the ' N

o / 'meximum leng€h of a date frame to be 128 bytes). - . '
% ST Lt oo c

N ¢ a A 1 .
. \ : . ; ¢ . . , }
“ ’ ’ - 82 - . . ‘ .
f : .
ft . -

.

* 2. Wait(DP)

.

To

]
8.

\

S

)

test the actual variable updating, we have done the

_' following:'*

“y

Iri;fi‘kfe a DP

parameter.

5

-

-

v
‘e

’

a

N

b. Invoke a DP sever%l‘dt;dbq

!

s

¥We have tested a Wa?l
-

parameters.’ . ”

situations:

L

8.

@

* b. At lea

~

The. class of DP is not attive at all.

)

statement.

\

u

. of DP."\.

’

c. The class of DP ig active but no slave:.is 'burréntiy
. . ’] . L .)

3. Terminate(DP) statement.

We

"

executing it.

have

P

i

’

kY

tested

»

»

L

L

\

v

s
4

this statement
— 83 - .
\.‘.,__p

with different actual

’

}

’

-

b

several times with the

. \?

E

.

¢,

*

d. The class of DP has been terminéﬁed.

- LN

f

%

same’

4

st one s averrocessor“is_éxecutingéﬁhis class Q?

-

v

o

\

.

-

<

< ¥

"actual -

PR

’Btatement'pnder the following .

bothTwithin a CP and

©

-

.

-

-

-t

¢ within a normal procedure of the main program under - the

‘r‘

3P? lowing situations: . , '

»
§

. e
- -~
-

a. Tpe class of DP is not active at all.

-

\ " <
. 3 .
, b. The class” of DP 'is getive but no slave is executing
it. ‘ A(/g
» -

. ; .
?'c. At least one slave is executing this DP.

. Moreover, we have brought the system into the situation
« N N o
in whicn the master is sending a message to the slave to

a

» terminate the current job while the slave has just finished

the current job and is trying to inform the master about 'it.
&‘; . .

‘4., Critical proéedures.

-

. . . ()

We have tested a CP which was invoked by both a master
.« ' and"a slave. In ordér to test the 'implementation of a
’ a L ‘

R\ c’ktical section, one of +the +testing CP was 1itself a -
. . : .

‘recursive procedure. We have alsovfested a CP invoked by a
slave under the following conditions:

L4

9

a. The critical section is not oc¢cupied. o
+ < N
e
b. The master 'is in' the critical section and éctivating~
1‘ ' N C . _.‘ N ’,‘-A

a DP.: o,
{ : - 4
, N

5
EARY

c. A CP “which is invoked by the’ master is being

executed.
»
d. A CP which 1is invoked by another slave process is
IT
being executed.
N

g i
%5. Copy section. T

§ - Implementation of the copy section is done by the

Pascal-C Preprocessor and is not described here. ;
~\

Besidesz we tested how the Pascal-C restrictions were
checked during run ' time. * For example, an attempt to
download variable pargmeters which are in the heap area of
the memory or an attemp£ to leave the environment where the

actual parameters of an active DP is declared, will be

*

repofted as a run timexerror by the RTS.
Ve

L]

Section 2. ’Running program on the Pascal-C systen.
. »

¢ N .
e

4

- ' _ ‘ _
In this section, Part 1 describes the output of the

/ o
in 37der to run a Pascal-C- program.

Pascal-C Preprocessor. Part 2 describes the steps required

~

b2

!

&

. Pascal-C Preprocessor Output.

i
v

Since a Pascal-C program is indeed executed by both the

¢ .
master processor and the slave processors, for each Pascal-C
program, the Pascal-C preprocessor will gtnerate different

files needed by the master processor and the slave

Processors.

’

¥

. ‘ 'v o w ~
In order to run several diffirent down procedures in a_

slave processor, we make use of the overlay handler of the

RT-11 system. Since the down procedures can never be run

simultaneously by a single slave proagssor, they can occupy

the same overléyed area of memory. When a down procedure is
called, the master supplies the ID of the down procedure to
the slave who will execute it. The Slave Pascal-C RTS wiil
call the desired aown procedure and the overlay handler will

load in the code of the desired DP. Thus, for each slave

I'd . . -
processor, we need to have a main program, which is for

[
starting execution of the DPs only, and the code for each of
the down procedures. Figure 8.1 shows an éxample'of the

slave main p’ogram. In this example, there are 2 down

T, proFedures (ﬁP1 and* DP2) and their 1IDs are 1 ‘and 2

respectively. Procedugeé in the overlayed area are déclared

Coy . . .
as external procedure +to the main !program in Parallel

z - L

Pascal. . N

R N
. ' ra v
. ' - ” o ‘

. \ ® -
e L Program Slavemain;:’ ' ‘

: -
N B () ' .Q

var DPID:integer; .

L] 4
v ¢

o

¢ Procedure RTSCALL (var DPID:integr); external;

< " procedure DPij;external;
A procedure DP2; external;
l” ' -
¥ ' p 1
repeat '
v- ﬁ i

(*wait for the master's instruction to run a DP¥*)

i

RTSCALL (DPID); ' .

¢*RTS will return the ID number of the desired DP*)

5) ¢
case DPID of

" 1: DP1;
2: DP2;
end; (*case*) o '
(© until DPID=-1; o : .

Figure 8.1. Example of glave main progran

Ll

@

. . In summary, the Pascal-C preprocessor generates the
H - g N

following'fileé:

{

- 87 -

N (I - L, e - : &
" - . - M ' '
) ’ : T .
. R ' -
. . .-\
e . . - . e L T 1 oo T oe s — g
. ’ . . [N .
H . .

s
‘ . Ca
B ——— o B o Y . . o .

B,

. \
1 ~PCMAST | : the master program which contains all the

code executed by the master.

2. PCSLAV : the slave main program which is only a

shell used to call the actual down procedure.
’

3. PCDOWN : =all the modules for down proceéures. For
eaéh down procedure in the . Pascal-C ptogram, the
preprocessor generates an output ;odulewwhich is an
external procedure to the main program of the slave

processor and will be executed by the slave®

processor when needed.

wh

' : . A
Steps needed to follow when running a Pascal-C program. /]

t

»

1. Use the preprocessor to preprocess the Pascal—b
program. If no Pascal-C syntax error is detecté&f
the preprocessor will generate the files mentioned
above. ¢

‘)

2. Use the 'Par&;lel‘ Pascal compiler +to compile and

gen7rate object models for PCMAST (the master

proFram), PCSLAV (the slave main program) and for

eapﬁ”down procedure. ¢

3. Use the linker to generate the executable files for

both +the master and the slave. A c®mmand fi&é\has

e

o

.

2

already been set up. Please read the instruction

file 'RTS.INS' which is in the LSI-11/73 if ohe
wants to run the Pascal-C program with the current
system. \

y v . "%

= -~

4. Start running program in both naster and slave gide.

P Y

/ . J
’ * 1
’) i /\/’ ’ /
) * }
) »
s
. .
"
’ /i -
; ~ y
“ A . H
» .
! s
14
-
°
3
L] £
'
- o
* ”
. - ' ‘
] . t
.y
D B [‘
: :’
'Y .
' 7
¢
. 4
- ¥
.
. 1]
¥
.
. A~ ,
. D .
» - '
. \ ‘ . !
, | < 89 - . . , 2
. s : ‘ S ’
| T —\/ . . e
o o ~ : R Y
PO ' . ’ . * '
B et ; Mc
s .

\

CHAPTER 9. CONCLUSION.

in this thesis, I have'described 1) the overview 6f our
multi-processing project spécific to s8solving combinatorial
broblems, 2) the concurrent programming laﬁguage, Pascal-C
and 3) the implementation,details of the .Pascdl-C Run-time

. . 4
system. K

There are feveral existing multi-processors systems and
concurrent pfogramming languages. Most of +them are not
sﬁecific to solving & particular type of problem. We have
designed the architecture of our multi-processor system to
be suitable for solving combinatorial problems. The
language Pascal-C is suitable for wr}%ing programsg to solve
combinatorial probleds in a hierarchical multi-processor
system. However, more reseérch work should be done to find

'y
out the performance of this multi-processors system. -

!

I
By implemegting ﬁhe language Paséal—c and testing the
Pagcal-C s&stem, we have strohg confidence to say that it is
a feasible language. Béing a dialect of Péscal;'Paqpal—C'is
reésonably easy to |use. From the viewpoint of the
implementor, they negd %o implement ogly the Pascal-C

features. The Standard Pascel features can\be handled in a

\

conventional way. Moreover, the {pplementation of +the -

. //’
Pascal-C features can be done in a reasonable amount of

time.

/

L
During the implementing of the first version of

Pascal-C, we have concentrated 6% a two level
multi-processors system. The charateristics (including the
weaknesses) of this first version of the Pascal-C run-time

system -can be summarized as follows:

1. As _much meémory space as possible is reserved for the
Pasoallc uger. Since the coméuters we currently use

/ have a 64k-byte memory, we have made use of the
' extended memory in thé PDP-11!34 machine for
temporarily stqring the returned values of formél
variabl parameter of DP; we also made wuse of +the
overlay ‘feature provided by the.operating system

RT-11 to keep those procedures which are not invoked

., frequently in the overlayed sectioh.

2. Error diagonsis is reported as precisely as

possible.

3. Each processor possesses a random access system

device, the operating system RT-11 and a consoie

' terminal. This eliminates the step of downloading

!' programs at run +time and allows us to trace the
aéfioni'of all the processors.

4. The run-time system is written in the language:

Parallel Pascal. However, most pr he code is also

- 91 -

in Standard Pascal (e.g. the preprocessor-RTS
interface is written in Stahdard Pascal). The code
involving concurrency handling does not sﬁread all
over the modules. In the case that we implement the
Pascal-C system in another dialect of Pascal with

conqurréhcy features, most of the <code in this

version can be kept.

5. The Masteé RTS may pefiodically poll its .slaves to

gl make sure that they are still 'alive'. No further

error detection and recovery have been done.

However, it does not create serious problems since

we can use the consloe terminal to display error
messagé or partial results..

In the future, error detection_énd recovery should be

studied in de;th. Some preliminary suggestions . are

discussed below:

1. From the experience ga;ned from this first
implementation, it is good to let each or some of
the slaves possess an operating system, a console
terminal and a random access system device. The

‘user can then .trace the actions of the glave
processors when necessary. However, the programs
should not .be downloaded during run time.
Trahsferring the“programs to the slave processors

\ - 92 - .

, | before run time simply pﬁts the burden on the user.

2. When a slave proceséor detects the usual software
problems such as overflow and range errors, it :
should report them to 1its master. This report
should flow up to a master processor who possesses a
console terminal, and this masgter proceséor should

inform the user the failure.;

Lastly, I4ish that this first implementation of +the
Pascal-C = run-time system is useful and the experiences -
gained from this impleméntation are'helpful for the 'future

:development of this project.

»

" Reference.’

u

J. W. Atwood, S.‘Ganesanx\M. Lafleur, W. Prager :

'Measurement of the solution of two combinatorial ..

Problems’ T T

“) i

A}

. CIPS Session 84 1984
l

AJ

-

‘P. Brinch Hansen ' oo)

“The Architecture of Concurrent prognaﬁhing

k]

U Prentice-Hall 1977

£

P. Brinch Hansen .)

'Distributed Processes': A concurrent progra@ming concépt;

CACM, Yol.21 PP. 934-941 1978 = ‘ AR

X

D. R. Brownbridge
.\x 0
'Data Driven and Demand Driven Computer Architecture'

ACM Computing Surveys. Vol.l14 Pf. 93-143% 1982) - ’ -

S. Cabilio | ' o
' , {
'M. Comp. Sci. Thesis' (in preparation))

Department gj Computéf Science, Concordia University 1985

.
.

°R. P. Holt
'"A short introduction to conc%rrenf Fuclid'

- SIGPLAN 'Vol.17 PP. 60-79 1982 ‘ : .' .

L 1
R. P. Cook - . . S . f_‘
"¥MOD - A language for distributed programming' - .

IEEE Proceeaing‘Qgﬂlnternational Conference éﬁ ‘ .

ta

Distributing “Computing Systems 1979 PP. 233-241. 1979

Cow
z

! ~) ’ A) ‘ - > r)
P'. H. Enslow S .o - T :
'"Multiprocessor Organization -= A Survey'

M B ¢ * v ! [
- ' . ACM Computing Survey Vol.9 PP. 103-130 1977 A .
E. A. Feigenbaum L , d
v s) . ' . ' . PV
The Handbook' of Artificial Intelligence , 1981 : o ’ :
¢ g ' * . L“
' »)) " i . »6 -~ -
J. A. Peldmen . - " o b ’
'High ievgl progfammingofor Distributed Processing' & 2
o) U .
CACM Vol. 22 PP. 353-367 1979. . : e .
ltintn. ar———————— s ‘l. . - - . -
| ' . ‘ * . * } f k - ', : !
* . . [s / .
@ C. Hewitt et-'al e Yo ' -
Y "Security. and Modularity in Message Passing' ‘
IBEE Proceeding of International Conference on 4 “ﬁ

Distributing Computing System PP.347-358 ﬁ979¢

-

C. A. R. Hoare -
'Communicating Sequeﬂ%ial Processes' BN oL
.' ; \ " " d . * "
° CACM Vol. 21 - PP. 666-677- 1978 : . . vl
N | - e | Y .
‘ t ’ . ‘. L ’ . ' R . n,‘
. _ ; . _ ,

i

-
.

s

.,

LoD
r 30

<

L .
R. W. Hockney ;ﬁ) . * "c .
e Parallel Cpmputere.: Aréhitecﬁ%?e, ﬁrogréﬁging ahd
' 3 alkdtithms ©© 1981

. " ~
- L “‘ \) T
s . » \ 1 T; y
L}) vl ’ ¢
\ -
. E. H . . . r
: orowitz and A. Zor‘ix(\ '
’ 'Divide—and~conquéf~for parallel processing'

IEEE trqnsactions of computers VC-32, No.6 PP. 582-584
‘1983 - o

/@ Lo, ¢
S _ i -
J. D. Ichbiah et al . N oo

AN

'The Reference manual for the programming language ADA'
U. S. DOD 1980

. \
e N

£

LN

K. Jones and P. Schwarz

'Experience using Mulﬁiprocessor System'

ACM Computing Surveys. Vol.12 PP

. 121-165 1980

D. J. Kuck

{

'A survey of parallel machine organization and
programming’

+ACM Coméuting_Survqxs. Vol.9 PP. 76-87

1977

< C. Lam et al i
'Multiprocessor Project for Combinatorial Computing
CIPS Session 82 PP. 325=329

1982

bt

B. Liskévr ' ot ' '
5 : ’

- "PrimitiVe for distributed computing

* Procéeding of the 7th symposium on operating ayatem‘

princip¥es 1979 ° ' X ' : /)—

-

) H. H. Mashburn

'The C.mhp/Hydré Project : An architecture oyerview’
Computer Structures : Principles'and.Examples PP. 350-370

McGraw-Hill 1981 o A
NN
V. Mogven Gentleman Y

‘Message Passing between Sequentidl Processes : the Reply

Prlmitive and the Admlnstrator Concept'

Software Pratice and Experience Vol.11 PP. 435;466 1982

9]

J. Opatrny ‘
) - .
'Parallel Programming Constructurds for Divide-and-Conquer
Computing'

CIPS Session 84 1984

LS +

Parallel Pascal User's manual

N

Interacgive Technology Incorporated, Poftlandl'Orggon.
1982

A

' ' to » ~e
L4 P DO StOttB Jr. . . (N' PR

's

A compara.tive eurvq of concurrent programming languagea’

SIGPLAN Vol 17 Ko.9 fPP. 76-87 1982

‘
N. Wirth ~
'Design and Implementation of Modula' \

Software-Pratice and Experience Vol.7 'PP. 67-84 1977

A
.
)
.) ‘
\ »
. / .
{
/ ,
4
.
\ . '
]
‘ %
) '
v
o
nt
»
. . -
. B
. - -'98 -
[
. 4 '
L} ' a
" L
! L3 .
- :
B e d B ,,q'm:v oy e et~ - Y “ .u..(.._,....f..._,w,,. G macrmnm e -—-..—..Mw..} . - «

il \ -)
[/ .
- ’ b " r
Appendix 1. Example program. -
L e
” ‘ 4

L
v ’ .

This ef%mple program solves the KNAPSACK prqgblem. It is
- “ -

written in Phscal-C and have been compiled and executed.

¢ o
The Knapsack problem: ’
Given an integer N, a finite sequence of integers
Al,A2, ..., An, ‘and an ihtegez TARGET, find a subs%ﬁ

CHOICE such that the sum of the A's selected by CHOICf

&

is equal to TARGET.

4
PROGRAM KNAPSACK (INPUT,OUTPUT);
(* DEMONSTRATION PROGRAM FOR PARALLEL KNAPSACK
STOPS AFTER FINDING MAXSOLN NUMBER OF SOLbTIONS, WHERE
MAXSOLN IS A CONSTANT READ IN.
'ALL THE REQUIRED INPUT DATA ARE IN A ‘FILE CWLKSK.DAT.
THERE ARE TWO VERSIONS OF THE DOWN PROCEDURE PARKNAPl.
VERSION 1 : RESULTS RETURNED VIA A CRITICAL PROCEDURE.
VERSION 2 : RESULTS RETURNED VIA A VARIABLE PARAMETER.
*) .

CONST .
MAXN=30;
MAXSUBP = 32;

TYPE
VECTOR = ARRAY [1l..MAXN] OF INTEGER}
WORD = SET OF 1l..MAXN;

- 'SOLNVECT = ARRAY [1..MAXSUBP] OF INTEGER;

VAR

A: VECTOR;

CHOICE: WORD; .

1, J, N, SUM, LEVEL, TARGET, MAXSOLN :INTEGER;

SOLCOUNT: INTEGER; (* COUNT OF NUMBER OF SOLUTION FOUND ™)

SUBPNO : INTEGER; (* COUNT OF THE NUMBER OF SUBPROBLEM
GENERATED *)

NOSOLNFOUND : SOLNVECT; (* NOSOLNFOUND([I] = NUMBER OF

SOLUTION FOUND IN FHE I-TH

' SUBPROBLEM *)
SOLNFOUND : INTEGER; (* NUMBER OF SOLUTIONS FOUND BY
SLAVE *)

‘OPTION : ARRAY[1..5] OF BOOLEAN;

(* OPTION 1 : IF TRUE, USES VERSION 1 OF PARKNAP,

- 99 . .

4

i ° L . 4 <
/ -
- ' *) i

. ELSE, USE VERSION
Y RPOCEDURE READINPUT;
VAR I: INTEGER; .
F: TEXT: ;
BEGIN '
RESET (F, 'CWLKSK.DAT');
READ(F, N, TARGET, LEVEL, MAXSOLN,1);
OPTION[l] := (I=1);
FOR I:=1 TO N DO ¢
READ(F, A[1])); ’
END; (* READINPUT *)

LY

PROCEDURE PRINTCHOICE (CHOICE: WORD);
VAR I,CNT : ‘
BEGIN
WRITE, (' (') ; ,
CNT := 0; /
FOR I:=1 TO N DO SN
“IF 1IN CHOICE THEN <,
¢ : BEGIN :
CNT := CNT + 1; .
WRITE(1:2);
IF (CNT MOD 20) = @ THEN WRITELN

2 T

-

INTEGER; § (

ELSE IF (CNT MOD 5) = @ THEN WRITE(' ');

END; _
WRITELN(')'); . . .
END; (* 'PRINTCHOICE *) 3

4
PROCEDURE PRINTSOLNVECT;

VAR I: INTEGER;

BEGIN !
FOR I:= 1 TO SUBPNO DO
BEGIN

WRITE (NOSOLNFOUND[I] : 5);
IF" (I MOD 1@) = @ THEN WRITELN

. ELSE IF (I MOD 5) = @ THEN WRITE(' Vs;
) END;

. IF (I MOD 10)<>@ THEN WRITELN;
- END; (* PRINTSOLNVECT *)

o~

PROCEDURE KNAP(I, SUM: INTEGER; CHOICE: WORD) ;

BEGIN
IF (I <= N) AND (SUM < TARGET) THEN
BEGIN
KNAP (141, SUM, CHOICE);
KNAP (I1+1, SUM+A[I], CHOICE+([I]);
END

PR

y
[
‘ w_‘-'. o S T T 4

B a0

LI
ELSE IF SUM gTARGET THEN
SOLNFOUND:# SOLNFOUND+1; 1
END; . ~ .

N -

= ,
DOWN PROCEDURE PARKNAP](SUM: INTEGER; CHOICE: WO&D;

* CRITICAL PROCEDURE COUNTSOLUTION (SOLNFOUND: INTEGER));
COPY : i ’

N, A, TARGET, LEVEL, SOLNFOUND,

PRINTCHOICE , KNAP; /

AL N

BEGIN (5 MAIN LINE OF DOWN PROC. PARKNAP1l *)
WRITELN (! NEW DOWN PROC, TARG#T-',TARGET:S,
' SUM="',SUM:5,' CHOICE=');
PRINTCHOICE (CHOICE);
SOLNFOUND: =0; N .
[KNAP(LEVEL, SUM, CHOICE); :
WRITELN (' DOWN PROC FINISHED, SOLUTIONS FOUND =',
SOLNFOUND:5); .
COUNTSOLUTION (SOLNFOUND};
END; (* DOWN PROC. PARKNAP *)

B

DOWN PROCEDURE PARKNAP2 (SUM : INTEGER ; CHYICE : WORD; o~
SUBPID : INTEGER; VAR NOSOLNFOUND : SOLNVECT);
¢ (* DOWN PROCEDURE TO SOLVE THE KNAPSACK PROBLEM AND RETURN

*)

COoPY e

THE NUMBER OF SOLNTIONS FOUND IN NOSOLNFOUND ([SUBPID]. . .

- N, A, TARGET, LEVEL, SOLNFOUND, : TN D:d

PRINTCHOICE, KNAP; , ,

BEGIN (* MAIN LINE OF DOWN.PROCEDURE PARKNAPZ *) v

WRITELN (' NEW DOWN PROC, TARGET=',KTARGET:5, ' SUM=', A
SUM:5, ' CHOICE='); / i : o
PRINTCHOICE (CHOICE);
SOLNFOUND := 0@;
KNAP (LEVEL, SUM, CHOICE); .
. WRITELN (' DOWN PROC FINISHED, SOLUTIONS FOUND =', - Ve
‘ SOLNFOUND:5); N T

NOSOLNFOUND [SUBPID] := SOLNFOUND; et

. END; (* DOWN PROCEDURE PARKANNAP2 *)- R

CRITICAL PROCEDURE COUNTSOLUTION(SOLNFOUND: INTEGER);

(* CRITICAL PROCEDURE IN THE MASTER TO UPDATE THE NUMBER
OF SOLUTIONS FOUND. THE PARAMETER SOLNFOUND IS THE 2
NUMBER OF SOLUTIONS FOUND BY THE SLAVE.

*)

)

- 10% -

ot S
o mmrm ey e 4 S NSRS 24 e mebein & e a0

mr————— R Y,

Il

T~

. ° ' f -
Al

BEGIN - (
. SOLCOUNT: =SOLCOUNT +SOLNFOUND;
WRITELN (' SLAVE REPORTED FINDING', SOLNFOUND:S,
) L . ' SOLUTIONS');
' IF SOLCOUNT> MAXSOLN THEN TERMINATE (PARKNAP1);

. - L]

END; (* CRIT. PROC, COUNTSOLUTION *)
PROCEDURE INITIAL(I, SUM: INTEGER; CHOICE: WORD);
BEGIN :
IF I < LEVEL ‘THEN
, BEGIN) , .
S “INITIAL(I+1, SUM, CHOICE); ‘
,) INITIAL(I+1, SUM+A([I]), CHOICE+([I]);
' END ’
ELSE BEGIN
SUBPNO := SUBPNO + 1;
IF OPTION[1] THEN PARKNAP1(SUM, CHOICE, COUNTSOLUTION)
' ELSE PARKNAP2 (SUM, CHOICE, SUBPNO, NOSOLNFOUND);
I- , WRITELN (' SUBPROGRAM',SUBPNO :4,' GENERATED, CHOICE:');
PRINTCHOICE (CHOICE):; @ .
END; N
END;

BEGIN (* MASTER KNAPSACK %)

READINPUT;

SOLCOUNT:= @; »

SUBPNO := @; -

bY:=l; SUM:=@; CHOFCE:=[); ¢ v
. INITIAL(I, SUM, CHOICE); . i

‘ IF OPTION[1]) THEN BEGIN o
TR WAIT (PARKNAPL);

WRITELN (' PROGRAM DONE.',SOLCOUNT:S5,' SOLUTIONS FOUND');
P END ELSE BEGIN

e WAIT (PARKNAP2);

“3 to WRITELN (' PROGRAM DONE, NUMBER OF SOLUTIONS',

o, . ' REPORTED BY SLAVES ARE’),
i) PRINTSOLNVECT ;
END;
END.

- 102 - !

(=

a3ILVYINID

W3'1804d8NS 40 YIAWNN FHL 30 INNOD &) {HIDILNI : ONENS
R . (s ANNO4 NOILNI0S 30 HIAWAN 30 INNOD ¢~ .mmUuth .az:ooq0m

s

.mmwmezn. NTOSXVW ‘1L3OHVL ‘713A37 ‘WS N ‘C ‘I

{Q40M :3IDIOHD

401D3A :V
) ¥VA
{4394 LNI mo [dNSXVYW" "T] XVHIVY = 1D3IANTIOS
‘ ,V INXYH® T 30 13S = QUOM
{43ADILNI A0 Hzx<:r.~_ AVNIY = dOLDIA
3dil
“ 12¢ = JANSXVYW
L : ‘PE=NXVW
. - LSNOD
“ {»
"HILIWVEYD 3TGVINVA V¥ VIA QIN¥NLI¥ SIINS3IH : Z NOISHEA
*3YNAID0¥d IYOILIHND V VIA QINMNLIN SLINSI¥ : [NOISHAA
“TdVYNN¥Yd 3¥NAID0dd NMOQ FHL JO SNOISHIA OMI FUV IWAHL

i "LYQNSNTIMD 3T1d W

NI 34V vivd 1NdNI Q3IdIn03¥ 3HLI 11V

NI QVv3d LINVLSNOD Y SI NIOSXVW
\ JYIHM ‘SNOILATOS JO ¥IAWNN NIOSXVW ONIANIJI ¥3ILJV SdOLS
NOYSJUNA TITIVEVE HOd WVHOOHd NOILVYULSNOWAA «)

(+SL¥ D-I¥DSVA MOdy) ‘HIDILNI J0 [BBST" " T] AVNNV:JINESINZZ VA
. : *(1L0dLNO‘ LNANI) ADVSAVYNE WY¥D0Ud

o mowmmuommm&m dHL ’m SITId ALVHVAIAS SV A3IDNA0Ud JuV
Amvmmsamuomm NMOd ANV tcxwoxm NIVH S5,3AVIS JHL “3TId SIHL NO ¥3TIdWHOD

T¥IS¥d T1371IV8VYd 3HL IS ‘WYYO0Ud LSVA JTEYNNOY ¥ 3JLVI¥D OL . WY¥O0Nd
o dDdN0S D-1¥IS¥d V WOMJ QILYISNVHI WV¥9O0 YILSYW TVOSV¥d 137IVEVd ¥ SI SIHIs)

9pIs 13jsew ay) ul wexboid : LSYWDd 1

we1boid ayrdwexsa sryyz ioy 3ndang 108s3d01daad D-1eoseq

- 103 -

L vy _

N13LIdM N3HL 8 = (AZ AOW IND) dI
| > (z:1)3LIuM
r . {1 ¢+ IND =: IND
. R NIO3g "
"N3HL FDIOHD NI I JdI
. 00 N Ol I=:I ¥0a
. - un =2 LND
' ()) 3LlIumM
© N1934
N . {ON3 (VLVAZZ'NOILOVZZ)ZSlYN NIO3d
“uazmmaxmmgbmoznaaconu HYALMIOTLINI :NOILDOVZZ) ZSLY IUNAIDOHd
{(QUOMSNYILNAZZ HVAIYEOILNI NOILOVZZ) TO¥dZZ 3I¥NA3ID0Nd
- {Y3OFILNI : ILRD‘I ¥VA
{(@doM :3IDIQHD)IDIOHOLNIY¥d 3¥NAIDOY4d

— (s LNANIAVIE) {aN3
f([{1}v ‘d)avay
0d N OL TI=:1 ¥0d
{(1=I) =: [TINOILdO
$(I’NIOSXVN ‘13A37 ‘13%AVLI ‘N ‘3)avay
$(,ING " NSNTIMD, ‘d)LrIASAN
RI53g
L 4 11X3AL :d -
7 19393INI :I ¥VA
{LNANIAVI¥ F¥NQIAD0Ud

»

(» Z NOISH3A 3sn ‘3s13
‘dYNNEYd 40 T NOISHAA SISN ‘INHL JI : T NOIXAO &)
. INVY3AT008 30 (6" "T]AVHIV : NOIXdO
(e JAX]S ~
» A€ ANNOJ SNOULINTOS 40 YIGAWAN &) {4d931INI : AGNNOJAN1IOS
(s~ W3TAOYUENS
v HL-I 3HI NI aNabd NoIlnios ‘
30 ¥3IAWAN = [IJANNOJNTOSON &) {1D3ANTOS : GNNOJNTOSON

| o S8
N A w

L

- 104 -
e o
[*

L] - M 4
. + 2agN3
(«SO08d NMOGQ Ol SWVYdVYd ¥V¥A TYNLOVY 304 XIDAHDe) {(I’'SE)TOHdZZ!.
- ! 1+ANNOJNTOS =:ANNOJINTI0S
. N3IHL 1L39¥¥L= WNS 31 3513
N - ang
({1} +#3DI0HD ‘[I)¥+WNS ‘T+I)dYNX
*(3DIOHD ‘WNS ‘'T+I)dVNN
NIDa3d
~ . N3IHL (L3IDUVYL > WNS) aGNVY (N => 1) JI
, NI9ag
' {aN3 (VLVYAZZ'NOILDVYZZ)ZSLY NIO3dA
. {IUNYILXT ! (HEDILINIZVLVAZZ HVAZYIOILNINOILOVZZ)ZSL¥ 3dNAID0Ud
{(4IOILNIVIVAZZ YVALYAOALNI :NOILOVZZ) T0¥dZ2Z IWNAID0Ud

. - 4
£ (QUOM :IDIOHD ‘¥IADILNI :WAS ‘I)dVNN FHNAADOUd

A £

. - {s LOIANTIOSLNINd) ‘aNI
- : {NTALINM NIHL 8<> (8T AOW 1) 4l
{anNg
o ‘(, ,)J3LI¥M NIHL 0 = (S GOW I) JI 3s1d
. : . NI131I¥M NRIHL 8 = (AT QOW 1) al
1(s : [I)ANNOANTOSON) JLI¥NM
. NID3g
- 0a ONdENS OL T =:I MOd
] i . NID3g
Aﬂ 19393LNI :1 dVA
; : o 4 *LDOIANTOSININA J¥NAID0¥d

- m, (s IDIOHDINIHYA ») !AQNE
-) - (#SO0¥d NMOQ OL SWYEVd dVA TYNLIOV ¥0d NOIHOs) ‘(IDIOHD’SE) TOUdZZ!

v : $00GNTALIEN

. . . ‘an3
. (. 7 .)3LI¥M NIHL B = (S QOW IND) a1 3s13

- -

P - : (+SNOILINIJIAIY SLY ANJs)

)) ‘NI (LI¥DZZ'NOILOVZZ)SSLY NID3E

apatzmmexm ((43DIILNI 2ANNOINTOS) LI¥DZ2Z FHAQID0Nd ‘HADALNI :NOILIOVZZ)SSLd IdnaiIdodd
.Aammumaza ANNOJANTIO0S) LIFDZZ IANAID0Ud {¥IDILNI:NOILDOVZZ) 80¥dZZ FANAID0HA

‘ .szamummnn ¥LV¥AZZ ‘NOILOVZZ) £SLE NIOD3d
. .qczmmaxm (43DILNI:AZISZZ AIOMIVILYAZZ YVAHIDILNI :NOILDOVZZ) €SLY I¥NQAID0Ud

=) (43OFLNI:FZ2ISZZ AUOM:YLVAZZ HYALHADIALNI: onFUGNthOxQNN 3¥NAIdDoUd

. .QZHAWNuwNN ¥LVQZZ ‘NOILOVZZ)ESLY NIO3d-

.aczxmaxm (4393LNI1: mNHmNN d393LNI :VLVAZ2 m¢> HIDILNI:NOILOVZZ) €SI IWNAIDOAd
. ¢ (43OILNIIZISZZIYIADIALNIIVLVAZZ HYALHIADALNI :NOILOVZZ) 9038dZ2Z FUNATI0HA
{aN3(3Z1S22°vYLvazz’ NOILOVZZ) £SL¥ NIDa3d
{IYUNNILXT ! (YIOTLNIFZISZ2ZHIAOTLNI (¥YLYAZZ dVA‘HIOTLNI :NOILOVZ2Z) €SLY F9NQIO0Ud
+ ‘(dIDILNI:3ZISZZ YIDILNI:VLVAZZ AVAHIDILNI:NOILDVZZ)SO¥dZZ IANAID0Ud
{QNF (321S522./YLVAZZ 'NOILOVZZ) €SLY NIO3d
o LUTUNEIEX3 I (WADALNICIZISZZIADIALNIVIYAZZ HVAYYIADILNITNOILOVZZ) €SLY 3¥NATD0Nd
. . .AmmOmazH mnuwquwMUmazH VILVAZZ dYAYHIADIALNIINOILOVZZ) pONdZZ IHNATDONd
- !ANF (I Z2IS22°VYLVAZZNOILOVZZ)ESLE NID3g
{TUNYALXA ! (HIDILNI:3ZISZZHADALNIVLVAZZ HVYALHADTLNI SNOILOVZZ) £SLH FdNAII0ONd
) . $(d3OFALNITZISZZIYADIALNI VLYAZZ HVALHADILNI zomaucsnvm0¢muu JYNa3Id0Ad4d
. . !QNd (9Z1SZZ‘YLVAZZ ‘NOILOVZZ) €S1Y NID3d
IUNMALXA ! (MIDOILNI3ZIS22IDILNIVLVAZZ YVAZHIDALNI :NOILDOVZZ) €SLd I¥NAIDOU4A
$(4IDFLNITZISZZ2HIDALNIVLVAZZ YYAIHIDILNI:NOILDOVYZZ)ZOoddZZ IANQIDOHd
» ‘N3 (d21ISZZ°YLVYAZZ.'NOILOVZZ)ESLY NIDIg
~ $IYNYILXT I (MADIILNIFZISZZ HOLOIAIVIYVAZZ HVALHADIINI :NOILOVZZ) £SLY IHNATD0Hd
a {(4IOFLNI:FZISZZIHOLOIAVLVAZZ HVALHADILNI :NOILDVYZZ) TOHdZ2Z 3¥NA3ID0N4d
. («ONINDIHO 3dXL IL¥dJIA OL SNOILINIJIIQIM Slis)

: . £ ((d3DFLNI :aNNOANTOS)NOILNTIOSLNNOD FANAIDOHUd
~ - .2QYOM “3IDIOHD ‘¥IADILINI :WNS) TAYNNEYd IWNAID0Ud
. .‘mzomamzhmwo SI¥ ONdy)
- ~q<zmmaxm INYII0049: (HA9ALNI :YLYA'NOILDOVWY) ¥SL¥ NOILONNA
UIUNYILXT ¢ (YIDIINI tZwWLvYa’ ﬂmamo NOILOV) €£SLY¥ 3dnaadodd
{qUNYILX3 ! (JFOILNI VLIVA'NOILDY) ZsSl¥ 3¥naadoud
_{IYNYALXd ! (4393LNI:NOILOV) TSL¥ IWNAID0N¥d
- . . . (+SNOILINIJ3A SLd O-1IVJSVde)

.

’

»
I3

- 106 -

[T SR

G e Mok €k

|

N

ot

{(YIOILNI:IZ2ISZZ'QIOMIVLYAZZ dYA'HIDILNI :NOILOVZZ) L0¥dZ2Z JYNQAID0dd
‘AN (IZISZZ‘YILVAZZ ‘NOILOVZZ) E€S8H NIOIL

$IYNMILXI ! (IAOILNIIZISZZ HIDILNI - YLYAZZ m<>.mmumaz~.ZOHFU<NNvmem JJyngadooud
“nmmom&gﬂﬁrﬁamuNmmmomsz"<B<ONN JYASHIDILNI ¢ ZOHBU<NvaOmmNN 33na3oodd

‘N3 (321522°¥1vazz’ onBU<N €SIy NIOS3d

{MUYNJGILX3 ! (YIDTLNE: MNHmNN dIAOTLNI : <B<QNN YYATHIODILNINOILOVZZ) €SLY 3dNAID0¥d
{(YIAOILNI I ZISZZ HIOILNI: <B<DNN AYAHIADILNI :NOILOYZZ)SO¥dZZ AWNAIDONd
‘NI (21 22°¥YLVAZZ NOILOVZZSESLY NIDad

SIYNYILXT ! (HAOFINItIZISZZiHIDIALNIIVILVAZZ HYAIHIDIALNIINOILOVZZ) €SLE 3d4NAdD0dd
(YA9FINI:3ZIS22 YIOIINIVIVAZZ YVAHIADILNICNOILOVZZ) yO¥dZZ FYNAID0Hd
~OzmAmNHmNN VILVAZZ‘NOILOVZZ)ESLY NID3d

{TYNYILXT ! (YADALNI mNHmNN HIOIALNI:YLYAZZ m¢> YADOILNI:NOILDVZZ) €SLY IANQIDO0N¥d
S (4IOILNI :IZISZZYIDOILNIVLVAZZ YA HIDILNI NOILOVZZ)€0¥d22 JdNAIDOUd
{aN3(321S2Z'YLV¥AZZ NOILOVZZ) €SLY NID3d

S IYNGAIXT ¢ (JFDOILNITZISZ2IUIDILNI 1 YLVAZZ YVAIYIDILNEINOILOVZZ) €SLY JANAID0Ud

.

C(YAOFLNI:AZISZZHIDILNI VLVYAZZ HVYALHIDILNI :NOILOVYZ2Z)Z0ddZZ IdNAID0A4 -

‘ANI (JZIS2Z°¥YIVAZZ‘NOILOVZZ)ESLY NIOIH
YNEALXT ! (MIOALNI tdZISZZHOLDIAVLYAZZ HVAHADILINI iNOILOVZZ)ES 43na3ooud
_ P (49T LNI921IS22ZHOLDTAVLYAZZ YYALYADALNI :NOILOVZZ) TO¥dZZR}GUNAID0Ud
. {«ONINDIHD 3dXJ 1L¥3dda OL SNOILINIIIQIY Slis)

¢ (LDIANTOS : ANNOJINTOSON ¥VA fd3DILNI : QIddns Ms y
< 1Q40M : FDIOHD ¢ ¥IAOILNI : WNS) ZAYNNUVYA IENAID0Hd

%
-

: {v AUNNEYd °"D0Ud NMOA &) ‘ANd

< (+ONIAVOINMOAQ aQNdy) ‘AN (91) T1SLY
A.m><qm OL OJ4NI D0dd LI¥YD AaNdSy) {{LNIOSLNNOD‘BZT)80UAZZ
(+3AVIS OL FTGVIdVA JO XdOD AN3Ss) ¢ (ZT'ADIOHD‘$9) LOYUdZZ
(+3AY1S OL FTAVIAVA J0 Xd0OD ANIASs) (Z‘WNS‘¥P9)90udZZ
(+3AYTIS 0L F1GVIYYA 30 Xd0D ON3ISe) ¢ (Z’'ANNOANTIOS‘P9)50u8d22
(#3AV1S OL F1dVIYVYA JO Xd0OD ANAS«) (Z'LIDYVL‘P9)pOudZZ
(#3AVIS OL J1AYVIAVYA A0 Xd0D aN3S,) ! (Z'73A3T'p9)€0¥dZ2Z
{+3A¥TS OL JTAVIMVA J0 Xd0D ANdASs) {(Z'N‘¥9)Z0OHdAZZ

. («dAYIS OL F1AVIdVYA IO Xd0D AN3Ss) (B9°'¥W‘P9)TOU4AZZ
(«QILYNIWAIL SSATINN NOILVAILOV MIANS) 1(’'T1'99)€SLd NID3IE NIHL(T‘96) ySiy JdI
. NID3d

hY

- 107 -

PR

|

-, (» (TAUNNAVE) "FLYNIWIALs) (T'E€€)ZSI¥ NIHL NIOSXYW <INNODT0S dI
, . . ‘(.SNOILNTOS .

\ . 'S:dNNOANTIO0S ‘,9HNIANIJ gIL304dFd FAVIS ,) NIILINM

\) | i {aNNOJINTOS+INNODT0S= s LNNODTIO0S

. : .) NI93d

f - | : _ (o
. - : "JANIS JHLI X€ ANNOJ SNOILNTIOS J40 YAGWAN

% . 3HIL SI ANNOJANTIOS ¥IALIWWEYL FHL *ANNOJ SNOILNIOS A0 -

i - YIAWAN FHL JLVAdN OL ¥ALSYW IHL NI FYNAIO0dd TYDILIND &)
. . . .ﬁm@mwazH :aNNOJdN10S vzo~9940mazsou 330Q3ID0Ud

r

. Mwu (» ZAUYNNVNIVA ZENAID08d NMOAd «) ‘{and
: . (+ONIQYOINMOA QN3) .azmﬁwﬁvﬂmem

, . A«m><qm oa YILIWYYYd d¥A ANTSs) {(F9“NNOINIOSON'S9)604dZ2
’ : (+3AYTIS OL FTIVINVYA 30 Xd0OD aN3S«) ‘1z’ardgns‘y¥9)g8oddz2z
(¥3AYTIS OL ITAVINYA J0 XdOD ANISs) {(ZT'ADIOHD'¥9)L0¥d2ZZ

el («dAVIS- OL ITAVINYA J0 Xd0OD szmc, 1(Z'WNS‘$9)90ud22

- (#3AVIS 0L JFTAYIYVYA J0 Xd0D aN3Ss) ¢ (Z*ANNOINTOS‘P9)SONdZZ

(«3AYTIS OL dIdYINYA 40 Xd0D QNI Sw) -~ LADIYL'P9) pONd2Z

: o (#3AV¥IS OL IT9VIAVA JO KdOD aNISs) (2’ am>ma.vw,mommmn
. (+3A¥IS Ol TTAVIAVA 30-Xd0D ANIS«) f(Z! N'¥9)zoud22

" (#JAVTIS OL ITAVIYVA J0 Xd0OD ANISe) :(B9°V'F9)T0¥dAZ2
ﬁﬁomeczhzmma SSITINO NOILVAILOV Zmz.v (1'2°99)£SLy NIDIH NAHL(Z'96) PSLA 4l
° NIS3g

. A.monaHszmomm SLY dN3«)
{aN3 (321522 'WIVAZZ ‘NOILOVZZ) £SLY -NIOaAd
.qczmmaxm (4393 LNI : mNHmNN LOIANTOS 1 ¥LVAZZ AVALYIDIINIINOILOVZZ) €SI¥ IYNQAID0Ud
.AmmumazH 32ISZZ!LDO3ANTOS:VLVAZ2Z dVAYYIADIINI:NOILOVZZ) 608d2ZZ INNAIDOHL
.ozmHmNHmNN YLVAZZ ‘NOILOVZZ) €S1d .NI9a3g

~a<zmmaxm (YIDILNI:FZISZZIYIDOILNI YIVAZZ UVAYHIDILNI:NOILOVZZ) €SLY IYNAIDOUd
$(43DALNI:IZISZ2 YAOLLNI : ¥LVAZZ ¥VALYIDILNI:NOILOVZZ) 80¥dZZ I¥NATD0dd

.ozmnmNHmNN YLVAZZ ‘NOILOVZZ) £SLY NIOAd
$TYNIALXE ¢ (4IDILNI : dZISZ2Z:Qd40M:YLVAZZ JVALYIADIININOILOVZZ) €SIY I¥NAAD0OAd

<

- 108 -

e

N

. ‘ - o !9 =: ONdENS

v - : {8 =:LNNODIOS
i - fLndN1IaQvdy
o x . (x MOUSAYNA YIALSYW &)

- / («SL¥ HILSYW JZIIVILININ) {(Z‘B%)ZSLd
v . ~ \lftlJ («ANIINIYW HILSYHs) NIDIE
A . 4)) ‘‘angd
;o (¥S008d NMOAQ OL SWY¥VY4 dV¥A INNLOY ¥0O4d x0m=o¢v.“ﬂH~mm,HmmmNuu

. - : {ang

: . e - . . ! (3DI0HD) IDIOHOLNINA :
- - i $(,:dOIOHD ‘A3ILV¥IANID ,‘#: ONdENS’' ,WVED0AJHNS ..zqmehmz

- ¥ - 4

) ! . ' ($7I¥D

NMOQ Jd0 dN3 &LV ¥DOTINfs) ANI (1) ISLY: (ANNOINTOSON ‘ONdENS ‘IDIOHD ‘WNS) ZTJIUNNUVC
(«TIYD NMOQ 3¥033d AD071 3 JAVIS JAYISTdy) uAavaBm AN v€)Zsld NID3Ig 3S13

@ .

(«7I¥YD NMOQ 40 aNd &c xUOdzacvcdzmﬁﬂvﬂmBm AZOHBDdOmBZDOU *dDIOHD :Dwvﬂmtzxmcm,

(£711¥D
- NMOGQ F¥0Jd3d ¥D07T 3 FAVUIS FANIASTUS) {(p)ISiyi(r’ vm.mmam NID3d NIHL Hﬁ_onamo dI
{1 + oNddans =: QNddns
///“ szmm asad
. and

- Ma_H_+mumo=u.._H_<+zom ﬁ+qu<HaHzH
> - . {(3DIOHD ‘WNS ‘T+I)IVILINI
. : NIO3Ig
. - N3HL _ T13A3T > I dI
_ _ . _ - NID3d
' SANI (YL YAZZ ‘NOILDOYZZ)ZSLIY NIODId
TIYNAILXTA ! (YIOTLNI S YILVAZZ dVAHIADILNI :NOILOVZZ)ZSLY FiNa@ddoid
-~ F(H4EDFLNIVLIVAZZ HVALHIDALNIINOILOVZZ) TOHdZ2Z mm:omexm

- £ (Q¥4OM :FJIOHD f¥IDILNI :WAS ‘I)TVILINI 3¥NAID0¥d
Vi N) _ ® \
\ (¥ NOILNTOSINNOD °D0dd "LI¥D) ‘ANT

.+ WY4D0dd GNT &) (LT)TSLE! - »
. o ! LDIANTOSINI ” i
) {(,34V SIAVIS X€.QILYO4IM ,- :
' SNOILNIOS 30 YIAWAN ‘ANOQ WWHD0¥d ,)NIILIAM

‘ E
) . , (v (ZdUNNEYE) L1IVMs) (Z°ZE)ZSIY m//;
; NIDIH JS7d ANI

0d SNOILNTIOS ‘S:LNNODTOS’ ., *ANOG WY4D0dd) NTALI¥M -

: ///) (v (TAUNN¥YA) LIVMs) (T’ZE)ZTSIY
, Se - NIDId NIHL [TINOIL4O JI
i *(3DIOHD ‘WNS ‘I)IVILINI
- . . {[}=:3DI0HD {p=:WNS IT=:1I

©

e oy

- *aNd -
. : 1- = QINMOG ‘1IIND -
)) M . .) {aN3
- A4S IMIAHLO
. , . L - frdaa:z
{1da:1
d0 AINMOQ 3SYD
) (» ammsomm o0ud zxoo - (oF | amcz) {(AINMOQ‘99T1)9Sid
. = - lvadad
(« zonaczuzmua 33aLav muoamuu oa uaaam m><m s) fLV1SZZ
(¢« SI¥ IAVIS JZIIVILINI .. ((p‘sy)zsiy
N193d
1IYNEA LY { (MADTLNI :X HVA! muuuazn.x.wmam 2dna3ooyd
- {IYNNT LXT ¢ amuwﬂuzn :X’X)Zsiy F¥naID0dd
X . {TYNYF LXT {LVLSZZ d3nadDoud
. . - - ITYNN3ILX3 {240 .33900300¥8d
(YNNI ILXT!ITda 3YNAID0Ud
{4393LNI :AINMOA
(£SL¥ D-1¥OSHUd d0ds) {MIADILNI dJO (BBST° "T)] AYNEV:SIY dVA
(¢« WY¥90dd SIHI A€d NNA STANAID0Hd I¥VIS¥d T31IV¥Vd (QIVINIA0 X79ISSOd)

© JYNMILIXE SY GDANIT F¥VY SIUNAIO0Ud NMOG D-TYOS¥d "IAVIS ¥0d WYYEDOUd NIVKy)

~

o , - 3pls Jaes ur EmumOum utew ¢ AVISOE 2

L

>

-
u--M‘l’

. . - B =y
[B e e W

, : ‘aNg .
. ‘ Ne) N1 uM
- ‘ana
. £(,)ELI¥M NIHL 6 = (S QOW IND) dI 3s1a

zama~m= NIHL @ = (8Z QOW LND) 4l)
1(Z:1)3LIYM _
T + ILND =: IND
NID3g
- NZHL FOIOHD NI I 4l
) 0d N 0L T=:1 ¥04
/ . {9 =: LND
. 2(,).) Alium
. - : zuonm
d .) {43DILNI * IND‘I ¥VA -
.*nmox $ADI0HD) IDIOHDINIYA
339n0a2o0ud
. {4393LNI :ONNOJNIOS ¥VA
. L4AOFALNI SLADUVL UVA
{4IOILNI :1IATT MNA
{4IOALNI:N ¥VA
N L fHOLD3AAY ¥VA
INXYR® “T 30 L3S = QUOM
adil
{4393INI 30 Hzx<z..~_ VYV = ¥OLD3A
. adxy
: {8 E=NXVYN
LSNOD

- 112 -

(¢°JAVIS THI ¥Od WVYHO0Ud NIVW 3HL
ol .mmqsooz SVIIWIS d3IHLO ONIAVIYIAO X14ISSOd) AIAANNIT ANV IVISVd T3 IVEVd
A4 Q3TIdWOD 39 AINOHS IFTNAOW SIHIL °“RYIO0¥d FDUNO0S D-I¥OS¥Yd ¥ NI 3d0na3ooud

NMOQ ¥ WO¥d QILVISNVEL ‘J¥NATID0Ud TYNYALXT IVOSVd 131IVHVd ¥ SI SIHIs)
$1dd 2¥NAZD0Ud (+38s)

(s TAYNN¥VYd FUNATD08d NMOA &)
- apys aAe(s uy $21npado1d umop : NMOADd €

[T TR

[

&
(»SYILINVAVA FENQID0OYd NMOQ ¥OJ SNOILVEVIO3A 30 AN3s)
{»d3LSYW NI UOmm LI4D 303 Id _ZX¥INT % NNIT LVLSs) ‘HADFINI: uazmuu SNITIZZ ¥VA
R) (+HIALIWVAVA ANTVAL) 2QHOMITDIOHD ¥VA
= . - («HILAWVE VY] INTVAx) $HIDIINI:HNS HVA
mw A.mmmamzcmcm d80Q3ad0'd NMOd ¥0d SNOILVMVIDIQ NIODIdy)

{NMOG mm:omoomm

>

(#SNOILINIJIQAY SLE ANds)
AN3(FZISZ2 ‘VLVAZZ ‘NOILOVZZ) £SIY NIDAd
$IYNYTLXI L (MADILNIIZISZZYIAOIINIVLYAZZ m<>ummUmBzHuzonhucNNvabm 33n03od0odd

{(4IDILNIIZISZZHIADILNIVLVAZZ HVALYIADILNI:NOILOVZZ) SOUdZZ F3NAID0¥d

~DZMaHNHmNN VIVAZZ ‘NOILOVZZ)ESLIY NID3M
~d¢3¢m9xm (43DFINI:IZISZZ YIADIALNI-VLVAZZ VYVAIHIDALNI :NOILOVZZ) €SLY JdNaIad0Ud

7~ . {{4FAOFINI:FZISZZYIADOILNIVLVAZZ HVALYADILNI SNOILDOVZZ) y0udZZ I YNAIDOHL
‘ANJ(3ZISZZ’'VLVAZZ zombUQNNvmmam NID3d
- SIYNYILXT ! (WADILNI: mNHmNN ¥393INI:YLVAZZ VA HIOILNI :NOILIVZZ)ESLY 330AID0Ud
Y {{(4F3OFINI :AZISZZ4HIADIINI VYL VAZZ YYALAIODILNI ¢ onaU¢NuvmommuN T3nq3aD0Nu4
.azmamnHmnn ﬁmconu ‘NOILOVYZZ)ESLY NIDIAQ
SIUNIALXT L (MIOILNI:IZISZZYIDILNIVLVYAZZ YVALYIDALNT :NOILOVZZ) €SL¥ FUNAID0UA
$(43DALNI:IZISZZiYADIILNIIVLVAZZ HVALYIADOALNI onaocunvNommnu 33NAID0Nud
.nzm.mnnmnn VLVAZZ NOILOVZZ)E€SLY NIDIH
¢ 4TYNYILXT L (HAOFTINI ¢ mNHmNN JdOLDAA:VLVYAZZ m<> YEDALNI :NOILOVZZ) €SI¥ IANAIADOEA
.ammumazu dZISZZ{80LDIAIVLVAZZ UVALNIOALNI :NOILOVZZ) 108422 IdNAID0Ud
(#ONINDZHD IdAL LVYIJIFAA OL SNOILINIIIQIY SLis)
{aN3
{ T+ANNOANTOS = SANNOJNTIO0S

. NIZHL 139¥9¥d= WAS JI 3S13

anid

. _— S({I)+3DI0HD ‘[I]JVY+WNS “‘T+I)dVYNN

(3OI0HD ‘WHAS ‘T+I)dV¥YNN

) - NI93g

. : o NIHL (L3ADUVL > 'WNS) ANY (N =>) JI
) « NID34
. 2 (QdOM :dDIOHD {¥IDEAINI :NAS ‘I) JVNX
: F3naIdodd

~

.

- 113 -

T

(v 3¥0D IWNAIOOHd NMOd ANF &) ‘aANZ(LT) TSIA
]

(8LNJIZZ‘8NITIZZ‘Z ‘ANNOINTOS) zoua:40maz=ou
) (S :aNNOJN10S

‘.= ANNOJd SNOILNIOS ‘GIHSINIJ J0dd NMOd ,)NIILIYM

£(3DI0HD ‘WNS “TIAT'T) YN

{9=:dNNOJN10S

{(3DIOHD) ADIOHDLNINA

£(.=3DI0HD ., 'S:HAS‘ ,=WNS ., .

—~ G LADYVL’ \ =LIADHVL ‘D0dd NMOQ M3EN ,)NI3ILIIM
: (v TAYNNYYd “D08d NMOGQ 30 INIT NIWUW) #
(#¥3LSYW WONJd OJINI D0dd LI¥D 3AIIDI™s) ! (¥’'BNITZZ’YL)BOYUdZZ
{xHALSYW WOHJ FTd¥IHVA JO Xd0D ZFAIFDTUy) (ZT'3IDIOHDVL) LO¥AZZ
(yH3LSYH WONJd ATAVIAVA 40 XdOD FAIIDIUs) 2(Z’WNS‘¥L)90N¥4ZZ
{«3J0D FANAID0¥d NMOds) NIDIH

. (4SNOILINIJIQAY SLH ANds)

2AN3(9+3ZISZZ ' XUINIZZ’9L)ESLY NIOD3IC

{IYNGILX I (MIOILNI tHZISZZUIOTLNIVLVAZZ YVALNIADILNIINOILOVYZZ) €SLY I¥NQaAD0Ud
uﬁmmumhzmn»masz&.zquNN.MNHmNNummUmezmuozaoszOmvabuomEZDou J8NA3aooud
MozuAuummnu.caanwu.zonau<unvmmam NIDag

MYNIILXT L (43O3LNI tJZISZZYIDALNI 1 YLVAZZ m<> YIAOILNI NOILOVZZ) €SIy JaNA3ID0Ud
L (4I9ALNI-321S22¢ mmomazH YlVAZZ dYASHIDILNIC zouau<usvwommun FJANA3Id0¥d
{ANT(IZISZZ‘YLIVAZZ‘NOILOVZZ)ESLY NIDAd

nq<zxmaxmnammwmazm"mwmmwwuomoxucecoxn dYAMIODIINI :NOILOVZZ) £SILY I3NAAD0Ud
$(4AD3LNI:921$2Z2QHEOMIVLYAZZ YVALYIDILNI :NOILOVZZ) L0¥dZ2 FuNATD0Ud
{GNF(AZISZZ'VLVAZZ ‘NOILOVZZ) £SLY NIDAd

SIYNEALXT { (dADILNI 3 ZISZZIdIOTLNI S VLVAZZ HVALHADALRI CNOILOVZZ) £SLY FANAID0Ud
{(4393INI:32]1SZ2Z93DILNI YL VAZZ x¢>“mmumazn"onaU@NuwoommNN 3400320484
{(¥ONINDIHD IdXAL LYZIIQ O SNOILINIAIAIAY Slds)

(#SNOILINIZ3Q SL¥ GNds)
CTYNYALXT ¢ (YADILNI 2IZISINVYITO0E :QIONVHOHADILNI NOILOV) €SL¥ FHNAID0Ud

PTUNYILX3 ! (IOILNI :NOILOV) TSL¥ 3¥NATD0Yd
(#+SNOILINIJEA SL¥ D-TV¥IS¥ds)

i

-

- 114 -

. . «a H azu
- , . ' T ma.vuv ﬂ.ﬂmﬁzq
. . L e, -3 o NID3d

ST AYFAOAINI O IND'T ¥VA

~Ezoz $3DI0HD) IDIOHDLNT ¥d

: T -3¥Na3dodd

. - {¥3D3ALNI :ANNOJNTIOS dVA
T - .. . {¥dOALNI :LIADYVL VA
s . {4EADILNI 1 13A3T ¥VA

T T {4ADALNI N ¥VA
- 1901D3A:Y ¥NA
) 2¥3I9FINI J0 [dENSXVW""T] AVIEVY = LDIANIOS
h) 3dxd
ST ‘ .zxc:..H d0 13S = QUOM
.o s adxL

TV . .mnwmazH a0 Hzxmz..a_ AVNY = ¥OLD3A
- 44Xl

i LSNOD
IR ’ {8E=NXVN
- LSNOD

A‘ JAV1S-3HL ¥Y0d RY¥DOdd NIVW N:b

0l (S3INAOW YVIIWIS HIHLO ONIXAVIHIAOQ A791SS0d) QAANIT GNV IVOSNd. T1371IVEVA

A9 .g3aTIdR0OD 34 QINOHS FINAOW SIHL °“WVEID0dd JOHNOS O-IVOS¥d ¥ NI IJ¥NA3ID0¥d
’ 2300 ¥ WOdd QHECQMZCZB ‘3YNa3Id0dd TYNFILXT IVOSVd TATIVEVAd ¥ SI SIHLs)
{240 F¥NAID0Ud (¢3$s)

ﬁ”/Nmazxmcm 2¥AAID08d NMOA &)

(«NOID3IH NOILDAS XdOO ANds) !ANI NMOQ

(s¥3LSYW WOUA FTAVINVA JO Xd0D 3AIIDIHe) ¢ (ZT'ANNOANTON'¥L)SO¥dZZ
(s¥3ILSVH WOHJ ITAVINVA JO XdOD FAIADAUy) {(Z'LIADUVL‘FL)POUdZZ

: (s¥ILSYN WONd FTGVINVA J0 Xd0D FAITDIY¥s) (T‘T3ATT'FVL)EO¥AZZ.
(»¥ALSYW WOMd FTAVIYVA d0 Ad0D IATIIDIds) »Aw.z.vnvnommuu

- . (+43LSYW WO¥JI FTAVIHVA IO AdOD IAIIDINUs) ‘(B9‘VW'PL)TOHdZZ
" ﬁ.mzuan NOILDAS Xd0D d0d NOID3I¥s) NIDAd

®

- A - : 1Z€ = JENSXVH

-

LR NG e bt Bt W Bk v

R S

o s,

oo

-IANZ(dZISZZ'YIVAZZ ‘NOILOVZZ)ESLE NIO93d
SIYNEALXA? (WADFINI:FZISZZHIAOIALNI VLY AVYA LY IDIALNI SNOILDOVYZZ) €SI JANAID0Nd
“.mmumazm"munmnnummumazh“¢a¢onwmw<>“mmomazn"zonaoann.mozauu 33NA30Nd
‘ON3(321S22°VYLVAZZ‘NOILOVZZ)ESLY NIO3d
$AYNYALXT ! (MADIALNI CAZISZZIHIOILNI :VILVAZZ SYAIHIADALNI CNOLILDVZZ) €S1Y INNAIDONd
{ (4393 LNI: mNHwNN HADIALNI :YLVAZZ HVAIHIDILNI: ZOHBUGNNVvOmmNN JaNaaooud
t f{aN3(3Z2IS2Z°VLVAZZ‘NOILOVZZ)ESLY NIDZQ
STYNYZLXT ! (HIDOFLNI:ZISZ2Z HIDILNI :VLVAZZ YVALYIDI NI :NOILOVZZ)ESIH IUNAID0Ud
{(YAOIINI:IZISZZ HIDILNI:YLVAZZ HVAINADILNI :NOILOVZZ) €04dZZ FUNATDOUd
. uazmAmN~mNN.<a<onn.zouaucnuvmman NI93X
* $IYNYALXF ! (HIADILNI :dZ21S22? mmowazm.ﬂhﬂasn m<> dIOFLNI:INOILDYZZ) €S1Y -3¥NQAIADONd
(4AOIALNI:3Z1ISZ2? mmuuazH YLVAZZ ¥VA{YIDELNI: onau<NN,~ommsu 33na3DoNd
{ON3 (421522 °VYLVAZZ'NOILOV2Z)£SLY NID3AdE
$1YN43ILX3! Azmomaza.mNHmNN d0LDO3A:VIVAZZ HVAL¥IOTINI :NOILOVZZ)ESLY FANATD0¥d
1 (dEO3ALNI:IZ1ISZ2ZIH0LDIAAYLVAZZ ¢¢> dIODJLNI: iOmBUtNNVHoszN FANAIDONd
(#ONINDIHO 3IdAL ILV3JIA O SNOILINIJIAIY Siis)
{and
! 1+ANNOANTIOS =:ANNOJANTIOS
N3HL 13d98Vl= WAS JI 3S13

ang
. \ :([1)+3DI0HD ‘[I]V+WOS ‘T+I)dVNN
$(3DI0HD 'WNS ‘T+I)dVNY
NID3d
N3IHL (L3D4VLI > WAS) AN¥ (N => I) dI
; | NID3d
{(ayoM :IDIOHD ‘YADILNI :WAS ‘I)dVNM
24NAID0¥4d’
. ‘aNg
; £, (VINIALIIM
- . ‘QNg .-~
: : *(y)3LIYM NIHL 8 = (S GOW IND) 43I 38719
~ - NI3ILIYM NIHL B = (BZ GOW LND) dI
R , - T(z:1)ALIUM
N . L~ 7 T + IND =3 aND
T NID3d
Pt N3HL 3DIOHD NI I 4l
— 00 N OL T=:I ¥0d

-

- 116 -

= e s S ————— g

N

(+HILSYW HOHJ 479¥I4VA J0 Xd0D 3AITDA¥«) {(Z‘WNS’¥L)90udZZ
(#3400 mz:amUOmm NMOds) NIOD3E

(+SNOILINIJZAIN SL¥ ANFs)
~azmﬁmnumnn WIYAZZ ‘NOILDOVZZ) £SLY NID3IH

STYNNALX3 ! (ADIINI:IZ2ISZZILOIANTOSVLVAZZ dVAIYIDILNI NOILOVZZ) £SILY F¥YNAID0dd

! (4IDIINII2Z2ISZ2¢{LOIANTOS:VLYAZZ HVYAIHIODOILNI iNOILOVZZ) 604dZZ FUNAIO0Ud

. {aN3(3Z1¢Z2Z“VLVAZZ ‘NOILOVZZ) ESLY NID3d
YNNI LXT ! (B3DILNIIZ2ISZZ YIDIALNI :VIVAZZ UVALYIADILNI NOILOVZZ) €SLd JdNAID0¥d
{(Y3OFLNIIZISZZ YIOIINIVLVAZZ dVAIYIDALNI:NOILOVZZ) 80¥dZZ 3¥NATD08d

) “azmﬁmummun.<a¢ann.zoaaucusvmmaz NID3d
(IYNYILXT ! (MIDILNIIZISZZ AIOM: YLYAZZ IVAIHIDILNI NOILOVZZ) €SLY I4NAID0Nd

£ (4IDALNIIZISZZIQYOMIVILVAZZ FVALIHIDILNI: zonaucunyhoumun F8NQ3IdOUd
{GN3(3Z21SZ2°'V¥LVYAZZ ‘NOILDVZZ) €SLY NID3E

.qmzmmexm (439FLNI 3215224393 LNIVIVAZZ FVA!HIDILNI :NOILOVZZ) £SLY FUNQATO0Ud

(YIDIALNI :IZISZZHIDIALNI:VLVAZZ UVAIYIADIALNI :NOILOVZZ)908dZZ J¥NAID0¥d
- (#ONINDIHD IdAL LVIIAA OL SNOILINIJIIAIY Slie)

NOILINIJ3A SLY¥ AON3s)

.qczmmaxm Azmumazm 321s! zcmqoom A3IONVHI 'Y waz~ NOILOV) £SLd 3YNQID0Ud
ITYNEILXT {(HIODILNI :ROILDOV) TSL¥ FINAID0Ud
(#SNOILINIZAQ SI¥d D-1I¥DS¥ds)

« (»SHILIWWHYd FHNAID0Hd NMOQ ¥03 SNOILVWAVIDAQ 40 ANIs)
A.mmam:<m<m YV¥A 3A0EY NI S3ILVAdN 403 NVOS OL X3IANIs) Z€°°T1:1X622

(«3D3HD 3ALVA4N ¥OJ KdOD % WVHVA UVAs) {1DIANIOS: mm:mnn NNOJNTOSON ¥VA
(»¥ILIWVEVA INTVAL) HIDILNI :QIJENS VA

(+UILIWVAVYd INTVYAS) "QHOMZIDIOHD UVA.

(«¥ILINVIVD 3NTVAs) ‘HIOTLINI :WNS VVA

' (+SHILAWYEYd IHNAID08d NMOd ¥0d SNOILVYVID3IA NID3Ids)
. {NMOQ IUNAID0Ud

<

(+SNOILINIJIAIY SLY OGN3s)

=17 -

-

W i ey

n

«

(+NOID3Y zouaomm.»mou aN3s) {aNT NMOd

(s83LSYW WONd FTLIVIVYVA 30 Xd0D IAIADIMe) ({Z2‘ANNOINTIOS’¥PL)SO¥AZZ
(«¥ILSVW WO¥3 ITEAVIIVA JO Xd0OD IAIIDIde) ¢ (Z'LIADYVL'¥PL)YOVAZZ
(+HILSYW WONJ 3T1aVINYA J0 Xd0D 3AIIDA™s) ‘(T qu>ma.~h.mommuu
(+43LSYW WONJ 31aVINVA 30 Xd0D FAIADA™.) {(Z'N’PL)Z0MdZ2

{+¥M3LSYW WOUJI FTAVINVA J0 AdOD JAIFDTHS) (P9‘¥’¥L)T0¥dZ2Z

-~ («SWALI NOILOIS XdOD ¥OJ NOIDIYUs) NIDIL
(» 390D 3¥NAID0dd NMOQ ozu . .ozuﬂnavﬁmax

« (+IX622 ¥Ods) {ANT

(»3LYAdN ¥0d NDIHDe) ! (2 Hﬁxmuu_mu:mNNAv_ﬁxmnuuzaomzaomoz £L)eSLY
NID3d 04 ZE€ Ol T=:1X6ZZ ¥Od

(+¥3LIWVIVd dVA IO FIvVadn NI9dds) f(¥9’ z:OMZQOmoz thmommNN

*
B {ANNOANT0S =: [dIddns) nznomzn0moz
¢ (S :ANNOANTOS

..n annod wonFDQOW fQIHSINIA D034 NMOd ,)NIILIYUM

* ') ~amumozu ‘WNS .am>mavm<zz

!9 =: ANNOANTIOS

2(ADIOHD)ADIOHDLNRING

C4(,=dDIOHD , ‘S:WOS
L =WAS , ‘SiLAOUYL’,=1L393VYL ‘D0dd NMOQ MIN) NTGLIdM.
(« ZJYNNUYd FENATD044 NMOAQ J0 INIT NIVH)

A.mmuzczo 1D3L3A Ol ¥ILIWVHYL dVA 30 XdOD FAYSs) {NNOINTOSON=:64NdZ2
(#H3LSYH WOdd YILIWVYYd ¥VA FAIIDIHs) ¢ (P9’'NNOARTOSON’GL) 608dZ2Z
(+¥3LSYW WONA FTEVIUVA 30 Xd0D FAIFOA™«) $(Z°AIdANS‘¥L)80UIZZ
(¥ILSYN WONJ FTGVINYVA JO Xd0D IAIADIYs) (ZT'IADIOHD‘¥L)LO¥AZZ

-
A)

.

Appendix 2.

.

interface.

describes each action code.

L

List of Action Codes for Preprocessor-RTS

Part A lists all the action codes while Part B briefly

[—

- 119 -

vty e ———

Part A. List of Action Code.

Group| Short Code Parameters -

Name Name Number (lst) (2nd)

meaning type meaning type

RTS1 |[Lock m @ ———— , ===

RTS1 |Unlock m 1 - ————

RTS1 |[Flush m 16 ———— _————
Buf fer

RTS51 |End Check |m,s 17 -—— -

RTS2 [wWait DP m 32 DP-1ID integer -———

RTS2 {Terminate (m 33 DP-1ID integer -———
DP

RTS2 {[Reserve m 34 DP-1D integer -———
a slave

RTS2 |Scope m ~-35 |Bottom - integer | | L =————
Check of stack :

|RTS2 Initiali- [m,s 48 |Total # integer -——

‘ zation lof DPs

RTS3 |Dawnload m 64 Addr. of integer |[Length integer
Value para given para.

.|IRTS3 |Download ' |m 65 addr. of integer |[Length integer|
Var para. given para.

RTS3 |Activate |m 66 DP-ID: integer |# of var integer
DP T para.

RTS3 |Prepare s 72 |Addr. of‘vinteger Length - integer
for upload c given para.
var para.

Parameters

[Group| Short Code
Name Name Number (1st) (2nd)
meaning type meaning type
RTS3 |Upload Varls 73 Actual boolean |Length integer
para. Upload
RTS3 |Receive 5 74 Addr. of integer |Length integer
value para given para. L
RTS3 |Receive s 75 Addr. of integer |[Length integer
var para. given para.
RTS3 |CP requestis 76 Addr. of integer |Length integer
CP package » ‘
RTS4 |[Test m 96 DP-ID integer -——
Terminate
RTS5 {Download m 128 |Entry integer |Static integer
cp Point Link
RTS6 |wait for s 168 [DP-ID integer -———
new task (var para)
Note. 1. All parameters in the above 1list are value
parameters , or. otherwi se stated as variable

_RTS4 is a

N

parameter.

In the Code Number cloumn, 'm' and 's' means that
-~

this action code is used in the master side and the

slave side respectively.

.

function rather than a procedure. Its
A\

result type is boolean.

- 120 -

e v LI —_— -
. - ’

Part B. Brief description of Action Codes.

~

Lock

Enter the Critical Section.

Unlock : ‘ l —

Leave the Critical Section.

\ , , /
A
Flush Buffer
Send whatever remains 'in the buffer to its buddy.
End Check
< Check if it is save to terminate the system.
‘ " / ‘ ‘
Wait DP
< . .
Perform the necessary operations as specified in the /

Wait statement.

~

Terminate DP X ’ . .
Perform 'the necessary operations as specified in the

Terminate statement.

4

Reserve a slave

-

@

Reserve an available slave for the specified DP.

1

A

Scope Check

Check if the user attempts to leave the environment in

- 121 -

< J \ ’ ~ /"*_J

e i

T P R .
i

1

-

¢ N -

Initialization . : L e

' 22 '
Initialize all global variables of th® RTS and create

#

* the necessary processes.

Downloéd value parameter
Download the ddta mentioned in the copy section and

value parameter of a DP.

Download variable parameter s

Download thg variable parameter of a DP.

Activate DP . .

Inform the slave to get ready for a.new task.

Prepare for uploading variable parameter .

Get,, ready to upload portions of the varialbe parameter

3 ,

—~—

specified.

Upload var':
Upload changed bortion of a variable parameter.
v .
Receive }alue-parameter
Rereive the data mentioned in thé‘ copy section, the
value parameter or the éntty point and the static link

@

- - 122 -

which the actual parameter of a DP is declared. p

et 6 e A

~mmp o ey

of a critical procedure.

[-\ ' ’

+ . 3 .) .
Receive variable parameter

Receive variable perameter of a DP. ot

~ L]

CP request Cod

»

Request to run a CP in its master.
[
[

-

Test terminate -
»8 <) . .
Test if a DP call should really be processed or not.

’

Download CP ' . L \ t
Send to the slave the entry point and the ‘static link
ofwthe CP.which will be invoked later on.

+

Wait for a new task

.

Wait for its masterto send it a new task.

F L

-

