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ABSTRACT

The Notions of Linear Independence/Dependence:
A Conceptual Analysis and Students' Difficulties

Luis A. Saldanha

The notions of linear independence/dependence are considered to be
difficult for students. This thesis aims to identify some of the reasons
for this difficulty by exploring these notions from several points of
view.

We hegin our research by tracing the origins and the historical
development of the notions of linear independence/ dependence. It is
revealed that these notions had their genesis in the settings of
systems of linear equations and in gecmetry, specifically in the move
to generalize coordinate geometry to n dimensions. We continue with
a conceptual and didactic analysis of the concepts; different ways of
introducing the concepts are considered together with their underlying
rationales, and then consequential difficulties for students are
discussed. This is followed by a report on our 'continuous
nhservations' of three students learning linear algebra from textbooks,
each with the help of a tutor. These observations give us further
insight into the epistemological difficulties associated with the
concepts and they allow us to draw some conclusions regarding the
kinds of understanding that students can have and the activities that
lead to such understanding. Due to the exploratory nature of this
research, most conclusions are in the form of recommendations for

further research and teaching experiments.
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INTRODUCTION

My own first cncounter with the concept of linear independence
was a confusing experience. | was introduced to the notion through
the following formal definition:

The elements vi,....v;e Fn are said to be linearly independent

over F if ajv;+...+a,v,= O only if each of a;,...,are F is 0 (where F

is the field of reals, R, or compicxes, C).

This definition appeared seemingly out of nowhere, its sole
motivation found in a preceding remark that the only linear
combination of the standard basis vectors e, e, e which gives the
zero vector is the trivial linear combination Oe;+0ey+0e3z. The
elements e, e, e3 were then said to be linearly independent in the
sense of this definition.

The concept was not internalized by either myself or most of
my classmates. Although I was able to use the definition to some
extent, to answer some standard exercisc problems which
followed, I remember mulling over it repeatedly, trying to extract
its meaning and significance. My mathematical immaturity
combined with the "poor" presentation, however, made this a
largely futile endeavor. The same can be said of the concepts of
spanning set and basis which were presented much the same way
shortly thereafter.

It would be easy to dismiss the difficulties as a mere product
of an excessively abstract and poorly motivated presentation, but it
has been documented (Dorier, 1990, 1991) that the concept of

linear independence together with the related notions of spanning




set, basis, and dimension can be difficult for students, even when
presented in a less stark setting. It thercfore seems warranted to
undertake an analysis, in some detail, of the notion of linear
independence.

Students can encounter many difficulties when trying to
understand the concept of linear independence. For instance,
understanding the above formal definition on the level of logic alone
can be formidable. Indeed, a preliminary investigation of this
definition reveals that it is logically complicated; it is a compound

conditional statement which contains a quantifier:

V = {vy,...,v;} is said to be a linearly independecnt set over F

~ [ 2 aiv; = O AaeF =>‘&I{ag=0} ]
=1 =

Typical students enrolled in a first linear algebra course are at best
concurrently taking a first course in logic. Consequently, many
don't feel at ease with this definition - it proves to be difficult to
decipher so that the comprehension of the statement is weak from
the start. Also, inexperience with logical negation, in particular the
inability to relate a statement to its logical negation, can be the
source of difficulty in understanding the relationship between
linear independence and dependence, for example.

While it may seem plausible to believe that ;uch difficultics
can be easily remedied by lessons in basic logic and mathematical
reasoning, it would be simplistic to think of this as a panacea. This

is because understanding the logic and the statement of a formal

definition in mathematics need not imply an understanding of the
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underlying concept. Indeed, the understanding of the two can
remain mutually exclusive for the learner.

We may take our investigation of the difficulties with the
concept of linear independence into a somewhat deeper level by
subjecting it to an epistemological analysis. This seems necessary if
there is Lo be any hope of attaining a deep understanding! of the
notion and its significance. Part of such an analysis will be an
investigation into the history of its development from its origins to
its present guise. Indeed, it will become evident that the definition
of linear independence, in its most abstract form, is the
culmination of over one hundred and fifty years of mathematical
developments and refinements. What students are usually
presented with is the finished product, de-contextualized from its
historical development. Hence, it offers little, if any, insight into
its reason for being and does not beckon to the fundamental
notions which gave rise to it.

Even if one does not ascribe to the biogenetic paradigm that
psychogenesis recapitulates phylogenesis, at least not in any direct
way, it does seem reasonable to expect an historico-epistemological
study of the notions of linear independence/dependence to provide
some insight into the cognitive and epistemological obstacles that
students potentially face. Such a study may reveal information about
the conditions which prevailed when the concepts emerged and
evolved from one stage to the next. This in turn holds the potential

to provide clues which could ultimately lead to a curriculum

I Our idea of a deep understanding, or "good" understanding, of linear
independence/dependence is specified in chapter II.



designed to ensure a deeper understanding of the concept.
Perhaps this point is best articulated by the following quotation:
"The analysis of historical genesis is a promontory when
studying a given teaching process or a basis when
recreating, for the teaching, an artificial genesis”
(Artigue, 1989)
We begin our research into the concepts of linecar
independence/dependence with the above-mentioned historical
investigation by tracing their origins in the settings of systems ol
linear equations and analytic geometry. In chapter two we
undertake a conceptual and didactic analysis of the concepls
through a consideration of several different ways of introducing
them. Chapter three represents the 'field work' of our rescarch;
here we report on our observations of students trying to lcarn the
concepts from textbooks with the aid of tutors.
Our hope is to pull together these three points of view - the
historical, the conceptual-didactic, and the empirical - to form a
richer, dare we say 'three-dimensional', perspective of the notions

of linear independence/dependence together with their attendant

subtleties and epistemological difficulties.




CHAPTER1

LINEAR INDEPENDENCE /DEPENDENCE AND THE
i NOTIONS OF BASIS, DIMENSION, AND RANK:
AN HISTORICO-EPISTEMOLOGICAL OVERVIEW

Systems of linear equations and geometry are two settings in which
the fundamental concepts of linear algebra emerged and developed.
In the former setting are found the origins of the basic concepts as
well as the development of the first theoretical results (linear
independence and rank, for example). The geometric setting
played an important role in the generalization of these results;
ideas and language born in R2 and R3 were carried over first to R™
and then to abstract vector spaces.

We begin with an overview of the history of sysiems of linear

equations.
Linear Systems

As is ofien the case in the study of linear algebra, linear systems
appear relatively early in the history of mathematics. Their study,
which undoubtedly grew out of efforts to solve them, gave rise to
fundamental concepts of linear algebra.

In antiquity the problems of day to day life (commerce and
measurement, for example) gave rise to linear systems with
numerical coefficients. The existence of such systems, as well as
solution methods, is traced back to the period of the Han Dynasty
(206 B.C.-A.D. 220). The mathematical classic of this era, the Chui
ch’ang Suan-shu (Nine Chapters on the Mathematical Art), specified



a method for solving simultaneous cquations which is equivalent to
the modern day method of row reduction of the augmented matrix
of the system. At that time the Chinese had a distinctive place-
value number system which used counting-rods arranged in
columns from left to right. Arithmetic operations with counting-
rods were carried oul as one would on an abacus; the rods were
repositioned column by column, on a table or a 'counting-board’,
according to whether the numbers were added or subtracted.
Eventually the positions of the rods came lo represent algebraic
symbols, and operations with the rods represented algebraic
operations. Chapter eight of this work is entitled Fang chen
(Method of Tables) and deals specifically with solving simullancous
linear equations, it explains how counting-rods can be sel up for
column operations which would yield a solution. Let us look at an
example of a problem and its solution taken from this work:

5 large containers and 1 small container have a total capacity of 3 hu.
1 large container and 5 small containers have a capacity of 2 hut.
Find the capacities of 1 large container and 1 small container.

The solution by the method of tables begins by first setting up the information given
in the problem in the form of a table:

large containers 1 5
small containers 5 1
total capacity 2 3

Step 1 is to multiply the first column by 5 and to then subtract the second column
from the result. This result then becomes the first column of the next table:

large containers 0 5
small containers 24 1
total capacity 7 3

Step 2 is to multiply the second column by 24 and to then subtract the first column
from the result. This result then becomes the second column of the next table:

large containers 0 120
small containers 24 0
total capacity 7 65




Thus a small container has a capacity of 7/24 hu, and a large container has a
capacity of 65/120 huor 13/24 hu. (Joseph, 1991, pp.172)

Evidently this method is identical to solving the linear system

X+5y = 2
5x+y =3
1 5
by column reducing the transpose of the augmented matrix |5 1
2 3
0 120
to the echelon form [24 0 |, and then using division to obtain the
7 65

capacity of each container.

There was no proof or justification given for the method of
tables, and it has been pointed out that the absence of such a
solution method in any other tradition before the advent of modern
mathematics forces us to conclude that the method must have been
a logical outcome of rod numeral computational techniques
(Joseph, 1991, pp. 176).

Linear systems in early times generally contained as many
unknowns as equations and in most cases the equations were
linearly independent. Such systems were also known in ancient
Babylon, Greece, Egypt, and India. However, the Chinese method
of tables is not likely to have been known to these civilizations, for
the unique solutions were generally found by more heuristic
methods such as successive guesses of the unknowns, substitution
and addition. These methods were informal and rhetorical.

Systems with multiple solutions were seen as early as the
third century B.C. Diophantus is thought to have been one of the

first to study their methods of solution; in his famous work



Arithmetica (A.D. 250) he presents such so called underdetermined
systems and finds several solutions by using different informal
techniques. It was not the complete solution which was of interest,
rather it sufficed to find a few solutions empirically using various
techniques. The question of a general solution was ncver
considered. Furthermore, the practical problems which gave rise
to these systems usually restricted the solutions to a finite sct of
values (often integral values). This together with the lack of any
theoretical basis for the study of linear systems makes il unlikely
that a notion of infinitely-many solutions existed at the time. Until
the fifteenth century such problems were regarded as mecre
curiosities, and it was not uncommon to discard systems for which
the available methods yielded no solution; these were thought to be
the result of badly posed questions.

Questions pertaining to solutions and methods of
determining these solutions hardly evolved before the scventeenth
century. Mathematicians before this time continued to use informal
methods to find a few solutions and the study of lincar systems and
their solutions lacked any theoretical basis

The advent of symbolic algebra beginning with Victe in the
late sixteenth century and culminating with Descartes in the
following century provided the conditions for the first advance in
the treatment of linear systems. Equations could now be expressed
in general and this made possible a change in perspective from an
operational to a more structural point of view. Prior to the time of
Viéte equations were largely regarded as tools to solve specific

problems, algebraic notation made it possible to symbolically




represent both known and unknown quantities in an equation in
general. This resulted not only in their applicability to a wide class
of problems but more importantly it led to a systematic procedure
for manipulatling these symbols and for solving equations. Hence,
the focus shifted from solving certain problems to studying the
structure and properties of the tools used to solve ithem (Sfard,
1991).

These developments provided the conditions which made it
potentially possible to interpret an equation as an algebraic object,
to describe not only the solution set of a linear system in terms of
the undetermined coefficients, but also the linear dependence
relations between equations.

The systematic study of a system of linear equations was
initiated before 1678 by Leibniz. By the end of the seventeenth
century Leibniz used a double index notation for the coefficients of
a system of three equations in two unknowns x and y (Kline, 1972,
pp. 606). He then developed a method of eliminating the
unknowns, this method involved a determinant whose evanescence
was a sufficient condition for the system to be consistent. The
algorithm for constructing this determinant was given rhetorically
by Leibniz, it was apparently vague and non-rigorous and reflects
how little familiarity with the notion of linear dependence there
was at the time (Dorier, 1991, pp. 53)

It is speculated that the solution of linear systems in two,
three, and four unknowns by the method of determinants was
created by Maclaurin, probably in 1729, and published in his
posthumous Treatise of Algebra (1748). It wasn't until 1750 that



this type of notation was improved and generalized in the work of
the Swiss mathematician Gabriel Cramer. This innovation made il
possible to consider general linear systems with undetermined
coefficients and to give a more thorough and consistent treatment
of the method of their solution.

It is Cramer who is credited with having introduced the first
calculations with determinants, he also gave what we now call
Cramer's rule in connection with determining thc cocfficients of
the general conic, A + By + Cx + Dy2 + Exy + x2 = 0, passing
through five given points. In 1764 the French mathematician
Bézout gave a systematic procedure for determining the signs of the
terms of a determinant and showed that a square homogencous
system has non-trivial solutions if the determinant of the coefficient
matrix vanishes (Kline, pp.606). Since its inception the
determinant was always associated with solutions of linear systems;
it was advances in the theory of determinants which drove the
progress in the methods of solution. It was not until the theory of
determinants reached a high point, with Cauchy's 1812 ircatment
of the subject, that the two subjects began to diverge.

Many developments of eighteenth century mathematics werc
the outcome of attempts to solve physical problems. The
exploration of such problems led inevitably to the search for morce
knowledge about curves and surfaces, because, for instance, the
paths of moving objects are described by curves. Mathematicians
used the powerful methods of the calculus and analytical geometry

to tackle geometrical probiems. It was in this broad setting that a
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notion of linear independence/dependence first emerged in the
work of Euler and Cramer.

The problem of determining the intersection of two curves
received much attention; in 1717 Stirling proposed that an

algebraic curve (in x and y) of degree n is uniquely determined by

)
mnt3) of its points because il has that number of essential

dee

coefficients. We illustrate this with an example:

An arbitrary algebraic plane curve of degree 3 is represenied by the
general equation

a,)y1 +(a, + a;.x)y:’ +{a, +a,x + aﬁxz)y + (a, +a;x + arax2 + a9x3) =},

where «,,a, are not both zero (a non-degenerate case). Note that
there arel+2+3+4 = 10 coefficients.

Assuming that 4,20, we gel the equivalent equation
v + (b, + byx)y? +(by +bx + bx?)y+ (b +byx + byx* +b,x')=0 having 10-1 =9

undetermined coefficients b,=—€’—, i=1..9. Hence, according to
a

Stirling 9 points should completely determine a unique 34 degree

curve. In general, an arbitrary algebraic curve of degree n has
nn+1) n(n+3)
2

142+3+...+n+(n+1)-1 = +(n+1)-1 = 5 undetermined

coefficients, so by Stirling's proposition the curve should be
uniquely determined by as many of its points.

Based on the enumeration of points of intersection for special
cases of curves, Maclaurin conjectured that two distinct algebraic
curves of degree m and n may intersect in at most mn points. In
the treatise of 1750, Introduction a l'analyse des courbes
algébraiques Cramer tackled the paradox which now bears his

name: if n = 3, the curve should be uniquely determined by 9

11



points. But since two third degree curves may infersect in 9
points, these 9 points do not determine a unique third degree
curve.

For example, the two curves of degree 3 wilh cquations

y'—y-5x+5x"'=0, and y'~y+5r-5¢' =0 intersect at the nine points

(1) (L. 4 (-1,0) (7) (-1.-1)
(2) (0.1) (5) (0.0) (8) (0.-1)
3) (1.1) (6) (1.0) 9 (1.-1)

y*3 -y - kx + kx*2 =0, k=5 & k = -5
24

SN

Figure 1.1, Two plane algebraic curves intersecting at ninc points,

Hence, these points do not determine a unique curve of the same
degree. Similar paradoxes arise when n = 4, and 5. Cramer's
explanation was that the n? equations that determine the n?

intersection points are not independent.

Let us summarize Cramer's paradox:
although neither was proven at the time, the following two
propositions were thought to be true in the beginning of the 18th

century,

12
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Stirling's _proposition:

"("2+ 3) points are necessary and sufficient to uniquely determine a

plane algebraic curve of degree n.

MacLaurin's proposition:

Two distinct plane algebraic curves of degree m and n may have no

more than mn points in common.

< n?, so it seems that two plane

For n > 2 we get "(n;”

algebraic curves (both of degree n) may have more points (n?) in
n(n+3)) this

common than is sufficient to determine each of them {

contradiction constitutes the paradox.

In his work of 1750, Sur une contradiction apparente dans la
doctrine des lignes courbes, Euler supplied a detailed analysis of
the paradox when n = 3, 4, and 5. He concluded that Stirling's
proposition might not be true in some cases because n equations
are sometimes insufficient to determine as many unknowns and so
n(n+3)/2 points may not suffice to determine a unique algebraic
curve of degree n. Euler provided examples to show how one
equation could be "comprised" (‘comprise” in French) in one or
several others. This text may be the earliest in which a notion of
linear dependence emerged, and though the nature of his analysis
is qualitative and exploratory it shows that Euler had an informal
notion of linear dependence of equations. It is worth going into a
few of these examples in some detail in order to understand Euler's
thinking. He begins by considering the example of two equations,
3x-2y = 5 and 4y = 6x-10, of which he remarks:

13



"it is not possible to determine the two unknowns x and y as
while eliminating x, thc other disappears and an identical
equations remains, of which nothing can be deduced. The
reason for such an incident is of coursc at first quite obvious,
as the second equation can be changed intc 6x-4y =10,
which, being nothing but the double of the first 3x-2y = 5,
does not differ from it at all." (Euler, in Dorier, 1995, pp.3)

He solves the system by elimination and substitution in order (o
prove his assertion that one unknown is not determined and to
highlight the "incident".

He then considers the case of three equations by looking at
an example containing two similar equations, and another example
in which one equation is twice the sum of the other two. In these

there is no trial for solving the systems. He concludes:

"Thus, when one says that to determine three unknowns, it is
sufficient to have three equations, the restriction nceds to be
added that these three equations are so different that none is
already comprised in the others."

(Euler, in Dorier, 1995, pp. 3)

In the case of four equations Euler remarks that sometimes two
unknowns may not be determined and he provides the following

example:

" Bx+7y-4z+3v-24 = 0
2x-3y+52-6v-20 = 0
x+13y-14z+15v+16 = O
3x+10y-9z+9v-4 = 0

they are only worth two, as after extracting from the third the
value of

x =-13y+14z-15v-16,
and after its substitution in the second, one gets:

33z-3v-52 —23z+33v+212
y==————"— and x= ;
29 29

14




the substitution of these two values of x and y in the first and
fourth equations leads to identical equations, therefore the
quantities z and v will remain undetermined.” (Euler, in
Dorier 1995, pp. 4)

Here again his proof is by elimination and substitution, and Euler
makes no mention of linear relations between the equations,
though they are obvious ((1)-(2) = (4) and (1) -2x(2) = (3), for
cxample, if the equations are labeled from (1) through (4) in
descending order). After these examples, he concludes with a
general statement:

"When one says that to determine n unknown quantities, it is
sufficient to have n equations giving their mutual relations,
the restriction must be added that they are all different or
that none is enclosed (enfermée) in the others.” (Euler, in
Dorier, 1995, pp. 4)

The terms "comprised" and "enclosed" are not clearly defined. A
modern interpretation of these terms might be that they indicate a
linear relation between the equations, but Dor.:r asserts that this is
not exactly the meaning given by Euler. Instead he uses these
terms to refer to the " "incident" in the final process of elimination
and substitution that results in one or several unknowns remaining
undetermined " (Dorier, 1995, pp. 4).

We see that Euler does note linear relations between
equations, albeit in an informal and unsystematic way, and, as
Dorier points out further, because Euler's proofs never rely on such
linear relations, his was a notion of inclusive dependence rather
than linear dependence. Although the two notions coincide when

applied to linear equations, Dorier's distinction serves to

accentuate the point that dependence in the context of linear

15



equations cannot simply be transferrced to other lincar situations
(like n-tuples).

Euler's notlion of dependence was a very intuitive one which
suited his needs. The arguments he developed when tireating the
case n =4 (last example) almost suggest that he had an empirical
intuition of the notion of rank, this can be seen again at the end of

the text when he considers Cramer's paradox:

"When two curves of fourth order meet in 16 points, as 14
points, when they lead to different equations, are sulfficient to
determine one curve of this order, these 16 points will always
be such that three or more of the equations arc alrcady
comprised in the others. In this way the 16 points do not
determine more than if there were 13 or 12 or cven less
points and in order to determine the curve entircly, one must

add to these 16 points one or two others." (Euler, in Dorier
1995, pp. 5)

From this work Euler concluded that for n? points of intersection of
two algebraic curves of degree n there corresponds a sct of n?
linear equations which are necessarily linearly dependent if n23.
Furthermore, he attempted to enumerate these dependent
equations and made the astute observation that thcir number
increased as n increased. In so doing Euler may have been the first
to implicitly research the concept of rank.

A comprehensive and rigorous treatment of these ideas had
to wait at least one hundred years. This was partly duc to the fact
that the determinant was the main tool used to solve lincar
systems, consequently it became the central object of focus. There
was a move to catalogue all possible cases of solutions of lincar
systems as a function of the number of variables and equations, here
different determinants associated with the system were introduced

and developed. It is speculated that the sophistication and highly
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technical nature of determinants may have obscured and
suppressed the explicit emergence of the more fundamental
concepts of linear independence and rank (Dorier, 1991).
However, between 1840 and 1879 these notions did implicitly play
a central role in the description of linear systems. This is because
Euler's concept of inclusive dependence became connected to the
vanishing condition of the main determinant of a square linear
system, and because the notion of a minor (another determinant)
was related to the maximal number of independent equations.
Specifically, if the number r denotes the maximal order of non-
vanishing minors of a system of p linear equations in n unknowns,
then the number, n-r, of free variables which describe the solution
set represents the maximal number of linearly independent
equations in the system. All these notions came into play in the
standard solution method of the time (see Dorier, 1991,1995 for
details).

It was Frobenius who succeeded in developing clear and
simple formulations of the fundamental notions, some of which
were uncluttered by explicit reference to determinants. In a paper
of 1875, Uber das Pfaffsche Problem, he connected the notions of
independent equations and independent n-tuples by giving them a
common definition - the modern definition still used today.
Referring to a homogeneous system of m "independent" linear
equations,

au+.+a*u, =0, (=1, ..m) (10),

he writes:
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‘If Ay,...Ap and Bj.....B,, are two particular solutions of
the system of equations (10), then aAj+bBy,....aA,+bB,
are again solutions.

A set of particular solutions AY... A", (p=1...., k), is

, . . H . (Y9
called independent or different when c,Al'+...+cA!

does not vanish for a=1,...,n except in the casc where
Cy.....Cx are simultaneously zero. in other words when

the k linear forms A"y +...+A"u, are independent.”
(Frobenius, 1875)

In the same paper Frobenius defines the notion of an "associate"
system to a given homogeneous system, the definition involves the
idea of the coefficients of equations as constituting a basis of the
solution set of the original system. Here he considers equations
and n-tuples as similar objects which can be seen from different
perspectives. He also shows the existence of a maximum of p-r
independent solutions to any given system of n lincar equations in p
unknowns having non-vanishing minor of maximal order r. 11e then
easily states and relates all the invariants attached to this number r.

Frobenius also gave a precise and rigorous definition of the
concept of rank in a paper of 1879, Uber homogene tolale
Differentialgleichungen:

"When in a determinant, all minors of order m+1 vanish, but
those of order m are not all zero, I call rank (Rang) of the
determinant the value of m." (Dorier, 1995, pp. 7)

This induced a kind of unification of the fundamental
concepts; the rank was seen as the invariant property of the lincar
system which represented the maximal number of lincarly
independent equations, the order of what was called the principal
determinant, or equivalently the number of dependent variables in

the solution. Indeed, in his paper of 1905, Zur Theorie der
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linearen Gleichungen, Frobenius gave a complete structured expose

on the theoretical results in the study of linear systems.

These developments represent a high point in the theory of
solutions of linear systems. Within the first two decades of the
twentieth century their study regained importance in the field of
functional analysis; attempts to solve differential equations whose
coefficients were given by infinite series gave rise to linear systems
with infinitely many equations and unknowns. Mathematicians
including Poincaré, Hilbert, Toeplitz, and Hadamard figure
prominently in such research.

It is interesting to note that the gap between the finite and
the infinite was bridged by a 'marriage’ of determinants and
convergence; results on finite dimensional determinants (of
functions) combined with limiting processes based on convergence
theorems allowed the passage to the infinite. This led to an
extension of the notions to the infinite case, even the idea of an
infinitely countable basis emerged, though it was not rigorously
defined. These extensions marked the beginnings of countable
infinite-dimensional linear algebra. Its flavor, however, was to
change somewhat, as attempts to generalize results through the
principal tool of finite systems, the determinant, proved to be
difficult and cumbersome. This was partly what necessitated a
change in approach, and eventually determinants were supplanted
by ar axiomatic approach in the early part of our century. Here the
work of Banach figures prominently (Banach, 1932).

With the inove to axiomatize and to unify mathematics in the

beginning of this century the fundamental concepts of linear
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independence, rank, and basis were finally emancipated from the

setting of linear systems. These notions were generalized to
abstract vector spaces and took on the their modern guisc. We
refer the reader to Dorier's research (Dorier, 1995} for a detailed

account and analysis of these developments.

Analytic Geometry

This analysis so far reveals that the fundamental notions in question
arose out of attempts to solve certain geometrical problems, so in
an indirect way they were born out of geometry. But thesc
concepts also emerged directly in a geometric setting, as a result of
the move to extend the ideas of space geometry (i.e two and three
dimensional geometry) to n-dimensions.

The notion of a geometric vector as a directed line segment
was known in Aristotle's time. Aristotle knew that forces can be
represented by vectors and that the combined action of forces can
be obtained by the parallelogram law to give a resultant force. Later
scientist, among them Stevin, Galileo, and Newton used this law in
their work in statics and dynamics. Galileo stated the law
explicitly.

As early as 1679 Leibniz criticized the analytic method of
Descartes and Fermat as unsuitable for describing position, he

wrote:

"I am still not satisfied with algebra because it does not give
the shortest method or the most beautiful constructions in
geometry. This is why I believe that, as far as geometry is
concerned, we need still another analysis which is distinctly
geometrical or linear and which will express situation
directly as algebra expresses magnitudes. [...] Algebra is the
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characteristic for undetermined numbers or magnitudes only,
but it does not express situation, angles and motion directly.
hence it is often difficult to analyze the properties of a figure
by calculation, and still more difficult to find very convenient
geometrical demonstrations and constructions, even when
the algebraic calculation is completed."(Leibniz, in Dorier,
1995, pp.8)

Leibniz attempted, unsuccessfully, to create an intrinsic geometric
analysis which he called the "geometry of situation". From the
beginning of the 19th century, and on the basis of the above
criticisms, several mathematicians embarked on a search for such
an intrinsic geometrical analysis. The geometric representation of
complex numbers was, indirectly, an initial answer to this problem
because it provided a model for a two dimensional geometrical
analysis.

One of the earliest attempts to formulate some sort of analytic
representation of geometric vectors and operations on them was
due to the amateur mathematician Wessel (1745-1818). In a paper
entitled On the Analytical Representation of Direction; an Attempt
(1799) Wessel essentially thinks of the complex number a+bi as the
vector with coordinates (a, b), where the real numbers a and b are
plotted on the real and imaginary axes respectively. He then
defines the operations with vectors by defining the operations with
complex numbers in geometrical terms. His definitions of the four
operations are practically the ones we learn today. Unfortunately,
Wessel's paper went unnoticed until it was translated into French
in 1897. Another amateur matheinatician, Argand, also regarded
the complex number a+bi as symbolizing the geometric sum of a
and bi. He too showed how to combine complex numbers

geometrically. Gauss, by 1831, had similar ideas; he not only gives
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the representation of a + bi as a point (not a veclor) in the complex
plane, but alsuv describes the geomeltrical addition and
multiplication of complex numbers (Kline, 1972, pp. 628-631).
This use of complex numbers to represent vectors in a plane
became widely known and accepied in mathematics by 1830.
During this same period the mathematicians Mobius and
Bellavitis developed two different systems of geometrical analysis in
two and three dimensions, these laid the basis for vector geometry.
In his work of 1827, Barycentrische Calcul, Mébius
introduces the notion of a directed line segment. Here he denotes
the line segment from a point A to a point B as AB and states that
AB = -BA, he also defines the addition of cellinear line segments as
well as their linear combinations. The addition of non-collincar
line segments and their multiplication by negative numbers are
defined in his work of 1843, Elemente der Mechanic des Himmels.
Finally, in 1887 Mobius published Uber geometrische Addition und
Multiplication in which he defined addition of non-collinear line
segments, their mulliplication by any number, and two kinds of
products of line segments. Mébius provided an algebia of points,
but his intention was not to present an algebraic structure. Rather,
he was driven to his creation by the need for a practical and
efficient method for solving geometrical and physical problems.
Although Mébius did point out some fundamental aspects of vector
geometry, his theory was based on the physical perception of space,
and so it never offered the possibility of extension to a more

general concept of vector space (Crowe, 1967, Dorier, 1995}
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It was Giusto Bellavitas who defined the addition of vectors in
space in his Calcolo delle Equipollenze in 1888. He also defined
the multiplication of coplanar directed line segments. It has been
pointed out that the calculus of equipollences! offered no more
possibilities than complex numbers, and Bellavitas developed his
theory as an alternative to the geometric representation of complex
numbers, which he refused to accept as part of mathematics. His
presentation was original because (i) unlike complex numbers the
objects on which his calculus was created were purely geometric
entities, and (ii) because the first part of the calculus can be applied
in space geometry (Crowe, 1967, Dorier, 1995, pp. 10)

The need to treat problems involving bodies under the action
of forces in space and the desire to describe such problems and
their solutions analytically fueled the search for a three-dimensional
analog of complex numbers. The first successful development here
was actually a four-dimensional quantity called the Quaternion; the
English mathematician Hamilton announced his creation in 1843.
It is also interesting to note that Hamilton defined a non-
commutative multiplication of quaternions. These properties are
necessary in order for the quaternion to be analogous in every way
(other than in number of components) to complex numbers in the
plane. Hamilton spent fifteen years creating the quaternions and
their usual significance is that they were the first example of
'numbers’ whose multiplication was non-commutative - a

revolutionary idea at the time. From the point of view of this study,

! Bellavitis called two line segments cquipollent if they are equal, parallel and directed
in the same sense.



however, their significance lies more in that they represent the
first attempt to generalize vectors to three-dimensional space and
also that they provided the impetus for further generalizations to n
dimensions. Indeed, Hamilton himself began work on n-tuples, or
hypernumbers, as they were then called.

In 1845 Arthur Cayley gave a generalization of quaternions;

he introduced the "unit elements” le,e,,....¢; together with an

algebra for their products and then he defined the general octonion

by X=X, +Xe +X,e,+--+x;e;, Where the »x are real numbers. The

norm of x he defined as N(x)=+/x2 +x2+-+x?.

The most ambitious generalization of complex numbers was
developed by Hermann Grassmann (1809-77). 'n 1844 Grassmann
published the first version of his Die Lineale Ausdehnungslchre
(literally "linear theory of extension'), it was introduced by
Grassmann as the first part of a general theory, Die
Ausdehnungslehre, which he never completed. Grassmann claimed
that he had created a new abstract theory which could be applicd to
geometry, mechanics, and other scientific disciplines. Because
geometry refers to reality for validation, Grassmann believed that it
should be distinct from mathematics. To him geometry was a
science outside mathematics and the theory of extension was the
mathematical model to be applied to it:

". .. geometry can in no way be viewed, like arithmetic
or the theory of combinations, as a branch of
mathematics; instead, geometry relates to something
already given in nature, namely, space. [ also had
realized that there must be a branch of mathematics
which yields in a purely abstract way laws similar to
those of geometry, which is limited to space. By mcans
of the new analysis it is possible to form such a purely
abstract branch of mathematics; indeed this new
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analysis, developed without assuming any principles
established outside its domain and proceeding purely by
abstraction, was itself this science."

(trans. in Fearnley-Sander, 1982)

Because Grassmann's theory was essentially self-contained there
were many definitions and it introduced many new notions using
new terminology. Also, in his presentation there was an
overwhelming tendency to mix up mathematical results with
obscure philosophical considerations. All of this resulted in a lack
of clarity and made it very difficult to follow. Consequently, his
work drew some harsh criticism (Dorier, 1995, pp.18). In 1862
Grassmann published a completely revised version of the
Ausdehnungslehre which had a more traditional mathematical
presentation, and from which most of the philosophical
considerations had been deleted. But readers were still
discouraged because it did not allow for a partial reading of the
theory, as one had to read it from the very beginning in order to
understand the meaning of any concept. Due to these difficulties
Grassmann's work was little known for years.

Still, Grassman's theory introduced fundamental concepts
such as linear independence, basis, and dimension accurately and
in a very general context. As such it contained the essential
components for a unified theory of linearity. We will examine some
of the main ideas of his work.

Grassmann was concerned with n-dimensional geometry, and
because he was led to his results by studying the geometric
interpretation of negative quantities and the addition and

multiplication of directed line segments in 2 and 3 dimensions.



Consequently, his exposition was almost inextricably bound up with
geometric ideas (Boyer & Merzbach, 1989, pp. 654). His basic
notion, called an extensive quantity (extensive Grésse), is defined
differently in the two works mentioned above (this is duc to the
drastically different theoretical frameworks used in both papers).
Let's begin with the 1844 Ausdehnungslehre:
here are specified certain rules for the construction and
comparison of new entities by connection with others. Generation
is a central concept in this work. Entities are not given a priori,
instead of being defined according to the properties of their
operations they are created through the "evolution” or the
connection of other entities. When introducing the concept of
extensive quantity he speaks of a given element generating
"a system of first order" by the "continuous action of the same
fundamental evolution"; then another "evolution”, applied to cach
element of the system of first order will generate a system of
second order, and so on, with no limitation on the number of
orders. The concept of "evolution" corresponds in gecomeltry to a
movement along a straight line, but Grassman's meaning of it is
more general, it refers to "the fundamental intuition of space and
time", which is given "a priori,"” and is "originally inherent to us like
the body is to the soul" {Dorier, 1995, pp. 19).

If nothing else, the reader can understand why Grassman's
text was considered to be vague and difficult to follow.

He speaks of a system of n-th order being generated by n
fundamental methods of evolution which are given as independent -

meaning that none is included in a system generated by some of the
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others. The order of a system, which is the "natural” dimension, is
intrinsically related to the concepts of generation and dependence;
it represents the measure of extension (Dorier, 1995, pp.19). He
also says:

"(A) system of m-th order is generable by any m methods of
evolution belonging to it that are mutually independent"”.

We see that he has a notion equivalent to the modern concept of basis
and he gives the value m a general meaning close to the concept of
dimension. Although there is no mention of m being the minimal
number of methods of evolution required to generate the system, this
is implied by a result he gave:

First I will show that if the system is generated by m methods
of evolution whatever, I can replace any given one of them by a
new method of evolution (p) belonging to the same system of
m-th order and independent of the remaining (m-1), and, using
this in combination with the other (m-1), generate the given
system. (Dorier,1995, pp. 19)

This is in great contrast to the Ausdehnungslehre of 1862; here an

extensive quantity is an n-tuple, o, which is a linear combination of

That is a=ae, + o,e,+...+0,e,, Where

n-n?

the system of units e,e,....,e,.

n

the « are real numbers and the units e,e,,....e, are linearly

independent magnitudes. Addition (subtraction} of extensive
quantities and their multiplication (division) by a scalar are defined
as in the usual sense in R, and the properties of these operations
are listed - these are almost the same as the modern day vector
space axioms.

For n = 3 these primary units were represented

geometrically by line segments of unit length each directed along

one of three mutually orthogonal axes. The a,e, are multiples of the

primary units and are represented by lengths |o,| along the
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respective axes, while o is represented by a directed line scgment
in space whose projections onto the axes are the lengths | «,|.

Grassmann developed in detail, essentially as it is done today,
the theory of basis and dimension for finite-dimensional lincar
spaces. The space of extensive quantities he called a region and a
basis for it was the system of units (Fearnley-Sander, pp.164). He
defines a system of order m as the system of all linecar combinations
of the units (i.e. spanning set). He discusses subspaces, their
unions and intersections, and he states and proves theorems that
are equivalent to common results on subspaces, such as the
dimension theorem dim(S+T) = dim(S)+dim(T)-dim(SNT), where
S and T are subspaces of a vector space V (Boyer & Merzbach,
1989, pp.655).

In the same work Grassmann defines different products of
extensive quantities. The inner product is among these, il is

denoted by a|f and given by a|f = Za,ﬂ,. the magnitude of o is

defined as+/ala = 1’2,0:,2 .
i=1

If Grassmann's work had not gone largely unnoticed he might

=1

have been credited as the main contributor to the creation of linear
algebra. Though his ideas were based on geometry his work was
clearly a great extension and abstraction of these. Despite
Grassmann's comprehensive work, it was Cayley and Hamilton who
were considered the figureheads in the move to algebraicize
geometry and who were credited as the precursors, if not the
creators, of linear algebra. Nonetheless, as Dorier points out,

Grassmann's work can be seen as a kind of 'a posteriori' of linear
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structure, and in this sense it played an important role in the
discovery of the axiomatic theory. Indeed, some of the first
axiomatic approaches which followed were inspired by Grassmann's
work; for instance, Peano's Calcolo geometrico of 1888, which gives
the first axiomatic definition of a vector space (in modern terms) is
considered to be a condensed version of his own reading of
Grassmann's Ausdehnungslehre. However, most of Grassmann's
concepts were reestablished independently of his work. A notable
example is the work of Dedekind in the theory of fields, his was a
very general and modern approach to linear structure in which
generation played a central role. The reader is referred to Dorier's

paper for the details (Dorier, 1995).

This account of the evolution of fundamental notions of linear
algebra in the setting of analytic geometry allows us to take a rather
broad perspective; we can say that linear algebra developed in two
stages that correspond to two processes. The first process was the
arithmetization of space, as it ocurred in the passage from synthetic
geometry to analytic geometry in RN, The second process was the
de-arithmetization of space or its structuralization, whereby vectors
lost the coordinates that anchored them to the domain of real
numbers and became abstract elements whose behavior is defined
axiomatically. This is an admittedly simplistic view of things, but it
helps us distinguish different modes of thinking in linear algebra.
These distinctions in turn help us understand what is involved in
constructing the concepts of linear algebra by students (Sierpinska

et al.,, 1995a).
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CHAPTER II

A CONCEPTUAL AND DIDACTIC ANALYSIS OF THE
NOTIONS OF LINEAR INDEPENDENCE/DEPENDENCE

In this chapter we will look at different ways of introducing the
concepts of linear independence/dependence, we will consider
the rationale underlying each of these, and then we shall discuss
some possible difficulties for students which arise from thesc
different starting points. Each of these introductions can lead to a
different understanding of the concepts, so our analysis will allow
us to identify possible different ways of understanding. An
awareness of these is necessary for us to make informed
assessments of students' understanding of the concepts.

There are several ways of understanding these concepts;
linear independence/dependence can be seen as a property of a
set of vectors, as a relation between veclors, it can also be seen
geometrically. Having a "good" understanding might consist of
being able to see th.: concepts in different ways, to grasp the
relationships between these, and to coordinate them so as to arrive
at a synthesis of all this knowledge. Now, in teaching one must
choose a starting point and then build on it, so one's
understanding of a concept is built on a particular way of

introducing it (see Chronogenése des Saviors in Chevallard, 1985).
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Introducing the concepts of linear independence/dependence
In terms of solutions to a homogeneous equation

A perusal of several introductory linear algebra textbooks used in
North America reveals that students’ first exposure to the concepts
of linear independence/dependence usually occurs through formal

definitions.l These are given by statement 1 below:

A set of vectors {v;,...,vg} in a vector space V over a field K is
linearly independent & [c)v+...4+C W= 0 = ¢ =...= cx= 0],
where ¢ € K.

A set of vectors is linearly dependent & it is not linear
independent.

The way in which the vectors v; are defined depends on the
nature of the vector space V; if this is an abstract structure then
the vectors are defined by the vector space axioms as elements
satisfying certain properties and having a certain function. One the
other hand, if V is the space R? then these vectors may be defined

by construction as n-tuples.

Linear Independence

Globally, the above definition of linear independence has the form
of a compound two way implication p & q, where p is the

statement
[A set of vectors {v,,...,w} in a vector space V over a field K is

linearly independent]

I This is based on the reasonable assumption that most students learn linear
algebra more or less by following lesson plans set out in textbooks.
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and q is the statement

[c1vi+...+ckvik= O = ¢1=...= ck= O], where ¢, € K.

The compound nature of p & g is due to the fact thal
statement q is itself an implication.

On a more local level we see that the subject of the definition
(i.e. of the independence) is a set of vectors {v;,...w)}. That lincar
independence is a property of a set of vectors is communicated
clearly in statement p. The topic of the equivalence p < ¢ is both
the sufficiency and the necessily of the condition given by
statement gq - namely that the homogeneous vector equation
c1Vi+...+ckvk= 0 have uniquely the zero solution for the clements
ci,...ck€ K. The communication of this uniqueness is a rather
subtle affair because it involves not only the explicit implication
given by statement g but also the implicit understanding that such
an equation always has at least the zero solution. This definition
states that whenever this condition holds then we say that the sect
of vectors is linearly independent. Conversely, if we say that the
set of vectors is linearly independent then it is necessary that this
condition hold, for this is precisely what it means (in the sense of
the definition) to say so. This definition introduces the notion of a
set of vectors satisfying the condition of statement g and gives it a
special name, thus it sets up a correspondence between such a set
of vectors and the words linearly independent. This
correspondence, so typical of mathematical definitions, cstablishes
the equivalence between the concept and the concept name so

that the two are always associated with each other.
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Linear Dependence

The notion of linear dependence may be defined with reference to
linear independence as its negation. This highlights the fact that
any set of vectors must satisfy one of these two mutually exclusive
conditions, i.e. a set of vectors must be either dependent or
independent - il can never be both.

This introduction of the concepts presents independence as
the central rotion. Dependence, being defined in terms of
independence, appears almost as an auxiliary notion. Thus, the
notion of independence is stressed over dependence even though
they may be equally important and are logically equivalent through

negation.

The rationale for introducing the concepts
through these formal statements

For this analysis a pertinent question is "what is the rationale for
defining linear independence/dependence in this way ?". In fact

there are several reasons :

- These statements are terse; they offer conciseness and economy

of exposition.

- We may say that these definitions are "definitive” (Méray, 1901);
the statements are sufficiently abstract and general to be applicable
in all cases and settings, it is not necessary to give one definition
to deal with systems of linear equations and a different definition

to study bases and dimension, for instance.
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- These statements offer consistency and unification of language in

a set-theoretic approach to building the theory of linear algebra.

- These definitions are operational; in RI? (and isomorphic spaces)
they provide a useful test of independence/dependence by
reducing the question of dependence to one of existence of non-

trivial solutions for a certain homogeneous system of equations.

The first three of these are in accordance with a structuralist
perspective, the last is a reductionist motive.

A structure is characterized by three central ideas:
wholeness, transformation, and self-regulation. Elements of a
structure are subordinate to transformational laws, and it is in
terms of these laws that the structure defines the whole system. A
relational perspective of the property of wholeness gives primacy
not to the elements or the whole itself, but rather to the relations
which determine the whole. Self-regulation entails self-
maintenance and closure in the sense that "the transformations
inherent in a structure never lead beyond the system but always
engender elements that belong to it and preserve it's laws" (Piaget,
1970, pp. 14). From a structuralist perspective mathematics is
seen as a unified whole in which the meaning and significance of
every part is determined by its function in this whole. Here, the
work of synthesis, the bringing together and organization of results
becomes very important. The drive to have a "complete picture”
helps us understand the rationale behind general defiritions like
the one of linear independence which includes the extreme case

of the singleton set.
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Possible sources of difficulty for students

Introducing the concepts this way has consequences for the
learner. We are concerned in particular with possible difficulties

that this approach poses:

(a) Statement 1 uses the word "dependence” in an unnatural way.

Webster's College Dictionary defines dependence as "the state of
being conditional or contingent on something". Thus in the
vernacular one thing cannot be dependent (or independent)
without reference to something else, rather dependence must
involve at least two things. Since in linear dependence we speak
of a set - a single object - being dependent, there is an apparent
incompatibility in the use of the word "dependent" in the two
senses. This immediately sets the stage for a kind of cognitive
conflict which can lead to confusion in understanding the concept
(Tall & Vinner, 1981, Tall, 1983, Vinner, 1991). As an example of
such confusion, we observed a student who was presented with a
set of vectors which was linearly dependent. After having
determined that the vectors were all pair-wise indepcndent he
was asked if this implied that the whole set was linearly

independent, his response was: "... I would say yes because we've
determined that they're all independent of each other ..."

The set-theoretic approach uses language counter-intuitively
in other domains as well, for example in geometry (intuitively a

point "lies" on a line, it does not "belong" to a line). Here, by
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intuition we mean images conveyed by the use of words in natural

language.

(b) The logical construction of the definition of independence is
complicated, it involves a compound implication as noted above.
In general, conditional statements are difficult to use and apply
because of their non factual, speculative, and abstract nature
(Girotto, 1989). One type of difficulty concerns conditional
statements in general; some students tend to fixate on cither the
premise or the conclusion, sometimes adding a general quantifier.
We cite an example of a student who thought that "linearly
independent vectors are always zero" and who accordingly
substituted O for the linear combination, cjv|+...4cxw,, of these
vectors. This student may have read the definition as : " for any
scalars cj,...,Ck, C1Vi+...+cxVk = 0 ", thus completely disregarding
the conditional nature of the statement (Sierpinska, 1994a).
Another impediment to understanding the concept of linear
dependence/independence through these definitions is the
difficulty of negating logical implications, especially statements
like these which involve quantifiers. Our own survey indicates that
students have considerable difficulty with logical negation: a class of
thirty three undergraduate linear algebra students at Concordia
University was given the definition of linear dependence and was
presented with the statement that a set of vectors is called linearly
independent in the case that it is not linearly dependent. The
group was then asked to give the definition of linear independence

without reference to linear dependence. Only two respondents
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(6%) were able to produce a statement that was a correct logical

negation of the original statement.

(c) In a structural approach the meaning of an element of the
theory is determined by its function in the whole structure, and
not by reference to external things such as visualization and
applications. Structural meaning eludes the novice because he/she
cannot yet see the whole structure. In fact, in a structural
approach to the teaching of a theory, understanding must be
suspended for quite a while, at least until one has seen several
elements of the structure and has made some of the necessary
conneclions between them. Then, one may begin to understand
the function of each element, and to view the structure as a

cohesive whole.

(d) The operational usefulness of the definitions (as a text) is not
apparent unless one is familiar with vectorial representations of
systems of equations; one must realize that the vector equation

c1vy+...4ck V= 0 is equivalent to the system of linear equations

G

MX= 0, where the matrix M= [v, |...[w] and the vector X =

Ck
Then, the problem of determining whether the set of vectors is
linearly independent reduces to determining whether a
homogeneous linear system has only the trivial solution. Students
do have difficulty with these multiple representations in linear
algebra, this may be a problem of not having seen enough of the

elements of the structure and not having established the
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connections between thcm. In the same survey previously
mentioned students were also asked how they would determine if
a set of vectors was linearly dependent or independent. The
success rate for this question was not high; very few responses
(12%) showed knowledge of a general method to dectermine
whether a set of vectors in RM is linearly independent. This
suggests that students are not always able to draw out the

operational value from the text on their own.

(e) There can be difficulties related to the tacit conventions in the
use of variables in formal definitions. These conventions reserve
the last letters of the alphabet, s through z, to denote variables,
and the first few letters usually denote constants. The formal
statements given here don't abide by these conventions because
the variables in the vector equation c;v;+...+cxv = 0 are denoted by
c's. This may result in some ambiguity about the status of these
scalars in the equation. But there are creative ways ol using
suggestive notation designed to avoid such ambiguitics; in his
book, Linear Algebra and It's Applications, David Lay presents the
concepts through the following less formal and more explicit

statements:
A set of vectors {vi....,vk} in R™ is said to be linearly independent

if the vector equation
X1V]+ X2V2+..+Xkvk =0
has only the trivial solution.

The set {v].....vk} is said to be linearly dependent if there exist

weights c1.....ck, not all zero, such that

C1V1+C2Vo+...+ckvk = 0 (Lay, 1994, pp. 64).
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In defining linear independence this author refers to a vector
cquation and a solution of this equation, so the reader might think
that the vectors are the unknowns. However, the use of x's to
denote scalars in this equation suggests that these are the variables
rather than the vectors. In formulating the notion of dependence
the words equation and solution are not explicitly mentioned,
instead the notion is equated with the existence of scalars, called
weights, salisfying a certain relation. Since dependence
establishes the existence of these scalars and one is no longer
looking for a solution of an equation, these scalars are no longer
denoted by letters reserved for unknowns.

Perhaps, explicitly stating what the unknowns are in this
definition is a more simple ard direct way to remove any ambiguity
about the status of the objects; one might say 'if the vector equation
X101+x2U0+...+x0= O has only the trivial solution for the unknowns

X1, X2,...X ', for examplc.

Introducing the concepts of linear dependence/independence
in terms of a linear relation between vectors

An important equivalent characterization of linear dependence is
given by the following statement 2:
A set of (two or more) vectors {v;,...,%} in a vector space V is

linearly dependent < one of the vectors is expressible as a
linear combination of the others.

If we start with this statement as a definition then we make
dependence the more basic notion. Independence can then be

defined in terms of this by logical negation:
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A set of vectors is linearly independent & it is not
linearly dependent.
i.e.

A set of vectors is linearly independent <> none of the
vectors in the set is expressible as a linear combination of
the others.

This definition above equates the notion of linear dependence of an
abstract set of vectors with the possibility of expressing one of the
vectors in terms of the others (in the sense of linear combination).
The possibility of so expressing a vector in the set is
communicated by the existential quantifier "if one of the vectors",
this is equivalent to saying "there exists a vector ...". The existence
of such a vector in the set is a property of that set which is then
said to be linearly dependent. The notion of independence is then
equated with the non-existence of such a vector in the set, i.e. with

the impossibility of so expressing any vector in the set.

The rationale

There are several reason for choosing to introduce the notion of

dependence/independence by way of statement 2

- In statement 1 (page 29) the use of the words dependent and
independent seem abstract and their significance is not easily
grasped. This is not the case in statement 2 above because the
word dependent here is used in a more natural sense; it is
compatible with its vernacular use since, if, say, vy is a linear

combination of the other vectors, we write vo = b vy+bgvsy+.. . +bvk

40



then one can "see" the dependence, i.e. the reliance of vo on the
other vectors. Questions concerning the use and significance of
the words independent and dependent may therefore be less likely

to arise.

- This formulation of linear dependence given in statement 2
equates the notion of linear dependence with that of linear
combination - the most fundamental and pervasive construction in
linear algebra. Thus, it anchors knowledge around this most basic
notion; a newer and more sophisticated notion (linear
dependence) is defined in terms of the more basic and previously
defined notion of linear combination, it builds on, and preserves
links with, more basic knowledge. Thus, it serves to unify and

strengthen ties between concepts.

- The definition of linear dependence in statement 2 can be seen
as a generalization of the idea of a scalar multiple of one vector. In
the case of the geometric spaces R2 and R3 this would build on
concrete geometric understanding and more experiential

knowledge.

- The logical construction of statement 2 js less complicated than
that of statement 1 (page 29) because it is a simple, rather than a
compound, bi-conditional statement. It is thus easier to

understand.
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Possible sources of difficulty

(a) Although statement 2 appears to be logically simple, it does
contain an existential quantifier which some students have
difficulty interpreting. The word one in this context need not
imply uniqueness, as it usually does in the vernacular, rather it
allows for the possibility of one or more vectors and so must be
interpreted as at least one. A vernacular interpretation of the
quantifier can cause difficulties for students trying to understand
linear dependence. Other times students assume too much and
interpret the stattment as meaning that every veclor may be so
expressed. A similar misinterpretation of the word others can also
lead to difficully in understanding, we illustrate this with an
example of a student who believed that a set of two vectors could

never be dependent:

"Can a set of two vectors be linearly dependent ? No, it's impossible,
impossible! No! [...] No. You know why they can never be dependent?
[...] Because .. listen: 'a system of vectors is linearly dependent if and
only if one of the vectors is a linear combination of the others’.  Right 2

So youneed at least three vectors.” (see student C in Sierpinska, 1995d,

pp- 10)
This misconception is due to a vernacular interpretation of the
word others; in this mathematical context the plural form necd
not imply the existence of more than two vectors in the sel. Onec

wonders how replacing the word others with the rest in stalement

2 would affect its comprehension.

(b) As a definition, statement 2 is less definitive than statement 1
because it does not account for the extreme case of the singleton
set; one cannot use this statement to determine whether a set

consisting of a single vector is dependent or independent. One
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could make this into a complete definition by adding provisions for
the singleton set, but the simplicity and elegance of the original

statement would be destroyed.

(c) The formulation of linear dependence given in statement 2 is
very useful in the case of two, and possibly three, vectors because it
offers a method of determining linear dependence/independence
by inspection. However, the statement has a limited operational
value because this method does not generalize easily to a set of
more vectors. In fact it may well be a hindrance to try and use this
statement as a test of dependence in general because one would
end up having to proceed by trial and error checking to see if each

vector in a set is a linear combination of the others.

Introducing the concepts through geometry

The first two approaches to introducing the concepts of linear
independence /dependence were purely algebraic, but the
concepts can bc presented as geometric properties of vectors in

the plane and in Euclidean space. We have statements 3 and 4:

2 vectors in the plane are linearly dependent < they are
collinear.

3 vectors in space are linearly dependent < they are
coplanar.
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Figure 2.1 Two collinear vectors and three coplanar vectors.
A set of vectors is linearly independent if and only if it is not
linearly dependent, so by negation we have:

2 vectors in the plane are linearly independent & they do
not have the same direction.

3 vectors in space are linearly independent < they are
not coplanar.

This approach can be appropriate for students having some
knowledge of synthetic geometry and the concept of free vectors.
These definitions speak of nonzero vectors, of course, since
otherwise the notion of direction is meaningless.

In Griffel's book Linear Algebra and its Applications (Griffel,
1989) the concept of basis is presented at the very beginning of
the course in the context of geometry. The concept is defined in
coordinate-free lar.lguage as in the case of linear independence
above; a basis for vectors in the plane is defined simply as a pair of

nonzero vectors in different directions, and a basis for vectors in
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space is a set of three nonzero vectors not all lying in the same
plane.

The transition to analytic geometry in R2 and R3 is made by
introducing a basis in each of these spaces and then building a
coordinate system on these. The algebraic representation of
vectors is always relative to some basis. This can be stressed from
the beginning by introducing the concept of basis as a set of
generators of the space and the notion of decomposing (by linear
combination) any vector in the space in terms of the basis vectors.
The name "basis" is a very natural one, implying that the set has
certain basic properties (especially in the case of a normalized
basis) and that it plays a fundamental role in describing the whole
space - this is the completeness property of a basis. These vectors
form a "skeleton" on which evervthing in the space is anchored,
they are indeed basic vectors. This leads to the question of the
minimum number of vectors necessary to describe the whole
space, and from this the notion of dimension emerges to make
precise the intuitive idea of a plane as 2-dimensional and space as
3-dimensional.

The definition of coordinates of a vector can incorporate this:
the coordinates of a vector x with respect to a basis { u, v }, for R2,
are the numbers a, b such that x = au + bv. The coordinates of a
vector in R3 are defined analogously. The property of the
uniqueness of these coordinates is a subtle matter because there
are many different choices of bases and a given vector has different
coordinates with respect to each of these. It must be stressed that

this uniqueness is only with respect to a given basis. The canonical
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bases for R2 and R3 can be introduced as particularly casy and
natural to work with, one then develops the notation

. c
X = (b) and y = | d |as a shorthand for representing the vectors x

e

and y in terms of their coordinates relative to these special bases.
Then the geometric operations of stretching (or shrinking)
vectors, rotation of vectors by 180°, and vector addition are
formulated algebraically and properties of vector algebra are
developed.

All of these considerations pave the way for the transition to
the space Rn. This transition is marked by a gen.ralization of all
these geometric ideas and a carrying-over of geometric language

into a non-spatial setting: the elements of R"are defined by

X

construction as n-tuples denoted by x=| : | with the tacit

X

n

understanding that the numbers x,...,x, are the coordinales

relative to the "canonical basis" for R"; a basis is scen as a

"generalized coordinate system" and its "vectors" "gencrate” the
whole space; linear independence can be seen as a property of a
basis and must be reformulated more precisely in algebraic terms
(using special cases of statements 1 or 2). We speak of R" as

"n-dimensional space" and we begin to see that these abstractions
offer a powerful kind of reduction in that they allow us to describe

some fundamental properties of the whole space by studying only

small finite subsets of elements.
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Finally, the passage from R™ to general vector spaces is a
move towards the structuralization of the notion of space, and all
these ideas are made fully abstract and formal. The elements of the
space are defined not by construction, but rather by axioms and
properties. All characterizations, in their final form, are algebraic,
but the language of space geometry continues to be used even
though references to geometry reflect an attempt to apgeal to our
intuitions and are there only to help ground abstract notions. The
space R" is seen as only one particular example of a general vector
space. Students encounter other familiar objects such as
polynomials and matrices which must now be viewed from a
completely different perspective. The concept of linear
independence is seen very much as a property of a minimal set of

generators of a vector space.

The rationale for a geometric introduction

This order of introducing and developing the concepts, and
related notions, tries to follow the logic of a historical developrent
of linear algebra. Thus we may refer to it as a genetic-geometric
approach in order toc distinguish it from other genetic approaches
which take non-geometric settings as their starting pcints. For
instance, a genetic-algebraic approach might begin with the study
of systems of linear equations by introducing the notion of
dependent equations, as suggested by the historical analysis. In
this context it is natural to introduce the notion of the rank of a

(coefficient) matrix and to develop its relation to the number of
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solutions of the system and the number of redundant' equations.
The transition to R" can then be made by representing cach
equation as an (n+l)-tuple according to the¢ mapping
(a1 X1 +agXg+...+anXp=b) > (a;, az,...,an. b). In any case this kind of
chronological recapitulation of the historical development of
concepts is regarded as good in view of the belief that
psychogenesis recapitulates phylogenesis.

A genetic-geometric approach builds on concrete visual
understanding and, driven by successive generalizations, moves
towards abstract understanding. Each new stage in this
development builds on understanding acquired in the preceding
stages and is marked by a further generalization of previously
encountered notions. Thus, it serves to both reinforce and expand
the concepts.

Finally, a genetic approach can offer a dynamic perspective of
the concepts and can help one understand the significance of, and
reasons for having, the very formal and abstract definition of linear

independence/dependence.

_ analytic X :
synthetic : , n —dimensional general
——> geometry ——
geometry _ geometry, R" vector spaces
in R*& R°

Figure 2.2. An overview of the genetic-geometric approach.

Poscible sources of difficulties

As shown in Figure 2.2 the genetic-geometric approach is marked

by transitions between different settinigs, each of these transitions
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involve making gencralizations. The mental act of generalizing can
be difficult for students partly because it is an operation which acts
on something, be it a concept or a problem. Thus, to be able to
make a generalization requires that one first identify that
something as an object (Sierpinska, 1994, pp. 59). For instance, if
one doesn't understand the algebraic formulation of the concept of
linear dependence in R2 and R3, than how can one understand it in
Rn ? Furthermore, there are different types of generalizations to
be made, some causing more cognitive strain than others. For
example, generalizing the vector sum and scalar multiples from R3
lo R" consists essentially of applying the same techniques to each
coordinate in a broader system. Algebraically, this process
expands an already existing schema (operations on 3-tuples)
without reconstructing it. Geometrically, the process involves a
modification of geometric ideas in three dimnensional space to a
mental image of n-dimensional space. This type of generalization
requires a reconstruction of an existing schema in order to widen
its applicability range. Harel and Tall refer to these two as
expansive and reconstructive generalizations, respectively (Harel &
Tall, 1991).

One resource needed in abundance to effectively implement
a curriculum based on a genetic approach is time - there must be
enough time for the concepts introduced at each stage to become
firmly grounded so that there is something to generalize.
Otherwise, students will surely have serious difficulties in
understanding the concepts. Let us now mention some more

specific difficulties:
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(a) There are difficulties in the transitions 2 and 3 (referring to
Fig.2.2) from the geometric spaces to n-dimensional space and to
general vector spaces. These difficulties can be related to the use
of geometric language to describe these spaceswhose
characterization is completely algebraic. There is a tacit
understanding that the geometric language is used for the purpose
of analogy only, yet it causes us to revert to geometric thinking
when trying to understand a concept and may instead hinder our

understanding.

(b) There are difficulties in transition 3 related to the drastically
different ways of defining the elements of these spaces. Consider,

as an example, the zero vector; in R? this vector is defined as the

0

n-tuple 0 = | : |, but in a general vector space V the zero vector is

0
defined as the neutral element. i.e. that element, denoted O,
having the property that 0 + u = u for all vectors u € V. The
previous identification of the zero vector as an n-tuple of zeros is
so deeply ingrained in students that at first it is almost impossible
for them to conceive of it being defined differently. An excerpt of
a student (C) learning linear algebra with the help of a tutor (T)

illustrates these points:

C first reads the definition of a vector space,

T: What is a zero vector?

C: One that is compused of zeros only, that's what it is!

T: No, listen this is a general theory and a zero vector is not necessarily an
n-tuple of zeros. RM is but a particular example of a vector space. . . . even
functions can be vectors, do you understand?

C: You mean you can write a function in the form of a vector?

T: No, no, this is an arbitrary thing . . . you can add and multiply by scalars .
. . and they satisfy these 10 conditions, this is a vector space, see that?

C: So what?

50




T: So a zero does not have to be an n-tuple of zeros.

C: How come they cannot have all zeros? That's incredible! We are speaking
about the zero vector all the time . . . Explain it to me, how can there be a zero
that is not composed of zeros? How can such a thing be at all possible?

... How would it look like? Give me an example. If you can't explain this to
me then [ don't think I'll be able to go on.

T- A function that assigns zero to any number, is this "composed of zeros"?

Can you say that?

T then defines the operations in the space of functions and claims that the
zero function is the zero vector of this space

C: So what do you get? A vector whose elements are not (at) all zeros, right?
Is such a vector a zero vector?

T: This is the zero of this space.

C: This is the zero of this space, but is the zero vector of this space the zero
vector? Is this something I have to accept into my mind? . . .(sighs} . . . I have
just discovered that my world has been built as a house of cards, and
someone has just blown it away . . . I must say that this has really put me
down. Realizing that all that you've been taught and you thought you have
understood . . .. (Sierpinska, 1995c).

This is a case of "good understanding” in R" acting as a
serious obstacle to understanding the next level of abstraction.
When student C finally understood what the zero vector is in an
abstract vector space, the realization came in a flash and was
induced by the tutor's words "zero as a number, zero as a
property”. The student latched on to the phrase "zero as a
property" and this helped him distinguish the zero vector from
zero as a number or zero as an rni-tuple. So it seems that the
continued use of geometric language in a non-spatial setting was
causing a great deal of confusion. Indeed, student C subsequently
went into a long tirade about how this confusion was caused by the

tutor's "use of jargon instead of precise mathematical language”.

(c) In Rn, for n > &, the concepts can no longer be visualized
spatially and must be formulated algebraically. Thus, there is no
longer any recourse to geometric intuition and the concepts may

suddenly appear to be distant from the original (geometric)
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notions. This can leave one feeling that the concepts are no longer
grounded in reality; things can appear very abstract and not real.

In another session, tutor T and student C are discussing the
space R" and hyperplanes. At the end of the session student C
says:

" ... if I speak of an n-dimensional space that has more than 4 dimension
then it is like speaking about things that either do not exist at all or we don't
know if they exist. . . . It seems to me that when | speak of the n-dimensional
space I start speaking of things that are completely abstract. This becomes, 1
don't know, a game, it is not serious anymore, it has ne practical use ... "

(d) An understanding of the independence/dependence of the set
{0} and the notion of dimension zero cannot make appeals to
geometry because the geometric formulation of linear

independence/dependence excludes the case of the zero vector.

Introducing the concepts of linear independence/dependence
through examples and problems?

Yet another approach to introducing the concepts is exemplificd
in Fletcher's book Linear Algebra through its applications. Here,
linear independence is introduced in a completely informal way
through use of the term in context. The first chapter is entitled
'‘Linear Spaces' and the first two sections introduce the notion of
closure under linear combinations by exploring what results from
adding arithmetic progressions term by term and multiplying each
term by the same scalar, and then doing the same with magic

squares- The definition of a linear space is given informally:

2 Here we mean examples and problems of a non-standard kind in linear algebra.
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" any mathematical objects which may be (i) added togethier and (i)
multiplied by scalars, may be called vectors. The set of vectors together with

the two operations is called a vector space or linear space” (Fletcher, pp.5).
The concepts of basis and dimension are introduced informally in

the context of arithmetic progressions:

" any arithrnetical progression may be expressed in terms of two special

progressions,
x=1111...

and

vy=01223,...
[...) Thus the sequence

6,11, 16,21, 26,...

is expressible as 6x + 5y: that is it is expressible linearly in terms of x and y.
The two x and y may be called a basis for the space.

|...} Since any other arithmetical progression may be expressed in terms of a

special two, we say that the space of arithmetical progressions is two-

dimensional." (pp. 2)
In the context of semi-magic squares the idea of a minimal set of
generators is approached by asking thought - provoking questions
such as: "Can we find some especially simple semi-magic squares
with a view to using them as base vectors?". To answer the
question a set of seven semi-magic squares, {a, b, ¢, d, e, f, g}, is
given and then he poses the question: "How long is it before we
start finding that some are not 'really new' because they can be
expressed linearly in terms of squares which we already have?"
He remarks that a=d +f+c =e + g + b from inspection and then
says; "This shows that a is redundant and that any one of the
remaining six can be expressed in terms of the other five." This
then leads to more thought-provoking questions: "Can we express
any other semi-magic squares in terms of the ones we have found
so far?" and "Are there any further relations which lead us to say

that fewer than five can be taken as basic, because one of these can

be expressed in terms of the others?" (pp.4). In this way the idea
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of redundancy prepares the reader for the concept of linear
independence.

The word independent surfaces for the first time when
referring to a given set of semi-magic squares, {u, v, w, x, y}, he
remarks: "It is easy to see that y =u +v + w + X, so y is not an
independent semi-magic square if we have already selected u, v, w,
and x." (pp.5). The reader is then invited to undertake his/her
own investigations by attempting the exercises which ask
questions like "Can any of a, u, v, w, and x be expressed linearly in
terms of the others?" and "Show that the space of magic squares is
of dimension three."

Some thirty five pages later, at the very end of chapter onc,
the formal definition of a basis is given but nowhere is the notion
of linear independence made precise.

The characterization of a linear space as a set closed under
linear combinations is illustrated throughout the rest of the
chapter with a multitude of examples which include polynomials,
sequences, solutions to linear differential equations, binary codes,
and networks. This veritable tour of linearity is preceded by an

interesting comment:

" '"What is a vector?' is not really a proper question. The proper question is
'‘How does a vector behave?' Mathematical definitions nowadays answer
the second type of question far more often than answer the first.” (Fletcher,
pp.5)
This statement reflects some similarity between Fletcher's
approach and the structural approach, both of which ask not what
a vector is but rather how a vector behaves. The similarity ends

here however, because the structural approach answers the
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question explicitly by specifying a set of axioms, whereas Fletcher

attempts to show how vectors behave in different contexts.

The rationale

The purpose of such a presentation is not to build a theory, but
rather to build up a set of tools by introducing concepts as useful
for solving certain problems:

" The aim is to approach the theories by way of the problems which the
theortes can solve, and by way of the situations which they illumine ... our
concern is not to prove theorems but to discuss situations from which the
theoretical ideas emerge." (Fletcher, preface)

This usefulness and the contexts in which they are presented is
what gives meaning to the concepts. The words dimension and
independent are not defined precisely, instead their meaning is
given by their use in expressions, sentences, and contexts of the
problems (Wittgenstein, 1965). Thus, the reader is expected to
develop an intuitive understanding of the concepts.

The reader is exposed to a wide variety of vectors and vector
spaces, the author hopes that this will bring one closer to the
concept of a general vector space by impressing upon him/her that
the property of closure under linear combinations takes primacy
over the vectors themselves. Also, one will have many examples to
draw on, and seeing the same basic notions surface again and again
in different settings serves to reinforce their importance. All of
this is meant to help lay the groundwork for a more formal

treatment of linear algebra.
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Possible sources of difficulty for students

Fletcher's approach to linear algebra is undeniably an uncommon

one. Following this approach, one could face several hardships:

(a) Perhaps one of its most distinctive features is the lack of
formal definitions of the basic concepts which emerge repeatedly
throughout the book. But this can be rather unnerving because
nothing is precisely defined and the notions seem fuzzy. All the
intellectual work of determining characteristic properties of
concepts is left to students, this may be overwheiming for the
novice. If the student is presented with, say, the formal definition
of linear independence at a later time it may appear to be
completely unfamiliar and to have no ties to previous intuitive

understandings.

(b) Concepts are introduced through non-trivial applications,
some of which require solving large systems of equations. There is
the risk of getting bogged down by technical difficulties, and these

may in the end overshadow the importance of the concepts.

(c) The exercises often consist of problems related to those
through which the concepts were introduced, and they make
challenging demands on the student to construct proofs and to
make generalizations. This can be especially difficult and time
consuming for a student having only an intuitive idea of the
concepts and no theoretical tools (i.e. definitions and theorems)

that could facilitate the solution of such problems.

56




DISCUSSION

Our analysis outlines four different approaches to introducing the
concept of linear independence/dependence and some related
notions. It describes the rationale underlying each approach and
lists difficulties which we expect students will experience as a
result of following them. But we can say more in the way of
comparing these approaches, there are several features which
distinguish them, and there are also certain commonalties
between them. Our first aim here is to bring these to light.

Although the concepts of linear independence and
dependence may be regarded as two sides of the same coin, by
virtue of their being the logical negation of each other, the
approaches given by statements 1 and 2 reflect the usefulness of
regarding them as distinct. Recall that statement 1 presents
independence as the primary notion and dependence as
secondary, and statement 2 does the opposite. So to begin with
these two approaches differ in the primacy that they give to either
concept.

The historical analysis shows that the notion of dependence
is genetically more primitive, but one can argue that linear
independence is more fundamental because it is an abstractionn of
the primal notion of two non-parallel lines (vectors) in the plane as
necessary for describing all vectors in the plane - an idea which
underlies the most basic notions of linear algebra, those of basis
and dimension. This point of view seems to be in accordance with

a genetic-geometric perspective.
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Conceptually, linear dependence is related to the notion of
generators of a space, and through the idea of redundancy of
generators it ties into the notion of independence. From an
algebraic point of view it seems natural to speak first of a set of
generators and then of a minimal such set, and this makes linear
dependence the more fundamental notion. Thus, how the
concepts are distinguished can depend very much on one's point
of view.

We also see that statement 1 offers a practical general test of
linear independence/dependence, whereas statement 2 does not.
On the other hand statement 2 has a simple logical construction
and uses language in a natural way, whereas statement 1 does not.
So these two approaches also differ in their concern for
practicality and naturalness, and this reflects a kind of tension in
mathematics education between the desire to have definitions that
are practical and definitions that are natural. Because of this it
seems that either approach would have to make use of both
statements; if we begin with statement 2 as the definition of linear
dependence, then statement 1 would have to be introduced (for its
practical purpose) as a theorem giving a general test of
dependence/independence. Combining this reason with the fact
that the relation between the two statements is not so obvious as to
be trivial provides a strong rationale for proving this theorem.
Actually, the common proof of this theorem is direct and
constructive, il is a proof that explains (Hanna, 1989) and so could
potentially serve as students’ first experience in building links

between different ways of seeing the concepts of linear
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dependence/independence. On the other hand, if we start with
statement 1 to define the concepts then we have a general test of
dependence/independence. Statement 2 could then be
introduced as an equivalent, and perhaps more natural,
characterization of dependence. One would then look at the proof

as a way to understand this equivalence.

On page 33 we pointed out some features of the first approach to
introducing the concepts (statement 1) that make it consistent
with a structuralist perspective of mathematics. But approach 2
may also be identified as a structural one because it too introduces
the concepts through a formal definition - one which shares some
of the same features as statement 1; it is also a terse statement and
so offers compactness and economy of expression, and in speaking
of dependence as a property of a set of vectors it also offers
consistency and unification of language in a set-theoretic approach
to building the theory. Although we have described only how the
concepts may be introduced, a structural approach then typically
develops the concepts in an order that follows the logic of the
theory. From the definitions other statements follow by logical
inference, and from these follow yet more results. These results
are often interspersed with illustrative examples meant to help
concretize the concepts. In this approach the focus is not only on
the collection of results but also on how they are logically related.
These results together with the relationships between them
are to be coordinated, synthesized and integrated to form a whole.

For students, however, this holistic picture is seldom the one that



emerges. Rather, as the number of results becomes numerous the
chains of logical inference between them become too long to
manage and they often feel lost in a sea of meaningless and
disconnected statements. It seems that the structural approach to
the teaching of a theory presupposes some belief that learning
consists largely of the accumulation of knowledge. Indeed, the
very first step towards attaining any sort of holistic picture would
have to be the acquisition of the facts, these then have to be
transformed into knowledge. For the learner the construction of
this knowledge is bound up with making the logical connections
between the facts; because a structural approach makes few
appeals to external representations, it is these connections that
first give meaning to the facts - their significance is relative to the
existing body of facts (see Connectionist models}. For instance,
understanding the significance of statement 2 as an equivalent
characterization of linear dependence may well be the same as
understanding its relation to statement 1, this is especially true
given the constructive nature of the proof of statement 2 (as a

theorem).

From the teacher's perspective statements 1 and 2 are good
starting points; with an expert's hindsight he/she already sces the
whole picture and knows that these are hasic statements that will
generate a series of results which build the theory. From the
learner's perspective, which lacks such a global view, however,
statements 1 or 2 can seem arbitrary and their significance is not

easily grasped. This last point illustrates an important distinction
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hetween the structural and genetic-geometric approaches. In the
latter, the notion of independence is presented first in the
concrete sctting of geometry. Then, in analytic geometry, the
concept is seen again when the definition is reformulated
algebraically. This definition is then generalized to n-dimensional
gecometry. By the time the student encounters statement 1 in the
setting of abstract vector spaces it has some significance and can
be seen as the end result of a long and gradual process of
generalization. The genetic-geometric approach assumes that
learning is more of a sequential process (Piaget & Garcia, 1989)
than a cumulative one. In this model each new formuiation of a
concept must be integrated into the individual's existing mental
schema, sometimes this requires no change in the schema
(assimilation), but usually it requires some reorganization, if not a
reconstruction, of these schemas. Fletcher's book also tries to
offset this lack of meaning and significance which can result from
trying to learn the concept of linear independence from the formal
definition. His strategy is to introduce the concept, and concept
name, through its use in solving a certain problem - the intent is to
make it immediately meaningful and significant. This book covers
all the basic notions of linear algebra in this same way, but because
it falls short of making most of these precise it may not be
appropriate as a textbook. It is, however, a rich source of non-
trivial problems with which to motivate and introduce the

fundamental concepts.
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We have described three classes of approaches to introducing the
concept of linear independence/dependence. The book by
Fletcher exemplifies an applied approach, and Griffel's book gives a
more or less genetic-geometric3 decvelopment of the concepts.
There are many books which exemplify the structural approach
and we should provide an example of one. Paul Halmos' book,
Finite-Dimensional Vector Spaces, is ¢ paradigmatic example of a
structural approach to linear algebra; here the f[inal
characterization of the notion of dimension is as an 'isomorphism
invariant', i.e. as a property of vector spaces which is invariant
under one-to one linear transformations on these spaces - a highly
structural point of view (Halmos, 1987, pp.14).

Each approach has something to offer the learner, and the
reality of educational practice is that most approaches borrow
features from each of these classes we've described. Thus, it is
difficult to make definitive statements about the way linear algebra
is taught in North Amcrica. Still, the basic approach favored by us
is the genetic-geometric one because of the focus it places on the
notion of linear indenendence by building concepts around it, and
because at every step of the way it attempts to strengthen tics

between linear independence and the idea of a coordinate system.

The goal of this chapter was to identify possible different ways of

understanding the concepts of linear independence/dependence

3 Between analytic geometry and the space R" there is a detour irto the world of
matrices.
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through a consideration of several ways of introducing the

concepts.

To summarize this work we list these different ways of "seeing" the

concepts:

One can understand the concepts by associating them with the
test in the formal definition: i.e. to say that a set of vectors
{vy,...w} is lirearly independent means that the homogeneous
equation c)vy+...+cxvk= 0 has only the zero solution. To say that
the set is linearly dependent means that this equation has other
solutions. An operational understanding can result from seeing
this as a practical test, this require: i) understanding the
conditional statements in the definition, and ii) understanding
how the above vector equation can be represented by a system

of linear equations.

One can understand linear dependence as a linear relation
between vectors in a set (statement 2). This can be seen as a

generalization of a scalar multiple of a vector.

In the context of systems of linear equations one can
understand linear dependence in terms of redundant equations,

rank, and the number of solutions of a system.

One can have a geometric understanding of the concepts of
linear independence/dependence as the (non)co-linearity of
two vectors in a plane and the (non)co-planarity of three vectors
in space. One may then see the formal definitions (statements

1 & 2) as algebraic formulations of these geometric notions, and
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linear independence/dependence in general as abstractions of

these.

e One can see linear independence as the property of a set of
generators which makes it a basis - a minimal generating set (or
a maximal linearly independent set). A generating set which is
not minimal is linearly dependent, it contains redundant
information in the sense that some vector(s) in the set are
expressible as linear combinations of the others. A basis can be

seen as a generalized coordinale system.

e One can have an intuitive understanding of the notions of linear
independence/dependence by seeing how they arise naturally in
certain applications and how they may help to solve certain

problems.

All of these ways of "seeing" the concepts constitute an awful lot of
knowledge and we hope to have given the reader some sensc of
the difficulties that the learner can face when trying to construct
these ways of knowing.

Having these different understandings would indeed be an
accomplishment, but we believe that the ability to coordinate and
synthesize all of this knowledge is the mark of a deeper
understanding of the concepts. We should not underestimate how
difficult it can be for students to attain such an understanding.
Doing so involves not only a certain degree of motivation and

tenacity, but it also requires that one engage in particular kinds of
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activities that engender the mental actions which can lead to it. In

the next chapter it will become apparent what some of these

activities can be.
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CHAPTER II

EXAMPLES OF STUDENTS' UNDERSTANDINGS OF, AND
DIFFICULTIES WITH, THE CONCEPTS OF LINEAR
INDEPENDENCE/DEPENDENCE

The last chapter dealt with different understandings of the
concepts of linear independence/dependence that could result
from different ways of introducing them. Although we documented
some difficulties that students experienced while trying to
understand these concepts, our analysis was of a more theoretical
nature - we scrutinized each way of introducing the concepts and
then based on this we predicted what difficulties students might
experience and what understandings of the concepts they might
arrive at.

The aim of the present chapter is to supplement the work of
chapter two with examples of students' actual difficulties and
understandings of the concepts. We have no intention of providing
a complete empirical counterpart of the previous chapter here, i.c.
we will not try the various approaches already mentioned on a test
group of students and then measure their understanding of the
concepts relative to a control group. Our research is simply not yet
at this stage, and we would like to emphasize that the analysis in
chapter two in particular is the result of our research - one which
inciuded much reflection on the nature of the concepts and their
historical evolution, on the way that they are presented and
developed in textbooks, and on our own experiences learning and

teaching linear algebra.
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Some of the examples considered here confirm the predicted
difficulties (and understandings), while others bring to light
difficulties which were unforeseen and which appear to be distantly
related to the concepts at hand. Our ultimate goal is to get a sense
of some of the actual understandings that students can have of the
concepts and how they arrive at these understandings. The
observations we make here will hopefully enrich our perspective of
the notions of linear independence/dependence.

Our research methodology is perhaps unique in that it
consists, in part, of what we call 'continuous' long-term
observations of students learning elementary linear algebra from a
textbook with the aid of a tutor. These observations are continuous
in the sense that we could observe the learning process every step
of the way; the novice students studied the subject for five hours
every week during several sessions per week and spanning a period
of 13 weeks, they were not permitted to take the textbook home in
between learning sessions and were asked not to study linear
algebra during this time. The tutors (two graduate students and
one mathematics professor) also did not prepare for these sessions,
their role was not to give lectures or lessons but rather to guide the
students in understanding the material presented in the textbooks
by answering and asking questions and by discussing ideas with
them. The tutors are referred to as T1, T2, and T3, and the
students as S, P, and C. Since gender is not a factor in our
investigations we refer to all participants in the masculine. Two
different textbooks were used; Problems in Mathematics. A

textbook for Economics Studies by Bazanska et al, and Linear
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Algebra and it's Applications by David C. Lay. We will sometimes
refer to these as Text 1 and Text 2, respectively. The interaction
within each of the triads S-T1-Text 2, P-T2-Text 2, and

C-T3-Text 1 was audio recorded and some of it was subsequently
transcribed. This was our main source of data, but other data were
collected from questionnaires and tests given to students enrolled

in a first year linear algebra course taught at Concordia University.

About Text 2

We mentioned in the previous chapter that many linear algebra
textbooks designed for the North American audience introduce the
concepts of linear independence/dependence through formal
definitions (statement 1). Text 2 is no exception and the concepts

are motivated by the following opening remark:

The homogeneous equations of section 2.3 can be studied from a different
perspective by writing them as vector equations. In this way the focus
shifts from the unknown solutions of Ax = O to the vectors that appear in
the vector equations [...] This equation has a trivial solution, of course, [...|
As in section 2.3, the main issue is whether the trivial solution is the only
one. (Lay. pp. 63)

To Lelp the reader put this comment into context we begin by
giving a brief overview of things that lead up to it. In Text 2 the
section on linear independence is preceded by an entire chapter
devoted to the study of systems of linear equations and the first
three sections of chapter two deal with vector and matrix
equations. In the first chapter emphasis is placed on the Gaussian
reduction technique applied to the augmented matrix of a linear

system, and in describing echelon forms of these matrices the
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language of pivot positions and pivot columns is used. The author
also speaks of basic variables and free variables to describe the
general solution of a system. The existence of a solution of a system
is reduced to a test on an echelon form of the augmented matrix: "A
linear system is consistent if and only if the rightmost column of
the augmented matrix is not a pivot column ..." (pp. 22). The
uniqueness, or non-uniqueness, of a solution is stated in terms of
the non-existence, or existence, of free variables. In the second
chapter the sections leading up to linear independence emphasize
the three different representations of a linear system as:

1) an augmented matrix [a) a2 ... a,|b]

2) a matrix equation Ax = b

3) a vector equation x) &) +X28+...+Xp8n= b
Solutions to systems in three variables are interpreted
geometrically, and the question of the existence of nontrivial
solutions for homogeneous systems is reduced to the following test:
" ... Ax = 0 has a nontrivial solution if and only if the system has at
least one free variable" (pp. 58). The student arrives at the section
on linear independence well prepared to solve homogeneous
systems and to say, by glancing at an echelon form of the coefficient
matrix, whether there exist nontrivial solutions or not. The
understanding of the concepts of linear
independence/dependence, as presented in this textbook, depends

very much on this knowledge and skill.
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Student P's understunding

Below is an excerpt from the session where student P first
encounters the concepts of linear independence/dependence.
The concepts are introduced through a formal definition which
is a variation of statement 1:

A set of vectors {v},...,vk} in R? is said to be linearly independent

if the vector equation

X1V]+ XoVvo+...+XKkvk=0

has only the trivial solution. The set {vy,....vx} is said to be
linearly dependent if there exist weights cj,....ck. not all zero, such that

C}Vv1+CoVy+..+CkVK=0.
(Lay, pp. 64)

This definition poses no problems for student P, he reads it and
finds it to be a "straightforward" statement:

2. P: Yes, linear independence, (reads opening remark and definition) [...] O.k., so if
I understand that definition properly it's lincarly independent only if the only
solution is a trivial solution.

3. T: Right.

4. P: And ifit's not then it's linearly dependent, right?

5. T: Yeah.

6. P: So that's pretty straight forward.

The definition is stated in language that student P is \m:  .r
with, and in the setting of Rn the concepts of iitca
independence/dependence are reduced to the
nonexistence/existence of nontrivial solutions for a homogeneous
vector equation, or, equivalently, a homogeneous linear system.
Student P had no difficulty solving such systems and so he felt quite
comfortable with the concepts of linear independence and
dependence as they were presented. At this point the concepts
were not really new for him because they amounted to little more
than giving a special name to a set of vectors satisfying a certain

property which was familiar to him. Indeed, the opening remark
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suggests that the concepts of linear independence/dependence
simply offer a new perspective of familiar ideas, and this may well
reflect the author's intention of unifying notions and of ensuring a
smooth learning experience.

Student P was subsequently able to understand how this
definition could be used in concrete settings, i.e. to determine
whether a given sel of vectors in R? was linearly independcnt or
dependent. For him the concept of dependence was very much
equivalent to the existence of free variables in the homogeneous
system because this is in turn equivalent to the existence ‘of
nontrivial solutions, this understanding was heavily reinforced by
the textbook and the tutor T2. Following the definition is an
example which asks the reader to determine whether a set,

{v1.vg, v3}, of given vectors in R3 is linearly independent. Student P
reads the solution which consists of reducing an augmented matrix
to an echelon form:

16. P: OK.. (rends)" Example 1 [...] Clearly, x1 and x3 are basic variables and x3 is free.
Each nonzero value of x3 determines a nontrivial solution of (1) (i.e. the homogeneous vector
equation). Hence vq, v2, v3 are linearly dependent and not linearly independent."

17. T: Do you understand how the solution works?

18. P: Yeah well they determine through the row operations that there was a free
variable

19. T: Yeah

20. P: so since there’s a free variable there's infinitely many solutions,

21. T: Right

22. P: whatever you give to the value of x3 it's gonna satisfy the equations.

23. T: Sois it clear that you can just reduce the matrix to echelon form and use that theorem
that says a homogeneous system has non-trivial solutions if and only if there's at least one
free variable?

24. P: Hnm hmm

25. T: So you can see right away that there are non-trivial solutions.

26. P: Yeah o.k.

27. T: So the vectors are linearly dependent.

For the student there is nothing new here and it is the tutor

who tries not only to summarize a method which already seems
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obvious to him (student P} but also to emphasize the new naming of
a familiar property. Student P went on to solve similar problems on
his own without difficulty, and each time he equated the concepts
of linear independence/dependence with the
nonexistence/existence of free variables in the homogeneous
system - something which can be determined, in general, after a
series of calculations or operations are performed on the
augmented matrix. Accordingly, we will refer to this type of
understanding as an operational understanding of the concepts
(Sfard, 1991). This type of understanding is due to a fixation on
the operational value of the definition. In Text 1 both the material
leading up to the definition and the examples that follow i
reinforce this understanding of the concepts. An operational
understanding is obviously an important one, but it can be difficult
to break out of. In abstract settings, which require more thinking
than calculating, this type of understanding may actually act as an
obstacle. As an example we consider student P trying to
understand the proof of the fact that any set of vectors {v,,...,vy} in
R" containing the zero vector is linearly depend=nt. Text 2 labels
this result as Theorem 7 and gives the following proof: "By
renumbering the vectors, we may suppose that vi= 0. Then the
equation 1v;+0va+...+0vp= 0 shows that S is linearly dependent.”
348. P: |..] Why do they go "1v]+0v2 and +Ovp' ? OK..

349. T: How would you uhh, why don't you try thinking about how you would show
that a set of p vectors is linearly dependent? What would you have to show? Say you
were to go by the definition.

350. P: That one is a linear combination of the uhh

351. T: That's a theorem actually, that's not the definition it's a result of the
definition.

352. P: O.K.

353. T: Let's sz/you were to apply the definition of linear independence.
354. P: OK.
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355. T: How would you try to prove this statement?
356. P: That uhh, uhh that the system has more than - uhh has a nontrivial

solution.

357. T: Right.

358. P: Then it would be dependent.
359. T: Right. [...]

In trying to understand the proof, student P seems perplexed
by the vector equation 1v;+0vo+...+0vp= 0 (line 348). At first he
doesn't see the purpose of it. The tutor tries to help by asking
student P how he would show that the set is dependent by using
the definition (lines 349-355). Student P's first instinct (line 350)
is to use the equivalent characterization of linear dependence (i.e.
one of the vectors is a linear combination of the others), his
response suggests that this is a more natural formulation of
dependence for him and that he may not be thinking operationally.
This natural tendency, however, is quickly thwarted by the tutor
who points out that the student is using a theorem and not the
definition, he then insists that the student use the definition.
Thus, student P is forced into using a definition which causes him
to think operationally, this is apparent in line 356 where he speaks
of the system having a nontrivial solution. Here, however, his
operational understanding of dependence doesn't help him because
the vectors are arbitrary and so there is no system of equations to
solve. This is a kind of impasse for the student because his
understanding of the proof requires that he use the definition in a
very different way; his firs: understanding of dependence which
focused on the operational vai.c of the definition may be obscuring
the conditional nature of the statement "if there exist weights

C1.....Ck, not all zero, such that c;vy+covo+...+cxv= 0"
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Student P is also confused by the seemingly arbitrary choice
of v as the zero vector in the set, and when the tutor questions
him about this he decides to read the definition of linear
independence/dependence which he thinks may explicitly account
for the case of a set containing the zero vector (lines 363-370}. In
questioning student P's motives for believing this we were led to
the textbook; there, shortly after the definition of linear
independence/dependence, we find the justification of the claim
that the singleton set {v} is linearly independent if and only if v£0.
The argument contains the equation x;v= 0, and because student P
is reflecting on the equation 1v;= 0 (line 371 bclow) we belicve that
it was this claim and not the definition that he was thinking of.
When this fails to help he thinks again about the significance of the
equation 1v;+0vg+...+0vp= O and this leads to a confusing
interchange (lines 371-382) brought about by the fact that the tutor
is speaking about coefficients whereas the student is referring to
vectors.

363. T: [...] If a set contains the zero vector, then we have to show that it's lincarly
dependent, so we have to assume that one of these is the zero vector.

364. P: Hmm hmm, then we do it here, we say let v, =0.

365. T: Do you think there's any problem with assuming that the first one is the
zero vector? Do you think it matters which one we choose as the zero vector?
366. P: (silence) Hmm, I'm going to have to go back here

367. T: Sure, although you were on the right track before wher: you said that we'd
have to show that there is a nontrivial solution

368. P: Hmm hmm

369. T: to that vector or matrix equation.

370. P: Yeah but I'm sure that in the definition, well not sure but I'm thinking
probably in the definition that they're saying that if there is a zero vector then you
can assume something. That's what I'm looking to see, but o.k. (re-reads the proof)
o.k. 1v,+0v,+...+0v, is equal to zero, hmm hmm (thinkes).

371. P. lknow that 1v, =0

372. T: So is there a nontrivial solution to that equation?

373. P: No

374. T: The system as it's shown here has no unknowns now

375. P: That's right

376. T: Are they all zero? (referring to the coefficients)

377. P: Hmm hmm
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378. T: They are?

379. P: Well tv, is still the zero vector

380. T: No not zero vector, not zero vector

381. P: v, which is equa! to zero

382. T: Uhh it is zero, excuse me (both laugh). Yeah o.k., but [ mean - let's look at the

definition again

The tutor then decides to take more control and on his
suggestion student P again reads the definition of linear
independence. Then, by using a sequence of very specific
questions! (lines 384-401) the tutor manages to help the student

understand just how the equation 1v;+0va+...+0v,= O implies the

dependence of the set:

383. P: (reads) " A set of vectors v, through to v, in R" s said to be linearly
independent if the vector equation X, v;+...+X,V,= 0 has only the trivial solution.”
384. T: Let's stop there.

385. P: Hmm hmm
386. T: So once you have such an equation, to say that it has only the trivial

solution to you means what for the x, through to xy ?

387. P: They're all zero.

388. T: Right. Now, we have such an equation but are the x;'s all zero?
389. P: No.

390. T: So? The solution is nontrivial.
391. P: O.K.. (thinks) O.k. in other words
392. T: Hmm hmm

393. P: this x, is free

394. T: Uhh

395. P: because this is the zero vector
396. T: Sure, yeah

397. P. this x, is free

398. T: Yeah, it doesn't matter

399. P: what we use

400. T: Yeah

401. P: O.k.

Student P finally 'sees the light' when he says "O.k., in other
words ... this x; is free". This language suggests that he is still
thinking operationally and we see how persistent a mode of

thinking this can be.

The section on linear independence in text 2 is confined to

R and it includes the geometric interpretation of

! This is a typical example of what has been appropriately called the funneling
pattern of interaction (Wood, 1992).
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independence/dependence for n=2 and n=3. While there are some
good exercises of the "justify or give a counterexample” type which
really test the understanding of the material presented, the
purpose of the section seems to be to provide the reader with the
tools necessary to determine, perhaps by inspection. if a given set
of vectors in R is independent or dependent. Indeed, the type of
understanding required to follow the proofs of some of the
theorems was different and seemed almost incompatible with the
book's implicit agenda. Sometimes student P became so engrossed
in trying to understand the details of a proof, on the tutor's
insistence, that he would lose sight of the greater picture and
almost forget what had been proven. This occurred with the above
Theorem 7; shortly following it student P was trying to determine if
a given set of vectors containing the zero vector was dependent but
he only vaguely recalled "one theorem or definitioch when there was
a zero vector’. When the tutor suggested that he use Theorem 7,
the student was utterly surprised and acted as if he had never secn
the theorem before:

"Wow ! ... That's very simple, eh? ... (laughs) I'm always looking for
the more complicated solution.”

Questions concerning the significance or usefulness of the
concepts never arise in this section of the textbook, nor were any
posed by the tutor during the session. Accordingly, student P really
had little reason to change his operational way of understanding. A
more conceptual development of linear independence/dependence
is given some one hundred and fifty pages later in the book when

the notion of independence is revisited in the context of abstract
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vector spaces. However, student P never got that far and his
operational understanding stayed with him because conditions
which would have perturbed this way of thinking were not that
prevalent.

This is not to say that student P was not inclined {o think
non-operationally about linear independence/dependence. In fact
we've scen that quite the contrary is true and there were other
instances, when he was not forced to use a definition which
induced him to think operationally, in which student P displayed a
much more conceptual understanding of linear dependence. This
occurred mostly in proving situations (of which there were few)
which demanded that student P reason and argue mathematically.
In one such instance student P was asked to justify or give a
counterexample to the following statement:

Ifv],...v4 arein R4 and {v], v9, v3} is linearly dependent then
{v1. v2, v3, v4} is also linearly dependent.

This was his response:

114. P: |[...] Well that has to do with our Theorem 5, the Characterization theorem,
where they're saying that vectorsl. . the set vectorl, vector2, vector3 are linearly
dependent. So that means. . we can also say that at least two vectors in this set are
comb. . are linear combinations of each other.

115. T: At least one.

116. P: At least one is a linear combination of the others.

117. T: Right.

118. P: It's written . . since they're telling us this by saying that they are . . the set is
linearly dependent.

119. T: Right.

120. P: Now the new set. . vector. . is the linear combination in the set vectorl,
vector2, vector3, that same linear combination exists in the new set of vectorl,
vector2, vector3, and vector4.

121. T mm..mm

122. P: Soit's true that that set is also linearly dependent.

Despite some initial confusion about the statement of
Theorem 5 (this theorem is equivalent to our statement 2 of

chapter two), the student correctly applies this result by noting
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that if the original set is linearly dependent than one of the vectors
must be a linear combination of the others. He has an intuitive
sense that this fact is not changed by adding a new vector to the
set, so the enlarged set must also be linearly dependent. Although
the argument is not formal, it is very clear and simpie and the
reasoning suggests that the association betwecen dependence and

linear combinations is very strong for student P.

The operational understanding is certainly not restricted to the
concept of linear independence/dependence (or even lincar
algebra). We see evidence of it in students’ attempts to answer
questions such as 'define the notion of a basis' or 'define the notions
of Eigenvector and Eigenvalue'. We give an example of one

student's responses:

"Basis is found by solving a matrix ... the nonzero rows are the

basis of the matrix'

"Eigenvalues are the roots of the characteristic polynomial
when the determinant is found from the matrix det(A-tl)' and

"Eigenvectors are the eigenvalues subtracted from the

diagonal of the matrix and then solving for the matrix will get

you the eigenvectors"
This is followed by a specific example in which the student actually
calculates the eigenvalues of a matrix.

These excerpts suggest that the notions of basis, eigenvector,
and eigenvalue as abstractly defined objects having certain
properties are meaningless for the student. Instead, their status as
objects is only by virtue of their being products of calculations - for
the student this is really what gives meaning to the concepts.

Examples like these are not so unusual, in fact we believe that

the operational mode of thinking is most common. But this is quite
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understandable if we ascribe to Piaget's view of the construction of
knowledge as being intimately linked to performing
transformations or mental operations on objects or concepts
(Forman & Kuschner, 1977). We may also get a sense of why
operational understanding is most common if we consider the
mathemascal backgrounds of students entering university and if we
consider more metamathematical questions such as 'what is the
role or purpose of a mathematics education in North American
society’. We will not enter into such a discussion here, suffice it to
say that s'ressing only the utilitarian value of mathematics may be
"unpropitious for the flowering of mathematical vocations"

(Dieudonné, 1992, pp. 9).

Student S’'s understanding

Student S followed text 2, so his introduction to linear
independence/dependence also occurred through a formal
definition, namely:

A set of vectors {v,,...,v} in R7 is caid to be linearly independent

if the vector equation

X1V + XoVo+...+X V=0

has only the trivial solution. The set {v,,...,w} is said to be
linearly dependent if chere exist weights c,,...,cx, not all zero, such that

€1V} +CoVa+... 4+ W = 0,
(Lay, pp. 64)

Student S's first difficulties with this definitiorn were related to the
use of different letters to denote the scalars in the cases of

independence and dependence:
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1219. S: (reads definitiun of linear independence/dependence and then re-reads
certain parts _for her own understanding) Let me read this thing again (re-turns to
definition and reads first part of it} I'm confusing the x's with the ¢'s.

1220. T: They're all the same weights. [ mean, they're weights, right?

1221. S: They're weights. (re-reads the definition) But they both end up equaling
Zero.

1222. T: Here is the trivial solution, but you can always have Ax = 0 where x has (is)
a non-trivial solution, right?

1223. S: Right.

1224. T: These are the cases where the weights are not zero. Where the parameters
are not zero, right?

1225. S: What happened to my x's in this equation?

1226. T: It's the same, but they changed it so that - 0.k., read here then (tums back to
opening paragraphl

1227. S: (re-reads opening paragraph)

1228. T: Right?

1229. S: Yeah (very doubtfully)

1230. T: When can it have a nor trivial solution? When x1, x2, x3 are not all zero.
Right?

1231. S: So then you call them c?

1232. T: Yeah. No big deal, what you call them.

From the very beginning student S says that he is "confusing
the x's with the c's" in the vector equation. The choice of letters to
denote the scalars is certainly nct central to the concept and the
tutor downplays this distinction by saying "They're all the same
weights. 1 mean, they're weights, right?". But the distinction
seems important to the student and he notes that the vector
equation is equal to the zero vector in both tbe case when the
weights are denoted by x's and in the case when they are denoted
by c's (line 1221). The tutor tries to focus his attention on the crux
of the definition - the existence of non-trivial solutions to the
homogeneous equation (line 1222-1224), and explains that
dependence corresponds to the case when the "weights are not
(all) zero. Where the parameters are not zero, right?" Student S's
subsequent question, "What happened to my x's in this equation?”,
suggests that the important point for him is not the existence of
non-trivial solutions, but rather that in the case of dependence

different letters denote the scalars in the vector equation. The
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tutor cannot answer his question and decides that an example
might help the student understand {line 1226). Accordingly, he
then asks the student to look at an example found in the
introduction to this section. The tutor tries to make the point that
the vector equation x)v;+xaVo+x3v3= 0 has a non-trivial solution
when x;, x2, x3 are not (all) zero. Student S's response, "So then
you call them c?", again suggests that for him the important part of
the definition is that in the case of dependent vectors the scalars
aie to be denoted by subscripted letter c's.

So for student S we get the sense of his first 'understanding'
of the concepts as they are presented in the definition; for
independence x's are used in the vector equation and for
dependence c¢'s are used. One may well argue that this is no
understanding at all, but rather an obstacle to understanding. In
any case the student is very sensitive to this distinction in the
notation and perhaps because the point of the definition (i.e. the
existence of non-trivial solutions to a homogeneous equation) is not
really new for him, this is what appears to distinguish the concepts
of independence and dependence. This fixation on one aspect of
the form of the definition is in effect obscuring its content, and
thus acts as an obstacle. From the expert's point of view this kind
of obstacle can be difficult to understand and we can see this in the
behavior of tutor 2. In chapter two we offered a short analysis of
the author's rationale for presenting the definition in this particular
form and we concluded that it was designed to offset any ambiguity
about the status of the scalars as the variables in the vector

equation. However, in the case of student S this strategy may have

81



actually induced another problem, one which may be viewed as an
exaggerated response to the author's inteni.  Another difficulty of
student S's, one of a more conceptual nature, was a very shaky
understanding of the notion of a solution of the homogeneous
equation Ax = 0. Let us see some examples of this. In the excerpts
below the discussion is about the column vectors of a matrix A:

108. S:|...] (reads) The columns of a matrix A are linea.ly independent if and only
if the equation Ax equals O has only the trivial solution.” (re-reads) So these will
equal zero, "if and only if the equation Ax equals 0 has only the trivial solution." 1
hate the way that's worded. I feel like I'm going around in circles. (re-reads) These
are the columns, right?

109. T mm..mm

110. S: And they're linearly independent if the equation Ax equals 0. So A times
this vector must equal zero.

[...]

177. T: O.K. You forgot the definition. The columns of a matrix A are linearly
independent if and only if. .

178. S: If there's only one. . if there's only . . if it only has the trivial solution.
179. T: Which means it has?

180. S: Axequals 0.

Student S is quite vocal about how confused he is by the
statement "if and only if the equation Ax = 0 has only the trivial
solution". The statements in lines 110 and 180 are indicative of the
students' lack of understanding of the concept of a solution (and
perhaps of the notion of an algebraic equation); for him linear
independence of the columns of matrix A or the existence of only
the trivial solution is the same as saying that A times x gives the
zero vector. The student makes no mention of a vector x satisfying
the constraint Ax = 0, instead he seems to think that the trivial
solution is denoted by the symbol "0" and is the result of the
calculation Ax (lines 178-180).

This kind of thinking stayed with student S for some time

before tutor T2 confronted him about it:

82




350. T: What does it mean Ax = 0? You're always saying, "When Ax = 0". Ax=01s
the homogencous system. You have to do something for it.
351. S: When are the columns of the matrix linear independence? When there is
only the trivial solution.
352. T: When there is only the trivial solution. Phrase it better. If and only if,
something has the trivial solution? What's the thing?
353. S: If and only if, what thing has the trivial solution?. .
354. T: The system, right?
355. S: Which is then, Ax equals 0. That's Ax equals O.
356. T: So you have to do something with Ax = 0. It's nothing. You're saying they
are linear independence if and only if Ax = 0. What does it mean Ax = 0? If and only
if Ax = O has only the trivial solution. O.K.
357. S: (no response)
358. T: I mean you have to solve Ax=0..
359. S: Right.
360. T: .. tofind.
361. S: Right. The nontrivial solution.
362. ‘T: The trivial solution.

S: Trivial. . independent. . trivial

363.

The tutor tries to make the point that in this context it is
meaningless to speak of the equation Ax = 0 without raferring to its
solution. When he says "Ax = 0 is the homogeneous system. You
have to do something for it". He is trying to impress upon the
student that there is a solution to be found and that finding the
solution involves some work or calculation (line 350). This inakes
little impression on student S who responds by saying that the
columns of A are linearly independent "when there is only the
trivial solution" without referring to an equation. The tutor is not
aware that there is some deep misunderstanding on the student's
part and responds by "treating the symptoms", i.e. he tries to
correct student S's ungrammatical use of the mathematical
language and says: "Phrase it better. If and only if something has
(only) the trivial solution? What's the thing?' The students'
respo.itc “...What thing has the trivial solution?' (line 353) and a
subsequent lack of response (line 357) to a similar line of

questioning suggests that he does not understand what the tutor is

making such a big fuss about and what the point is.
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The actual root of the problem is never addressed and the
student learns that he must use the 'proper’ language and say the
'correct’ things even if he does not quite understand what it all
means, i.e. he learns to say the things that the tutor wants to hear.
This became apparent sometime later when the tutor tested the
student on the concepts that they had covered:

582. T: |...] The columns of A are linearly independent when?
583. S: When, umm .. God! I'm going to say it wrong! They're lincarly independent
584. T: mm ..mm. When Ax =0.

585. S: I was going to say that, but you hate it when I say that. When Ax = 0 has only
the trivial solution.

586. T: Yeah. You're not memorizing are youl

587. S: No. No. (laughing)

The student is clearly apprehensive about responding
correctly; his concern is that his response should fulfill the tutor's
expectations. When the tutor anticipates his response and says
"When Ax = 0" (this may have been a test!), the student's first
reaction is not a correction but rather a confirmation that this was
the response he was contemplating but that "you hate it when I say
that". Then he gives the "correct” response and conforms to the
tutor's expectations, but the tutor begins to suspect that the
response may be feigned (line 586).

This difficulty of student S's has been documented by
Sierpinska & Defence (Sierpinska & Defence, 1994) and is
referred to as an "arithmetic obstacle” because of the way in which
the zero vector is thought of as the result or "solution" of the
arithmetic operation Ax. This is very much reminiscent of the way
that grade school children interpret arithmetic equations: the
number to the right side of the equal sign is seen as the result or

the 'solution' of the operation specified on the left side. It is
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interesting that this mode of thinking in student S was not
detected before the use of the notation Ax = 0 to denote a linear
system. But this is not very surprisirig because one of the aims of
using such notation is to have a simple and efficient way of speaking
about such a complicated thing as a system of constraints (i.e. a
system of linear equations). The notation Ax = 0 represents not
only a decomposition of the system into its constituent parts -
coefficients, unknowns, and right hand sides, but it is also 2
synthesis of all these into a single matrix equation. It offers a
compact and global view of the structure of a system and the
concept of a solution in a way which is uncluttered by the details of
coefficients and variables. The focus is no longer on the these
details, but rather on the relational aspect of the system. This is
very much a structural representation, and for the novice this
perspective of a solution may appear remote from the idea of a
solution as something which is determined through calculation. We
arc thus reminded of the importance of stressing the distinction
between a solution of an equation and the techniques of finding a
solution.

Let us see how student S understood the concepts of linear
independence/dependence before he was exposed to the notation
Ax = 0. In the following excerpt the student is trying to determine
whether a set of three given vectors in R3 is linearly dependent, he
has already transformed the augmented matrix of the system to the

reduced echelon form:
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25. T: From your matrix, ::hat can you tell?

26. S: There's a free variable.

27. T: Whichis..?

28. S: Which is the Xg.

29. T: OK .

30. S: So Xq can be anything, so it's . . dependent.
31. T: O.K. You'reright. It's dependent but. .

32. S: Iskipped logic? (laughing)
33. T: Yeah. Ifyou find the general solution . . you didn't finish writing your general
solution.

34. S: Right.
35. T: How do you write it?
36. S: [write it as. .
37. T: Say .. Say it.
38. S X). .
39. T: No. No. 1 mean, what's the logic in it? How do you write. . ?
40. S: Writing all the variables in terms . .
41. T: Which variables?
42. S: All the basic variables in terms of the free variable.
43. T: O.K. Good.
44. S: You want me to do it? (laughing) X, = 2x3.
and Xy = Xg3.
andx3 is free

So my free variable means that x, can be anything, so it's dependent (in a sing-song

voice).
45, T: Because whatever value you give to x,,, what will happen to X and Xp?

46. S: They'll change.

47. T: O.K. That's why it's dependent.

48. S: Yes, but that's what free variable means, right? Free variable means it
changes the other variables.

49. T: Yeah. But we didn't say in terms of dependent, that's all.

50. S: Oh, O.K

For student S the concept of dependence has been reduced
to the existence of free variables in the system of equations - much
the same way (and for the same reasons) it had been for student P.
The tutor seems to be unsatisfied with this way of understanding
and requests that the student write the general solution to the
system and then asks "what's the logic in i* (line 39). Now this
might seem like a nonsensical question given the fact that the only
logic to follow is that given by the definition; since there exist free
variables the vectors are dependent - there is nothing more to say!
But af we cg¢ in the rest of the excerpt, what the tutor wants is for

the student to express the other (basic) variables in terms of the
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frec variable and to see that there is also a dependence of variables
(lines 45-47) "Thatl’'s why it's dependent' he exclaims. The tutor
may have perceived that student S's understanding was mechanical
so he sought to give more meaning to the concept of linear
independence of vectors by appealing to the more natural, and
familiar, notion of dependence of variables. The student seems to
have accepted and retained this view as is demonstrat.d in an

explanation he gives at a later time:

164. S: [...] What was the question?
165. T: Determine if the columns of A are linear independence? And tell me your
logic.

166. S: Independent. . ? Yeah, because each variable is equal to the. . equal to zero.
There's no free variable so. . the basics aren't. . the basic variables aren't dependent
on any free variable. Docs that explain it enough, because here I have like X = 0,

and Xy =0, and X5 =0. No free variables so that's all it equals to.
So Ax equals 0.

Although student S appears to have some operational
understanding of the concepts he seems to have a wrong
understanding of the notion of a solution of a system. This student
also never saw a more conceptual development of the notions of
linear independence/dependence, and his understanding of these

notions remained at a very mechanical level.

Student C's understanding

Let us precede our investigation into student C's understanding of
linear independence/dependence by first giving a brief description
of Text 1. This book was published in Poland and was designed for
students of economics. It is not a linear algebra textbook per se;
most of the volume is devoted to calculus but it includes a chapter

on analytic geometry and another one entitled 'Elementary Linear
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Algebra'. This latter chapter does not develop the theory of lincar
algebra in any great detail, a few theorems are stated without proofs
and most of the exercises are of ¢ computational nature. The
chapter begins with the space Rn (dewoted as V) in which vectors
are defined not axiomatically but purely analytically as n-tuples - no
recourse to geometry is made. The usual algebraic structurc of R is
established by defining addition and scalar multiplication of n-
tuples. Also defined is the dot prcduct of two vectors, norm, cosine
and Euclidean distance between two vectors. Immediately after the

notion of linear combination is introduced the concepts of linear

dependence/independence of vectors inV, are defined as follows:
A system of vectors (a,, a,,..., &) in V,_ is called linearly dependent

if there exist numbers A4,, 4,,..., 4,. not all equal to zero sinultancously

such that

M~

/lla.=0.

W

A system of vectors (a,, a;...., &} in V, is called lincarly independent if

M~

Aya=0onlywhen 4, =4,=.=4,=0

This is followed by two pertinent theorems and a definition:

PROPOSITION 1. A system of veclors (a,, a,,..., &) is linearly dependent

if and only if at least one of these veclors is a linear combination of the
others.

PROPOSITION 2. Every system of n+1 vectors of the space V, is lincarly
dependent,

A basis of a vector space V, is any system of n linearly independent vectors
of this space.
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Linear dependence/dependence is not mentioned again until
ten pages later when the notion of rank is defined as the maximal
number of linearly independent rows or columns of a matrix, it
seems that this is the intended use of the concept. The concept
then re-emerges thirty four pages later when consistent systems of
linear equations are classified as independent or dependent (i.c.
having one or infinitely many solutions, respectively). Let us have a
look at student C's f{irst reaction to the dcfinition of lincar

dependence/independence:

133. C: (reads) " A system (a,, 8;..... &) of vectors in V, is cailed lincarly dependent

if there exist numbers lambda, okay, not all equal zero, such that the sum from i
equal 1 to k of lambda i a i is equal zero. Is this zero or 0?

134. T: Zero vector.

135. C: Equal zero vector. Does this mean that the sum of these vectors must be
equal zero vector?

136. T: With some coefficients.

137. C: Aha. Not all equal zero. So it is linearly dependent if it is so?

138. T: Uhuh.

139. C: And it is linearly independent if all lambdas are equal zero. If you multiply
a vector by zero then you get the zero vector, right?

140. T: What do they write?

141. C: No, but it's not true for all vectors, it seems to me that it can happen only in
very special cases, very speciul cases.

142, T: That what?

143. C: So that the sum of some vectors multiplied by some numbers gives zero. It
can only happen exceptionally [...]

Some ambiguity about the symbol "0" and the meaning of the

L
equation ¥ A,a, =0 in the definition of linear dependence is

=1
clarified by the tutor. When the student understands the meaning
of the whole statement in the definition of linear dependence, i.c.
that there can be vectors whose non-trivial linear combination adds
up to the zero vector, he has an immediate intuitive sense that such
sets of vectors are rare. This followed just after he understood that

Ov = 0, for then he conceived that it could be difficult to make the

k
linear combination ¥ A, a, equal to the zero vector if the

=1

89




coefficients are not all zero. This seems like a rather subtle thing to
deduce from such a formal statement, and it is interesting that a
novice would come to this realization so quickly. In fact the belief
that sets of n dependent vectors in n-dimensional space are the
more rare case may be mathematically justified. Also historically, in
the context of dependent equations, discussions related to
Cramer's paradox show that the discovery that systems of n
equations in n unknowns could contain redundant equations was
received as something unexpected.

At first student C has no questions about the connotation of
the word dependent in the definition, he seems to accept that this
is just a special name given to a set of veclors satisfying a certain
condition (line 137). It is only after the tutor asks him to construct
an example of a dependent set of vectors that we get a glimpse of
the confusion that can arise from the clash between different
connotations of the word:

156. T: Could you think of an example ¢{ two linearly dependent vectors in two
dimensions, for example?

157. C: ldon't know! Idon't know! I can look for it. Suppose I take a vector, two
vectors, one two, and three four (writes a] = (1, 2) and ag = (3,4))

158. T: Yeah. Are the rlinearly dependent?

159. C: They depend on this lambda as we multiply them, right?

160. T: They are dependent as a system, linearly.

161. C: What do you mean?

162. T: Because we speak of vectors here. A system of vectors is either dependent or
independent.

163. C: Yes, but all this, it seems to me, depends on this lambda. It is linearly
dependent if lambda is such, and linearly independent if lambda is different.

We see that student C makes an almost arbitrary choice of two
vectors in R2, he is not using the definition in a way that would
insure that the vectors will be dependent. When asked if the
vectors are dependent he says "They are dependent on this lambda

as we multiply them, right?" The tutor then responds by
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emphasizing that one speaks of a dependent system of vectors, but
student C does not really understand what this mecans. He scems to
think (lines 159, 163) that whether a sel of vectors is dependent

or independent depends on the coefficients in the linear

S
combination Y A,a;. He does not realize that a sct of vectors is a

=l
priori dependent or independent, instead his choice of vectors
together with his comments almost suggest an understanding of
dependence or independence as something which comes after the
fact, i.e. as properties which can be imposed cn a set of vectors by a
suitable choice of coefficients. [t may be that the student's
confusion between dependence in the sense of the definition and
his sense of dependence on the coefficients is interfering with his
understanding the conditional nature of the definition.

This example also illustrates that drawing the operational
value out of this definition may not be easy for students. Indeed, as
we mentioned in chapter II, the ability to do so usually requires
some familiarity with the different representations of systems of
equations - something that student P did not possess at this point.
Perhaps it is more accurate to say that statement 1 (of which this
definition is a variation) has a potential operational value.

These seemingly serious difficulties faded into the
background as student C finally went on to show that his choice of
vectors was independent, he did this by rewriting the vector
equation L;(1, 2) + Lo(3, 4) = 0 in the form L;1 = -L.23, L;12 = -L24
and then solving this system by the substitution method. At the
end of it all he announces quite triumphantly "L2 must be equal to

0. This means that L] must also be zero, haha! Now YOU find a set
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so that lambdas are not zero! I don't think it is going to be very
casy! " When a set of dependent vectors is finally found, student C
begins to realize that such sets arc not as rare as he had believed.
Student C also had difficulty with the cunditional part of the
definition of linear independence, and it is interesting to see how

he comes to understand the meaning of the statement:

239. C: That's what they say here (reads) "Only if A, =4, =...= 4, =0."

240. T: Then this is equal to zero. Such a combination.

241. C: When they're independent.

242. T: .. is equal to zero only if all the coefficients are zero.

243. C: Yes, but this combination is a condition for something to be linearly
independent (reads) "We call .. linearly independent if the sum (of all this) is equal ..
244. T: Only if .. is equal to zero, only if all the coefficients are equal to zero. And
where do you have ..?

[...]

247. C: Independent .. (laughs) .. It's impossible exclusively when this happens. So
it's independent exclusively when A's are equal to zero.

248. T: Something is not right here .. That's how I understand it.

The tutor senses that the student may not understand that
there are two conditions in the definition. The student considers
each condition in isolation and does not make the necessary
connection between them that could lead to an understanding of
the whole statement. This is evidenced by the utterances of lines

243 and 247 which suggest that he associates independence with

either condition and not both.

250. T: A system is linearly independent if the linear combinatior is equal to zero
only if all coefficients are equal to zero.

251. C: You see how you throw in this other sentence that's unrelated.

252, T: Nol!

253. C: Say it once more.

254. T: We looked at this ..

255. C: No. Say once more what you said.

256. T: The system of vectors (a], ag, ..., ak) is linearly independent

257. C: O.k. Let's stop here. For it to be linearly independent ..

258. T: ..when this equation is possible only with coefficients equal to zero.
289. C: ..when this equation is possible only with .. Aha! Only for that, right?
260. T: Only when all coefficients are equal to zero.

261. C: mm.mm

(.
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272. T: A system of vectors is linearly independent when the only linear
combination that gives zero is such a trivial combination, namely when all
coefficients are zero. In other words . . Do you want it in different words, once more?
273. C: Hold on. No. I have to write it myself, summarize it. (writes} Is lincarly
independent only . .

The student does not see why the statement "only if all the
coefficients are equal to zero" should be included after the
statement "if the linear combination is equal to zero', he accuses
the tutor of "throwing in this other sentence that's unrelated" (linc
251). The statement has to be heard several times before he can

determine that the difficulty is with the word only. The

A
verbalization of the mathematical conditions "if ¥4 a = o only when

-
A, =4, =...=A, = 0" is a linguistically complicated statement: "if the
linear combination is equal to zero only if all coefficients are equal
to zero". This compound statement can be difficult to understand
perhaps because of the way that each part begins with the word if.
If the entire statement is said without pausing after the word zero
(in the first part), so as to accentuate the demarcation between the
two parts, the whole can sound like a confusing run-on sentence.
The tutor is aware that as a spoken statement this is confusing for
the student so he offers to say the same thing in different ways, bul
what the student needs is to write these statements down on
paper.

After an arduous session full of experiments, mistakes, and
negotiations with the tutor, it seemed that student C had some
understanding of the notion of linear dependence. But two days
later, in the next session when the tutor came back to the subject,

it first appeared otherwise:
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1. T Do you remember when a system of vectors is linearly dependent?

2. C; Hem? Well, a4 system of vectors is lincarly INdependent when all the lambdas
are zero [}

5. T: According to your definition (1, 2), (-1, -2 ) are linearly independent.

6 C: What is your point? This is not MY definition, it is a definition from the book.
7. T: Do you agree that (1, 2), (-1, -2 ) are linearly independent?

8. C: If you had different lamhdas, it would be dependent. They are opposites of each
other.

9. T: Does it depend upon the lambdas whether the system is dependent or
independent? |[...]

10.T: Can you give an cxample of two linearly independent vectors?

11.C: writes0(1, 2)+ 03, 4))

12. T: What is lincarly independent?

13. C: This.

14. T: What? This linear combination?

15. C: 1 gucess so.

16. T: A lincar combination is linearly independent?

17. C: This ( points to 0(1, 2) + O(-1, -2) ) is a system of linearly dependent, and this

{ points to 0(1, 2) + 0(3, 4}) is a system of linearly independent.

18. T: What do ycu mean by "this"?

19. C: This equation.

{Sicrpinska, 1992)

When student C says "a system of vectors is linearly
INdependent when all the lambdas are zero" it seems that he
remembers only one of the conditions (perhaps the most striking
one for him) which form part of the definition - he does not
immediately have a picture of the definition as a whole compound
proposition. Even in situations where students are free to review
the definition of linear independence as often as they wish they
often understand only fragments of statements and ignore the
conditional nature of the whole definition (see example in chapter
). For the novice it can be quite difficult to extract the meaning of
a concept from its analytical representation; in the case of this
definition of linear dependence/independence the preponderance
of detail in the notation (e.g. subscripts, the sigma sign, etc.) can
easily obscure the logic and the intended meaning of the statement
(Sierpinska, 1992). When the tutor presents him with the vectors

(1, 2), (-1, -2) as a counterexample to his 'definition' we see
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student C reverting to his way of thinking (one which we thought
he had shed) that dependence/independence depends on the
coefficients (line 8).

Student C is also having difficulty with the grammar of the
terms dependent/independent when he refers t{o lincar
combinations and equations being dependent and independerit
(lines 17 and 19). After this a discussion ensues in which the
student and tutor establish that the object of linear dependence or
independence is not a linear combination or an equation but a
system of vectors. Then student C suddenly remembers everything
as he had first seen it:

C: Oh, I see! This is the same old joke! A system of vectors is linearly independent
IF, right? the sum, etceteras, ONLY when the lambdas, etceteras! (silence) O.k., so the
first is linearly independent because the lambdas do not have to be zero for this to
give the zero vector. And the second is linearly independent because lambdas MUST
be zero for this to give the zero vector.

This is our lasting impression of the student's understanding
of the concepts which resulted from reading the formal definitions.
He was able to overcome the logical, linguistic, and notational
complexities of the formal definition to arrive at what appears to be
a very clear and natural interpretation of its statement. This was a
long way to come for the student and his undcrstanding may still be
a tentative one. We note that Text 1 dces not reduce the concepts
of linear independence/dependence to the question of whether a
homogenous systems of equations has non-trivial solutions. Rather,
the concepts are unrelated to most of the preceding material so
they appears as something completely new - they grabbed the
reader's attention. Also, immediately following the formal

definition, the text gives a sole example of a set of lincarly
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dependent vectors.  The lack of a detailed treatment of the
concepts in Text 1 essentially forced student C to fend for himself
(with the help of the tutor), and through some hard work and
thinking he arrived at a more conceptual understanding than did
students P and S. Student C realized that all the experimenting
and discussing that he engaged in was valuable in helping him
achieve a certain understanding of the notions of linear
dependence/independence. He also had a sense that the
definitions he had worked so hard to understand were more than
just a mere curiosity and that they should have some important

applications:

C: To think that if I hadn't done all this here, hadn't dirtied all this paper, then I
still wouldn't know ... I mean I wouldn't suspect ... | am not saying I am fully
convinced, now but let's say | suppose at this point that this can have some
application, deeper than just curiosity.

In subsequent sessions when student C studied the concept
of the rank of a matrix he did in fact use the concept of linear
dependence to argue that if the rank of a square matrix is less than
it's dimension then the matrix is singular. A lot of time was spent
discussing and justifying this proposition, let us have a glimpse of
his understanding and reasoning:

C: Because it is dependent, so one of these .. these .. these rows is a linear
combination of the other rows .. so this means that all the others can be added,
divided, calculated, multiplied by a minus, and we'll have a row of zero [...] so when
you multiply these, you know [in calculating the determinantj you get zero.

T: O.k. but won't the determinant change when you do these operations on the rows?
C: Well, yeah, it will change but these are normal elementary operations ... You are
not changing the rank here.

Although the argument is not complete, the reasoning is
sound and we get a sense that student C has an understanding of
the usefulness of row operations and their relations to the notions

of rank and linear dependence. This understanding is backed not
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by logical reasons but rather by more pragmatic ones such as the
feeling of the usefulness of the concepts. For instance, the
understanding that the rank is an invariant of elementary
operations is more of a practical knowledge rather than a
theoretical knowledge for student C. This understanding is
reinforced by Text 1 in which the question of the logical validity of
the assertion is never posed. Yet in the approach of Text 1 this
concept plays a central part in solving systems of equations where
the question of the uniqueness of a solution is related to the
concepts of linear dependence and rank. Even the terminology is
suggestive and is meant to reinforce the connection; a consistent
system is either dependent or independent and in the solution
process it is not variables that are "eliminated" (as in Text 2), but
rather redundant equations - those that are linear combinations of
the others.

After student C read the definitions of dependent and
independent systems the tutor asks him if he sees any link between
these and the concepts of linear dependence/independence he had
previously encountered. The student responds by referring to the
vectorial representation of a linear system A;x;+...+Ax, =b :

C: Yes, in a sense, yes because these here .. columns are vectors .. the solution is also
in the form of a vector.

Upon the tutor's request he produces an example of a

dependent system of equations

4x+6y = 4

-6x -9y =-6.
and when asked to explain why the system is dependent, the
student responds:
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-

C: Because the rank of this matrix (referring to the coefficient matrix) is less than
it's dimension [...] Because it's the same, this row is the same as the other one ..
multiplied by something [...] Because, in sum, this is the same thing, in a sense, o.k.
have already learned to understand it in a practical way ... {Sierpinska et al, 1995).

In the end student C had acquired a practical knowledge of
the notion of rank, it was viewed as something that would allow him
to guess the number of solutions of a system, and in this context it
was intimately tied to the concepts of linear

dependence/independence.
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Overview

This report on our observations of three students trying to
understand the concepts of linear independence/dependence is
really a collage of snapshots of the learning process and all its
complexities. Our task is the difficult one of making sense of what
we have witnessed and seeing what whole picture emerges from all
these bits and pieces. We have tried to bring to light difficulties
that students can face when they try to learn the concepts. Many of
these seem to be related to different aspects of mathematics; there
are difficulties with logic, difficulties with symbolism and notation,
difficulties with multiple representations, etc. Globally these can
be seen as difficulties in deciphering meaning from analytical
representations of concepts. While we can document such
difficulties it seems almost futile to try to explain the reasc-s why a
student experiences any one of them, at this point the best we can
do is to speculate. But this is not even the most important thing for
us, rather what is more important, and what emerges from our
investigations, is how different kinds of activities can lead to
different kinds of understandings of the concepts.

This point can be seen clearly if we compare the two extreme
cases of students S and C. In the later case we get a sensc of how
the student's understanding of linear dependence/independence
grows; it begins with his tentative first steps of trying to extract the
meaning of the concepts from a formal definition which seems to
appear out of nowhere, then his understanding is questioned by the

tutor who gives him counterexamples and asks him to produce scts
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of dependent and independent vectors. Student S's activities, on
the other hand, are largely restricted to checking whether given
sels of vectors are dependent or independent and he is never
asked lo construct his own sets of dependent or independent
vectors - such an activity requires quite a different thinking about
the definition and this could potentially have led to questions and
to a different understanding of the concepts.

Student C is a very active participant in the discussions with
his tutor, he is always asking questions and he challenges the
tutor's statements and knowledge. Through this interaction we see
how the student's understanding is always under revision and his
cognitive structure undergoes many re-organizations. Of course
Text 1's development of the concepts is partly responsible for this;
the concepts emerge several times in different contexts and in
different guises, thus forcing the student to coordinate and
synthesize them.

We saw that student C engaged in proving activity as well (e.g.
rank(A) < m = Apxm is singular) and it was through the
mathematical reasoning and arguing involved here that his
understanding seemed to grow even more. This is where he
developed a more meaningful understanding of linear
dependence/independence because now the concepts had a certain
usefulness for answering questions about solutions to systems of
equations - there was a purpose to learning the concepts after all!
These are the kinds of activities and mental actions that drove the

growth of student C's understanding.
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This is all in sharp contrast to the experience of student S.
To begin with, here the roles of the student and the tutor were
quite asymmetric; the tutor was the 'master’ and the student was
expected to play the part of the passive and compliant learner who
trusted the tutor and did not question his knowledge too much.
Also, the kinds of questions asked of the student never deviated
from the agenda dictated by Text 2 so that he acquired only a very
limited and mechanical wunderstanding of lincar
independence/dependence. We never get a sense that this
understanding grew or even changed, and there was little hope of
understanding the usefulness or purpose of the concept because
this came only much later in the text. Finally, there were none of
those activities such as conjecturing, refuting, and proving that are
characteristic of mathematical creativity and which are essential to
bring about change and growth in one's understanding.

Student P is somewhere in between these two extremes. Hec
begins by acquiring an operational understanding of the notions and
though we don't get much of a sense that his understanding really
evolved, we do see glimpses of more conceptual thinking and the

ability and desire to reason and argue mathematically.

Although it has not been the focus of our analysis, it is clear that the
type of student-tutor interaction can have a significant impact on
what kind of understanding the student arrives at. We refer t_he
reader to the study by Sierpinska & Defence (1995) which gives a

detailed analysis of the types of interaction within each of our
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student-tutor-text triads and which considers the effects of these

interactions on the students' linear algebra knowledge.
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CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

The last ten years or so have seen an increase in research in the
learning and teaching of linear algebra. We are not, however, aware
of any published work which focuses specifically on students'
difficulties with the notions of linear independence/dependence.
As far as we know ours may be a first effort in this direction.

Our research method, as described in chapter three, did not
allow the tutors to act in the capacity of rescarchers; all
interactions were spontaneous, no two students even attempted all
the same problems, and there were certainly no pre-planned
questions or problems set for students because we had no clear
idea of what we were looking for. In fact, part of the raison d'étre
for these 'continuous observations' was to provide data whose
analysis would then point us in more specific directions. These
considerations will hopefully help the reader put the exploratory
nature of this research into perspctive.

So what reasonable conclusions can be drawn from such
exploratory research? Our investigations and analyses highlight
several points which we believe are worth pursuing as avenues for

further research:

- At the risk of appearing pompous we assert that this work can be
a valuable preliminary reading for anyone interested in researching
students' understandings of the notions considered here. It may be

particularly useful as a prelude to a comparative study of students’
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understandings that can arise from different ways of introducing

the concepts.

- Given the reality of educational practice we know that students
will continue to have to learn mathematical concepts from their
formal definitions, and considering the difficulties that student C
experienced with the definitions of linear
independence /dependence, we make two recommendations
concerning these:

i) We should try to determine whether some of the difficulties that
we observed our students having with the formal definitions are
geneializable to a larger student population. Most notably, difficulty
with the conditional nature of the formal definition of linear
independence/dependence seems to be a major obstacle to
deciphering the meaning of the statements. In fact, statistics from
some of our ongoing research already confirm that this difficulty is
more widespread; a sample of thirty students enrolled in a first
year linear algebra course at Concordia University was asked the
following question on a class test:

"What exactly is wrong with the following statement:
Vectors vy ,...,vp are linearly independent if ajvi+...+apvp =0
for a)=ag=...= ap= 0"?

Only nine respondents (30%) gave answers that could be
considered 'correct’; while all of these did quote the correct
definition of linear independence, none explained the difference
between the two statements or showed any awareness that the
tautology a,v;+...+ayv, = 0 for a;= az=...= ap= 0 makes any set of

vectors linearly independent according to the above statement.
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ii) We would like to see questions and activities designed to help
students test their understanding of the formal definiiions of linecar
independence/dependence. For exainple, the following might be a
worthwhile assignment: sometime after their introduction to the
formal definitions students would be presented with several
statements which resemble these in some way (as in the cxample
in item i) above). They would be asked to compare each of these to
the definitions and to describe the differences in detail, and to give
examples of sets of vectors which satisfy the conditions of each

statement.

- Historically, the notions of linear independence/dependence did
not simply spring into existence as though they were someconc's
brilliant spontaneous creation. Rather, it was certain contexts
which gave rise to them and this implies that they were somehow
useful notions. For instance, in the context of linecar equations
these concepts are useful for determining the number of solutions,
and in the search for a geometrical calculus they were intimately
related to the fundamental notions of generation and minimal sets
of generators. Their implicit usefulness and purpose in such
contexts is what gives them meaning.

Unfortunately the formal definitions of linear
independence/dependence alone cannot give thesc concepts deep
meaning. This is because formal definitions, in general, represent
abstractions of the concepts, and as such they transport the
concepts out of the contexts which gave them meaning. it is onec of

the ironies of modern mathematics that statements which are
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meant to capture the essence of a concept do so by stripping it of
its meaning in another sense. These sentiments arc supported by
our observations of our students, especially student C who really
began to have a deeper understanding of linear
independence/dependence once he was able to see its use. Prior
to this he had achieved an understanding of the concepts from the
definition, but they had no meaning for him.

Towards a more conceptual understanding of the notions of
linear independence/dependence we make a few more
recommendations:

ii) The comparison of student S's and student C's understanding of
the notions of linear independence/dependence suggests that
certain contexts may enhance conceptual understanding. With a
larger group of students we would like to try out the contexts of
argumentation and proving, conjecturing and constructing
counterexamples. We would also like to see students produce their
own sets of depeadent and independent vectors rather than just

checking whether given sets are dependent or independent.

iv)] Concerning the understanding of linear dependence, we have
seen that different kinds of dependencies come into play; there are
dependent vectors, dependent equations, and dependent variables.
We would like to design activities which would let students explore
and develop the relationships between these and the notion of
rank. The historical analysis together with our observations of
student C suggest that the context of linear systems may be a

natural one for this.



v] We would like to research the design of an cxperimental
teaching sequence which has the notion of linear combination as a
central theme. The linear combination would be presented as the
fundamental operation of linear algebra - as a basic method of
generation. Following Fletcher's approach, the fundamental
concepts of linear independence/dependence, generators, basis,
and dimension could be introduced in this context through their
application and use. They could then be developed more formally

but in a way that reinforces ties to linear combinations.

One of the implicit aims of this research was to impress upon the
reader that the concepts of linear independence/dependence are
rather deep and fundamental. Also, each of the perspectives we
took reveal that these are subtle and epistemologically difficult
notions. Accordingly, we should seriously question the value of any
approach which tries to reduce the notions to merely new names
for familiar concepts, as the procedural approach of text 2 does.
Though this approach may succeed in bypassing those difficultics
related to the logical nuances of the formal definitions, it risks
leaving the student with what we feel is an overly simplistic view of
the concepts - a view which is devoid of any sense of their
usefulness or purpose.

Of course one can argue that an operational understanding
makes for a good first understanding, and this may well be the
rationale underlying text 2's apprecach. But if a more conceptual re-
development of the notions, one which at least gives the student a

sense of their purpose, does not follow shortly thereafter, the
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operational understanding is the only one that students may ever
have. On the other hand it can be argued that the availability of
mathematics software makes the procedural approach rather
obsolete and that students should focus on the concepts only.

This dialectic between the procedural and the conceptual
reminds us of the tool-object dialectic of mathematical concepts
(Douady, 1986) and, on another level, it reflects a certain tension
between a teacher's obligation to give students working definitions
and his/her desire that they acquire a conceptual understanding of

the notions.
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