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ABSTRACT

A Unified Study of Bounds and Asymptotic Estimates for Renewal Equations and
Compound Distributions with Applications to Insurance Risk Analysis

Jun Cai, Ph.D.
Concordia University, 1998

This thesis consists of a unified study of bounds and asymptotic estimates for
renewal equations and compound distributions and gives applications to aggregate
claim distributions, stop-loss premiums and ruin probabilities with general claim sizes
and especially with heavy-tailed distributions.

Chapter 1 presents the probability models of compound distributions and renewal
equations in insurance risk analysis and gives the summary of the results of this thesis.

In Chapter 2, we develop a general method to construct analytical bounds for
solutions of renewal equations. Two-sided exponential and linear estimates for the
solutions are derived by this method. A generalized Cramér-Lundberg condition is
proposed and used to obtain bounds and asymptotic formulae with NWU distributions
for the solutions.

Chapter 3 discusses tails of a class of compound distributions introduced by Will-
mot (1994) and gives uniformly sharper bounds, both with the results obtained in
Chapter 2 and renewal theory. The technique of stochastic ordering is employed to
get simplified bounds for the tails and to correct the errors of the proofs of some
previous results.

In Chapter 4, we derive two-sided estimates for tails of a class of aggregate claim
distributions, and especially give upper and lower bounds for compound negative
binomial distributions both with adjustment coefficients and with heavy-tailed dis-
tributions. For the latter case, Dickson’s (1994) condition plays the same role as the
Cramér-Lundberg condition.

Chapter 5 is devoted to the aging property of compound geometric distributions
and its applications to stop-loss premiums and ruin probabilities. By the aging prop-

il



erty, general upper and lower bounds for the stop-loss premiums of the class of com-
pound distributions discussed in Chapter 3 are derived, which apply to any claim
size distribution. Also, two-sided estimates for the stop-loss premiums of negative
binomial sums are obtained both under the Cramér-Lundberg condition and under
Dickson’s condition. General upper and lower bounds for ruin probabilities are also
considered in this chapter.

Chapter 6 gives a detailed discussion of the asymptotic estimates of tails of con-
volutions of compound geometric distributions. Asymptotic estimates for these tails
are given under light, medium and heavy-tailed distributions, respectively. Applica-
tions of these results are given to the ruin probability in the diffusion risk model.
Also, two-sided bounds for the ruin probability are derived by a generalized Dickson
condition, which applies to any positive claim size distribution. Finally, we give some

examples and consider numerical comparisons of bounds with asymptotic estimates.
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Chapter 1

Introduction

1.1 Compound distributions and renewal equations
in insurance risk analysis

Assume that N is a counting random variable with probability mass function
Pr{N =n}=p,, n=0,1,---

and {X;, ¢ > 1} is a sequence of i.i.d. nonnegative random variables independent of
N with common distribution F'.
The distribution G of the random sum S =X; +---+ Xy (S =0if N =0) is

called a compound distribution and its distribution function is given by

G(z) = Pr{S <z} = i o F™(z), xz>0. (1.1.1)

n=0

The tail probability of the compound distribution G is defined by

G(z) = Pr{S§>z} = 1-G(z) = i pn?(")(x), z > 0. (1.1.2)

n=1

Compound distributions and random sums arise in many applied probability mod-
els such as queueing theory and reliability. It is of central importance in insurance
risk analysis [e.g. see Bowers et al. (1997) and Panjer and Willmot (1992)]. If
N represents the number of claims in an insurance portfolio and X; represents the
i-th claim amount, then S is the aggregate claim amount and the tail probability
G(z) = Pr{S > =} is the probability that the aggregate claim amount exceeds the

amount . There has been great interest in estimating these tail probabilities [e.g.



see Chaubey et al. (1998) and Kliippelberg and Mikosch (1997)]. Some well known
compound distributions modeling the aggregate claims are compound Poisson and
compound negative binomial distributions.

In addition, for the compound Poisson risk model, the risk reserve process is given
by

N(t)

Rt)y=z+ct— > Y (1.1.3)

i=1
where {N (%), t > 0} is a homogeneous Poisson process with intensity A; the claim
sizes {Y;, ¢ > 1} are i.i.d. nonnegative random variables and have a common dis-
tribution function P with P(0) = 0 and finite mean pp > 0; {N(t), t > 0} and
{Y;, i > 1} are independent; = > 0 is the initial capital and ¢ > 0 is the premium
rate.

If we denote the ultimate ruin probability, with initial capital z, by
P(z) =Pr{ R(t) <0, for some t > 0|R(0) =z },

then it is well-known that 1 satisfies the following integral equation [see Feller (1971)
or Grandell (1991)], that is

F(z)
1+6

o) = T+ T [ WE—y)aF () (114

where F(z) = [§ P(y) dy/up is called the ladder-height distribution and 6 > 0 is the
relative safety loading factor, satisfying (1 + 8)A\up =c.

(1.1.4) is a defective renewal equation, whose definition is given below.
Definition 1.1 Suppose that G and h are two functions defired on [0, 00). If A is
locally bounded, i.e. bounded on any finite interval, and G is a function of bounded

variation, i.e. the difference of two increasing functions, then the convolution G * A
of G and h is a function defined on [0, oo), given by

G * h(z) = /0 " h(z — y) dG(y).

Definition 1.2 A renewal equation is an integral equation of the following form
Z(2) = 2(z) +q [ Z(z—y)dF@), =20,

2



or, equivalently, for z > 0,
Z(z) = z(z) + q F * Z(x), (1.1.5)

where, 0 < ¢ < oo is a constant, F' is a probability distribution on [0, co) with
F(0) <1, z and Z are defined on [0, co) and are locally bounded.

The renewal equation (1.1.5) is called proper if ¢ = 1, defective if 0 < g < 1 and
excessive if ¢ > 1.

The renewal equation is another important probability model in insurance risk
analysis [e.g. see De Vylder (1996), Gerber (1970, 1979) and Schmidli (1997)] and
indeed arises in different disciplines [e.g. see Feller (1971), Karlin and Taylor (1975),
Resnick (1992) and Ross (1983)]. Many other quantities associated with the com-
pound Poisson risk model also satisfy renewal equations [e.g. see Dickson (1992,
1993), Dickson and Dos Reis (1994, 1996), Dufresne and Gerber (1989), Gerber et al.
(1987), Gerber and Shiu (1997a, 1997b)].

The ruin probability ¥(z) can also be expressed, equivalently, as the tail of a
compound geometric distribution, which is known as Beekman’s formula of the ruin
probability [see, Goovaerts et al. (1990) and Bowers et al. (1997)], that is

_ 0 &1 g
vie) = 1+6nz=:1(1+9) F ). (1.1.6)

Thus, the study of the ruin probability 1/(z) can be reduced to the study of the
tail of the compound geometric distribution or the defective renewal equation. In
fact, in generalizing ruin in the compound Poisson risk model, the ruin probability
in the renewal risk model can also be reduced to the tail of a compound geometric
distribution [e.g. see Grandell (1991)]. More generally, the total maximum of a
random walk can be reduced to a geometric sum [Feller (1971)]. In addition, a rich
variety of applications of compound geometric distributions in reliability, queueing
theory and regenerative processes can be found in Asmussen (1987), Brown (1990),
Gertsbakh (1984) and Kalashnikov (1994).

However, compound distributions and renewal equations are rarely tractable, nei-
ther analytically nor numerically; the analytical closed forms for the compound dis-
tribution or the solution of the renewal equations are only available for a few special

cases. Hence, some of main probability results for these are probability inequalities



or bounds and asymptotic formulae. These provide estimates and insight, both qual-
itative and quantitative, into the compound distribution and the solution of renewal
equations.

Let us first review the results on the ruin probability ¥(z), which is both the tail of
a compound geometric distribution and the solution of a defective renewal equation,
to see what results can be obtained and which probability methods may be used in
deriving these results.

We recall that the Cramér-Lundberg condition is that there exists a constant R,
called the adjustment coefficient, satisfying Lundberg’s equation
c

5 (1.1.7)

/0 ~ ehe P(z)dr =
or, equivalently,
/0 ~ R dF(z) = 1+ 6. (1.1.8)

Under Cramér-Lundberg’s condition, the celebrated Lundberg’s inequality and Cramér-

Lundberg’s asymptotic formula hold.

Theorem 1.1 (Lundberg’s inequality) In the compound Poisson risk model, for any
z >0,

(@) < &P (1.0.9)

Theorem 1.2 (Cramér-Lundberg asymptotic formula) In the compound Poisson risk
model, if

g = /—\—ACL—I-)-/O yef dF (y) < oo, (1.1.10)
then
P(z) ~ _ b L (1.1.11)
(1+0)RB
in particular, when the claim size distribution P is exponential, then
Y(z) = ﬁ exp {-—- (l—{——eﬁ)?;x} , (1.1.12)

and in this case the Cramér-Lundberg asymptotic formula is exact.



These two results are the pioneering works by Cramér (1930, 1955) and Lundberg
(1926). They can be proved in different ways now. For example, the martingale
approach [Gerber (1979)], Wald’s identity [Ross (1983)] and the induction method
[Goovaerts et al. (1990)] have been used to prove Lundberg’s inequality. Applying the
key renewal theorem to the defective renewal equation (1.1.4), a technique introduced
by Feller (1971), is used to derive Cramér-Lundberg’s asymptotic formula. All these
methods are much simpler than the Wiener-Hopf methods used by Cramér (1930,
1955) and Lundberg (1926) and have been used extensively in other disciplines. In
particular, the martingale is a powerful tool for deriving exponential inequalities in
the form of c(z)e #* for the ruin probabilities in different risk models [e.g. see
Dassios and Embrechts (1989) and Furrer and Schmidli (1994)]. But, the martingale
method can not be used to derive asymptotic formulae and the coefficient or function
c(z) in the inequality c(z)e %= derived using the martingale approach is difficult to
estimate or to simplify.

The technique of applying the key renewal theorem to defective renewal equa-
tions has become a standard method for deriving exponential asymptotic formulae
for ruin probabilities. In fact, most exponential asymptotic formulae in risk theory
and queueing theory are derived by this technique [e.g. see Asmussen (1987), De
Vylder (1996), Ross (1983) and Schmidli (1995)]. Hence, it motivates us to study
probability inequalities for the solution of the renewal equation so that we can have
a unified method of deriving both asymptotic formulae and bounds for the solution
of the renewal equation. Indeed, we develop a general method to construct analyti-
cal bounds for the solution of renewal equations, which gives a unified derivation of
exponential bounds for the solution of defective and excessive renewal equations and
linear bounds for the solution of proper renewal equations.

On the other hand, the Cramér-Lundberg condition plays a critical role in the
study of the exponential bounds and asymptotic formulae for the tail of the com-
pound distribution and the solution of defective and excessive renewal equations and
for many other applied probability models [e.g. see Bergmann and Stoyan (1976),
Glasserman (1997), Kingman (1970), Ross (1974)]. In accordance with the Cramér-
Lundberg condition, claim size distributions can be classified into three classes, i.e.

light, medium and heavy tailed distributions, which are defined as follows.

Definition 1.3 A claim size distribution F (i.e. the distribution of a nonnegative

5]



random variable) is said to be

1. light tailed (or to have an exponential tail) if (1.1.8) holds;
2. medium tailed if for any R > 0, [5° e dF(z) <1+ 6;

3. heavy tailed if the moment generating function of F does not exist.

For example, exponential and gamma distributions are light tailed; certain in-
verse Gaussian and generalized inverse Gaussian distributions (see, Example 2.7) are
medium tailed; Pareto and lognormal distributions are heavy tailed.

Unfortunately, the Cramér-Lundberg condition can not be satisfied by the heavy
and medium tailed distributions. Especially, the heavy tailed distributions have at-
tracted much attention in insurance risk analysis due to the presence of the large
(catastrophic) claims [e.g. see Asmussen and Kliippelberg (1996), Embrechts and
Veraverbeke (1982), Embrechts and Kluppelberg (1994), Kluppelberg (1993) and
Mikosch (1997)]. They have also attracted much interest in queueing theory [e.g.
see Asmussen and Kliippelberg (1997) and Asmussen and Teugels (1996)]. Thus, how
to generalize Cramér-Lundberg condition and to derive the generalized inequalities
and asymptotic formulae for the tail of compound distributions and the solution of
the renewal equation is an interesting question. Many works have been devoted to
this topic using different methods [e.g. see Cai and Wu (1997b), Dickson (1994),
Lin (1996), Willmot (1994, 1996, 1997a, 1997b), Willmot and Lin (1994, 1997a) and
Taylor (1976)]. In this thesis, we also give a unified method for the study of this
topic using renewal theory and compound geometric distributions. We apply our
methods and results to tails of aggregate claim distributions, stop-loss premiums and
ruin probabilities, which are all of interest in insurance risk analysis, in particular,

our results can apply to large claim size or heavy-tailed distributions.

1.2 Summary

This thesis is organized as follows. In Chapter 2, we develop a general method to con-
strmet analytical bounds for the solution of renewal equations. Two-sided exponential
and linear bounds for the solution of defective and excessive renewal equations are de-

rived from this method. These results, together with the elementary and key renewal



theorems, give both the estimates and the complete description of the behaviour of
the solution of renewal equations.

An application of our results gives two-sided exponential bounds and their re-
finements for the tail of compound geometric distribution; two-sided exponential esti-
mates for the expected number of the age-dependent branching process are also given.
Two-sided linear bounds for the renewal function are derived as another application.
Many previous results are improved and generalized.

A generalized Cramér-Lundberg condition is presented, under which, bounds are
obtained in terms of NWU and NBU distributions for the solution of defective renewal
equations. The upper bounds in terms of NWU distributions can be applied to some
cases in which Cramér-Lundberg condition can not be satisfied. Asymptotic formulae
in terms of NWU distributions for the solution of defective renewal equations are
obtained, which include the Cramér-Lundberg asymptotic formula as a special case.

In Chapter 3, we consider the tail probabilities of a class of compound distributions
introduced by Willmot (1994). First, the relations between reliability distribution
classes and heavy-tailed distributions are discussed. These relations reveal that many
previous results on estimating the tail probabilities are not applicable to heavy-tailed
distributions. Then, a generalized Wald identity and the identities of compound geo-
metric distributions are presented in terms of renewal processes. The results obtained
in Chapter 2 yield uniformly tighter bounds for the tails. Alternatively, using these
identities, lower and upper bounds for the tail probabilities are derived for the class
of compound distributions, both under the conditions of NBU and NWTU tails, which
include exponential tails, as well as heavy tails. Many previous results are shown to
be special cases of these results. In addition, simplified bounds are derived by the
technique of stochastic ordering. It also allows for the correction of errors in the proof
of some previous results.

In Chapter 4, we first give the two-sided estimates of the tail probabilities of a class
of aggregate claim distributions using the results in Chapter 3. Then, we focus on
deriving upper and lower bounds for the tails of compound negative binomial distribu-
tions. Sharp upper and lower bounds are obtained for the tails of compound negative
binomial distributions. A connection between the compound negative binomial, Pois-
son and logarithmic distributions is presented, which results in the generalization
and improvement of a theorem of Willmot and Lin (1997b). In addition, using Dick-



son’s condition and the technique developed in Chapter 3, we obtain the two-sided
bounds for the tails of compound negative binomial distributions with heavy-tailed
distributions.

In Chapter 5, we first review the new worse than used (NWU) aging property of
the compound geometric distribution, and show that mixed geometric sums also have
this aging property. Then, we discuss the relations between the compound geometric
distribution and its stop-loss premium. General upper and lower bounds for the
stop-loss premium are derived using the aging property.

As the applications of these results, we give bounds for stop-loss premiums of the
class of compound distributions discussed in Chapter 3. The stop-loss premiums of
compound negative binomial distributions with large claim sizes are also derived. In
addition, by the technique of the stochastic ordering, we give general bounds for the
stop-loss premiums of the compound distributions with HNBUE and HNWUE claim
sizes.

Using the similar method, we also get a general upper bound for the ruin proba-
bility. This upper bound is sharper than that of Willmot (1994) and asymptotically
sharper than that of Broeckx et al. (1986). The asymptotic behaviour of these bounds
is discussed. The relationships among sub-exponential, NWU, NBU distributions and
upper bounds of the ruin probability and stop-loss premiums are also considered. This
chapter is based on Cai and Garrido (1998) and is also an extension of the paper.

In Chapter 6, we consider the tails of convolutions of compound geometric dis-
tributions and discuss their asymptotic behaviour in detail. We derive asymptotic
estimates for the tail of convolutions of compound geometric distributions with light,
medium and heavy tailed distributions, respectively. General lower and upper bounds
for the tails are given, which can be used in some cases to determine a closer tail
approximation. Applications of these results are given to the ruin problem in the
classical risk process perturbed by a diffusion; previous results are easily derived and
a theorem of Veraverbeke (1993) is generalized. In addition, using a generalized Dick-
son’s condition, two-sided bounds for the ruin probability in the diffusion risk model
with large claim sizes are given, thus Dickson’s (1994) bound is extented to the dif-
fusion risk model. Examples are given and numerical comparisons of bounds with
asymptotic estimates for the ruin probability in the compound Poisson risk model

are also considered.



Chapter 2

Asymptotic Formulae and
Inequalities for Renewal Equations

2.1 Preliminaries and limit theorems

In this section, we review some asymptotic formulae for renewal equations. In par-
ticular, the elementary and key renewal theorems are presented, which are standard
methods for deriving asymptotic formulae in different applied probability models
including insurance risk analysis.
Theorem 2.1 Assume 0 < ¢F(0) < 1.

1. Forallz >0, Uyz) = &2, ¢" F™(z) < .

2. The renewal equation (1.1.5) has a unique solution

Z(z)=U,*2(z), z=>0. (2.1.1)
In particular, if ¢ = 1, the proper renewal equation has a unique solution
Z(z)=U=2(z), >0, (2.1.2)
where

U(z) = i F®™(z) =1+ M(z)

n=0

and

M(z) =3 F™(z),

n=]1

is called the renewal function.



If 0 < g < 1, the defective renewal equation has a unique solution

1
Z(z) = e Gg*x2z(z), >0, (2.1.3)
where
Ge(z) =" (1 -q)¢" F™(z)
n=0

is a compound geometric distribution function.

Proof. For the proof of Theorem 2.1, see Resnick (1992). m]

Definition 2.1 Let h be a function defined on [0, oc). For any a > 0, let Mn(a) be
the supremum, and m,(a) the infimum of A over the interval (n—1)a<z<na We
say that h is directly Riemann integrable, if 2n=1 Mq(a) and 2 ; m,,(a) are finite
for all @ > 0 and

lig(l) af; Tin(a) =£i£(1) anz=:1 m,(a).

The condition of directly Riemann integrability often arises in limit theorems
of renewal theory. Any of the following conditions is sufficient for z being directly
Riemann integrable [see Feller (1971) and Ross (1983)]:

=

z(z) > 0, decreasing and Riemann integrable.
2. z is monotonic and absolutely integrable.

3. z(z) > 0, bounded, continuous and satisfies

i M (1) < oo.

n=]
4. z is bounded by a directly Riemann integrable function.
9. z is constant on the intervals [nn+1],,n=0,1,--- and absolutely integrable.

Theorem 2.2 For the proper renewal equation (1.1.5), i.e. q = 1, suppose that
i = Jg° dF(z) < oo and Z satisfies the renewal equation (1.1.5).

10



1. (The Elementary Renewal Theorem) If zy = lim,_., 2(z) exists, then

im 23 _ 2 (2.1.4)

r—oo T #

2. (The Key Renewal Theorem) If z is directly Riemann integrable and F is
not lattice, then

lim Z(z) = i [ =) az, (2.1.5)

where, if 4 = oo, the limits in (2.1.4) and (2.1.5) are zero.

Proof. Theorem 2.2 is a classical result in renewal theory, see Feller (1971) for its
proof. 0O

The key renewal theorem gives the limit of the solution of the proper renewal equa-
tion and can be used to derive asymptotic formulae for the solution of the defective

and excessive renewal equations.

Definition 2.2 Assume that F'is a probability distribution on [0, oo) with F/(0) < 1.
A constant R is called an adjustment coefficient or Lundberg coefficient associated
with g and F if it satisfies the following Lundberg equation

© 1
E RX — Ry dF = 1.
[™] = [ emare) = (2:1.6)
where X is a random variable with distribution F.

The term “adjustment coefficient” is often used in risk theory. In branching pro-
cesses, R is called a Malthusian parameter. It plays a critical role in studying the
behaviour of the solutions of renewal equations.

We note that if the adjustment coefficient R exists, it is unique since E [esx] is
strictly monotonic in s. If ¢ > 1, such an adjustment coefficient always exists, and
R<(Qifg>1while R=0ifg=1 If0 < g <1, then R may not exist, but R is
positive when it does.

Property 2.1 For the renewal equation (1.1.5), suppose F' is not lattice. If there

exists an adjustment coefficient R for ¢ and F, and e® 2(z) is directly Riemann
integrable, then

I z(y)e®rdy g,
Z(z) ~ e '™, T — oo. 2.1.7
(=) q o yefv dF(y) @17

11



Proof. Since (1.1.5) implies that for z > 0,
e Z(z) =™ 2(z) +q [ TV Z(a —y) M dF(y),
or, equivalently,
Z*(z) =)+ [ Z#(z—y) dFF(), (2.1.8)

where Z#(z) = e Z(z), 2#(z) = e®*2(z) and dF#(y) = qe™dF(y) is a
probability measure, called the Esscher transform of F and

o0 o0
# = Ry
/0 ydF7(y) =g¢ /0 ye ¥ dF(y).
Hence, (2.1.7) follows directly from (2.1.8) and the key renewal theorem. 0o

Thus, the Cramér-Lundberg asymptotic formula (1.1.11) follows simply from Pro-
perty 2.1 , a method due to Feller (1971).

Property 2.1 gives a standard method for deriving exponential asymptotic for-
mulae for defective and excessive renewal equations. In particular, defective renewal
equations often arise in risk analysis and queueing theory.

From Theorem 2.1, we know that the solutions of proper and defective renewal
equations can be expressed in terms of the renewal function and compound geometric
distributions, respectively. Interestingly, the renewal function and compound geome-

tric distribution satisfy the following renewal equations, respectively, for £ > 0,
M(z) = F(z) +/0 M(z —y)dF(y) (2.1.9)
and

Gy(@) =1-q+q [ Gy(z —y)dF (). (2.1.10)

2.2 A general inequality for renewal equations

In this section, we develop a general method for the analytic constructions of bounds
for the solution of the renewal equation (1.1.5).

Theorem 2.3 Assume ¢F(0) < 1 and Z satisfies the renewal equation (1.1.5). If a
locally bounded function K, defined on [0, co), satisfies for any z > 0,

22)+q [ K@-y)dFly) > K@), (2.2.1)

12



then, for any = > (0,
Z(z) =z K(z).
Conversely, if for any z > 0,
2(z) +q [ K(e-y)dFy) < K(),
then, for any = > 0,
Z(z) < K(z).

Proof. By Theorem 2.1, we have
[ ]

Z(x)=>_ ¢"F™xz(z), z>0.
n=0

Define

k
Zk(x) = E an(n)*z(x)’ k=0)la2,"'7

n=0
then, for any = > 0,

and the following renewal recursive relations hold

Zr1(z) = 2(z) + ¢ F * Zg(z), £=0,1,2,---.

Since (2.2.1) implies that
Zo(z) =2(z) > K(z)—qF K(z),

which, together with (2.2.6) and (2.2.1), implies that

Ziz) = 22)+q | Zo(z —y)dF(y)

> #(@)+q [ K@—1)dF) - ¢ [ FxK(z—y)dF(y)

> K(z)—¢* F® « K(z).
Thus, by induction, we get for any & > 0,

Zi(z) > K(z) - ¢! FED « K ().

13
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We have

x |
g+t FEFD) K(z)l = ! ,/0 K(z—vy) dF(k'*'l)(y)l
< ¢ FE(2) sup [K(y)|.

0<y<z

However, by Theorem 2.1, we know that Uq(z) < oo for £ > 0, which implies that for
any = > 0,

"F™z) - 0, n —» oo (2.2.8)

Thus, letting £ — oo in (2.2.7), we get (2.2.2).
On the other hand, (2.2.3) implies that

Zo(z) = z(z) < K(z)—qF = K().
Thus, similar to the argument above , we get for any k£ > 0,
Zk(z) < K(z) — g FEH) & K (2). (2.2.9)

Hence, (2.2.4) follows from (2.2.9) and (2.2.8) as k — oo. O

The conditions (2.2.1) and (2.2.3) of Theorem 2.3 have similar forms to those
in the inequalities of Kingman (1970), which apply to the stationary waiting time
distribution in the GI/G/1 queue. Theorem 2.3 applies to functions satisfying renewal
equations. Although, both Theorem 2.3 and the inequalities of Kingman (1970) are
proved by induction, the arguments are different. Kingman (1970) mainly used the
property of the stationary waiting time distribution in the GI /G/1 queue.

Theorem 2.3 can be used to easily construct bounds for the solution of renewal

equations. Its applications are shown in the following sections.

2.3 Exponential bounds for defective and exces-
sive renewal equations

2.3.1 Exponential upper and lower bounds

By Property 2.1, we know that under suitable conditions, the solutions of the defective
and excessive renewal equations (1.1.5) have asymptotic exponential forms. Similar to
Lundberg’s inequality and to the Cramér-Lundberg asymptotic formula, one expects
exponential bounds for the solutions, which are also important for one to understand

14



the behavior of the solutions. Precisely, we want exponential bounds in the form of
u(zr) e~F= for the solutions of defective and excessive renewal equations, where R is
the adjustment coefficient. It is easy to construct such a bound by Theorem 2.3 if
one chooses u to be an increasing function.

To do so, take K(z) = u(z) e #* in Theorem 2.3. Since

o) + g [ ulz—y)e eI dF()
< 2(z) + qua)e™™ [ eMar(y), (2.3.1)
by Theorem 2.3, u(z)e ?* is an upper bound if
z(z) + qu(z) e *= /OI e dF(y) < u(z)e 2. (2.3.2)
Since 1—gq [§ e®dF(y) = q [CePdF(y), (2.3.2) is equivalent to

w(z) > z(z)el=

T g [ efdF(y) (23.3)

Clearly, if we take

?

_ 2h)ef _ f g S eRdF(y)) ™
u(z) = 02%21 q [ eRvdF(y) {ogiznig‘z z(h)efth

then u is increasing and satisfies (2.3.3). So, by Theorem 2.3, we get for £ > 0
Z(z) < u(z)e =, (2.3.4)
This, together with (2.3.1), implies that
2@) = 2(z)+q [ Z(c-y)dF()
< 2(@)+q [ ulz—y)eRENdR(y)
< 2(z)+qu(e)e ™ [ M dF(y). (2.3.5)

By (2.3.2), we know that (2.3.5) is a refinement of u(z) e~ ?=.
By exactly similar arguments, if we choose the following decreasing function

_ q [ ePdF(y) ™"
’("’)‘{02‘;‘; e } ’

we get
Z(z) > z(z)+ql(z) e_R"/OI e dF(y) > Il(z)e P,

Summarizing the argument above, we get the following result.
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Theorem 2.4 Suppose ¢F'(0) < 1 and Z satisfies the renewal equation (1.1.5) and
the adjustment coefficient R exists, then for any = > 0,

Z(z) 2 z(z) + (z) Fa(z) e ™™ > U(z)e " (2.3.6)
and

Z(z) < 2z(z) +u(z) Fr(z)e ™ < u(z)e =, (2.3.7)
where

Fr(z)=gq /0 " VAR (y)

[l(x)]_l = sup 7 )i e dF(y) and [u(z:)]"’l = inf q [e: e dF (y)

osu<z  z(u) eRn 0zugz  z(u)eR®

Theorem 2.4 gives exponential bounds and their refinements for the solution to
defective and excessive renewal equations. Since renewal equations arise in many
applied probability models, Theorem 2.4 has many direct applications. We illustrate

some in following subsections.

2.3.2 Application to tails of compound geometric distribu-
tions
(2.1.10) implies that the tail Gy(z) of G,(z) satisfies the following defective renewal
equation,
Co@) =qF@) +q | Cole —y)dF(y). (2.3.8)
Thus, take z(z) = ¢ F(z) in Theorem 2.4 and notice that 0 < ¢ < 1 in this case,
we get directly the following result.
Corollary 2.1 If the adjustment coefficient R in (2.1.6) exists, then for any z > 0,
Gy(z) > qF(z) +I(z) Fr(z)e ™™ > I(z)e B (2.3.9)
and
Gy(z) < qF(z) +u(z) Fr(z)e ™ < u(z)e B=, (2.3.10)
where

-1 __ Juo e dF ()
=) = oi‘iﬂ_ﬁ efr F(u)

o [ eV dF (y)
and  [u(z)]™! = inf_ eRuF(u)
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We note that R>0if0<¢g<1,soforany0 <u <,

J2 ePVdFy) | e [ dF(y) _

— — =1
et F(u) — eftr F(u) ’
this implies that [u(z)]™! > 1.
On the other hand,
. e dF (y) 1
ulz 1-1 S fO 6_ = —,
)] F(0) 7 F(0)
hence,
¢F(0) < u(z) < 1. (2.3.11)
Similarly,
0 < I(z) < qF(0). (2.3.12)

In addition, among reliability distribution classes, we can get exact expressions
for I(z) and u(z), see, Willmot (1994) and Property 4.1 of this thesis.

The two-sided bounds in Corollary 2.1 are sharper than both Lundberg’s inequa-
lity and those obtained by Cai and Wu (1997b), Gerber (1979), Kalashnikov (1996),
Lin (1996), Taylor (1976) and Willmot and Lin (1994). Also, the two-sided bounds
in Corollary 2.1 are asymptotically exact for small z if F(0) = 0, since then

lim {¢F(z) + u(z) Fr(e)e™™} = lim{qF(z) +I(z) Fa(z) e~?=)
= g = G,4(0).

2.3.3 Application to age-dependent branching processes

Suppose that an organism at the end of its lifetime produces a random number of off-
springs in accordance with the probability distribution {p;, j = 0,1,2, - -}. Assume
that offsprings act independently of each other and produce their own offsprings in
accordance with the same probability distribution {p;}. Assume that the lifetimes
of the organisms are independent random variables with common distribution F and
F) <1

Let X(¢) denote the number of organisms alive at t. The stochastic process
{X(#),t = 0} is called an age-dependent branching process. Then, an important
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quantity for such a branching process is the expected number of organisms alive at ¢,
given by E [X(t)]. It is known that E [X(t)] satisfies the following renewal equation
[see, Ross (1983)]

EX®)] =F@)+m [ P E[X(t—s)] dF (s) (2.3.13)

where m = 3722, jp; is the expected offspring of an organism.
Clearly, if m = 1, then E[X(¢)] = 1 is the unique solution of (2.3.13). If m # 1,
by Property 2.1, we get [or, see Theorem 3.4.8 of Ross (1983)] that

1—-m ot

t 3.
m2y [P yewdF(y) - OO (23.14)

E[X(@®)] ~

where v satisfies

1
g

| emare) =

If m > 1, then v < 0, this implies that the offspring grow at an exponential
rate. While, if m < 1, then v > 0, this implies that the offspring become extinct at
an exponential rate. However, by Theorem 2.4, we can give two-sided exponential
bounds for E [X (t)], simply by taking z(t) = F(¢) in Theorem 2.4, we get

Theorem 2.5 For t > 0,
I(tye™ < E[X(t)] < u(t)e™, (2.3.15)
where

- m [; eV dF(y) 1 .. m[ZeMdF(y)
[l(t)] ‘= 02%22: ere ?(u) and [’I.L(t)] t= 0;1:2'5 erTe F(u) )

We note that if m > 1, then v < 0, this implies that {(¢) > 1/m since for any
0<u<nz,

m [2° eV dF(y) < me™ [© dF(y)
e F(u) - e F(u) B

b)

this implies that [I(£)]~! < m.
Similarly, if m < 1, then v > 0 and u(t) < 1/m, thus, by Theorem 2.5, we get the
following simple bounds for E [X(t)], namely,
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Corollary 2.2 For any t > 0, if m > 1, then

E[X@)] > % e (2.3.16)
and if m < 1, then
E[X(@#)] < % e ™. (2.3.17)

This result gives interesting estimates for the expected number of the organism
alive at £ for the age-dependent branching process. In the case of m < 1, it is similar
to Lundberg’s inequality for the ruin probability and for the case of m > 1, it is a
counterpart of Lundberg’s inequality for age-dependent branching processes.

2.4 Linear bounds for proper renewal equations

2.4.1 Linear upper and lower bounds

For the proper renewal equation (1.1.5), i.e. ¢ = 1, by the elementary renewal
theorem, we know that the solution of the proper renewal equation is asymptotically

linear under suitable conditions. So, we expect a linear bound for the solution in the

form of
T z
ulr) + — or u(zx)-—.
(z) p ()#

By methods similar to those used in constructing exponential bounds for defective
and excessive renewal equations, we can easily obtain linear bounds for proper renewal

equations.

Definition 2.3 The equilibrium distribution function F, of the life distribution (i.e.
the distribution of a nonnegative random variable) F' is a probability distribution
function defined by

1 =
Fe = - F d )
@ =3[ Fa)dy
equivalently, the tail of F, is
—_ 1 oo
Fuz)== [ Fly)dy,
Hiz
where 0 < 1 = [§° F(y)dy < o0 is the mean of F.
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In actuarial mathematics, F, is called the ladder-height distribution. In renewal

theory, it is called a stationary renewal distribution.

Theorem 2.6 Suppose ¢ = 1, 0 < g < oo and Z satisfies the renewal equation

(1.1.5), then for any = > 0,

Z@)ZE+4@+K@H@—E@)Z%+K@

and
Z@)s§+4@+mqm@—g@)5§+q@,
where
_ . Zh) = F(h) _ . z(h)—Fu(h)
EC R O

Proof. Using integration by parts, we have
| viF@) = wF.(@) -2 F(a)
Thus, since u is increasing, we get
z(z) + /0 {u(z y) + P } dF(y)

T 1 r=
< z(z)+u(z)F(z) + ;F(x) - ;[) ydF(y)

=z@+q@H@+§—ﬂm.
Hence, by Theorem 2.3,
T
u(z) + —
(z) P
is an upper bound of Z(z) if the following inequality holds,
T T
z(z) + u(z)F(z) + i Fe(z) < u(z) + Py

which is equivalent to

(2.4.1)

(2.4.2)

(2.4.3)

(2.4.4)

(2.4.5)

(2.4.6)



(2.4.6) is evident by the definition of u(z). Thus, we get
Z(z) < T +u(z),
7
furthermore, this implies that

2@) = 2@)+ [ Z(-y)dFE)

< =)+ [ {uw-9) + 22t ar)

(2.4.7)

hence, the upper bounds in Theorem 2.6 follow from (2.4.7), (2.4.4) and (2.4.5).

Similarly, we get the lower bounds in Theorem 2.6.

0O

Theorem 2.7 Suppose ¢ = 1, 0 < 2 < 0o and Z satisfies the renewal equation

(1.1.5), then for any = > 0,

Z(z) > l(x)§+z(x)—l(z)Fe(:z:) > l(:z:)%

and
Z(z) < u(z) +32(x) —u(=) Fufa) < u(a) -,
where
. z(h) z(h)
I(z) = o2 Em ) and u(z) = 021;15)3 R

Proof. Since [ is decreasing, by (2.4.3), we have

= + [ [z<x—y) 23] 4

2 2(z)+Uo) |7 T Ear)
= z(z)+ l("Z)“’ ~ I(z)F(z).
Hence, by Theorem 2.3,
l(z) P

is a lower bound of Z if the following inequality holds,

2(z) + 28T e o Z
(@) + = U2)F(@) 2 Uz),

21
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which is equivalent to

z(z)
=) < = o (2.4.12)

(2.4.12) is evident by the definition of I(z). Thus, we get

Z(z) > Il(z) i’- >0,
furthermore, this implies that
Z@) = #a)+ [ Z(e-y)dF)
> sto)+ [ {1t -9 222} arw) (2.4.13)

hence, the lower bounds in Theorem 2.7 follow from (2.4.13), (2.4.10) and (2.4.11).
Similarly, we get the upper bounds in Theorem 2.7. |

2.4.2 Application to renewal functions

Since the renewal function M satisfies the proper renewal equation (2.1.9), take z(z) =
F(z) in Theorem 2.6 and 2.7, and note that

= F(h)—F(h) _ . . Fe(h)
o T F(h) = o, TRy
and
F(h) — Fe(R) _ Fe(h)
o2, T FR) o T b

we get directly the two following results for the renewal function M.

Corollary 2.3 Assume 0 < u < oo. For any = > 0,

M(z) > §+bl(x)F(m)—Fe(x) > 2+bz($)—l (2.4.14)
and

M(z) < %+bu(:z:)F(a:)—Fe(:z:) < §+bu(x)-1, (2.4.15)
where

bi(z) = inf %((hh)) and  by(z) = sup .?((}i‘)).
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Corollary 2.4 Assume 0 < £ < oo. For any = > 0,

M(z) > o l(z) + F(z) — l(z)F.(z) > m I(x) (2.4.16)
and
M(z) < ;u(:z:) + F(z) —u(z)Fe(z) < ;u(m), (2.4.17)
where
. F(h) F(h)
I(z) = ojsz Fo(h) and u(z)= 021;21 E(h)

Since b&(z) = 0, Corollary 2.3 implies the following simple bound for M(z),
namely, for any z > 0,

M(z) > %- Fu(2). (2.4.18)

Since 0 < Fe(z) < 1, the bound in (2.4.18) is sharper than the well known lower
bound for M(z) [see, Barlow and Proschan (1981) and Stoyan (1983)], namely,
M(z) > 5— 1. (2.4.19)
The bounds in Corollary 2.3 are also tighter than those of Marshall (1973), in
which he showed that

§+bl(oo)—1 < M) < §+bu(oo)—l- (2-4.20)

The renewal function M plays a central role in renewal theory and has many
applications in reliability, especially in maintenance models. There has been much
interest in estimating M (z) for reliability life distribution classes. However, from the
general results in Corollary 2.3 and 2.4, we can easily derive refinements of some well
known results. Therefore, we first give the definitions of reliability life distribution
classes. The most well known classes are the IFR, IFRA, NBU, NBUC, DMRL,
NBUE and HNBUE (with their duals: DFR, DFRA, NWU, NWUC, IRML, NWUC
and HNWUE), whose definitions are given below. These classes vividly describe the
forms of aging of lifetime random variables and have more and more applications
in different disciplines such as reliability, queueing theory, inventory theory and risk
analysis [e.g. see Barlow and Proschan (1981), Shaked and Shanthikumar (1994),
Stoyan (1983) and Szekli (1995)]. We will also discuss their applications in this

thesis.
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Definition 2.4 A life distribution F is said to have (or to be)
1. increasing failure rate (IFR) if for any = > 0, the following function

F(z +1)
F(t)

is decreasing in t > 0;
2. increasing failure rate in average (IFRA) if

—InF(t)
¢

is increasing in ¢ > 0;
3. new better than used (NBU) if for all z,y > 0,
Flz+y) < F(z)F(y);

4. new better than used in convex ordering (NBUC) if for all z,y > 0,

/z °°y F(t)dt < F(z) /y = Ft) at;

-+
5. decreasing mean residual life (DMRL) if

2 Fly)dy
F(z)

is decreasing in = > 0;

6. new better than used in expectation (NBUE) if F has the finite mean p and for
any = > 0,

[ Fway < uF@)

7. harmonic new better than used in expectation (HNBUE) if F has the finite
mean x and for any = > 0,

/ T Fy)dy < pe e,

Ry reversing the inequalities and monotonicity above, the dual classes, decreasing
failure rate (DFR), decreasing failure rate in average (DFRA), new worse than used
(NWU), new worse than used in convex ordering (NWUC), increasing mean residual
life (IMRL), new worse than used in expectation (NWUE) and harmonic new worse
than used in expectation (NWUE) are defined.
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The relations among the classes above are the following:

IFRA — NBU

/ N
IFR NBUC — NBUE -— HNBUE
N /
DMRL
and
DFRA — NWU
/ N
DFR NWUC — NWUE -— HNWUE.
N\ /
IMRL

For the relations and the properties of the classes, see Barlow and Proschan (1981)
for IFR (DFR), IFRA (DFRA), NBU (NWU), DMRL (IMRL) and NBUE (NWUE),
Cai and Wu (1997¢) and Cao and Wang (1991) for NBUC (NWUC) and Cai (1994a,
1994b, 1995), Cai and Wu (1997a) and Klefsjs (1982) for HNBUE (HNWUE).

Some important life distributions with increasing (or decreasing) failure rates are

the following:

Example 2.1 Gamma distribution with the density function
2@ po—l e—Az

g(z) = (o)

is DFRif0<a<1andIFR ifa > 1.

, £20, where A>0,a>0,

Example 2.2 Weibull distribution with the distribution function
Flz)=1-e™) £ >0, where \> 0, a >0,
is DFRif0<a<landIFRifa>1.

Example 2.3 Truncated normal distribution with the density function

1
flz) = o e~(E-uf/2e® o > 0, where ¢>0, —00 < p <00, a=®(u/c),
acV 2w

is IFR.
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Example 2.4 Pareto distribution with the distribution function

F(a:):l—(L> » £ 20, where a >0, A >0,
Atz

is DFR.

Example 2.5 Burr distribution with the distribution function

F(x):l—( ) , 220, where & >0,A>0,7>0,
A4+z7

isDFRif0< 7 < 1.
Now, by Definition 2.4, if F is NBUE, then F,(u) < F(u), for u > 0, which is

equivalent to Fe(u) > F(u), for u > 0. Hence, Corollary 2.3 and 2.4 imply that if F
is NBUE, then

M(z) < E—F(z)+ﬁ(x) < (2.4.21)

and

z F(u) T
M(z) < p 021:21 Fu(a) < PR (2.4.22)
If F is NWUE, then

M(z) > - — F(z) + Fe(z) > p (2.4.23)

and
M(z) > Flu) (2.4.24)

p, 0<u<z F ('u,) -

These bounds are refinements and generalizations of the bounds in Theorem C
and E of Section 2.10 of Szekli (1995), in which the following bounds are shown,
namely, if F' is IFR (DFR), then
z F(z)

M) < (2) T <

(>)
and if F is NBUE(NWUE), then

M(z) < () f
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In fact, it is straightforward to show that

F)
Fe(u)

is increasing(decreasing) if F' is IFR(DFR). Note that

(5@_)) _ f()Fe(w) — F(u) F(u)/p
Fe(u) [Fe(u)]?

[Fe(u)]2 [r(u)Fe(u) — F(u) /4] ,

where f is the density function of F' and r is its failure rate function, i.e. r(z) =
f(z)/ F(z), which is called force of mortality in actuarial mathematics.
Thus, if F' is IFR(DFR), then r is increasing (decreasing), this implies that

R = 3 [T = L [ rolie) e
2 (S) [r()]™ F(u)/p.

Hence,

F(u)\’
> (<) 0.
(Fe(u)) = (=)0
In addition, if F is NBUE, then F' is HNBUE, i.e. Fo(z) < e %/# for z > 0, this

implies (2.4.21) is also tighter than that of Bhattacharjee (1996), in which he showed
that if F' is NBUE, then for z > 0,

M(z) < ;-(7($)—8-7)+-

The applications above show that the method developed in this chapter is very
effective and straightforward. Undoubtedly, we can give more applications since the

renewal equations arise extensively in applied probability models.

2.5 Bounds and asymptotic formulae for defective
renewal equations in NWU and NBU distri-

butions

2.5.1 Bounds in NWU and NBU distributions

We notice that for the excessive renewal equation, the adjustment coefficient always

exists. However, for the defective renewal equations, it may not. For example, this
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is true for the heavy and medium tailed distributions. Thus, Property 2.1 and Theo-
rem 2.4 do not apply to these cases. However, we can generalize the Lundberg equa-
tion (2.1.6) so that it can be satisfied by more general distributions. A natural
generalization of the Lundberg equation (2.1.6) is to replace the exponential function
by a general life distribution B with B(0) = 0. Assume that B satisfies the following
equation,

JACOREORE (2.5.1)

Since the upper bound u(z) e~F* in Theorem 2.4 can be rewritten as

R(z—h) [o© _Ry -1
Rz _ | .. ge Jr. €™ dF(y)
)™ = {osil“‘i: 2(h) ’

we guess under condition (2.5.1), the following function is an upper bound for the

solution of the defective renewal equations,

o q[B—h)] [ [By)] " dF()) "
{Osizlléz Zgh) } )

This is valid if we choose B as an NWU distribution. Willmot (1994) first used
condition (2.5.1) to study the tails of compound distributions. There have been
extensive applications to the study of bounds for tails and ruin probabilities, see, for
example, Cai and Wu (1997b), Lin (1996), Willmot (1994, 1996, 1997a, 1997b) and
Willmot and Lin (1997a) by different methods.

However, it is easy to prove this general result by the method developed in this
Chapter. To do so, we define the following notation

q[B(z—h)"! [ [B(y)] ' dF (y) (2.5.2)

K(h,z) = 2(R)

and
@)™ = swp K(h2) and (@)™ = jmf K(ha).
0<h<z <h<z

First, we show that the functions K, and K> have the following properties.

Property 2.2 Suppose that B is a life distribution with B(0) = 0 and satisfies
(2.5.1). v
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1. Forz >0,

2() < g Kala) [ [Bla)] ™ dF(y). (25.3)

2. If Bis NWU, then for any 0 <y < z,
Ka(z —y) < [B@®)]™" Ka(z). (2.5.4)

Proof. (2.5.3) follows simply from

[Ko(z)]! = inf K(h,z) < K(z,)

0<h<Lz

= le@] [T (Bl dFG).
Since B is NWU, fora.nyOSySzandOSth—y,
B(z—h) > Bz —y—-h)B(y),
which implies that

K(h,z —y) > B(y) K(h,z),
hence

inf K(h,z-y)

0<h<z—y

B(y) inf K (h,z)

0<h<z—y

B(y) inf K(h,z)

0<h<Lz

B(y) [Ka(2)] 7,

[

[Kao(z — )]

vV v

this implies that (2.5.4) holds. a
Similarly, we have

Property 2.3 Suppose that B is a life distribution with B (0) = 0 and satisfies
(2.5.1).

1. For z > 0,

2@) 2 K@) [ [Bl)]™ dF (). (2.5.5)
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2. If B is NBU, then forany 0 <y < z,
Ki(z —y) 2 [B(y)]™ Ki(z). (2.5.6)

Theorem 2.8 Suppose Z satisfies the defective renewal equation (1.1.5), i.e. 0 <
g <1, and the life distribution B with B(0) = 0 satisfies (2.5.1).
(1). If B is a NWU distribution, then for any z > 0,

Z(z) < z(z)+ Fg(z) Ka(z) < Ks(z). (2.5.7)
(2). If B is a NBU distribution, then for any = > 0,
Z(z) > z(z)+ Fg(z) Ki(z) > Ki(z), (2.5.8)
where

Fo(z) = q [ [B) ™ dF(y).

Proof. By (2.5.4), (2.5.3) and (2.5.1), we have for z > 0,
oz) + 3 [ Kale-y)dF()

2(z) + 9 Ka() [ (Bl dF () (2:59)

1 Ka(@) [ (B dF@) +aKa(a) [ B dF()

aKale) [ (B) ™ dF ()

IA - IA

Thus, by Theorem 2.3, we get
Z(z) < Ks(z), >0,
this implies that for z > 0
2() = z2)+q [ Z(z-y)dFQ)
< 2@)+q [ Koz -y dF@).

Thus, (2.5.7) follows from (2.5.9) and (2.5.10). Similarly, we get the lower bounds in

(2.5.8). (]
From Theorem 2.8, we have the following simple upper bound for Z(z).
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Corollary 2.5 If B is an NWU distribution, then for z > 0,

, Fh) ™' =
| Z(z) < {oé%g—c %](1))} B(z) . (2.5.11)

Proof. By the definition (2.5.2) of K(k,z), we have
g[B(z — b7 [B(h)] ™' [ dF(y)

>
K(h7 x) — Z(h)
_ 4[Bl— R (B F(h)
z(h)
=, 1 9F(h)
> 1423
> (Bt Lh,
where, the last inequality follows from the definition of NWTU.
Thus,
_ : /-1 .. QF(R
Ko™ = K(hs) > (B g 2700,
which implies (2.5.11) holds by Theorem 2.8. a

Applying Theorem 2.8 to the tail G,(z) of the compound distribution in (2.3.8)
by taking z(z) = ¢ F(z) and Corollary 2.5, we get directly the following result.

Theorem 2.9 (1). If a NWU distribution B with B(0) = 0 satisfies (2.5.1), then for
any > 0,

Gy(z) < qF(z) + Fa(z) Ka(z) < Ko(z), (2.5.12)
in particular, for any z > 0,
G,(z) £ B(z). (2.5.13)
(2). If a NBU distribution B with B(0) = 0 satisfies (2.5.1), then for any z > 0,
Gylz) 2 qF(e) + Fa@) Ki(e) > Ki(a), (2.5.14)
where

Fp(z)=gq /: [B(y)] ™' dF (y).
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Theorem 2.9 results in new bounds for a class of compound distributions, which
will be discussed in Chapter 3. Those new bounds are uniformly sharper than those
main results of Lin (1996), Willmot (1994, 1997a, 1997b) and Willmot and Lin
(1997a). We will also discuss how to use reliability distribution classes to simplify
these bounds.

We note that the condition (2.5.1) can be satisfied by some distributions without
adjustment coefficients such as the distributions with only a finite number of moments,
Pareto and certain inverse Gaussian distributions. Hence Theorem 2.8 and 2.9 apply

to more general cases. Some details are given as follows.

Example 2.6 Assume that F is a life distribution with only a finite number of
momentsup tok > 0, i.e. Jg° T°dF(z) < 00, 1 €i < kand f§° 2 dF(z) = o0, i > k.
For the heavy-tailed distribution F', we can choose B to be a Pareto distribution and
B(z) = (1+ Az)~* such that & and A satisfy [ (1 + \y)* dF(y) = 1/q.

Example 2.7 Assume that F is the generalized inverse Gaussian distribution with
the density function

_ /B s uersym
f(x)—2KA(2m)z e , >0,

where 4 > 0, 8 >0, —00 < A < oo and K, is the modified Bessel function of the
third kind with index A. A special case includes the inverse Gaussian (A = —3). If
X has the distribution F, A <0 and E(e*X) < 1/q, then the adjustment coefficient
does not exist [see Embrechts (1983) for the detail]. However we can choose B to be
B(z) = (1+ kz)~"™e™#* such that « and m satisfy [ (1 + ry)™ e dF(y)=1/q.

Example 2.8 If F' is NWU, we can always choose B(z) = [F(z)]'"9 since

L FeIare) = [0 -uetay = 2.

2.5.2 Asymptotic formulae in NWU distributions

Coroilary 2.5 implies that if (2.5.1) holds for an NWU distribution function B, then
the solution Z of the defective renewal equation is bounded by B. Thus, similar
to the relation between Lundberg’s inequality and the Cramér-Lundberg asymptotic
formula, we guess that under suitable conditions there exists a constant C* > 0 such

that
Z(z) ~ C*B(z), = — oo, (2.5.15)
holds. Indeed, we get the following result.
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Theorem 2.10 Suppose that Z satisfies the defective renewal equation (1.1.5), i.e.
0 < ¢ <1 and there exists a continuous NWU distribution function B with B(0) =0
such that (2.5.1) holds. If the distribution F' is non-lattice and the following function

z[. _ BB ~=v)] (= -1
1-— — .5.
J [ | [B@I T F @) (2:5.16)
is directly Riemann integrable, then there exists a constant C* > 0 such that
lim Z(z)[B(z)| ' = C". (2.5.17)

The proof of Theorem 2.10 is based on a recent result about a generalized renewal
equation discussed by Schmidli (1997), in which he studied the following generalized

renewal equation, for z > 0,
Zi@) = 2(@) + [ 11 p(z,y) Zi(s —y) dHE) (2.5.18)

where H is a probability distribution with H(0) = 0 and p(z, y) satisfies the conditions
that 0 < p(z,y) < 1, it is continuous in z and the function [§ p(z,y)dH(y) is
directly Riemann integrable.

Let Z; be the solution to the ordinary renewal equation

Zo(z) = 2(z) + [ Zolw — y) dH (3), (2.5.19)

Schmidli (1997) proved the two following results.

Lemma 2.1 Assume that z(z) > 0 is bounded. Let Z; satisfy the renewal equation
(2.5.18), then

0 < Zi(z) < Zop(z), =>0. (2.5.20)

Theorem 2.11 Assume that z is directly Riemann integrable and that Z; satisfies
the renewal equation (2.5.18) and is bounded on bounded intervals. If H is non-lattice,
then lim,_.., Z1(z) exists and is finite.

Theorem 2.11 is the main result of Schmidli (1997) and has an application to
the Bjérk-Grandell risk model [see, Bjérk and Grandell (1988)]. Theorem 2.11 is
also a generalization of the key renewal theorem to the generalized renewal equation
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(2.5.18). Unfortunately, unlike the key renewal theorem for the ordinary renewal
equation (2.5.19), no explicit limit of Z;(z) can be found, we only know by Lemma 2.1
and the key renewal theorem that,

Jo° 2(z)dz

S dH ) (2.5.21)

0 < lim Zi(z) < Jim Zo(z) =

- r—occ

However, by Lemma 2.1, we can use the upper bounds of Zy(z) obtained in this
Chapter to estimate Z;(z).

The proof of Theorem 2.10 is similar to that of Property 2.1. The renewal equation
(1.1.5) implies that

(Bl 2(s) = (B sta) +. [ BEZU 2 DO B 4,
i.e.

Z#(@) = (@) + [ [1-b(z,9)] Z*(z — y) dF*(y), (2.5.22)

where Z#(z) = [B(z)]"! Z(z), z#(z)=[B(z)]™! 2(z), then

B(y) B(z ~y)

b(z,y)=1-— T2)

and dF#(y) = q¢[B(y)] 1 dF (y) is a proper probability measure.

However, B is NWU, so 0 < b(z,y) < 1. Thus, Theorem 2.10 follows from (2.5.22)
and Theorem 2.11.

Clearly, if B(z) = e~#=, then the function in (2.5.16) equals zero and is directly
Riemann integrable, so Property 2.1 is a special case of Theorem 2.10. However, a
natural question arises. Except for B exponential, are there other NWU distributions
such that (2.5.17) holds? This question is interesting but not simple since the function
in (2.5.16) is complicated. We can not answer it yet. Once one finds such an NWU

distribution B, one gets a new asymptotic formula for the solution of defective renewal

equations.
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Chapter 3

A Class of Compound
Distributions and Renewal
Processes

3.1 Introduction

For the compound distribution G in (1.1.1), in a series of works of Lin (1996), Willmot
(1994, 1997a, 1997b) and Willmot and Lin (1994, 1997a), have considered a class of
compound distributions, for which there exists a constant 0 < ¢ < 1 such that the
probability distribution {p,,n > 0} of N satisfies

Qn41 S¢a‘n1 n=07 1)27"'1 (31'1)
or
Qn41 2= ¢an1 n= 07 1, 21"' ? (31-2)
where -
an=Pr{N>n}= Y p.
k=n+1

Such a class of compound distributions includes many interesting models [see,
for example, Panjer and Willmot (1992) and Willmot and Lin (1994)]. The main
results and methods for estimating the tail probabilities of this class of compound

distributions are summarized below.
Denote the tail probability of the class of compound distributions by

Y(z) =Pr{S >z} = i Dn 7(71)(:1:) , >0. (3.1.3)

n=1
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Suppose that B is a life distribution with B(0) = 0 and satisfies the following

equation

JAREOIRELORES (3.1.4)

By the induction method, Willmot (1994) shows that if (3.1.1) holds and (3.1.4)
is satisfied by an NWU distribution function B, then

W(z) < 1;1“0 ax(z)Blz), >0, (3.1.5)

where ay(z) is given below.

By the renewal recursive method developed by Cai and Wu (1997b), Willmot
(1997a) shows that if (3.1.2) holds and (3.1.4) is satisfied by an NBU distribution
function B, then

1-— —_
P(z) > ¢po a1(z)B(z), >0, (3.1.6)
where
[a(@)]™ = sup  a(h), [w@))T"=  inf oh),
0<hk<z, F(h)>0 0<h<z, F(h)>0
and

o) — I B@I 4P @)
(BRI F(R)

Using a generalized Wald'’s identity, Lin (1996) shows that if (3.1.1) holds and
(3.1.4) is satisfied by an NWU distribution function B, then

w(z) < ;p° As(z), T30, (3.1.7)
while if (3.1.2) holds and (3.1.4) is satisfied by an NBU distribution function B, then
w(z) > > ;p" Ai(z), T30, (3.1.8)
where
[Ar(@)] ™= sup  A(R), [Aa(x)T'=  inf  A(h),
0<h<z, F(R)>0 0<h<z, F(h)>0
and

Ay - B bl dF )
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Willmot (1997a) shows that if B has a Decreasing Failure Rate (DFR, a subclass
of NWU), then
() B(z) < Aq(z), 20,

and if B has an Increasing Failure Rate (IFR, a subclass of NBU), then
ai(z) B(z) > Ai(z), £>0.

That is to say that the upper bound in (3.1.5) is tighter than that in (3.1.7) if B is
DFR and the lower bound in (3.1.6) is tighter than that in (3.1.8) if B is IFR.

As shown by Cai and Wu (1997b), conditions (3.1.1) and (3.1.2) imply respectively
that

Y(z) < l—;p—“ ¥*(z), z20, (3.1.9)
and

¥(z) 2 —1%9 ¥*(z), >0, (3.1.10)
where

V) =3 1-9 e, (31.11)

is the tail of a compound geometric distribution.

Thus, bounds for the tail ¥ of the class of compound distributions can be deduced
from the bounds for the tail 9* of the compound geometric distribution. With this
idea, we derive here new lower and upper bounds for ¥(z), which are uniformly
sharper than the bounds in (3.1.5), (3.1.6), (3.1.7) and (3.1.8).

In addition, based on the bounds in (3.1.5), (3.1.6), (3.1.7) and (3.1.8), many
simplified bounds have been derived in the references mentioned above by imposing
additional assumptions on B and F. However, as pointed cut by Schmidli (1997b),
some proofs of these simplified bounds [for example, those of Willmot and Lin (1997a)]
are wrong in general cases, due to an improper use of integrations by parts. But, “by
making the same mistake twice, the results turn out to be correct (Schmidli, 1997b)”.

In Section 3.5, we use the technique of stochastic ordering to derive simplified
bounds. The method is simple and unifying. The error is corrected and these simpli-

fied bounds are tighter than those in previous results.

37



We have pointed out in Section 2.5 that condition (3.1.4) is a generalization of
the following Cramér-Lundberg condition, i.e. there exists a constant x such that
> 1
/o eV dF(y) = . (3.1.12)
Condition (3.1.4) applies to more general distributions including some heavy tailed
distributions. Therefore, as we discuss in Section 3.2, many results based on condition
(3.1.4) are still not applicable to heavy-tailed distributions. This motivates us to
consider other more general conditions that can be satisfied by general distributions,
especially by heavy-tailed distributions. For this purpose, two truncated versions of
the Cramér-Lundberg condition are proposed.
The first version is obtained by replacing the exponential function e*¥ in (3.1.12) by
a truncated exponential function min(e”?, e”*) that satisfies the following equation

/ "V AF(y) + e F(t) = (3.1.13)

1
3’
for a given £ > 0 and p;.

The second type is obtained by replacing the exponential function e*¥ in (3.1.12)

by a truncated exponential function etV I 0,)(¥) that satisfies the following equation

/0 Cem v gF(y) = (3.1.14)

1
re
for a given £ > 0 and ;.

First, we point out the following fact that conditions (3.1.13) and (3.1.14) can
be satisfied by any claim size distribution F' with positive (possibly infinite) mean,
by choosing a sufficiently large value of ¢t. To see this fact, suppose that 0 <
Jo° ydF(y) < oo, there must exist a ¢ > 0 such that

/ " ydF(y) >0. (3.1.15)
Let
hz) = [ * VAP (y) + e F(t) % .
Thus
h(0) = F(&)+F(t) - %
= 1- % <o0. (3.1.16)
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We have pointed out in Section 2.5 that condition (3.1.4) is a generalization of

the following Cramér-Lundberg condition, i.e. there exists a constant x such that

o 1
<y - =
/0 eV dF(y) = e
Condition (3.1.4) applies to more general distributions including some heavy tailed

(3.1.12)

distributions. Therefore, as we discuss in Section 3.2, many results based on condition
(3.1.4) are still not applicable to heavy-tailed distributions. This motivates us to
consider other more general conditions that can be satisfied by general distributions,
especially by heavy-tailed distributions. For this purpose, two truncated versions of
the Cramér-Lundberg condition are proposed.

The first version is obtained by replacing the exponential function e in (3.1.12) by
a truncated exponential function min(e”¥, e®*) that satisfies the following equation

/ ‘Y AF(y) + et F(t) = % , (3.1.13)

for a given t > 0 and p;.
The second type is obtained by replacing the exponential function ¥ in (3.1.12)
by a truncated exponential function e*¥ Ijg +(y) that satisfies the following equation

t Ke . 1
/0 eV dF(y) =2, (3.1.14)
for a given £ > 0 and x;.

First, we point out the following fact that conditions (3.1.13) and (3.1.14) can
be satisfied by any claim size distribution F with positive (possibly infinite) mean,
by choosing a sufficiently large value of t. To see this fact, suppose that 0 <
157 ydF(y) < oo, there must exist a £ > 0 such that

/ " ydF(y) > 0. (3.1.15)
Let
hz) = [ " eV dF(y) + e F(t) — % .
Thus
hO) = F()+F() —215
- 1—% <o0. (3.1.16)
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given in Section 3.3. As applications, improved lower and upper bounds for ¥(z) are
derived.

Section 3.5 gives some simplied bounds, based on the results in Section 3.4, that
are derived in a unifying way, by stochastic ordering. This refines the bounds of
Willmot and Lin (1997a) and avoids inappropriate uses of integration by parts.

3.2 Some relations between reliability distribution
classes and heavy tailed distributions

Property 3.1 If F'is a NBUE distribution function, then it can not be a heavy-tailed
distribution function.

Proof. Let pup be the mean of F. Since NBUE — HNBUE , thus by Theorem 3 of
Klefsjo (1982), we know that for z > up,

F(z) < exp { L “"’} : (3.2.1)

This implies that F' has an exponential tail, i.e. there exists some a > 0 such that
I5° e dF(y) < oo. Hence, F is not heavy-tailed. m]

Due to the relations between the reliability distribution classes (see, Section 2.4.2),
Property 3.1 implies that all bounds based on the condition that F be a member of
IFR, IFRA, DMRL, NBU, NBUC and NBUE distribution classes, are not applicable
to heavy-tailed distributions. For example (2.8), (2.13) and (2.14) of Lin (1996) and
(2.7) and (3.8) of Willmot and Lin (1997a).

Property 3.2 If B is a NBU distribution function, then condition (3.1.4) can not
be satisfied by heavy-tailed distributions F'.

Proof. Since condition (3.1.4) implies that [F(a:)] ! F(z) — 0 as £ — oo, there
must exist some M > 0 such that F(z) < B(z) for £ > M. Thus, the relation NBU
— HNBUE and (3.2.1) imply for £ > max(M, ugp) that

F@) < B@) < exp{‘“; ;"} , (3.2.2)

where pp is the mean of B.
(3.2.2) implies that F' has an exponential tail and can not be heavy-tailed. ]
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Remark 3.1 Property 3.2 implies that all the lower bounds of Lin (1996), Willmot
(1994, 1997a, 1997b) and Willmot and Lin (19972) do not apply to heavy-tailed
distributions, since all are based on condition (3.1.4) and B being a NBU distribution

function.

3.3 Some useful identities in terms of renewal pro-
cesses

Forn > 0, define Sy =0, S, = X; +---+ X, and N(z)=sup{n >0:5, < z}, then
{N(z),z > 0} is a renewal process associated with the underlying random sequence
{X;,i>1}.Forz >0

Pr{N(z) > n} = Pr{S, < z} = F™\(z) ,

and
0 < Svw) < < Sy -

The tail probability *(z) of the compound geometric distribution has a, connec-
tion to the renewal process {N(z),z > 0}, namely, for z > 0,

V(@) =3 (1-6) " F7z) = B[pHe1] (3:3.1)

n=1
This is a simple and useful representation of the tail of the compound geometric
distribution in terms of the renewal process {N(z),z > 0}. Its proof follows simply
from summation by parts [for example, see Kalashnikov (1994, 1996)].

Since we can always choose a ¢ > 0 such that it is a continuous point of F
and F(t) > 0, without loss of generality we assume in what follows that these two
conditions hold for this given £ > 0.

Define F; to be the conditional distribution function of X , given X < t. That is

F(z)/F(t), 0<z <t

3.3.2
1, r>t ( )

i) - {

There exists a lifetime random variable, say X;, whose distribution is F, and survival

function
Fi(s) =1 - F(z) = { “Fg o 0<e
0 T>t

y
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Thus, condition (3.1.14) is expressed equivalently as

1 7 ) S L
oF({) /oe F(t) —./0 et db(y)
= /oooe"‘det(y)=E[e"‘X‘]. (3.3.3)

Define X = min{X, t}, then the distribution function G, of X is

F(z), 0<z<t
Gula) = { @) 0= (33.4)
1, z2>t
and the survival function
— F(z), 0<z <t
G =1-G, = -
+(z) t(z) { 0. s>t
Thus, condition (3.1.13) is expressed equivalently as
1 t .t _ o0 \ _ X;
;= /0 "V dF (y) + et F(t) = /0 eV dG(y) = E [e# %] . (3.3.5)

Suppose that {X},7 > 1} (respectively, {X}* i > 1}) is a sequence of i.i.d. non-
negative random variables with common distribution function F, (Ge), MNy(z) =
sup{n > 0: X{ +---+ X! < z} (resp. N;(z) =sup{n >0: X'+ .- + X2 < z})
is the renewal process associated with the underlying random sequence {X?,i > 1}
(resp. {X}*,7 > 1}), thus we have representations of ¥*(z) in terms of the renewal
process {NV;(z),z > 0} and {N;(z),z > 0}, that will be used in next section.

Property 3.3 For 0 <z <t

o _ A= OB {[pF@) ] 4 9 F(y)

¥ (z) Iy : (3.3.6)

Y*(z) = E [p™ @] (3.3.7)

Proof. Since, for 0 < z < ¢, Fy(z) = F(z)/F(¢), this implies that for 0 <z<t

FO@) = ["Rle-ydRa) = [ Fe-y)dre)/ FOP
= FO(@)/ [FOP .
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By induction, we get that for0 <z <tandn >1

F™(z) = F®)(z) / [FE)" | (3.3.8)
hence, for 0 <z <t
=My 1 o)y, FO(x)
Fii@m)=1-F"(z)=1 FOT (3.3.9)

Replacing ¢, F™(z) and N(z) in (3.3.1) by ¢ F(t), F™ (z) and N;(z), respectively,
wegetfor0<z<t

(=]

E{[pF@I"@*} = S [1-¢F@)][$FE)"FP (),

n=]1

2 _ " B F(”)(x)
= Su-erelwrer {1- 2}

= ¢F(t) =Y. [1—-¢F@®)]¢" F™(z),

n=1

— 6P - S 1~ 6F@] ¢ [1-F7)] |

n=1

= ore) - 2 re) 6T,

—¢F(t) [L-¢F@)] .
1% + T— o v*(z) .

this implies (3.3.6).
Similarly, since for 0 < z < ¢, G¢(z) = F(z), this implies that for 0 < z < ¢,
G™(z) = F™(z) and @ﬁ"’(x) = 7(")(:1:). Thus, by (3.3.1), we get for 0 <z < ¢,

E[p¥E] = > (1-9)¢" TP,

n=1

= 2 (1—¢)g"F(z) = v*(z),

i.e. (3.3.7) holds. O
Suppose that X has the same distribution function F' as {X;,¢ > 1}. Define

T(z) = inf{n : S, > z}, then T(z) = N(z)+1, and (1.14) of Lin (1996), a generalized

Wald'’s identity, can be also expressed in terms of N(z) as the following property.

Property 3.4 If a nonnegative function g on [0, 0o) satisfies

Blo(X)] = [~ g(x)aF () = 5. (3.3.10)
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then, for any z > 0

N(z)+1
E[¢N(I>+1 11 g(Xi)} =1. (3.3.11)

i=1

3.4 Upper and lower bounds derived from the above
identities

The following theorem has been derived in Theorem 2.9 by noting that E [¢N (”)+1] =
G4(z). Here, we give an alternative proof by the generalized Wald’s identity, which

is of independent interest.

Theorem 3.1 If there exists an NBU distribution function B satisfying (3.1.4), then
forany >0
E[¢VN=H] > Ki(x). (3.4.1)

If there exists an NWU distribution function B such that (3.1.4) holds, then for any
z >0,

E[¢V*] < Ka(z), (3.4.2)
where
[Ki(z)]'= sup K(h), [Ke(z)]™'= inf K(R), (3.43)
0<h<z, F(h)>0 0<h<z, F(h)>0
and
K(r) = BE—H] l_fng)B(y)] dF(y) (3.4.4)

Proof. By (3.1.4), Property 3.4 and the definition of NBU, we get that

1 = E{fﬁN(z)H N(ﬁH[F(Xi)]—l} )

i=1

N(@)
= E{qu(")“ [B(Xn@+1)]™ H[F(Xi)]—l} ;

< E{"@ [B(Xn@e)] ' [B(Xa +--- + Xnv)] 7'} (3.4.5)
= E{¢"*" [BXnw)l ™ [BSwa)l ™}
= B{¢"@ E{[B(Xnea)™ | N@), Swe} [BSwe)l ™} - (3.46)
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By the renewal property, we know that

E{BXn@all™ [N@), Sww} = B{BXN™ | X0 >z - Sve) |
I2 5y 1B dF ()

F(z — Sn(z)) (3.47)
Now, since 0 < = — Sn(z) < z, we get that
[BSva)l™' x E{[BXn@+)]™" | N(z), Sne}
_ ABlz = (z ~ Sy} [25,,., [ BW)] L dF (y)
- F(z ~ Sn() ’
= K(Z’ — SN(,,)) < [Kl (.’E)]_l . (3.4.8)

Substituting in (3.4.6), implies that
1 < E[¢N(z)+1] [Kl(:z:)]‘l ,

i.e. (3.4.1) holds.
Similarly, we can get (3.4.2) in the case of NWU by reversing inequalities (3.4.5)
and (3.4.8) and replacing K;i(z) by Ks(z). O
Combining Theorem 3.1, (3.3.1), (3.1.9) and (3.1.10), we get directly the following
corollary.

Corollary 3.1 If (3.1.2) holds and (3.1.4) is satisfied by an NBU distribution func-
tion B, then

¥(z) > - P

and if (3.1.1) holds and (3.1.4) is satisfied by an NWU distribution function B, then

Ki(z), (3.4.9)

¥(z) < P ). (3.4.10)

Remark 3.2 The lower and upper bounds in Corollary 3.1 are uniformly tighter than
the lower bounds in (3.1.6) and (3.1.8), and the upper bounds in (3.1.5) and (3.1.7)
respectively, which are the main results of Lin (1996) and Willmot (1994, 1997a).
These follow easily from the fact that if B is NBU, then for any £ > 0

Ki(z) > ai(z)B(z) and Ki(z)> Ay (z), (3.4.11)
and if B is NWU, then for any = > 0
Ki(z) < ay(z) B(zr) and Ky(z) < Aq(z) . (3.4.12)
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Theorem 3.2 Given t > 0, if there exists a constant K; such that

1

/0 "oy g (y) = 5 (3.4.13)

then forany 0 <z <t
(I —9)a(z, t)e™= + ¢ F(t)
l1—¢ + ¢ F(2)
In particular, for any ¢ > 0

(1 =9@)er(t)e ™" + ¢ F(t)
1—¢ + ¢F(t)

(1 - ¢)calz, t)e ™= 4 ¢ F(t)
1—¢ + ¢F(t)

< Yf(z) < .(3.4.14)

(1 — @) ca(t)e ™t + ¢ F(¢£)

1—¢ + ¢F(2) » (34.19)

S P(t) <

where

[ei(z, )]t = sup c(h,t), [ea(z, )]t = inf _ ¢(h,t),
0<h<z, F(R)£F(t) 0<h<z, F(R)#F(t)

I e"‘de(z)
exh[F(h) -F(®)]’

and c¢i(t) = c1(t, 1), cat) = calt, t).

c(h,t) =

Proof. By (3.3.3), we know that (3.4.13) is equivalent to

Ble"*] = [ v dR(y) = éF—l(t) .

Thus, taking B(z) = e~*%, by (3.4.1) in Theorem 3.1, we get for = > 0,

-1
mE [0 eV dF(y)
E{[pF@)N@+] > su € _ , 3.4.16
{lpF(@)Ner+1) B Iy v (3.4.16)

—1
ez Jre®YdF(y)
= e sup — =& ,
{oghgz, Fy#Fe) e[ F(h) —F(t)]

= ¢z, t)e =, (3.4.17)

Thus, by (3.3.6) and (3.4.17), we get the lower bound in (3.4.14).
The proof of the upper bound in (3.4.14) is similar. Setting z = ¢ in (3.4.14) gives
(3.4.15). O
Since

et hdFy)
e~ [F(h) — F(1)]

e(ht) >
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and

e~t [t dF(y) _ _re(t—h)
WO S R FEm—F@] ¢

thus, we get for any 0 <z < ¢,

e™t > sup c(h,t) > [cl(:z:,t)]'1 > [cz(:z:,t)]"1 > 1,
0<h<lzx

i.e.
e < ¢z,t) < eofx,t) < 1,
this implies by taking z = ¢ that
e < c(t) < eft) £ 1.

Thus we get the following simplified bounds by Theorem 3.2.

Corollary 3.2 Under the conditions and notation of Theorem 3.2, forany 0 < z < ¢

(1—¢)eE*) + ¢ F(2) A—¢)e™™=+ ¢ F(t)

1—¢ + ¢ F(t) S ¥ = 1—¢ + ¢F(t) (3-4.18)
In particular, for any £ > 0
_ —2xK¢ Fal _ —Kt sl
Q-9+ 6F@) _ oy o Q=dei v oF) oo

1—¢ + o F(t) 1—¢ + oF(t)

Furthermore, we show that the two-sided bounds in Corollary 3.2 are asymptoti-
cally exact for small ¢.

Let
(1—g)e ! + 9 F(¢) (I—g)e™! + ¢ F(t)
A(t) = — d B(t)= = 4.
W= rern ™ PO g o G4
respectively, be the lower and upper bounds in (3.4.19).
Property 3.5 If F(0) =0, then
%i_% Alt) = %i_xg B(t) = ¢*(0) = ¢. (3.4.21)
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Proof. By (3.4.13),

1 t
—_ = Kty < et
5 = [ eaF@) < et F(,
which implies that
0 < e™f < ¢F(t),
thus e™* — 0 as ¢ — 0. Hence Property 3.5 follows from (3.4.19). g

Theorem 3.3 Given ¢ > 0, if there exists a constant pr such that

/ "V AR (y) + et F () = é , (3.4.22)
then forany 0 <z <t
Pi(z,t)e ™™ < ¢*(z) < Bolz,t)eP= . (3.4.23)
In particular, for any ¢ > 0
Bu(t)e™™" < ¢ (t) < Ba(t)e™™t, (3.4.24)
where
Lzt = sup  B(ht), [Ba(z,t)]P=  inf  B(h1),
0<h<z, F(h)>0 0<h<z, F(R)>0

e7Y dF (y) + et F(2)
erth F(h) ’

B(h, 1) = &

and B1(t) = Bi(t,t), La(t) = Falt,t).

Proof. By (3.3.5), we know that (3.4.22) is equivalent to
o . 1
e aeie) = B = 1.
Thus, taking B(z) = ™2, by (3.4.1) in Theorem 3.1, we get that for = >0,

-1
o pLT [ ooy gy
0<h<z, Gi(h)>0 erth Gy (h)

= ;= sup ffervdF (y) + et F(2) -
0<h<z, F(h)>0 erth F(h) ’
= [i(z,t)e = (3.4.26)
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Thus, the lower bound in (3.4.23) follows from (3.3.7) and (3.4.26).

The proof of the upper bound in (3.4.23) is similar. Setting z = ¢ in (3.4.23) gives
(3.4.24).

Since

O

e Ji dF(y) +e” F(2)
erth F(h)
et [F(h) —F(o)] + e Ft) _
erch F(h) -

B(h,t)

v

and

ent J{ dF(y) + e Fi(t)
O 320)
en:t [F(h) — F(2)] + et F(t)
ereh F'(h)

)

thus,

et > sup B(h,t) > [fi(z, 1)t > [Ba(z, )]t > 1,

0<h<z
i.e.
e < Pi(z,t) < Po(z,t) < 1,
which implies by taking z = ¢ that
e < Bit) < Boft) < L.
Thus we get the following simplified bounds by Theorem 3.3.

Corollary 3.3 Under the conditions and notation of Theorem 3.3, for any 0 < z < ¢

e P @) < yr(r) < e, (3.4.27)
In particular, for any ¢ > 0

et < Yrt) < e mt. (3.4.28)

Combining Corollary 3.2 and 3.3 with expressions (3.1.9) and (3.1.10) directly
gives the following two corollaries.
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Corollary 3.4 If (3.1.2) holds, then for any 0 < z < ¢t

o) > AP [A-9)e™EH + gF@)

$[1-0 + ¢F@)]
and, in particular, for any ¢ > 0
- f _ —2K¢ I
oy > Lo |A-de + ¢F(@]
¢ [1-¢ + ¢F()]
Alternatively, if (3.1.1) holds, then forany 0 < z < ¢
(L—po) (1 —@)e™= + $F(2)]
6 [1—0 + ¢F(2)]

¥(z) <

and, in particular, for any ¢ > 0

(L—po) [(1 - @)e™t + ¢ F(t)]
¢ [1-0 + ¢F(t)] '

P(t) <

Corollary 3.5 If (3.1.2) holds, then forany 0 <z < ¢

Y(z) 2 1;1” = e

and, in particular, for any ¢ > 0

P(t) > 1—%@52”*‘.

Alternatively, if (3.1.1) holds, then for any 0 < z <t

1 —
P) < — e,
and, in particular, for any ¢ > 0

W(t) < LTPO gper

(3.4.29)

(3.4.30)

(3.4.31)

(3.4.32)

(3.4.33)

(3.4.34)

(3.4.35)

(3.4.36)

Remark 3.3 1. It is easily shown that if Cramér-Lundberg’s condition (3.1.12)
holds, then «; \ « and p; \| k as t — co. Thus, Lundberg’s inequality (1.1.9)
can be obtained and improved by letting ¢ — oo in the upper bounds in (3.4.14)

and (3.4.23).
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2. The upper bounds in (3.4.23) and (3.4.27) are uniformly sharper on [0, #] than
that in Lundberg’s inequality (1.1.9), since 0 < 8y(z,t) < 1, and (3.4.22) with
(3.1.12) means that

*° Ky — oo pt min{y,t} —
[ e drw) e dF(y) = 1/.

This implies that p; > «.

3. The upper bounds of (1.9) of Broeckx et al. (1986), (2.1) of Dickson (1994) and
(16) of Taylor (1976) are all special cases of the upper bounds in (3.4.14) and
(3.4.23), and improved upon by the new upper bounds. In addition, correspond-
ing lower bounds are given in Theorems 3.2 and 3.3. Cai and Carrido (1997)
gives a special case of Theorem 3.2, for the ruin probability in the compound
Poisson risk model, derived by the renewal recursive method.

4. Putting (3.4.22) and (3.4.13) together, we have
t t S—
| e dF ) = [ e var@) + e F(e) = 1/9,

which implies that x; > p,;. This suggests that the upper bounds in (3.4.14)
and (3.4.15) may be tighter than those in (3.4.23) and (3.4.24). A numerical
example of Dickson (1994) shows that in that special case, the upper bounds
in (3.4.14) and (3.4.15) are superior to those in (3.4.23) and (3.4.24) for large
values of z, but inferior for small values of z. From the same example, we can see
the lower bounds in (3.4.14) and (3.4.15) are also superior to those in (3.4.23)
and (3.4.24) for large values of z, but inferior for small values of z.

5. The bounds in Theorems 3.2 and 3.3, Corollaries 3.4 and 3.5 can apply to any
life distribution F' with positive (possibly infinite) mean. Especially, as shown
by numerical examples in Section 6.5, the bounds in Theorem 3.2 and Corol-
lary 3.4 are very effective for heavy-tailed distributions. Even when the Cramér-
Lundberg condition holds, in some cases, they are also superior to Lundberg’s
Inequality.

3.5 Simplified bounds derived from stochastic or-
derings

In this section, we derive simplified bounds for Y (z) by studying the function K in

(3.4.4) and the use of stochastic ordering. Indeed, stochastic ordering is a very useful

tool for deriving probability inequalities in applied probability models [see, e.g. Khalil
and Falin (1994), Stoyan (1983) and Szekli (1995)]. This approach helps unify the
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theory, is simpler than integrations by parts, used by Lin (1996) and Willmot and Lin
(1997a) as it does not require continuity conditions, and yields new, sharper bounds
for ¢¥(z).
In this section, we denote by F}, the residual life distribution function of F, ie.
F(z+h)—-F(h)
F(h) ’

and 64 the degenerate distribution function of the probability measure concentrated

Fp(z) =Pr{X <z+hX >h}= (3.5.1)

at d, i.e.

0, z<d
1, z>d

ba(z) = {
Thus, given h > 0, note that F(0) = 0 and we know for any y € [0, ),

Fy+h) = Fy =0 pwysu),

= F(h) Fu(y) + F(h) 6_n(y) . (3.5.2)

Hence, by (3.4.4), (3.5.2) and [°[ B(y + k)]~ F (k) d6_n(y) = 0 for h > 0, we get
forany 0 < h <z,

[B(z — h) ! [ B(y)] ' dF (y)

_ [Be-ni mgg; WM dE(y +h) 353)
= [Ba—m" [ [Bly+h]™ dFuy) (3.5.4)

Theorem 3.4 Suppose that condition (3.1.1) holds and (3.1.4) is satisfied by an
NWU distribution function B.

1. If Q: is an increasing function satisfying, for any y > 0,

. — — -1
Q) < inf |Blz—h)Bly+h)] (3.5.5)

and H is a distribution function satisfying H.(0) = 0 and, for any y > 0,
_H_:z:(y) < Oi%gz -F{h(y) 3 (3'56)

then for any z > 0
@) < G [T I

< ={y)dH, . 3.5.7
v(@) < 2 |7 Q) dH(w) (3.5.7)
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2. If Q. is an increasing convex function satisfying (3.5.5) and H, is a distribution
function satisfying H,(0) = 0 and, for any y > 0,

oo __ . oc
/,, How)du < jnf /,, Fa(u) du | (3.5.8)

then, for any = > 0, (3.5.7) holds.

Proof. 1. (3.5.6) implies that for any y > 0 and 0 < b < =z, H.(y) < Fr(y), i.e.
H. <s Fj. Since Q. is increasing, by the equivalent condition of “<,” [see, for
example, Theorem B of Szekli (1995), page 6] and (3.5.4), we get for any 0 < h < z,

K®) 2 [T Qu(y)dFaly) > [ Q) . (3.5.9)

This, together with (3.4.3), implies that in (3.4.10), [K2(z)]™! > f&° Q.(v) dH_(y).
Thus (3.5.7) follows from (3.4.10).

2. (3.5.8) implies that foranyy > 0and 0 < A < z, 52 He(u)du < 13° Fr(u)duy,
t.e. Hy <io Fp. Thus, since @, is an increasing convex function, by the equivalent
condition of “<;” [ see, for example, Theorem 3.A.1. of Shaked and Shanthikumar
(1994)] and (3.5.4), we get for any 0 < h < z,

K(h) 2 /o ” Qz(y) dFi(y) > /0 ” Qz(y) dH:(y) . (3.5.10)
This implies now that [K2(z)]™ > [5° Q.(y) dH.(y), and hence (3.5.7) still follows
from (3.4.10) when (3.5.8) holds. m]

Similarly, it is easy to prove the following result.

Theorem 3.5 Suppose that condition (3.1.2) holds and (3.1.4) is satisfied by an
NBU distribution function B.

1. If Q; is an increasing function satisfying, for any y > 0,
— — -1
Q=(¥) 2 sup [B(z—h)Bly+h)] " , (3.5.11)
0<h<Llz

and H. is a distribution function satisfying H,(0) = 0 and, for any y > 0,

H.(y) > sup Fiuly), (3.5.12)
0<h<Lz
then, for any = > 0,

ve) 2 o2 7 Q. ane) (3.5.13)
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2. If Q; is an increasing convex function satisfying (3.5.11) and H, is a distribution
function satisfying H.(0) = 0 and, for any y > 0,

0o ___ S J—
/ H:(u)du > sup Fr(u)du, (3.5.14)
y

0<h<z Yy

then, for any z > 0, (3.5.13) holds.

Corollary 3.6 Under the conditions of Theorem 3.4-1,
1. If F has an Increasing Failure Rate (IFR), then for z > 0,

v < R [["Qy-n)drw)] F@. (3519

2. If Fis NWU, then for z > 0,

ve) < B [[7 quyarw) (3.5.16)

3. If I is Used Better than Aged (UBA) with Lr > 0 [i.e. for any & > 0 and
y >0, Fr(y) > e LFY, see, Alzaid (1994)], then for z > 0,

ve) < 2 [[T et amal]” (3.5.17)

where, Lr = lim; .o 77(z) and rp(z) is the failure rate function of F.

Proof. 1. Since F is IFR if and only if F, is decreasing in & > 0, then infocher Fr(y) =
F.(y). Thus, setting H.(y) = F4(y) in Theorem 3.4-1. gives, for any z > 0,

e < SR[[7amane)]

¢
= =27 ewary+a)] e,
=1 ;p" [ / ” Qu(u—1) dF(u)} T @),

where the first equality follows from (3.5.2), similarly to the argument for (3.5.4).
2. Since F' is NWU if and only if for any A > 0 and y > 0,
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this implies that F(y) < infoch<z Fr(y). Thus, setting H,(y) = F(y) in Theorem 3.4
1. gives (3.5.16).
3. Since F' is UBA if and only if for any 2 > 0 and y > 0,

Frly) > eLtrv,

which implies that e~2F¥ < infocpcr Fa(y). Thus, setting H.(y) = e~LF¥ in Theo-
rem 3.4-1. gives (3.5.17). O
Corollary 3.7 Under the conditions of Theorem 3.4-2,

1. If F has a Decreasing Mean Residual Life (DMRL), then for = > 0,

1— o0 -1
v@) < =27 0y-2)dFw)| F@). (35.18)
2. If F' is New Worse than Used in Convex ordering (NWUC), then for z > 0,
1- 0 -1
ve@) < =2 [[7 uwarw)| . (35.19)

Proof. 1. By the equivalence of these conditions [see, for example, Theorem 3.A.18
of Shaked and Shanthikumar (1994)], we know that F' is DMRL if and only if, for
any 0 < h; < hy

th <icx Fh1 )
which implies that, for any 0 < h <z and y > 0,
0o __ oo
/ Fo(u)du < / Fr(u)du,
K} ¥

and hence, [[° F(u)du < infocher fJ° Fr(u)du. Thus, setting H.(u) = F(u) in
Theorem 3.4-2. gives (3.5.18).

2. By the definition of NWUC, F is NWUC if and only if, for any A > 0 and
y =0,

/yoo F(u)du < /yoo Fr(u)du,

which implies that [° F(u)du < infocher [y Fr(u)du. So here, setting H.(u) =
F(u) in Theorem 3.4-2. gives (3.5.19). m
Similarly, using the dual classes DFR, NBU, UWA, IMRL and NBUC to those in

Corollaries 3.6 and 3.7 and by use of Theorem 3.5, we get the following two corollaries.
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Corollary 3.8 Under the conditions of Theorem 3.5-1,
1. If F has a Decreasing Failure Rate (DFR), then for z > 0,

1—p oo pu—
v@ 2 2 [[7 Qv -2)dFw)| T (3.5.20)
2. If F is NBU, then for z > 0,
ve) 2 B[ [T quarw) (3521)

3. If F'is Used Worse than Aged (UWA) with Lg > 0 [i.e. for any h > 0 and
y >0, Fry) < e tr¥ see, Alzaid (1994)], then for £ > 0,

v@) 2 T[T erraumal) (3522)

where Lp = litay—o 7r(z) and rr(z) is the failure rate function of F.

Corollary 3.9 Under the conditions of Theorem 3.5-2,
1. If F' has an Increasing Mean Residual Life (IMRL), then for z > 0,

l—po [ [ =
@ 2 2 [ [T ely-2)dFw)| T (3.5.23)
2. If F' is New Better than Used in Convex ordering (NBUC), then for £ > 0,
1-— o0 -1
v@ > =27 u)are)] (3.524)

Remark 3.4 1. It is clear that if B is NWU, then

[(Blz+9)]7 < inf [Bla—m)Bly+h)]"

— 0<h<Lz

while, if B is NBU, then

-1

(Ble+y)™ 2 swp [Blz—h)Bly+h)]

Thus, Theorems 1 and 2 of Willmot and Lin (1997a) are obtained as special cases
of Theorems 3.4-1. and 3.5-1., respectively, by setting Q.(y) = [B(z + )]
With stochastic orderings, the proofs do not require the condition that B and F,
in [2°[B(y)]~* dF(y), have no common discontinuities [the proof of Corollaries
2.2 and 3.5 of Lin (1996) would also require it].
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2. Theorems 3.1 and 5.1 of Willmot (1997b) are also special cases of Theorems 3.4-
2. and 3.5, respectively, by setting Q. (y) = [ B(z+y)]~L. Note that the condition
that B be twice differentiable is not necessary here which yields a simpler proof.

Similarly, Corollaries 2.2, 2.4 and 3.5 of Lin (1996), Corollaries 1 and 3 of
Willmot and Lin (19972) and Corollaries 3.1, 3.2 , 9.1 and 5.2 of Willmot
(1997b) can all be obtained as special cases of Corollaries 3.6, 3.7, 3.8 and 3.9

by setting Q-(y) = [B(z + y)]~L.

3. The bounds in Theorems 3.4 and 3.5 are sharp, in the sense that if F' and
B are exponential distributions and N is a geometric random variable with
Pr{N =n} =(1-¢)¢",n=0,1,2,---, then the inequalities become equalities.
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Chapter 4

Bounds for Tails of Aggregate
Claim Distributions

4.1 Introduction

Let
G(z) = Z pn?’—(n)(a:), >0,
n=1
be the tail of the compound distribution G in (1.1.2) and denote the tail of an aggre-
gate claim distribution with £'(0) = 0. If the probability function {p,, n > 0} satisfies
(3.1.1) or (3.1.2), then the upper bounds for G(z) under condition (3.1.1) and the
lower bounds for G(z) under condition (3.1.2) have been derived in Chapter 3.
Thus, if there exist two constants 0 < ¢; < ¢2 < 1 such that at the same time

$1an < any1 < P2an, n=0,1,2,---, (4.1.1)

where

)
Qn = Z Dk,

k=n+1
then, we can obtain two-sided bounds for G(z). Fortunately, condition (4.1.1) can
be satisfied by many interesting probability functions such as geometric, logarithmic,
certain negative binomial distributions, etc.
First, we give general results about two-sided bounds for G(z) under condition
(4.1.1), then focus on their applications to the tail probabilities of compound nega-
tive binemial distributions, which is an important stochastic model in insurance risk

analysis and applied probability.
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In this chapter, we denote the adjustment coefficient as a function of ¢, t.e. adopt

the following notation.

Definition 4.1 For any constant 0 < ¢ < 1, constant K¢ satisfying
7 erev dF(y) = & 41.2
JACSLHORS: (412)

is called an adjustment coefficient of the distribution F.

Definition 4.2 Dencte

[z e™YdF(y) o Jz e™YdF(y)

N T 2 % =i o= F(z) (4.13)
By the definitions of 6; and 64, we know that [cf. (2.3.11) and (2.3.12)],
0<6,<¢ and ¢ <8y <1. (4.1.4)
Property 4.1 If F is NBUC, then
bs = ¢ (4.1.5)
and if F is NWUC, then
05 = . (4.1.6)

Proof: By taking B(y) = e™"™¥ in (3.5.4), we get for & > 0,

Jn emVdF(y) _
esshF(h)

fy eevar),

where F}, is defined in (3.5.1).
Since e"¢¥ is increasing and convex, by the equivalent condition of NBUC [see,

Cao and Wang (1991)], we get
o0 o0 l
fe¥d < Ry ==
| e dRi) < | eerare) 5

which implies that §5' < 1/¢, hence (4.1.5) holds by (4.1.4) . Similarly, we get (4.1.5).
(]
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Lemma 4.1 Suppose that (4.1.1) holds. If there exist adjustment coefficients g,
and kg,, then for any = > 0,

(1 — po) 8¢, e ® < G(z) < (i_’;o)eﬁ e Fea T, (4.1.7)
¢ P2

Proof. Lemma 4.1 follows from (3.1.9), (3.1.10) and Corollary 2.1 by noticing that
[(z) < I(c0) and u(z) > u(co) in (2.3.9) and (2.3.10), respectively. a

For the case where F' is heavy-tailed, adjustment coefficients in (4.1.2) do not
exist and Lemma 4.1 does not apply. Therefore, we define a generalized adjustment
coefficient of F* as follows, which was first used by Dickson (1994).

Definition 4.3 Given £ > 0, for any constant 0 < ¢ < 1, constant x4(t) satisfying
t 1
/ " OV 4P (y) = 3 (4.1.8)
0

is called a generalized adjustment coefficient of the distribution F.

Definition 4.4 Denote
Jz e=®VqF(y)

Bo(tN™ = S0 =P — 7 D) (4.1.9)
and
¢ e"‘é(t)y
[Gqs(t)]_l = ngxg e,%{;z,— [F'(x)df(%)(t)] : (4.1.10)

Similar to (4.1.4), it is not hard to show by the definitions of §4(¢) and 64(¢) and
(4.1.8) [cf. (2.3.11) and (2.3.12)] that
et < §4(t) < ¢F() and SF(t) < 64(2) < 1. (4.1.11)
Lemma 4.2 Given ¢ > 0, suppose that (4.1.1) holds, then for any 0 < = < ¢,

oy o (1=p0) [ =) e @) g, F (1))
) 2 $1[1 — 1 + ¢ F(t)]

(4.1.12)

and

Fiay < (1 —po) [(1 — o) e el 4 ¢27(t)]

) < $a[l — @2 + ¢2 F(t)] (4113)
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Proof. Lemma 4.2 follows from (3.1.9), (3.1.10) and Corollary 3.4. a

Since forn 20, an =332, pr and @ny1 = 3200 P = 32, Pr+1, hence,
ifforany k> 1, a < pry1/pe < b, then forany n >0, aa, < anq; < ba,. Using
this property, it is easy to check the following facts.

1. For the geometric distribution with

pn—_-(]_—q)qn, n=011127"'1 0<Q<11

Gnt1 = @an, 120 (4.1.14)

2. For the logarithmic distribution with

011

n = T3 71 v’ =1727”'7 6 )
P “nln( —8) n 0<éb<1

]
-z—an < @py1 < fa,, n>0. (4.1.15)

3. For the negative binomial distribution with

-1
pn=(n+a )(l_q)aqn7 TL=O,1,2,"',

n

where, a >0and 0 < ¢ < 1.

(a) 0 < a <1, then

aqan < anp1 < gan, n>0. (4.1.16)
(b) If & > 1, then

9an < Gny1 < agan, n>0. (4.1.17)

Thus, Lemmas 4.1 and 4.2 can apply directly to compound geometric distributions,
compound logarithmic distributions, compound negative binomial distributions with
O<a<l/g.

The purpose of this chapter is to use the convolution technique, as in Willmot
and Lin (1997b), and the changing distributions technique for Dickson’s condition,
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developed in Chapter 3, to derive two-sided bounds for the tails of general compound
negative binomial distributions with a > 0.

We derive upper and lower bounds for the tails of compound negative binomial
distributions with the generalized adjustment coefficients of F. Sharp bounds are
obtained for the tail of the compound negative binomial distribution. A connection
between the compound negative binomial, Poisson and logarithmic distributions is
presented, this results in the generalization and improvement of Theorem 3 of Willmot
and Lin (1997b).

4.2 Notation and preliminaries

Denote the gamma distribution function with scale parameter @ > 0 and shape
parameter 5 > 0 by Ha,p(z) and define H,, g(z) = 1 — Ho, p(z) as the tail of H, g(z),

i.e.

e _ [ aloy)ftem
Hosle) = | =z

If B =n is a postive integer, then H, ,(z) is an Erlang distribution function and

dy, z>0. (4.2.1)

Ir —oz::n—1 (ax)k
Hon(z) =€) o T20,
k=0 °

n=12,---. (4.2.2)

For notational convention, we define H, o(z) as a discrete distribution function
with unit mass at 0, i.e. Hyo(z) = 1 if £ > 0, 0 otherwise. Or equivalently,
H,o(z) =0if £ > 0, 1 otherwise.

Definition 4.5 A distribution function By, x is said to be a pseudo exponential dis-
tribution function if

0, z<0
Baa(z) = { l—ae™ 230 (4.2.3)
where 0 < @ <1 and A > 0. Or, equivalently,
- 1, z<0
Ba,,\(x) = { ae_,\z’ T Z 0 (42.4)

Ifa=1and XA >0, then B, » reduces to an exponential distribution function.

Similar to the property that the convolution of exponential distributions is a gamma
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distribution, we can derive the expression for the convolution of pseudo exponential
distribution functions, which is a mixture of Erlang distributions. It is the basis of
the bounds for the tails of compound negative binomial distributions.

The following property can be found in the proof of Theorem 1 of Willmot and
Lin (1997b). It is a generalization of the convolution of exponential distributions, so
we state it with its proof.

Property 4.2 Let B, x, i =1,--- ;N be n pseudo exponential distribution func-
tions. For any z > 0,

Bay,a %+ % By, A(z) = > biHy i (z) (4.2.5)
i=0
or, equivalently,
Boyax---xB, ,(z) =) b;Hj:(z) (4.2.6)
i=1

where b; >0, :=0,1,---,n satisfy that for any =z > 0,

Zn: bix' = ﬁ(l - oy + o;T), (4.2.7)

=0 =1

in particular, if o; =@, i =1,---,n, then

BAE =3 (7 ) a-are Hyue) (4.28)

Proof. Since the Laplace transform of B,y is

/-oo o5z dBQ,).(II:) = l—a+ /00 e T ale M dr
0 0
A

a+a)‘+s

Hence, the Laplace transform of Baya* - % By, ) is

n A n A Y
H(l—a,;-i—aim)—Zbi (/\-I-S) , (429)

i=1 =0

where, the equality follows from (4.2.7). _

The Laplace transform of the gamma distribution functions H PR (ﬁ)l , 1=
0,1,---,n. Hence, (4.2.9) is also the Laplace transform of > =0 biH) ;. Thus, the
uniqueness of the Laplace transform implies that (4.2.5) holds.
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Take z = 1 in (4.2.7), we get
> ob=1.
i=0
Thus, by Hj o(z) =0 for = > 0, we get for z > 0,
Bah,\ L SR 3 Bam)‘(.'L’) = Z bi -_ Z b,; H,\J(.’L‘) = Z biﬁ,\,:-(z).

i=0 i=0 i=1

O
Definition 4.6 Suppose random variables X and Y follow distributions F and G,
respectively.
1. We say that X is stochastically smaller than Y, written X <., ¥ or F <g Gif
for all z,

F(z) < G(z).

2. We say that X is smaller than Y in stop-loss ordering, written X <, Y or
F <4 G if for all z,

[ Foay < [7Cw)a.

Property 4.3 Let M and N be two nonnegative integer valued random variables,
{Xn,n > 1} and {Y,, n > 1} be sequences of independent nonnegative random
variables. Assume that M and N are independent of {X,, n > 1} and {Y,, n > 1},
respectively.

LIEM<aN, X;<q4Y: i>1, then

M N
YoXi < Y. Y, (4.2.10)
i=1 i=1

in porticular, for any n > 1,
DX <« Y. Y (4.2.11)
i=] =1

2. M <g N, X;<qY; i>1, then

M N
YXi <a DY, (4.2.12)
i=1 i=1

in particular, for any n > 1,
DX <a DY (4.2.13)

=1 i=1

Proof. This property is well known as the preservation of “<” and “<g" under
random sums, see Shaked and Shanthikumar (1994) or Jean-Marie and Liu (1992).
(|
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4.3 Bounds for tails of compound negative bino-
mial distributions with adjustment coefficients

Denote the tail of the compound negative binomial distribution by

(o ]

Galz) =Y ( nre . ) (1-9*¢"F(), z>0.

n=1
In this section, we derive lower and upper bounds for the tail of compound negative
binomial distributions when the adjustment coefficients exist.

Definition 4.7 Define
_ eq [1 - (1 — Q)a]

===y, . (4.3.1)
q q

We note that 0 </, <1 since 0 <8, < q [cf. (4.1.4)]. In addition, 0 <wuy <1
f0<a<lsinceq<f,<1 [cf (414)]and1—g< (1—-¢g)*if0<a<]l.

Theorem 4.1 (1) If 0 < @ < 1, then for any z > 0,

_ N\ _ —(1 - )™
5(!11 [l (]- Q) ]e—naqz S Ga(:z:) S 041 [1 ( Q) ]e—nqz. (43'2)
aq q
(2) For o > 1, suppose that m and n are two positive integers such that
1<m<a o >1 for j=1,---,m and Zaj=a
i=1
while
n
n2a 0<a;<1l, for j=1,---,n and Za}‘=a,
i=1

then for any = > 0,

Eml“ﬁ Hei(z) < Gaulz) < idiﬁnq,i(z), (4.3.3)

i=1 =1

where v, >0, i=1,---,m and d; >0, j=1,---,n satisfy

Z'Yixi:]:[(l—lai'i'laim)a z2>0,

1=0 i=1
7=0 Jj=1



Proof. (1) (4.3.2) follows simply from Lemma 4.1 and (4.1.16) by taking ¢; = aq,
@2 = q and pg = (1 — ¢)*.

(2) For any o > 1, by Lemma 4.1, (4.1.17) and taking ¢; = ¢, pg= (1—q)*, we
get by (4.2.4) that for z > 0,

—G—a(z) Z 6‘1 [l - (ql - q)a] e heT — —-B—la,rcq(x)- (43.4)

Suppose that f* is the Laplace transform of the distribution F, then the Laplace

_1-g¢ " _ fHf_1-a \¥
(=) =)

this implies that for £ > 0,

transform of G, is

Gol(z) = Go, * - - - % G, (T),
or, equivalently, for z > 0,
Go(z) =Gy *--- %G, ().

Since a; > 1, j =1,---,m, by (4.3.4) and Property 4.3, we get for z > 0,

Ga(z) > B, kg% *B Kq(z),

lam ’

which, together with Property 4.2, implies that the lower bound in (4.3.3) holds.
For the proof of the upper bound in (4.3.3), see Theorem 1 of Willmot and Lin

(1997Db). a
We note that if oy =---=am=1land af =---=a} =1, then,

lai=6q,i—_—1,---,m and ua;zeq’j=1,-..’n’
thus, by Theorem 4.1 and (4.2.8), we get immediately the following result.

Corollary 4.1 If « is a positive integer, then for any z > 0,

Ga(z) > z: ( . ) (1 6)° & H,, ;(z) (4.3.5)
and
Gole) < 3 (§ ) @00 @ T o). (43.6)
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The lower and upper bounds in Corollary 4.1 are sharp in that if F' is an expo-
nential distribution, then §; = 8, = q and G, (z) equals the lower and upper bounds.

We notice that (4.3.4) gives a simple lower bound for Gu(z) for any a@ > 1 .
However, we know that if < 7, then for any z > 0,

H,. i(z) < H., i(z), >0

H,, i(z)=o0 (Tf,cqj(:r,)) , T — oo0.

This implies that the lower bound in (4.3.3) is better than that in (4.3.4) at least for
large x.

Hence, to get the best lower bound in (4.3.3), one should choose tke largest m
satisfying 1 <m < «, i.e. take m = [a]. The bounds derived in this chapter are based
on Lemma 4.1. However, the lower bound in Lemma 4.1 can reduce to sharp lower
bounds for the tail of compound geometric distributions, i.e. for o = 1. Thus, the
lower bound in Lemma 4.1 is better if o approximates 1. Hence, we shall decompose
x=o+-+op, 21, forj=1,---,[a] suchthat o; approaches 1 as much

as possible and in this way, we can get better lower bounds for Gao(z).

Thus, natural choices of (a;, - - -, Q[q)) are
aj=1, for j=1,---,[o] =1 and ap=1+a—][a], (4.3.7)
with this choice of (a1, -, afy), we get

V= (l - ll+a—[a]) a; + ll+a—[a] aj_1, for i=0,1,--- , [a]’

where

-1 :
ag=a_;=0 and a; = ( lo] )[1—-5(,]["‘]—1_J 03, forj=1,---,[a] —1.

J

Another simple choice of (ay, - - -, as)) is to set all a; equal, but not less than 1,

i.e.

a; = i, for j=1,---,[a], (4.3.8)

[o]
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with this choice of (a1, - -, o), we get

a =7 ; .
7]’ - ( [’:] ) (l - la/[a]) 7 li/[a], fOI‘ ] = 0, l, Sty [a].

Similarly, for the best upper bound in (4.3.3), one should choose the smallest n
satisfying n > o, i.e. take n = a if it is an integer, [a] +1 if it is not. Similarly to the
proof of Theorem 2 of Willmot and Lin (1997b), we can show that the choice (4.3.7)
of (@1, -, ajq)) is optimal under the condition of b = g, which can be satisfied when

F is NBUC.

4.4 A connection between compound negative bi-
nomial, logarithmic and Poisson distributions
and its application

It is well known that a negative binomial distribution is a mixture of Poisson distri-
butions. This implies that a compound negative binomial distribution is a mixture
of compound Poisson distributions, as well. However, another Important fact is that
a negative binomial distribution is a Poisson sum of logarithmic random variables
[see, e.g. Johnson et al. (1992)]. Thus, we claim that a compound negative binomial
distribution is a compound Poisson distribution with a compound logarithmic distri-
bution as the underlying distribution. We present this fact in the following property,
which results in simple two-sided bounds for G,(z). This upper bound generalizes
and improves Theorem 3 of Willmot and Lin (1997b).

Property 4.4 Let F, be a compound logarithmic distribution with

oo qﬂ
EF,(z) = ————-F(n)m, z >0,
then
. oo A" —-A —(n
Ga(z) =Y n—e' Fl(z), 220 (4.4.1)
n=1 *

where A = —aIn(1 — g).
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Proof. Suppose that {Y;, ¢ > 1} is a sequence of i.i.d. logarithmic random variables
with

n

1 —1721"'7

Prii=nl=—q i "=

N, is a Poisson random variable and independent of {Y;, 7 > 1} with

" 6_’\

Pr{Ny,=n}= -

n=0,1,2---.

Hence,

Yi
Fy(z) = Pr{Z X; < :z:} .

=1

It is known by the Laplace transform that N, = Y; +--- 4+ Yy, is a negative binomial
random variable with [see, Johnson et al. (1992)],

-1
Pr{N,=n} = (’”’“‘ )(l—q)“ " n=0,1,2,---.
n

Denote the Laplace transforms of F' and F; by f and fq, respectively. Thus, the
Laplace transform of F{™ is f* and by the definition of f;, we know

fq(s) = F [6‘5221 X"] =F {E [e—szz;ll Xe| Yl]}
= E{E|(f(s)" 1]}
= E[(f(s)"].

However, the Laplace transform of EE’__‘_T"""Y" X; is

E [e—s PN Xf] = E { E [e-szf;‘f"'”“ Xi|Y, ... 1Y, ] }
= E{E[(f&))" Vi +-- + Vo] }
= E[(fs)+] = (E[(fs)¥])”
= (fal)™

This implies that
- Yit+Yn
FjM(z) =Pr ; X;i<z).
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Thus,

Na Yi++Yn,
Go(z) = Pr{ZXiS:z:}=Pr{ Z Xis:n}

i=1 i=1

® \n e-A Yi+4+-+Yn
= Z Pr Z X;<z

|
n=0 n. i=1

o \n -A

- 5

n=0

This implies that (4.4.1) holds. O

~ Fq(”) ().

Theorem 4.2 Let A = —aIn(1 —gq). Then

oo n,—A n . e
Culm) 2 3 25 &ijhmwdmwmﬁ (4.42)

n!

n=1 =1
and
_ Q  \n e—A n n nmi i
Galz) < D ' oo . |(Q—a)*7a} H,,j(z) - (4.4.3)
=1 T =1 \J
where
a; = —QE'ZE and a9 = &.
q q

Proof. For the probability function of the logarithmic random variable Y;, by
Lemma 4.1, (4.1.15) and py = 0, we get for z > 0,

5q/2 q e
e /2T T KgZT
a/2 Fola) < q

t.e. foranyz >0
ae7"2% < Fy(z) < aze™,
or
Baykgo(z) < Fo(z) < Bay,x,(@)- (44.4)
By Property 4.3, we know that (4.4.4) implies that

BY . (z) < F(z) < BY, (),

a1, Kq/2 a,Kq
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this implies by Property 4.2 that
n n nj iTF ==(n) e n. P p—
Z . (l - 0'1) ay Hﬁq/zyj(x) < Fq (:L‘) < Z . (1 - a'2) as H'cq,j(m)
=1 \ J =1 \ J
this, together with (4.4.1) implies (4.4.2) and (4.4.3). i

Remark 4.1 Under the condition of 8, = ¢, Theorem 3 of Willmot and Lin (1997b)
states that

_ o) /\ne—)\_
Ga(l') S nZ-; nl Hf:q,n(z)) IZ()’
however,
- n n~j 3 Ir ad I
z (j ) (1—ay)"7d} H,., i{z) < (1-ay) He o(z) < H,, n(z).
j=1

So, the upper bound in (4.4.3) improves Theorem 3 of Willmot and Lin (1997b).
Also, the lower bound is given without the unnecessary condition that s = q.

4.5 Bounds for tails of compound negative bino-
mial distributions with large claim sizes

In this section, we use the technique developed in Chapter 3 and Dickson’s condition
to derive two-sided bounds for tails of compound negative binomial distributions with
large claim sizes.

Given t > 0, let G4(z, ¢F(t)) be the compound negative binomial distribution
with parameter a, ¢F'(t) and the underlying distribution F;. Equivalently,

= o~ [ nta—1 o n 7(n)

Calw aFE) =3 | "7 | 1-aF@F aF O FP @), o0,

n=1

where F; is defined in (3.3.2).

We first give the following identities.
Property 4.5 For any 0 < z < ¢,

ﬁa(x) =F(t) + H(t) a&(x’ gF'(t)) , (4.5.1)

where

is a probability distribution function.
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Proof. By (3.3.9), we get for any 0 < = < ¢,

1 ™ ()

Ty g
B 20 )

(4.5.2)

which implies that for any 0 < z < ¢,

- - _ F™ oy
Go(z, qF(t)) = > ( +: . ) (1 —qF @) [gF ()" [l - [F(].;)]n + E:v(tg]n)}

n=1

= 1-p-arer - (F1EY) - - o

+ (———1 . i (®) ) " T

= 1-[H@I™ +[H®)] ™ Gal2),
furthermore, this implies that (4.5.1) holds. a

Definition 4.8 Define

bq(t)[1 — (1 — qF(¢))°] _ 0, - (1 —qF @)
F@ and u,(t) = 0 . (4.5.3)

la(t) =

By (3.3.3), we know that the condition (4.1.8) is equivalent to

® ro(®) _ L
/0 € tdet(y)_qﬁF(t)’

furthermore, by (4.1.9), we get

f;o ené(t)y dF‘t(y) faf erc¢(t) vy dF(y) .
:Szgg erca(t):rFt(x) Ossligt eKa(t)I [F(:z:) _ F(t)] [545( )]
Similarly, we have
) f;o em&(t)y dF‘t(y) _ . fé end,(t)y dF(y) B _
z>0 e"¢(t)"’?t(:1;) - Oslngt ere(t) T [F(x) — F(t)] = [64(¢)] 7",

thus, apply Property 4.5 and Theorem 4.1 to the tail Gn(z, ¢F(t)) of the compound
negative binomial, respectively, we get immediately the two following results.

Theorem 4.3 For givent >0, if 0 < @ < 1, then for any 0 < = < ¢,

Calz) > H(®) +H() la(t) e ™00 (45.4)
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and
Ga(z) < H(t) + H(t) ua(t) e =, (4.5.5)

where,

I5(t) = baq(?) []- —(1— qF(t))%]

aqF(t) ’
in particular, for any = > 0,
Ga(z) > H(z)+ H(z)5(z) e reel@)= (4.5.6)
and
Ga(z) < H(z)+ H(z) ua(z) e @)=, (4.5.7)

Theorem 4.4 For o > 1, suppose that m and n are two positive integers such that
m
l<m<o o;21, j=1,---,m and ) o;j=a
i=1
and

k3
n2a 0<oj<1, j=1,---,n and > af=a.
-

Given t > 0, then for any 0 < z < ¢,

Go(z) > H(t) + H(t) i_n; Y(t) -I-T,cq(t),i(x) (4.5.8)
and
Cuz) < HE)+H () é dit) Feo).4(z), (4.5.9)

in particular, for any z > 0,

Gal(z) > H(z)+ H(z) i_n; Yi(z) Hey(a),:(z) (4.5.10)
and
Ga(z) < H(z)+ H(z) i di(z) Hy,(z),i(z), (4.5.11)
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where v;(t) >0, i=1,---,mand d;(t) >0, j=1,---,n satisfy that

i %(t) 2 = ﬁ [1—lo;(t) + 1ay(2) 2], 220,

=0 =1
and
> di(8) 27 =TI [L — tas () + ua; () 2], 22 0.
=0 et 7 J
Sinceifa;=---=a,, =1 and af =---=qa} =1, then,

la;(8) = &(t), i=1,---.m and wua;(t) =6,(t), j=1,---,n,

thus, by Theorem 4.4, we get immediately the following result.
Corollary 4.2 Given £ > 0, if « is an integer, i.e. « = 1,2,---, then for any
0<z<H,

Gal@) > BO+H® S

Jj=1

SR

) 1= 8,67 [0 Hroirs(z)  (45.12)

and

j=t
in particular, for any z > 0,

Cule) > H) + HE) 3

=1

Ga@) < H@) +HE) z( )1—9 O O Far () (45.13)

%) 1= 6@ @ o) (4510
and

Cole) < HE@+HE) 3 (5 ) 1= 0@ 0@ Fryeorso). (0519

j=1

It is well known that if F" is subexponential, then G,(z) has the following asymp-
totic formula [see, for example, Embrechts et al. (1979)],

Go(z) ~ 1— F(z), £ — o (4.5.16)
It is easy to show by L’Hdospital’s rule that
% F(z) ~ H(z), z— o0 (4.5.17)

Cai and Garrido (1998) (see also Chapter 5 of this thesis) show that H(z) is the
lower bound of Go(z). Evidently, the lower bounds in Theorem 4.3 and Theorem 4.4

are tighter and the upper bounds are also given here.
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Chapter 5

Aging Properties of Geometric
Sums and Bounds for Stop-Loss
Premiums and Ruin Probabilities

5.1 Introduction

Definition 5.1 For a random variable X with distribution F ,
m —
B[(X ~d)] = [ " F)dy,

is called stop-loss premium (or stop-loss transform) of X (or F' ) with retention d,
denoted by 7x(d) [or 7r(d)].

In insurance risk analysis, one is interested in the stop-loss premium for aggregate
claims S = X; + --- + Xy , which has distribution function G and tail probability
G(z) given in (1.1.1) and (1.1.2), respectively.

The stop-loss premium of S is

m6(d) = E(S —d)v = [~ Gly) dy. (5.1.1)

The premium 7g(d) is paid in exchange for stop-loss reinsurance coverage. An
insurance company can reduce its risk by the use of reinsurance, ¢.e. by a stop-loss
contract with deductible d > 0. The amount paid by the reinsurer to the ceding

insurance company is

0, S <d,

S—d), =
(5= {S—d, 5>d,
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Thus, the amount retained by the insurance company is bounded by d and wg(d)
represents the expected amount of the reinsurer’s losses, a quantity of interest in
insurance risk analysis.

In this chapter, we consider stop-loss premiums for the class of compound dis-
tributions discussed in Chapter 3, i.e. compound distributions satisfying (3.1.1) or
(3.1.2). The stop-loss premiums for compound negative binomial distributions are
also considered. Similarly to the study of tail probabilities for the class of compound
distributions in Chapter 3, the bounds for stop-loss premiums can be deduced from
the bounds for stop-loss premiums of compound geometric distributions, by (3.1.9)
and (3.1.10).

Assume that Np is a geometric random variable independent of the sequence
{Xi, i > 1} with

) 1 \"
Pf{No:n}"—‘m(m) yn=0,1,---,

where 6 > 0.
Let S5 = va__‘_’l X; be the geometric sum. In this chapter, we denote the tail

probability of the geometric sum Sy by v, i.e.

W(z) = Pr{So > z} = -l—_i—a °_°1 (l_ie)"ﬂ"’ (z), (5.1.2)

and the stop-loss premium of the geometric sum Sy by

mso(@) = [ w(y)dy.

With the notation above, we can view 9(z) and 6 as the ruin probability and the
relative safety loading factor in the compound Poisson risk model, respectively (see
Chapter 1). Alternately, we call ¥(z) ruin probability or the tail of the compound
geometric distribution in this chapter.

In principle, the bounds for G(y) enable one to deduce bounds for the stop-loss
premium 7s(d). Precisely, if for z > 0,

L(z) € G(z) < U(x), (5.1.3)
then, for z > 0,
[ @y < mo@) < [T Uw)dy.
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That is also one of the reasons why one is interested in bounds for the tail G(y) of
the compound distribution. For example, for the class of compound distributions dis-
cussed in Chapter 4, i.e. the compound distribution G satisfing (4.1.1), if there exist
adjustment coefficients x4, and x4,, then by Lemma 4.1, we get two-sided exponential

bounds for the stop-loss premium mg(z), namely, for any z > 0,

(1 _pO) 5051 e "1 T S FG(I) S il;po& e 2 T (5.1.4)
01 K¢, P2 g,

Furthermore, we can get the bounds for the stop-loss premiums of compound
negative binomial distributions with this idea. We denote the stop-loss premium of
the compound negative binomial distribution by 7g_(z). To get the bounds, we note
that the stop-loss premium for the Erlang distribution H, , [see (4.2.2)] is, for z > 0,
given by

/:o Fa,n(y) dy = / e Z (a?/)k

k=0
1 n oo a(ay)(k+l)_1 e~y

- Zk;)/ I‘(k+1) &y

1 n—1

= — Z Ha'k_,_l(:z:) - Z Ha k(x) (515)

<@ 1o @ o

thus we get the following result.

Corollary 5.1 Under the conditions and notations of Theorem 4.1, for any z > 0,
(1) f0<a<1,then

baq [l — (1 —¢)%] e*1? < g (z) < 61 — (1~ 9)%] e ™%, (5.1.6)
Q@Kaq - * - qKq

(2) f o > 1, then

. Z f" Kq,1 (22) < 7rch(a:) < — Z g: Kq, ‘L(x) (517)

ke i3 kg i=1

where f; = >k vjand g; = i

Proof. The proof of Corollary 5.1 follows directly from Theorem 4.1, (5.1.5) and the
following formula of summation by parts, namely,

f: a; i by = f: b; i a; (5.1.8)



where m is a positive integer or oo. a

However, the method above fails if L and U in (5.1.3) are not integrable. This
occurs with heavy-tailed distributions and general bounds, which apply to any claim
size distribution. For example, Broeckx et al. (1986) derived a general upper bound
for ¥(z), which states that for any z > 0

F(z)+ FydF(y)/z . A (). (5.1.9)

Y(z) < 9 +-F(:z:) +f()=de(y)/x

Moreover, Willmot’s (1994) Theorem 8 provides another general upper bound for
¥(x), which states that for = > 0,

P(z) < EE(S") U Ay (z). (5.1.10)

(So) +z
Clearly, A»(z) is not integrable on [0, 0o). It can also be seen that A;(z) is not

integrable on [0, co) since for z > 1

J§ ydF(y) - Jo ydF(y)
O)z+[FydF(y) = Q+60)z+ fgydF(y)

Hence, an upper bound for w5, (z) does not follow from (5.1.9) and (5.1.10). As for
the case of 1(z), it is useful to obtain general bounds for the stop-loss premium g, ().

Ai(z) = i+

In particular, the bounds for 7s,(z) can produce bounds for the stop-loss premiums
of the class of compound distributions. The related results about the bounds for
stop-loss premiums can be found in other works. For example, Runnenburg and
Goovaerts (1985) discuss general upper bounds on the tails and stop-loss premiu-
ms of compound Poisson and negative binomial distributions by using Chebyshev’s
inequality. The bounds on stop-loss premiums of compound Poisson distributions for
bounded compound distributions are derived in Steenackers and Goovaerts (1991).
Sundt and Dhaene (1996) also give bounds for differences in stop-loss premiums of
two compound distributions.

In this chapter, we first review the new worse than used (NWU) aging property of
the compound geometric distribution, and show that the mixed geometric sums also
have this aging property in Section 5.2. Then, in Section 5.3, we discuss the relations
between the compound geometric distribution and its stop-loss premium. General
upper and lower bounds for the stop-loss premium are derived by the aging property

in Section 5.4.
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As applications of these results we give bounds for the stop-loss premiums for the
class of the compound distributions that satisfy (3.1.1) and (3.1.2). The stop-loss
premiums for compound negative binomial distributions with large claim sizes are
also derived in this section. In addition, by the technique of stochastic ordering, we
give general bounds for the stop-loss premiums of the compound distributions with
HNBUE and HNWUE claim sizes. In Section 5.5, we get a general upper bound
for ¥(z), this upper bound is sharper than A,(z) and asymptotically sharper than
A;(z). The relationships among sub-exponential, NWU, new better than used (NBU)
distributions and upper bounds on ¥(z) and s, (z) are also considered in Section 5.6.

5.2 Aging properties of geometric and mixed geo-
metric sums

The following Lemma is well-known, we state it with its proof by Brown (1990) to
see how the renewal theory and the property of the geometric distribution are used
in the proof.

Lemma 5.1 If N is a geometric random variable with Pr{Ny = n} = (1 —q)q"®, for

n = 0,1,--- and {X;, 7 > 1} is a sequence of i.i.d. nonnegative random variables
independent of Ny, then Y = ¥, X; is NWU.

Proof. For t > 0, define M; = min{k : Sx > t}, where S, = Zf=1 X;. Since M,
is independent of N, it follows from the lack of memory property of the geometric
distribution that the conditional distribution of Ny — M, given Ny > M, is the same as
that of Np. Furthermore, since M, is a stopping time, {Xag,+i, ¢ > 1} =2 {X;, 7 > 1}.

Thus, the conditional distribution of Zf\vz +1 Xi given Ng > M, is the same as that
of Y = 211'\,:01 X;. Note that the events {Y > £} and {Ny > M,} are equivalent. Thus

their indicator functions are equal, i.e. Itysty = Iing> ). Now,

=ty = [{(Ex) e} 5] oo

i=1 =M, +1
No
2 Y. Xi| Loz
i=M;+1

Thus, for z > 0,
Pr{Y >t+z} = Pr{(Y —t)Iysy > 7}
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vV

No
PI’{( Z XI) I(Nong) > .’E}

i=M,+1

No
= Pr{ Y X,—>a:,N02Mt}

i=M;+1

No
= Pr{ Z Xi > z|Ng > A/It} Pr{Ng > M;}
i=M;+1

= Pr{Y >z} Pr{Ny > M;} = Pr{Y >z} Pr{Y > ¢},

this implies that Y is NWU. O
The proof of Lemma 5.1 uses the lack of memory property of the geometric dis-
tribution. We know that the geometric distribution is the only discrete distribution
having this property, hence one might think that Lemma 5.1 holds only for geometric
sums. But, this is not true. Indeed, by the preservation of NWU under mixtures
of distributions that do not cross, we show that the mixed geometric sums are also
NWU.
Definition 5.2 If ¥ = {F, : a € A} is a family of probability distributions and

G is a probability distribution defined on A, then F(t) = [4 Fu(t) dG(c) is called a
mixture of probability distributions from F.

Lemma 5.2 Suppose F' is the mixture of I, a € A, each F, is NWU, with no two
distinct Fy,, Fy, crossing on (0, 00), then F is NWU.

Proof. See Theorem 5.7 of Barlow and Proschan (1981). a
Property 5.1 Let N be a mixture of geometric random variables, i.e.
1
Pr{N =n} =/0 (1-9)q"dB(g), n=0,1,2,---,

where 0 < ¢ < 1 and B is a probability distribution defined on [0, 1]. If {X;, ¢ > 1}
is a sequence of i.72.d. nonnegative random variables and independent of N, then

i’il X; is NWU.
Proof. Let
. N
H(z) =Pr{d)_ X; >z}
=1
and
Gilz) =Y (1 - )" F™(z)
n=]
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be the tail of the compound geometric distribution, where F is the distribution of X;.
Thus,

H(z) = [ Cylz)dB(a), (5.2.1)
hence, by Lemma 5.1 and Lemma 5.2, we need only to show that no two distinct
Gy and Gy, cross on (0,00). In fact, we show that if 0 < ¢; < ¢go < 1, then
G (z) < Gp(z) for z > 0.

Suppose that N(z) is the renewal process associated with the sequence {X;, i >
1}, then [c.f. (3.3.1)] we have,

Goulz) = B[], fori=1,2. (5.2.2)
Thus,
Gau(z) — Gpu(z) = Elgg @ — ¢
N(z) N@)—f
= (@-q)E Zfb s
j=0
> (@-q)E | @]
> (-a)g @) (5.2.3)
> 0 (5.2.4)

where (5.2.3) and (5.2.4) follow from Jensen’s inequality and the renewal function
E[N(z)] being finite for any = > 0, respectively. m]

Remark 5.1 Since the ruin probability (z) in the Poisson model is the tail of
the compound geometric distribution (see Chapter 1), where § > 0 is the relative
safety loading factor, thus it follows from (5.2.4) that the ruin probability is strictly
decreasing in the relative safety loading factor. This fact is reasonable.

In addition, another aging property of the geometric sum is that if the distribution
of X; is DFR, then the geometric sum %, X; is also DFR [see Shanthikumar (1988)].
For other properties of geometric sums, see Gertsbakh (1984), Johnson et al. (1992),
Khalil et al. (1991) and Szekli (1995).

5.3 Relations between ruin probabilities and stop-
loss premiums

In this section, we show that the stop-loss premium g, (z) satisfies a defective renewal
equation. These results, together with Lemma 5.5 below, are used to derive general

upper and lower bounds for v(z) and =g, (z).
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Now, consider the following facts which are direct implications of the assumptions

and notation of Section 5.1.
(i) E(No) = 1/6 and E(N2) = (2 +6) /6%,
(ii) E(So) = E(No)E(X) = E(X)/8 < 00 and
E(S,) = /0 P Pr{S; > z} dz = 75, (0) . (5.3.1)

(iii) If F(X?) < oo, then,
6 Var(X) + (2 + 6)[E(X)]?

E(Sg) = o (5.3.2)
and
[ rs@dz = [T [T w(w) duds
- /0 ~ uPr{Se > u} du = E(S2)/2 . (5.3.3)

Lemma 5.3 For any =z > 0,
(a) ms,(z) = E(So) ¥(z),
(b) 5 ¥(y)dy < E(So) (L — %(z)],

() Frs(@)dy < E(So) [ — ms,(z)].

Proof: (a) Since Sy = X% X; is a geometric sum, by Lemma 5.1 we know that Sg

is NWU — NWUE, i.e. for any z,y > 0,

[ vwat = B(So)w(a),

this implies that (a) of Lemma 5.3 holds.
(b) Since

mso(@) = [ vy = B(So) - [ vy, (5:3.4)
thus, by (5.3.4) and (a) above, we get
B(So) - [ v@dy > BE(So)w(a),

which implies (b).
(c) It follows directly from [y 7s,(y) dy = f5° 7so(y) dy — [5° 7so(y) dy, (5.3.3)
and (a) above. a
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Lemma 5.4 The stop-loss premium 7g,(z) satisfies the following defective renewal
equation, namely, for z > 0,

nsy() = TEAEECNTD | L 7 e -y aF) (5.3.5)

where wp(z) = [2° F(y) dy is the stop-loss transform of F.

Proof: It is known that [see (1.1.4)] ¢ satisfies the following defective renewal equa-
tion

¥@) = 1+ s [ wle - 1) dF () (536)

From this we get

ms®) = [ p@ds=TED 1 o [° [(ya—yar)ds. (5.37)

By Fubini’s Theorem and (5.3.7), we get

ms®) = TG 4 Lo [ [P e —y)dedF ()
v g [Tve—y)dear)
'n"p(t)

- 1+9 + 1+9/0 /t_y@b(U)dudF(y)

e [ s

Tr(t) | E(So) F(t)

t
= 1167 149 +1+0/o7r5°(t—y)dF(y)
So (5.3.5) holds. O

(So)

TZ5F)

Lemma 5.5 If f and g are integrable functions with different monotonicity on [a, b},
then

[ t@e@ i < = [ f@ys [ o(z)ds 539

Proof: It follows from the fact that [ [*[f(z) — f(¥)][g(z) — g(y)] dzdy < 0. O
Now we are ready to derive general upper and lower bounds for the stop-loss

premium 7s,(z) and the ruin probability ¥(z).
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5.4 General upper and lower bounds for stop-loss
premiums

In this section, we suppose that E(X?) < oo, which implies that E(SZ) < oo by
(5.3.2).

5.4.1 Bounds for the stop-loss premiums of the class of the
compound distributions
Theorem 5.1 Assume that F' has a decreasing density. For any = > 0,

wr(z) + E(Ss) F(z) rso(z) < g (z) + E(So) F(z) + E(S2)F(z)/(2x)
9 + F(z) = M8l = 1+0+ E(So)F(z)/z

(5.4.1)

Proof: Since ws,(z —y) = [;2, ¥(u)du is non-decreasing in y for 0 < y < z, by
(5.3.5), we get

775‘0(3:) > 'ITF(:L‘) ";i(go) F(:L‘) + f(x) (:E) (542)

thus, (5.4.2) implies that

F(z) mr(z) + E(So) F(z)
- >
-1l ms() 2 T é (5.4.3)
and (5.4.3) implies that the lower bound of (5.4.1) holds.
On the other hand, by (5.3.5), we get
- _ wr(z) + E(So) F(z) 1 =
ms,(z) = — e ARG OLY (5.44)

where f is the density of F'. Since f is non-increasing and 7g,(z —y) is non-decreasing

in y, for 0 <y < z, by (5.4.4) and (5.3.8), we get for z > 0,
Tr(z) + E(SO)F(-’B) l/z

ms(z) < o [ @y [ s @ -y dy
E(So) F F
- T BT | Pl g,
Nl 2

¢ ) LEOITE) | PO (B vy o)

The last inequality is obtained by (c) of Lemma 5.3. This implies that
E(S)F E(So) F S F 2
[1 P BOOEEz) () o 7o) R BTG + BERFE/ ) (o

which gives the upper bound in (5.4.1). ' g
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Remark 5.2 The condition that the distribution has a decreasing density can be sa-
tisfied by many distributions. An example is the class of the equilibrium distributions
F. (see Definition 2.3) with decreasing density function f(z) = F(z)/u, which often
arises in risk analysis, reliability, queueing theory, and renewal theory. In addition, the
class of DFR distributions have decreasing density functions since f(z) = r(z) F(z),
where 7(z) > 0 is the failure rate function of F', which is decreasing in this case.

Now denote by Ag,(z) and Bs,(z) the upper and lower bound in (5.4.1), respec-
tively, z.e. forz > 0

Tr(z) + E(So) F(z) + E(S§)F(z)/(2z)
1+ 0+ E(S0)F(z)/z

Ago (.’L‘) =
and —
‘R’F(IB) + EgSQ) F(.’JS)

6 + F(z) ’
The following property implies that the lower bound Bg,(z) for the stop-loss
premium 7g,(z) is asymptotically exact for small z and is asymptotically exact for

BSo(x) =

large z if F’ is a sub-exponential distribution.

Property 5.2 (1) lim; .o BSo (l‘) =TS (0),

(ii) If F is a sub-exponential distribution, then

"TSo(x) ~ BSO(I) (5'4'6)
Proof: (i) By (5.3.1), we get
: 7 (0) + E(So)
lim Bsy(z) = —— 5
E(X)+ E(So) _ 0E(Sy)+ E(So)
1+6 - 1+6

= E(Sg) = ms,(0).

(ii) It is known [see, for example, Embrechts and Kliippelberg (1994)] that if F is a

sub-exponential distribution, then

(@) ~ BE(No)Flz) = 28, (5.47)

%|

Then by L’Héspital’s rule, we get
[} 1 oo __
[ ewde ~ 5 [T Fu)du (5.4.8)
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1.€.

w&@)~,9§ﬂ (5.49)
but, (5.4.1) implies that
Tso(Z) = Bsy(z) > 7 :F%L 5~ Trpgx) (5.4.10)
thus, (5.4.9) and (5.4.10) together imply (5.4.6).
On the other hand, since E(X?) =2 [§° 2 F(z)dz < oo implies that
Jg&z“yfwy@=o (5.4.11)
which, in turn, implies that
lim zmp(z) =0 (5.4.12)

since for any =z > 0,

0<em(@) =z [ Fydy < [ yFly)dy (5.4.13)

and it follows that

mr(z) | E(S§)F(z)
6 21+ 6)

Together, (5.4.14) and (5.4.9) imply that if F' is sub-exponential, the upper bound

As, (z) of ms,(z) is asymptotically equal to 7s,(z) plus an error term tending to 0 for

Asy(z) ~ (5.4.14)

large z. a
Applying Theorem 5.1, (3.1.9) and (3.1.10) to the class of the compound distri-
butions satisfying (3.1.1) and (3.1.2), we get immediately the following result.

Corollary 5.2 (1) Suppose the compound distribution G in (1.1.1) satisfies (3.1.1),
then its stop-loss premium wg(z) satisfies for any z > 0,

1-— mr(z F(z F(z)/(2z
PR o Ol F(l):;;l ;(i)jxﬂz (2)/(22) | (5415

(2) Suppose the compound distribution G in (1.1.1) satisfies (3.1.2), then its
stop-loss premium 7 (z) satisfies for any = > 0,
(1 —po) [7r(z) + 11 Flz)]
7rg(.'12) Z ——
1-¢+ ¢ F(x)

where iy = ¢ p/(1—9), po=¢[(1—0@)o?+ (1+)p2]/(1—¢)?, p and o? are the
mean and variance of F', respectively.

(5.4.16)
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Proof. Take 1/(1+6) = ¢ in (3.1.11) or 8 = (1 — ¢)/¢, by (5.3.1) and (5.3.2), we
get

E(So)=-0-_l_¢‘_£5—ﬂl
and
2 2
B(s?) = 6o +(022+9)u
(1-9)¢'®+[2+(1—9)¢"]u?

) (1-¢) ¢
= H2,

hence, by (3.1.9) and Theorem 5.1, we have

mox) < 2 [T wr)ay

{ 1-— Po} Tr(z) + E(So) F(z) + E(S3)F(z)/(2z)

o 14+ 604 E(So)F(z)/z

(1 —po) [mr(z) + p1 F(z) + po F(z)/(22)]
1+ ¢p F(z)/z

Similarly, we get (5.4.16). a

<

5.4.2 Bounds for the stop-loss premiums of compound neg-
ative binomial distributions with large claim sizes

For the stop-loss premiums of compound negative binomial distributions without the
adjustment coefficients x4, Ka/n and Ko, we can get two-sided bounds using the
results of Chapter 4 and Dickson’s condition.

Corollary 5.3 Under the conditions and notations of Theorem 4.3, for given ¢ > 0,
if0<a<1,thenforany 0 <z <t,

Qqp 7 Ia(8) H(t) —aglt)
< =22 t) — xl ) [} pra 4.
76.(z) < 7 — zH(t) e [1— emmestt)] (5.4.17)
and
oqp oy o (t) H(t) —rg(t)z
> — = - ——— ]l 4.
me.(z) > -2 z H(t) o) [l e "e ] , (5.4.18)
in particular, for any =z > 0,
aqu ’;z (.’L‘) H (.’E) —Kaq(z)z
< 22 _ B/ 1 -k .
T6a(z) < 7 - z H(z) ) [1— e7meate)e] (5.4.19)
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and

a2 TF Uo(z) H .’L’) —Kkq(z)
e, (z) > 1—_‘% — zH(z) — (Kq)(z)( [1- e (5.4.20)

Proof. Let S, be the negative binomial sum, i.e. S, = Z,_l X;, where N, is the

negative random variable independent of the sequence {X;, ¢ > 1} with

-1
Pr{Nazn}=(n+a )(l—q)a ﬂ-’ n=011727“'
n

Since
B(S.) = E(N) B(X:) = T2
and
me.(@) = [ Calw)dy = E(Sa) - [ Caly)dy, (5.4.21)
(5.4.17) and (5.4.18) follow from (4.5.4) and (4.5.5). Take z = ¢ in (5.4.17) and
(5.4.18), we get (5.4.19) and (5.4.20), respectively. O

Corollary 5.4 Under the conditions and notations of Theorem 4.4, for given t > 0,
if « > 1, then for any 0 < z < ¢,

H(t) 7 3()

me.(@) S 1o —cH(t) -

—q Kq(2)
DML (5.422)

and

e (T) > X cH(t) — H(t) X5 jdi(t)

- l—g¢g Kq(t)
B> GO Fa.0) (5.429)

in particular, for any z > 0,

aqu - H(z) 7, jvi(z)
e () < l__E ~ zH(z) — o)

+28 s PICEAE (5.4.24)

K
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and

meur) > U - o) - H(z) hq(xl)]d ()
58 2 93(2) Hey(a5(2), (5.4.25)

where f;(¢) = £, %(t) and g;(t) = XL, di(2).

Proof. Since the mean of the Erlang distribution H,, . is n/a, by (5.1.5), we get for
z >0,

3

| Han)ty = 2= [" Hanl)ay

- ——-zﬂak@

3R

thus, by (5.4.21) and Theorem 4.4, we get for 0 < z < ¢,

mou@) S T HE) - HE) S %) [ Hegesb)dy

1—¢q =

qn
= T TH(t) — H(t) Z Y5 (t) { Py Eq(t) Z Heye), (x)}

i=1
this implies (5.4.22) by (5.1.8).
The proof of (5.4.23) is similar. Take z = ¢ in (5.4.22) and (5.4.23), we get (5.4.24)
and (5.4.25), respectively. a
In addition, by the stochastic ordering technique, we can give general bounds for
the stop-loss premium of the compound distribution G in (1.1.1) with HNBUE and
HNWUE claim sizes.

Theorem 5.2 Suppose F' is HNBUE (HNWUE) with the finite mean 1/a. Then the
stop-loss premium 7g(z) in (5.1.1) satisfies that for any = > 0,

me(z) < (2) = Z n-1 Ha,n(T) (5.4.26)

n=1

where a, = 322 .. px and H, n(z) is the tail of the Erlang distribution defined in
(4.2.2).

Proof. By the definition of HNBUE, we get for z > 0,

/:o F(y)dy < /:o e Ydy, (5.4.27)
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this means

X<sl}/1

where X and Y have distribution F' and exponential distribution with the mean 1/a,

respectively.

Suppose {X;, 1 > 1} and {Y;, i > 1} are two sequences of 4.i.d. nonnegative ran-

dom variables independent of N with the same distribution as X and Y, respectively,

then,
Xi <sl }/‘iy i=1727"'7

thus, by Property 4.3, we get

N N
Z Xi <st Z }fiy
=1 =1

this implies that for z > 0,
o0 N oo N
me(x) =/ Pr{d° X: > y}dy < / Pr{d Y > y}dy
T =1 z =1
however,
N o5} L
PI‘{Z Y; > y} = Z Pn Ha,n(y)
=1 n=1

thus, by (5.1.5), we get

Rlr

g Ho, k() {i Pk

k=n

ne(z) < n{; Pn {é kﬁ::l Fa,k(z)} =

the last equality follows from the summation by parts [see (5.1.8)].

(5.4.28)

}

Reversing the inequalities in the proof above, we get the bound for the HNWUE

case.
With a method similar to that used in the proof of Theorem 5.2,

O

we can derive

bounds for the ruin probability in the Poisson model, see, for example, Cai and Wu

(1997b).
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5.5 General upper and lower bounds for ruin prob-
abilities

A method similar to that used in Section 5.4 for the stop-loss premium =g, (z), allows
us to derive here a general upper bound for the ruin probability 1 (z). This upper
bound is sharper than As(z) and asymptotically sharper than A;(z). De Vylder and
Goovaerts’s (1984) general lower bound for ¥(z) is also re-derived using two simple,
different methods.

Theorem 5.3 Assume that F' has a decreasing density . For any z > 0,

F(z)

. F@) + BS)F(@)/z
6 + F(z)

= 146+ E(So)F(z)/z

< ¥(z) (5.5.1)

Proof: Since ¥(zx —y) = Pr{Sp > = — y} is non-decreasing in y for 0 < y < z, by
(5.3.6), we get
Fz)  ¥()

5t 15 F @ (5.5.2)

¥(z) =

which is equivalent to the following inequality
1 F(z)

- >
[1-+ T @) 2 7 0 (5.5.3)
and the lower bound in (5.5.1) holds.
On the other hand, by (5.3.6) and (5.3.8), for any = > 0, we have
Fz) 1z = =
< -
W) < iy [ ve-vdy [ Fe)dy
_ F(@)  F@)/z (=
= TretT 136 Lo YR
F(z) , F(z)/z
< —
< 12+ S psn —y(e)
where the last inequality follows from (b) of Lemma 5.3. Thus, we get
E(So)F(z)/z F(z) + E(So) F(z)/z
<
e 1+ = ) S 1+6
and the upper bound in (5.5.1) also holds. o
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Remark 5.3 The lower bound in (5.5.1) was derived by De Vylder and Goovaerts

(1984) by considering the error function of an approximation for (z). As pointed

out by them, this lower bound is asymptotically exact for 1(z) as £ — oo if F is
sub-exponential. It is also asymptotically exact for ¥(z) as = — 0 since

F(z) 1
209+ F(x) 1+6
It should be noted that this lower bound can also be derived by the following
simple probability inequality, namely,
Fz) > 1—[F(z)]™ (5.5.4)

By (5.1.2) and (5.5.4), we hence get

= 1(0).

ve) 2 53 (13p) C-FEI) = ot (55.5)

This idea indicates clearly why the lower bound of (5.5.1) is asymptotically exact
for 9(z) as £ — oo if F' is sub-exponential, because then F™(z) ~ 1 — [F(z)]*. This
method can also be used to derive general lower bounds for any compound distribution
and get asymptotically exact lower bounds for the tail of the compound distribution,
as T — oo, if the compound distribution is sub-exponential. For example, assume
that {W;, ¢ > 1} are 4.i.d. random variables with common distribution H and are
independent of a counting random variable M. Denote by Z = ¥ W;, then if M
has a Poisson distribution with @ > 0, we have

Pr{Z >z} >1—¢eoHE (5.5.6)

while if M has a negative binomial distribution with

Pr{M =k} = <k+z_l) (Hﬁ-ﬁ)a(lj—ﬂ)k’

for k=0,1,---and a > 0, § > 0, then

However, the improved bound (5.5.7) has been obtained in Theorem 4.3 and 4.4.

Now we discuss the properties of the upper bound in (5.5.1), namely
F(z) + E(So)F(z)/x
1+ 80+ E(So)F(z)/z

Then the following property shows that the upper bound A(z) of v(z) is sharper
than A(z) in (5.1.10) and is asymptotically sharper than A;(z) in (5.1.9).

Alz) =

92



Property 5.3 (i) For any z > 0,
E(So)

Az) < E(So) +7 = Ax(z) (5.5.8)
(if) If E(X?) < oo, then
Alz) ~ 141- - Auz). (5.5.9)

Proof: (i) By Markov’s inequality and (5.3.1), we get that for any = > 0,
F(z) = Pr{X >z} < E(X)/z = 0E(So)/z (5.5.10)
which implies that
zF(z) < 0E(Sy). (5.5.11)
Using F(z) + F(z) = 1 and (5.5.11), we have
E(S0) F(z) + zF(z) + E(So)F(z) < (1+0)E(Sy). (5.5.12)

This implies that A(z) < Ax(z).
(ii) Since E(X?) < oo implies that = F(z) — 0 as z — oo, then

A(z) _ 5 F(z) + E(So)F(z)/z 6
z—oo A (x) zh—]*:glo F(z) +z-1 [FydF(y) (1 + 9)
6 E(S) 1
(1+9> E(X) 146

Also, it follows that

F(z) E(So)F(z)
8 (1+0)z

A(z) ~ (5.5.13)

which implies that the upper bound A(z) is asymptotically equal to ¥ (z) plus an

error term tending to 0 for large = when F is sub-exponential. 0O
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5.6 Relations between upper bounds, NWU, NBU
and sub-exponential distributions

In Sections 5.4 and 5.5, we derived general upper and lower bounds for the stop-loss
premium 7s,(z) and the ruin probability 1(z), and also discussed the asymptotic
behaviour of the bounds in the case where F' is sub-exponential.

As shown in Sections 5.3, 5.4 and 5.5, the NWU aging property of ¥(z) plays an
important role in deriving those bounds. Interestingly, #(z) can not hold a new better
than used (NBU) upper bound if F is sub-exponential, which generalizes De Vylder
and Goovaerts’s (1984) assertion that no exponential upper bound exists for v¥(z) if
F' is sub-exponential, since exponential distributions are NBU distributions. At the
same time, we can also claim that no exponential upper bound exists for g, (z) if F
is sub-exponential. These assertions are summarized in the following results.
Theorem 5.4 If F' is sub-exponential, then the stop-loss premium 7g,(z) does not

admit an exponential upper bound, 7.e. no constant r > 0 and bounded function ¢
are such that forallz > 0

Ts50(@) < e(z)e . (5.6.1)

Proof: If (5.6.1) were true, then by (a) of Lemma 5.3, we would get
E(So)¢¥(z) < c(z)e™™ (5.6.2)

which would imply that ¥(z) < ce™, where ¢ = sup,5q c(z)/E(Sp), a contradiction
to De Vylder and Goovaerts’s (1984) result. a

Corollary 5.5 If F is sub-exponential, then 1(z) can not admit a NBU upper bound,
i.e. no NBU distribution function B with finite mean and bounded function ¢ exist,
such that for allz > 0

P(z) < c(z)B(z) (5.6.3)

Proof: If (5.6.3) holds, then we have
mo(@) = [T v@du < [ o) Br)du < ¢ [ Bl du (5.6.4)
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where ¢ = sup;>g ¢(Z)-

Since B(z) is NBU — HNBUE, for all x > 0
/oo B(y)dy < me = (5.6.5)

where m = [§° B(z)dz. By (5.6.5) and (5.6.4) we get

x

Tso(z) < ecme ™™

a contradiction to Theorem 5.4. O

Remark 5.4 Corollary 5.5 suggests that a reasonable choice of upper bound for the
ruin probability ¥(z) with the form in (5.6.3) may be a NWU distribution function B.
Indeed, we have derived upper bounds for ¥(z) in terms of NWU distribution func-
tions which generalize and improve the classical inequality of Lundberg (see Chapter 2
and 3 of this thesis). Many recent works tend in this direction, see, for example, Cai
and Wu (1997b), Lin (1996), Willmot (1994, 1996, 1997a, 1997b) and Willmot and
Lin (1997a).

The other method for deriving bounds of ruin probabilities is to use a truncating
condition about F(z). Bounds based on this condition are applicable to any claim
distributions and are especially useful for heavy-tailed distributions, where the ad-
justment coefficient does not exist. For example, Dickson (1994) and Chapter 3 of
this thesis.
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Chapter 6

Asymptotic Estimates for Tails of
Convolutions of Compound
Geometric Distributions and
Diffusion Risk Models

6.1 Introduction

Let {X;,7 > 1} be a sequence of i.i.d. non-negative random variables with common
distribution function F' and F'(0) = 0. Further, let N be a geometric random variable
with Pr{V =n} = ¢gp®, for n=10,1,2,... and p=1—g¢, for 0 < ¢ < 1, which is
independent of {X;,¢ > 1}. Sy = =X, X; is said to be compound geometric, where
Sy =0 if N = 0. Its distribution function is denoted by H(z) = Pr{Sy < z}.

Suppose that Y is another non-negative random variable with distribution G and
G(0) = 0, where Y, N and {X;,7 > 1} are independent. Then, the convolution H * G
of the compound geometric distribution H and distribution G, i.e. the distribution of
Sn+Y, arises in many applied probability models, such as regenerative processes [Co-
hen (1976), Kalashnikov (1994) and Keilson (1966)], insurance risk analysis [Dufresne
and Gerber (1991), Sundt and Teugels (1995) and Veraverbeke (1993)] and queueing
theory [Asmussen (1987), van Hoorn (1984) and Szekli (1986, 1995)]. Many distribu-
tions of interest in these works can be expressed in the form G x H of the distribution
of Sy +Y.

For W(z) = G = H(z), consider W(z) = 1 — W (z), the tail or survival function of
W (z). It is well-known (Rényi’s theorem) that if £ has a finite mean, then for any
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> 0, H(z)/ J;° H(y) dy— = as ¢— 0 or equivalently E(N) — co. Furthermore,
Keilson (1966) [also see Kalashnikov (1994)] showed that if F has a finite second
moment and G has a finite mean, then a similar limit theorem holds for any W(z),
namely for any z > 0, W(z)/ [s°W(y)dy — = as E(N)— co. However, in many
applications, we are interested in the large deviation probability of Sy + Y, or the
asymptotic form for W(z) as £ — oo.

The asymptotic behavior of the tail H(z) of the compound geometric distribution
function is well-known. The purpose of this Chapter is to give a more complete
description of the asymptotic behavior for W (z), obtain the asymptotic estimates
for W(z) under various situations, and consider the applications of these results in
diffusion risk models.

This chapter is organized as follows: in Section 6.2, we derive an exponential
asymptotic form for W (z) in terms of Lundberg’s coefficient using Property 2.1.

In Section 6.3, we consider subexponential asymptotic forms for W (z). Here, gen-
eral lower and upper bounds for W (z) are given first, the bounds indicate the possible
asymptotic form for W(z) and are also used to determine a closer approximation for
W(z) in some cases.

In Section 6.4, we discuss asymptotic forms for W (z) in the intermediate case, i.e.
the distribution has exponential moments but Lundberg’s coefficient does not exist.

In Section 6.5, as an application of the results for W(z), we consider the ruin
probability in the diffusion risk model. The asymptotic estimates of the ruin proba-
bility derived by Dufresne and Gerber (1991), Gerber (1970) and Veraverbeke (1993)
are easily obtained. A theorem of Veraverbeke (1993) is also gemeralized. In addi-
tion, two-sided bounds for the ruin probability with large claim sizes are given, thus
Dickson’s (1994) bound is extented to the diffusion risk model.

6.2 Asymptotic estimates with light-tailed distri-
butions

In general, W(z) does not admit an exponential asymptotic form, for example, see
Remark 6.5 of this Chapter. But if conditions similar to those in Cramér-Lundberg’s
asymptotic formula hold, then an asymptotic exponential form exists as given in the

following theorem.
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Theorem 6.1 Suppose that F' is non-lattice and there exists a constant « such that
/0 e dF(z) =1/p (6.2.1)

and mg(k) = [5° e dG(z) < 00. If B = [{°ze"* dF(z) < o, then

7 qu(K') —-Kz
W(I) ~ -ph:—ﬁe K (6.22)
and if § = oo, then
W(z) = o(e™F=). (6.2.3)

Proof. Since H is the compound geometric distribution, for any = > 0,
W(z)=G*H(z) = ioqp" G x F™(z). (6.2.4)
Thus by (6.2.4), we get that for any =z > 0,_
[We-9arw) = S o [ 6+ FO@-y)drw)

n=0

= 1
. ZanG* F(n+1)(.’l,‘) - =
n=0 p

This implies that W satisfies the following defective renewal equation, i.e. for any
z > 0,

[W(z) — ¢G(z)]-

W(z) = qG() +p [ Wz —y)dF(y), (6:2.5)
or equivalently,
W(z) = qC(x) +pF@) +p | Wiz —y) dF (). (6:2.6)
Hence, (6.2.2) and (6.2.3) follow directly from Property 2.1, (6.2.6) and
I e dG(z) = 1+ & [§°* G(z) dz. a

6.3 Asymptotic estimates with heavy-tailed distri-
butions

In this Section, we consider the case when F' or G are heavy-tailed, in particular,
subexponential distributions. First, the following two theorems give general lower
and upper bounds for W(z), which indicate the possible asymptotic forms used to

determine, in some cases, a closer approximation for W(z).
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Theorem 6.2 For any = > 0,
PF(z) +9G(z)

pF(z)+¢ (63.1)

W(z) >

Proof. Since W(z) = Pr{Sy+Y > z} is the survival function of the random variable
Snx +Y, W(z) is decreasing. By (6.2.6), we get that for any = > 0,

W) 2 ¢C@) +pF(z)+pW(e) [ dF)
= 4G(@) +pF(z) +pW(z)F(a)

this implies that (6.3.1) holds. o

Remark 6.1 Take Y = 0 in Theorem 6.2, we get a lower bound for the tail H(z) of

the compound geometric distribution function H, namely, for any = > 0,
pF(z)

pF(z)+gq

This gives a derivation of the lower bound in Theorem 5.3, which is a result known in

the form of the ruin probability in the classical risk process [see for example Theorem
3.1 of De Vylder and Goovaerts (1984)].

Theorem 6.3 If F has a finite mean £(X;) and G has a decreasing density function,
then for any z > 0,

H(z) > (6.3.2)

pF(z) + ¢G(z) + 6(x)
pF(z) +q

where §(z) = pG(z){z'E(X;) — F(z)} — 0 as z— cc.

W(z) < (6.3.3)

3

Proof. Since W(z) = G = H(z) = Pr{Y + Sy < z}, by conditioning on the value of
Y, we get that for any = > 0,

W(z) = Cz)+ /0 “H(z - y) dG () (6.3.4)
= Glz)+ /0 “H(z —y)C'(y) dy. (6.3.5)

Thus, by (6.3.5), Lemma 5.5 and the fact that H(z — y) is increasing in y over
[0, z], we get that for any = > 0,

W) < G+ [ He-ydy [ Cu)dy (636)
- T +_G%/01F(t)dt
- 'G'!'(a:)'+g—i—$)— [E(SN) _ L CH@) dt]. (6.3.7)
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Since Sy is a geometric sum, the distribution H of Sy is NWU — NWUE, i.e. for
any = > 0,

/’?ﬂﬂdtz E(Sy) H(z). (6.3.8)
Thus, by (6.3.7), (6.3.8) and (6.3.2), we get that for any =z > 0,

W(z) < G(z)+z'G(z)E(Sy)[l — H(z)]

ral -1 pF(z)
_ i . EC@E(SN)
= G(z)+ S O (6.3.9)
But E(Sy) = E(ZL; X:) = E(N)E(X:) = pE(X1)/q, so ¢E(Sn) = pE(X;), this,
together with (6.3.9), implies that (6.3.3) holds. O

Remark 6.2 Combining Theorems 6.2 and 6.3, we get that under the conditions and
notation of Theorem 6.3, for any = > 0,

pF(z) +49G(z) _ o

pF(z) +qG(z) + 8(z)
PF@ +a Wie) < '

o)t (6.3.10)

Since 6(z) — 0 as z — o0, (6.3.10) indicates that

p_F-(i) +qG(z)
pF(z)+q

may be an asymptotic form for W(z) as £ — oo. Indeed, below we will show that
under various situations, this is precisely the large deviation probability of Sy + Y,
i.e. the asymptotic form of W(z) as z — oco. In addition, for the distributions with
decreasing densities, see Remark 5.2.

Corollary 6.1 Under the conditions of Theorem 6.3, if z G(z) — oo as £ — oo, then

pF(z) + qG(z)
pF(z) +q

W(z) ~ ~ G(z). (6.3.11)

Proof. By (6.3.10), we get for any = > 0,

_pF(z) +q l+pG(m)£E(X1)—gﬁ(z)}
pF(z) +qG(z) — pr F(z) + 9z G(z)

1 < W(z) (6.3.12)
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Since F’ has a finite mean, £ F(z) — 0 as £ — co. Thus, (6.3.12) and zG(z) — oo as

T — oo imply that

W) ~ PF@+4C)

pF(z)+¢
Also, . .
F(z)  zF(z)
G(z) zG(z) 0 as z— oo,
implies that
pF(z)+¢G(xr)
= ~ G(z),
PF(z)+q (@)
hence, (6.3.11) holds. a

Remark 6.3 There exist classes of distributions that satisfy the conditions of Corol-
lary 6.1, for example the Pareto distribution with density function

ac®

m, >0, where O0<a<l,¢>0,
T

g(z) =

and Burr distribution with distribution function

) , 20, where A>0,0<a<1,0<7<1.
A+2z7

Flz)=1- (
But, it should be pointed out that the condition zG(z) — 00 as T — 00 is restrictive,
since it implies that G has no finite mean. On the other hand, under the conditions of
Corollary 6.1, {p F(z) + ¢G(z)}/{pF(z) + q} gives a closer approximation to W(z)
than G(z) does, as seen by Theorem 6.2 and the fact that for any = > 0,

pF(z)+qG(z)
pF(z)+q

> _@(x)

Furthermore, we notice that no relation between F and & is required in Corollary
6.1. If some relation between them is assumed and subexponentiality (as defined
below) is further imposed on F or G, we can derive additional results for W(z).

Definition 6.1 A distribution B on [0, 00) is said to be subexponential, denoted by
BeS,if B?(z) ~ 2B(x).

Subexponential distributions are heavy tailed; typical examples are the Pareto
and Lognormal distributions. The following Lemma, is a combination of Proposition
1 of Embrechts et al. (1979) and Theorem 2 of Chistyakov (1964).
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Lemma 6.1 Suppose that F; and F, are two distributions on [0, o).
(i) If F» € S and Fi(z) = o(F3(z)), then F} * F, € S and F] Fy(z) ~ Fy(z).
(ii) If Fy * F3 € S and Fi(z) = o(F} * F5(z)), then Fy € S and Fy(z) ~ F * Fy(x).

(iii) If F> € S, then for any £ > 0, €% F5(z) — 00 as — o0, i.e. e~% = o(F5(z)).

Theorem 6.4 Suppose that G(z) = o(F(z)). The following three assertions are
equivalent:

(i) Fes,
(i) WeS,
(i) W(z) ~ {pF(z) +¢C(z)}/{pF(z) + q} ~ pF(z)/q.

Proof. First, it is clear that G(z) = o(F(z)) implies

pF()+4G(z)  pF(z)
pF(z)+q g

By Corollary 6.1 of Embrechts et al. (1979), we know that the following three condi-

(6.3.13)

tions are equivalent:

() FeS, (b)HEeS, (c)H(z) ~pF(z)/q
Hence, if FF € S, by (b), (c) and G(z) = o(F(z)), we get that H € S and

G@) _ ) | Flz)
H(z) F(z) H(z)

—+0asz— o0

i.e. G(z) = o(H(z)), hence, (c) and (i) of Lemma 6.1 imply that W = G« H € S
and W(z) ~ H(z) ~ pF(z)/q.
Conversely, if W = G+ H € S, by Theorem 6.2 and G(z) = o(F(z)), we get that

0 < C@ _ pF(@)+a}C() _ (pF(z) +}C(z)/ Fla)
~ W(z) T pF(z)+9G(x) p+qG(z)/ F(z)

— Qasz— 00

this is to say that G(z) = o(W(z)), thus, (ii) of Lemma 6.1 and (c) imply that H € S
and W(z) ~ H(z) ~ pF(z)/q.
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So, we have shown that F' € S & W € S. In addition, the above proof also
showed that FF € § = W(z) ~ pF(z)/q. Thus, in order to complete the proof of
Theorem 6.4, we still need to prove that

W(z) ~ § F(z) = Fes. (6.3.14)
To do it, by (6.2.4), we get
W) =3 " TeFz)
which implies that =
GC+FA(z) = éz- [Vv‘(z) - gjz qp" G* F™ (x)J . (6.3.15)

Since Y is a non-negative random variable, for any integer k£ > 1,

CrFz) = P{Y + X1+ + Xg >z}
Pr{Xi+ - -+ Xe >z} = F(k)(:z:)

Pr{max(Xy,..., Xi) >z} = 1—[F(z)]*,

A

v

i.e.

GxFNz) > FOU) > 1-[F)* = F(x)kf[p(x)]ﬂ. (6.3.16)

n=0

(6.3.16) implies that

(k) (k)
Gx*F(z) F(z)
—_—t > 1 lnf > . ..
lim inf @) > lim inf @ 2 k (6.3.17)
Clearly, (6.3.16) and (6.3.17) are also true for k£ = 0, thus by (6.3.15) and (6.3.16),

we get that

=(2) “—(2) 5972 =)\
F(z) * F' () 1 |W(x) F"(z)
< < ST n_ 6.3.18
o < T Fo)  &” T |0 (319
Thus by (6.3.18), (6.3.17) and W(z) ~ p?(z)/q, we get that
+=(2) (ﬂ) i
. F*(z) 1 (:1;)
limsup — < - —
LT
< — |=- n
< 7| 712;,2 qp J
- L -2 +2gp* - Y nqp"J =2 (6.3.19)
ar® g =0 ’ o

103



hence, (6.3.17) and (6.3.19) imply that lim, —, o FO(z)/ F(z) =2, ie. F€S. 0O

It is interesting to note that (6.3.14) holds and is independent of the condition
that G(z) = o(F(z)). In addition, if G is an exponential distribution, using Lemma
6.1(iii) and following the proof of Theorem 6.4, we get directly the following corollary.

Corollary 6.2 If G is an exponential distribution, then Theorem 6.4 holds.

Theorem 6.5 Suppose that F(z) = o(G(z)) and F € S. The two following asser-
tions are equivalent:

(i) Ge S,
(i) WeSsS,
and either one of them implies that
(i) W(z) ~ {pF(z)+qG@)}/{pF(z)+q} ~ G(z).

Proof. By (c) in the proof of Theorem 6.4, we know that
He) _H@) | F)
G(z)  F(z) = G(z)
i.e. H(z) = o(G(z)), hence, if G € S, by Lemma 6.1(i), we get that W = Hx G € S
and W(z) ~ G(z). But, F(z) = o(G(z)) implies that
pF(z) +4C(a)
pF(z)+q
Conversely, if W = H x G € S, by Theorem 6.2 and the proof of Theorem 6.4(c),
we get that
H@) _ {(pF@)+aHE _ (pFE) +H@)/C@)
W(z) = pF(z)+qG(z) qF'(z)/ G(z) +q
i.e. H(z) = o(W(z)), thus , Lemma 6.1(ii) implies that G € S and W (z) ~ G(z). O

—0asr— o0,

~ G(z).

— QJasz— 00

0 <

Remark 6.4 We know that
pF() +4G@) _ pF()

pF(z)+q¢ = ¢
if and only if ¢2G(z) > [pF(z)]%. Thus, in view of Theorem 6.4(iii), if F € S,
G(z) = o(F(z)) and ¢* G(z) > [pF(z)]? as £ — oo, (for example, G(z) = [F(z)]3/2),
then by Theorem 6.2, we know that {p F(z) + ¢G(z)}/{p F(z) + q} is a closer ap-
proximation for W(z) than pF(z)/q is. By an argument similar to that in Remark
6.3, we also know that under the conditions of Theorem 6.5 and if G € S, then
{pF(z) + qG(z)}/{pF(z) + q} is a closer approximation for W (z) than G(z) is.
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Theorem 6.6 If G(z) ~ F(r) and F € S, then

PF@)+9G)  F@) _ Glz)

wiz) ~ pF(z)+gq q q

Proof. F € S implies that H € S and H(z) ~ pF(z)/q. Hence,
G(z) _ G(z) y F(z) q

Hz) F@ Haz p 7%
Thus, by Theorem 1 of Cline (1986), we know that
W(z) =G HE) ~ (L +1)Hz) = 238 . F@)
p p
On the other hand, Fi(z) ~ G(z) implies that {pF(z) + ¢G(z)}/{pF(z) + q} ~
F(z)/q ~ G(z)/q, so Theorem 6.6 holds. O

Remark 6.5 The results of this Section also show that the lower bound in Theo-
rem 6.2 is asymptotically exact for W(z) and the upper bound in Theorem 6.3 is
asymptotically equal to W (z) plus an error term tending to zero as = — oo for subex-
ponential distributions. The bounds for W(z) were also considered by Kalashnikov
(1994) and Willmot and Lin (1996). The bounds for W(z) in (5.1) and (5.2) of
Kalashnikov (1994) are asymptotically exact as E(N) — co. The bounds of Willmot
and Lin (1996) are applicable to the tail of convolutions of more general compound
distributions; their bounds are based on the generalized Lundberg coefficient and in
terms of NWU distributions.

W (z) cannot admit exponential asymptotic forms and exponential upper bounds
if ' or G is subexponential, i.e. no constant ¢ > 0 and € > 0 such that W(z) ~ ce~¢*
or W(z) < ce~%=, for all £ > 0. For example, if F' is subexponential, then we know
that H € S and e H(z) — 00 as £ — 0o, hence ef* W(z) — 0o as  — oo because of
W(z) = H * G(z) > H(z).

6.4 Asymptotic estimates with medium-tailed dis-
tributions

We consider here the intermediate case, i.e. when mp(s) < oo for some s > 0,
but Lundberg’s coefficient does not exist, as mp(s) = 1/p can not be satisfied but
mp(s) < 1/p holds. For example, the inverse Gaussian and the generalized inverse
Gaussian with certain parameters are in this case (see, Example 2.7). First, recall

the definition of the S(a) class and its properties.
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Definition 6.2 A distribution B on [0, o) is said to belong the S(a) class for a > 0,
denoted by B € S(a), if

(i) lim; — o B (z)/ B(z) = 2ma(a) < oo,
(i) lim; — o B(z —y)/ B(z) = e*¥, for all y € R.

Clearly, B € §(0) <& B € S. A class of distributions in S(a) is the class of gene-
ralized inverse Gaussian distribution N~(a,b,c) with a < 0, 5 > 0 and ¢ > 0, since
N~Y(a,b,c) € S(c¢/2) [for details, see Embrechts (1983)]. The following proposition
recalls some properties of S(a), which will be used here. Its proof is in Lemma 2.4 and
Theorem 2.7 of Embrechts and Goldie (1982) and page 268 of Kliippelberg (1989).

Property 6.1 Suppose that B € S(v).
(i) For any € > 0, e7*¢ B(z) — 00 as £ — oo,

(ii) If L is a distribution on [0, 00) and lim; — o L(z)/ B(z) = ¢, where 0 < ¢ < oo,
then L € S(v),

(iii) If ¥ > 0, B has a finite mean m, and B, is the stationary renewal distribution
of B, i.e. Bi(z) = [y B(y)dy/m, then B; € S(v) and Bi(z) ~ B(z)/(ym).

Theorem 6.7 Suppose that F' € S(y) for some vy > 0 and that mg(y) = [5° e"dF(zx)
1/p. If G(z)/ F(z) = @ as £ — oo, then W € S(v) and

alpma(y) + ol —pmrO} 7,y (6.4.1)

W) ~ [1 —pme(7)]?

Proof. Since 0 < pmp(y) < 1, there exists some € > 0 such that 0 < pfmp(y) +¢] <
1, thus 35720 gp™[mr(7) + €] < co. Hence, by Theorem 2.13 of Cline (1987), we get

n=0

that H € S(v) and

H(z) ~ cF(z) (6.4.2)

where ¢ = 102 ngp™[mr(v)]"! = pg[l — pmp(v)]~2. Thus,




By Theorem 1 of Cline (1986), we get that

W(zx) .. H=x=G(z)
» T o) ~ = H()

a1
=mg(7) + ~ mu(7)- (6.4.3)
But,

mu(y) = E(e") =3 gp"E [¢1ZinX]

n=0

= i gp" [mr(V]™ = q[1 —pmpe(7)]

n=0

Hence, by (6.4.2) and (6.4.3), we get that

W) ~ [me(y)+ %mg(’y)] H(z)
~ [eme(y) + amg(v)] F(z)
= {p‘I[l — pmp(y)] *me(y) + agl — P’”"F('Y)]_l} F(z),

i.e. (6.4.1) holds. W € S(v) follows directly from (6.4.1) and (ii) of Proposition 6.1.
4

6.5 Ruin probabilities in diffusion risk models

Consider the compound Poisson risk process perturbed by a Wiener process, i.e. the

surplus R(t) at time ¢ is
Rt)=z+ct—S(t) + W(2),

where = > 0 is the initial risk reserve, ¢ > 0 is the premium rate, S (t) is the compound
Poisson process representing the total claims at ¢ [with rate 1 /d > 0, and the inde-
pendent individual claim sizes with common distribution function B and B(0) = 0],
and {W(¢)} is a Wiener process, independent of {S(t)}, with infinitesimal drift 0
and infinitesimal variance 2D > 0. Assume ¢ > )\/d, where A = [ B(z)dxz is the
expected claim size, then the relative security loading ¢ = 1 — A/ (cd) is such that
O<g<l

Let 1a(z) denote the probability of ultimate ruin, starting with initial reserve z,
ie.

Yu(z) = Pr{inf R(t) < 0} .
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Define @4(z) = 1—%4(z). Then, Dufresne and Gerber (1991) [also see Veraverbeke
(1993)] have shown that for any = > 0,

wa(z) = Z gp"F™ x G(z) = H xG(z) ,
n=0

or, equivalently,

Yule) = Yo" FO 2 Gls) = T+ 0() (6.5.1)

n=0
where H(z) = T2,qp"F™(z), G(z) = 1 - e /P for z > 0, F(z) = G *
Bi(z), By(z) = [{ Bly)dy/A, for >0, p=/(cd) and g = 1 — p= 1 — A/(cd).
Suppose that £ and 7 are independent random variables with distributions G and
By, respectively, then £ 47 has distribution F = G % B; and for any s € R,
mp(s) = /0 ¥ e dF(z) = E[e*¢+)]
= E(e*)E(e™) = mg(s) mp,(s) . (6.5.2)
Thus, if there exists a constant R such that
me(R) = ma(R) ms, (R) = %, (6.5.3)
then (6.5.3) implies that R < £,

mg(R) = E(e®%) = %/ooo e~ P dr
c

=-"Rmp <™ (6.5.4)
and
Rey — & [®,_ Rec, =
E(&e™) D/o ze e D dzx
- D D e(R). (6.5.5)

(c—RD)? c¢—RD
By (6.5.3) and (6.5.4), we get that
1 ¢c— RD

E() = m, (B) = o =

Hence,
B = [ ze™dF(z) = Bl(& +n)ee)
= E(£e™)E(e™) + E(e®)E(ne™™)

= mg(R) [pgc + -/1{/000 zef® B(x) d:r} . (6.5.6)
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6.5.1 Asymptotic estimates of the ruin probability in the dif-
fusion risk model

We know that if G and B; have density functions, so does F = G = B;. This implies
that F is non-lattice. Thus by Theorem 6.1, we get the following exponential formula
for the ruin probability ¥4(z).

Corollary 6.3 Suppose that mp(R) = 1/p. If [ ze B(z) dx < oo, then

Ya(z) qm}cz(ﬂR) R
= (1- —) [%Q + Z zef* B(z) d:z:] - e R= (6.5.7)

and if f5° zef® B(z)dz = oo, then
Ya(z) = o(e™ ). (6.5.8)

This Corollary includes Theorem 4.1 of Gerber (1970), the results of Section 7 of
Dufresne and Gerber (1991) and the results of Section 3 of Veraverbeke (1993).

Since G(z) = 1 — e~=/P is an exponential distribution function, by (i) and (ii) of
Lemma 6.1, we know that B; € S & F =G % B; € S. Furthermore, by Corollary
6.2 and Lemma 6.1, we know that

BIGS=>¢d(:z:) o —

— 1 oo
T B1($)—Cd—_/\  By)dy.

Q3

Flz) = —> F(z)
A

~o

In addition, using the fact F(z) = G Bi(z) > Bi(z) and following the proof of
(6.3.14), it is clear that

Yu(e) ~ CBuz) = 5= Bue) = Bies,

thus, Corollary 6.2 implies the following theorem.

Theorem 6.8 For the diffusion risk model, the following conditions are equivalent:
(i) B1 €S,
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(ifi) va(z) ~ F= /L Bly)dy = pBi(z)/q.

Remark 6.6 Theorem 6.8 generalizes Theorem 1 of Veraverbeke (1993), where it
is shown that (i) and (ii) are equivalent and that either one of them implies (iii).
Conditions enabling B; € S can be found, expressed in terms of B, in Emberechts
and Omey (1984) and Kliippelberg (1988).

Finally, for the intermediate case, suppose that for some v > 0, B € S(v) and
mp(v) = mg(y)mp,(v) < 1/p, then by Proposition 6.1, we get that B; € S(v) and
Bi(z) ~ B(z)/(y)), in addition,

(1) mg(7) = (¢/D) J5° €e=/P dz = c/(c — D) < oo,
(2) mp,(7) = [5°e™dBi(z) = (1/X) f5° €™ Bi(z) dz < 00 and v < ¢/D,

hence, there exists some € > 0 such that v +¢€ < ¢/D, thus mg(y+¢€) =c¢/[c— (v +
£)D] < oo, and by Proposition 6.1, we get that

G(z) et G(z)
Bi(z) e€B;(x)

— (0 as z— 0.

Thus, by Theorem 1 of Cline (1986) and (ii) of Proposition 6.1, we get that

F(z) G=*Bi(z)

_El(.'lf) - §1($) - mG(’Y) 8 T

and
Fest) ad Fla) ~ ma(n)Buz) ~ 220 Ba),

Thus, G(z) = o(F(z)) and Theorem 6.7 imply that g € S() and

pgmc(Y)  +
Ya(z) ~ [ = pmr(Y)2 F(z) (6.5.9)
pame(V)®? =
MY[1 = pmp()]? B(=) (6.5.10)
(e o) —_— -2 —_—
- &% - [1-2 - [TenBr)a| Be), 6511)

thus, (6.5.11) yields Theorem 2 of Veraverbeke (1993).
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6.5.2 Bounds for the ruin probability in the diffusion risk
model with large claim sizes

Under condition (6.5.3), the exponential bounds for the ruin probability 14(z) have
been derived by Dufresne and Gerber (1991). Here, we use Dickson’s condition to
derive the bounds for ¥4(z) with large claim sizes. General upper and lower bounds for
14(z) can be obtained directly by Theorem 6.2 and Theorem 6.3 since G is exponential
and has a decreasing density.

Given t > 0, suppose that R, satisfies

t 1
ma(R:) /0 RV 4B (y) = . (6.5.12)
or equivalently,
t —_
/ eR‘ydB1(y) = C_E‘_Q (6.5.13)
0 cp

We first state the following property about R;.

Property 6.2 For any claim size distribution B with B(0) = 0, there exists a unique
solution R; € (0, ¢/D) for equation (6.5.12).

Proof. Let

h(z) =me(z) [ 7 dBa(y) - ﬁ

Since H(0) = By(t) — 1/p < 0 and

c

xlfch?D ma(z) = xlTIcI/nD c—zD
this implies that
lim h(z) = oo.

zte/D

Thus, the existence of the unique root of 4 follows since h is continuous and strictly
increasing. O
Since B; is continuous in this case, it is clear that the condition (6.5.12) is equiv-
alent to
1

mo(R:) [ e®¥dBuly) = B (6.5.14)
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where,

By(z) = { Bi(z)/Bi(t), 0<z<t (6.5.15)
) r>t
Let
o) = 3t I 5 Gla) (6.5.16)
or, equivalently,
be(z) =1—pu(z) = f: g pF F®™ + G(z) (6.5.17)

n=1
where p; = pBy(t), ¢ =1—p, and F, = B, * G. That is to say 1:(z) is the ruin
probability in the diffusion risk model with corresponding parameters p;, q;, F; and
G.
Since for any 0 < z < t, B{™(z) = B{™(z)/ [B1(®)]" [cf. (3.3.8)], we get for any
0<z<t,

[ o]

er(z) = Y @prBM™ «G™ «G(z)

n=0

= X iR B 6+ 6)
n=0

= & L ar PG
n=0

at
q

Thus, for any 0 < z < ¢,
q:
Y(z) = l-gpz) =1~ 7 va(z)
= 1-2[1 -y,
q
which implies the following property.
Property 6.3 For any 0 < z <,

pBi(t) q ¢Ye(z)
750t T B (6.5.18)

Ya(z) =
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Using Property 6.3, we can easily get the following result.

Theorem 6.9 Suppose R, satisfies (6.5.12), then for any 0 < z < ¢,

pBi(t) , pBi(t) ge Fez
—— < u(z) < L1 _ . 6.5.19
q + p Bi(t) 2(z) q+pBi(t) q+pBi(t) ( )
In particular, for any z > 0,
p Bi(z) pBi(r) qe F==
—_— < T S — — . 6.5.20
g+pBi(z) — Val() q+pBi(z) q+pBi(z) ( )

Proof. The lower bound in (6.5.19) follows from Yi(z) > 0 and (6.5.18). On the
other hand, if a constant R satisfies

oo
ma(R) [ e dBy(y) =11) (6.5.21)
then, Dufresne and Gerber (1991) show that for any z > 0,
Ya(z) < 7%, (6.5.22)
Thus, apply (6.5.22) to 9:(z) with condition (6.5.14), to get for any = > 0,
Pe(z) < e ez

This, together with (6.5.18), implies that the upper bound in (6.5.19) holds. Taking
z =1t in (6.5.19) gives (6.5.20). a
Since
pBi(z) _ pBua)
q +p Bi(z) q

1

by Theorem 6.8, we know that the lower bound in (6.5.20) is asymptotically exact
for large z if B; is a subexponential distribution.

In addition, if D = 0, the diffusion risk model is reduced to the compound Poisson
risk model, thus Dickson’s bound is derived as a special case of Theorem 6.9 and is

improved upon.
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6.6 Examples and numerical results

Let

e~ + B (z)
6 + B.l(x) ’

68-23&(2:) + El(:z:)

]
5T Bi(a) and U(z) =

(6.6.23)

L(z) =

respectively, be the lower and upper bounds for the ruin probability #(z) in Corol-
lary 3.2, where 8 = q/p, i.e. p=1/(1 + 8), is the relative safety loading factor. Also
let

— F]_(.’E) — —zk(x F]_(l’)
Ll(x)—m and Ul(x)—-e ()+6_{__-—§E,

be the lower and upper bounds of De Vylder and Goovaerts (1984) and Dickson
(1994), respectively. Now denote by

Ap(z) = Elﬁ ,

- Oyp B(z
) = T o R 2@

O o
mp(k) — pu(1+6)

Al(l') =

?

the asymptotic formulas for the ruin probability ¥(z) when the claim size distribution
B(y) is heavy-tailed, medium-tailed and light-tailed respectively, where v > 0 satisfies
mp(Y) <1+ p(1 +6) while mp(t) = oo for any ¢ > .

For example, if B is a Pareto or lognormal distribution, we have [see Embrechts
and Veraverbeke (1982) or Panjer and Willmot (1992)]

P(z) ~ Ap(z).

On the other hand, if B is an inverse Caussian distribution with a medium-tail,
i.e. mp(y) <1+ p(1+06) and my(t) = oo for any t > vy, then [again, see Embrechts
and Veraverbeke (1982) or Panjer and Willmot (1992)]

Y(z) ~ Am(z).
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Finally, if B is a distribution that admits an adjustment coefficient x and mig(k) <
oo, then [see Feller (1971), Grandell (1991) or Panjer and Willmot (1992)]

Y(z) ~ Alz).

Although these formulas approximate the ruin probability ¥(z) when z is large,
the accuracy of such asymptotic approximations is not known, as pointed by Kalash-
nikov (1996). This is one reason why bounds for 7(z) are useful.

In this section, we use L(z) and U(z) in (6.6.23) to calculate lower and upper
bounds for Pareto and lognormal claim size distributions, which do not admit finite
moment generating functions, and for inverse Gaussian claim size distributions with
medium-tails, which admit finite moment generating functions, but for which the
adjustment coefficient x does not exist.

Note that in all these cases, Lundberg’s bound is not available. We will also
consider bounds for the inverse Gaussian claim size distributions with a light-tail.
Here the adjustment coefficient « exists and Lundberg’s bound applies. However, we
show that the upper bound U(z) is sharper in this case. The numerical values of the

bounds are also compared with those from the above asymptotic formulas.

Example 6.1 Let B(y) = 1—(1+y)72, y¥ > 0 be a Pareto distribution function with
mean 1 and the relative safety loading factor § = 0.1, then Table 6.1 gives numerical
values of the lower and upper bounds as well as the asymptotic formulas for Y(x).

L(z) is uniformly larger than the lower bound L;(z) of De Vylder & Goovaerts
(1684). Similarly, U(z) is uniformly sharper than the upper bound U; (z) of Dickson
(1994). In both cases, the difference is more significant for small initial reserves z,
while they give very comparable bounds for the tail of ¥(z).

The asymptotic values Ax(z), meaningless for small z, seem to indicate a greater
accuracy of lower bounds L(z) than the corresponding upper bounds U(z).

Example 6.2 Let B be the lognormal distribution with mean 1 and variance 3, and
let # = 0.1. Table 6.2 gives the corresponding bound and asymptotic values for v (x).

The same remarks about L(z) and U(z) as for Example 6.1 apply. However, here
the asymptotic values Ax(z), are closer to L;(z) than to L(z). In fact L(z) produces
lower bounds consistently larger than the asymptotic value of ¥%(z).

Example 6.3 Let B'(y) = ,u[21rﬁy3]‘% exp{—f-’%‘ﬁ—f:/‘ﬁ}, y > 0 be a medium-tailed
inverse Gaussian density, with mean g = 1 and variance pf = 12 and 6 = 1.1.
Table 6.3 gives the desired values.

Again L(z) and U(z) provide sharper bounds, while the medium-tailed asymptotic
values A (), are completely meaningless for the chosen parameter and z values.
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Example 6.4 Let B(r) be another medium-tailed inverse Gaussian distribution,
with mean 1, variance 5 and let § = 2.5. Table 6.4 reports the appropriate val-
ues. Again L(z) and U(z) provide sharper bounds than L;(z) and U;(z). Here, most
asymptotic values An,(z), lay outside the interval between (either) lower and upper
bounds.

In Examples 6.3 and 6.4, the loading factors are choosed so that the inverse Gaus-
sian distribution is medium tailed.

Example 6.5 Let B(z) be an inverse Gaussian with a light-tail, mean 1, variance
4 and 6 = 0.1. Here the adjustment coefficient, x exists and Lundberg’s bound in
(1.1.9) is available; it appears in Table 6.5 under the column title Lundberg.

Even when Lundberg’s bound exists, L(z) and U(z) provide the sharpest bounds.
Here the asymptotic values A;(z), provide meaningful values for large z.

6.7 Conclusions

In this thesis, we develop general methods for studying bounds and asymptotic es-
timates for the solution of renewal equations and the tail probabilities of compound
distributions using distribution theory, renewal theory, stochastic ordering and the
aging property of compound geometric distributions. Generalized Cramér-Lundberg
conditions in terms of NWU distributions and Dickson’s condition are used to derive
the bounds and asymptotic estimates in the presence of heavy tailed distributions.
This study yields new results, which improve and generalize many previous results
and are applied to analyze aggregate claim distributions, stop-loss premiums and ruin
probabilities.

Dickson’s condition can be applied to any positive claim size distribution. The
numerical examples in Section 6.7 show those bounds derived by Dickson’s condition
are most appropriate for heavy and medium-tailed distributions, and their numerical
evaluation is very simple. It plays the same role in the presence of heavy and medium
tailed distributions as the Cramér-Lundberg condition for the exponential tail cases.
The examples also show that bounds are more useful than asymptotic estimates in the
presence of heavy and medium tailed distributions. In fact, the bounds can be used
in decision making and risk management [see, e.g. De Vylder (1996), Gerber (1979)
and Panjer and Willmot (1992)]. They are safe in practice since if upper bounds
for ruin probability, stop-loss premiums and tail probabilities of the aggregate claims

are less than some «, then these quantities are also less than «, respectively. But
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the asymptotic formulae with heavy and medium tailed distributions are not safe.
A numerical example [see, page 177 of De Vylder (1996)] shows also that for the
ruin probability in the compound Poisson risk model, even the value of asmyptotic
formula is less than 0.00014, the ruin probability is still greater than 0.1 for Pareto
claim size distributions.

As shown in this thesis, generalized Cramér-Lundberg conditions are effective for
the insurance risk analysis in the compound Poisson risk model and the diffusion
risk model, so we hope to further this study to general risk models. Willmot (1996)
applies condition (3.1.4) to study the ruin probability in the renewal risk model [see,
also Dickson (1998), Dickson and Hipp (1998) and Grandell (1991) for this model]
and obtained upper bounds in terms of NWU distributions for the ruin probability.
It is evident that condition (6.5.12) can be used in the renewal risk model, but the
method deriving the two-sided bounds in Theorem 6.9 for the ruin probability in the
diffusion risk model does not apply to the renewal risk model (at least for the author
of this thesis). Hence, other methods are needed to solve this problem.

In addition, applying the generalized Cramér-Lundberg conditions to risk models
in an economic and random environment [e.g. see Chukova et al.(1993), Garrido(1988,
1989), Garrido and Nana (1997), Paulsen (1993), Sundt and Teugels (1995) and.
Willmot (1989)] and discounted random sums [see, e.g. Aebi et al. (1994), Artikis
and Malliaris (1990) and Dufresne (1990)] is an interesting topic, which will be studied
by the author of this thesis.
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Table 6.1: Bounds for the ruin probability with Pareto claim sizes of mean 1 and
6=0.1
Kz) L@ [LE Uz)  |Uie) | 4(®)
5 0.211511 | 0.6249995 | 0.6702318 | 0.7552383 | 0.9723026 | 1.6666630
10 0.101777 | 0.4761888 | 0.5446036 | 0.6654939 | 0.8375883 | 0.9090847
50 0.030937 | 0.1639256 | 0.2018299 | 0.3419449 | 0.3768484 | 0.1960658
100 0.021316 | 0.0900751 | 0.1028847 | 0.1980369 | 0.2087243 | 0.0989918
500 0.008734 | 0.0195442 | 0.0197021 | 0.0319871 | 0.0322351 | 0.0199338
1000 | 0.005468 | 0.0098573 | 0.0098749 | 0.0140359 | 0.0140775 | 0.0099554
1500 | 0.004059 | 0.0065716 | 0.0065767 | 0.0088271 | 0.0088420 | 0.0066151
2000 | 0.003256 | 0.0049343 | 0.0049365 | 0.0064121 | 0.0064194 | 0.0049588
5000 | 0.001556 | 0.0018909 | 0.0018912 | 0.0023073 | 0.0023081 | 0.0018946
10000 | 0.000868 | 0.0008848 | 0.0008849 | 0.0010554 | 0.0010556 | 0.0008856

Table 6.2: Bounds for the ruin probability with lognormal claim sizes of mean 1,

variance 3 and 8 = 0.1

T k() Li(z) L(x) U(z) Ur(z) Ap(z)

5 0.157564 | 0.4790302 | 0.5868062 | 0.7159860 | 0.9338661 | 0.9194969
10 | 0.078677 | 0.2371247 | 0.3952768 | 0.5844723 | 0.6924384 | 0.3108302
25 | 0.048911 | 0.0460106 | 0.1287013 | 0.3268773 | 0.3404234 | 0.0482297
50 | 0.042198 | 0.0082844 | 0.0228649 | 0.1285326 | 0.1295372 | 0.0083536
100 | 0.038703 | 0.0010644 | 0.0014987 | 0.0218935 | 0.0219157 | 0.0010655
150 | 0.036739 | 0.0002606 | 0.0002770 | 0.0043022 | 0.0043032 | 0.0002607
200 | 0.034927 | 0.0000457 | 0.0000466 | 0.0009710 | 0.0009711 | 0.0000457
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‘Table 6.3: Bounds for the ruin probability with medium-tailed inverse Gaussian claim

sizes of mean 1, variance 12 and § = 1.1

z | k(=) Ly(z) L(z) U(z) Uy(z) Am(z)
3.545990 | 0.3771012 | 0.3776193 | 0.3950656 | 0.4059413 | 21555.62
5 0.560508 | 0.2378071 | 0.2406113 | 0.2840336 | 0.2984630 | 5643.261
10 | 0.266822 | 0.1523864 | 0.1564659 | 0.2111901 | 0.2217621 | 2505.392
50 | 0.074008 | 0.0099846 | 0.0105893 | 0.0344520 | 0.0346988 | 86.95006
60 | 0.067690 | 0.0055307 | 0.0058258 | 0.0226602 | 0.0227555 | 46.05902
70 | 0.063339 | 0.0031263 | 0.0032667 | 0.0149594 | 0.0149965 | 25.13600
80 | 0.060174 | 0.0017935 | 0.0018593 | 0.0098948 | 0.0099094 | 14.02842
100 | 0.055904 | 0.0006116 | 0.0006255 | 0.0043429 | 0.0043452 | 4.589443
150 | 0.050553 | 0.0000460 | 0.0000463 | 0.0005551 | 0.0005551 | 0.335443

Table 6.4: Bounds for the ruin probability with medium-tailed inverse Gaussian of

mean 1, variance 5 and § = 2.5

T

~(z)

L1 (.’D)

L(z)

U(z)

Ul(x)

An(z)

10
20
30
40
50
60

3.838749
0.704724
0.383118
0.236196
0.190161
0.167798
0.154587
0.145857

0.1812962
0.0680559
0.0268631
0.0055888
0.0013809
0.0003742
0.0001085
0.0000315

0.1816754
0.0688665
0.0273207
0.0056672
0.0013919
0.0003757
0.0001087
0.0000315

0.1989151
0.0955412
0.0479647
0.0144194
0.0047061
0.0015901
0.0005482
0.0001897

0.2028167
0.0975484
0.0485472
0.0144691
0.0047107
0.0015905
0.0005482
0.0001897

3.374153
0.607592
0.184272
0.031232
0.007040
0.001802
0.000496
0.000144
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Table 6.5: Bounds for the ruin probability with light-tailed inverse Gaussian of mean

1, variance 4 and 4 = 0.1

z k() K Ly(z) L(z) Lundberg
1 1.84358 | 0.03422 | 0.840108 | 0.844112 | 0.966358
0.17809 | 0.03422 | 0.594651 | 0.662941 | 0.842733
10 | 0.07033 | 0.03422 | 0.320677 | 0.487092 | 0.710198
50 | 0.03435 | 0.03422 | 0.000651 | 0.032847 | 0.180675
100 | 0.03422 | 0.03422 | 0.000004 | 0.001070 | 0.032644
150 | 0.03422 | 0.03422 | 0.000000 | 0.000004 | 0.005838
z k(z) K Ul(x) Ui(z) Ai(z)
1 1.84358 | 0.03422 [ 0.865411 | 0.998358 | 0.821617
5 0.17809 | 0.03422 | 0.761028 | 1.005104 | 0.716508
10 | 0.07033 | 0.03422 | 0.656905 | 0.815623 | 0.603825
50 | 0.03435 | 0.03422 | 0.180024 | 0.180141 | 0.153614
100 { 0.03422 | 0.03422 | 0.032643 | 0.032644 | 0.027754
150 [ 0.03422 | 0.03422 | 0.005871 | 0.005871 | 0.005014
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