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/ ABSTRACT

This thesis is concerned with the study of the properties of
¢ -
multivariable positive real functions  (MPRFs) and the realization of

multivariable ladder networks.

Generation of MPRFs by the differential operator and from the

given multivariable real part are studied. The differential Operatoi

-

method proviades various means of generating an n-and {(n-1)-variable *

positive real functions (PRFs) from the given n-variable PRF as well

v

. W
as a necessary test om the coefficients of an MPRF. The problem of

generation of an MPRF'from the prescribed multivariable non-negative real
part is investigated. The numerator and the denominator polynomials of
the réal,part have to satisfy certain conditions. Further, a method of

testing a two-variable polynomial for non-negativeness 1s developed by

extending the single-variable Sturm test. - .
e .

A.multivariable array 1s proposed by means of which the realiz-
ability conditions for the multivariable low-pass ladder network - con-
sisting of pl-type (1 <1 < n) of inductors in series i1n the series armg
and pi-type of capacitors in paralle} in the shunt arms - are given. By
suitable transformations, various other ladder networks are derived.

The realizability conditions for the recsistively terminated léssless

ladder networks are also established.

s

An equivalenCe’ relation 1s developed between a cascade of resis-
[

tively terminated uniform lcssless transmission lines separated by lumped

series inductor on one side and lumped shunt capacitor on the other side

-

and a two-variable low-pass ladder network. This enables the realizability

.conditions for such a mirxed lumped-distributed structure to be derived

¢
N

. Xi
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low-pass ladder network.

in,terms of the twao-variablé .

”

Theyealization of a class of two-variable reactance networks iﬁ,\

The realizability conditions for these networks are derived directly"

.

from the network functions rather than from the multivariable array.
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CUAPTER 1 . .

f [y

- " INTRODUCTION

N

1.1  General: . ;

Linear, lumpcd, finite, passive networks may be complete%' char-
- v

acterized by 5atio‘nal functions bf Ethe complex frequency variable s. A

- .
great deal vof literaturec is availablé.on the properties and realization
J

-~

of such ndtwork functions. “lgwever, 1£'}>‘c allow the netwoprk to include
3 . -~ N
distributed elements as well as lumped elementd, -the network functions
are in general no longer ratloﬂal in s. For exanj 1é, 1f tg’ netwerk. consists
of lumped reactances in addition to commensurate lossless uniform trans-
» T ,
mission‘lIines (unit elementd4, UEs), the network functionsgare irrational.

Similarly, 1f the network consists of non-commensurate lengths of trans-

~ 'S
. ¥
[

mission lines described by pl\= tanh ris. where the different Ti's are
4 ' . )
not rationally related, the network functions once again are irrational
, ,

in any cne of the variables py- Such mixed lumped-dY buted* structures

are highly desirable as may be seen from the following dls'cus'sion.,

1.2 Maixed Lumped-Distrlmted Structures: !

——

There are many usef#l circuits containing both lumped and distributed
ASE 4 -

elements. Commcn examples are networks containing semiconductor elements
,

and transmission lines or wave guides, or indeed networks of transmission

lines alone where lumped discontinuities inevitably occur. And for a

~ s

- P
variety of reasons it 1s desirabl to include the ‘umpod lossless elements
in the microwave networks. In particular the following points may be

claimed as advantages for their inclusaion: ,

*—IT the literaturc, the terms "Mixed Lumped-Distribute@" and "Lumped-
Distributed" are used synonymously.. However, the tern "Mixed{Lumped-

Distributed" appears to be more cemmonly used. As sugﬁ‘;"\::h' term is
used throughout this thesis.

"

s




" P
o / 2
' (i) In the case of mixed lumped-distributed structures, allow-

ance- may .be made for the parasitics in the termirating impedarces, that
i1ss the ferminations need not be purely resistive., Levy has shown
how one or two parasitic elements acrosse a terminating resistor may be

abscorbed in the filter design. . !

(ii) A conventionadl quarter-wave transforrmer gives small or no

attenuation at the higher harmorics. ©On the other hand, the mired lumpeds

~

. 4
distributed immpedance transformer can ke designed tc have the prcperties

of an impedance transformer and a low-pass filter. This prcperty is use-

ful where combined filtering and i1mpcdance transiormation 15 desirable.

(ii1) In-the-case of comb-line filters, lumred capacitive coupling

] * ’ !
at the input and cutjput reductes the filter size by ¢limirating the trans-

2] -
mission line matching section[ .

3

E (iv)  In the case of cascaded UL filters, lthe nurber of UEs can

® be reduced from (2n+l) to n if the cascaded lines are serarated by

v

(n+1) lumped capacitors. ( \

Thus, we sece that there are certain definite advantages of the

o mixed lumped-distributed networks, and hence the study of such styuctures
is essential. However, the realization techniques available in the i

lumped network theory are not directly applicablc |in such cases due to

. \ !
the transcendental nature of the netwdrk functions. In trying to solve

- - s

the realization problem of these wixed lumped-distributed networks,

basically two different approaches are followed. One of them directly

i

‘deals with transcendental functions which we term as the single-variable

approach. In the other apprcach, the transcendehtal functicns of s are

N converted into polynomial functions of scveral variables s and P;- For




A

\
obvious reasons, we term this as the multivariable apprcach. A brief
A

: \
review of both these apprcaches follows. \\

N .

esl.3 Realization by Single-vVariable Apprcach:

For a class of distributed structures, viz; commensurate uniform
transmission lines’ by suitable'transformhsiggp the network functions
can be transfermed inte rational functions of the transfdrmed variable.
Hence,.the realization methods' of the llngar, lumped, finate, passive .

networks can be applied for the synthesis of such a class of distributed «

networks. In particular, by 1irtroducing p = tanh 1s (where 1 1s the'time-

(3]

delay of the transmission line}, Richards has shown that the input
immittance of a network ccnsisting of fln%te numker of lumped resistors,

transformers and UEs of commensurate lengths 1s a jositive real function

-
a

of p. . -

[4]

Kinariwala has derived the realizability corditions for a

resistively terminated cascade of commensurate or non-commenrsurate UEs.
The input impedance function of such a structure 1s expressed as a ratio
. ; —

of sums of exponentials, the coefficients of the expcnentials being real

-

constants. A prccedure for the realization of such a network is alsa

~ -

given.

i

[5) .
deals with

Using &inariwala's algorithm as a guide, Riederer
the realization of a resistively terminated cascade connection of com-
mensurate UEs separated by passive lumped lossless two-port networks.
Thé‘iealizability conditions are obtained in tems of the specification
on the ensignant (numerator of the even part of the function) and a matrix
formed from the polyncmigl coefficienzs of the input impedance in addition

,

to the positive real criterion of the input impedance function. ,



'
’

6 ) . . -
] have proposed a metpod for realizing prescribed ,

.

)

Carlih and Gupta[

insertion loss. characteristics either as a structure consisting.of a .

+ N -

cascade of ULs with frequency dependent characteristic impedances oper-
N ) L4
ating between pure resistances or as a structurge consisting of a cascade

of UEs with constant characteristic impedances operating between frequency

o
-

. dependent loads. The method utilizes scattering matrix normalization

and is implemented by a computer program.
. . .

{7] '

More recently, Gupta has ppresented a numerical algorithm for

the design of eduirxyyle low-pass filters consisting of mixed lumped-
distributed cascade structures. For the filter considered, the number

of ripp£?s in the pass band 1s equal to the number of distributed elements.

r

The elemental valucs of the filter are arrived at by the solution of a

" set of simultaneous non-linear equations, obtained frqm the properties

of the equiripple filter. ‘ .

(8]

Levy proposed a distributed prototype filter consisting of a

cascade of shunt stubs of equal electrical lengths alternating with UEsS, ..
” "8 * )
each having twice the stub length. Depending upon whether the stubs are

T

open~circuited or short-circuited, they may be replaced by kumped cap-

acitors or inductors toe synthesize a mixed lumped-distributed filter.

¢

The methods discussed thus far assume cascaded configurations for

the mixed lumped-distributed networks. To the best of the author's

knowledge, no attempt has been made to treat the arbitrary interconnection

v

of the lumped and distributed elements by this approach.




¢
1.4 Realization by Multivariable Approach:*

The other widely used approach is to treat the mixed lumped-dis-
- n

triQEted structures by the multivariable network functions. By, this
7.
approach, the problem of arbitrary interconnection of lumped and distri-

buted struétureé, as well &s the particular case of cascaded UEs separated . |

.,

by’lumped passive lossless two-ports are éxtensively studied. The avail-

¥

able literature on this approach may be broadly classified as follows:
(i) General Synthesis, (ii) Cascade Synthesis and (iii) Approximation.

The general synthesis covers the properties and realization of a given

»

positive real matrix of two-or n-variables. Considerable amount of work
has been done 1in this topic. 1In cascade synthesis, attempts have been

3

made .to solve the problem of realizing a multivariable positive real

function of arbitrary dedgree in each variable as a tandem connection of

2

resistively terminated commensurate and/or non-commensurate lines separ-

ated by’ lumped lossless two-ports. - However, the problem has been solved

only for the case of two-variable functions where the degree of each
3

variable is arbitrary. Not much work has been done in the topic of

approximation. o .,

1
K

. ~
Before proceeding with the review of the literature in this areaj=we

will present certain accepted definitions and properties of such network

functions.** s

L L .

* The theory of multivariable functiehs has been appl}ed for the synthe-
sis of variable networks(32:33] and.in the design of two-dimensional
digital filtering as welll34:35], But, in this thesis no attempt is
made to review the literature in these aread.

4

" ** It may be noted that these definitions are logical extensions of those

3

for the corresponding single-variable functions in Brune seénse. ‘

RSN
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Definition 1.1: (/

A rational function F(pl,pé...:.pn) of n-complex variables

pl.pz,.(.,pn is called a Multivariable Positive Real Function (MPRF)

9 -

when the following conditions are satisfied:

- [” ‘
. . (1) F(pl,pz,.._.pn) is a real fupction of pl.pz,..,pn. and

f .

*

n

{ii) Re F(pl,pz...,pn) > 0 in the polydomain Re p; 2 a,
i=1,2,...4n. ’ J

Definition 1.2:

N -

' )
A rational function F(p{,pz....,pn) is called a Multivariable

Reactance Function (MRF) when the fblldwing conditions are satisfied:
1

"

(i) F(P)+Pys---sp ) is an MPRF, and

(ll)/ F(pl'pzl..’pn) = -F("plr-pzl -n-"'pn) z

Definition/1.3: . '

A polynomial of n-complex variables bl.pz,..u.pn is called

o N
a Multivariable Hurwitz Polynomial in Narrow Sense  (MHPN} if it has no.

zeros in the regions Re Py > OyeeesRe P, 0, Re p; 2 0, Re P (6 FRP

+1

Re.pn >0 for all i (1 < i < n). Cs

Definition 1.4: e “ Ct

5

A polynomaal of n-complex variables 100 SYEERN] is called

zeros in the open polydomain Re pi > 0, and those zeros for Re p
. . ' N .

must be simple.

L]

Property 1.1, 17 ~ } o

The numerator and the denominator of{an MPRF,prescri

-

irreducible form, are MHPBs.
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_Property 1.2:
The ratio of even to odd (odd to even) of an MHPB is an MRF.
S
~N .
1.4.1 Realization of General Mixed Lumped-Distributed Structures:
[9] (10}

Ozaki and Kasami » motivated by the/earlier work of Levenstein

on variable networks, initiated the étudy of network functions of several
»

variables. In particular they reptrted some properties and realizations

.

of sucH network functions.

Ansell[ll] has shown that the driving point immittance of a finite

network containing commjysurate length UESs a:jﬂlumped'reactances is a
two-variable reactance function 1in P, P, wheXe p, =s and p, = tanh Tts. ’///

In addition, he provided a method of testing for the reactance property

of two-variable rational functions. He has also given a synthesis method
7 , ' .
for two-variable reactance functions based upon the single-variable

[12]

Lunelli's method. This synthesis method requires a two-variable (

polynomial decompbsition with certain properties. As Ansell himself has

pointed odk, the procedure has one drawback: even though the decomposition

S

is assured by network realizahility conditions there is no algorithm

available for the decompositidn.
R

(13

c©

The next advance was made by Koga « who succeeded in synthesiz-
ing any rat}onal m * m two-variable reactance matrix Z(pl,pz) as fthe im-
pedance matrix of a reactive m-port containing pl;type and pz-type react-
ances. Any such reactance matrix may always be realized by a passive two-
variable m-port which is bilateral or non-bilateral depending upon whether
Z(pl,pz) is symmetric ox non-gymmexric. This method leans heavily on the
. theory oé algebraic functions and the strgcture of para;unitaty matrices

and does not guarantee the use of minimum number of elements.




a

4
Youla[l ] solved the problem of synthesizing a two-variable

bounded real m « m scattering m?trix by extending an algebraic theorem

{15}

due to Kalman concerning the deconpositicn of raticnal matrices of

-

a single-variable. The bLounded real scattering matrix w{p

. .

l.pz)whlch is

finite at p, = @ posscsses a deccnposition of'the fom .
-1

- F(p,)1 G{r.) ) v

Wip,/p,) = J(p) + H(p))[p,.1 1 £y

k
\ . M
where J(pl), H(pl), F(pl) and G(pl) are real rat:cnal matrices of appro-

priate orders and are i1dentified with the spattering parareters of a

(m + 2¢)-port passive lumped network. The 2i-ports of the passive lumped
network are terminated by ? equidelay UEs. This method demonstrates that a
regular para-unitary scattering matrix may ;e’r?alized with absolute

s I' ' ) )
minimum number of lumped reactances and UEs.

. -
p——

(16] — vYrcs
T.N. Rao . by defining py =S and p, = tanh

2 2
/ o B

z . . .
r and ¢ are respectively the per unit length registance and capacitance

a

i (where

oé'aAuniform RC-line of length £),has shown that the~m;x§d lumped-distra~
buted network consigtxng'of lunped resistors, capacitors and commensurate
uniféfm RC-lines is equivalent to a two-variable reactance network in Py
and Pye He has given a method of realizing a given m.* m two-variable

reactance matrix, utilizing a matrix decomposition similar to that of

» -~

[~
Youla. This method always yields the minimum number of elements in Py

»

and P,

3
All the three methods discussed above deal wath matrices of swo- .

o o 17 '
variables. In a later contribution, Koga( J has shown that an m X m

i o=
o o ngr




-
0

positive real matrix of several varrables is realizable as the immittance
dees Ny

v s Q . ’\.

matrix of a finite passive multivariable m-port network.* This method

consists of the following steps:

Lo

(i) The givern m - I positive real ratrix NYpl.pﬁ....,p Y is
£ n

converted into an m - M reactance matrix Z(ul,uv,.a.,ur),'whose elements

are bilinear in u (1 < 1 < ). ’ -
N - N

(ii) Frem the derived matrix Z(ul,u ,...,ur), annm x m poly- .

z <

nomial matrix F(:l'u“""'ur—l) which 1s real for real ul, quadratic in

each ui and non-negative Hermitian for Re ui = 0, 1s obtained.

- Ve

tr
(111) There exists a mat¥ix decompositron

’ ?oe gl =M » P e M - l_' 2 e o™
Fluou, r_l): (uyom, bpop) M eyemey, i)

~ /
'

where t indicates the transposition, and M's are of appropriate order.

¥
(1v) From the matrices M's and Z, the imhittance parameters of
%

an (m + g)-port network of u_,u

LM ek are chtained, whose g-ports are

terminated in pr—type inductors. The procecure is repeated until a net-

work of ul—type is obtained, which can be synthesized by the single-vari-

able methods.

(v} ~ By replacing the Li-type (1 <2 < r}) of elements with the

appropriate pj—type (1 < j < n}) of elemerts, the required network is obtained.

The foregoing methods require either ideal transformers or ideal

gyrators or both. However, some work has been done to realize an MPRF

{19]

without transformers. Soliman and Bose have given sufficient con-

[ 20]

ditions utilizing Saito's generalization of Richards' transformation for

* A brief review on the synthesis of rational multivariable positive
real matrices is presented by Youlall8

i

Ry ., X L I T NS R
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transformerless realization of MPRFs. TﬁeyAhaQQ\followed the single-

[21]

variable Bott-Duffin method. ‘More~rxecently, Kamp and Belevitch pre-
\

sented the necessary and sufficient conditions under which an MPRF of

[N

Y
first degree 1n all variables except onchy can be realizcd by Bott-Duffan
method. Both of the alove mentioncd neth®ds point out that although the
Bott~Duffin method can be used to rcalize any given FEP of a single-

variable as'a transforherless one-port, this 1s not the case for MPKFs.

\ .

The foreqoing methods ypertain to the realization of an arbitrary
interconnection of the mult&(i:jab}e network clemernts. Ixtinsive work
has also been done on the problem of realizing multivariable network
functions as a resistively terminated cascade of 'cormensurate or non-
commensurate, uniform, lossless, transmission lines and lumped, passive,

lossless two-port networks.

1.4.2 Realization of Cascade of Mixed lLumped-Distributed Structures:

Cascades of mixed lumped-distributed structures are particularly

important in the design of microwave filters using ‘(LY mode, with or &}th—
. y .
out lumped discontinuities, networks containing seniconductor elements

and commensurate transmission lines, and acoustic filters using pipes

[22-31]

etc. Various authors have studied these cascaded $tructures using

the multivariable approach. However, each author has considered a pre-
e assumed structure. A brief review follows:

[22]

Ansell has given the realizability conditions for a symmetrical

cascaded structure consisting of cemmensurate UEs with a lumped shunt

[20]

, capacitor at its center. Saito has by extending Richards' transfor-

mation to the case of multivariables, studied the realization of the

following structures: p

o3




;. 31
‘L !

(1) Cascaded commensurate UEs terminated by a lumped reactance
&

’

{i1) Cascaded non-commensurate UEs terminated by a resistor, and

. (iii) Cascaded commensurate UEs terminated by a resistor and’

P
5

.o shunted by lumped reactances.

[23]

Scanlan and Rhodes have presented the realizability condaitions
{

under which an n-variable positive real function bilinear in (n-1)-vari-

N -

, ables may be realized as a tascade of passive, lumpcd lossless two-port -

s network separated by non-cammensurate UEs and terminated in a rositive
N - k|

. : e
resistor.

v

(24) t

Sharikawa, Takahasi and Ozaki discussed the problem of - syn-

— *

- thesizing some specific structures consisting of cascaded UEs and open-

circuited stubs. These networks can gerferate more general class of net- ‘

’

b work functions thén those, above mentioned cortributions but still ‘some-

- what res'trictive in nature. ) ‘ y - \
Youla and bttlgs] ¢stablished conditions for the reélizabi%xgy'of a

driviné point impedance as a cascade contalninq‘at most two commensurate

UEs and three shunt capacitors. However, it 1s difficult to extend this

method to cascade structures having more number of élements. Uruski and

(26]

Piekarski have given realréabllity conditions.for a resistively ter-

minated cascade of commensurate UEs separated by shunt 'lumped capacitors
or series lumped inductors. Even though they do not explicitly mention

the insufficiency of the two conditions viz: Positive realness of the
. ‘ S

driving peint function and the corresponding even part conditioni they

« 7 ~

imply the requirement for some additional conditions on the driving point

function for such cascaded structures.




bV

127] '

Kamp gave the realizability conditions for an MPRF of arbit-

t H

) . \
rary degree in each variable to be realizable as a cascade of non-comm-

ensurate UEs terminated in a positive resistor. 1In fact, he has shown

: 4
these conditions tu no cguivalent ;g_flnarlwala‘q[ ] conditicns that N
; L . ad (2] ~
were derived on the single-variable basis. Pecently Foga'® ' has pre-
N PO
, L

sented the realizability conditions for a resistively terminated cascade

-

of UEs, commensurate or non-cammensurate and lumped passive lossless two-

{29]

3
port networks in an arbitrary sequence. S$Subsequently khodes and Marston
' (5\ . - !

have_shown the’ r1hsufficiency of Xanmp's and Koga's conditions by a countex

example following which, &oula; Rhodes and Marstoﬁ[3o'3l] have presentea

the realizability conditions for a résistively terminated cascade of

~
- i

commensurate UEs separated by lumped pa5519e lossless two-port networks.

N There could he many other possibilities of cascaded structures,
each of them requiring a dlfférent.method of solution. It may be pointed
out that all the cascade realization methods discussed above make use of
Righards‘transfor$atio$l20]. Also. the realizabilaty Fondztiong are‘given

‘ []

in terms of the even jart of the MKYRF and its polynonmial coefficients.

‘Finally, we note that sore of the cascade realizations and most of the

general synthesis techniques available in the literature require either
ideal transformers or ideal gyrators or both.

L} .
1.5 Scope of the Thesis: . I -

N ~ \
This thesi1s aims at the study of the even part of an MPRF and

gives the realization of a class of cascaded mixed lumped-distributed
structures without taking recourse to Richards' transformation. Also the

realization of a class of network functiﬁhs by the multivariable ladd#r

networks is studied. These networks require nejther the ideal transformers

-~




a

nor, t};q ideal gyrators. §

In Chapter II, the problem of geneyxating an MPRF by the differen-

tial operator and from the given multivariable real part is considered.

The éeneral conditions under which an MPRF can be generated from the
given real part are studied and some particular cases are treated in }

greater detail. A procedure of testing a two-variable real polynomial
>33

for non-negativeness is given by extending the single-variable Sturm test.

N

Chapter III aintroduces a multivariable array which reductes to the |,

Routh-Hurwitz array for the case of a single-variable. By means of this
13

array, the realizability conditions of multivariable low-pass ladder net-
¢“ . - -
works (MLPL onsisting of series pi-typ%inductors in the series arms

and p; type of capacitors in parallel in the shunt arms) are obtained.

By suitable transformations, other kinds of ladder networks are derived,
)
the realizability conditions for them being given in terms of the MLPL.

Realizability conditions for resistively terminated ladder ne'twqus are

also derived.

¢

In Chapter IV, some equivalence relations are derived between

s

lumped,low-pass,lossless, ladder networks and mixed lumped-distributed
networks._y Incorporating these egquivalence relat‘Qns, the realizability
conditions for a Yesistively terminated cascade of commensurate UEs
separated by lumped shunt capacitor on one side and lhmped series in-

-

ductor on the other are given in terms of the two-variable low-f)ass ladder
' H

~

. network (TLPL), the recalizability conditions of which are already known

from the two-variable array. Also a method of réalizing a cascade of \
1

non—-commensurate UEs separated by lumped lossless two-ports is given.



s

3 r/‘f . -
In' Chapter'V, we discuss the realization of a class of twg-
L : '

T » e a !

3

. T o . N . P i

varx.abl\a reactance,fynctions as structures which are similar to the
P L ¢

a8 ’
X%

single-variable Fodtfer form. From this ‘the equivalent ladder and unsym-

-

o

» metrical lattice structures are cieveloped, and it is 'shb\m that these

networks are a class of TLPL. The partial polynenial derivatives of

such network functions are also studied. Utilizing the above mentioned

ladder networks, transformerless synthesis method for a class of two-

variable PRFs similar to the'singlre-variable_ Miyata|method is proposed’.

- .
a

t

.
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i \ CHAPTER I1 .
| Y N
-~ THE MULTIVARIABLE POSITIVE REAL FUNCTIONS ?
© =
A

*AND SOME PROPERTIES® -

¢ .
duction: -

"
Several -thaoremg ‘concerning the generation and propertles of single-

variable and multivariable pos:.t:.ve real functions are proved in the

literature[9'17‘;2,36 ! . In particular, ‘“f:he following results clasely

. . . . . 7 .
connected- with-the present investigation have been prbved[l ] using the
- s -

e
operation of differentiation:
N »
) - p.

(1) The partial logarithmic derivative —?ql- + 1 <1i <n, (where
- &>

.

B

N is an MHPB*) of an MHPB in an MPRP"

>
(ii) A multivariable positive real matrix (MPRM) remains an '
L ' -
MPRM under partial polynomial differentiation.
- Y
: . . . . : )
Such results do exist for the single-variable case ﬂlso.
* N N

1 v '
In the case of a single-variable, there are several metidds of

gen*ting a positive real function from the given real part[‘u] . ‘t is

F
N ~

* The—following mathematical notations have been used throughout the thesis:

-

! I ~

e . i aN(pllp2‘1p0~an)

3

N(p P l"-;p ) = 7 ) = N N
y 172 n ' Bpi . Py . :
D(p,,pPys---sP} =D ¢ ‘
1 ‘n_‘ 'N“' 3D£Pl'pz:~~-cpﬁ) 1 5 i<n
. - D
Qlpy Py -eepy) = @ : . 3p, P, s

. AV
1 v T
’

{ -
Multivariable Hurwitz Polynomial in Broad Sense: MHPB

!\‘ -~ n "~ . -~
I y.N =N ; L B.D =D ; I 6,0 =0

i=1 Y By . 4=} * P

¥ 0 |

and it is assumed that y's, B's and §'s are positive constants.

]

».

[ 4 . /{* - , ! A R
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known that, in the case of single-variable, if the given real part is
non-negative for all real frequencies, a positive real function can always

be generated an turm-test can be applied for testing the non-negative-~

. ! a
ness of such functions.
L)

-

In this chapter, several methods of generating MPRFs and a method

of testing the real part of a two-variable function for its non-negative-

v
’

ness are presented. Section 2.2 deals with the generaﬁloh of MPRFs by

the differential operator. In section 2.3, ‘the generation of an MPRF

. Vs '
grom the given real part is discussed. The conditions under which an

MPRF can be generated from the given real part are studied,‘xfn section

2.4, a method of testing the real part of a two-variable function for its
non-negativeness 1is presented.

2.2° Genetation of MPRFs by Differential QE?ratorl42]:

We present the key theorem to this ‘section, whach is the multi-

\
variable version of Talbot's theorem[38'39]. Utilising this theorem,

v .

several methods of generating MPRFs using tﬁé\leferential Operator are

studied.

—
o

¢
The multivariable real rational function (or - 5) 15 reduced and

ol

positive, if and only if!( N + j a D) is an MiPB, where o is any real,

non zero, finite constant and the term "reduced"” here means that N and D

. have no common factors in the open polydomain Re P, >0(1 <ic<n.

B
i

Proof: Necessity: .
N N ) .
1f D (oxr -~ B) is a reduced MPRF, N and D have no zeros in Re P; >0

and hehce ( N+ j a D) # 0 in Re P, > 0. Suppose N+ jaD =0 in

Re p; > 0, then Re % = 0 there, which is not possible and hence the necessity

- \
N

follows.

& M
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Sufficiency:

Assume that (N + j a D) is an MHPB: Then D # O in Re p;, > 0. If

~

D = 0 in Re Py > 0, then for large values of a, N+ j a D = 0 contrary
’ i
to the hypothesis. Her.ce % is regular and not imaginary in Re Py > 0;

. . \
that is Re % # 0 in Re p; ? 0. Since %—is a continuous function of the

variables PyrPyr-v-1P s and if the sign of Re %-is opposite at two sets

<

of points (plo,pzofﬁ\z,pno)a?d (plo'pZO""'pno) in Re Py > 0, then there
ﬂu
must be at least one §et of points in the open polydomain where Re g-is
zero, which is not possible. Hernce,* Re % > 0 1n Re p; > 0. Thus the

theorem follows.

v

Corollary 2,1.1:

If (N+ j o D) 1s an MHPB, so is (N - j a D) and hence their pro-

duct (N+ jaD) (N-3 aD) = (N + o’ D%) is also an MHPB.
.. . . . . [43]
This is the multivariable version of Brockett's theorem for
the case of a single-variable.
Thecrem 2.2:
If N/D is a reduced MPRF, so are (provided they exist)
N
: ) p;’
(i) the partial polynomial derivatives, i.e. e (1 <i<n)
Lt
F 4
m, mi'
.3 W/p,
(ii) the iterated-partial polynomial derivatives, i.e. -
° s . i i
) D/Bpi

.and (iii) the mixed partial polynomial dgrivatives, i.e.
a a a

k 1, %2 n
3" N/3p)".3p,". t.. .3p

where a, + a_ + ... + &4 = k
a a,e a 1l 2 n

k 1, %2 n
3" D/3p, 43Py + .ev -3p

n




» -

'(i)~ 'If N/b is an MPRF, by Theorem 2.1, we have (N + j a D)

.

is an MHPB for any real a. Since the partial-derivative of an MHPB is

also an MHPE, (Np + ja Dp ) is an MHPB and hence by Theorem 2.1

i 1
N . -
b4 o is an MPRF. To determine the correct sign, let N and D be expressed
p. ' .

1

A J -
as polynomials of Py

< ¢ 2 r
_ N " o +Cp; *C,p TH e+ C P

i.e. 1et~~6 = > -
+ cew P o 3

dop + dyp; * dypy M

¢

-

N * . . .
where the c's and d's are pplynomlals in pl'p2'""pi-l'pi+l""'pn' We

[y

'
- cr \‘,\ . ‘
~we know that r - r”“ = * 1 or 0 and E—- is (n-1)-variable PRF or a
xr” .

(9]

positive constant . Then

~

N r
. Py . <, + 2c2.pi + e aeae + r.c P,
_D = I
P; d1 + 2d2.pi T 3 'dr"pi
. >N
cr ) Py
If 3 has to remain positive, then - 5 cannot be positive. Hence
)2 p. ’ '
i
N
128 ,
L+ > is the MPRF.
Py
. . y ) B
This furnishes an alternate proof for Koga's . result for an 9
MPRF. .
. Np .
{ii) If N/D is a reduced MPRF, then we have E~£ as a redugea
P.
i

, r ' .

MPRF by the above proposition. ‘Then (Np +ja Dp ) is an MHPB for any
# ' ' i i :




3

2 . 2. T

. N %3
real a. Hence ( ) is also an MHPB. By @& preocess similar
. : 17 :

3, 2
%k op;

i

to the one followed in the above proposition, we conclude that

L
BZN/apiz . 4 .
5 1is an MPRF. Thus, by repeating this process m. times, propo-

L4

2 1
9 D/Z)_pi .
sition (ii) is proved. ‘ oA
X 3aln E aaln
. (iii) . For'a reduced MPRF N/D, we have (—= +3ja <) as
\ - N l * l o
an MHPB.
aa1+lN aa-l+lD .
Then,. the partial derivative w.r.t. Py (——-;—-—-——— +ja -——a—-—-—-—) is
Bpl .3p2 apl .3p2 .
. l\ u -
also an MHPB. Similarly the polynomial ’
k k .
( 3 N Y+ ja ) ) where a +a_+..+a =k
a a a a a a 1 72 n
. 3 1 3 2 ap I 3 1 3 2 3 n
. Py <3P, - ... 3P S EEL) SUEEETRRY )
T is also an MHPE. _Hence by proposition (i), we can conclude that
) . a a a
aFN/apll.apz SN T . .
» + " 3 a is an MPRF.
% 1. 2 n ‘
3 D/Zip1 f'sz e eoe .apn : ‘ s ‘
Theorem 2.3: .
- N
' If B— is a reduced MPRF, so are . .
. N
(i) = . )

and (ii) ——F% | '

,"’



N ! © ¥ :%‘u
t -7
7 f .
. . ‘ 20, ' .
) > ¢ * .
Proof: '
. . ,
. 4
. n R
. Y N N N 2 N
L'p) Y27, Tn P 1=1~YI Py
. . Since N is an MHPB + +...4 =
. A N N N N
N - . - .
=5 isan MPRF. Hence, W and (¥ + B.N) are MHFBs for positive ,
~ conmstant B. Similarly D ard (D + 8.D) are MHPBs. Since (N + j a D) is |

~

©an MHPB,(N + j a D) and [(N + B.N) + j a (D + E.D)] are also MIHFBs./,

Therefore by Theorems 2.l -and 2.2

, . .

A Ta

(1) N/D
S i gl '
and (ii) Q—“—)—@—g— . : .
(D + 8.D) . - 7
- ‘ had §
are MPRFs. : » , ) « ) T
r bt ’
a
Corollary 2.3.1: > ) «
N . : oo . '
1f p i@ reduced MRF, so is N/D. ‘ - .
Proof: _ : s J . ’

For N even (odd), N'p 1l <i < n are odd (even} and for D odd (even),
-~ -~ b

Dp are even (odd) polynomials. Hence N ard D are respectively the odd
i e . - .
*

(even) and even (odd) polynomials. Thus N/D which is an MPRF, is an odd
o

function and: hence an MRF.-

v

Corollary 2.3.2: : \

% : ’ !
If N/D is a reduced MPRF (MRF), so is

_ ey N ’ ‘ I o
N + B*l.D .
. an

»

D+ 82.N ‘ ®
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Proof: . : o ,
. . N+81.D~ L1 1
- . We have =~ F =~ + ) y
’ D+ 8_:N D N D 2 N
> wtfry "t R
8,0 L D

As the individual terms on the right hand side are MPRFs (MRFs) their °

sum is an MPRF (MRF).

"

Corollary 2.3.3: : ’ s

if %‘ it a reduced MPRF (MRF), so is . ’

»

.
N.D + Bl.D.k

-~ -~

D.D + BZ.N.N

Procf:

N.D + Bl.D.N

We have y = = Lo v
D.D + B,.N.N h

¢

1 1

~ + P ’

D N Bz‘“ D )

e xntBpT gt o ~
D 1° B..N - ’
1
¥

Since the individual terms on the right hand side are MPPFs (MRFs), their

sum is also an MPRF (MRF) . \

Theorem 2.4:

If g ie a‘'reduced -MPRF,. 50 are .
: .N.O + O.N )
(1) B ~ - v N - .-(2.1)
B.D.Q + Q.D S .
} ¢ s ° ey
-
il
' | -
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ana (i) £Ne@ * N.C , ..(2.2)

where Q is an MHFPR.

Proof: . .

~ -

Iy
(i) . Since N and Q are MHPBs, [% + B. 8} . N
- L

is an MPRF. Hence [Q.N + B.N.Q] is an MHPB. Similarly [Q.D + B.D.Q} is

also an MHPB.

+
For an HPRF N/D and MIPB Q we have [N_:%—k + 8. 2l is a
multivariable positive function. Hence (Q.N + B.N.Q) + ja (Q.D + 8.D.Q)

is an MHPB and by Theorems 2.1 and 2.2

~ A P

N.O + O. .
M‘__g___Q_,: is an MPRF.
"B.D.Q + Q.D

LY

~ o~ - -

(ii) We can prove that (B.N.Q + N.Q) + 5 o (8.D.Q0 + D.Q) is

an MHPB. Hence by Thecorems 2.1 and 2.2

A A

. - + N.
B.N.Q+ N.Q h MPRF.

~ o~

8.D0.Q + D.Q .

Corollary 2.4.1:

1f % is an MRF and Q is an m-variable odd or even Hurwitz poly~-

nomial in Broad sense, then (2.1) and (2.2) are MRFs.

Proof: - N .

¥

Let us consider that N is an even and D and Q are odd polyna;xials.

We can prove the same result on the same lines for the other combinations

as well.




¥

A A

For the case under consideration (8.N.Q + Q.N) and (8.D.Q + D.Q)

are multivariable even polynomials whereas,(8.D.0 +'QVD) and (B.N.Q + N.Q)
o

o

are multivariable odd polynomials. Thus, the MPRFs (2.1) and (2.2) are

—

odd functions and hence are MRFs.

Theorems 2.1 to 2.4 provide some methods of generating an MPRF
from a qivén MPRF. In Theorem 2.5, we show a method of generating an ,

(n-1)-variable PRF fram a given n-variable PRF.

It may be noted that iflgl:

r
¢, + c,.p, + «.. + C .p
N 0 171 r -1
F(pl,pz,...,pn) =5 = = ..(2.3)

. r
do + dl.p1 + ... dr"pl

B

is an MPRF, where ‘the 4 anq di are polynomials of Pyr-eePp and

s dr’ Z 0, then

r-r”=4%1 or O,and

r

3 is a positive constant or {n-1)-variable PRF respectively.
r” '

4

Using this result and Theorem 2.1 we prove the following theorem.
I

Theorem 2.5:

. C. .
IfF = is an MPRF, then 33 (0 < i < r-1) are (n-1)-variable

i

ol=z

PRFs of pz,p3,...,pn. L

Proof: Case (a):

Let r = r", Making 1 %— transformation and keeping the other
1

variables unchanged in (2.3), we have

A3
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1 N(s ,p,...,p; c .sr+c .sr-l ...+ © \
Fls..p ) = 1'F2 n _ 071 1°71 r
1827 '"n" 7 D(S,,PursesP ) r r~1
1°72 n do.sl + dl'sl +...1 dr
<.(2.4)
is an MPRF of S ePyreeerPp and Cyr d0 7 O.
c0 '
From (2.3), — 1is an (n-l)-variable PRF of p_,pP,s---,P . By
do. ‘ 2°73 n
Theorem 2.2 , the partial polynomial-derivative of F(Sl'p2""'pn) .
w.r.t. Sy namely
‘h
Ny roc.s5t +(x-1)c £-2 +c : - -
F (s ) - 1 - . 0. 1 1.51 . o r—l
- 151 F2r e P Do r.a.s"h 4(r-nd "0 4 Ll d
: ‘ 1 "% %1 R R | RS |
..(2.5)
is an MPRF of SytPye--eePp o
. ) ) .
2 Now making s, > 5T transformation on (2.5), we obtain
Pl .
. rec # (r-—l)cl.pl ...t Cr-l'pi‘l
F.(p,+Pysseesp ) = — ..(2.6) ‘
- 1712 n r.d_ + (r-1)d +...+ d =1
. -dy 1°P) teeo r-1'P1
From this ,——= 1s an (n-1)-variable PRF Of p.,P.s-««sP_-
d 2'73 n ,
r-1
R Thus, by the process of repeated transformation and partial poly-
nomial differentiation, we arrive at the conclusion that

o %1 i Cr-1
P e, ==, iee wes =, vaa,. == are (n-l)-variable PRFs. h
d d N d. d -
0. 1 o iy r-l

Case (b): . . ' -

. Let r = r’+l, Then (2.3) becomes:
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¢ : r
+ Ci. +...t . '
. s cy-Py S
W F(plu,pz,...,pn-)'= -1 -.(2.7)
. ceot .
do + d1 Py + + dr—l Py
o1 - °
we know that' ™", 1s identically equal to a positive conctant.
- r_l . -
At Making P, > é— transformation in (2.7), we have
- 1 )
c..st + ¢ sr-l; + cC + ¢
rls . 0°S1 1°51 =151 </ .
1'F27 " Pn da_.st + 4 sr-l+ +d + d .
| R 2t B Bt SRR 2 S ) |
..{(2.8)
Sq - i .
—— 1is an (n-l)-variable PRF of p_,p_,...,p . By taking the partial
dO 273 n
derivatives of the numerator and denominator w.r.t. sl’and then making
1 .
sl + — transformation in (2.8), we get_
1
r-1
- + - . . +... .
r.cg (r-1) Py + c . _1°P}

- Fl(p1IP2'°--:Pn) = ee(2.9)

r-1
. + -1) .4,. .
rdO (r-1) dl p, + ’rdr__1 P,
CI‘
By earlier reas\,oning, 3 is an (n-1)-variable PRF of PyrPyrecerP -
r-1

© )

Thus once again by repeated transformation and partial polynomial differ-

c c c
c s 0 1 r-2
entiation, we can prove that — 3 cr 3

' are (n-1)-variable
- 1 r-2

o

PRFs of pz,p3, ceetP -

case (c):

Let r = r"-1. This iﬁ equivalent to considering that the P, degree

of the denominator 1s one greater than the numerator degree. -




Then
c. .+ c,.p, + + C pr-l
0 1771 r-1""1
F(p, ¢PrreeceeD } = ..{2.10)
12 n d +d +...+ d =l Bt '
o T Gtk Tt Gp0Py r P1
c - .
We know that., 3 1s identically equal to a positive constant. By "
X

’%)_»’

following a procedure of repeated transformation and partial polynomial

differentiation as 1n Cases (a) and (b), we can conclude that

’
&

o ©1 ) Cr-1 “ ’
— Ty eees are PRFs of p_,p.s+..,p_ - Thus.the proof of
0 1 -1 2 2°73 5 n

the theorem follows.

S£] .
Instead of expressing N and D as polynomials i)n pl. if we express

them as polynomials of either P, or P3eree-e or P, we can prove that the
€1

corresponding e (0 <3 < r-1) are PRFs of the remaining (n-l)-variables.
i

>
]

Corollary 2.5.1:

c.
. 1 .
If F(pl'pZ""'pn) is an MRF of PyrPoree P s then di (0 < i< r-l)

are (n-l)-variable reactance functions.

Proof:

’ ) ©)

By applying Ozaki and Kasami's condition in all the above cases,

. . \
.we arrive at the above conclusion. ‘

v
9

Thus Theorems 2.1 to 2.5 provide various methods of generating
MPRFs from the given MPRF using the operation of differentiation. It may
be noted that Theorems 2.1 to 2.4 hold true for single-variable as well f\/

as for multivariable functions. Regarding Theorem 2.5, in the case of

single-variable PRF, the ratio is always a positive constant for all .-

-

Jx-
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.
9
coefficients and in the case of MPRF, it is an (n-1)-variable PRF for

the first (r-1) coefficient ratios and an (n-l1)-variable. PRF or a positive
constant for the highest degree coefficient ratio depending upon the
difference'in the degrees. This theorem provides a necessary test on

.

the coefficients of an MPRF.

2.3 Generation of an MPRF from the given Real Part:lM]

B
".:Ir;‘the synthesis of single-variable network functions, the numer-
ator of thg“eve.n part of a positive real function (PRF) plays an import-
ant ro‘le. . Methc;\'dg are avallable for generation of a PRF from the given.

even partMl] v Al2o it is known that if the given real part is non-

4

negative, a PRF can always be generated.

In the case of a multivariable positive real function (MPRF) also,

M, +N
= 1! ) .
Z(pl.pz,...,pn) M’)+Nz (where the M's and N's are respectively the even
Mle - N1N2
and odd polynomials 1n Py+Pye ....pn) . the even part, 2“ > occupies
M2 - N2

‘a dominant role in the cascade realization of mixed lumped-'disi'.ributéd .

ngtworks. However, there does not seem to be any study made regarding

the real part of an MPRF. |

In this seétion, the generation of an MPRF from the given multi-

a9

variable real part Ts studied. The conditions under which an MPRF can be

.

generated from the given real part are discussed. '

N

From the definition®f an MPRF, the even parttze(pi) = [Z(pi) +

<

Z(—pi)] shall be non-negative for Re P, >0, (1 <1i¥n). Given

M. +N ) MM, = NN
, it is evident that Ze(pi) =
22 7 MD N

Z(pi) = can be determined

——ar
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. . .
uniquely. It is also known that, in the case of a single-variable, a PRF

can always be generated from the given non-negative real part. In thi;
section we‘lopk at the question: whether it is possible io generate an-
MPRF Z(pi) from thé given non-negative Ze(pi)' and if so,fwhether-?ny

conditions need be. satisfied? For the sake of convenience, the case of
two-variable functions will be considered. These resulsts are applicqbleiz-
for the case of n-variables.as well. Before goiﬂg into the details of i

generation, some properties of the even part are studied.

Definrtion 2.1:

The kth degree* n-variable polynomial
r

k 3 i i, A
Q(p tPrarveesP y =L L a, . T ep P, - P
1 2 n . . - », KRRy ] * teee -
6j=0 11.12,...,1 = l1f‘12 n 1 2 n
. S. - N
iyt g+ i =73

il'iz' . e .'in!

is a polygomial in pl.pz,...,pn with no missing terms if a
i i ' in
the‘cogfficierhs of Py +Py seeerP 0 is a non-zero, constant for all

combinations of il' iz, ceey 1

-

Lemma 2.1:
!

1f Z(pl.pz) is analytic in and on the boundary of the domain
Re P, 2 0, Re P, 2 0, then the minimum value of Re Z(pl'pz) in this

domain occurs along P, = Ju, i = 1,2.

Proof:

Let us consider

N

* The term "degree" here implies the total degree of the n-variables
unleﬁf otherwise mentioned.
Y ’ \ ~ /
u'




-Z(pl.pz) -Re z(pl.pz)

e = e

Max .
In the open poly;}omain Re
AT

. ‘-Z(Pl:pz) ?

N e
‘e o is also analytic

thebrem, we have:

, <«
"Z(Plrpz) <
e ;
Max.
I . Re p;
. '-Z(pl.pz) 3.
Since e’ .
Max.
’ Re p
, [

>

-

r

B = -Re Z(pl'pz)

" =Im Z(pl'pz)

¥
-~

p; > Q, , z(pl.pz) is analytic and hence

b '}

-

2

»

in that region. The’n,pby imum modulus

the lemma follows imedia;e‘ly. .

o

-Z(Plopz)

e

h

" =Re Z(pl':p;) ‘

(&

p. > 0.

zpz) ‘
Re pi = 0

Re Py ‘> o, )

5 X .,

Thus, if the numerator and denominator of a given two-variable
function are Hurwitz polynomials in the narrow sense, it is sufficient
. b |

o R . . I e
to test’the given function on juw; -axes for the real part condition. -
PR Y . .
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. N ®
1 ~ M. M _-N.N ' Aw, ,w.)
. o I S W e S
. ; Let Re 2(Jwy,ju)) = Ze(pl'p2)l 2 2 77 B(w, ,w.)
’ =ju M; - N, 172
. Pi7I% i
. S ° : p, =i,
(2,110
be a real rational nonp-negative- function of w, ‘and w.. A(w.,w.) and
’ 1 2" ‘12’
b “ B(w.,s.) can be arranged as follows:* .
. 1"72° & el
q
¥oa. ’\ 2 2t .
Mpl,pz) = (Ao,o +:A0'2.w2 et Ao.z::""z ) .
Py=39y ‘ : !
-~ 3 2t-1 ) ‘
+ “’l(Al,l'“2 + A1'3.u2 + ... Al,zt-l'wz )
‘ o ) ]
A .
‘ ‘. ~
[} . . v
s '-‘- . ’
LY ’ °
3 > 2 /
. . t .
. + .« e . i LY .
‘ . Pag,0 * Mg, 27 * Ryt ) (2.12)
‘) ) and . \
A -
. 2. ‘ 2r T
- - + . .wa . ’
£ Bo,0.% Bo, 2092 * * By, opua )
- ) . ' ’ 3 2r-1 - ’
. N By ey By geup ¥ eee By oyl )
' ¢ . |
‘1 - ' ,
’ ' 2 2 2%
3 s r
| . + ml (8254.0 + BZs.Z’wZ + .. t BZs.Zr'wz ) -+ {2.13)
7l " -2
where the coefficients A's and B's are real constants. P

M ~
L

- i3 ,
* - .
Ai,j and Bi,j are coeffun{ents of Wy (:2 term ‘ )

t
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2.3.1 Properties of B(pl,pz):

-

2 2 "
From(z.lli.B(pl,pz) =M, - N, = (M) (M, -N) e
Hence '
(1) B(Pllpz) = B(‘pl,"Pz) Tum
. &
b (ii) B(le,sz) > 0 for gll real wy and W, .
: pub
(However, B(jml,jwz) may be equal to zero for wy = w, = Q)

¢

(iii) B(pl,pz) is a product of the factors [Si(pz).pl + ui(pz)ll

[-Si(~p2).pl + ai(-pz)], where the 8's and a's are polynoq{als of o, and

ai(pz)

2% 0 for R . ' .
Re Bi(pg) > or Re P, >0

It may be Gbserved that, ‘in the case qf a single-~variable, prop-
erties (i) and (1ii) imply the same, whereas it is not so in the case of
multivariable functhns. Also it may be noted that property (i) is
implied by property-(11i), but not the converse. This is the main diff-
erence between the single-variable and multivariable Hurwitz polynomials
Factorization.n Utilising these pr&perties, we give, in the following
the;rem, the c?nditions under which a given B(pl.pz) can Bé factorized as
Q(pl,pz).Q(pl,-pz), which is a product of two-variable Hurwitz and anti-

Hurwitz polynomials. (A.method of determining Q can be found on page 34).

This solves the problem mentioned in [45]).

Theotem 2.6:
)
A two-variable real polynomial B(pl.pz) can be factorized as
!
B(pl'Pz) = Q(pl,pz)- . Q(-p;.-p,) where 2(pyrp,) andQ(-p,,-p,) are res-

pectively the two-variable real Hurwitz and anti-Hurwitz polynomials in

o ’
o .
poh&row sense, if and only if B(pl'pZ) is a product of factors of the

nature [ﬁi(pz).pl+ ui(pz)].[—si(—p2)-pl+ ui(°?2)] w?ere for Re p2 > Qi
B.(p.) ' k -

Re —i?—zr > 0.
@i 1Py

4

o




Proof: Necessity:

It is known that a given two-variable polynomial can always; be

factorized into the product of irreducible factors. Hence, Q(pl.pz) and

% Q(-pl,rpz) can be factorized into their irreducible factors. Because

Q(pl,pz) is a two-variable Hurwitz polynomial ih the narrow sense, it

does not have any zeros in either Re Py > 0, Revp2 > 0 or Re P,y > 0,

Re P, > 0. Immediatly we notice that the factor [Bi(pZ)pl+ ai(pz)] contributes

. to the Hurwitz character in the narrow sense in two-variables, and hence

[-Bi(-pz)'p1+ é}(—pz) corresponds to the anti-liurwitz portion. Hence Q(pl,pz)'
is ‘formed as a product of factors of the/fature [Bl(pz)plﬁxl(pz)] and
Q(-pl.-pz) t?;é/of [—Bl(-pz).plf ul(-pz)]. Thus the necessity follows.

Sufficiency:

-

Since B(plapz) = H[Bi(pz)-pl+ al(pz)]-{—Bi(—pz)-pl+ al(-pz)]. the first
factor on the right hand side contributes to the Hurwitz character in the
narrow sense in two-variables and the second factor gives rise to the anti-
Hurwitz portion. As B(pl,pz) is a product of such factors, by associating
H[Bi(pz).pl+ al(pzn with Q(pl.pz) and H[-ﬁi(‘pz)-pl+ éi(-pz)] with Q(-pl.-pz).

we obtain the required result. Thus the thecrem follows.

As an example, even though the polynomial

. 2 2 22 2 . 2
B(pyrpy) = (1 =4 ppy =Py ~ Py + PyP)=(1 - PPyl - (py+p,)

does satisfy properties (i) and (ii}. it does not obey the property

-

(iii) and hence it cannot be an eligible denaminator polynomial of

ze (Plopz) -

)

2.3.2 Properties of A(pl.pz):

iy )
We have from (2.11) that A(pl.pz) = Mle - NlNZ'
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' Hence it satisfies the following properties:

(1) A(pl,pz) = A(-pl,'pz)

(1i) A{yw ,jwz) > 0 for all real values of w, and s and'

1 1

]

{21i) ¢t < r, L <s and hence (t + &) < (r + s).

It may be noted that there is no necessity for A(pl,pz) to satisfy a

condition similar to property (iii) of B(pl,pz). Thus, even though

N
to N

2 2 . .
(L - 4 PP, - P} ~F + o, p ) cannot be an eligible denaminator poly-

nomial of Ze (pl,p2), we see that 1t can be a numerator polynomial of
Ze (pl'pz)' However, there are certain other restractions imposed upon

A(pl,p2), which we will be discussing in Section 2.3.4,

2.3.3 To calculate (M2 + 1) from the given B(pl,pz):

We know that B(pl,pz) can be factorized as B(pl,pz) = ﬂwlkpl,pz),
where wi(pl,pz) are the irreducible factors. If the given B(pl,pz)
satisfies the conditions of Theorem 2.6, by assigning the left haif
polydomain roots to (M2 + NZ)' we obtain the required two-variable
Hurwitz polynomial. Even though the factorization of the type B(pl.pz)

(M2 + N2).(M - N2) is quaranteed, no systematic procedure ‘is known for

2

the factorization of two-variable polynomials. Hence, we present below
a systematic method of calculating (M2 + N2) fram the given B(pl,p2):

'

i i

S r .
Let us assume that (M, + N_) = )X I b, . .p l.p 2, where
2 2 . R i,,1 1 2
i,=0 1i,=0 172
1 2,
i i
the bi i 1s the non-negative coefficient of P, P, - From this assumed
1772 .

"
-

(M2 + Né). calculate (Mi - Ni) and equate the resulting even bolynomial

Pl

4
in P aqd P, to the given B(pl'p2)' It may be seen immediately that we
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get a set of non-linear eguations in b's and the nymber of equations are

more than the number of unkniowns.
/

“* If the given B(pl,pj) is of degreé¢ 2s in Py and 2r in Py the

resulting equations and unknowns are resgectively [(r+l){s+l)+r.s] and
/ .

(r+l)x(s+l), providing an %xt%a set of r » s equations. Instead, if the

degree of B(pl,pz) 1s 2k, the number of equations and the number of un-
{k+1) (k+2)

e
knowns are respectively (kt1l)" and 3

thus, providing an extra

k(k+1) )

set of ) equations.

¢

Thus, in either case, there are some extra eguations. If a solu-
tion has to exist, these equations must be consistent. Since by Theorem

2.6 the decoq9051tion of B(pl,pz) into B(p_,p.) = (H2+N2).(M

BreP, Ny s

2

guaranteed, we are assured of the solution of the set of equations.

v

[

Step (1):

A

o

]
From the assumed value of (MO-N;), putting p, = 0 and equating to

b .

B(pl,O), we can obtain the coefficients of the type bo o' bl o' P20,
’ ’ L4

cans bi 0 etc. similarly, by putting pl = 0, the values of the coeffi-
’

. . 7 e
cients of the type bo'o. bO,l' bO,Z""’ bO,]"" etc. can be calculated

immediately. To calculate the coefficients of the type b.1 3 where
’

1,3 # 0, we proceed to step (2).

Step (2): .

[y

Consider the equations whose pl—deqree is one and pz—degree is
(2-1), where j = 1,2,3,..,r. From this set of equations, the values of

b1 j can he calculated. Similariy. consider the set of equations whose
3

-

pl—degree is 2s and pz-deqree is 2j. From this set of equations, we can

immediately get the values of ps i Next, consider the equations, whose
L]

i
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pl—degree is 2 and pz—degree is 2j, by solving which, we can obtain the

values of b2 3 Similarly, by solving the equations, whose pl—degree
, .

is {2s-1) and pz—degree is (2j-1), the values of b“s-l 3 can be calculated.
. < ]

Thus by pioceeding in this manner we can calculate the values of b, .,
’

0<i<s, and 0 < J < r fram (s+l).{(r+l) equations.

Step (3):
| By substituting the values of the b's in the remaining r.s
equations, we can test for the consistency of the equations. Thus by

this process we do not encounter redundant equations while calculating

-

for the b's.

-

If, in-Step 3, the equations are found to be inconsistent, the
conclusion is that the given even polynomial does not satisfy the con-

ditions of Theorem 2.6.

Example 2.1:

Let us c¢onsider .the two-variable Hurwitz polynomjal

- 2 2
M2 + N2 = (4 + p1 + p2 + p1p2 + p2 + plpz)
]

Calculating B(pl.pz) we have

. 2 2 22 24 4
B(p,spy) =16 = py + 6 pyp, + Tp, - PP, = PP, + P,

- '

Let us assume that we are given the above B(pl,pz) and calculate \

(M2+N2) by the procedure discussed earlier.

’ .
Solution: : “ N .
‘ h -
Let M, + N, = L z b. ..p,.p
2 2 i=0  §=0 i,j "1

t

By calculating Mg - N; fram the assumed (M2+N2) and equating it to e

given B(pl.pz) the following set of equations are obtained: by
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o P =16 -+ (2.142)
\ ) )
bly = 1 ..(2.14b)
2b_.b__-b> =7 2.14
00°°027 701 - --(2.14¢)
bZJ =1 2.14d
02 --{2.14d)
2 b .by =2 by by =6 ..(2.14e)
2b),.b "2 by b, = 0 ..(2.14f)
b2 - 2b b =l - : 14
11 10°°12 T — - §2.149)
2__1 2
bl, = “ ] ..(2.14h)

As expected, there are eight equations and six upknowns leaving two extra

o

equations. By solving 2.14(a) and (b), we get the values of b00 and

blO as bOO = 4, b10 = 1. By solving 2.14(a), {(c) and (d), the values

of b _, b ., and b0

00 o1 are obtained as b =1, b = 1 and b = 1. The

2 00 01 02

. : N ¥ =
equations 2.14(d) and (e} give the values of blI and b, as bll 1,

b12 = 1. The equations 2.14(g) and (h) are extra and when the above
calculated values of b's are substituted in these equations, thef must
be satisfied; otherwise the eguations will be inconsistent. As could
be seen immediately when the values of b's are substituted in 2.14(g)"°
and (h) they are satisfied, thus we obtain the original polynomial with
thch we have started.

2.3.4 To Calculate (M +N)) from thed given Alp .p,) and (M +N,):

—
The Brune-Gewertz method of the single-variable thecry is utilized

for this purpose.

-~

4

-

It must be pointed out that the other methods_of generating PRFs

1]

from the given real part in the single-variable case may not be applicable

LN . v
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for the multivariable case, as the factorization of the multivariable
Hurwitz polynomials similar to the single-variable Hurwitz polynomials

is not known.

Let us assume ’ b

where s and r are respectively the pl-and pz—degrees of (M2+N2) and .

'

a,. are real  non~negative constants. Calculating M M_ - N N_ from
101, 12 12

the assumed (M1+Nl) and the given (M2+N2). and equating the coefficients

\with A(pl.sz. a set of linear egquations is obtained which may be put
\ s

in a compact form as follows:

2s 2r i +i
-z L (-1)12.a..i.xx~uv .
i =0 i.=0 1712 1’%2 W
1 2
Xl= X2=
1l+xl=u 12+x2=v

L .
such that 0 <uc< 2s and Q <v < 2r.

Once again there are (s+l).(r+l), unknowns and [(s+l).(r+l)+s.r] equations

.0

resulting in an excess of sxr equations.

. The above set of equations can be arranged in the form of the
\‘
following matrik equation .- C— -
. »
) (SIO[QI = [A] . ' -

where [P] is the coefficient matrix consisting of the given b's; (Q]

- is the col;nnn vector cohsisting of the unknown a‘'s, and {A] is the column v |

vector consisting of the given A's. The order of the matrices depands

“ . , D
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o

upon the type of denominator polynomial under consideration. If the

* given (M2+N2) is of degree s in Py and. r in P, then -

[B] is of order [(s+1) (r+l) + s.r] x (s+1)(r+1)
(&] is of order (s+l)(r+l) « 1, and

13

(A} is of order [(s+l)(r+l) + s.r] <1

Instead, 1if the given A(pl,bz) 1s of degree 2k at most and (M2+N2)
" is of degree k with no missing terms, the set of equations can be arranged
in a compact form as follows:

2k 2k 1,41

I ot fa b =
i)=0 i,=0 1't2 KyrXynoowey
' x,=0 2
i1+x1=u 12+x2=v

N\

where 0 < u < 2k, © < v < 2k and 0 < u+v < k.

jﬁ;éléﬁiiL unknowns and

‘ 2
In this case there are (k+l) equations and

i

-+
hence Ei%~il extra equations; and the orders of the matrices are as
follows:
" 1 2
- {B] is of order (k+l)i x iﬁi~lébi~L
. (k+ .
fA] is of order Letl) . (k22) 1, and .

2
. 2
fA] is of order {(k+1)” x 1
For the existence of a solution in either case, the following conditions
Ll must hold:
(a) For the consistency of the equations:

Rank of {B) = Rank cof [BA}.Z

(b) For the solution to.be unigque:

| A -
Rank of [B] = ‘k”’z"k” . Af (M) is a k™ degree
\

N '~

-~

N
¢

~ N N .

o : L gt . ‘ -

1 “ ~ Lo Tl T BN iy e o . N
T S VN e e by e




polynomial with no missing terms

{
1

= (s+1).(r+l), if p -and p,-degrees of mz*"z’

are respectively s and r.
Once we know that the equations are consistent, the evaluations

¢

of the a's can be done as outlined below. Here we give the method for the
case where the pl-and pz—degrees are respectively s and r. For the case

of the degree of M2+N being k, the same method can be applied.

2

Step (1):

From the calculated value of (Ml.Mz—Nl.Nz), by putting P, = 0 and

-

equating to A(pl 0), we obtain the coefficients of the type ao 0’ al o'
’ 1] ’

a; 4 etc. Similarly, by putting p; = O the values of the coefficients

of the type a »..- etc. can be calculated immediately. To '

0,0' 2,1’ 20,2

determine the coefficients of the type a, 5 where i, 3 # 0, we proceed
. )

to step (2).

\ Step (2):

Consjder the equations whose pl-degree is one and pz-degree isg

(23-1), where' 3 = 1,2,..., ¥. From this set of equations, the values of-

a 3 can be calculated. Similarly, consider the set of equations whose
’
N
pl—degree is 2s and pz-degree is 2j. From this set of equations, we can
. rad

immediately get the values of a, 5° Next, consider the equations whose
. .
pl—degree is 2 and pz—degree is 2j, by solving which, we can obtain the

values of a2 j: Similarly, by solving the eguations whose pl-degree is

2

(2s-1) and pz-degree is (23-1), the values of a can be calculated.

(25-1) .3

Thus proceeding in this manner we. can calculate the values of the

coefficients a, 5 0<i <s-and 0<j < r from (s+i).(r+1{ equations.

’

.




SteE (3): . .

By substituting the values of the a's in the remaining s.r
equations, we can test for the consistency of the equations. Thus by

this process we do not encounter any redundant equations while calculating

)

for the a's. ! o
v

The same method is applicable for the functicns of more, than two-

-
variables. It may be noted that the MPRF generated 1s unique within an
additive reactance function.

t '

Example 2.2:

Let us assume that -

2 2 ’
(1-4 pIS.(z + pg)

Zo(PyPy) = o -2 6 w9222 _ 24 4
PTERp T BRI TPy TRR, T PRy TR,

o ~

" Calculate a two-variable positive real function by the above discussed

N
method. - .f’i?"‘\

r w\}
\

Solution: . ‘.

1,

-

* From Example 2.1, we know that the given B(pl.bz) satisfies the R
Al

25 2
conditions of Theorem 2.6 and the calculated (M_+N,) = 4+pl+p2+plp2+p2+plp2-

From this (M,+N,)'and the given non-negative A(w, ,w,) we will calculate

1
for (H1+Nl) as below:

2

I a pi P
0 j=0 1'? 1

- J
Let M +N, = ,

H ot~

i
' .

Calculating (M M,-N/N,) and equating to the.given Alp,.p,) . the following

. ~
set of equations is obtained.
= ' o {2.15
4 a0 4 ’ ( a)
= N ‘ . e 2.15b
26 16. . , ( )
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‘ a00 + 4 aoz—a01 = 4 : o , «+{2.15c)
a5, =.1 - .. (2.154)
- - = I .
. \ﬂ - g * 4 a}l_alo ag, =0 ) % \ ..(2.15€)
AN _ / a, * all—a01-?12 =0 - 1 \ .. (2.15¢€)
. ' .
T aptaggay, =o-le | ..{2.15g)-
& ) \ ‘
a, = 4 . | ..{2.15h)
Y.
Thus,there are eight equations and six unknowns providirg twoe extraj °

equations as expectéd. By solving equations 2.15(a) to (f), the values

of g's are obtained as below:

-

aOC =1, alO = 16, aO2 = 1, aOl =1, all = 4, a12 = 4

. ‘ X .
By substituting these values 1n 2.15(g) and (h), we find that the edquations

are consistent.

The two-variable positive real function that 1s generated fr

the given ze(pl,p2) 1s:

.

v 2 2
1+ 16 pl + p2 + 4 plpz + p2 + 4 plpz
Z(pyrp,y) = 2 2

4+ Pyt Py *t PPt Pyt PPy

1f (sznz) 1s a polynemial in PP, with no missing terms of degree
k. then the above matrix equation can be arranged as shown in equations '

(2.16) and (2.17) respectively for the cases k cven and k odd.

Depending upon the terms that are present in [A] and [B{. the
- above mentioned conditions (a) and (b) can be tested. It may be obsexved
that, §;&;ke the case of a\fingle-variable. where a PRF ¢an always be
1)

generated as long as the real part is non-fiegative, it is not necessary .

to have a two-variable PRF and hence an MPRF gencrated even if the real

4 .

part is non-negative unless the condition (a) is satisfied. ' «~"//

¥




A
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We can see, from'the matrix equations (2.16) and (2.17), that if

' . . . t . .
. the given (M2+N2) is a polynomial of k B degree with nc missing terms,

~then all the submatrices [Dl,ol, [D ], C < i< k are non-sinqular.

0,1
‘et .

- . . , . 2
@ Thus for both k even ard odd, the matrix [ B] is of rank ﬂ(:-l—;——(——‘ﬁ-—) .

/ ;
. \
Hence, whatever the terms that are present in [A], for a solution to exist

¢ be (k+1) (k+2) .

the rank of [%A] 2

discussion deals with e general conditions under which an MPRF can be

generated. Some particular é‘ases of the Ze(pl.pz) are considered in

Chapter III. . o

- * <
Bt N « !
. .

¢

q
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T
D, _. o] (1 <i<k) is matrix [D, ] with the last i number of :
. k=i,0 " - - k,0 o]
columns and i number of rows deleted, and similarly (DO kil

\

-~
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L

Vo

2.4 Testing the Real Part of a Two-Variable Positive Real Function:

-

A two-variable rational function Z(pl,pz) is positive feal. if
and only if: | St /

(1) Z(pl,pz) is real for real Py and Ey and
(ii) Re Z(pl,pz) > 0 for Re P, > 0, i=1,2 -

Condition (i) can be tested by inspection, hence we concentrate on the

—

testing of condition (ii). By Lemma 2.1 if, Z(pl,pz) 1s analytic in the
right half polydomain, then the minimum value of Re Z(pl.pz) occurs along
jwi-axes. Thus, if the numerator and denominator of z(pl.p2) are Hurwitz

polynomials in the narrow-sense, which can be ascertained by Ansell's

1 . . :
method[1 ], the following procedure for testing the non-negativeness of

-

Re 2(pl,p2) along jmi-axes can be applied..

A(wl.w )
Let Re Z{(jw,,jw,) = ———— be a real rational function of
1 2 B(Ulrmz) [
Alw, ,u.)
wy and wy- For Z(pl.pz) tq be a PRFr;E?;;TZET > 0 for 0 < ]ul? < =,i=1,2.

i
i

Since B(w sw,, oOnly A(wl.wz) need be

,uz) > 0 for all real values of wyrw,

\

1

tested for non-negativeness|

i
If A(wl.mz) can be factored easily, then the testing for non-neg-

. . iy . .
ativeness is simple. Also, since the factors which are independent of

46]

!
the other variable can be found easily( , we assume that the given

A(wl,wz) is not having any factors independent of the other variable.

Such Afw .uZ) can be arranged as below:

1 *
' |
f ' \
P Alw, ,w.) = A’ + (A bz + A W,w, + A mz)
’ 12 0,0 2,0""1 1,1 “1°%2 0,272 .
K - J .
4 2 2 3 g
ﬂf + (A4'0.wl + A3'1 wyew, + A2,2 wl.mz + Al,3w1°w2 + A0'4w2)
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2q wzq-l.w + .t

2q
R T L 2 3,292 )

A(ml,u2) must be non-negative for == < y < «@, the testinq of which

1’2
is divided into the following steps:

”

Step (1):
In this step, the non-negativeness of A(wl,wz) is checked either
for 0 < ‘wll <, @, w, = 0, +t = or for wy = 0, t =, 0< lwali © depending

upon the convenience by means of the tests listed in Table 2.1.

Since the resulting A(w ,m2) for Tests (1}, (2), (7) and (8) is a

1

single-variable even polynomial in wy Or Wy 1ts non-negativeness can

be determined by the known methods.

Tests (3) to (6) can be carried out by inspection. By means of

Tests (1) to (5), A(ml,uz) is testled for the range of 0 < iwll < @ and

w, = 0, ¥ =, Similarly, by means of Tests (4} to (8}, A(wl.m2) is tested
for the range of w, = 0, £t = and O < |w2| <@, If A(ul,wz) is tested ‘foi’
)

non-negativeness either by Tests (1) to (5) or by Tests (4) to (8) we S

proceed to step (2). It may be noted that for testing the entire ranges

|

of ml and wz, either set of the above mentioned tests is sufficient in '

this step, sigce the remaining ranges will be covered in the steps to |
follow. Without loss of generality, it is assumed that Tests (1) to (5)
' -

are performed-and A(w .wz) >0 during that range. Of course,‘if A(ml,w2)¥ 0

1

BN

during that range, the given Z(pl,pz) is not positive real.

. i RS ‘l

Step (2): : —

For covering the remaining range of Wy

1

and W, we follow an extended..

Sturm test as described below.




P

TABLE 2.1

The real part at particular values of
) ! and wz._
z
1
Values .of w, and w
Test No. 1 2 The resulting Alw,,w,) .
"L 2 — - ‘
1 0 <fu ¢ 0 A+ A ol
-1 - 0,0 2,071
2 oy | :
< < w doc + ¢ een
O <lwy Aoot ¥ Azl t * ‘
3 0 *= The highest degree coefficient in
) ~o alone
A * 2> A + + + ...+ A
® 2q,0 © Pag-1,1 * Pag-2,2 0,29
ta -x g - + -+ .+
5 : Ara,007 Pag-1,1 * Pag-2,2 20,24
6 teo 0 The highest degree coefficient in.
* w. alcne
1
. ' ) ‘s
H be 4 R + ..t
7 0 Oflwz,__ w AO,Q AO.2 w, AO,‘Z W
X ‘
—~ ]
* o RN SR '
.. 8 = psluyle el Ay, ot 8y,
x)
. -
\ . i
) ’ -
\é N
) .
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The given A(wl,mz) is arranged as a polynomial in w the coeffici-

ll

.cients being polynomials of w, as in equaﬁiorr (2.12) . Let Po(ml,wz) ’ .

Pl(ml.mz) «.. etc. be the correspopding Sturm functions which are givent

as below:

i
4 2¢

' -1
. fo(wz) + wy ‘fl(w2)+.-.+ fzg(“’z)

Pl

"
Po(ml,wz) = A‘wl.,wz) = wy

20-1 . 20=2
Prlopewy) = 20 - foluy) + (0D ) LE twy) bty (0)
P (v ) - - k )+ @2t3 (W) +e. .t (w,) B
1 P3N0 Rt U 1o D LRSS WS AL P YRR P YIS 1L
P_( )= 0?3 h () 4 et b (W)
Rt Sk A T R A Y B R
\
- \\‘ \n‘
X . L

]

Pzz(ml'“z) = yo(mz).

The above Sturm functions are calculated by considering Po(m

l:wz) .
as a polynomial in w, . Thus
. ‘ Vo, ‘“:" >
. . . dPO(ml,mz)' €]
1'Y1r%2 aw g
1 -
. /
P_(w,,w,) w R, (w, ,uw,)
vwe have that mPO(ml 2) = 2—;4- Bl(wz) +\fl( 1) ; (i ) *
1% o 2!ttt
L
, Rl(wl.wz) .
where ———————— is the remainder. Since f_(w.) is non-negative for all
: fo(wz) 0" 2

real values of Wyr We consider the next Sturm function Pz(wl.u2)= -Rl(ml.mz) .

The cases when fo(wz) = 0 for real values-of w_ will bg;’t:onsidered in

2
Step (3) . - ‘

re- - -

Similarly when Pl(wl.wz) is divided by Pz(ml,m;z)" to give a two-temm

i)
» . R Y
- - N
»




) #

/

Ry (wyrwy) 2
quotient, let —————— be the remainder. Since go(mz) is non—negative
go(wz)
f 11 1 i .} = - R . .
or a real values of wz, we c0751der P3(wl,u2) Pz(ml,wz) Again,
the cases when go(uz) = 0 for real values of w, will be dealt in step (3).

Thus, on similar lines the Sturm func¢tions are obtainéd. As a

. . . 2 2
resu%t qf multiplication of the runaln?ers by fo(uz), go(mz), ho(uz)...

etc, the Sturm functions are polynomials in o_,w. rather thar being ratios
’ \\‘

12
o

of polynomials. For finding the non-negativeness of A(wl,uz) for the
values of 0 < !wll < = and O <|u2] < =, the Sturm table 1s formed as

shown in ?able 2.2.
Q

.

Since P's are polynomials of .., instead of being constants for

<

ml = * », the evaluation of their signs is not straight forward. Hence, ;

to obtain the signs of the P's, the entire range of w

> is divided such

S

that during any interval under consideration none of the P's ch?nges
sign. Since the P's are polynomials, the number of such intervéls are

finite. Thus instead of having one Stumm table, we will be havihg a
’

nunber of them covering the entire range of w and for each interval the -

2

sign of the P's is evaluated and from that the number of sign variations

V. o for w, varying from - « to + = is calculated. Thus if

' 1
gm'm ¥ 0, for any interval of m2: A(wl,mz) goes
7 p negative and hence Z(pl,pz) is not
positive real. ’ |
LA, = 0, for the entire range of w, {except at the real ze;os
. of fO' qo, ho. . yO. which is going to be tested

next), then proceed to step (3).
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Step (3):

Po(wl.wz) is tested for fixed values of w_, the range of

A 5 being

1

varying from -« to + «. The fixed values of w, are the real roots of

folmz), go(u2){ ho(mz) . yo(uz). Thus, 1f Po(ml,uz) is non-negative
for all these fixed values of w, - which is again tested by Sturm test -

the given A(ul,w2) is non-negative for O flmli <, 1= 1,2,

—~

L " Thus by daviding the range of W, and covering the entire range

. of,ml at one stretch, we could cover the entire range of w, “and Wye Now

1

the~following comments are in order: -

(1) If fo(w2) 1s having any real root - which obviously must

be even multiplé - then fl(mz) must also be having the

same real root, 1if A(ml,uz) is to be non-negative.

~

(ii) Similarly, if fZQ(wz) is having any real root, so must

” be f2Q-1(w2) at the same value of Wy

'

(iii) 1f Pl(wl,wz) = 0, then Pi_l(wl,mz) is é factor'of secon@

. \
4 3 i H * o ~
order in Io(ul,mz) . ) ‘
(iv) If Pi(ul,uz) = 0 for some partlgglar value of w, = uzo(say),
3 -~ ' &
then pi—}(ul'UZO) is a double root of Po(ul,wz).

£ ‘

w . D

Example 2.3:

Test the function

¢

. 2 2, 2 2,.' 22
2lpep) = M1+Nl . 2+ 2 p1+2 Pyt Pyt 4 Py p2+p2+2 p1p2+2 plp2+2.plp2.
1P T T g 2, o2, + p2
L4+ Py ¥ 3PPyt PYPp Y PRy T PyRy -

». 2 2

-

1 ‘ -
v for the two-variable positive real property. ¢ ) . ~

t




-

1
\

Solution: Y [ '

-

To apply the above testing procedure for the real part, we test

[11)

by means of Ansell's method whether the numérator and the denominator

are two-variable Hurwitz polynomials in the narrow sense.

Testing the numerator polynomial for Hurwitz character: v

. _ 2 , 2. 2 2
H(pl’pz), = (2 + 2. p2+p2)+ pL.(Z + 4 Pt 2 p2)+ p1(1+2 P, * 2 pz)
we see that

2
H(pl,l) = 5+8p1+ 5 p;

o

is having its roots in the open L.H.S. plane of p;-

»
oy 2, . _ 2, 2
H(Jml.JwZ) ~“[(2 wl) + wz.( 4 ml) + wz( 1+ 2 wl)l
. 2 2
+ {2 w, + wz.(2-2m1) + wz(-2w1)]

1

The corresponding polynomial matrix is given by:

¢
' 2 4 _ 3 1]
- l‘ w, * 2 wy Wy =Wy |
D{wy) =4 x , -
o, - 2+ 2 +
I U B

L 2. 4 2 8.
Its successive principal minors, 4(1—w1+2 ml) and 32(1-w1+w +w1) are non-

Lol <3

negative for all real values of w tlence the given numérator polynamial

L

is a two-variable Hurwitz polynomial in the narrow sense.

Testing the Denominator polynomial for Hurwitz character:

. 2 2 2
H(pl.pz) = (1 + pz) + pl(l + 3 py * p2) + pl.(p2 + pz)

= | a

Then we see that \ L ) )

-2
H(p,,1) = (2 + 5p, +2 p))

AN




is having its roots in the open L.H.S. plane.

A

D1#5 [0 4 (1=02) 9 ()]

.

H(]wl, jmz)_ = (l+m2.(~3 m1)+m

The corresponding polynomial matrix is give

.2, 4 3 °
o 2m1 + ml wl :‘,17 .
D(wl) =
3 - 2
-w, - w 1+ 2w, | . .
B 1 1 1]
. L L 2 4 2 2 4
The leading principal minors, (2 ) + ml) and wl(']‘ + 3 wy + ml)

are non—negative for all real values of Wy Hence the given denominator

polynomial is a two-variable Hurwitz polynomial in the narrow sense. o

Having verified that the numerator and the denomindtor are Hurwitz

. 2 —
polynomials, it remains to test whet{g¥ the even part on the jmi-—axes is

"

non-negafive before we can ascertain that the given function satisfies

-~ ]

the two-variable positive real conditions.

3

Testing the Real part for non-negativeness for all real values of

wy and wyt = e
4, 2. 4 3 3 2 2.4, . . .
A(ml. wz) I:ml.(m2+2 u2)+wl.(—w2-6w2) +m1(l+8 w2+m2)“~
3 2
+ ul.( 6 Wy m2)+(2+w2)
/ . ~ .
Step (1) : . N

[p]
Tests (1) to (5) are performed in the followin’g manner:

, -
W
e

A((ﬂll (0)] " 2+ Uz :

1

. B v

4
I_-\(wl, t =) = mi + 2w

1 f(?r 0 <'mlf < w

.

MO, t®) = O



'A(+oo + o) =

A( =, ¥ )

Thus'we see that A(w1

Step (2): .

' 4 3 2 -
/Po(ml.wz) = WGty E 0] b LE e
. v e

3 2
4 wl.f0+3w1.fl+2 w

‘ Pl(wllwz)

_ Lo
| . Pz(ml,m

P3(Ullm2)

where

2
99 = 75w,

L9y T 2w,

v 2‘
9, = ~(26 w, +

4
h =16 wz.(-G

vom u2o s e
2/77 Wp-9q™°91%9,

+ 44

,wz) >0 for O 5'“1| 2w,

a

.f2+f

1 3

t

wl.ho+hl

4 6 8
+.44 wz + 28 wz + 16 wz)

ES

55 7
58 m2 +-12 w2

{4

3
5t

4 6
43 w, + 26 wz)

4

+ 8 w§ - 95fw; - 192 w6 + B2 wa

2

f

!

= + 336 m;_z.- 16 u

-4 wi

4.

16, -

y

g

55
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.
5 2 4 6 8
hy = u)(-448 + 64 w5 + 2880 w_ + 2752 w, + 1472 w, ,
) 21728 10 - 2560 1% 4 256 WY ‘
2 2 2 %
‘ .
_ 10 2 4 - & 8
and ko = wp (1 + 18.1 65 + 90,15 wy + 131.96 1 + 139.47 u;
+ 491.93 wéo + 453.71 wéz + 710.42 o>+ 1249.84 w§6
\\\\\ + 440.06 wi® 4 1621 W0 + 109.68 w22 + 1267.36w2 154,56 W3O ..
2 2t 102.08w, 2 )
{673.92 mgs + 85.76 w30\+ 227.84 wgz £ 40.96 w;4 + 40.96 ngJ

l

From the aboye values it is seen ﬁpat:«
.

fo(wz) > 0  for’

go(wz) < 0 for
p
ho(wz) < 0 for real
. >
.- The
- roots at
- cko(wz)

k=

As mentioned earlier there will be a number of Sturt tables instead

of one; in this case the‘number is three. Since, f

aven polynomials of Wor

#
v

- g
0 td % =, The Sturm tables are as shown in Table 2.3.

# &
S

-

Thus po(wl,mz) > 0 for aiL the, three ranges of w

{
all real w.’

al} real w

2

2

values of w..

2

e

> 0 for all real values/gf @

- 1t may be ngted. in this case no mat

R
going to be for the specified ranges of w

9"

A

[

2' v;mm

2

reason being that 1t is having real:

0, + 0.9546 and ¢ 1.731.

o’ 90’ Mo

A

.and ko‘are

it is sufficient fo consider the range of w

2 from

2

= 0 for all the ranges.

and 0 < I;llf ®,

S

ter what the sign of ho(wz) is




TABLE 3.3

" Sturm Tables for Example 2.3

-
4 °

. éﬁi‘
Range of value of " p Sl
N y o |1 2
2 . 1 . :
‘b< d0.9546 + @ + TR |
(:oz‘x . ' +‘ . \-
" , .

a ¥ + T

3

&
o‘.9546<m2< 4 = <o + + -

1.931 e




=1

. Ky . ' -
A e .
. . ~_ ", a +a. p,ta .
The two-variable function Z(pl,pz) = bégpl+b01 ~+b00 is positive
‘ e 10P17°01F2 00
N Y M . -t
. real if .and only i#, -, . - .

G
N . v
¢ . ar 58
Step (3): ‘ S o ‘ |
s , % ‘ \ S
The given|PO(w .wz) has to be' tested at the real roots of fo, 9q°
h d - ! » =
o an kO The re?l roots of f0 9, and ko are at Lo 0 and we &now A
that R .. . : ‘ ! ! -~
s Polwp® = 24wl >0 for 0 ful <.

” /

is yet to be tested are at

The ‘only Jalueixbf w, for whiéL‘pokwl,uz)

w, = + 0.9546 and * 1.731. .
P (w,,0.9546) = 2.572 {w-2 4004 3,3.561 222,565 u +1 1319 |
olw; 0 . wl . ml . “l . ul . )
, 2
~ ‘4 3 2
90(w1,—0.95h6) = 2.572 () +2.4004 w +3.5461 w]+2.505 w +1.1319) )
. ‘ e ‘ _
‘ vg ~3 2 * ;
Polw) 1.731) = 20.9528 (i -1.5679 w)+1.6203 w)-0.7432 w +0.2386)  , 4
R 74 3w 2 :
- Pylwy,=1.731) = 20.9528 (w +1.5679 ul+?.ezo3 w)+0.7432 w +0.2386)
. . . , |

. > . ( ' - -
For these fixed val ? o? Woe Po(wl,wz) > O*since Po(ml.w2L }? not having '

any real roots of w,. . ‘ - .
2 1 Vi “;‘\ - o

.Thus the given A(wl.wz) has ‘satisfied all the required tests for

the positiveness. Hence,, the.given Z?Bi,pz) is a two-variable positive
real function. - E S

t

Special case (i) : . '

-

‘ (1) The a's,ang“fhe b's are non-negative, and
. ' | bad A

A R e S\
Proof: Necesgsjity: N (: ‘
} : . - -
If Z(pl'p2) is a PRF, then the numerator and the denomfinator are )
. ‘ { ' " ‘ N . .
i ! - ‘
. ' ] 1




two-variable Hurwitz polynomials.and hence ‘the necgssity of condition

(i) follows.

“

b lw Ju, +

2
1o w1t 18 5+Pg 30y Byl wpl ey

We péve A(ul,wz) = alo. 10

'Y ¥

‘ _ ‘ ,
- (a54-Pogtag) =boywy!

: t
1 and w, we mus .

I}
r B ¢

Jhave: . . .

For A(wl,mz) to be non-negative for all real values of w

: 2 2 » . .
(a, b . +a_.b, ) .. - 4 ag°

2

1020000 %01 "201%2

e .

which upon simplification results in .

b

‘ 2 2 . :
(alo.b .blo) Wy T 4 qio'aoo‘blo‘boo <0 for all real w,

01"%01
°F. %10°Po) T 201P1e \

Thus the necessity follow§.

Sufficiency: . , ' - -

. The given Z(pi,pz) can be arranged as below:

. ' 9,

“ . o

a a * a
“ 01 00 . 00
P, + Py, t T P, *+ k.p; + —™
' 2o 1 o ? o ¥y PY2ay,
"Zlpyp) =F - b = o -
' 10 p, + 01 . + 00 10 p, +k p + 00
o502 1 172 7 =
10 0 . 10
” ‘ . &
a b
where kl = a01 = Sgi s
) . 10 10
' N
. . * a ‘ . . . . a a )
Therefore Z(p.)p.) = =2 . | 1 ( . 00’ ?10 i
172 b ] b ] ‘ b
. 10 1+ 29 1 b k. + 20
. “ - blO p_l + kalpz é 1 1P2 b"—"lo

+

~ .

which is synthesized by the netwotk shown in Ff@:,Z.l. Thus th% validity

. . -
of above conc1u31on,follows. . . ; o,

—
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Special case (ii):

+

¥

4

»

When the given two-variable even polynomial is of fourth degree

in Wy and Wor a simple testing procedure which avoids the above lengthy

method is given below:

Let A(ml,wz) = A + (A w, + Al,lml'm + A *:ij

By defining new variables x and y, the above polynomial is transformed

into another polynomial, with the degree of one of the variables being

two as below:

.A(x.y) = A(wl,wz) = A + y(A

0.0 2,0

q' 2
4y (A4
M f

2 R
where y = wy and X'= wz/wl.

{

, Aw

1

0

+ Al.l'x + AO,Z

X+
+ A3'1 X A2'

2
XD

2 + A x3+A
2-x 1'30

:mz)‘;s non-negative ;;r all feal wy and Wy if and only if,
CW A4,6' Ro,0r Po,4 2 0 )
N T Al'; +ag ) 2 0
(1i5) (A, o+ Asll PRyt Ayt Ay g) 2 0 and ’
SOy (4 Ago-Pag A;O) + x(4.A A - 2 Azo;AlL; ‘
Voo ‘ |
) +,x%(4AOO.A22 - Ail - 28,0.8,) +,x3(4A

/

+ x4(4A 2

~

OO'AO4

x

° Proof of ﬁhg above conclusion is‘quite simpl

00"

- Aoz) > 0 for - ® < x < =,

By3 7 2Ry, -Rp))

1]
" follows on the

4
0.4.x )




from the fbllowinq example:
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4
.

same lines as that of the special case (i), and hence it is omitted.
N ¥
b

2.5 Discussion: J . . -

In this chapter, methods of generating an MPRF from the given MPRF
A Y

and the multivariable real part are considered. The generation of MPRFs ¢

1
by the differential operator makes use of the generalization of Talbot's

rd -

theorem. By means of these theorems, a giccessary coefficient test for

an MPRF is provided.

The generation of an MPRF from the given multivariable real part
is comsidered next. The necessary and sufficient conditions on the de=-

nominator and the numerator polynomials of the real part are obtained SOY,

»

that an MPRF can be generated. It 1s pointed out that, in addition to

the non-negativeness of the given real part, there need be some extra

“

conditions satisfied so that an MPRF can be generated. While solving for

the numerator and the denominator polynomials of an MPRF, it 1is found out
« .

that the number of equations are more than the number of unknownasxand / ‘
; RS
in fact these extra equations impose the conditions on the real part.

This is contrary to the single-variable case where, the number of eguations

€ -

are equal to the number of unknowns and the non-negativeness ofxgherreal

part alone guarantees the generation of a PRF. . % ™ -

N ¢
)

The generation of an MPRF fram the g1v<z’r? imaginary part may be |

!
/

carried ‘out by a method similar to the one followed when the real part
. - {

3

is prescribed. Here also the number of equations are more than the number

of unknowns. Howevef, the solution'seems to be non-unique as may be se@n >

. o t)

| N




-

>

I
O

Example 2.4: . - ) - -
. . "
; My i
Let us consider a two-variable PRF Z(p, .,p.) = =
‘ - _ 1702 ( M2+N2

s,

b ™
A
“

2 2
l+16p1+p2+p2+4p1p2+4pl 82

2 2
4+p1+pz+pz+p1p2+pl P,

The odd part of the above PRF is:

Pl .

, , 2 2 4

. - hluz MlNz ) 12 PP, ¥ 27 p,pP, + 63 Py + 3 P, + 3 PP,
N I N ., .2 22_ .24 34
2702 Py PyP; Py T PPy T PPy, * Py

v

Now let us assume that the above ZO(pl'pZ) is given and trﬁ[@d calculate

a two-variable positive real function by a method‘i;milar to ‘the one :

\\W followed for the real part case.

The calculation of the denominator polynomial of Z(pl,p2L is the

same as before and hence . i

v

: 2 2
i M2+N2—4+pl+p2+p2+p192+p1p2. ) . ,

’ - \
To calculate the numerator polynomial, we will assume that/

(N
)

‘ TNy, 2

2
My ¥ Ny =850 % 31g°P) * 3Py * 3PPy Y 3550P) Y 29, 0P,
where the a‘'s are non-negative constants. Calculating (Nle-MINZ) from
the assumed (M1+N1) and the calculated (M2+N2) and equating the corresponding

coefficients the following set of equations are obtained.

° 4 aj, ~ g0 = 63 ‘ ..{2.18a)
al, +‘a01i+ 4.a, - e, - a,y = agy = 27 o ..?2.1ab) .
a g - aéo =3 . - k ‘ ..(ZuiacL
4 a1 " 200 = 3 ) ‘ ..(2,184)

RS ~#
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c

alO T all = 12 . ..{(2.18e)
'l +

a1 T2 = O ..(2.18f)

a), = a, =\0 . ..(2.189)

It may beaﬁeen immediately that even though the number of eguations which
are seven in number are more than the number of unknowns which are six
in number, still the evaluation of the a's is not unigue. All the a's
may be éxpresseg in terms of ;;y one of the a's, but we will express them.

in terms of a as below:

00
. ) a00 + 63
10 4
a0-0+3 ,
» 01 4

[N i m
H

~—— ] .
? a_. + 15
. 00 - .
= ana
1 3 ’
)’z 8 15 Co .
’ 312 h 4

Hence, dut of the seven equations, two are Jinearly dependent upon the
remaining five., Now by assuming a proper value for a5e*

of the -numerator polynomial may be obtained. Thus the solution is not

‘ &

When an MPRF is to be generated from the given real pért there -

unique.

are certain conditions imposed in order that a solution exists. Also

-~ PENEPIVEN ¢

when the imaginary part is prescribed, there seems that such conditions

do exist and the solution appears to be non-unique. However, a conclusive

the coefficientsJ
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proof for the non-uniqueness of the solution is lacking.

.

The method of testing the two-variable polynamial for non-nega-
tiveness is the extended version of the Sturm Fest for the single-variable.
But it gseéems to‘be too cumbersome to ‘extend the same idea for polynomials
of more than two variables,. and probably an entirely new approaéh may

) have to be adopted for testing such polynomials for non-negativeness.

° The method of testing the two-variable polynomials for non-negativeness .

may be Ggefql in the testing of Hurwitz polynomials of three-variables.
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CHAPTER III
A MULTIVARIABLE ARRAY AND ITS APPLICATIONS ' . N

TO LADDER NETWORKS

3.1 Introduction:

b : : i
" The single-variable reactance function can always be realized as

a low-pass ladder network by a continued-fraction expansion. The re- A

.- R R RN S

. 4
lation between the ladder network elements and the Routh-Hurwitz array

.

is well establaished. Tt is also #nown that not every single-variable

T 2
PPF can' be realized by a continued-fraction expansion. Hence, 1t is

ngtural to predict that not all two-variable reactance functions - being

9] .

~

ggneralizatidons of single-variable PRFs - and hence, not all the

multivariable reactance functions are realizable by continued-fraction

expansion as ladder networks, which 1s corroborated by different synthe-

1 4,16 :
sis procedures[ 113,124,161 Furthermore, for multivariable network

!

functions, the conditions for the continued-fraction expansion and those

for the realizability of ladder networks were unavailable 1in the litera-
[47) . . N :
- N
(47)

In this chapter « We propose a multivariable array from which -

ture

the realizability conditions for the multivariable low-pass ladder net-

.

works (MLPLs) consisting of series inductors and shunt capacitors are
obtained. (Any series or shunt branch contains exactly one pi-type

(1 < i < n) clement.) "This array, for 'a single-variable, reduces to the
» . . . ¢

Routh-Hurwitz array. By suitable transformations, several other types

4
of multivariable ladder networks and their realizability conditions are

derived starting from the MLPL.




3.2 Two-Variable Array and its Afiplications:.

For the sake of convenience, we shall/first discuss the two-variable
- array and show later how the same principle/ can be extended to the multi-

variable array. In addition it is shown how the realizability condétions .

<
of the ladder networks are derived from these arrays.

’

3.2.1 The Two-Variable Array:

M(p,.p,) ”(Pl'Pz)

————— or ————— be the two-variable react:.-
N(pl.pz); M(pl'pz)

Let 2 (pl,pz) =
4

ance function* of kth degree an the variables PyrPye and let

_ . ko k-1 ” X
H(pl.pz) = M(pl.gz) + N(pl'pZ)_(ak,O Py + Q1,1 p, -pP, +o..4 aO,k P,

!

.
1 v -

r v ;
| Heeut (al,O Py + aO,l pz).# ao'0 ..(3.1)

i
be the sum of net numerator and denominator (after cancellation of all
non-constant polynomial factors cormon to numerator and denomirator) of

?(pl,pz) . From this two-variable Hurwitz polynomial H(p ,pz) , we form-

1

e

«

the following three-rowed array:

- lst“row: ak,O ~a0’k akll,l""al,k-l ?k-Z,O ak-B,l""aO.k—ZZ“"

»

2nd row: 3 1.0 - -
’

0 ak-2,l'”'a0,k-l ak-3,0 ak-‘l,l""o"“
3fd row: 0 aO,k—l ak—l,O“"al,k-.? 0 ak-B,O" 'aO,k-J cee
A ]
..(3.2)
. The rules for writing the array are -as follows: -

(i) The first row contains terms of degrees k,;(k-2),(k-4),;....

7

‘ ©  th
etc. For convenience, the k degree terms are arranged

., % Wh;.re the N(pl'pE) and M(pl'pZ) are pdd and even polynomials in P, /P,
respectively. At places, for convenience, the arguments in the brackéts‘
are omitted. - ‘

Y o [

o ey

)




o .

first followed by (k-2), (k-4), (x-6)...etc.

degree terms.

- (ii)

v

I
If a
X

’

ax-l,y aq?~ax,y;l

-The second and third rows contain\ék-l), (k~3),

‘

68

(k-5).. etc. degree terms in the foilowing manner:

-~

is a particular term in the first row, then

are the terms respectively in the same

column of the second and third rows. If (x-1) or (y-1)
. * !

\

MRS

is less than zero, then the corresponding term ic zero.

\

From the above array, we form the’ following 3 x 3'determinants: °

¢ k,0

bk, 004 0,50 (x4 9)

I
~
1
[

-
o

u whére O <x <

™ 800y, (0ux) L xuy)
qnd bx =, 2 N .
) 2 4 k-l}? “0,k-1

[>]

- %

Prcn;the.calculatcd values of bx

’

kand 0 <y <k 7

»

—

+

O‘ax ,i’

(3.4

and the earlier second and.third row

terms, the followin? new‘ array is formed:

lst' row: a** a

eesad

k-1,0 20,k-1 %-2,1 1,k-2
"'bx-z,o 0 be-3,1" "o, k-2
o b b ....b
A 0, k-2 «2,0 1,k-3
.- ok Ke2, X

t?’k";'(;'
0

- |

by_g yor O +een

Pk-4,0"""P0,k-4""

..(3.5)

In this array, She first row contains terms of degrees(k-1),

-

(k=3),(k-5)....etc. and second and third rows contain terms of degrees

(k=2) . (k-4) ... .etc. The rules of forming this array are the same as

\ -
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those for thelarlier oness From the array (3.5), we then calculate the

-

‘following determinants: . . A
¥
%-1,0 %o,k-1 %,y
N A ¥y .
- ’ k-1) ., oY = - .. .
(Tc 1,0),{(0,k-1) (xhyl) bk-2,0 0] b(xl'l)’yl (3.6)
0 b b
- . ] . O,k-2 xll(yl—l)
N [
where 0 < X, < (k=1) and 0 < y, < (k-1) - . -
2 e L .
i ~ e
A
(k-llo)'(olk-l)l(x 'Y ) r
1'717 M
and c = b o ' , .. (3.7)
SRSt P-2,0 . “0,k-2 . ~
From the above calculated values of c and b we form the hew B
b xl,yl XY
arrays similar to the above and calculate d e o, .. .ete.
X :Y ’ X :Y .
2°72 373, e 4
It may be noted that for the case of a single-variable, the above
arrays reduce to the Routh(-‘Hurwitz array. “« o
- ' * . [ 4
3.2.2 Two-Variable Low-Pass Ladder Networks(TLPL): -
Using the above developed arrays, the realizability conditions j‘

-

for the TLPL are given by the following theorem: R

Theorem 3.1:
\

The given two-variable reactance function

' N(p,.pP,) -
*Z{p, /P,) [ or — ] ‘can be realized by the TLPL
of Fig: 3.1 , if and only if .
(1) H(pl,pz), the som of net numerator and denominator of

x o

a

Z(pl.pz) ‘is a"pq_lynomial in pl,p2 wi»i%no missing terms,

A
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. a . . “ \ . N ‘ o “ *
.o » ! ’ “ ‘ , i . . 4
\’)and . . ,/ AN
Al . N - )
. \ {1i) . when H(pl,pz)A is arranged in the form of the two-variable -
4 L . Fl . . 1]
3 B .- v o .
[ . ’ \ arrays, "the following conditions hold:, . -
. ) < - , o / . ] . & . . )
. . N B .
Y(a) b = Q I'f xty-=k ° .
XY . ' A . D T
- { ' ' ° . N . ] [
e > : _ Do if xby < ko - SRSV e
) PR . : . .. .. ==
B .t . . N h . P LA e,
. o o By = 0 if x.+y, = ¢k-1) ° P
Co Lo 1Yy T Y1 T s U~
rrr:.r.. I‘*"T‘"aﬁl""i‘t’d’ﬂ ..J.;I.I....RIEYJJTE.’"J .u.qﬁfmd:rﬁsf o 4};, .\«J&_‘f{;’ml) :”a ‘kz‘f)n"‘-‘ TRRA-REgh i I YRR D ..aIn\x.J:-an-d'd x--:a TRV R T
B oo (c) and smxl d’lt{m; hold Jfor d ‘ e € PR -S T v R
R . T ')'}2 . ‘3‘3'y3
. L . A . . Y
e . oL . . T - ' b “ -
Proof: Necessity: ool
fo . «° s . ’ ' 3 ‘
oL The transmission matrix-of theltwo-port TLPL of Fig. 3.1 is the -
. R ‘ " . El * -
product of the follcwing matrices:
N ' ’ - 2 é .1 +K& ]) : «
o ‘ ‘ A _ 1 ue Blp2 0 D U 0] ‘
. o e . - L B . .
- o C D 0 1 . + 1 ’ + - . .
- C ‘ 0, AP *83Ps B GRS R o
. " YN : f
: T . : - . . (48] , .
- By direct matrix multiplication or otherwise » the necessity of .
< . \condition (i) can be seen. If the gg';en 2(p,.p,) is realizable as TLPL,
v _ -~ th N o o ‘ th .
«“ then: the k degree terms of H(pl,pz) must be divisible by the (k-1)
. ¥ S C K ) . . - .
- . e\‘ degree te;:mi wj:\thAa quotq'\e"nt‘,of (ulpl+ﬁlpz)~whe‘re Gi\' 81 > Oy with the ’ , .
T remaining terms-‘being posytive. ' In fact this is what-condition lii) (a)
' f - > . ,' : ) «\ . ’ N
N - jmplies: Thus) by ris;peatinq the same argument, the necessity of conditien ° h
v oy R L . . A N . .- i 7Y
’ RO " s ' ¢ o / N
- . (i1) 'is proved. ., ca . ) Vs
4 - ¥ . - « !" o ) ¢ B ' !
’ ‘- I3 ) ’ ° ' ! t
..., fBufficiencys : , . . ,
. A Y . V. . , , ,
T e R N ~ .
i~ f A S » For this part of vthgz prook, we shall consider ' : r
L. L . oo . N . B ,{ - . i “ ) i 4
| | ' ) N(p :p ) ‘ s N . ’ T ‘ “ L
| ) { 1°V2°. i . ‘
I Lp. Y = e S = . L
b e N pl'pz . M(p ,pz) . , ) N . ' A\\ .
CN - Lo ' U . @
. ' and the same arguments apply for.the case . \ . :
. Y P ) . L \ , . , .. »
. . , ’p . , ~ R :
I > \‘i " { e ‘o W ':‘;' »
» { R . 4 Py f ," «: . [ .
o N EOTEE NS .- »
’ * J ) ! ?‘ : t ’n
{ N v " 5.4 & -~




vxs:.ble fby {k-1) th degree terms with aquouent of (qlnl+3lp2)w1th
a >0 and Bl > 0 and all remaining “terms being positive. Thus *
g} 1 (8 5’;}? I mm‘.!vz;m‘mm..:.:.s.r.u.m;x..x;;\)"nr.rmm.::,x,'.:‘a.‘::;f.';.'.w\;ea:mn'.uu‘ﬂnmm
i m,zinzrx:.!:'..1msz.7.111."..\11.';'::@1.'.:‘:l,'.1:.:‘2.(«?5:?.": «."1...m‘.n(m.“m.,..rm..1..,3u.x...m.dn.. R R N : ,
. s U A Lo L T S / :
. 172 -
- : ) N . > 2 .
by 7'3 th ; . o . :
and N</M id of (k-1) degree in PyrPye By applying condition (ii)d{b) .
. M ,: -~ , \ . . . .
wé‘infer that .
. A 1
. E . .t . ’ ) L »
» . -
Mip)opy) = (a_p #8.ps) + f—ifilgzl s .o R
. " NP .py) 2°1772720  NT(ppapy) . . ¥ ]
. ‘ ‘4 i . ' . ~ \
'where a,,8, >.0 and M7/N" is of degreq (k-2). Cordition (i) impnes' '

v

{ . 2% -
jz v ” s @ . v
. - . T .
4 L ' i ‘
. . . 72\ '
By N * 2 N ‘
"~ -» ( o ¢ ¢
\ & ‘ ' T, L
) M(p,p,) S
o 1'P27 ¢ C
,‘ Z'(p P ) = . R N M , ) b __,,..’—:'_f/::’,
‘ 1772 N(Plrpﬁ . __.__,,/‘:/ﬂ .

4 PR

/ « 3
Condition: (u)«(a) 1mpl—z=es-th”t *the k- h d‘egree terms of H(p‘l,pz) are

. . Vot
-

t:hat no debermmant 1s trivially Zero,that is, no colu'nn in the- array

. u . .

. .

has only zeros. Thus, by repeatlng the above argu‘\ent, theésufflcnzne

- . .
follows. . : ) . °
&

4 v
) ‘ .

3. 2..3 Twc-Variable Low-Pass Ladder with Resistive Termmatlon-

If the ‘I‘L”L is resxstxvely terminated at 2-2", the resulting

R
functions have come 1nterest1nq features, which can be reprresented by !
mixed lumped-distributed structures. We shall give the realizability o
l . (7 ‘ . .

i : - , ~p .
conditions for is typa‘ of ladder networks in Theorem 3.2, the proof of, -
whiéh‘ is Jpased on the fpllf:wing lemmas: : % )//

/ P ‘ ‘
Lemma 3.1 ( . i ‘
- i ' . -
If the N ’ ) \ ‘ ‘
h s Ky &l
) N M s Rid ' N
+ . .
2p gy = Sk : ;o RO

m ' » : . w [ “

v 'E‘ - e "

1 t ' : . N ; .. » I s ?

: S o
R ey $ ~ >



.t RN .
is a two—variablg PRF of k h degree with : Co

- B
- o - v ;

i (I‘)' (M2+1\_1.2) being a’ polynomial in pl,p2 with no missing

4

_~ terms, and . . .

(ii) MM =N, = R > 0,

5
L

then, (M *N ) 15 also’a polynomial in pl,p with nc missing terms.

Proof: co ) 4
™ TYF LTINS t"’v" SIMELTIN
VAR Or (BEd et af gy 73’“7“:”! o g h; Had BUSTIN PRT LI IO AT IR BY gt s RV 14 )1‘ 1) TR 1 AT IR TR WHE n\f\v;\a\'}“‘}ll DR ATRBAT PR T A i.l PG4TI AV 1

If condition tii) has to be satisfied,’ there must be a dlfference

3
L d

* of one .degree'”between those of the numerator and the denominator. With- -

\ T ' :
out less of gener&%ty, let us consider that (M2+N2) is one. aegree highelt.

The same result car’ be preved by considerir;g (Mlﬂ.ll) to be cne degree

higher. Let us express Z(p ,p,) in the following form: _ )
}1 ) . \ v
. ' " . ', - k-‘z . k l | ‘!"'~
W 90{Py) %9 (P)) Pyt 49, 5 (Py) #Ry 3y, (Py) -0y -
| &
1

| 2(pyp3) = b (p.) +h, (p.)ep ot eoth, _(po) p Z+h - (5.) Lin (p.)
: PR LAES B LS S RIRRAAL WO R ;pl k-1'Pp! -P h (P, pl

v , B

. ' . . A

. » T .
where the g's and h's are polyncmials in . ¥
! P, .

: ‘ . , ,
. Since (M2+1\}2) is a polynomial with nowissing terms, cordition

) ‘ . - 4

B .(ii) assures the pxesence"of the constant term in iM +N ). Since
- ‘ .

. ' (M1+Nl) is one degree 'less than (M‘zf}vz) ’ qk 1( ] 1s a p051t1ve constant.
f ) » l €, t.

As condition (i1) holds even when py = 0, we can concl)xde that go(pz) isg

a Hurwitz polynamial in p2 oft the form (go 0*%.1 P2%9,2 p§+:, +g0 k L.p; 1).
A"

- |
Similarly by wgutting p2 = 0, we can infer that the corresponding

B

2
numerator polynomial will be Hurwitz of the form (90 0*91 0 p1+92 0 pl+
LV . eV - '
. " k=1 : . >
- el ). - . ' . o
/ 91,0 P11 : . .
+ Py N ' . R h n.
9y-2(Py) a2 -
We have ———== is a single-variable PRF , becg.xse Z(p‘l.pz)

T o Pty : e Y o
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N
} ’ v N [
v

' . ¥
is pésitive:‘r\fal. By condition (i), h
. * N
" ' " . hk'-2,2

L S *
- -

= (hy o, 0t Pk-1,1 P2t

pz) and from the earlier reasoning, we know that the temm 92 0

k-2 Py

13

9y 5 (Py)
t1}{~'2 (pz)

is present in g ', (p,). Hence, for to be a PRF, 1t 1s neces-

Also, the “pz-degree of

. _ /ary that 9, - 2( 2) must havp the’ _term g k-2,1 Py-

] :
gk 2( )} cannct be more than one, as t}"e total degree of (M +N ) is at * R

rm“.mnmx‘n» AR YT R PRl oA NN RAr AR IR M CPREIABRES DR AR wnwnr.m*;)ﬁmm\\ )“Pml INEF IV IT VT I U AT R T Y}l‘i‘“ﬂ? mnnmw»ﬁ&mm‘mmw WP
m

* s -1). Thus 9 - 2(92) must/be of the form qk 2(pz) (qP 2 0+gk -2, 1p2) . by
By; cohdition (1), we have
k=-31P2) = g 0™Me-3,1 Py th 3,y Py + By 1,3 pz’ - ien, for ,
I3 Py ) ' R . ..
— to be a PRF 1in p,, thé degree of g (p,) has to be at, least . .
h _(p.) . 2 k-3'%2: - - :
., k-3 g ' . i
Tt ‘. . T ’,
“ ‘ two. Because the total degree of ‘(M +N )p is ésé'umed ta be (k-1), we dan

4 have the degtee of gk 3 ) at most two. Hence gk_é ) is of degzee two. »

.' L '... . o B \j ’ .
‘ 9- 3“’7’ 9yt > s '

Fag ™ <= to be a PRF, the first degree term in
Ix-2'P2 qkzogk?.l‘z . -

A
. .
2. , ‘.

gk 3(92),m}1st be present. We also know that Iy 3 o 3.0 and\ hence gk 3(p2

¢

|
. - e |
!

us ' = .+ ) . ; .. \
MUSE be of the fom 9y 3Py} (gk-%.o 9k-3,1 Po*9%-3,2 PZ)-/ S
'5: ‘! ) . '- . . . e } A
. L ' Thus. by similar repeated arguments, we arrive at the concluLI.on . s
' ) * ‘that P o .. \

By e

>

\
. that
s Py By
v '
- “ X
» AR

[

fil(pz)

\

\

-

s
N

(M1+Nl) is a‘polyx‘aomi,al‘ ‘rult

and| thus the lemma.is ptov

i

-

- 2}
(9). 0*91,1 P2¥9y,2 P *

It

weet glk 2 P

Ve

n'ci missing te

k—Z) <y
. A v
2 ‘ . R 1)

ot .
%, »

‘when these’ values of q (p, )‘° ar¢ substituted bac}\ lnr(N +N ). we see. °

s of decice (k-1/®in
¥
» L ‘
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. . .
Theorem 3.2: ,
v s <
1 . 'M1+N =
The two-variable PRF Z(p,.,p ) = —~——, where (M.+N_) and ’
- ) , 2 M N, 171
-~ S
A * ~ r
(M2+N2) are the polyncmials with no missing terms, can be realized as
e L
i . N [
] E TLPL with resistive termination, if and only if
M bt -4 il
. . MMIEN.N_ =R > 0. ‘ ' < ‘ :
S 1¥27 M ; , - o
s mummmsm.m.nwm.mwmxnm QOIS RT3 T 23 TN BN Y P T D M Y I T B BN I TR B R
‘ . M M M TOM - N : Co.
, . *1 2 1 2: - .
. [It follows at vy (i ﬁ_' and 'ﬁ— obey the conditions of .
‘ ' K 1 2 l T~ " -
Thecrem 3. I] . . -
N A ‘ . i
Preoef: : L . ;
' P — © ) s . * .
’ 4 - . - +
; .o The necessity follows immedjately since, for such a structure, all

v L

- ,» the transmissjon zeros are” at p, == and py = independent of the other

r ' . , . & -

N . ‘
yariable. Hen}e, we give the prodf of sufficiency. V

v
2 -

» IS L . .
y . . ] . ®
R Sufficiency: ! . .. ,
° . 3

¢ Without loss of éer\era’]{}ty. -let us assume that the deqree of (M +N )

1* s,

~

is greater than that; of (M +N ), Slnce'»(Ml+Nl) and (1-12+Nz) are polynomjals
with rio missing terms. it is opylo)as that Z(pl}pz) h\as pole's‘, at p1 = w '
. ' ~ . B .
L . . ¢ .
and p, == independent of the other vatiable which can be'cxtracted as,
» ~
. ) e o . L . 19]

b1 serles“)pductors leaving a positive’real functjen .7
ALY o A ¢ . .
[y : ' TN M . .
oy Xy thie L o .
' Lo T R L AR | ",

v, 1

v T ¥

. = R > d

| ‘ ‘ . Now Ml M2 N, Nz f o and 2 (pl,piiz
T e T »

oyl Hence, by lemma (3.1), (M -'+N ‘) is al§o a po]ynomial with no mi‘-ésing

-:!

. ’tems and 2~ (p‘l'PZ) has zeioc at p, = and p2§: » independent’ of the

-

\ -
) IS of one degrée less than’ Z(pl,p ).

>

* i .
other vanable, whxch can be g&voved as shunt capacitors. The degree:of
the resultinq positive real ‘function has been rediuced by two, from ‘t‘hatw_of

T - ) ' k
. , .
L] +
N . * ¥ - + ¢ -
* " .

‘-‘. , o .

.o




o

. \

S ' Q Z(pl.pz) and the real part remains unchanged. Thus, by repedted extrac-

X ‘. . ’
—tions of poies and zerosy we arrive at a zero degree function, which can

be realized as a resistor. Thus the sufficiency is established. .
< {
T . M1+”l )
For the, t{wo-variable PRF Z(pl,p,,) T we can interxpret
' - [ 2 2

T L

_ Ml/Nl' NZ/M?.' Nl/M7 and‘!‘fl"/ﬂ2 as the open-and éhort—qxrcult-drnnng point
2 01T |
1 mxmmmsm)m\»ml;’3smnamﬁ%ﬁ;timmmﬁnﬁmmﬂ&“m"mwﬂﬂﬂl’xﬂmmww”“*Sumnwﬁ@g@:mwwgrawv'ﬁqg'“;mmmmwf'mmmmm}
J |

point functions of a TLPL, they satisfy the conditions of Theorem 3.1.

-

3.2.4 Other Types of Two-Variable Ladder Networks: ‘ |

. ' We propose some more types of two-variable ladder networks as R

shown in Fig. 3.2 and Figq. 3.3. The realizability conditions of Fig. .
& ‘

3.2(a), (b) and (c) laddér networks are,derivable from the low-pass net-

» -
- work as follows: By making Py " %;—.keeping the other variable unchanged,
.o ’ ‘ 1

1 - 2 «

\ . -

on the network functions of Fig. 3.2(a), (b). and.{c} respectively, we .

. . 1 1 ‘ .
P, +%; W\hlie p, 1s unchangcq, and Py ™o & p, ™ v transformations

obtain the low-pass ladder of Fig. 3.1. Hence, the low-pass ladder .

[

\ .
. . ni}:work realizability conditionsehold for these networks also, aftei\ .

a . - o '

e making the proper trgnsformations on the given network function.

»

! Specifica@ly. )‘Z(pl.pz) ;‘the grven two-variable reactance function,
~ 4 \

) - / A > N .
can be ‘realized by the ladder network of Fig., 3.2(a), if ‘and only if,
after making the transformatien ry > %:— on Z([\l,p,)) the resulting network

. 1 <"

S

»

function sat;i'sff;zs the fonditions of Thearem 3.1. f

(39 ¢

i~  Also it may be noted fhat the driving point functu_)ns' of these )
. . . ! - f} ‘ ) [N

o

e

) o - & . : 0 : . N
resistively terminated networks satisfy some necessary ‘onditions, which

« U
‘o

can be used ag.inspoction tests. For example, the input '}mpedance,_

- H

k' l* .' ‘ ) \
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o ] . . .

Z(pl,pz) of a résist'ivevly terminated structure of Fig. 3.2(a) shall be
\ LN
of the following form:

£(ps2) . .

Z(pl.x) Py

= [SIPRY
q(-l )

y , where )\ =
) P1P2
‘ —_ -
. f(p,,2) and g(p,,)) are polynomials in p .\ yAth.no mssing. S, e
TR s ‘m‘:rs::«immu‘zsw}snlmmmmnm;mnm;mmmgu ;1;r,bmmgygmsnmuméum.wn?m‘umi'n'iﬁ;\.mé SRR AR T
and € = +] if g(p,,}) is of higher degree . ;o ;

sA) is of' lower degree.

;“" . ladder networks, where the series arms contain the pl—and p.z-type elements .
in parall\el and 1n the shunt arms they are in series. The real;zab).hty ; \

.conditions of such networks are given by Theorems 3.3 and 3.4. Before

-

)

\

|

|

”

i In Fig. 3.3 arg proposed. another type of two-variable lOSSleiS
|

|

|

|

i that, we present a lemma wﬁiLch is Used in proving the Theorems 3.3 and

3.4, , . , .
\ Lo [y , - -
‘ Lemma 3.2: ’
. ' .
= L . Mlml E 5 ' ) ' ,
4 f \ff%(prw the two-variable positive real function,)is .

. 1)

2

- -

t °

' the input impedance of the ladder structure of Fig. 3.3(a) with redistive

termination, then the kth degree po'lynomials (M1+Nl) and (Mth2) sat_fsfy N
B * \‘ .

the followipg conditions: i
. Id .

(1) /;[‘hey do not have any missing terms, except one of them x‘\or.‘ '

“

having the constant term. . ,

t th . :

. (ii) The j- "(l < j < k) degree terms are factorigzdble as prdduct
L . s

g. > 0.

or suy of product Of, terms of the type. (aipl+8ip2) ’ ?i' i

b
i

' -~
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(iii) The highest degrte temms pf-(Ml+Nl) and (M2+Nz) are the

‘same and ngducts of the type '(cxlpl+8ipz) + and it is these factors -

1

that are present in the other degree terms also. N T
. L - §
Proof: ’ ) '

atieal inductaon:

The proof of this lerma will ke given by rath

-
A S Y T e TR RANUS A S SR DA A RS RO R UL AR i RS Iﬁiﬁﬂib}wﬁ:ﬁﬁrﬁﬁjﬁi{‘iﬁﬁiﬁﬁﬁm%ii’ilﬁft’d
== EREY 2
parameters as follows. Let © .
Ve ‘ * bl »
' . Ry By ’
.[ak,l = ) = [a}l. [a]z. cen [a]i:... [a]k
S Sy Dy | : ) ) .
[ ]

! .
be the transmission matrix of the ladder network without the resistive

«

load; where [a]1 is the ®ransnission matrix of the it'h arm. *
.. : . J : . . N |
Thus . ‘ . A S I o
. . 4 - ‘
" , » . . . ' ,
1 " |
1 2 1 0] »
- ! J ol - s
Lyt Py {
[ ‘lal. = or e
‘ 1 |
- 0 1 \ T 1 )
‘v RS’ . Y
. . ” -
. . '
-9 dependirng upon the i~ 'section is serifs arm or shunt aimm respectively.
' Let us prove the Yemma on the assumption that the first sectioh is a series
arm and it can be proved for a shunt arm being the first one on the same ’
! lines. . .
\ ¢ : For the first section, ‘the transmissipn matrix 1s giver by:
[l .
N ( - . \ 1 %
<
. A B 1
T , 1 9 . .
[al]""= ‘ = . . . .
- * D 0 1 -
\ \ N U .
| . . - . .
. . B ,
“+ t R -’
) Ar}d the input impedange for’resistive termination is as fobllows;
a (\ ’ \ N ) ‘v‘ \
. . e . ’
- <
' : ‘w )
. * ¢ , . ') a ' i ! LI ' -
- ‘.—{, ' “ , . - .




“-Z#.’ . ’ ., ,
| . : . .
X 2. p) = Ml+Nl . A1R+Bl ) R.(alpltBlpz) 1 here R 5 0
R = = = [ Padid Il
1772 Mz*”z C1R+,Dl (alpl+slp2) .
' 1
Thus for one section the lemma follows. 3

For two sections, the transmission matrix and "the inpit impedance ~
' ]

. are as below: : -
1 1Y
uﬁaﬁa}h:;-;iidhia‘.‘;':'t}nﬁfm’liﬁ}}'ﬁ'ﬁ.ii‘a’;’.il‘%'ﬁ%ﬁ."i;‘:ﬂ’l‘. i FTAT SRR TR Ee e S #1*‘ ¢ e o gt
% \'\ ~ . . -
fa)] =, ' ) . ; . § R
3¢
A 0 1 ' = ie 1 T
;o - b - “2P1"EoP2 - ‘
F - . v e
o . : >
+ *
1+{a,p +8,p,y) {a,p)+8,p)) 1 ‘ .
N
(@,p)+6,py) (“2“’1““8292’ a)P *EPy | ‘
o 1
-8 a.p,+B.p !
o » 2P17TFEoP .
’ + + o+ +
o) - Ml+Nl g R(1 (ulp 8 )(a2p1+82p )] (uzp B,P, )
s = =
: +
152 M2+Nz . R(alpl' ‘&pz) + (ozlpl l})2) (a 8292)
’ ! where R >’ P. ’
¢ 2 . Thus, for resistive termination the conditions ,0f the lemma are satisfied. L\
kX 5 g " L ~
\ Now let us assume that the lemma is true foyr r sections and prove
, its validity for (r+l) seci:ions‘ Thus for .(r+l) sections, the transmission
2 : . M .
matrix is: S ; ) ; ‘
. atrix is: \ : W
A B ., A B 1 - L
) r+]: r+l r r +1.pl+{st+;.p2
[ar+1] - / - [ )
€ ..1 DPrn ¢, b.| fo '\ L
1 x‘ pd
N ad
0 o”r AN o . v N V‘
, y
LN - \ M 4 - v
’ RN !
) . X
A4 , ¢ *
¥ - /~ ) -




f—— : RS

depending upon dhethér\the (r+l)th

1°P1t 1P

section is a serics arm or a shunt -

'

. arm respectlvely. Let us prove the lemma for the case of the (r+l)th

T .,‘...ﬁ..-,........,.._.._..,.,._, .y

'
b RSy ok

PRPE

. L -~
P 1S: . T -
PR
r+l / “x+l] . ‘
(a +l] = - v ) .
c D - . ‘ P
N § L T+l r+l . " ‘ . ,
s . ) ' ~ .\ = -
) A_+B :(a O TR N )
-
- * . (@ 1Py Y3, P : I \
= ' - | E;
-, LA +D!‘(a +l-pl B fl.p") . ! -
\‘/l C ‘ 2
i r. (2 1 p1+e’r+l E,) i . ,
and the input impedance is: ¢ ‘
B - i
. .
+ . N v
z(p,.p,) = 0 N0 TS Ul 25 W - )
4 2.7 M_+N_ ~ R. , -
17207 My, RC D .
- RN ¢ 4
N . PR ¥
r". _ , - ‘ N
* . . Sl - « ‘e + -
. J _ Ren gy Rp R A, ey Pyt Ry )
: ' R.C_.{a_ ,.p +B >V +H[C 4D {a +f
' . . , r , r+l

the highest degree terms.

In‘.l:\' .T"” PP 2o feed b by woeti oot e "'J"‘T’}‘ant.ﬂ.ﬂhu »M.I-&‘El'm
section being a series am, sihce the proof for the shunt arm case follows

on similar lines. Thén t)le tranémission matrix« for E‘he {(r+l) sections

b
’
~

v P2 o e Py r+@§2n >

If A, -and D, h'ad the hlglxesf: degree terms, then B, and C_ . are

We can sce that the previous f¥tors are Coe

&

multlplle‘d by (a +.l.pl tiﬂl.pz) thus satisfying the condltxoi(n).. and .

/Gincc it 18 aqsumc_d that the first bcctxon to be the series ams,
/

1t is sccm that: (M1+N ) is having the constanyfvm whenab (M +N7 dm_s

| L T ( SooE T g

(iit).

",
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\ \ ’ %
* - . ‘I !
N “ .not have the constant temm. Thus the lemma is true for (r+l) sections
% . " : . ) .
" and hence true for k sections. _ A
' ,. L - : N .
) & ‘ Using Lemma 3.2 and Thforems 3.1 and 3.2, we give the realizability
' S COndlthQS for the ladder network of Fig. 3.3(ay without and with re-
- ’ 51st1ve termination in the followlng two theorems.
Theorem 3.3: :
“ ) )
The glven two-varlable‘readlance functlon Z(pl.pz) can be realized
N
by the ladder network of Fig. 3.3(a), 1f and only 1f after maklng the
. + . .I.._T___.._____
transformatlon (alpl Blpz) -»> +B pz in the gaven ﬁunctlon,
((a +B p ) known from Lemma\} 2) the resulting function satlsfles the
conditions of Theorem 3.1. I
) : 10 ' . : -
When the transf?rmatlon (aipl+@ip2)+ o p4B. ) 1s applied on the
L 171 "iY2 .
network of Fig. 3.3(a), we obtain thejTﬁPL. This establishes the above
theorem. ] . . ’
" Theorem 3.4: ' ro- . .
v) -
A M_+N - L
\The two-variable PRF Z(plﬂpz) = Moan. can be realized by a laddegx -
272
network of Pig. 3.3(a) with tesistive termination, 1f and only if .
.. AR . *
\ R . . k ' 2 . % !
- - +="t R, "+8. , _ ‘ . ki
(1) MlMZ NINZ ngl(ulp1 @lpz) where a 81'> 0, k is the

d;&fee of the giver! function, and, the poéitive sign applles if the degrée
o

of the right-hand side is an even multlple’of two and the negative sign'
applies, if it is an odd multiple of two.
’ )
(ii) The kt) degree polynaomials (M1+Nl) andv(M2+N2) satisfy the

A .
conditions of Lemma 3.2.

‘ The above conditions (i) and. (ii), can be replaced by an equivalent
. J \a'
statement as follows: In the given function Z(pl,pz). if the transformation

~ ! v’
. . "’ s +




- . “," - a - ‘ :‘ . g\?

‘ » . .

1

e is made, the resulting function should satisfy
@ Py tRiPy

@

. (oypy*Bip))

3 .
»

the conditions of Thegrem 3.2,

* A
i \

Procdf: Necessity:

In Lemma 3.2, we have shown the necessity of condition (ii).
.Hence it is required to show the necessity of conditien (i) only. We

know, that for a ladder network the zero of transmission occurs, when the
series .arm becomes an open-circuit.or the shunt arm becomes a short~circuit.
Thug, in our case, the zeros of transmission occur whenever (aipl+Bip2)= 0.
4
2
) Hence (glMQ—NlNz) contains the factors of the type (aipl+Bip2) and thus

- > : . - ' .
; the necessity of condition (1) follog§y

Suffic1encx: .
’ . \\_/-

. 1 . .
+ ——e————— transformation on (M M.-N_N.),
aipl+8ip2 12 "'1°2

A\

‘By makinyg (uipl+ﬁip2?

we get the resulting polynomial to be a constant. Since (M2+N2) is degree

N

2 .
k. (Mi-N2) will be at most of degree 2k. Hence, when the above trans-
)

) My NN, N 2
formation i1s made on 53 the factor Il (uipl+8ip2) cancels out
v -~
' MG 1=1 :
. * &
between the numeratpr nd denominator and finally we are left with a N
X '
) positive conftany for M1M2~N1N2. | N

[

1

vie can sece that by Takxng (uipl+8ip2) ?;:EI:E:E;;

transform-

- . ation on the given Z(pl,pz) the resulting numerator and denominator are

N . {
polyncmials with' no missing terms. .

™ “ v

~

¢ Thus, we see that the given function satisfies the conditions. of
) .

\ P

Theorem 3.2 after the transformation is made. Hence, the resulting

function can be realized by TLPL with resistive termination. After the

(




e ' . g7 \

.

realization of the resulting function as TLPL, by making the retrans-

“Formation (u.p. 4. p.) &« i

- it1 it2 (aipl+8ip2)

f .ot ’ Y
o ' ’

Fig. 3:3(a) with resistive texrmination. Thus the theorem is prdved.

~

on it, we’'obtain the structure of

- . ,
v
r. . N .

)

. 1 . '
From the network of Fig. 3.3{a) by making I E~ keeping p, un-
1 .

changed, p_ - %~ while Py is unchanged, and p

i l—-& > L transfor-
2 17 p. P2 :

2 1 2
\ . ‘ mations, we can act the ladder networks of Fig. 3.3(b),(c) and (d) res-

s

pectively. ‘Hence, the realizability conditions statg@ 1n Theorems 3.3

¢ and 3.4 hold for these networks also after making the proper transfor-
mation upon the given network £unction.

i

These network functions have some simple properties which can be

’

~ utilized as inspectfbn tests and these are tabulated 1Q‘Table 3.2.

Thus far we are discussing twoevariablé ladder networks where

-

each arm contains, both pl-type and pz—type elements. It.is also péssible

to have two-variable ladder networks for which some of the segies elements
v or the shunt elements may he absent. A class of such ladder. networks
Q;ll be discussed in Chapter V. Depending upon the configuration of the
B \networks, the recalizability conditions for those networks can be derived

. . from the TLPL. In the next section, 1t 1s shown how this array can be

extended to multivariables also! ' . .

r

. 3.3 Multivariable Array and 1ts Applications:

N - : ‘ .
The above results can be extended to n-variable ladder networks.
‘We first qpow how the n-variable array can be written, from which the
. realizability conditions for the n-variable low-pass ladder containing

° “

pl-to pn—types of inductors in the seriés drms aqd pl-to pn*types of
& '
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capacitors in tﬁef;hunt arms can be derived. The rules for writing the

n-variable array are similar’ to those for the two-variable arrays. The

- " ’ . M '\

n-variable array contains (n+l) rows and the first row contains the terms
of degrees, k,(k-2),(k-4),..ctc., where k is the degree of the given

: : t o ‘
function. The 2nd, 3rd, ...(n+l) h rows contain.terms of degrees (k-1),

(k~3), (k-5),...etc. according to the following rule: if a

61.52,...6n
] . ' ~ .
is the term in the first row, then a , a *een
- 61 1,62,....6n 61,&2 1, 63...6n
and a6 s .y are the terms respectively in the 2nd, 3rd,... and

lf. n-1' 6n , .

,(d¥l)th rows, but in the same column. If (6i_1) is less than zero, then

.
/

the corresponding term is zero. -
- TS ~

HOWever,qthere is a slight deviation about the value of the deter-

.
&

o minants. Thus if, ) \
- . %%,0...0777%,...0,k %8 . ...8 ~ 1,
, [] 133 7
p ]
a . ‘
k~1,0,...0-- @€ - --a - T T T o
- eesl
SRCTRLPYRRELM
O . '! 3
A ) .
(ke0..0),+.(0,..0,k)(6...8 )=1. ’
. l n . .« Y o . -
» ’ - !
‘ Y
[0 T .0 .
O ...... aO,-.oO,k“l a6

-

7 v o0 —l'
1 6n-1.'6n
e :

is a determinant of order (n+l), then the following conditions shall hold

in order that the given' n-variable reactance function is expressible as a

»

continued-traction: ; —

004200 40 40,12 0,K) 4 (60006 )
» n

1.

]

O,if 8§, +,..48 =k
_ 1 ' n

3

v

Ll

0, if (6. +...48 ) < k and the
. 1 n '

a




e

& .

order of the determinant is odd
' §

<0, if (61+...+6§) < k and the
order of the déterminant is even.

2. Otlyer degree terms.also satisfy similar conditions. )

‘]
The values of the b's are calculated as follows:

B Ky 0u a0 s e (0 e 0iK) s (Bvnnnb )
b S ' 1 n
-_Grig:'dn ®k-1,0...0 * %0,k-1,0...0 " %0,...0,k-1

A Y
’

The positive sign is to be taken if the order of-the determinant is
4

odd and negaglvwlgn, 1@ it is even.

Thus, the realizability conditions foi the.n-variable ladder

v

’

networks of different kinds can be given starting from the MLPL similar

.to the two-variabTe ladder networks. J

- .
v !

Thus _far we hg\;g been _treating the variables as independent. How- )
v ‘ )

I .
- ever, by properly defining them, it is possible to derive varjous kinds

of mixed lumped+distributed filters. ,:r example, by defining P, =s and

N v
pi = tanh Ti s, {2 < i < n), the pi-type,inductors and caPaqitors can

z;eépectively be replaced by non-commensurate short-circuited and open-

circuited stubs in the above derived ladder networks. The uses of such

networks are discussed elsewhere[Sl] . ?

Similar‘l-i;‘, by defining};l = sinh st and p, = sMerenk

~

kind of mixed lumped-distributed filters can be developed starting from

’

the 'I‘LP},. Networks of this kind are studied ‘in'Cha'pt:er .

‘ >~

. ‘ - .



_ r
"3.4 Conclusions: N . .

\ - . ~ .
. M +
In this chapter, a mulp}variable array is proposed by means of

. B 1
which the realizability conditions for MLPL are derived. Startihg from

. . |
the TLPL, by mecans of various transformations, different ladder networks

-

are obtained. Also the realizability conditions for the resistively

I8

terminated’ lossless ladder networks are .derived. This briqgs ocut the

v
.

n Ll
important point that, for cascaded networks in addition to the re?lrpart-

criterion, there need be-~some extra conditions satisfied. The extra :

t

conditions for the resistively terminated TLPL are that the numerator and
the denominator of the given function must be polynomials with no missing
terﬁs. By suitable transformations, several other types of ladder net-

works are also derived, whose realizability conditions can be obtained

from those of TLPL.



CHAPTER IV, .

CASCADE SYNTHESI1S

4.1 1Introduction: ° , . -

0 ’ s . - .-
The synthesis of resistively terminated cascade connection of UEs

. iy
N -

separated by lumped lossless elements has received considerable attention

~

and has been discussed by sevgral authors by the multivariable approach

.

;, —-

Such networks are important for the microwave filkers using cascaded coaxial

.

;’\ ' -
lines wherclumped discontinulties inevitably occur or networks containing

semiconductor clements and UEs, etc. :

'
L .

It has been shown that the synthesis of cascaded coammensurate UEs

can be carried out by means of two-clement kind ladder networks[52'53]:

| N " R ‘&
. In this chapter, By defining Ry = sinh st and py = s cosh st, an equi-
valent relation-betwecen the cascade 4f commensurate UCs separated by

) - -

lumped series inductors on one side and lumped shunt capacitors on ‘the

other side, and the TLPL is shown to exist. This enables the synthesais

a

of such cascaded networks to be carried out by the continued-fraction

- -

eﬁbansion instead of the Rachards' transformation. Also, a simple method

of synthesizing iji,s))'bllxnear 1n each pl[ by a cascade of non-commen=—

surate UEs se¢parated by lumped lossless two-ports terminated in a resis-

. * tance 1s presented.’
* [

1471

i 4.2 cascade of Commensurate UEs and Lumped Lossless Llements :

2

, consider the networks of Fig. 4.1(b) and (¢). Both the circuits

’

R have an ideal tr?nsfonnor of turns ratio l/vl+p2 . which is frequency
[ ' . A 1 . .

dependent. This is created for the mathematical convenience only and
o ’ ) o5
care should be taken to-see that it must be climinated from the realized -

r .

'

n

(22,31

network. The chain matrix for these networks is given by: .
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Q

At

: 3 - 'z ~ -
‘L ’/l+pl oP1 Alp)) - Blp))

;-; lh - I Jl+p2k ' N

1

5 R ' [ | :
‘ I ‘Lyia.pl.v’hpi /l+pi LC(pl) D(pl) 7

>

where Y _ = l/zo.

»

»

The transmission matrix of .a UE in the pl—pl_ane is given by:

i i 7/’~~—-— - !
Co ) B . _1 . ' =
/1+p2 - BPy A(pl) B(pl)‘ LF(s)

1

N 4
d ’

E(pl) = , ~ =1 - :
. cip,)
. VAR 1
' Yopl £ '1+Pl . ‘F(S) D(Pl)

-

e

|
where F(s) = cosh st.

) 3 !
In this form a(pl) is equivalent to S(p , but for the texrm F{s) in the

t52)

!

-

!
off-diagonal elements. Following Pang
&

of Fig.-4.1(b) and (c) as the left hand (L..H) and rightthand (R.H), J-

N

equivalent 1C circuits of the UE respectiveiy. This egquivalence is

» we shall term the networks

called the ll-equivalent since a cascade of two UEs is equivalent to a .

N

ll-configuration of the LC network in the’pl-pl:ane; whenever the first UE

is replaced By the L.H equivalent and the second UE by the R.H equivalegnt

LC network. ‘ 7
. L7 M Al

A% .
by o®

N
" Similarly, the networks of Fig. 4.2(b) and (c)nconsislt of frequency

-dependent transformers of turns r:ati'o /1+p2 . The chain matrix for fthese
‘ 1

\
networks is given by: C. . -

© )

N o
.
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® ‘ s
- /2 ‘ [ 27 - .
] , 1+p) ZgPy-Yivpy aey Bep] ,
) s c
al’(p]:) °Y = - .
’ S 0Py .
. - " lc o) D(pyd
7 .
. @ N ‘1_ /l+p§ . /1+pi . - 171 1 1 N
By expressing the chain matrix of UE in terms of Al(pl)' Bl(pl); Cl(pl)
) s and{, Dl(pl) we have: R
1 . - : . (3]
0 “ Y1+ 2 ) Zp, ‘ A (p,) . M—Bl(pl)
. ~ . P oP1. RS F(s)
- ‘ - a (p,)s = . = a4
. 1°%1 - Py
2 .
' Y .p . /l+p Cl(pl) F(s) Dl(}vl)
01 1 : , P
[ A ' .
| - S
N | . ? In"this form, al(pl) 1s equivalent to“gl(pl). but for the factor F(s) in
N ‘ . . ) N , . 2 .
| the off-diagonal elements. Once again folléwaing Pangwf 1 . the networks ,
.of Fig. 4.2(b) and (5:) shall be termed as the-left hand (L.H) and right

. 4 B
° hand (R.H} T-equivalent LC networks of the UE réspectively. As may be

9 ¢ . ‘
seen the cascade of two UEs is also equivalent tola T-configuration of )

LC networ}[l in the pl-plane. o <

»
S

It may be noted that, by the transformataion Py = sinh s1, the

lossless uniform transmission line 1s transf}fmed 1nto an eq{xivalent 1c
- ]

network 1in the p, -plane, keeping the lossless nature in bbth the planes;
1 P
¢ [52]

whereas by the transformation
qQ

o

g = sinh” s1, the UE 1s transformed

+

into a(e?;uivalent RC network in the g-plane: Also)_ to deal with the
- mixed lumped—dxstribuﬁed networks, the former transformation seems to

- -

-

be more convenient. By replacing the UCS-alternately by their L.H and
. 5

(]

- Co R.Hy LC equivalents (Il or T), we dbtain an LC ladder networxk in the P-

pléne. The ideal transformers of the L.H and R.H equivalents cancel each

.
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2 -

other, if the number of UEs 1s even; otherwise, there will be a}ransformer

- at the far end. "The equivalent relation remains invariant for the cascade
P Lot > ‘
*of .UEs. Thus, the'synthesis can be carried out either by the li-equivalent

-

or ﬁhe"i‘—e uivalemt LC ladder ?etwork through thg continued-fraction ex- . /
. . - ]
3 \ s T A .
Mpansion in l—plane. The input immittances oﬁ\t’:\hese networks are given / .
, \ ‘ ¥y below,- which apply both for the agven number“and odd numbe*f UEs.

.

For' the N-equivalent: .

: _ . pip,) - L t ;
. Y, ey = T =¥y REAC o Yk . |
~ N - - A e " -
” " 2By = AR} /Clpy) = 2, (p)) /F(s) .o
g . t v . ) b
. . For the T-equivalent: ' . N -
A ) ey 1M1 - ' ' )
! Yll(pl) - B ‘(p ) = yll(Pl)/F(S) . v ‘
& 171 . )
. . . - ‘- =
T - Aptep) B : - (
. - le(pl) = Ez—(—-p—l—s- = ZlTLpl) -FLS) i .

o

. & '

where yll(pl) and zll(pl) are respectively the short-circuit and open-

- ‘ circuit drivaing-point functions of the LC equivalent netwopfks and ;11}91)

N [

oy and Ell(pl) aré the corresponding quantities of the cascaded UEs.

e Rd
Utilizing the above derived equivalent relatjons, we glve here .
£ q » 9 :

the realizability conditions of /a resistively terminated cascade of UEs

\0”’ s
| . . . .
% in terms of the i{(T)-equivalent LC ladder network in the following theorem: 2 g
| ' .
! Theorem 4.1: ' ' . o
L] A v
The input impedance of a resistively terminated low-pass single-
- »

,variable LC ladder network,. z(pl) s is equivqlent to that of a cascade of

UEs with resistive terminatior‘l.’ if and only if
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' . ‘
. (a) For T-eguivalent? . M . - .
- ! e -
o m, ( )/l+2+ ( ).1+2 '
, - ’ 1Py Py ¥ MRy Py ¢
. . z(pl) = - ¢
. /.. 2 2
mz(pl) . ]:+pl + nz(pl)/ ].+pl
\ . ) . n /
i (i) The.zeros ‘of the polynomials ml(pl) ' ni(pl), mz(pl) and -
. nz(pl) are restricted to the imaq\indary axis of Py in the e
igt:ervalvof 3. ‘ X , ; s
m'*rn1
, (i1) ml(ij) = 0, if the pl,degree is even in == .
. . 2 2
: ™t
. . . . . "
@ o nl(tj) 0, if the Py degree is ofid in = - N
v .22
e i
. {b) For ll~equivalent* ’ i : ( ,
- P
’ m, (p,) -/1+p> +°n 1p. ) /V1+p2
2(p.) = L Py/-"47py ¥ N 1Py Py
‘ . 2 2 .
q mz(pl) ./ l+p:1 + nz(pl).l+pl ) .
4 (i) _ The zeros of the polynomials ml(pl) ' nl(pl), mz(pl) lnd )
¢ - nz(pl) are restricted to the imaginary axis of Py in the |
P . interval of * Je V . «
a : “’ . ‘ . . ' X ‘m ;nl.\l
: “ * (i1) m_(*j) = 0, if the p, degree is.-even in
. 2 1 m_+n
. 2 2
. N Y )
> M +n .
Pil = . . .
) {\2(_3) 0, if the Py degree is odd in m +n2_ .
- "proof: , o - —
! - - N Y . . [52]
. The proof of this thecrem fcllows on similar lines that is given in . |
A
— J
. m_.+n 3 |
VAR . . . 171
* The factor 1+p2 occurs only if the p, degree is even in . |
. . 1 R 1 m,+n,
v , = ‘ N



. 100
\ .
’ : ‘\ T “
*  Necessity: .
¥
For the cascaded UE network,\thé zeros oﬁ the polynomjals
e \ -
m . Com . n
22 | 22 by 2.2 .
(1-p) < ml(pl)l (1-u%) " n (p)) (1-4%) % m,y(p))
® ’ ’ n
e " — -k
By P1 Py

[STE=

2 . '
and (l-u). mz(pl) " where 1 = tanh st and m is the degree of hﬁ

u

p, = = . ]
' /-2 7 '

-

m.+n..
1

P, in ==, must be restricted to the imaginary axis in the u=-plane. ' .
2 2" ’

-

maps the entire imaginary axis of y-plane -

But the transformatipn py = Y
¥ Vl'uz

onto the interval -j < Py < j in the pl-plane. Thus condition (i) follows.
By'direct multiplication of the matrices we! can see the necessity of
condition (ii). .

2 -

Sufficiency:

~

- We give the proof for the Tigquivalent network and it follows on

the same lines for the Jl-equivalent network as well.

Assume that m ig_cdd, and the ladder LC network has been obtained

by continued-fraction expansion. To obtain the cascaded UE network, the
. i

LC network is first decomposed in a manner Andicated in Fig. 4.3. This

process may involve two possible difficdlties.

¥
»
q

(1) Compatibility: Starting the decomposition process from

the right hand end, we let zi = 1/Yi (1 < i <m).. The separation

of the last shunt arm produces Y But Y _ may not be equal to

0’ 0

1/ZO. a pre-requisite that mist be fulfilled in order to convert




1 " ’) ,

. . D )
the la@ﬁér network syccessfully into cascaded UE .network.

The fo&igwlng 1s a proof that the'lLC nctwork is always "compatible”..

“« T
," ' N - N 'y
. + From(Figz 4.3 it is readily scen that the driving-point impedance

z(tj) .at any\m$d44;r1es position is always zero, and similarly the driving=-

v

* ]
- point admittance at any mid-shunt position,y(i3j) 1s also zero. That is

¢

y(*3) = z(+3) =0 ..(4.1)
- ] 4 3 ‘
* Progressing from the far end, we obtain
1 1 ‘
— = 4 7+ — ———— = ) 2+ —
| Yll(ij) 0 4 ‘Yo + y{(%3) 0 +3 YO 1
But condition (ii) ab elds . .o
o ,
nl(ﬁ'
S = 0 . ks .- (4.
e GRS (4.2)

Hencewzo = %-n
- 0 :
Thus the condition '(ii) ensures that the 1C network is always compatible.
' o '

f (ii)} « Positive realness: The de;omposition process does not
pgeclude'thag one of the decomposed elements from being negative.
Thenfgllowinq i; a proof that Zi (0'§ 1 < m) are always positive.
Figs. ;.4(a) and (b) show the typical LC impedance and admittance

- functions respectively. From Fig. 4.5 l/yl(pl)‘is the impedance functidﬁ

after a‘capaéitance has been zcmovea in the course of cont%nued-fraction.
v expansion, and ya(pl) 1s the admittance function after a series inducténée;\
has.jé§t been removed. The dotted lines in Fig. 4.4 show the new zero

b - e
positions when a series inductance or a shunt capacitance is removed from

l/yl or y, espectively. 1t follows from condition (i) that the poles

? A

and zeros of yll(pl) {zeros of nl(pl) and mz(pl)]'are initially within ‘ .

[
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(a)'

”o

Yg(dwy) = y3(Juw,)-ju (¥

e (D) '

Fig. .4.4

v

2
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[y

+j < wy S -j. The sketches in Fig. 4.4 show that removal of a series

°

inductance or a shunt capacitance woql&knot shift the zeros and poles of

the imm{ttance fhnclion beyond wy = tj, except for a single pole at
. _ infinity in the case of y3(p1). Hence we conclude that
‘ '—‘Eiﬁ* > 0 - '
) . yl(i-J) ¢ N

- tj.yB(ij) <0 . - .
:}/iFrom Fig. 4.5, we have - . . .

1 1

= p, 2, ¥ ——
yl(pl) 171 yz(Pl)

..(4.4)

: Y3(P)) = py-Y iy *+ vulp))

But it follows on. the same reasoning as in (4.1) that

’

. y, (530 Y4 ) . ’

Substituting this in (4.4) and with the help of (4.3),we haveé”

3

S z, = —1—> 0, and ,
- i yl(tj)

1

- T (4.5)

Yy =3y 9 > 0d

.
' -
< -

\We have thus shown that the values of the decomposed elements

o must be positive.’
Thus by converting the decomposed LC network into the equivalent
v ' ‘

cascaded UE netwérk the sufficiency follows.

o~

I '

- ' . Now, we derive some more equivalent relations, using which the
+

' realizability conditions for a cascade of UEs separatéd'by lumped shunt/ |

series elements can .be given. The thain matrix of the two-variable ladder

\ ; b
network with transformer as shown in Fig. 4.6(b) is:




Fig. 4.6 _

(a) UE termnated in a capacitor, (b) Equivalent network of (a)
f . .

A

(c) and (d) Series inductor equivalents.

b




Afpl.pz) B(pl,pz)

[N

C(Pl'pZ) D(pl.pz)

-

and the chain matrix of a UE in cascade with a capacitor as shown in .

v

Fig. 4.6(a) :s:

. Blpy P,
F(s)

5(p1.p2)=

YO-Pl +Cp, 1 C(pl«pzl .F(s) D(pl.pz)
— _

Thus, the transmission matrices are equal, but for the factor F(s) in the

~

off-diagonal elements and these two networks shall be termed as equivalent.

Similarly.we can see that the series inductors of Figs. 4.6(c) and (d)

are égquivalent; their respective chain matrices being

1 “Fa A (p.) ‘—————Bl(p2)
/ 1P F(s)

[

al(pz)

Cl(pz)MF(s) Dl(pz)

-

.

————

31(92’

and al(pz)

-

Dl(p,)
Y

Utilizing the above derived cquivalent relations, the realizability con-

ditions for the cascade of UEs separated by lumped series inductor on




E3

one side and shunt lumped capacitor on the other side with resistive
) .

termination as shown in Fig. 4.7(a) are derived in texms of the TLPL |

L :

with resistive termination. -In the cascaded structure of Fig. 4.7(a)re=-

placing the UE and-the right side cayacitor by the egquivalent network of
)

Fig. 4.6(b}, series inductors by thel network of Fig. 4.6(d), and UE by

the network of ﬁig. 4.21¢) we obtain the TLPL with resistive termination
of Fig. 4.7(b) as its ecquivalent network. As its single-variable counter-

part, there will be a transformer at the far cnd of the ladder, if the
[ ]

number of UEs is odd. When the chain matrices of the equivalent networks

-

1
are multiplied, we see that the equivalent relation remains invariant for

L4
> E]

this network also. The relatiom between the input immittances of these- v

two networks are given below:

“
i

yo, ’ ‘Y *
D(pl.pz)

B(plrpé)

il

f -
= ' —
yll(plrpz) Y11(91'p2)/F(S) |

LN ) B 4 A(pl’pz) _ N \
2 (P p ) = = 2 (p Ip ) OF(S) [ -
A RS L C(py.p;) 11'F1'F2 S
wheigAyll(gl,pz) and‘zll(pl,pz) are Fhe short-circuit and open-circuit

oo

Qriv1n -point functions of the TLPL of Fig. 4.7(b), wherg as §ll(pl'p2)

,p2) are the corresponding gquantities of the lossless two-port '

Now?utilizing Theorems 3.2 and 4.1, the realizability conditions :

. {
for the network of Fig. 4.7(a) are given in terms of the equivalent two- .

~

variable ladder of Fig. 4.7(b) in the following thcdter.

\ 8 .

-/' ' -

.
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Theorxem 4.2: ’

The two v(iable function*
!

AN '3 2
Ml(pl.pZ)/ l+p1 + Nl(pl'pZ) l+pl
Z(plupz) =

» 2 2
+ 14
‘Mz(pl,pz) »’l+pl Nz(pl pz)/ l+pl

can be realized as the equivalent input impedance of a resistively ter-

minated cascade of UEs separated by series inductors and shunt capacitors

~
[N . -

as shown in'Fig. 4.7(a), if and only if -t '

¢

’ | , M. (p,/p,) + N(p,.p,) ot
. 171772 1'71°%2
(1) 2 (py/p,) = obeys conditions of
1 71°%2 Mz(Plppz) + N2(Plrp2)

. Theorem 3.2, v

(ii) Thelzeros of the polynomials ml(pl) . nl(pl) ’ m2(pl) and
nz(pl) are restricted to the imaginary axis of P, in
> : + =
the interval of * j, where ml(pl) Ml(gj,O) ’

mz(pl) = Mz(pl,O), nlr(pl) = Nl(Pl'O) and nz(pl-) = N?_(pl'o) .

: - ml+nl !
and (iii) m_(xj) = 0, if the p, degree is even in
. 1 1 m_+n
2 2
. m.+n
+ 4 = 1 3
X nl(_]) 0, if the Py degree 1s odd in oy
. ‘ 2 2
Proof: L “

»

Condition (ii guarantees that the giveh two-variable function can’
be realized as a resistively terminated TLPL. Once this is done for

p_2 = O, the TLPL reduces to the single-vai‘iable low-pass ladder a.nd then

v

/—5 m._+4n
* The factor 1+p1 appears only if the pl degrece is even in . "
2 2

[N . ' (2




N

. 111

conditions (1i) and (11i) by Theorem 4.1 assure the decomposition of the

- !

single-variable ladder into an equivalent cascade of UEs with resistive

termination. Thus the theorem fcllows.

¢

:'I‘llus ‘by defining P, = sinh st and P, = s.cosh st we have shown
that cascade of resistively terminated UEs'se'parated by lumped series
inductors and shunt capacitors 15 equivalent to TLPL. Thus the cascade
synthesis can be carried out by the contglnucd-fractlon expansion, the

tonditions for which are developed in Chapter III.

(54]

4.3 Cascade wf- Hlon-commensurate UEs and Lurnped Lossless Networks :
{55] s -
Premol1 has given a simple method of synthesizing Z(pl) + Where
i .
p, = tanh T, S bilinear in eath variable, as a cascade connection of

.

non—-commensurate UEs terminated 1n a resistance. lere, we give a method

of synthesizing Z(pl,s), bilinear 1in each P by a cascade of non-cammen-

surate UEs separated by lumred lossless 2-ports, terminated 1n a resistance.

The synthesis method 1s based upon the following theorem, wh chQ glvés *

| m.+n
.. 11
the necessary and sufficient ciondlhons\for an MPRF, Z(plrs) = S of

2thy

arbi trary degree in each varluz)le to be realizable by a cascadg-of UEs

separated by lumped lossless 2-ports terminated 1in 12 resistance, in terms

of the f\fnctlons ml/nz, m?./n:’.' nl/m2 and nl/nl. A
A,
Theorem 4.3: : A} h

The necessary and sufficient COndlth[lS for a multivariable posi-

m_+n
1

mytn, .
[}
commensurate UEs separated by {)aSSIVe lumpred lossless 2-ports terminated

§

in 1N resistor are’
4

tive real function Z(pi,s) = to be realizable,by cascade of non-

ol




¥ ) 2

5

-

Sy 1 M "2
(i) — and (— and "— ), the multivariable'reactance
2 2 ™M "2

fux&ions must be sf/nthesizablze by ‘cascade lof UEs, and passive

. lunped lossless 2-ports terminated in a capacitor and inductor “
+ 3 «

respectively (indlictor and capacitor) in one‘dof the P

variables, and
>

(ii) The values -of the term#hating capacitor and inductor are

reciprocals of each other. ‘ o L

«
'

Proof: Necessity:

*
‘ m_+n - o u
. Let the realization of Z(pl,s) = nan beas shown in Fig. 4.8. °
' 2 =2
> " U T S T
.The# we have that —==2,) and —=" = T o= 2,)) ofdikhe

2 M2 Y M1 Yoz .
-t ‘ o 1 \2( g L )
2-port N. Since Z(p..S) is cascade sy'ntl’(e51zable, Z. % ’ an
, i : . 11"y - p2 Y
¢ 11 22
m / ' '
3
are also cascade synthesizable. 1In casé of n-l- (=le) the last UE is

.o ( ' N
. - ) . Rn i)
open-circuited with input impedance of ;— {(assuming that pn—type is the last Fy
~ o n N '
. . n,o 1 .
UE'of characteristic impedance Rn), whaere as for — (= —/—), the last 4
, "2 11 o,
\ . . &
UE is short-circuited with input impedance of Rn'pn' Thus the conditions
. . ¥ - .
- < n m, ' .
of the theorem are satisfied. Similarly for the case of.,;—- and P the
: 1 2
termin@ting' 1nductors and capacitors will be of reciprocal values. Thus
the proof of necessity follows. &, v
Sufficiency:
) \’ 3 ) -
. " ™1 M :
"We shall prove the sufficieéncy for — and == . It can be proved

2 t“2

1( . [
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‘ ™ "2
on similar lines for — and — .
n
l 2 N L4
ml n
If ;—-@nd o\ 2re cascade synthesizable witﬁ\PEs and lumped 2-ports
2 2 < ‘

with inverse termihations, then mlm2 -n n2 has
i
2 5i
(a) 1 (1 - p;) = corresponding to the UEs

H]

- r
(by X

Qj(s) Qj(—s) corresponding to the lumbed 2-ports, and
i v .

1

(c) (1 - Xz) corresponding to the inverse termination,

o

where X is the one of the P, variables.

Thus m_m_ - n_n

1™ 172 > 0, for Re p, = Re s = 0.

+n . m. +n
We can easily infer that F(p.,s) =fii__§ and Z(p,,s) = 1 1 are multi-
. i n,+m, i m2+n2

variable positive real functions.

m n .
4 If we have extracted from ;l and ;i "a UE of say'pl-type with
2 2

- '

characteristic 1mpedance Rl' then

m n m.+n '
S R, = 11 for p, = 1 ‘

: m 1 m_+n I

. . 2 2 . 2 2 < .
A3
‘ . my ny
Similarly if we can extract a lumped 2-port from — and e the same
2 2 ‘
m_+n ¢ .
can be extracted from ——, also. And corresponding to the inverse
22 _

) ™ ‘nl ‘m *n, “

terminations in — and — , will have a UE with 19 termination.
n, m, " m,+n,

Thus we have proved the sufficiency.
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n m
It way be noted that if we are proceeding with El and ;2-, the
. 1 2

extractjion of the 2-ports will be in the reverse sequence to that of

Z(pi,s).

) As a consequence of the above theorem, testing and synthesis of

- -

the given function afe done’simultaneously. The values of thé“%gport

n n

.
parameters in ;L and ;L realizations correspond to tMe 2-port para-
2 2 ‘

meters of z(pi,s), but for the last 2-port. The one-port terminations

m n,”’
in o and Ei provide respectively A/C and B/D: where A,B,C,D are the chain
2 2 )
parameters of the last UE of Z(p ,s). Similarly, the one-port termina-
. '\ 1
nl m |
tions in -~ and -—— correspond respectively tc.B,/A. and D,k/C., where
sy n, 1771 1’71
7y . <
Al,Blacl,Dl ere the chain parameters of the first UE in Z(pi,s) reali-
zation.
“J// If one is interested only in the synthesis part, this can be

accomplished with any one of the above mentioned reactance functions,
provided the first and the last 2-ports are UEs which is very easy to

verify. But, only if the last 2-port is a UE and the first one is a

lumped 2-port, then we can obtain all the necessary information about the

m n
cascaded structure from — or ;—-and similarly if the first 2-port is a
2 2

UE and the last is a lumped lossless one, we can get all the specifications

{

n m
f rom moor o - Even if both the first and the last 2-ports are lumped

1 2 ' n m
lossless networks, we can synthe$ize Z(p;,s) from Ez'or'ﬁz » after extract- )

ing the first lumped lossless 2-port from Z(pi.s) and then applying the
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above procedure. Thus, as could be seen there is considerable saving in
L : ) .\
labour 1in the synthesis. . . . -

4.3.1 Synthesis method:

Now we present a method of synthesizing Z(pi.s), bilinear in each-

P, by a cascade of non-commensurate UEs separated by lumped lossless

2-ports terminated 1n a resistance. , .

.
[ “

£
Without loss of generality, we shall assume the cascaded structure

to be as shown 1n Fig. 4.9, where UEi indicates a UE of pi-type and L

1
™y M2
to Ln—l being the lumped lassless 2-ports. Then ;-and o correspond
g 2 2
¥
respectively to 2,, and 2, of tbe (2n-1) sections. Then _ -
\f; * : A
m-2 Al\; .
;—- = Rn where Rnfls the characteristic impedance of the *
2 |p =1 ’
n
ntﬁ UE - ;
T ‘R +n ’
1 ™Rt . , :
and — _ = ————= corresponds to the input impedance
n p =1 n_R +m . - .
2 ) n 2’n 2 «®

1
'

of the first (2n-1) seétions with Rn termination.

[4

-

Now mi/n2

and mé/né are respectively the 2 , and 222 of the 2(n-1) sections.

The chain parameters of Ln are obtained from mi)ni by putting

-1

= = - 1 - < Ve
N <es Py 1. +By extracting Ln from m2/n2, we/get the 222 of the

-1 :
remaining (2n-3) sections.
m * m"R +n“ N
L = -2l in the irreducible form is the input
"2 lp=p_ .=1 2 “n-1"2

impedance of the 2(n-2) sections with Rn-l
hd ioa

above procedure, the UE and lumped lossless 2-port can bF successively

termination. Now applying the
r .

extracted.
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The, elements in the forward di{gction can be extracted, ‘if we keep

m_/n_ as the réyerence and the extraction being done using ml/nz. The

2" 2

whole synthesis can also be done with the other pair of functions nl/ml

and nl/m2 as well.

Thus, utilizing Theorem 4.3, a simple method of synthesizing

Z(pi.s). bilinear in each p

- i

as cascade of non-commensurate UEs separ-

ated by lumped lossless 2-ports terminatfed in a resistor has been developed.

E

4.4 Conclusions:

In this chapter, some equivalent rel&tlons are develope& between
the UE and lossless lumped network in the pl—plane. By means of these
equivalent relations, a cascade of commensurate ULs is transformed into
a low-p%ss lossless network in the pl-planef There exists a frequency
dependent transformer at the far end, if the number of UEs is odd.

Thus synthesizing a cascaded UE network is performed by continued-fraction
/
expansion rather than taking recourse to the Richards'transformation:
!
Utilizing some more equivalent relations developed, it is shown*that a

cascade of commensurate UEs separated by lumped series inductor on. one
side and lumped shunt capacitor on the other side 1s equivalent to TLPLT
Hence, the realizability conditions for such a mixed lumped¥distributed

network are derived in terms of the TLPL.
/

. Further the realizability conditions for the driwving-point function

m_+n
Z(pi.s) T by a cascade of non-commensurate UEs separated by lumped
2 2

lessless 2—ports‘terminated in 1l resistor are derived in terms of the
multivariable reactance functions ' . .
: ¢ ml/n2 mz/nz, nl/m and nl/ml Based

upon these conditions a simple method of rcalizing'Z(pi,s), bilinear in
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in each Pye by a resistively terminated cascade of non-commensurate
UEs separ[ated by lumped lossless 2-port retworks is developed.
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CHAPTER V .

REALIZATION OF SOME TWO-VARIABLE FUNCTIONS

. 5.1 Introduction: .

-

- Several sy;ﬂ;hesis procedures are ‘available in the literature for

’ the realization of two-variable reactance functlons[ 1 + . The realization
. ,

: . methods for theé two-variable reactance matrices given in [13,14,16] require

either ideal gyrators or ideal transformers. llowever, the class of net-

. work functions considered in Chapter III require neither ideal gyrators

-~

nor ideal transformers and are realizable by ladder networks.

In this chapter, we propose a new type of two—variable reactance
network similar to the sing&e—variable Foster form*. The equivalent
ladder and unsymmetrical lattice networks for t:.he Foster- forms are also
derived. It is shown that this ladder network is a special case of the
two-var;able ladder network considered in Chapter III, in the sense that
the series arms contain only pl-l(or p2~) type of reactances -and the shunt
arms contain only pz—(ox pl—) type of reactance elements. The realizabil-
ity conditions for this class of reactance networks are directly derived
from the nature of the reactance functions rather tinan taking recourse

. to the two-variable array. The partial polynomial derivatives of the

R above network functions are studied in detail.

—

By making use of these networks and the results of Chapter III,
we derive the conditions on a two-variable PRF, so that it can be
realized without transformers similar to the single~variable Miyata

*method.
|

* In this thesis, for the sake of brevjfty these are called the Foster

forms. ;\
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[49]

5.2 Realization of a class of Two-Variable Reactance Functions :

Here we propose a two-variable structure similar to th& single-

variable Foster form and its realizability conditions are studied. We

2%

deal with two different classes of structures. ’

.

Class A: Inductors having reactances pl.L and capacitors having -
{

\ recactances 1l/p,.C . .
“~

Class B: Inductors having reactances p_.L and capacitors having
. 2 p

.

@ ' z
reactances l/pl.C ‘ . \
Table 5.1 gives Class A and Class B Foster forms and their equivalent

e

ladder and unsymmetrical lattice networks. It may be noted, from the
ladéer equivalent networks, that these.constxéute a special case of two-
variable ladders that were discussed in Chapter III. The realizability
corditions for these two classes of styuctures are given in the following

two theorems:

.
[

Theorem 5.1: "

The necessary and sufficient conditions for the two-variable re-

_actance function Z(pl.pz) to be realizable by the Class A structures are:

L]
/
(1) Z(pl,l) 1s an RL impedance function of the variable P,y
(1i) Z(l,pz) 1s an RC impedance function of the variable Py and
(iii) 2(1,p,) and Z(pl.l)'possess the same-internal critical
frequencies. .
Proof: Necessity: -
The input impedance ®f the Foster first form is: .
Z({ ) = L..p, + 1 + L h ’ \‘
AP PR = Py Y TR

C o
0°P2 18+ L;Cp-p,
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Thexefore )

P x

0 ’ . . .

> 1 - Lipy

Y z(p,,l) ¥ L _.p, + —+ I "
1 o =] C0 1+ I.i.ci.pl

- t
“which is @n RL impedance function in P, -

B . ) =

Similarly

1 e
C I 1+1L o
0 P2 i"CePy

‘5‘(1:}_)2) = L°° +

)

is an RC impe;dance function in P,-
“ g
It could be seen that condition (iii) is automatically satisfied

"for this network function and thus the proof of necessity follows.

Sufficiency:

The impedance function that satisfigs conditions ¥i) and (ii)

simultaneously could be only of the Jform

1

le H(plp2+zi) .
2{p,.,p,) = ' «.(5.1)
172 ~n(plp2+si) . i}
.
or z(p,,p,) * e M LR ' ' C.(5a)
f - Y . LY
1’F2 B, Mp,p,+8.) o

where z ,s,,a, and B, are all real, positive constants,

» ’ -

0<sl,< zl'<sz< ceceyg ’ |
and 0 < a §Bi<u <822....

1 2

\ s .
’ First consider

N >

! ' Hp; Npp,y*z;) ~

Z(Plcpz) = n(plpztsi) [y ! T'( - *

- D

[ SN




~

From this we have -

2eypy)  Meppgtr) | Terey) 2(p) (5.3)
P, R(p1p2+si) H(pﬁsl)

~ ¢ ¢

?here P =PP,-
From 'the above conditions Z(p) is an RC impedante function in the

)
p-plane and can be realized canonically and its partial®fraction expansion

-

2

is
a a, . )
Z(p) = a_ +,=+ 5 —1 ..(5.4)
K o' % p*s ’ o
From (5.3) and (5.4) r .
a a.p,
1 171 ' .
2{p,,p,) =ap, + —+ L —— «+{5.5)
172 071 ‘pz plp2+5i

-

which can be recalized by pl-type inductors and F,~type capacitors in the
Foster first form.

li(p,p.+a,)

lp2 1
[24
P, n(plp2+“i)

Similarly, the function Z(pl.pz) = can be realized'

by pl-type inductors and pz-type capacitors. Thus the proof of the theorem

I
follows.

The realizability conditions for Class B structures are given in

*

Theorem 5.2, the proof of which is similar to Theorem 5.1 and hence it is

L4 .
i

omitted.

Theorem 5.2:

The necessary and sufficient condiéions for the two variable re-
agtance function Z(pi,pz) to he realizable by the Class B structures are:
(i) Z(pl,i) i; an RC hﬁpedan;e function
(ii) 4141.92) is an RL impedance fun;tionliand

/ .

I
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«

B (iii) Z(pl,l) and (l,pz) possess the same internal critical
| .

A Vd

‘ . L frequencies. “,\g .,
| 3 . ' !
‘ “Theorems 5.1 and S{.2 show clearly that if the Poster first form

¢ exists, then the corresponding Foster second form, the equivalent ladder

forms and the equivalent unsymmetrical lattice forms also exist. -

\ v
Exaanle 5.1: 'S , > v
. . : » % : \
N . 2
pl(l + 17 PP, * 24, plpz) . W
. Let Z(p,:p,) be the given
T 192 1+ 21 p.p. + 77 p2p° + 72 ppd) :
. . 172 1%2 172 .
| : : : . < . . Ty -
\ reactance function. It can be seen that Z(pl,l) is an RL impédance /

5

fugction of Py Z(l,pz) is an RC impedance function of P, and bothrof
‘-

‘ the above functions have the same internal critical frequencies. Thus,
[N

» 3 . k3 “ £} -
the gavén reactance ‘function satisfiks the conditions of Theorem 5.1 and !
~ o N . .

hehce must be realtzdble by the Class A structures. In fact,the realized

"y

¢ networks of various foxms are as shown in Fig. 5.1. ‘
, : G
\-. 5.3, Partial Polynomial Derivatives of this type of Network Functions:
' ~ * Y
‘ - /\ i Thus fadr, we have been considering the realizability conditions .

: <)
of Class A and Class B_structures. The network fum®tions obtained by

| e partial polynomial differentiation of the above network functions are

| Ry
| -, considered in the following theorem.

‘ Theorem'5.3: " N » )
¢ . :
| : N(p,,P,) ‘ u . ‘
If 2(p.,p.) = ——!’%r—q\ is realizable by Class A or Class B struc-
172 D(pl’ 2) N !

‘ M . -

« tures, then.the functions . ) N

: 3N (p, o 22 2 %

o ‘ (i) r i= 1,2 and (ii)

aD(p.,p.) /3 \ 3
(p,.Py)/3p; J a°D(p,,p,) /3p, - 2B,
\ ’ 4

'
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' are also realizable by similar structures.

» . - @’ ~ -
Proof:

N

N\ The proof is given for a particulargyype of function, and similar

Ed e

proof holds for other types also.

|

{

| ’ Let . N

| .

|
N(p,,p.,) p, Nip.p, + a,)

1 2(p b)) = st = L2 : .. (5.6)
D(p,rpP,) H(plp2 + Bi)'

* [

be the network function under' consideration.

> [

From Theorem 5.1, we have for constant positive value of

N(pl.pzo)
) = —————- 1is an RC admittance function in Py-

(say) +Z{p) +Pyq D(p;rPy4)

P2%Pag

Hence,

NIy rPygl /3Ry~ TPyPyg v oyt 5.7)
BD(plypzo)/apl Pjo n(plp20 + Bi)

is again RC admittance function in P, - Thus it is seen that (5.7)
: satisfies the conditions of Theorem 5.1 and hence can be realized by the

ggste;,first form.
/ ] . - ' ) ’
oN (pl,pz) /apz

- . The proof can be given on similar lines for 3D(P1?P2)/392 also,

. By extension of the prdof of proposition (i) with respect to Py -
- P ] \

» proposition (ii) can be proved. v

* The network functions obtainéd py‘partia%‘polynomial diffe;entiation
of Class A and Class B functions w.r.t; P, and pz are tabulated in Tabls
5.2 apd 5.3 or equivalently in Fig. 5.2. In Chapter 1I, we have dealt
wi%h generation.of MRFs from a ;iven MRF. Tables 5.2 and 5.3 provide us

'

with some more methods of generating two-variable reactance funckions.

|
|
|
|

-




-z

(yefalayy la

1d «am
a =
(2d+Ta)qe

= Zaldyz -7 sdi

-

= Amm.ﬂavn <1 2d&y

ﬁam

(Catla)ne

(Feafdteyy ¥4
(Tyefalayy

Casfdlayy
Aanounaaun g

: pPsN SUOTICION

- (Farlayz <7 ediL

« (Ca:layg oy adAg

z adA3 ¥ sseT1d
1 2dA3 v sse1d
z adka v mwﬂu
t adA3y v sserd
1 2343 g sse1d
z adA3 g sserd
1 3dA3, g sserd

z 2dA3 g sseld

; (Fralaldyy
- ﬁambmaﬂmvc
L2
,ﬂu‘wpamvu 2]
od d
7dq.24,29, . 14
195,245,131 »
4 d
2%a-24/% - b
d d
194.24,18,. 1y
4
Nan,ﬂa\umz.ma
ﬁma.ﬂa\ﬁaz.ma
zd

d

d
1,014,125

i

g Sse[d .
.

z 9343 g sse1d

1 adk3 g sserd

z 9di3 ¢ sse1d

1 adhy g sse(D

1 ad43 vy sseld

7 #d43 v see1D

1 odky v sseld

¢z 3adA3 y sse1d

d d
2%/

4 1d
Cq/ 1%
a4 zd
2%/t %N

d d
e/

d d
z a z N

/

d 1a
s

3 2d
2%/

4 1d
a1

¥ Seeld
Z adiy g sse1d
2 odA3 g SSPIY
-

1 adA3 g SSPID
1 9343 g sse1d
z adi3 ¥ sse1d

i 4
z 4Ky v sse1d
1 adky v seerd

1 adA3y y sseld

uoTIosung .
NTOMIABN m:auasmom

auog uotywzado

yotioung
YIom3an Hburzinsay

@uoqg uorzezando

UOTIVIDPISUOD
2apUN
UOTIDUNG HIOMION

=

Zt6 3TYVL

uOTIVTIUSISZ; TP TeTwoukrod Terized Iapun PIUTERIQO KSUOTIDUN] YIOMIIN

&



130

rars

q

0 = 0 sas T 9 ‘(U CE] @ 1IRA-0 5 H 3
- ‘0 . b eD [RTATIY Y3 ‘(uordung yeoedX.ATqeIaIR M3) Q4L 30U 5T ([ 4 T 103) ﬁmﬂlﬂm 4LON

N

lew
.

*papnioxe ale

——ea

4 :

o

<

g fg

1 adA3 g sseyd
—

z 8di3 g sseld

z -9dk31 g sse1d

1 ad&y g sser1d

z adAy y sserd

1 @df3 ¥ sserd

1 @dA3 v sser1d

Z 2dA3 y €8sl

a 4
1. Ta,2%. 24

d
2dg.zg, 190 1g

d d:
18,.14,29,.24

d d
[4 o.nm\a z.am

d d
1 o.am\m z.ma

d d
z D.N&\ﬁ z.u&

14 zd

a.am\ ne%d

d d
2d 24,1914

1 adk3 v sse1)d
4L IOoN

z 2dA3 v sserd
Jdal IOoN
4y 30N

1 adiy m sse1d
DL 30N

z 8lAy g soe1d

o

Nmn\Amz

d d
1%/

d 1d
2%/

am
1 a\m N

4 14
VAR

u.a
/%%

d
2dg 1y

-z adhy g sserd
z adA3 g sserd
A Ay
1 adky g [:14 2 f]
1 adAy @ sserd
z 2443 vy sserd
z #dA3 ¢ sserD

1 #dA3 ¢ sserD

1 adA3 ¥y sserd

uorIsUNng
xIomiay butriTnsoy

auog uotr3viady

uotInung
xI0M3oN buyiInsoy

.

auog uotaviado

UojITIAPTRUOD
1apun
UOTIIDUN] NIOMIaN

uot3etIuazngTp Tetwoudtod Teiiawd poxfw 2opun pouTeIqo SUOTIDUNG NIOMIIN

£°6 316VL




L
/ ]
¥
1
P, N N
1 pl
) o . A p.D
, . 27p, )
- a . s ~ . N
* p, A dp,p, + a) -~ Py, N ip,p, ¢ 2) L
1 172 1 2 12 ir L
Al: Z(p..p,) = H Bl: Zip,.p,) = . ’ .
) . i 1772 ] (pl‘[.v2 + ax) 1°%F2 n (plp2 . s‘) . o
i N . , ’ . / [ ‘
‘ A2: .zlp P ) i (p‘Pz : 6") F 32: E(p,.p,} = " (plp))* u‘) , -7
’ - . -
, 172 2N a (plpz . ll) . 1°%2 1 3 n (PIPZ + l‘) -
' rig. 5.2 * o
The relation bétween various network functions under .partial poly~
) nomial differentiation. .
4 . ! n .
. l
-
. t
4
N .
4 ‘ 3
f ' .
- \ . - hd N
) , -~ % ’7 - -
R . - - .
[, :-_a-k.«bzx_ﬁ; BT . N . » R e ey




However, It may be noted that if we consider the network functions

M

realizable by the’ ladder networks of Chapter III, the resulting functions

after partial polynomial differentiation may not be realizable by such .

o .
networks. The following example clarifies the above point:

Example 5.2: ] ’

’ Let us considerx .
LY R N v
iy

’ 2 2 4 3 2 2 3 4
N(pl'p2) 1+4 pl+9 plp +5 p2+2 pl+ll plpz+19 plp2+l3plp2+3p2

2
Z(p P ) =
172 D(p,:pP,) 5 .3 2 2 3
2 7
B 1 3 pl+2 p2+ 2 pl+ plp2+8 plp2 + 3 p2
J  an/ép,  aN/dp, i
which is realizable by TLPL.  But the functions BD/Bpl ' 3D/3p2 and
3%N/3p” .0 } ' : ’
Py-°Py

5 which are given as below are not realiziﬁge'by TLPL.
3 D/Bpl.ap2 ¢

’ s 2 2
BN/Bpl 8 P+ 10 Pyt 11 pi+ 38 plp2+ 39 plp2+ 12 p;

aD/apl -

2 2
2+ 7 pl + 16 plp2.+ 9 P,
{ -
3 ) \

2 ;
+ 12 P,

N 3 2
~3N/3p2 9 Pt 10 Pyt 11 Pyt 38 P P,* 39 PP,

aD/3p, -

2 2
% N 7 py+ 16 pp, + 9p,
J :

2 2 2 2
. o3 N/apl.3p2 ? N/apz.fzpl 9 + 33 Pyt 76 P P,* 39 p,

2 ‘ T2 . 14 p, + 16 p_¢
i} D/agl.apz 3 D/apzﬁopl 1 2

5.4 Two-Variable Miyata Method:

Thus far, we are discussing .about the Foster forms and their equi-
valent networks, which constitute a special class of two-varfable ladder
: v

networks studied in Chapter III. By utilizing these reésults, we shall

discuss in this section, a transformerless synthesis technique for two-



variable positive real functions, similar to the single-variable Miyata

methodlsol. ‘

The following theorem gives the conditions under which a givgp
function can be realized both by TLPL and the network of Fig. 5.3, based

upon which, a transformerless synthesis method for two-variable PRFs is

prcposed.

heorem 5.4:

If a given two-variable rcactance function z(pl,pz) is realizable

.

as a TLPL and if the same function has to bé¢ realizable by a network of

Fig. 5.3, then the necessary and sufficient conditions to be satisfied

by the TLPL network are:

‘

(i) The values of the series arms impedances are constant

multiples of one another, and -

(i1) The values of the shunt-arms admjttances are constant

multiples of one another.

Proof: Sufficiency: -

If the given Z(pl,pz)"is realizable as TLPL satlsfyihg conditions
(i) and (ii), we sece that this is equivalent to another ladder network in

the variables Al.hz, with Al-type inductors in the series arms and Az-type

<

capacitors in the shunt arms. This network is nothing but the ladder

¢
equivalent of the first Foster form discussed above. We also know that

if the first ladder equivalent exists, so does the second form. That is,

+

the Z(Al,X2) can be realized with ) _-type scries capacitors and xl-type
P4 + " ,

shunt inductors. By replacing Al,x2 with the corresponding values of

pl,pz we seec that the sufficiency follows. ¥

.

!




« Fig. 5.3

N

-'rwo-variable ladder network consisting of capacitors in parallel

N |
in the series arms and inductors in series in the shunt arms. .
t, - '

1 ’ B w .
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Necessity:

By analysis we can see that the chain parameter C of the TLPL

satisfies the following conditions:*

a) The first degree term of C = [ yj .
i=1

b) The highest degree term of C = (1 Zi) . (1 yj)

Y

Then K/C of TLPL is realizable as the network of Fig. 5.3, only if the

Py

first degree term of C is a common factor of all other degree terms of

C. This can happen only 1f the shunt arm admittances are constant

¢
~

N -

multiples of one another.

i

Similarly by proceeding with D/B of TLPL we arrive at the conclusion
that the impedances of the series arms must be constant multiples of one

another, and thus the theorem follows.

Utilizing the ideas developed thus far we present a transformerless

synthesis method for a class of two-variable PRFs, similar to the single~

variable Miyata methodlsq].
M1+N " ‘ ’
If M2+N2 is a Fwo-varlable PRF with MlMZ - NlNZ = iio(a1p1+slp2)

t

such that each degree term is positive for all w and MZ/NZ is realiz-

lowz;

able as TLPL with the values of the series amms impedances and shunt arms

M1+N1

admittances being constant multiples of one another, then the given NN
’ 22

can be realized as a series connection of two-variable ladder networks.

)
. /

»

hd yj and zi are respectively the admittances and impedance of tye shunt

and series arms of a TLPL.

¥ -

v
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The validity of above conclusion can be explained as follows: If
the values of series arms impedances and shunt arms admittances are cons-
tant multiples of each other, then the TLPL can be considered as a low-

pass ladder of A [=(ulp + Rlpz)] and we know from [50],that if

1
k 5 :

MM, - N N_ = T al-(-x ) BN a > 0, then the corresponding immittance

functicn can be realized as a series connection of resistively terminated

ladder networks in A-plane. Hence,by replacing X by (alpl + Blp2) we

)
obtain the required two-variable network.

From this result we see the restrictive nature of Miyata method -
which is restrictive even to the single-variable case - when extended to
two~-variable functions. We have considered here a more general class of

functions than were considered in [9].

Necessary and sufficient conditions for the realization of a class

5.5 Conclusaions:

of two-variable reactance functions in a form similar to the single-

variable Foster form are derived. It 1is shown thag)if Foster first form
exists, t£en,the Foster second form, the equ}valent ladder and unsymmet-
rical lattice networks also exist.. It is als%;spown that these petworks
constitute a special class of two-variable ladder networks considered ig
Chapter II&. )

.

1t may be noted that, if the two-variable reactance function is
realizable by TLPL, 1t may -not have the corresponding Fostg; form of ghe
type discussed above, since, the even and odd polynomials of the TLPL
functions may not necessarily Be faétorizable as required by the Foster

forms. It has to be inferred that in the case of single-variable

.
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reactance structures, if a given function is realizahle by the Cauer

ladder or the Foster form (and Lee's unsymmetrical lattice), the other

structures are always realizable, whereas in the two-variable case this

is not necessarily true.

It has been pointed that the partial polynomial derivatiVes of
these network functions are again realizable by such networks, whereas

the network functions considered in Chapter III are‘;ot.

I} is p;inted out that a given network function which is realizable
by TLPi need not necessarily be realized by the network of Fig. 5.3 and
the required conditions are established. Based upon this and the Foster
forms, a transformerless realization for a class of two-variable PRFs is
presented by extending the%single-varigblé Miyata method. TQF restrictive “
nature of Miyata\méthod for two-variable PRFs is mentioned.

N «
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A

CHAPTER |VI

CONCLUSIONS AND SOME SUGGESTED PROBLEMS

5
J

6.1 Conclusjions: ™~
This thesis has studied the properties of MPRFs and the realization

of multivariable ladder networks, the main topics of investigation being:

(1) Generation of MPRFs by the Differential Operator and from
W .
the given multivariable rchl part,

w
. N Q =
(ii) Realization of multivgz:‘lable ladder networks, and \
’ Pl
. (11i1) Synthesis of cascaded structures consisting of commensuyate .

Q

UEs and lumped elementsh

Generation of MPRFs by the differential operator i1s considered

’ %
first. Methods are given for the generation of MPRFs 3?\ n-and (n-1)-var- *

.

"~

iables from the prescribed n-variable PRF by the differential operator.
By these a neces;ary coefficient test is also provided for. an MPRF.

A method of generating an‘MPRF'f?om the prescribed multivariable
~real part }s considered next. In order that ar: MPRF can be genexated -
from the prescyibed multivariable real part, _in addition to its non-neg-
ativeness some-more conditions need be satisfied by the nqmerat;r'and the .
denominato; poll‘momials of the real part. These conditions are caused
by the fact that ::he. number of equations to be solved are more tlhan the
number of unknowns. This is contrary to the single-variable case, where

the number of equations is® equal to the number of.unknowns and non-neg-

ativeness of the real part alone suffices for the generation of a PRF.

By extending theisgurm/test, a method of testing a two-variable

polynomial for non-negativeness is developed. To cover the entire tangg,,,/ -
, 9

- - .
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of both the variables, 1t 1s required to have a number of Sturm-tables

as opposeq'to one table required 1n the single-variable case. For each

"such table, the range of one of the variables (say mz) 1s divided such

that the sign of the corresponding Sturm functions does not change during
that interval of mz and the value of the other variable variés from -
to +=, However, an extension for the case of more than two-variables

!

appears to be tedious, and hence a new technigue may have to be evolved.

A multivariable array 1s developed by means of which the realiza-
bility conditions for the MLPL are derived. This array reduces to the
Routh-Hurwitz array for the case of a single-variable. By means of
various transformations, othur types of laéder networks are also derived
from the original MLPL. The realizability conditions of the re51étive1y
ter&inated lossless ladder networks are established. It is also pointed

\ a
out that, for the multivariable case, not all reactance functions are

: -

L]
realizable as ladder networks. This is contrary to the case of a
. <
single-variable, where the reactance nature of the given fundtipn is

both necessary and sufficient for 1t to be realizable by ladder’ net-

works.

The realizability conditions of a class of two-variable reactance
networks similar to the 51n?le-var1able Foster form are studied. It is
shown that these networks aré a class of the two-variable ladder networks

considered earlier. The realizability conditions for these networks are

t
derived directly from the given network functlons rather than by the array

discussed earlier. The equivalent ladder and non-symmetric lattice forms

are also developed.

tioweverY, it is noted that “f a ladder network of the form TLPL is

. \ “
.

s
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available, the equivalent non-symmetrical lattice structure or the struc-

.

ture similax’ to the srngle-vaéiable Foster form may not exist. The prop-

erties of these functions under the operation of ‘partial polynchial diff-
o

!

erentiation are studied. By making use of thé two-variable ladder net-

Jérks discussed earlier, a.transformerless synthesis is proposed for a

‘ »

class of two-variable PREs similar to the single-variable Miyata method.
This synthesis is possible only (a) when the values of the series imped;
’

ances are constant multiples of one another, and (b) when she values of

'

the shunt admittances are constant multiples of one another, in a TLPL.

In the ladder networks d18cussed.\by properly defining the vari-

~

ables P it is shggn*gg;t some 1nterest1ng mlxed lumped—diftxlbuEFd

filters can be’'developed. Thus, when p, = tanh rls. thafﬁ -type inductors

.
.

and capacitors can be respgctivé&y repLaéed-by non-commensurate short7
' ’

circufp and open-ciﬁcuit stubs. By means of the equivalent relations

‘/ derived, it is shown that for Py =sinh st and Py = 5. cosh s1, a cascade

-8

of commensurate UEs separated "by series lumped inductor on one side and

shunt iumped capacitor on the other side is equivalent to a TLPL. This-

enables the synthe51s of such mlxed lumped—dlst{}buted netwosks to be

performed by contlnued fraction expansion rather than taking recpurse to

the Richards' tr'ansfo%i.tion[zm , which has been the wjdely adopted techifiope

b

T
in the realizftibn of cascaded UE structures. (

v

.

) ' ’ o
The foregoing discussion leads dp the following ‘problems which

A}

are suggeéted for‘further invegtiqation: "o ¢

|
I
- ‘l by

( (i), It has been dxscgssed in'section 2. 5, that the qeneratiom,of
\

an MPRF from the presCE}qu imaginary part may not be uMque. In the
. - =N . .

¥

- ; W - . . ) ; g
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single-variable cise, .as the number of equations is one less than the
g

‘
’

number of unknowns, it is concluded that the‘solytion is non—unique.
But, in the multivariable case, it appears that even though the number

‘of equations may be more than the number of unknowns, the solution could

!
still be non-unique. It ig worthwhile to pursue this, investigation

further. ®

(ii} The testing of a polynomial of more than two-variables for

.
a

‘non-negativeness by the method given in the thesis appears to be tedious.

Howgyer, it is hoped that this method may prove useful 'in the testing of

J-variable Hurwitz polynomials similar to the Ansell's method. Also, in

-
-

an entffely new approach may have to‘besieveIOped.
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