The Implementation of Two Utilities in BNDX

Nathaniel Fink

A M jor Report
in

The Department
of

Computer Science

Presented in Partial Fulfilment of tne Requirements for
the Degree of Master of Computer Science at
Concordia University

Montréal, Québec, Canada

April 1996

© Nathaniel Fink, 1996

ILib
L I

Acquisitions and

Bibiiotneque natior.ale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontano
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be rrinted or
otherwise reproduced without
his/her permission.

395, rue Welhingtun
Ottawa (Ontarno)

Your e Volre rélérence

Our lile Nolre rétérence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-18389-0

Canada

Abstract

The Implementation of Two Utilities in BDX

Nathaniel Fink

The BDX program was developed by Dr. C. Lam and Mr. L. Thiel to generate
Balanced Incomplete Block Designs, or BIBDs. used in combinatorics [6]. In this
report, I will be discussing two utilities for BDX which I helped to implement.

The first utility consists of Dump and Restore routines which allow the user to
halt the generation of block designs and save the state of the program. The user can
then continue the run at a later time, using part or all of the generated data. The
second utility is a test, based on a theorem by Greig [2], called the Hook-22 test in
BDAX. Its purpose is to reduce the number of cases BDX has to consider in generating
the special case of a BIBD known as the (22,33,12, 8,4)-BIBD.

Chapter 1 gives some background information on block designs and the BDX
program. Section 1.2 describes block designs in general and Section 1.3 gives a
description of BDX and some of its capabilities.

Chapter 2 describes the first BDX utility I implemented, the Dump/Restore util-
ity. Section 2.1 discusses the nature of the Dump/Restore utility and the types of
situations in which it would be needed. Section 2.2 shows how the Dump/Restore
utility is used in practice in BDX scripts. Section 2.3 shows how the Dump/Restore
utility is implemented and describes some of the changes it has gone through since

its creation.

i

Chapter 3 describes the second BDX utility. Greig's Test. including Greig's Cri-
terion, and my implementation of the utility as two testing routines. Finally, I show
a proof of the redundancy of one of these routines.

Appendix A.1 gives some samples of output from BDX. Appendices 88 and € con-

tain the source listings for the Dump/Restore and Grieg’s Test utilities, respectively.

iv

Contents

List of Figures vii
List of Tables viii
1 Background 1
1.1 Definitionof Terms 1
1.2 BlockDesigns e 2
1.3 The BDX Program 7
2 The Dump/Restore Utility 11
2.1 Background L e 11
2.2 Syntax and Examples. 14
2.3 Implementation e 18
2.4 Changes to Dump/Restore 20
3 A Test of the (22,33,12,8,4)-BIBD Based on Greig’s Criterion 21
3.1 Greig’'s Criterion e e 21
3.2 Implementation 23
4 Conclusion 30
Bibliography 31
Appendix 32

A Output of Example of Dump/Restore 32

A.1 Dump/Restore Example1 32
ALl v9bl2aout. 32

All2 v9bl2bout 34

A.2 Dump/Restore Example?2 36
A21 v2Tlllogo o 36

A22 v272log 38

A23 v2T3log o 1]

B Source Code for Dump/Restore 47
B dumpsetup 47
B2 dump(). 18
B3 restoresetup(). 19

B.4 restoredmg() 50

C Source Code For Greig (Hook-22) Test 52
C.l hook22.c 52
C2 printsle L By

vi

List of Figures

1.1 Script for whole (7,7,3,3,1) with no isomorph rejection. 8
1.2 Script for first three rows of (7,7,3,3,1) 9
1.3 Script for whole (7,7,3,3,1) with isomorph rejection 9
1.4 Solution for (7,7.3.3,1) with isomorph rejection. 9
1.5 Script for whole (7,7,3,3,1), fixing the first column of A 10
1.6 Selected solutions for whole (7,7,3,3,1), fixing the first columnof A . 10
2.1 v9bl2a.bdx e e 15
22 vObi2bbdx e 16

vii

List of Tables

3.1 Distributionof valuesin S 25
3.2 Case 2 of Proof of Theorem34 26
3.3 Caseda e e 28
34 Casedb 28
3.5 Caseda e 29
3.6 Casedb e e 29

viil

Chapter 1

Background

The BDX program was designed to generate block designs which are uniform, bal-
anced and incomplete, known as BIBDs [1]. This section describes BIBDs and gives
a general overview of how BDX is used to generate them. This section also describes

some utilities in BDX that are used to speed up the search.

1.1 Definition of Terms

Some of the terms used in this and later chapters are defined here.

Block Design: A block design is an object used in combinatorial analysis to describe
the matching of two sets. One is a set of varieties and the other is a set of subsets

of the varieties, called the blocks. For a further discussion of block designs, see

Section 1.2 below.

Incidence Matrix: An incidence matrix is a rectangular matrix with values 0 and
1. Block designs can be represented by incidence matrices as follows: the entry
A;; = 1 if and only if variety i is in block j of the BIBD. This report, as
well as the BDX program itself, depicts block designs as incidence matrices,
and any reference, given here, to an incidence matrix implies a reference to its
underlying block design. The incidence matrix is usually referred to as the A

matrix. Also, thic report makes refer~nce to the rows and columns of A. For

1

consistency. the columns and rows of A will refer respectively to the blocks and

varieties of the block design.

Arow myAcol mt Arow m means the mth row of the A matrix. A.; m means the mth

column of the A matrix.

Degree: We define the degree of a vector to mean the number of ones in the vector.
Vectors refer to the rows and columns of the incidence matrix, and so are also

restricted to the values 0 and 1.

1.2 Block Designs

The three properties of a block design discussed here are uniform, balanced and
incomplete. They can be defined as follows. Let A be the incidence matrix for a
block design, with b columns and v rows. If all b columns are of degree exactly k
(0 < k < v) then A is uniform. If k is strictly less than v and all v rows are of degree
r where 0 < r < b then A is incomplete. If all pairs of varieties occur in exactly A
blocks, then the block design is balanced. Equivalently, a block design is balanced if
the inner product of each pair of distinct rows of A is A. Since each row corresponds
to a variety, a pair of varieties occurring in A columns means that the corresponding
rows have exactly A ones in the same position and so the inner product of the two
rows is .

Having defined the terms balanced, incomplete and uniform, we can give a formal
definition of the BIBD. Although the expression BIBD does not explicitly include

the term uniform, it is included in the definition as follows:

Definition: A balanced incomplete block design is an arrangement of
v distinct varieties into b blocks such that each block contains exactly
k distinct varieties, each object occurs in exactly r different blocks, and

every pair of distinct varieties a;, ¢, occurs together in exactly A blocks.

{3, p. 126].

Proposition 1.1 The relations among the five parameters which describe a BIBD

are as follows:

bk = ru, (1.1)
r(k—1) = Av-1), and (1.2)
A< (1.3)

Proof: There are k ones in each of b columns. Also, there are r ones in each of
v rows. Therefore, the number of ones in A is bk = rv, which proves (1.1). Each
variety occurs in r columns and is paired with k — 1 other varieties in that column.
Conversely, each variety is paired X times with all the other v —1 varieties. Therefore
the total number of pairings for a given variety is r(k — 1) = A(v — 1), which gives
(1.2).

From (1.2) we have

rfA = (k=1)/(v-1).

Since the block design is incomplete,

k< v,
or,
k-1 < v-1.
Therefore,
A< o

Example 1.1: The concept of the BIBD may be illustrated by means of a class

of well-known BIBDs, the projective planes. A projective plane of order n consists

of n? 4+ n 4 1 lines and n? 4+ n + 1 vertices. Each line joins n + 1 vertices, and each

3

vertex is the intersection of n + 1 lines. All pairs of lines intersect exactly once on
some vertex and all pairs of vertices lie on exactly one line. This can be represented
by a BIBD with n? 4+ n 4+ 1 blocks representing the vertices, and n? + n + 1 varieties
representing the lines.

Since each vertex contains n + 1 lines, the blocks are of degree n + 1. Addi-
tionally, each pair of elements occurs exactly once. This describes a BIBD wh.re

b=v=n’*4+n+l,r=k=n+1l,and A=1.

(Note: block/var vs col/row)

Although the inner products of the blocks, or columns, are all A in this example,
this is not generally the case. The restriction of A on the varieties, or rows, does not
exist for the columns, whose inner products may vary from 0 to k, where k is the
degree of the column. For example, (1.4) is the incidence matrix of a (9,12,4,3,1)-
BIBD. The inner product of any two distinct rows is 1. However, the inner product

of the first and last columns is 0.

(11110000000 0)
100011100000
100000011100
010010010010
A=101000100100T1]/|. (1.4)
001010000101
001000101010
000101000110
\0 00100110001

The B matrix, which is directly related to A, is the product of A and its transpose.

Bis a bxbmatrix and contains elements B,, = (Ayow iy Arow ;). B is useful in checking
that A forms a BIBD. From the definition of a BIBD, one can show that the matrix
B = AAT = (r — A)] + AJ; that is, B has 7 on its diagonal and A everywhere else.
The diagonal contains the inner products of all rows with themselves which are all
of degree 7. The off-diagonal elements are inner products of distinct 1ows which all
have A clements in common, since each pair of elements of distinct columns occurs
exactly A times. This is a sufficient test of the r~quiremenis of a BIBD, as shown in
[3, p. 127].

Another matrix iclated to A is S. This matrix is defined as S = AT A, and is
therefore of size v x v. Since the elements of S are the inner products of the columns
of A, we can write this as S, = (Acor 4, Acor ;). S is used in the analysis of A, for
the purpose of the generation of A. This will be discussed later in Section 1.3 and in

Chapter 3. Note that S is a symmetric matrix, since the inner product operation is

commutati-e.

Definition: H v =5 and r = k then A forms a symmetric BIBD.

The following theorem was proved in [3, p. 130]:

Theorem 1.1 If A forms a symmetric BIBD then b=S.

Example 1.2: The projective plane described in Example 1.2 :; an example of a
symmetric BIBD.

Let (v,b,7,k,A) = (7,7,3,3,1), which is the projective plane of order 2. That is,
Ais of size T x 7. It also has columns and rows both of degree 3 and pairs occurring
once. Here is an example of this block design given as a set of blocks containing the

variety elements {1,...,7}:

B, = {1,2,3)
B, = {1,4,5}
Bs = {1.6,7)
By = {2,4.7)
B; = {2,5.6)
Bs = {3,4,6)
B; = {3.5,7).

The incidence matrix A, with columns representing the above blocks, is:

(111000 0)
1001100
1000011
0101010]|,
01001 0 1
0010110
\0 011001}

and since A forms a symmetric BIBD, § = B = AAT is

|
[S e Y . T e
[
[
[SY
el
[T

1.3 The BDX Program

In this section, we give a brief description of some of the features of BDX which are
required for the understanding of the report. For a detailed description, see [6].

BDX uses a branch-and-bound algorithm to search for and generate BIBDs. The
branch-and-bound algorithm is useful in BIBD generation because it allows tests to
be performed on parts of the A matrix to determine whether the partial matrix can
lead to a solution, and allows restrictions to be placed on parts of the matrix to
shorten the search time.

The branch-and-bound algorithm works by breaking the problem down into search
levels. At each level, a fixed number of decisions branch out into the next level, so
that the search tree grows geometrically with each level. At a given level, a decision is
made using a test function, or predicate. The test “prunes” the tree by determining
whether a solution is ultimately possible from the given current partial candidate.
When a branch is pruned, all search nodes extending from that partial candidate are
skipped. This can significantly reduce the number of cases being tested. In the case
of the BIBD, a search of every possible configuration of the incidence matrix would
require 2™ candidates to be tested (where m is the number of elements of the matrix).
This is far too many for most non-trivial BIBDs. The branch-and-bound algorithm
need onlv test a small fraction of these cases. Additionally, branch-and-bound tests
the partial candidate, which is usually faster than testing a complete candidate.

BDX uses a script language to direct the search routine. The language consists
of commands to specify the five parameters (v, b,7, k, \) for the A matrix. BDX also
references the S matrix, where S = ATA. For both A, and S, BDX can restrict
elements to specified values. Even though restrictions on S are really restrictions on
the blocks of A—since the elements of S are the inner products of the blocks of A—it
sometimes easier to dictate restrictions in terms of S. Values can be assigned to A
or S, or an area of A can be restricted so that all the ones in that area add up to a
given number or range of numbers.

BDX automatically generates all possible solutions of a given BIBD. To reduce

the number of cases being searched, cases can be generated with the isom option,
which causes BDX to skip all except non-isomorphic candidates. The generation of
the BIBD is done by the try command. This command can be used to generate all,
or a part, of the matrix. There are several search strategies, each of which restricts
the search in a different way. Also, any region of A or § can be printed at any time.

For example, Fig. 1.1 shows a script to generate the projective planc of order
2. The first three statements define the five parameters of the BIBD in the order
(v,7,b,k,). These are required at the beginning of the script. The fourth line
contains a try statement which directs BDX to perform the actual search of the
BIBD on the whole 7 x 7 matrix. Finally, exit ends the run (see [6, Sec. 6]). This
script, unfortunately, would generate every possible (7,7,3, 3, 1)-BIBD—over 150,000

of them!

7 rows of 3;

7 cols of 3;
lambda=1;

try row[1:7,1:7];
exit

Figure 1.1: Script for whole (7,7,3,3,1) with no isomorph rejection

In a single script it is not necessary to generate the entire BIBD. This strategy is
useful (and generally necessary) in handling large BIBDs, where the problem must
be broken down into steps. See Section 2.1 for more detail.

In this example, we could reduce the number of cases by trying only the first 3
rows, as in Fig. 1.2. This generates less cases because there are less possibilities for
the first three rows of the BIBD than for the entire matrix. In this case, there are
5670 solutions.

In another example, we could restrict the search in other ways, such as only
allowing solutions which are non-isomorphir, by using the isom option of the try
command, as shown in Fig. 1.3. This eliminates the need to generated versions of
solutions attainable by permuting their rows and columns. In this example, only one

non-isomorphic solution is generated, as shown in Fig. 1.4. In other words, all of the

8

7 rows of 3;

7 cols of 3;
lambda=1;

try row[1:3,1:7];
exit

Figure 1.2: Script for first three rows of (7,7,3,3,1)

solutions that would otherwise be generated are isomorphic.

7 rows of 3;
7 cols of 3;

lambda=1;
try row isom [1:7,1:7];
exit

Figure 1.3: Script for whole (7,7,3,3,1) with isomorph rejection

1234567

1110000
1001100
1000011
0101010
0100101
0011001
0010110

NOOBWN -

Figure 1.4: Solution for (7,7,3,3,1) with isomorph rejection

In Fig. 1.5, we place ones in the first block, restricting their positions. This does
not affect whether we get a solution because permutations of columns of the A matrix
are isomorphisms and so we still get the same number of non-isomorphic solutions.
We also restrict the solutions so that only every 2000th is passed. This means that
BDX will print the first solution, skip 1999 solutions, print the next one, and so on.

Of the 4320 generated solution, 3 are passed, as shown in Fig. 1.6.

7 rows of 3;

7 cols of 3;

lambda=1;

Af1:3,1]=1;

try row[1:7,1:7];

pass every 2000 times;
exit

Figure 1.5: Script for whole (7,7,3.3,1). fixing the first column of A

1234567

1110000
1001100
1000011
0101010
0100101
0011001
0010110

1234567

1010100
1000011
1101000
0011001
0100101
0110010
0001110

1234567

1 1000101
2 1001010
3 1110000
4 0100110
5
6
7

N NP WA

NI W -

0010011
0101001
0011100

Figure 1.6: Selected solutions for whole (7,7,3,3,1), fixing the first column of A

10

Chapter 2

The Dump/Restore Utility

"This section explains the purpose of the Dump/Restore utility, followed by a descrip-

tion of how this utility is called in a BDX script. Finally, there is a description of

the implementation of the utility.

2.1 Background

Upon completion of a partial generation of a BIBD, the Dump/Restore utility allows

a BDX script to dump all the data to a file. The BDX program can later restore

the data to another script, which continues generating the BIBD. Dump/Restore has

two main uses:

1.

o

Estimation. When trying to find the most eflicient strategy for generating a
particular BIBD, several estimates must be made in order to determine whether
a given strategy is better. Output data produced before the dump was called
can provide information necessary to make estimates in any future runs from
that point. Moreover, Dump/Restore allows several tests to immediately start

from a single pre-computed point.

. Distributed Searches. A common general strategy in long searches is the

distributed search, or a sharing of the workload among many computers. The

11

Dump/Restore routine allows a single previously generated starting configura-

tion to be restored on any number of machines.

Dump/Restore works especially well for both estimation and distributed searches
when the starting configuration takes a long time to generate, as in the case of
a starting configuration that was generated by an expensive utility like isomorph
rejection. Dump/Restore eliminates the need to generate the configuration for each

run, whether for testing, or in a distributed environment.

Estimation

The main goal in developing a script to generate a particular BIBD is to reduce the
search time. Estimation is useful in determining which search strategy is fastest. For
large problems, starting configurations can be created at various points where it is
clear there are several directions the search can take. Based on estimation, decisions
can be made on each subsequent part of the search. Many Dump/Restore operations
can take place in succession, perhaps creating a distributed search tree.

Rather than a simple sequential search of solutions, BDX uses a fast branch-and-
bound algorithm. Even so, search time may still be long for many BIBDs. One way
to decrease the search time is to reduce the number of cases being searched. This
can be done using the following basic methods. These methods can be combined in

any variety of search strategies:

1. Placing restrictions on the entries of the matrices A or S.

This method allows the user to restrict values of the entries of these matrices,

bypassing cases not having those values.

2. Reordering of partial steps. If there is some knowledge of the number
of branches of each step, the shape of the search tree can be streamlined by

handling certain steps before others.

3. Isomorph rejection. Two candidates are isomorphic if they differ only by row

or column permutations. Permuting the rows or columns of a solution does not

12

affect the solution. This means that if one candidate leads to a solution, all
candidates that are isomorphic to that candidate (that is, the candidate’s orbit)
will also lead to solutions. If the user wants to find whether a single solution
exists, rather than doing an exhaustive search, the search could be restricted
to only non-isomorphic candidates, cutting down the number of cases being
searched to one candidate per orbit. However, generating the isomorphism

group for isomorph testing can itself be time-consuming.

If the program has run for a while, it would be useful to estimate its completion
time. This requires repeated test runs from the same point in the search. If the point
of interest is in the middle of the search, rather than starting the search from the
beginning, we can create a dump file containing all data generated up to this point,
and a test script can restore and test search strategies from this point.

The user can also dump and restore in succession as many times as necessary,
exploring many parallel possibilities without having to constantly restart from the

beginning.

Distributed Searches

A distributed search is the procedure of continuing a search on more than one machine
simultaneously. The user can start any number of parallel runs from the same dump
file. For instance, a partial search could be run on one machine, then dumped. It
could then be restored on two machines, with two further partial searches performed,
and so on. The Restore routine allows some or all of the partial solutions stored in
the dump file to be restored to the next script.

For example, a set of dumped partial solutions could be restored in a mutually
exclusive manner on each machine in the distributed system, if necessary. In this
way, parallel runs could take advantage of the mutually independent way that the
branch-and-bound algorithm searches each case. Each machine would restore from
a copy of the same dump file, but would be restoring different partial solutions, and

would return its own result of the partial search.

13

2.2 Syntax and Examples

The role of the Dump/Restore utility is to halt the program at a certain point,
and to dump all generated data, including all cases of the A matrix and any search
restrictions. At a later point, the user can continue the run, using all or some of the
previously generated cases.

BDX has the script commands dump and selectimage to perform dump and re-
store, and command line option -r and -d to specify the name of an output file to
dump to, and an input file to restore from, respectively. The dump process requires
the use of both the dump command and the -d command line option, and likewise
the restore procedure requires selectimage and -r. The parameter ~r requires the
filename of a file dumped by BDX, but the parameter -d will default to the stub of

the script filename with a .dmp extension. For example:
bdx run2.dat ~r=runl.dmp -d

will execute the script in run2.dat, restoring the dump file run1.dmp and dumping
the new state to run2.dmp. The command dump is usually placed at the end of the
program, before exit, toindicate the intention to dump thestate after everything has
been generated. The command dump can also be placed in the middle of a program,
if there is a need to halt the program before all trys are executed.

The command selectimage is used to restore a previously dumped image. When
an existing file is specified in the BDX command with the -r option, the file is read
in and the lines of script of the dumped image are executed again (ignoring any try
or other ‘work’ commands), in order to recreate the state, including internal data on
the BIBD as well as the images generated. Examples of internal information are the
parameters of the script from which the dump file was created, the parameters of the
BIBD being generated, restrictions on A and S and the search mode, whether it be
plain, sorted or isomorph rejection. The selectimage command accepts most forms

of the <SUBSET> parameter, as defined in BDX, which includes ranges like [7:9&12)

14

meaning images numbering 7,8,9 and 12 and ranges such as [2:11 by 3] meaning

images of cases numbering 2, 5,8 and 11. All other cases are skipped.

Example 2.1: Suppose we want to find a (9,12,4,3,1)-BIBD. To do this we might
generate the first two rows of A and dump the results. Hereis a possible script, which
we will call vOb12a.bdx (see Fig. 2.1). The first three lines give the parameters
(9,12,4,3,1) for the BIBD. These starting lines are necessary for BDX to accept the

script.

9 rows of 4,

12 cols of 3;
lambda=1;
Al1,1:4]=1;
A[2,1]=1;

try row [1:2,1:12];
pass every 4 times;
print row [1:2,1:12];
dump;

exit

Figure 2.1: v9b12a.bdx

In order to reduce the size of the output, we reduce the number of solutions. We
can guarantee solutions will be found as long as the eliminated cases are isomorphic to
some generated cases. Since there are 4 ones in each row and solutions are isomorphic
under column permutation, we can fix all 4 ones in the first row, restricting them to
the first four positions. Similarly, each column contains 3 ones, so fixing a second
one in the first column will not prevent a solution from being generated.

The try command instructs BDX to generate all possible ways to fill in the parts
of the BIBD specified in this command. The try command can generate by row or
column; in this case we use try row to direct BDX to fill in a row-by-row manner.
The parameters [1:2,1:12] will generate the first two complete rows, there being
12 columns. There are still many solutions, so we only pass every fourth solution
generated. This is done with the statement pass every 4 times;.

To have a visible output to record what has been dumped, we print the first

15

two complete rows, using the same conventions as the try command. The dump
command then creates a dump file with the name specified on the command line.

We execute the script with the following command in the unix shell. which reads
the script v9b12a.bdx, dumps to the default file and prints to v9bi2a.out. The

command sequence

bdx vObi2a.bdx -4 > vObi2a.out

gives us two files. The first is vObl2a.out, as shown in Appendix A.1.1. The
second, vOb12a.dmp. is a file consisting of the lines of the script from which it was
dumped, along with images of the cases as tables of zeros and ones. The output file
vOb12a.out shows that 56 cases of the first two rows of A have been generated and
dumped, of which 14 are output. From the dump file, we can select any case from 1

to 56 to restore in the next script. In the script v8b12b.bdx (see Fig. 2.2)

9 rows of 4,

12 rows of 3;

lambda=1;

selectimage [1:9 by 4];
try row [3,1:12];

print row [1:3,1:12];
exit

Figure 2.2: v9b12b.bdx

we choose cases 1,5 and 9 and continue them by generating the third row of A. We
execute the script as above, but in this case including the dump file we want to re-

store from instead of the -d option. The command:

bdx v9b12b.bdx -r=v9bi2a.dmp > vSbi2b.out

produces the output file v9b12b.out (see later in Appendix A.1.2). From the three

images restored, case 1 can be extended to the third row in a unique way, and cases

16

3 and 5 each have three possible extensions.

Example 2.2: Here is a typical situation in which long expensive generation is
interrupted by frequent dumps, preserving the partial run for later restore, as well
as allowing several possible paths to be tried from the dump points.

In this example a user is building a (27, 39,13,9,4)-BIBD. The first script, which
the user calls v27_1.bdx, is listed in its log file in Appendix A.2.1. In it the user
places several restrictions on S and A, requests several fills with try statements,
and also requests isom testing. The results are then dumped to v27_1.dmp; lastly,
a pass every statement allows only one out of every 50 solutions to be output to
the log file. This means that the dump file gets all of the solutions, of which only a
fraction is printed. The results, as shown in v27_1.1og, are that 32 non-isomorphic
partial solutions are dumped to v27_1.dmp and one solution is output. The ex ition
time was 25.5 seconds.

The second script, v27_2.bdx is listed in v27_2.log in Appendix A.2.2. In it
the user restores the dump file v27_1.dmp from the previous script v27_1.bdx. This
automatically restores all of statements from the script v27_1.bdx. This allows BDX
to set up the state as it was at the time of the dump, including the parameters of the
A matrix and test isomoption. The statement selectimage [1:32] restores all 32
images of the partial solutions from the dump file. The user performs several further
fills and dumps again. The results are that 2461 non-isomorphic partial solution
are generated and dumped. This takes 37361.4 seconds or about 10 hours and 22
minutes.

The third script, v27_3.bdx again restores all 2461 images. Several restrictions
on § are made, and then fills are performed. With the final test isom statement,
68 partial solutions are generated in 5492.5 seconds or about 1 hour and 31 minutes.

In this way, ‘he user is able to generate a set of partial solutions, stop, study the

results, make decisions about how to continue, and then to continue the generation

17

from that point without restarting—certainly a very useful thing to be able to do
after a 10 hour run. If necessary, the user could continue the run from v27_1.dmp or

v27_2.dmp with different scripts than v27_2.bdx or v27_3.bdx.

2.3 Implementation

This section describes the implementation of the Dump/Restore utility. The Dump
routine contains two main functions.

The first function. dump_setup(), is listed in its current form in Appendix B.1.
This function is called withtwo parameters: the file name of the source, source_filename,
and a string, param, which holds the text of the ~d command line option of BD.X, if
any. The function dump_setup() is always called; if the parameter string is empty,
the function returns immediately. If the parameter string is not empty, the next test
determines whether a filename was specified with the -d option, and if so, copies the
filename to the variable dump_filename. If no filename is specified, the dump file-
name gets the script filenaine, source_fname, with the rightmost extension replaced
with ".dmp". given in the command line, as would be the case if the user were enter-
ing lines of script from the console, or if the resulting dump filename already exists,
an error occurs. Otherwise, the dump file is opened and a message indicating the
source filename and dump filename are output to the dump file. Finally, a function
set_lex_echo() instructs BDX that each line read from the script file should be
echoed to the dump file. This allows the Restore routine to later reconstruct the
state of the run from the dump file.

The second Dump function is dump (), a current version of which is given in Ap-
pendix B.2. The dump () function is called whenever the dump command is processed
by BDX. The function first checks whether a dump file was opened, and if not, it
immediately returns. If the dump file is open, the current image number, which is
held by a static counter initialized to 1, is printed in text formn to the dump file.
Then the function prints the values of the A matrix in text form, whether ‘0’,‘1,” or

¢, for undefined.

18

In the currer.t version, BDX prints a character to the dump file, indicating whether
or not the output is to be compressed, before printing the image number. has two
main functions which set up the restore conditions and perform the actual restore.
The function restore_setup(), listed in its current version in Appendix B.3, accepts
the text of the ~r command line option. As with dump_setup(), restore_setup() is
always called by BDX. For this reason the parameter string must be tested to verify
whether it is empty.

Next, if the -r option was specificd without a filename, an error occurs, since there
is no default. If a filename is specified, it is stored in the variable restore_fname.
A small function within the Restore module, look_for_BEGINIMAGE() is called to
find the first line of first image in the restore file. This line marks the end of the
restore file's echoed script, which is not compressed in the restore file. The function
restore_img(), shown in its current version in Appendix B.4, handles the specifics
of restoring an individual image. It has one parameter img_num that passes the image
number as an integer. The function first tests whether the restore file is open, and
otherwise returns immediately. It then scans for the number of the next image to
be read from the file. If the image number cannot be found, «s would be the case if
a specified image number was greater than that of the last image in the restore file,
then a warning is printed. The restore file is closed and the restore file pointer given a
null value to identify it as closed. before the function returns. If the image number is
found, the image is read in, element by element, and stored in the array corresponding
to the A matrix. called to handle the restore process. The function do_restore() is
first called by BDX when the command selectimage is encountered. It first checks if
the restore file is still open. If not. it executes the current script command, and then
returns. If the file is still open, it scans for the next image numher. The function
restore_testop() determines whether the next operation called by the restored
script should be re-executed. Commands that produce data, such as try, or contain
important information, such as rows and cols, return a true value. Operations that
produce no data. such as printing, generating cases, dumping, and isomorph testing,

return a false value.

19

2.4 Changes to Dump/Restore

In my original work, the dump procedure provided output of readable images, in
tables of zeros and ones. This was later found to be space-inefficient. The images
are currently compressed using bits to represent the elements of each row, as well
as through line-encoding, giving approximately a tenfold reduction in the size of the
dump file. If the routine is printing in compressed form, to which BDX is currently
restricted, the image number is printed in binary, and a special function, Compress (),
returns the entire matrix in line-encoded compressed form, which is then written to
the dump file. For restoring, functions are called to decompress the binary line-

encoded image and store it in the array.

20

Chapter 3

A Test of the (22,33,12,8,4)-BIBD

Based on Greig’s Criterion

It can be shown that the parameters of the (22,33,12,8,4)-BIBD are admissible,
but it is not known at the time of writing whether this design exists. Although
larger BIBDs have been successfully searched—as has, for example, the projective
plane of order 10, which corresponds to a (111,111,11,11,1)-BIBD—the search for
the (22,33,12,8,4)-BIBD is a more difficult problem. Therefore, any method of
shortening the search for this BIBD will bring us closer tn solving this problem. It
was therefore proposed that a test pertaining to this BIBD be included in the BDX
program. This test is based on Greig’s Criterion and takes the form of a predicate

test during the search routine in BDX.

2.1 Greig’s Criterion

An important aspect of branch-and-bound search algorithms is their partial predicate
tests. The sooner (that is, the higher in the search tree) that bad partial solutions
can be eliminated, the fewer number of cases lower in the search tree that will have
to be subsequently searched. Predicates that are fast to calculate, and are largely

independent of other predicates in terms of the cases they throw out, are the most

21

useful. A well-defined predicate takes better advantage of the properties of the spe-
cific problem to be solved. For the (22,33,12.8,4)-BIBD, there are several useful

properties, including the inequalities shown in theorems below; these are inequalities

on the entries of the S matrix.

Theorem 3.1 For all 2 x 2 submatrices of S of the form:

)

Theorein 3.2 For all 3 x 3 submatrices of S of the form:

u<4.

8 u v
u 8 w
v w 8

utv2>2w.

Theorem 3.3 For all 4 x 4 submatrices of S of the form

(8 ¢ d ¢)
c 8 u v
d v 8§ w
\e v w 8)

ct+d+et+u+v+w>10.

For a proof of these theorems, please see [1, pp. 18-19].

22

3.2 Implementation

In BDX, the test based on Greig’s criterion is known as the Hook-22 test. The reason
for this name is that it is implemented as an external utility and is meant for BIBDs
of size 22. It uses Theorems 3.2 and 3.3. From the completed entries of the S matrix,
all principal submatrices of 3 x 3 and 4 x 4 elements are tested.

If any of these tests fail, a “BAD” result is returned immediately and the current
case of the A matrix is thrown out. Otherwise, “GOOD” is returned, meaning that
the test was successful and the current generated case is acceptable.

The main function of the test, do_hook_hook22() can be found in hook.c listed
in Appendix C.1. It uses functions and global variables from printsl.cin Appendix
C.2. First, the S matrix is generated, ensuring an updated version. This is done by
the function createS() in printsl.c.

Next, the test based on Theorem 3.2 is performed. The array sortstack, which
holds a list of completed elements of S, is scanned for rows or columns of the S
matrix. Since S is symmetric, no distinction is made between rows and columns.
Using nested for loops, every choice of three rows or columns is generated. To save
time, the three rows or columns are generated in a fixed order, and then three tests
for the three possible choices of the first row are made together. In other words, no
sum of any two variables should be less than the third. If this test fails, a failure
counter is incremented and the function returns “BAD™. The test based on Theorem
3.3 makes use of the generated data of the previous test. The variable uvw_sum holds
the sum of the variables u.v and w. The only new variables that have to be assigned
are c,d, and e, which are added. If the new sum is less than 10, the test fails in the
same way. Larry Thiel later found, however, that this test is not reeded. The test
based on Theorem 3.3 has therefore been disabled in the current version of BDX.
Shown here is a proof found by Larry Thiel. It demonstrates that there is no case
where a submatrix of S passes the test of Theorem 3.2 but fails the test of Theorem

3.3.

23

Theorem 3.4 Let

8 ¢ d ¢

c 8 u v
4 =

d u 8§ w

e v w 8

be a principal submatriz of S. If all of its 3 x 3 submatrices satisfy the condition of
Theorem 3.2 then Sy satisfies the condition of Theorem 3.3.

Before proving Theorem 3.4, we first establish a corollary of Theorem 3.2:

Corollary 3.1: Let

8 u v
u 8 w
v w 8

be a submatrix of S. If u = 0 then v = w.

Proof: By interchanging columns 1 and 2, as well as rows 1 and 2 to preserve
symmetry, v and w trade positions.

So we can say, if u = 0 then w > v. Therefore, u =0 = v = w. Q.E.D.

We can now consider the proof of Theorem 3.4. This proof makes reference to the
possible Types of each row in the S matrix. These Types are derived in {5, p. 78] and
are reproduced in Table 3.1. The Types are defined by the vector [b, ..., bs) where
b, is the number of entries in a row of the § matrix with the value . The values
always refer to the off-diagonal entries of the S matrix since by the nature of the
(22,33,12,8,4) the diagonal entries of the S matrix have the value 8. For example,

if a row of the S matrix is of Type 1, then in the off-diagonal entries of this row it

24

Type bo b by b3 by bs
1 0 0 12 16 4 O
2 01 9 19 3 O
3 0 2 6 22 2 O
4 1 0 6 24 1 O
5 0 3 3 25 1 0O
6 0 0 11 19 1 1
7 0 1 8 22 0 1
8 0 4 0 28 0 O
9 1 1 3 27 0 O

Table 3.1: Distribution of values in S

has twelve ‘2’s, sixteen ‘3’s and four ‘4’s. We only need to consider Types 1 to 4, as

the others are proved to be invalid in [5, pp. 79-83].

Proof: (of Theorem 3.4)

Let C1,...,C4 be the columns of A corresponding to the entries of the given 4 x 4

submatrix of S. Then,

Since Theorem 3.2 applies to all 4 submatrices of the matrix S; in Theorem 34,
most variables in the latter theorem are also interchangeable. Therefore the variable

¢, which is assigned a value in each case, is arbitrary and is therefore assumed to

25

have the minimum value.

The proof of 3.4 is divided into 6 cases.

Cases 1 and 2 are both for ¢ = 0. The only intersection pattern with by > 0 is
Type 4, which has b = 1 and b; = 0. Since the next nonzero b; is b,, all the entries

in the row are at least 2. In other words, d,e,u,v > 2.

Case 1: ¢ =0, and at least one of d,e,u,v > 2.
If one of d,e,u,v > 2 then Corollary 3.1 implies that another of them is also > 2,

since ¢ = 0. Therefore d + e+ u + v > 10 and Theorem 3.3 holds.

Case2: c=0andd=e=u=v=2

In other words, ¢ = (C,C2) = 0 and d = (C1,C3) = e = (C1,C4) =u = (C2,Ca) =
v = (C2,C4) = 2. Of the 22 rows, 8 are filled in C,, of which 2 are filled in each of
Cs and C4. This is described in Table 3.2. The remaining 4 ones of C3 and C,4 must
occupy the remaining 6 unfilled rows in C; and C;. So (Cs, C4) = w > 2. Therefore
c+d+e+u+v+w> 10 and Theorem 3.3 holds.

Number of 1s in A
Cy |Ca|C3| Cy4
1..8 8 8101 2| 2
9..16 8 0812 2
17..22 6 0|0)4]| 4

T # rows

Table 3.2: Case 2 of Proof of Theorem 3.4

Cases 1 and 2 cover all possibilities where ¢ = 0. We now assume ¢ > 1. Cases
3 to 5 are for ¢ = 1. Since ¢ is assumed to be the minimal off-diagonal entry in S,
all of the other off-diagonal entries are > 1. By permuting the rows if necessary, we
can assume that d is the smallest among d, e,u and v. Cases 3 and 4 are for d = 1
and Case 5is ford > 1. If d = 1, then from Theorem 3.2, ¢c+d > u,sou =1 or 2.

Therefore we have the following division with cases 3, 4 and 5:

Case3: c=d=1andu=1.

Please refer to Tables 3.3 and 3.4. We have ¢ = (C;,C;) =d = {(C,,C3) = u =

26

(C,,C5) = 1. Therefore Cy, C; and C3 each share a common one. Let C; have its 8
ones in rq_g, let r; be the row with the common one of C; and Cs, let r, g be the 7
remaining rows holding the 7 remaining ones of Cj, let rg ;5 be the 7 remaining rows
holding the 7 remaining ones of C3. If C; contains a one in r; then C3 will have no
ones in ry_15 where there are ones in C) and C,. C3 will have its remaining 7 ones in
T16.22. The configuration is shown in Table 3.4.

On the other hand, if 7, has no one in Cj, then it must have 1 one in each of 75 g
and rg ;5 so that it shares a common one with both C; and C3. But then C3 has
only 6 remaining ones in r¢_21, and we will say the last row with no one in Cj is ry,.

This configuration is shown in Table 3.3.
In either case, the column C4 must contain e ones in r;_g since that is where the
ones of C'y are. There are also at most v ones in rows rg_15 of Cy, since v = (Cy, Cy).

There can also be less than v ones in this region, since not all ones of C, must be in

T9.15-

We call this value £ < v. The same conditions apply to r6.21 where C4 contains
y < w ones. Finally, we have at most 1 remaining one in r,, since e+ z +y < 8, so

we say z < 1. From this, we have,

e+r+y+z = 8.
Sincez=0or1,

etzxz+y 2> T.
We defined = < v and y < w so this gives

etv+w 2> 7.
Since ¢+ d + u = 3, we have

(c+d+u)+(e+v+w) > 10

Therefore, Theorem 3.3 holds.

27

Number of 1s in A
T # rows AR c,
1 1 1 (110
2.8 T 706 ©
9..15 7 01711 |x<v
16..21 6 010 |6 |y<w
22 1 00 }|0]=x=1

Table 3.3: Case 3a

Number of 1s in A
T, # rows e ol c
1 1 1171
2.8 7 J|7]olo| ©
9..15 1 01710)<L
16..22 7 0|0 |7 |yLfw
0 0]1]0(0]:==

Table 3.4: Case 3b

Case4:c=d=1and u=2.

This case is very similar to case 3.2. C; and C; share common ones in 1 row, r;. If
C5 does not share this common one, as in Table 3.5, then it needs 1 one in rp g for
¢ =1 and 2 ones in rg 15 for u = 2. The remaining 5 ones of C5 are in 76,20 and
T21.22 are 0. If Cj also has a one in ry, as in Table 3.6, then there need be no ones in
ro.8 of Cs. Since u = (C,,C3) = 2 there is 1 one in rg_;5. The remaining 6 ones are
in 716.21 and r9; is 0. Regardless of which subcase we are dealing with, (s still has
e ones in ry.8, ¢ < v ones in rg_15, and ¥y < w ones in 716,20 OF T16..21 for subcases a
and b respectively. The remaining region has 1 or 2 rows, depending on the suhcase
with at most 2 = 2 ones. So z < 2.

Similar to the previous case we have:

etz+y+z = 8

28

Sincez <vand y<wand z=0or 1,
e+v+w > 6.
And sincec + d +u =4,
c+d+et+ut+v+w > 10.

Therefore, Theorem 3.3 holds.

Number of 1s in A
oo (#ows e Tl | o
1 1 11110
2.8 7 7lof1] °©
9..15 7 01712 z<v
1620 5 0|05 |y<w
9.2 2 [ofo]o|z=2

Table 3.5: Case 4a

Number of 1s in A
T # rows alelcl c
1 1 111
2.8 T f7rlo]o] ©
9.15 7 0711 |z<w
16..21 6 0106 jy<w
22 1 0100]=z=1

Table 3.6: Case 4b

Case 5: c=1and d,e,u,v > 2.

Thenc+d+e+u+v>9and w> 1 since ¢ is arbitrary and minimal.

Case 6: ¢, d,e,u,v,w > 2.
We have ¢+ d + € + u + v + w > 10 automatically.

Therefore, in all cases, Theorem 3.3 will never fail and is thus redundant. Q.E.D.

29

Chapter 4

Conclusion

In this report, I describe two utilities, which 1 have implemented, that allow BDX
users to generate BIBDs with greater control and efliciency. The first problem was
that unless a good search strategy were used, a complete search would take a very
long time. A partial search script could give information, but there was no available
way of continuing the search once the script ended. The other problem is the search
for the (22,33,12,8,4)-BIBD.

The first utility, Dump/Restore, addresses the first problem by allowing a user
to run a partial generation, at the end of which one can save all partial solutions
for a later restore and continuation. This can help in finding the most time-efficient
method for generating the entire BIBD, whether in sequence or by allowing several
machines to search, in parallel, subsets of the cases. In the long term, a dump file
can be distributed to allow others to study the progress of a particular search, and
perhaps to offer better methods for continuing the search.

The second utility, Greig’s Test, provides a good partial predicate test for the
second problem: searching for the (22, 33,12, 8,4)-BIBD, which has yet to be found.

30

Bibliography

[1] Ding, Yuan. A Study of Balanced Incomplete Block Designs, thesis, Department
of Mathematics and Statistics, Concordia University, 1993.

[2] Greig, M. An Improvement to Connor’s Criterion. Unpublished.
[3] Hall, M. Jr. Combinatorial Theory, 2nd Ed., New York: John Wiley, 1986.

[4] Hall, M. Jr., Roth, R. and Van Rees, J., Vandstone, S.A., On Designs
(22,33,12,8,4), Journal of Conbinatorial Theory, Series A, 47, 1988, 157-175.

[5] Hamada, N. and Kobayashi, Y. “On the Block Structure of BIB designs with
parameters v = 22, b= 33, r = 12, k = 8 and A = 4,” Journal of Combinatorical

Theory, Series A, 24, 1978, 75-83.

[6] Thiel, Larry and Fink, Nathaniel. BDX Reference Guide. Department of Com-

puter Science, Concordia University, 1994.

31

Appendix A

Output of Example of
Dump/Restore

A.1 Dump/Restore Example 1

A.1.1 v9bl2a.out
Data will be dumped to: v9bi2a.dmp

1 9 rows of 4;

2 12 cols of 3;

3 lambda=1;

4 A[1,1:4]=1;

5 A[2,1]=1;

6 try row [1:2,1:12];

7 pass every 8 times;

8 print row [1:2,1:12];
9 dump;
10 exit

End of scan phase

0 errors and 0 warnings issued.
Scan time was 0.050 Seconds

print request from line 8
111
123456789012

1 111100000000
2 100011100000

print request from line 8
111

32

123456789012

1 111100000000
2 100010100100

print request from line 8
111
123456789012

1 111100000000
2 100010001010

print request from line 8
111
123456789012
1 111100000000
2 100001100010

print request from line 8
111
123456789012

1 1111000.3000
2 100001001001

print request from line 8
111
123456789012

1 111100000000
2 100000101100

prirt request from line 8
111
+ 23456789012

1 111100000000
2 100000011001

Printcount at time = 0.010 seconds
Final printcount
Cmd 6 (try) IN: 1/1.0e+00 OUT: 56/5.6e+01.
ROW ones fills ROW ones fills

1 1/1.0e+00 1/1.0e+00 2 56/5.6e+01 56/5.6e+01
Cmd 7 (passevery) IN: 56/5.6e+01 OUT: T/4.9e+01.
Cmd 10 (exit) IN: 7/4.9e+01 OUT: 0/0.0e+00.

High wa+er mark of stack used 68 out of 00000 bytes
Execute time was 0.010 Seconds
End of bdx.

33

A.1.2 v9bl12b.out

v9bi2a.dmp will be restored.

1 1 % source read from v9bi2a.bdx, dumped to v9bi2a.dmp, Tue Aug 29 15
:18:32 19956
2 9 rows of 4;
3 12 cols of 3;
4 lambda=1;
5 A[1,1:4]=1;
6
7
8
9

[y

Af2,1]=1;
try row [1:2,1:12];
pass every 8 times;
print row [1:2,1:12];
10 dump;
11 exit
12 7, 9 rous of 4;
13 % 12 cols of 3;
14 % lambda=1;
15 selectimage [1:5 by 2];
16 A[3,8:10]=1;
17 try row [3,1:12];
18 print row [1:3,1:12];
19 exit
End of scan phase
0 errors and 0 warnings issued.
Scan time was 0.030 Seconds

[o U N WU STy =

*kxwnkkk Restoring Image #1:

print request from line 18
111
123456789012

1 111100000000
2 100011100000
3 100000011100

sxkrkkkk Restoring Image #. -

print request from line 18
111
123456789012

1 111100000000
2 100010001010
3 010000011100

print request from line 18
111
123456789012

1 111100000000
2 100010001010

34

3 001000011100

print request from line 18
111
123456789012

1 111100000000
2 100010001010
3 000100011100

sxxxkikk Restoring Image #5:

print request from line 18
111
123456789012

1 111100000000
2 100001001001
3 010000011100

p-int request from line 18
111
123456789012

1 111100000000
2 100001001001
3 001000011100

print request from line 18
111
123456789012

1 111100000000
2 100001001001
3 000100011100

Printcount at time = 0.000 seconds
Final printcount
Cmd 12 (select image) IN: 3/3.0e+00 OUT:
Cmd 16 (setl) IN: 3/3.0e+00 OUT:
Cmd 17 (try) IN: 3/3.0e+00 OUT:
ROW ones fills ROW ones

3 §/5.0e+00 7/7.0e+00
Cmd 19 (exit) IN: 7/7.0e+00 OUT:
High water mark of stack used 340 out of 300000 bytes
Execute time was 0.010 Seconds
End of bdx.

35

3/3.0e+00.

3/3.0e+00.

7/7.0e+00.
fills

0/0.0e+00.

A.2 Dump/Restore Example 2

A.2.1 v27_1.log
Data will be dumped to: v27_1.dmp

1 27 row of 13;
2 39 col of 9;°¢
¢ 3 lambda = 4;
Region may be printed as ROW[28]
Region may be printed as COL[40]
4 init S={0&3};
5 s[1:13,1:13]=3;
6 under col [1:13];
Region may be printed as ROW[29]
7 in rows [1:26] type = 4;
8 end under;
9 a[27,1:13]=1;
10 al1:8, 1] = 1;
11 Ysecond attempt, first complete top 8 rows, then 6 more,
12 Ythen 4 more and then the complete first 13 columns
13
14 Y first fill in row 1
15 a1, 2:4] = 1;
16 % col 2 up to row 8
17 try col sorting [1:8, 2]; % expect 1 soln
18) col 3 and 4 up to row 8
19 try col sorting [1:8, 3];
20 try col sorting [1:8, 4];
21 test isom; % expest 3 soln
22 %fill inrow 5, incols 5 to 7
23 a5, 5:7] = 1;
24 Yfill in 3 extra zero in row 1
25 a1, 5:7]= 0;
26 try col sorting [1:8, §5];
27 try col sorting [1:8, €];
28 test isom;
29 try col sorting [1:8, 7];
30 test isom;
31 try row sorting [8, 1:13];
32 try row [1&5, 1:13]; % fill in rest of rows 1 and & with zeros
33 try row sorting [2, 1:13];
34 try row sorting [3, 1:13];
35 try row sorting [4, 1:13];
36 try row sorting [6, 1:13];
37 try row sorting [7, 1:13];
38 test isom;
39 dump;
40 pass every 50 times;
41 printcol [1:8$227, 1:13];
42 exit
End of scan phase

L A T

36

0 errors and

Scan time

was 0.258

Seconds

0 warnings issued.

At start of execute phase bvcount, pvcount, pmcount, bmcount, pgcount

0

print request

11 0

2

12345678 7

WD~ WN -

11111111
11000000
11000000
11000000
00101000
00101000
00101000
00010001
00010001
10 00010001
11 00000110
12 00000110
13 00000110

[ST T S S U U T Y

Printcount at time =
Final printcount

Cmd 17 (
CoL

2
Cmd 19 (
COL

3
Cmd 20 (
COL

4
Cmd 221 (

try)
ones
2/2.0e+00
try)
ones
3/3.0e+00
try)
ones
7/7.0e+00
test isom)

Context date=20(2),

Cmd 23 (
Cmd 25 (
Cmd 26 (
coL

5
Cmd 27 (
COL

6
Cmd 28 (

setA)
setA)
try)
ones
8/8.0e+00
try)
ones
28/2.8e+01
test isom)

Context date=27(4),

tmd 29 (
coL

7
Cmd 30 ¢

try)
ones
47/4.7e+401
test isom)

Context date=29(7),

Cmd 31 (
ROW

try)
ones

0 27

from line 41

25.494 seconds

fills
1/1.0e+00

fills
2/2.08+00

£ills
5/5.0e+00

3 certs and

£ills
8/8.0e+00

fills
28/2.8e+01

13 certs and

£ills
48/4.80+01

15 certs and

£ills

IN:
COL

IN:
COL

IN:
COL

IN:

2 non-certs, using

IN:

IN:

IN:
COL

IN:
CoL

IN:

15 non-certs, using
13/1.3e+01 OUT:

IN:
CoL

IN:

33 non-certs, using
15/1.5e+01 OUT:

IN:

ROW

37

1/1.0e+00 OUT:
ones

1/1.0e+00 OUT:
ones

2/2.0e+00 OUT:
ones

5/5.0e+00 OUT:

3/3.0e+00 OUT:

3/3.0e+00 OUT:

3/3.0e+00 OUT:
ones

8/8.0e+00 OUT:
ones

28/2.8e+01 CUT:
0.533 seconds

ones

48/4.8e+01 OUT:
0.729 seconds

ones

1/1.0e+00.

fills

2/2.0e+00.

fills

5/5.0e+00.

fills

3/3.0e+00.

0.175 seconds

3/3.0e+00.
3/3.0e+00.
8/8.0e+00.

fills

28/2.8e+01.

fills

13/1.3e+01.

48/4.8e+01.

£ills

15/1.5e+01.

15/1.5e+01.

fills

8 59/5.9e+01 15/1.5e+01
Cmd 32 (try) IN: 15/1.5e+01 OUT: 15/1.5e+01.
ROW ones fills ROW ones fills
1 15/1.5e+01 15/1.5e+01 5 15/1.5e+01 16/1.5e+01
Cmd 33 (try) IN: 15/1.5e+01 OUT: 24/2.40+01.
ROW ones fills ROW ones fills
2 34/3.4e+401 24/2.40+01
Cmd 34 (try) IN: 24/2.4e+01 OUT: 70/7.0e+01.
ROW ones fills ROW ones fills
3 112/1.1e+02 70/7.0e+01
Cmd 35 (try) IN: 70/7.0e+01 QUT: 265/2.60+02.
ROW ones fills ROW ones fills
4 358/3.6e+02 265/2.6e+02
Cmd 36 (try) IN: 265/2.6e+02 OUT: 675/6.7e+02.
ROW ones fills ROW ones fills
6 797/8.0e+02 675/6.7e+02
cmd 37 (try) IN: 675/6.7e+02 OUT: 675/6.7e+02.
ROW ones fills ROW ones fills
7 675/6.7e+02 675/6.7e+02
Cmd 38 (test isom) IN: 675/6.7e+02 OUT: 32/3.2e+01.
Context date=37(9), 32 certs and 643 non-certs, using 20.985 saconds
Cmd 40 (passevery) IN: 32/3.2e+01 OUT: 1/1.0e+00.
Cmd 42 (exit) IN: 1/1.0e+00 OUT: 0/0.0e+400.

High water mark of stack used 980 out of 300000 bytes
Execute time was 25.502 Seconds
At end of run bvcount, pvcount, pmcount, bmcount, pgcount
388 386 26 12 39
End of bdx.

A.2.2 v272.log
v27_1.dmp will be restored.

Data will be dumped to: v27_2.dmp

1 1 7 source read from v27_1.bdx, dumped to v27_1.dmp, Mon Mar 28 10:
10:17 1994
1 2 27 row of 13;
1 3 39 col of 9;°¢
1 4 lambda = 4;
Region may be printed as ROW[28]
Region may be printed as COL[40]
1 5 init S={0&3};
1 6 S[1:13,1:13]=3;
1 7 under col [1:13];
Region may be printed as ROW[29]
1 8 in rows [1:26] type = 4;
1 9 end under;
1 10 af27,1:13]=1;
1 11 af1:8, 1] = 1;
1 12 Y%second attempt, first complete top 8 rows, then 6 more,

38

o el e e e e e e N S S P O T

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

%then 4 more and then the complete first 13 columns

%

% first £ill in row 1

al1, 2:4] = 1;

% col 2 up to row 8

try col sorting [1:8, 2]; % expect 1 soln

% col 3 and 4 up to row 8

try col sorting [1:8, 3];

try col sorting [1:8, 4];

test isom;), expect 3 soln

%£fill in row 5, in cols 5 to 7

a5, 5:71 = 1;

%£ill in 3 extra zero in row 1

af1, 5:7]= 0;

try col sorting [1:8, §];

try col sorting [1:8, 6];

test isom;

try col sorting [1:8, 7];

test isom;

try row sorting [8, 1:13];

troy row [1&5, 1:13]; % fill in rest of rows 1 and § with zeros
try row sorting [2, 1:13];

try row sorting [3, 1:13];

try row sorting [4, 1:13];

try row sorting [6, 1:13];

try row sorting [7, 1:13];

test isom;

dump;

pass every 50 times;

printcol [1:8$&27, 1:13];

exit

selectimage [1:32];

% put in part 2 (in rows 9 to 26]

4,

/)

a[9:14, 2] = 1;

try col [9:26, 1&2]; % f£ill in col 1 and 2 with zeros
try col sorting [9:26, 3];) one choice each

try col sorting [9:26, 4];

try col sorting [9:26, 5];

test isom;

try col sorting [9:26, 6];

test isom;

try col sorting [9:26, 7];

test isom;

try col sorting [9:26, 8];

test isom;

try col sorting [9:26, 117;
try col sorting [9:26, 10];
try col sorting [9:26, 9];
try col sorting [9:26, 12];
tiy col [9:26, 13];
test isom;

dump;

39

66 exit
End of scan phase
0 errors and 0 warnings issued.

Scan time was 0.414 Seconds
At start of execute phase bvcount, pvcount, pmcount, bmcount, pgcount
0 16 0 0 45

**kxkkkx*x Restoring Image #1:

*kkkkkkx Restoring Image #2:
wkkkkxkk Restoring Image #31:
*kkxkkkx Restoring Image #32:

Printcount at time = 37361.400 seconds
Final printcount

Cmd 43 (select image) IN: 32/3.2e+01 OUT: 32/3.2e401.
Cmd 47 (seth) IN: 32/3.2e+01 OUT: 32/3.2e+01.
Cmd 48 (try) IN: 32/3.2e+01 OUT: 32/3.2e+01.
CcoL ones fills CoL ones fills
1 0/0.0e+00 32/3.2e+01 2 32/3.2e+01 32/3.2e+01
Cmd 49 (try) IN: 32/3.2e+01 0OUT: 32/3.2e+01.
CcoL ones fills COL ones fills
3 192/1.9e+02 32/3.2e+01
Cmd 50 (try) IN: 32/3.2e+01 OUT: 38/3.8e+01.
COoL ones fills COL ones fills
4 174/1.7e+02 38/3.8e+01
Cmd 51 (try) IN: 38/3.8e+01 OUT: 73/7 .3e+01.
coL ones fills COL ones £ills
5 362/3.6e+02 73/7.3e+01
Cmd 52 (test isom) IN: 73/7.3e+01 OUT: 66/6.6e+01.
Context date=51(7), 66 certs and 7 non-certs, using 9.277 seconds
Cmd 63 (try) IN: 66/6.6e+01 OUT: 319/3.2e+02.
COoL ones fills COL ones fills
6 1239/1.2e+03 319/3.2e+02
Cmd 54 (test isom) IN: 319/3.2e+02 OUT: 209/2.1e+02.
Context date=53(9), 209 certs and 110 non-certs, using 17.786 seconds
Cmd 55 (try) IN: 209/2.1e+02 0OUT: 2281/2.3e+403.
coL ones fills coL ones fills
7 5135/5.1e+03 2281/2.3e+03
Cmd 56 (test isom) IN: 2281/2.3e+03 QOUT: 1269/1.3e+03.
Context date=55(11), 1269 certs and 1012 non-certs, using 65.974 seconds
Cmd 57 (try) IN: 1269/1.3e+03 OUT: 14128/1.4e+04.
coL ones fills CcoL ones fills
8 28666/2.9e+04 14128/1.4e+04
Cmd 58 (test isom) IN: 14128/1.4e+04 OUT: 13553/1.4e+04.
Context date=57(13), 13553 certs and 575 non-certs, using 224.455 seconds
Cmd 59 (try) IN: 13553/1.4e+04 OUT: 40825/4.1e+04.
CoL ones fills coL ones fills

11 109633/1.1e+05 40825/4.1e+04

40

Cmd 60 (try) IN: 40825/4.1e+04 OUT:

CoL ones fills COL ones
10 623791/6.2e+05 189415/1.9e+05
Cmd 61 (try) IN: 189415/1.9e+05 OUT:
coL ones fills COL ones
9 612151/6.1e+05 179701/1.8e+05
Cmd 62 (try) IN: 179701/1.8e+05 OUT:
coL ones fills COoL ones
12 189580/1.9e+05 185178/1.9e+05
Cmd 63 (try) IN: 185178/1.9e+05 OUT:
COL ones fills CoL ones
13 56049/5.6e+04 185178/1.9e+05
Cmd 64 (test isom) IN: 185178/1.9e+05 0UT:

189415/1.9e+05.
fills

179701/1.8a+05.
fills

185178/1.9e+05.
fills

185178/1.9e+05.
fills

2461/2.5e+03.

Context date=63(15), 2461 certs and 182717 non-certs, using 32244.975 seconds

Cmd 66 (exit) IN: 2461/2.5e+03 O0UT:

High water mark of stack used 3784 out of 300000 bytes

Execute time was 37361.408 Seconds

At end of run bvcount, pvcount, pmcount, bmcount, pgcount
498 390 28 13 59

End of bdx.

A.2.3 v27_3.log
v27_2.dmp will be restored.

Data will be dumped to: v27_3.dmp

0/0.0e+00.

1 1 % source read from v27_2.bdx, dumped to v27_2.dmp, Mon Mar 28 15:

13:03 1994

1 2 Y source read from v27_1.bdx, dumped to v27_1.dmp, Mon Mar 28 10:

10:17 1994
1 3 27 row of 13;
1 4 39 col of 9;¢
1 5 lambda = 4;
Region may be printed as ROW[28]
Region may be printed as COL[40]
1 6 init S={0&3};
1 7 s[1:13,1:13]=3;
1 8 under col [1:13];
Region may be printed as ROW[29]
1 9 in rows [1:26] type = 4;
10 end under;
11 af27,1:13]=1;
12 a[1:8, 1] = 1;

14 jthen 4 more and then the complete first 13 columns
15 9%,

16 ¥ first fill in row 1

17 a1, 2:4]) = 1;

18 ¥ col 2 up to row 8

19 try col sorting [1:8, 2]; % expect 1 soln

20 % col 3 and 4 up to row 8

[T T T =Y

4]

13 Ysecond attempt, first complete top 8 rows, then 6 more,

N N el s Bl N S e e O O e e T N

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

try col sorting [1:8, 3];
try col sorting [1:8, 4];
test isom; % expect 3 soln

%£ill in row 5, in cols
a[s, 5:71 = 1;

5 t07

%£fill in 3 extra zero in row 1

alt, 5:71= 0;

try col sorting [1:8, 5];
try col sorting [1:8, 6];

test isom;

try col sorting [1:8, 7];

test isom;

try row sorting [8, 1:13];

try rov [1&5, 1:13]; % £fill in rest of rows 1 and § with zeros

try row sorting [2, 1:13];
try row sorting [3, 1:13];
try rov sorting [4, 1:13];
try rovw sorting [6, 1:13];
try row sorting [7, 1:13];

test isom;
dump;
pass every 50 times;

printcol [1:88&27, 1:13];

exit
selectimage [1:2461];
try col [1:27, 1:13];

% continue on the rest of the columns
% first define the parallel classes

[}

A

S[1214815, 1&14215]
S[2&16817, 2816&17]
S[3&18219, 3&18&19]
S[4&20821, 4820821]
S[5&22223, 5£22823]
S[6824225, 6&24£25]
S[7&26827, 7826827]
S[8&28829, 8&28229]
S[9&30831, 9&30&31]
S[10&32833, 10&32&33]
S[11£34835, 11234&35]
S[12836837, 12836&37]
S[13%38239, 13%38&39]
Ynow define all the 3’s
S[1, 16:39] = 3;

o HoOoOOOOOODOOOOO

S[2, 14:15&18:39] = 3;
S[3, 14:17&20:39] = 3;
SC 4, 14:19822:39] = 3;
S[L 5, 14:21224:39] = 3;
S[6, 14:23226:39] = 3;
SC 7, 14:25828:39] = 3;
SC 8, 14:27&30:39] = 3;
S[L 9, 14:29£32:39] = 3;
S[10, 14:31234:39] = 3;

e We We We We Ws we ws we

©00O0O0

» only need to define upper triangle

42

74 S[11, 14:33236:39] =
75 S[12, 14:35838:39] = 3;
76 S[13, 14:37] = 3;
77 S[14415, 16:39]
78 S[16£17, 18:39]
79 S[18£19, 20:39]
80 S[20%21, 22:39]
81 S[22:23, 24:39]
82 S[24825, 26:39]
83 S[26827, 28:39]
84 S[28£29, 30:39]
85 S[30&31, 32:39]
86 S[32¢33, 34:39]
87 S[34435, 36:39]
88 S[36837, 38:39]
89 %
90 a[1, 22&24#26828&30£32&34£36238] = 1;
91 try row [27, 1:39];) expect 1 solution
92 try col sorting [2:26, 38];
93 try col sorting [2:26, 36];
94 test isom;
95 try col sorting [2:26, 34];
96 test isom;
97 try col sorting [2:26, 32];
98 test isom;
99 try col sorting [2:26, 30];
100 test isom;
101 try col sorting [2:26, 28];
102 test isom;
103 try col sorting [2:26, 26];
104 test isom;
105 try col sorting [2:26, 24];
106 test isom;
107 try col sorting [2:26, 22];
108 test isom;
109 try row sorting [8, 20&21];
110 try col [2:26, 20&21];
111 try row sorting [8, 18&19];
112 try col [2:26, 18219];
113 try row sorting [8, 16:17];
114 try col [2:26, 16&17];
115 try row sorting [9, 14&15];
116 try col [2:26, 14&15];
117 try row [1:27, 1:39];
118 test isom;
119 dump;
120 exit
End of scan phase
0 errors and 0 warnings issued.
Scan time was 0.820 Seconds
At start of execute phase bvcount, pvcount, pmcount, bmcount, pgcount
0 20 o 0 90

we we we ws we

.e we wa

-

WLWWWWWWWwwwww

nuonnuww 000w

43

sxkhakxx Restoring Image #1:

wrkxxksk Restoring Image #2:

#xxxkxxx Restoring Image #2460:

wokkoxkxx Restoring Image #2461:
Printcount at time
Final printcount
Cmd 44 (select image)

Cmd 46 (try)

fills

2461/2.5e+03
2461/2.5e+03
2461/2.5e+03
2461/2.5e+03
2461/2.5e+03
2461/2.5¢+03
2461/2.5e+03

ones
2461/2
2461/2
2461/2
2461/2
0/0
0/0
0/0

.5e+03
.5e+03
.5e+03
.5e+03
.0e+00
.0e+00
.0e+00
seth)
try)

90
Cmd 91
ROW
27
Cmd
COL
38

Cmd

(

(
fills

2461/2.5e+03

ones
2461/2
92 (
ones
43501/4
93 (

COL ones
36 25392/2.50+04
tmd 94 (test isom)
Context date=93(7), 1401 certs and

Cmd 95 (try)
coL
34
tmd 96
Context
Cmd 97
coL
32
Cmd 98
Context
Cmd 99
coL
30
Cmd 100
Context
Cmd 101
COL

.5e+03
try)
fills
.4e+04 2577/2.6e+03
try)
fills
2221/2.2e+03

fills
1252/1.3e+03

ones

8678/8.7e+03

(test isom)

date=95(10), 1009 certs and

(try)
ones

4164/4.2e¢+03

(+test isom)

date=97(13),

(try)
ones

1169/1.2e+03

(test isom)

date=99(16),

(try)
ones

fills
721/7.2e+02

672 certs and

fills
645/6.4e+02

557 certs and

fills

= 5492.500 seconds

IN: 2461/2.50+03 OUT: 2461/2.5e+03.
IN: 2461/2.5e+03 OUT: 2461/2.5e+03.
coL ones fills
8 0/0.0e+00 2461/2.5e¢+03
9 0/0.0e+00 2461/2.5e+03
10 0/0.0e+00 2461/2.5e+03
11 0/0.0et00 2461/2.5e+C3
12 0/0.0e+00 2461/2.5e+03
13 0/0.0e+00 2461/2.50+03
IN: 2461/2.5e+03 QUT: 2461/2.56+03.
IN: 2461/2.50+403 0OUT: 2461/2.5e+03.
ROW ones fills
IN: 2461/2 .5e¢+03 OUT: 2577/2.6e+03.
COL ones fills
IN: 2577/2.6e+03 OUT: 2221/2.2e+03.
COL ones fills
IN: 2221/2.2e+03 OUT: 1401/1.4e+03.

820 non-certs, using 129.671 seconds

IN: 1401/1.4e+03 QUT: 1252/1.3e+03.
CoL ones fills
IN: 1252/1 .3e+03 OUT: 1009/1.0e+03.

243 non-certs, using 71.603 seconds

IN: 1009/1 .0e+03 OUT: 721/7.2e+02.
coL ones fills
IN: 721/7 .2e+02 OUT: 672/6.Te+02.

49 non-certs, using 29.292 seconds

IN: 672/6.7e402 0OUT: 645/6 . 4e+02.
COL ones fills
IN: 645/6 .4e+02 OUT: £57/5.60+02.

88 non-certs, using 25.229 seconds
IN: 557/5.6e+02 OUT: 788/7.9e+02.
coL ones fills

44

28 §72/5.7e+02
Cmd 102 (test isom)
Context date=101(19),

Cmd 103 (try)
coL ones
26 320/3.2e+02

Cmd 104 (test isom)
Context date=103(22),

Cmd 105 (try)
CoL ones
24 127/1.3e+02

Cmd 106 (test isom)
Context date=105(25),

Cmd 107 (try)
COL ones
22 0/0.0e+00

Cmd 108 (test isom)
Context date=107(28),

Cmd 109 (try)
ROW cnes
8 $94/5.9e+02
Cmd 110 (try)
CoL ones
20 443/4 .4e+02
Cmd 111 (try)
ROW ones
8 1000/1.0e+03
Cmd 112 (try)
CoL ones
18 335/3.30+02
Cmd 113 (try)
ROW ones
8 1333/1.3e+03
Cmd 114 (try)
CoL ones
16 0/0.0e+00
Cmd 115 (try)
ROW ones
9 1333/1.3a+03
Cmd 116 (try)
COL ones
14 0/0.0e+00
Cmd 117 (try)
ROW ones
1 1333/1.3e+03
2 1333/1.3e+03
3 1333/1.3e+03
4 1333/1.3e+03
5 1333/1.3e+03
6 1333/1.3e+03
7 1333/1.3e+03
8 1333/1.3e+03
9 0/0.0e+00

788/7 .9e+02
530 certs and

fills
700/7 . 0e+02

679 certs and

fills
806/8 . 1e+02

745 certs and

fills
745/7 . 4e+02

594 certs and

fills
594/5.9e+02

fills
1000/1.0e+03

fills
1000/1.0e+03

fills
1333/1.3e+03

fills
1333/1.3e403

fills
1333/1.3e+03

fills
1333/1. 3e+03

fills
1333/1.3e+03

fills
1333/1.3e+03
1333/1. 3e+03
1333/1.3e+03
1333/1. 3e+03
1333/1.3e+03
1333/1.3e+03
1333/1.3e+03
1333/1. 3e+03
1333/1.3e+03

IN: 788/7.9e+02 0UT: §30/5.3e+02.

258 non-certs, using 38.358 s¢ .onds

IN: 530/5.3e+02 OUT: 700/7.0e+02.
CoL ones fills

IN: 700/7.0e+02 OUT: 679/6.8e+02.
21 non-certs, using 35.945 seconds

IN: 679/6.8e+02 OUT: 806/8.1e+02.
coL ones fills

IN: 806/8.1e+02 OUT: 745/7 .4e+02.
61 non-certs, using 71.473 seconds
IN: 745/7.4e+02 OUT: 745/7.4e+02.
coL ones fills

IN: 745/7.4e+02 0T : 594 /5.9e+02.
151 non-certs, using 162.643 seconds
IN: 594/5.9e+02 O0UT: 594/5.9e+02.

ROW ones fills

IN: 594/5.9e+02 0UT: 1000/1.0e+03.
coL ones fills

21 9/9.0e+00 1000/1.0e+03

IN: 1000/1.0e+03 OUT: 1000/1.0e+03.
ROW ones fills

IN: 1000/1.0e+03 OUT: 1333/1.3e+03.
COL ones fills

19 0/0.0e+00 1333/1.3e+03

IN: 1333/1.3e+03 0UT: 1333/1.3e+03.
ROW ones fills

IN: 1333/1.3e+03 0UT: 1333/1.3e+03.
COL ones fills

17 0/0.0e+00 1333/1.3e+03

IN: 1333/1.3e+03 0UT: 1333/1.3e+03.
ROW ones fills

IN: 1333/1.3e+03 OUT: 1333/1.3e+03.
COL ones fills

15 0/0.0e+00 1333/1.3e+03

IN: 1333/1.3e+03 0UT: 1333/1.3e+03.
ROW ones fills

15 0/0.0e+00 1333/1.3e+03

16 0/0.0e+00 1333/1.3e+03

17 0/0.0e+00 1333/1.3e+03

18 0/0.0e+00 1333/1.3e+03

19 0/0.0e+00 1333/1.3e+03

20 0/0.0e+00 1333/1.3e+03

21 0/0.0e+00 1333/1.3e+03

22 0/0.0e+00 1333/1.3e+03

23 0/0.0e+00 1333/1.3e+03

45

10 0/0.0e+00 1333/1.3e+03 24 0/0.0e+00 1333/1.3e+03

11 0/0.0e+00 1333/1.3e+03 25 0/0.0e+00 1333/1.3e+03

12 0/0.0e+00 1333/1.3e+03 26 0/0.0e+00 1333/1.3e+03

13 0/0.0e+00 1333/1.3e+03 27 1333/1.3e+03 1333/1.3e+03

14 0/0.0e+00 1333/1.3e+03
Cmd 118 (test isom) IN: 1333/1.3¢+03 OUT: 68/6 .8e+01.
Context date=117(30), €8 certs and 1265 non-certs, using 3528.063 seconds
Cmd 120 (exit) IN: 68/6.8e+01 OUT: 0/0.0e+00.

High water mark of stack used 14792 out of 300000 bytes

Execute time was 5492.516 Seconds

At end of run bvcount, pvcount, pmcount, bmcount, pgcount
1925 1766 80 39 123

End of bdx.

46

Appendix B

Source Code for Dump/Restore

B.1 dump_setup

void dump_setup(char *source_fname, char #*param)
{
int ¢=0,i=0,j=0,endnum=0;
char ch,dump_fname[100];
time_t timer;
if (!param)
return;
if (param[2]==’=') /* dumpfile name specified */
strcpy(dump_fname,param+3) ;
else if (source.fname) /* dumpfile name not specified */
{
/* create dumpfile name from source name */
while (source_fname[il) /* Find beg. and end of filename */
{

if (source_fname[i++]==/?)

j=i;
}
while (source_fnamef--i]!=’.’ && i);
if (i)
{
source_fname[i]=0; /* Truncate source name at last ’.’ */
strcpy(dump_frame,source_fname+j);
source_fname[il=’.’;
}

else /x No ’.’ in source filename */
strcpy(dump_fname,source_fname+j);

strcat (dump_fname,".dmp");

}

else /% no filename to create dumpfilename */

47

{
fprintf(stderr,"\n *** ERROR dumpfile and sourcefile not specified.\n\n",
dump_fname) ;
exit(1);
} /* end cond dumfilename not spec. */

printf("\nData will be dumped to: %s\n\n",dump_fname);

if ((dumpfile=fopen(dump_fname,"r")))
{
fclose(dumpfile);
fprintf(stderr,"\n *** ERROR dumpfile [%s] exists.\n\n",dump_fname);
exit(1);
}
fclose(dumpfile);
dumpfile=fopen(dump_fname,"w"); /* Open dumpfile */
timer=time(NULL);
fprintf (dumpfile,"%’ source read from %s, dumped to %s, %s",
source_fname,dump_fname,asctime(localtime(&timer)));
set_lex_echo(dumpfile, NULL);
} /* dump_setup */

B.2 dump()

void dump()

{
static image_num=1;
int r,c,v;

if ('dumpfile)

{
warning ("Dumpfile not open. Dump skipped.\n");
return;

}

if (image_num==1)
fprintf (dumpfile, begin_names[1-dbg_flag[DUMP_UNCOMPRESSED]]) ;

if (dbg_flag[DUMP_UNCOMPRESSED])
{

fprintf (dumpfile,"\nxk#+#x*x Image [/d] #***xxx*\n",image_num++);
for (r=1;r<=NR;r++)
{
for (c=1;c<=NC;c++)
switch(Arow[r] [Acol[c+TNR]] .val)
{
case 0: putc(’0’,dumpfile);
break;

case 1: putc(’1’,dumpfile);
break;

48

}

default: putc(’.’,dumpfile);
}

fprintf(dumpfile,”\n");
}
}

else

{ /* Use compressed form */
furite_int(image_num, dumpfile);
image_num++;
cf = Compress(NC, NR, cf);
WriteCmpForm(cf, dumpfile);

}

/% dump */

B.3 restore_setup()

void restore_setup(char *param)

{

}

if ('param)
return;

if (param[2]t=’=’)

{

fprintf(stderr,'\n*** ERROR restore filename not specified.\n\n");
exit(1);
}

strcpy(restore_fname,param+3) ;

printf("%s will be restored.\n\n",restore_fname);
restore_source=TRUE;
restorefile=open_include(restore_fname);

/* Note that restorefile will stay open after the initial input is read
/* from it, and the images will be read starting with the next line. */

eof_string_found = look_for BEGINIMAGE;

reset_rcu(); /#* for next parse element. Kills rcu_buf. */
/* restore_setup */

49

B.4 restore_img()

void restore_img(int img_num)
{

int i=0,num=0,r=1,c=1,ch,save;

if (!restorefile)

{
fprintf(stderr,"\n*** ERROR restore file not open.\n\n");
exit(1);

}

save=get_mark();
if (read_uncompressed)
num = uncom_num(img_num);
else
{
num = fread_int(restorefile, FALSE);
vhile ((num < img_num) and (num >= 0))
{
cf = ReadCmpForm(cf, restorefile);
num = fread_int(restorefile, FALSE);
}
}

if (num!=img_num)

if (num >= 0)
printf("Warning: Image %d not found before image %d.\n\n",
img_num,num) ;

fclose(restorefile);
restorefile=NULL;
return;

}

printf ("\n**xx*x**xx Restoring Image #/d:\n\n",img_num);
fflush(stdout);
still_good = TRUE;
if (read_uncompressed)
{
vhile ((ch=getc(restorefile))!=LF); /* Skip over linefeeds */
ch=getc(restorefile);
cum_ran_cnt = 1.0;
while ((ch!=’%’) and (ch != EOF))

{
if (still_good)
{
switch(ch)
{
case ’.’: c++;
break;

case '0’: still_good &= (RQ_chooseA(O,r,TNR + c++) != 0);

50

break;

case ’'1’: still_good &= (RQ_chooseA(1,r,TNR + c++) != 0);

break;
case LF: if (c>1)
T++;c=1;
else /* Blank line %/
ch=’%’;
}
}
ch=getc(restorefile);
}
}
else
{

cf = ReadCmpForm(cf, restorefile);
Decompress (cf);

}

if (still_good)

{
do_-ud(save_hdr);

}

else

{ /* Count entries here */
save_hdr->raw_count++;
save_hdr->estimate++;

}

backupto(save) ;

} /* restore_img */

51

Appendix C

Source Code For Greig (Hook-22)
Test

C.1 hook22.c

#include "bdx.h"
#include <isominc.h>
#include "printsl.h"
#include "lexinput.h"
#include "opcodes.h"
#include "saverec.h"
#include "hook22.h"

#define GOOD 1

#define BAD O

#define ABS(x) ((x>0) ? x : -x) /* not used */
#define THM13_LIM 10

int **S;

/% public function for performing test of the S matrix */
boolean do_hook_hook22(save_rec *cmd)
{

int i,i1,i2,i3,i4,c1,c2,c3,c4;

int c¢,d,e,u,v,w,uvV_sum;

int col;

static int num={;

int tval;

createS(cmajorp); /* Generate S matrix */

* Testing theorems 9 and 13 *\

92

for (il=1; ii<=num_Scols; il++)

{
ci=gortstack[il];
for (i2=i1+1; i2<=num_Scols; i2++)
{

c2=sortstack[i2];
for (i3=i2+1; i3<=num_Scols; i3++)
{
c3=sortstack[i3];
u=S[c2][c1]; wv=S[c31[{c1); w=S[c3]([c2];

if (u+vew || u+w<v || v+u<u) * Failed theorem 9 with cols c1,c2,c3 *\
{

(cmd->p1)4+; /* Increment count of failures */

return(8AD);

} /* end if u,v,w */

#if 0 /* because theorem 13 is a noop! */
UVW_SUmsu+v+s ;
for (i4=i3+1; i4<=num_Scols; id++)
{
cd=gortstack[id];
if (cd4==4 k& c1==6)
s{4](el=1;

c=S[c4]l[c1]; d=S[c4l[c2]; e=S[c4]([c3];

if (c+d+e+tuvw_sum<THM13_LIM) * Failed theorem 13 with cols c¢i,c2,c3,c4 *\

{
cmd->pl++; /* Increment count of failures */
return(BAD) ;

} /* end if c,d,e,u,v,w */

} /* end for i4 */
#endif
} /* end for i3 */
} /* end for i2 */
} /* end for i1 */

return(GOOD); * Theorems 9 and 13 are successful *\
} /* do_hook_hook22 */

53

C.2 printsl.c

static char rcsid[] = "$Header: /mnt/larryi/home/staffcs/bdx/precomp/RCS/printsl.c,v 3
21:33:06 bdx Exp $";

$include <isominc.h>
#include "bdx.h"
#include "printsl.h"

static int size = 0; /* Largest rcid in A */
static int *sumstack; /* Columns in order of decreasing sums */
#define nprintcols 25

/* Number of columns of S printed per page */

/* Variables exported in printsl.h %/

int num_Scols; /* Total number of completed columns of S */
int *xS; /* Compute a full or partial S matrix here. */

int *sortstack; /* Columns in increasing order. */

/* static_init static_init =/
static void static_init (voidplist)

/* Initial setup. Called only once, when size == Q */
{

int i;

size = (NC > NR)? NC : NR;
S = NEWV(int *, size + 1);

for (i = 1; i <= size; i++)
S[{i] = NEWV(int, size + 1);

sortstack = NEWV(int, size + 1);
sumstack = NSWV(int, size + 1);
} /x static_init */

/* createS createS */
int createS(base_matrix *bmp)
{

int r,c,i,ri,ci,s;
A_value *Ar, *Ac;

if (size == 0)
static_init();

num_Scols = 0;
emptyS();
for (ri = 1; ri < N_complete_rcs; ri++)
if ((rc_stack[ri].rcid >= bmp->fstnr) and (rc_stack[ri].rcid <= bmp->lnr))
{
S[rcid_to_rclrc_stack{ri].rcid]][0] = 0; /* tag active rcs %/
num_Scols++;

}

54

for (ri = 1; ri < N_complete_rcs; ri++)
{
r = rc_stack[ri].rcid;
if ((r >= bmp->fstnr) and (r <= bmp->1lnr))
{
Ar = Arow(r];
r = rcid_to_rc(r];
for (ci = ri + 1; ci < N_complete_rcs; ci++)
{
¢ = rc_stack[ci].rcid;
if ((c >= bmp->fstnr) and (c <= bmp->1lnr))

{
Ac = Arow[c];
¢ = rcid_to_rclc];
8 = 0;

for (i = bmp->fstnc; i <= bmp->1lnc; i++)
8 += Ar[Acol[i]] .val=Ac[Acol[i]].val;

S[rllc] = Slcllx] = s;
Ss[r][0] += s;
Slc]l[0] += s;
}
}
}

} /* for ri */

r=s8=0;
for (c = 1; c <= size; c++)
%f (slcllo] >= 0)
sortstack[++r] = c;
s += S[c][0];
}

assert (r==num_Scols);
return(s);
} /* createS =/

59

