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b : : ABSTRACT

ce - The‘Reliability of Networks
‘ with Special Structures

’

Carlos-Luis Santana

P
- ‘ ’ L
In network rellablllty analy51s, an 1mportant

problem is tq determine the probability that a specified
subset of vertices in an undlrected graph are COnnected.

It is well known that‘ using the factorlng theorem, the

reliabilities of a graph with one fewer vertex, and

another with one fewer edge. The theorem can be applied

recursively\on the reduced graphs. The computations

(<]

graphs whose reliabilities can be readily  evaluated.

edges are created which can be reduced through degree-2

' ‘ A .
and parallel rules of reliability, assuming edées fail

independently of each other. The computational complexity

AN is a function of the number of leaves in the binary

~

structure.

” .
J . L4 .
. -
. .

‘'reliability of a graph can be'expressed in terms of the

involved in this recursion can be represented by a'binary.

structure, such-that its leaves correspond to reduced

general, as the recursion progresses, serieS'QQg parallel

iid
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., of stai-ladders,'and-eta:-wheels.

In this thesis, a technique for evaluating the exact

overall reliabiiity of ladders, wheels, star-ladders, and

L star-wheels is presented- bverall rlllablllty is the

probabllity that there exlsts successful communication

LI . ¢

- among all the’ ve;ctlces of the network ~The approach

involves applyinq the factoring theorem to a wheel,
thereby generatxna at each level of the b:\ﬁry structure
two subgraphs, one -of which is a ladder, whose overall

reliability can be computed readlly, and the other a

i -
‘Wwheel of one less vertex. Finally, an algorithm is

presented. for evaluatinq the exact overall reliability

K}
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CHAPTER 1 , <
1. Introduction and Notation v' ’

& = A

Many engineering systems, such as computer networks,
communication networks, and power transmission systems, can
be represented by probabilistic graphs in which vertices and

edges ﬁﬂpresent the relevant components of the system.

a

Vertices and edges may fail indepéndent&??*b*»may have a
joint failure probability distribution. Any two vertices

communlcate if they are both functlonal, and if- there ex1sts

o

1 a p;ih containing functiopal vertices and edges between them.

oy | b

'In recent years, there has been growing interest in the
-reliabili;y analysis of such systems. This thesis will bé

devoted'tg one measure of system reliability, namely the

overall réliability.
The overall’ reliability is the probability that

. successful communication exists between every vertex-pair of

¢
1

the network.
The fietworks dealt with 1n thls thesis will have edges C“’\

which fail 1ndependently w1th edge- rellabllltles Pe: the ’

probability tha%~edge'? functions. Yertlces can not fail.

In this chapter, an introduction into overall reliability

-

is given; it's definition and origins are brie{ly explained in

‘order to prepare the reader for a gnore detailed analysis. A

. 7/
1%st of basic definitions and notations is also given. '

0

N
] o ' s
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In Chapter ‘2, a concise historictal background is , .
présented on the overall relidbility problem. Several
*examples are devgloped to acduaint,the reader with the
pitfalls and virtueé of the different methods usep in the
computation of overall ré}iability: )

A brief explanation of the fesearch of Wing_qu Fé4§s at
‘the commencémént’of‘tﬁé chaﬁtegb

The chapter then proEéedsltq introduce, define,. and
explain the inclusion-exciusibn principle. fwo exémples;aré‘

fy

developed to demonstrate the intractability of-this method.

. Based on this principle, the concept of the domination

+ of a gfaph, theorem 1, is developed. A somewhat’ detgiled
aqa}ysis o; this concept is explained through corolary 1, aﬁ
lemma§'1 and 2. Examéle 3 gives a lengthy but detailed account
of how through the use of domination theor?, the Overall
reli;bilfty of a Specifié structure could be derived.

Using the concept of domination of a graph aé‘a stepping
stone, the edge'faqtoring theorem is now.deriQedw The'works
of se&eral researchers are mentioned to outline the various

\means of applfcations for - the edge factoring theorem. E;amples
4 and 5 derive the ov§ra11 reliability for two speci%tc

| strubtureé, and in‘the procéss show some of the cdmplexitiéﬁ

"from the ufe of this theorem. ‘

| The vertex factoring theorem, is similar to the.edge
factoring theorem’in that a graph is decomposed by factoring

on a vertex instead of an edge, whiéﬁ is then introduced

3
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through theorem 2, and through example 6, where the overall

A

qucial'case of-a cbnnecteéﬁgraph, is now compuﬁed‘through

reliability of a specific structure is derived.' '

The ovérall reliability of a biconnected graph, a
x) '

'the application of the vertex fgctoring theorem. The, overall
1 4 7o .

reliabili&y of any biconnected graph could be derived through
theorem 3. An applicatioh'ofthiS'theorem is given in
example 7. Example'8 considers the structure of example .7

to be a special case of a biconnected‘grabh, the overall

*reliability of this structure is again computed @rough the

a

application of theorem 4. .

An in depth analysié into a major piece of work follows.
The mgthod,“éérmed’"pol§gon to chain" reduétiong, is based on
a series of seven transformations whi¢h reduce cerpéih
subgraphs to.edges-thrgugh reliabilitf preserving reductions.
These reductions are tetmed "polygon to ghain"‘réductions. .

Definition 1 defines a polygon. 'Thréugh‘theorem 5,.-the’

L4

K-terminal. reliability of any structure which has undergone

v

. f

a "polygon to chain"” reduction could be obtained. Property 1

and property 2 present two important ideas pertinent to this
R .

ype of reduction. 1In.figure 9, a table of.the seven

L

transformations is presented.

A piece of work similar to that o¥f "polygon  to chain®

i

reductions is that of A-Y reductions. Definition-2 defines

"an IFCF-graph, definition 3 a A-Y reduction, definition 4 a

window, ang definition 5 an ICF-graph. Along with property 3

R

o
!
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and property 4, examples 9 and 10 present a close study of

the concept of A-Y reductions. "
oy 9 2
tion of backtrack fusion is subbequently

A short intro

pgesented, g with a mentioﬁ.of the works of two well kpown

ers of this method. W -

»

The last method presented is that of modgles» A mention

~.—
G

‘of the various works im this efea is, glven, along w1th‘ R

somewhat exp11c1t discussion of this ‘technique. ' '\\//// J

a

,//\ The fact that the computatlon of overall reliaility is {;

NP-hard for a general graph is;reeiéted at the commencement

3

®f chapter 3. It then proceeds to'give definitions of several .
. 3 .
" special structures, for example’, ladders, wheels, star-ladders,
. . . . )

a
~

star-wheels. '

* Through eximples 11 and 12, the overall reliability bg;.
hadders oﬁsorders 4 and 5 are reepectively computed. gpese
examples form p#rt ef the proof of lemma 3, the overall
reliability of a 1adder of ordef nf. .
Example 13 computes the ovefail reliability of a star-

ladder é% ‘order 8 by first reduc1ng the .structure- to a ladder

of order 5 and consequently apply'ng lemma 3 to determlne

-1t's overall rellablllty A general formula is also given for

star-ladders of order n.

The overall rellablllt wheels 6E‘ordefs 4 and 5 are

computed in examples 14 and 15 respectively. These*exa&>les P .

are the basis " fo r,the proof of Lemra 4, the overallvreliabilztf Ny ‘

"

of wheel‘ﬁtructureslof order n. -4
. . . A
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In a method similar to that used in e&amp}e 13, )

example 16 computes the overall. rellabllrty of 'a star-wheel
of order 7 by first rng01ng the strupture to g‘wheel oEte
order 4, auétipnsequenfly aoplying'lehma 4. A general

formula is then:derived for star-wheels of order n. _
L - /

In section 3.5 an overall rellablllty approxlmatlon

»

formula 1s derlved for &heels of order n when the probability

of an edge falllng is negllglble.
' " -
- Section 336 presents a comparison of the compu&ational .

times for the ouerall.réliability of wheels of order 4 through

1

\ ;
8, using the edge factoring theorem and the recursive

-~ . -

" equations derived, 'lemma 3 and lemma 4. Table 1 Irsts the

-

/

time. using the edge factoring theorem as well as the number of
o °

spanning trees. and the tbgér number of-subgrapqs generated for

E 3 A

five orders of wheels (orders 4 through 8).

0

In .the final section of the chapter, a simple algorithm
ié’presentef to éetermine/the overall reliability;of a“?raph,wp
wgich is reduc%ble to a Wheel or a ladder.

Iu‘ohapte£)4 severa%dconciuding femarks arelhade, in

‘addition to a brieg comparison of the methods discussed. A

. . . X ‘ . .
concise mention andjllst,gf several related works is given.
* ¥ 1 * A .
iy '

b

‘1.1 Preliminaries-’ , ¢

a - \

"In this thesis we will be concerned only with undirected
Qraphs,w Standard termlnology can be found in such texts as

Harary [5], Swamy and Thula51raman (6], and Deo [7).. However.

a few definitions need to be introduced. - - ~

-
. ) ‘
. L ‘ <
¢
a - . . .
v
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:Ehain‘nggression: Anfaiternating sequence of vertices and

_ edges, starting with vertex n and ending with vertex v,

—

-

Connected Graph: A graph in which’there exists at least one,

-

. path between every pair of vertices. If no path exists, the:

-

graph is said to be discchnected.

Simple Graph: A graph which has neither self-loops nor

parallel links. j

Spanning Subgraph A subgraph of the’ graph containing all the

vertices -of the graph.
Txee: A connected.graph‘with no cycles. ‘”3

§panhing Tree: A tree of the graph containihg all the

-—

. vertices of the graph. e "

é ‘
<
Nullltxfof a Graph: For a connected graph with b edges,

n vertlces, the nulllty is equal to (b-n-+ 1). Nﬁllity is -

)

. the rank of.the circuit ‘matrix of the aph

-

Formatlon of a Grgph A nOnempty subset of spannlng trees

of a graph whose union yeilds the graph The formation is
termed odd,. if it consists of an odd number of trees, and even

<
otherwise.

- : Y

Overall Rellablllty. The probablllty that there ex1sts at

PET \

least ‘one path between every vertex-palr of the graph. In.

other words, that there exists communicatioh between every

Vvertéx-pair.

Domination: The number of odd formations minus the number of
B e e

even formations of a graph,

1

sii¢h that the degree of all internal vertices is 2. The ~

length' of a chain is simply the number of edges it containé:



.Gi: The i-th épanning sﬁbgraph,of G.
l »

PL

- ~Y .
. - B .

Circuit Progression: A chain progression in which the .

startin§ vertex is the same as the end vertex.

)

Degree of é Vertex: The number of edggﬂ inciden;.on the

- N
. vertex. .

121.1 Notation.

G: The given probabilistic graph of the system whose overall
> .

.
reliability is sought. .

o

——

R(G)l: Overall rq}iability of graph G.

d(G): Domination pf graph G. - , : ' . )
D(G): |d(G)] . | ‘ . .

e ~(u, v): Edge e having end vertices u and v.

p(e), pé:“Probability that edgé e functions. ".

q: q=(1-p) . : ‘~ L
-~ . , . , i Y "
n:  The number of vertices of graph G. .
b: The number.of edges of graph G. ] ’
' ' ' T A
- J: " <.
»% . . R - ‘ *
» ) ¢
=]
- L3
- . ° 4
\ ’
L -
o o 0‘
! ; pl !
4 o \



a ) CHAPTE% 2 ] .
. - ’ '
2. HiSto;ical.Reviéw
[ In this chapter a review of the literature on ov;fall'
;- ‘reliébility in‘presenﬁéa. ' ;j .
| ) Wing and Dengtr;ou [8], have considered the overall

. reliability problem by calculating the 2-terminal reliability
for each vertex-pair, 'e.g. they solve the problem by
{ . , consi5;;ing;n(n—2)'subproblems.h Thi's approach becomes

: 2 )
unwieldly eéven for moderate 'size networks. Fu [9], ‘ )p

Fy
-~

i ?Z approximated overall reliability thru the épplication of
i topologlcal electrlcal network theory
Since the overall reliability is the probabllity that -

at least one spanqlng tree of Ehe network has all its edges

[ .
N ‘ | | ‘
. and vertices functional, the. overall reliability can be
i ) ’ ‘\ ‘ L.
' calculated by use of the wefi known Inclusion-Exclusion
) ~
‘\ . Principle, whlch is a direct expan51on of the union of events.

‘ In a network hav1ng m spanning .trees the probablllty
- expresqlon yields (2' -1) terms. Thus, computing éverall

reliability hsing direct expansion is not tractable even for
. * . A

moderate size networks. For the graph of figure 2, m=8, e .

number of terms in the probablllty expressxon would be : ' 

- Pa=zss, - I ‘ o
' . ~ / [ ‘ , N . N

Voo co For networks consisting of more than.one'spanning tree,

. the actual number of terms, B8, in the explicit reliability

) expression is substantially less than (27-1). Hagstrom,




N
.

Prabhakar, Satyanarayana [10], [11}, [12], [13], [14], have

d ~studied tﬁi§ problem. For thé example graph of figure 1,
" B=7, which is less. than half the total number of terms,

24-1-15._ '

"Example 1. '

\
. . 1

4 - 2 .
S
. 3
Figure 1.

LI The spanning trees are: fi'='{1,2,3}

Using the
R(G)

R(G)"

R(G)

R(G)

R(G)

.f2
f3 ",' {11214}

=:{1,3,4}"

£, ="1{2,3,4}

Inclu510n-Exclu51on Pr1nc1p1e,

i

IP(f£,)- % P(f,,£.) +. = P(f f f )
i . i<j '3 , 1<J<k k

= p(f'uf VEJUE,).

-

= P(f ) + P(f )+ P(f ) + P(f ) - P(f fz)‘— P(fl,f3) |

ot P(fl 2,f ) + P(fl,f ,f ) + 'P(fl,f3ﬂf4)

P(1,2,3) + P(1,3,4) +_P(1,2,4)‘+'P(2,3,4)
- 6P(l 2,3,4) + 4P(1,2,3,4)' - P(X,2,3, 4)

P(l 2,3) + P(1,3, 4) + P(l 2 4) + P(2,3,4)

a———

- 3P(1,2,3,4)

(2.0)

(2.1) "

(2.2)
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2

function. ch

-

-

10

s

where P(i,j, k) is the probability that edges (i,j, k)

Example 2. . (Inclusion-Exclusion Principle)

. @ fs

f6

£

7

f8 -

°

"{1,2,4}

{1,2,5}

“{1,3,5}

= {1,4,5)}
" {2131-4}
- {213'5}

\'{2,4,5}

‘{1,3,4}"

applylng the Inclu51on-Exclu31on Principle (2 0):

R(G) P(f uf

2 3

IP(£.)] - 2.

Uf4

R(G)

uf uf Uf uf )

[Z

P(f £
<J<k i'

yo

Taking intersection of spanning.trees in (2.3), yields

Qoé necessarily unique spanning subgraphs.

Hence,

CR(@) T R(E]) + B(E,) + PUEy) + PUEy 4P(Eg) + PUE)

’

: 4 \
.+‘P(f7) + P(fa)]’- [6P(fl,f2) + 3P(fl,f3?



or,

"R(G)

Upon

obtains:

~
1
-
//
. ¢
¥

11

+ 10P(f2,f3) +-3P{f2,f4) + 3P§f3,f4l + 3P(f6,f7)]

s . \v'

o L\ “ ‘ N ) -
J’ + E(lef4lf?) + P(f3(f4lf5) + P(Fe’f7’f8)]

-‘[69P(f1,f2,f3,f4) + P(fl,fg,fs,fsﬂ

_+ [56P(fI,f2,f3,fa,f5)]c- QBP(fl,fz,fB,f4,
. g ,

+ [8P(fl,52'f3'f4lfslf6lf7)] - [P(fllf\zlf3l

f6'f7lf8)1.

[P(1,2,4) + P(1,2,5) + P(l,i;A?'¥-P(l/3,5)_

' 7
+ P(1,4,5) + P(2,3,4) + P(3,3,5) + P(2,4;5)]

[6P(1,2,4,5) + 3P(1,2,3,4) + 10P(1,2,3,4,5

. { ‘ ./
+ 3P(1,2,3,5) + 3P(1,3,4;5) + 3P(2,3,4,5) )
+ [48P(1,2,3,4,5) + 4PF(1,2,4,5) + P(1,2,3,4)

£

+ P(1,2,3,5) + P(1,3,4,5) + P(2,3,4,5)]

*

[28P(1,2,3,4,5)] + [8P(1,2,3,4,5)]

/
s

[P(l'203r4}5)]g

collection of like terms, and simplification,

+ [gap(fi,fz,f3) + 4P(£; £ £0) + (£, £5,5)

)

fi,fs,

/

)
7

-

A3

)

l69p(1,2,3,4,5) + P(1,2,4,5)) + [56P(1,2,3,4,5)]

(2.4)

one



J MY

R(G) = P(1,2,4) + P(1,2,5) + P(1,3,4) + P(1,3,5)

+ P(1,4,5) + P(2,3,4) + P(2,3,5) + P(2,4,5) -

a
il

: - 3P(1,2,4,5) - 2P(1,2,3,4) - 2P(1,2,3,5) ‘
- )
= 2P(1,3,4,5) - 2P(2,3,4,5) + 4P(1,2,3,4,5% (2.5)

&+
/ ~
g

P(
D1 /
or simply, /

3

R(G) /s P1P,Py + PjP,P5 + P1P3Ry *+ P1P3Ps *+ P1P4Ps

e y
2 * PaP3Py * PoP3Ps * PyPyPg ~ 3P PP4Ps

/,'/ &t - " ‘

/ T 2P1PpP3Py T 2P PyP3P5 ~ 2P P3PyPs5 - 2P;P3P4Ps

+ 4p1p2p3p4p5’ . i )

The infeasibility of using the Inclusion-Exclusion
Principle also becoﬁeéiapparent in this example, since equation
(2.4) contains 255 term$,~many_pf,whiéh péncéi, resulting in

only 23 terms in (2.5).

) ,Exapbles 1 and 2,. and equation (2.0) demonstrate the. )

3

complexity of using the Inclusion-Exélusioﬁ Principle to -

compute the overall reliability.
: . : e
Referring to”equations (2.2) and (2.3), it follows - -

that R(G) may be written in the form; - -

’
[y

- U R(G) = FA(G PG, ) : SR s 1 (2.6)

M 5

ot



Sétyanaray;ana [1], has. proven that,d((-;k') is.simply
the numbper ‘of odd formations minus the number of even
formations, which,. by definition, is the domination of graph
G, - L o

Exi)ressing i%(G) using équa;ion (2.6) , rather than using
equation (2.0), has one major advantage: only non-cancelling

. terms would be genéf\afed.

The probleém now is in the computation of the domination

« of a graph, which is the main theorem in Satyanarayana's
: & : .
paper. :
Theorem 1. ’

~ For .any graph G, the domination d(GJ = d(Ge) - d{(G~e). "’
The dominatioﬁ of a.graph G can therefore be computed

as the domiriation of G'e (a subgraph of G obtained by
« ) ; f

1

coalescing 'the' vertices of edge e) minus the domination of
(G-e) (a s:ubéraph of G obtained by >deletingledge e). The
domination of each subgraph would then have to be recursively
computed in a similar ;nanner. This process would continue -
until all subgraphs have been reduced to trees, whose
dominations are equal to +l.

For some special strﬁctures, the domination has been
derived as a closed form\ula, for example, the domination of
— “a complete’ ' graph on n \;ertices (Fact 1).

In comparing the Inclusion-Exclusion Principle and the

domination approach, it becomes evident that the do_minétion

S
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apprdach is more efficient in terms of computatier;ai time,
since the domlnatlon approach generates 2b terms, where b
is the number of edges of the gra;ﬂg whereas the Inclusion-

Exclusion Principle generates (2 -1) terms, where m is the,.
. "\, ‘
number of spannin‘g‘trees of the graph. Despite the fact

that both computational times are of exponential order, the

dox‘rq’.pation approach is conceivabl;p better.

Corollary 1. ,

a(e) = (-1) P+l pgley o (op) (b-n) D(G,)
\d -

where” D (G-e), D(Gé) are the absolute values of d(G-e) and

d(Ge) respectively, and where (b-n+1) "is the nullity of the

. ! i "‘
Fadl 1. : , . T @

"graph G.

’ . N
-Let G be a complete graph on n .vertices. -

dG) = (-1fn~1)(n=2)/2 4y,

-

The domination of some graphs with speciél structures
‘can be easily gomputed thru appkication of the following
lemmas and corollary. L ['

Lemma_ 1.

Let G be a graph containing a cut vertex, i, (a cut

Vertex, .is a vertex whose deletion will disconnect the graph,

see [6]). Let G; and dz be the two,components of G with
vertex i in common, then;

d(G) = a(G,)d(G,).

a »
{ . o 14’
o
‘ ‘
. 4 '
" * Ld

./
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reliabilities.

1.

%‘_.g T
‘1‘-'.
“ v,

/ ' ' )
Lemma 2. ' : . : ’

A Y

let G be a graph such that £wo of it's components G,

2 together form G (GiuGzzG)! andﬂGlnGz) is a complgte

graph on m vertices.

and G

a(6) = d(6)d(6,)
(m=1) I~

Ve

¢

3

Satyanarayana [1] developed an algorithm to obtaim the
- ! bl
noncancelling terms in the reliability expression R(G),

¥
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équation (2.5). The alébrithm grows 3 rooted directed tree’

in which the vertices represent the spanning connected

, subéréphs of the given ‘graph G, the root vertex being the

graph G. An edge, directed from vertex i, to vextex j-df
the tree, is weighted with the label of the specific edge,

ray e. which was deleted from‘graph'é(k i) to obtain é(k 3)
: r ’

1
where G(k-,i)"G(k,j) are the i th. and j th. subgrapt:sa

obtained froﬁ G. The‘&eight associated with each vertex, i,

-is the domination of .graph é(k iy
’

The algorithm then derives a symbolic expression in

4

factored form for R(G), as a function of the individual edge .-

hY

Example 3. (Domination Theory approach)

~ Consider figure 2.



All spénning subgraphs of G-are:.
L] el ) \ . J
Gl : ﬁ@<\ Ga ) ) \ ),
G - .-f " [] L]
- G .
2 N 77 .. 9 o S
AN\
‘L““—"—G" . TAd .
3. ’ GiO

L

Q
h -
AN
»
@
=
=
u;A'-- »

) ] 9 ! 3

Gg : : . 615 ¢ ’
s
> ' ’ . )

G . \ G, » \
6 N 13 ° \

. ¢ 7T\
EIRNPEN PR T <

Figure 3. ’ ‘_\,

From equation (2.6), and from the definition of

domination of a\grapH: -

o~

e G ip =z - F_ ’
.'R(G) ié(Gk)P(Gk? 'kFO"Gk) FE(Gk))l,’(Gk)
where Fg(Gk) : number of odd formations of Gk:
FE(Gk) '{ number of even formations'of‘Gk; .

N L‘ c ' ' A
a(G, ) : is the domination of Gki )
>"

7

¢
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¥
‘Refefyingvto (2.4), one can see, ko:,egample, éﬁat; ‘
Fo(6,) = 1, Fg(Gy) = 05 Fo(Gyq) =1, Fp(Gyo) = 3; v
; Fo(é'u); 112, FE(GI;)"-‘: 108. - | 3 s
Hence, - \

© TRIG) = ((1)-(0))P(Gy) + ((1) = (0))P(G,)+ ((1)= (0])P(Gy)

+ ((1)-(0)) P(G) + ((1) = (0)) P(G) - -

-

4

+ (1) = (0J)P(GE) + ((1) - (0))R(G,)
. '. * “ -
+ (1) = (0))P(Gg) + ((4) = (7))P(Gy) .
. L& . : -
o+ D) = (3))R(G) + (1) < (3))P(Gy,)
A+ - (30)R(E1,) "+ () 7 (3NPEyy)

. . N ~ , Q
+ ((112) - (108))P(G,,) [

-

R(G) = P(G)) + P(G,) +7P(G,) + P(G,) + P(G5) + P(G,)

4+ P(G,) + P(Gglo- 3P(Gg) - 2P(Gyq) - 2P(Gy,) /.

}

b Y .

N S o
R(§) ¥ppspg + P1PoPs + PyP3Py + P1P3Pg + P1P4Ps

. L 2P(G),) = 2P(G,;) + 4P(Gyg)

& .
"+ PaP3Py ¥ PoP3Pg + PpPyP5 = 3P PoPyPs5 - 2P)PyP3P,

L o | TR
= 2P3P,P3P5 ~ 2P;P3P4Pg5 = 2P,P3P,4P5 + 4P;P,P3P,Ps-

L

L

’(‘. y s, -

The advantage of ‘using (é,s) over (2.0) is that.only

' non-cancelling terms are generated, ds was seen above.

oo |
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Another method proposed by "Satyajxai-ayana and Chang {2)

is baged on the same concept of "domination of a qraph®.

This method, referred to as the Fagtoring Theoreém, is based

‘on anreillemen_tary event, the suc%ess or failure of édge e.

Letting p(e) be 'the probability that edge e functions, R(G)

may now be ekpressed as;” - : -

) R(@) = p_R(G,) + q_R(G-e) _ N

1

Equa}:ion (2.7) is referred to as the pivetal 'decompositicm;“-'

151, [16]." .

The use of (2.7), fof reliability evaluation was first

4

. introduced by Moskewitz [17], for the reliability computation

of 2-términal netyorks. In his paper, Moskowitz gave a simple,

I
!
i

but signi /'g.cant_:, topolegicel interpretation for the two
terms in (2.7).

The compgtation involved in the 4'recursiv'e application of
(2 7) on each subg\raph can be represented by’ a binary tree. (

Under exhaustive use of (2. 7), the binary tree contains Zb

"

br?nches,' and is- equlvalent to the enumeration of all possible

subgraphs of G. Brown [18], Mine [19], W;Lng and Demitriou

n[ 8 1, have used (2.7) to compute R, (G) (source to K-terminal

reliability). ¢ \ .
By use of the Factor:.ng Theorem, R(G) may be expressed.

as a function of the rellabllities of a graph with one less

S o A _ .

|

N



1 . . ‘ -
! . . +

Gertex, and of another graph with one less'edgep Significant
‘ﬂ $ .
. \
compuiational savinbs may be obtained if notice is made
» ‘ . \

. that graphs Ge'and (G-e) may containvparalgel and series

edges respectively, which can be reduced through degree*Z ‘_‘
and parallel reductions. _Through*such reductiéns, the siZze |
of the binary tree could be reduced-slgnlflcantly Partaklng
of this clue, Misra [21], used the Factoring Theorem to
decompose a given graph_ into series-parallel graphs for
coméuting the source to.terminal reliability. Hansler [22],

Ball [23]), and Johnson [24], subsequently followed the same

\pethod, with Ball and Johnson going on to prove that the
ndﬁber of branches in the binary tree is at most (n- 1)

The problem of computing the overall reliability, or
ib $or that matter, k-terminal reliability, has been proven to
Y. - . N
+ y be NP-hard (NP: not polynomial time) by Rosenthal [25],

Valdant [26], and Béll and Provan [27]. If edge selections

ang seriessparallel reductions performed on each graph in

\4(' =
the .binary tree is‘bolynomially bounded as a function of the

size of G, the computation involved in generatingethe binary
] ' . .

. ¢ tree would be proportional to the number of branches in the

/ ‘ B

. binary-tree. ' The optimal binary tree obtained by the

| recursxve appilcatlon of (2.7) is the one with the minimal

n r of branches. - ' . . - .

In their paper, Satyanarayana and Chang [ 2]} , develop
an aléorighm, FACT, which guarantees an optimal binary tree
to compute Rk(G). of which the ovérail reliability %s a

/ .

special case.

- -

e

-
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Example 4. (Use of the Factoring Theorem) 3
-l Y
R(G) .— .peR(Ge) + (l-pe)R(qre) - ‘
3 < *
G : ‘ )
L) " .
e, . :
GZ! Y b ..'_‘
- O ‘
- 3
1
Figure 4.
~ . _ N © ° -
R(G) -‘“sz’:(GZ) + qZR(G—ez)\— ~ | (2.8)
' &
- o
N < Z .
-



"Example 5.

“

R(G) = pl(pz(p4+q4p5) + qz(p3(p4+q4psl + q3p4p5))

+q1(p3(p4pz*q4pzps) .+ q3(pzp4p5))

Y . ~
5

. _“In the last two’ examples, use of the Factoring Theorem

21
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a
A
was made without use of series—parallel reductions. If’in
example 4, the Factorlng Theorem was repeatedly applled to'
each subgraph, as was performed in example 5, the total
number of graphs generated would be on the order of 2b

26-= 64. But, as ylll be shown in dhapter 3, use of degree—2

and parallel redqétlons will greatly -reduce the number of
graphs generated{ :

Satyanarayana, Chang, Khalll [28], in their paper, ’
derive a recursive equation for overall reliability based

on a new concept, similar to that of the Factoring Theorem.
i -

Unlike the Factoring Theorem, where factoring (decompdsition)
is performed on edges (examples d and 5), this new concept.

performs the factoring on vertices, hence rt's name, Vertex °

Factoring Theorem.L . 4

|

Tne'main theorem; | ) ‘

.{-'n _ ' T . ot

Theorem 2. ‘

. ° k - | . ‘ - ‘ ’
R(G) ={ I H (1-p.) R(G-m) L (1- )R(G )
e {1- “iien } - +i<JplP31#2<J G (]

‘YL\ ? ) . N - ) ' ‘(20 19)

v

where m:. a vexrtex Qf degree k>l 1n G.

(G-m)_,/éubgraph of G with vertex m and’ its 1ncldent edges
/

—— A

deleted
&'ivil :‘subgraph of G obralned by contractlng edges ei,ej(i<j)
gd ‘de-Jeting edges eg(ifg<j).
By use of thls theorem,,the number of grapbs that need

to be con81dered after each decomposition is ((k7+1)

+

<

' f
. -~ . ' - . 7 .

7

]

4
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Example 6. (Vertex Factoring Theorem)
» . y .
G -3 ,
s ! 3 ‘
G-4 :
’ ¢ (1]
’ L]
m. ' G"‘l,z' ° ! .
¢ - ‘ N
\ . . o
. Wiy
# a‘ | - of I3 E ' k] ¥
Il,3| * o) : P \ !
. ' < I !
- . —
X
’ N o
G l2, 3] Q v
i ‘ \ i ‘ 7
. E?' i i N
. o ' o o .
s { ’ et I * o ’ o
- . Figuyre 6. .
By:-‘equation ‘(2;/8): e ‘ S .
! - /R(G) TTUP 19,9y + P31y + P3919,) R(Gey) + PYRRIG) o)
SRR + PIPILR(E)) 3|) + PoPyqyRIG]y 5
R(G) = p,Ps (P19,d; + P,d;a5 + P39,Q,)
. . ] \ \ . 4 ' .
< ot 1ag8g)pyPy + (1m9,95)PyP3d, +PpP3Pd, -

-

. . . ) - -
. < o °




As a speciai case of the ég;nected graph,
Satyanarayana, Chang, Khalil [28}), consider the.?verall
réliébility of the biconnected gfaph, R&Go)f

A conneqtedjgraph G, contains a cﬁt—vertex,_v, if
‘ removing v pértitions G into two or more parts. -Let G,, .
G,s G3s +.., G be subgraphs of G which gértition the edges,
and iﬁ addition have a cut-ve;tex in common~with them. The
ovéf%il reliability of G could then be expressed as-a‘product
of the overall religbilities of Gl' Gz, G3, caey Gk.‘ )
A connected graph,:Go, is said to.be biconnected if it

coqtains no cut-vertices, but there exists two vertices

vyr V,, whose delétion partition (disconnects) G-

Theorem 3.

*u
v, )

.«R(Go) = R(Glj R(Qz) + {R(Gl) - R(Gi)} R(Gz) , | _

where (GluGZ) : G.

v

(GlnGZ) contains only two vertices 1i,j.

* S
Gl'G2 : stgraphs of Go'

G., : graphs obtained by coalescing vertices i,3j,

in Gl,G2 respectively.

L)
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o o . ) ‘ .
G, : , . R(Gl) PlP2+P1P4+P2p4'2P192P4

- : ' ' T ¢
{ G ¢ o R(Gy) = py*P4~PyPy
] ~“
Gy R(G,) = P3+P5~P;Pg

R(Gy) = (pyPy+P Py *PyP,~2p1PoP,) (P3+P5~P4Ps) -

+ 'Kplfp4"Plp4) - (9192+P194+P2P4‘2P1P2p4)} P3PS

4

By noting that graph G, is a special case of‘a

biconnected graph, by virtue of the fact that (G1 nGz) -

contain an edge, Y between vertices 2 and- 4, R(Go) may now
be computéd using the following theorem, again due to

Satyanarayana, Chang, Khalil [28].

"

8

Theorem 4,

R(Gy) = %_'{R(GI)R(GZ) - (1-p_) R(G;-e) R(G,-e)}. -
e

\
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R(G)) = PyP,+P P, +P,P,~2P)P,P,

£3

N

AN
R(Gy) = PyP3+P,P5*P3P;
-2p2p3p5 0 ' 1
q “ * -
. ' > ' '
G2—e2 H | . ’ R(Gz"'ez) = p3p5
. - “

'\
(\ gigure 8.

R(Gy) = %—'{(9192+Plp4*P2?4'291P294"9293+P295+P395'2P2?395)
2

- (l-pé)(pi.p4)(p3p5)}.

3

4
In considering for instance, example 8, as long as the

subgraphs Gysr Gys Gyr Gy (Gl-ez). (Gz‘ez) bcssesg certain
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‘done by Satyanarayana and Woad_[3]. They first béginuby

-

properties, such as being biconnected, S-P reducible, or.
containlng ser1es-paralle1 edges, one of the above methods
.. for tomputing overall refraﬁ/llty could be applled

The vexing problem is that unlgss the‘gubgraphs Gl' G2,
51, 52, (Glfez), G(z-ez) posse;s,these,prdperties, no
significént savings in computational time can be achieved
when computing their overall rel@ability..

An ihport§nt piece of work on network reliability was

’

recalling that computing Rk(G) (K-terminal reliability) in

.general is NP-hard [29]), and then proceed to develop a series

of seven "Polygon to Chain" reductions, for general
applicability. Using tﬁesé reductions the K—termipal
rellablllty, R (G), may be computed in polynomial time.

+ ' The basic requirement they impose on G is that it be a

series-parallel graph (either S-P reducible, or S-P complex).

In their paper, Satyanarayana and Wood define a "Polygon" as:

Definition 1: .Eplygon; Let Cl.and C2 be two chaips of lengths
Ll and L, respectively, and whose common end vertices are

u and v. Then, Clu C2 is éaidbto be‘é polygon of length
(L1+L2)- \ ! .

The great ability to reduce the computational time is
due to the f;Llygon to Chain" transformations. These
transformations are used to create’reliability-préser?ipg
"polygon to chgin“-reductions. This method can be-useé on

any S-P graph, but the emphasis is on S-P complex graphs,

;"‘
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since K-terminal reliability computations for S-P reducible

graphs have been proven to be of polynom1a1 time, for |K|>2,
as well as for |K[‘2 (221, [30] ~ ' - .
ket G be a S-p graph contalnlng a polygon A. "Let G be

the graph obtalned from G by replacing polygon A with chain
™

C, hence; . . >
h

-Theorem 5. i _ X e

R (G) =-2,R(G,)

where QAC% is a corresponding mﬁlﬁfgzkgagioﬁ factor. .

It sﬂquld be noted here that upon performing a "Polygon ,
to Ghain" reduction, the reliabilities of each edge of “®he ;.
Chain would be a fhnction of Fpe particular transformation. .
used. & ‘ .

' Two interesting properties help prove the non-NP-hard

<:~ attribute of this method.

Property 1.

| . <
Let G} be a graph obtained-from G b§ applying a "quygon

to Chain" reduction on G: Then GA is a S-P graph if and only
. if G is.

Property. 2. \ B N

Let G be a S-P complex graph. Then G must admit either

N\

a simple reduction (parallelf degree-2) or a "Polygon to
Chain" reduction ?one of the seven ﬁygesvlisted in figure 9).
In conclusion, Satyén@yana and Wood develop an
. e£ficien£ O(|E|) algorithm cémbining all types of feductiopa,

o



. . — Polygon-to-Chain lcductlons ’
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Polygon Type Chain Type Reduction Foriulas New Edge Reliabilities
) | RS : )

B=p a9,

q .
a.,'b
"PPP (1+—+-—)
abec P, P - S
8 b/ P a+d

a=q.p,9,

B=p,a,9, . ] Ps"B+3
wp pp (L4242 o '
U P.Pbl’c(l +P. +Pb) a+8)(B+8
3
O =P b,9.Pg H9,P P9y . »

B =Paq,Pcly ' % 4
b d I~

8= pppp(l-i- +— +——-)‘
bietd\" "p, Py i Py

& =q,q,p Py ' s . ‘

>

B=pa9,9.Pg +9,P,P.9y

8 =p Pyd.9 '
9, 9% 9.

Y =P b P (1 +Py .+;,;+P 8

8= 9%PPc% ‘ . K

B=pa9,P.y —

8 =p,p 4.9 > _,,./.:1_
e T NN
Pp_Pe .

& =q,0,P.9

B= p.q,,pc(vdq +q4Pe) - ‘ P, -
+ pb(q PePgl, +p.chdp,)
& =PaPyicPyle R |

(1+ s ke +q"+q°)
Y = PaP,PcPaP TR
b'c'd Py P, P Pg.Pe/.

o= q.pbpchp.pf

B =Pad, P (4PaPs +Pg0 P +PyPAy)
+ P PP (Py9, +a4P,)
+ QPP (9,Pf + Pga,)

8 " PaPpicPyPets . v
' - : . 1+ __!.*.:Il’..’.i‘-:- i
. L ‘ \ \W Y =P P P PaPePs R ,
(1)) - ] M % % :
. . - A‘ Pg Py P¢ \ . Figure 9,
. / ‘ ’

-
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which will compute Rk(G)'in linear time\for a S-P graph,

where E is the number of edges of G.

Another major pie&e of work very similar to that of

. "Polygon to Chain" reductions, is that of Politof and.

A 4

Satyanarayana [14].
In their paper, they conmider the K-terminal reliability -

of Inner-Four-Cycle- ree-graphs (IFCI-graphs). Through

recursive application S% degree-2, parallel, and A- Y C -

reductxons, they show how an IFCF-graph is reducible to a

-

single edge.

Politof and Satyanarayana define IFCF—graph and A-Y,

v

reduction as: ' . o '

Definition 2: IFCF—graph; a planar graph G, with no geriee or

‘parallel edges, is said tb be an IFCF-graph, if there exists

4

ace g in G so that every cycle oﬂ?G, with four or more

-ges, contains at least one vertex of g. . ' ¢ ‘ A

S . v .
Definition 3: A-Y reduction, consider a planar graph G,

fig. 10A, and suppose that g is a face of G, bdunded by exac ly
three edges. Such a face is called a delta (denoted by A).
Replacing these three edges of the A" by a star (denoted by

-
Y)-, fig. 10B, is referred to as a A-Y-~reductions.

Based on the .property that IFCF-graphs are reducible to | //f#
edges, Politof and Satyanarayana developed an O(IVI ) algorithm )
.
‘to compute the probablllty that a IFCF-graph is connected,
where |V| is the number of vertiees' of the graph.
J
b ’ o :
. —



The efficiency of this aigorithﬁ is attributable to the
- ‘ ’1 - * .
following two properties: .

|« Definition 4: Window; if a planar graph G is IFCR (ICF) with ~7/~

id R ., - . ’ . . *
: respect to some face g, then g is defined as a window of G.ﬂ

Definition 5: ICF-graph; a planar graph G, with no series or
pédrallel edges, is said to be an.Inner-Cycle-~Free-graph"

iy ) , )
(ICF-graph) , 1; there exists a face g in G<3p/that evexry cycle

of G contains at least one yertex of g.

. - ' : t
Progg;ty 3. N e

(4

Let G be an IFCF-graph énd'w‘a window of G. If glyis an
4o, > .
inner 4 (with respect to w) invG, and-G' is the graph obtained

from G by replacing gl thha Ythen G' also is an IFCF~-graph

w1th respect to w.

- 4 ’ f‘

o o Property- 4. .
’ | Leé G be a planar ICF-graph with no series or.parallél
edéésﬂ. If w is a window of G, then:
‘ A) G contains a Agw, and ' |
» B) any ;-Y reducéion, A¥w, in G, yields a grégh which
~_ ‘ | again is ICF. | ‘
- Ag ‘with the "Polygon ‘to Chaln".red‘ghlon, the
reliabilities of the edges in the Y are functions of. the.
religbllitles of the edges of the A. '

The next two examples will'be useful for an und¢rstandin

. of A=Y reductions. - \
. .




Examplet 9.

VAT

(Overall reliability is assumed)

A P ANT——

Y

.

‘"/

Py 3_5:;;
where § =
Y]: =

\‘ ?2 :
< T

.papc + I:’apbpc

Fi_igure 10.

6

papb + papbpc

(

By

b pa
1 + 2q.
—_— c
Pc P

-

.
p—

I

Pc

(%'+2?_a..+82+
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,ﬁxample 10

[N ’ N\ ' ’

\~ ’l i \\ ~S" Q(
- '\——' _-—lr vy ‘7-‘— %’

Pd . /’ \ o A

( \ A r a ‘\.. - - .

M ,
A, B.

. - Figure 11.

~Though A -Y reductions, fig. 11A reduces to fig. 11B.

3

pw = _:6_ H Q= 6§ +Y b
¢ C8+Y Y .
~/ v whére § =p.pp, +'P.Pq *+ 9P.(qpPy *+ PLIyP.
- 4 .
re . A - o
+ 5 '
Lo Y Pp939) "t P9, (PpdgPe * 9pPgPe * PLPg9d.)
. ( + ‘ ) \\b
\
Y ®  PelPadp*a Pyl + (R G ta.Py) + 9,9 [apa* PLI4P,
R ' { ‘ ’
. . ’ , . -
- .t PpPgPe (1t )] + qapcpd(qb**gbqe) +p,9,la,(g4p +P4q, )
pe . }'t. v
N y o y
' .
<+ pchpe‘1+ss)]
Pe '
~
AN ] - 4
J - @ -is a weighting factor, and é is an assumed edge.
- N - .
& N
. /r - /
_ {
b /,
' /
\ /
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Backtrack fusion is the creation, recognition, and

L

merging of isomorphic substructure§ in a backtrack

computational structure to avoid re@undancy of computation,

ﬁeingéld,'et al. [11]. Series,_par;llel, and deéree—z
reductions are simple backtrack fusion techniquegizgth
vertex decomposition being anéther.\ ‘ )
Backtracking is a general technique for organizing
exhaustive searches, say;for paths, spanning trees, or.
spanning subgraphs. The backtracking technique continually
tries to exteﬁd a partial solﬁtion. At each stage of tﬁe
;eafﬁh,‘if an extension of éhe current partial solution is not
possible, é "backtrack".is perfdi%ed to-a shorter partia%‘
solution, and another attempt is made. . ?his_é;géess is
represented as a "backtrack sﬁ;ucture", an example of which

-~

i illustrated in figure 12, Chang {20].
* 0 .‘ .
| N
l1st choices
2nd choices, given 1lst ché&%e

3rd choices, given 1lst and.
~2nd choices

Y

Figure 1l2.

The search structure for K-trees of the graph of figure 2.
The order in which backtrack generates the .search structure
is shown by dashed lineés.

'
wroe
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The search procedure is shortened if one: o .
y .

A) avoids extension of a partlal solution whlch producés
/i\

B) avoids repetition of stages, i.e., avoid gqnerating

‘no meaningfpl results; ' .

" isomophoric substructures in the backtrack‘structure.
o - . -

3

' These backtrack refinemepts are termed "preiZﬁsion (or

}‘ ! .
branch pruning)" or "fusiow {Qx branch merging)" | espectively,

by Chang. ' . ' //
' /
Although the concept of backtrack is oftPn:assocfated

with enumeration problems, it is useful in %éveral additional

,areas as Qell, for example, in the computation of K~termiﬁ§ix\

!
reliability. ; L ¢ ’ \\

»

3

\
The concept of modules for K-terminal rerigbility has

appeared in many papers, Birnbaum and Esary 154 y. Barlow and’

, ™~ .
- Proschan [15], Murchland [31], Rosenthal [35)]., Buzacott. \\\~-

and Chang [52], Hagstrom f33], Johnson [35], and

Satyanarayana et al. [28].

A

7

RN \
‘} The application of moduleg\varles from"author to author,

—~ . ‘
/’not only with respect to the reliability measure being

:considered, but. in the way it molds the ovexrall solution K
rqeedures. . ) , g

Some authors address the teérminal-pair reliability
grﬁblem,-others-are concerned with overall reliability.l'Some

P
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»

solution techniques-hidhlight.the,modular transfdrmatioa7\ -

. .

aspecf, while in others the modules are left submerged in

-

“

some partitioning-decomposition scheme. -
- Two classes of ‘modules exist for the K-terminal
o ' reliability problem. 'A significant order of‘spmputational.
‘'savings is obtained when modular repfeseﬁtafion is ‘used in ’
" Maddition ég edge decomposition with series and parallel |
reductions. ' |
It is sometimes pgssible to.reﬁlace a connecfed subgrapﬂ

G, of graph G, with an edge e, haVing appropriate reliability
< ' . .

.;”“W““sdgﬁ that-the K—termibal re;iability of the reduced network
Rk,gg')} equals Rk(%). Such G's may be viewed as modules.
* ! ! -t ('

<

- ——*\

set, B, separating G from its complement, G€ (GnE°=E, GuG®aG),

The single edge representatibn requires that the boundary
consist of one or two vertices. Theé corresponding G's will be

" called l-subnet and 2-subnet respéctively, és‘per Rosenthal's -
- ’ *

N

terminoiogy [ 25]. _
such a'gfsatisfy (GnK)EB. In othég words, no vertices of

K are contained in G unless they are pounda;y Vertices (fig..13).
A l-subnet is replaced by a perfect self-loop, and a

2-subnet is replaced by an edge having re;iability RB(E)

(i.e. degree-2 and parallel reductions). The 1-subnet.is’

redundant'heréL”since it ig a special case of a graph g}th

a cut vertex, which has been"discussed earlier.
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Figure 13.

-

For the above classes of modules’ éystem success doeéi .

not rgstrict~the states of G. Situations exist, howeYer,

where system success precludés certain"statés of a subgraph

G. Conditioned on the event A of the®nonoccurrence of states

of G which cause'system failure, it is desired tc replace G

by an edge with ap ropriate retiability such that the K-terminal

reliability of the reduced‘netwérks G',Rk.(G'), equals the '

conditional reliability of G,Rk(GlA). In other words,

Rk(G) =.P(A1Rk.(G').f‘ )
These G's satisfy BC(GnK)

Such G's are called conditional modules,

Vertices of B are in K, and

G contains at least o additional K-vertex which is not in B.
In these cases, the l-subnet is replaced by a perfect self-loop,

and P(A) = R(E“Kfa)' The 2-subnet is réplaced by an edge

having réliability R(anx)(a)/P(A): where P(A) is. the
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probability that each vertex of (ég;}/ie coﬁnected_to a
vertex of B (i.e..degree-Z redectionh. From a topological
viewpoiﬂt, it is apparent.thet P(A) = (GﬂK) (G }, where the
subscript implies that elements of the subgraph B are
identified. - In'short; B is to be considered as a single
l“super-$ertex& ; | |
Summary:

a) ("é‘nK)sB
R, (G°).

Rk(§g¢e) w@eréﬁpe = RB(aj.

l-subnet: R (G)

C3
= n

2-subnet: Rk(G)
3 »

<

B) BC(GNK)

1-subnet: R, (G) R(Ehx)(a)h(acnx)(éc)

2-subnet: R, (G) R Gox) (G )R(Gcnx) (G +e) | e

where P ™ (GnK)(G)/R(GﬂK) (G ).

7

Chang [20], presents a table which compares the amount of
polynomlal time computatlons txpressed 1n domlnatlon, requlred
under algorithm RELY, with and without modular representation.

All the networks reliability computati%hal methods
presented here attest te‘the following: ) .

If a graph is of a S-P €§pe, then polypomial-time
algorithms exist. For a general graph, or for a graph
possessing properties other than_beiné of a S-P type, 'or
4eXamp£e: the graph may be biconneeted, the aléerithms existing

are NP-hard; exponential-time, factorial time, almost expohential

tgim' e e 000 ' q
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CHAPTER 3

3. Overall Reliability of Wheels and Ladders

_‘\ >
In e previous chapter, it was shown that the

co tion of overall realiability is NP-hard unless the
graph in question posesses some special properties, for

example, biconnectedness, §-P reducibility, etc.....

4

Despite the disadvantages of using thefﬁgbtofing

Theorem (dutlined in chapter 2), the theorem still

‘/ \ " . .
certain structures, the computational time becomes 1i

The application of the Factoring Theorem to a certain graph

maintains a beauyty of its own in that when appiied to "

G, will yiéld tw; subgraphs of G, (G-e) obtained from G

by deleting edge e,'anlee, obtained from G by coalesciﬁg
the two vertices of edge e. If one of these subgraphs, say
(G-e), is S-P réducible then R(G-e) may be computed
readily. | '

( Application of the Factoring Theorem need now only be
applied to Gg. After successive application of the Factoring
Theorem, .if both of th; resulting subgraphs, (G-e), and Gg,
‘are S-P reducible, the computational time of R(G) would
be linear.

In this chapter, the approach is to derive recursive
relationships using the Factoring Theoren, parél{el, and

degree-2 reductions. Unfortunately, this approach limits the

class of networks which can be analysed.
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¢ Considered here are four types .of hetworks, namely
ladders, star-ladders, wheels, and star-wheels. Recursive

relations are derived to compute the overall reliability of

such networks, and an algorithm is presented to show the way

~

to compute/}hé/;verall réiiability of a lardger class of

networks réducible to the above four types.' . .

o o

3.1 Additional Definitions

S-P Reducible (Series-=Parallel Reducible)

An S-P reducible graph, is a graph which can be reduced

to a tree by successive degree-2 and parallel reductions.

Degree~2 Reduction:

Sappose @Iﬂ'(u, v) and e, (v, w). A deéree-z )
/,' R , N
reduction feplaces e, and ez‘with_a single edge, e,% (u,w)
s o =~

3

sucb’éhat, .
l r

N ' v
, P3 = p,p,/ (1 - qlgz), [4] and
/ ' .
o REI 2L m @) RIG — ey = ey e3) L.
. -
\\ Parallel Reduction: L -
A\

Seduction replaces edges e;r €, with a single edge ey (u,v).

(3.1)

~ Suppose el& (u, v).and ezw.(u, v). A parallel

'En}‘The extra term generated using the Factoring Theorem

to decompose a wheel-of order n. Graph E would result

after (n;B)“décompositions.



f

Ladder: . L

e

Consider a chain proéression of leﬂgth n. Add a new

vertex by connecting it to every vertex of the chain, hence,

forming a ladder of (n + 2) verticel. ~{See figure 14).

Wheel:

Consider a circuit probression of .length n. AQ& a new

vertex by connecting it to every other vertex, hence,
forming a wheel of (n + 1) vertices. (See figure 16).

Star~Ladder:

Consider a chain progression of length 2m edges.

Connect vertices V(ZQ-Z) and v(zp), p=1,2,....,, m.

.Add a new vertex by connectfng it to vertices connected

previously, hence, forming a star-ladder of (2m + 2)

vertices. (See figure 15). \

Star-Wheel: . p

Consider a cirq‘ﬁthbrogression of length 2m edges.
Connect vertgx V(Zp-Z) and V(2p)” p=1, 2, ....., m.
Add a new vertex by connecting it to vertices connected

previously, hence, forming a star-wheel of jZm + 1)

vertices. (See figure 17). ° \\
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\ <«
E EE Ladder of order 7.
. Figure 14.
Star-Ladder of order 8.
' s “+ ;' " \
\ ” Fiqufe 15. ‘ Y
Wheel of order 9.
- Figure 16. S
- " . Al
Star-wheel of order 17. \\

Fiqure 17. .

©
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‘Example 11 B _

3 2 Overall Reliability of Laddef\Structures

Presented in thls section are fwo examples which

compute the overall rellablllty oﬁ\ladders of 4 and 5

=~

v
-

Vertices respectlvely.
Since the ladder is an S-P reduc1ble graph, it is
reducible to a 51ngle edge by successive degree-2 and

parallel reductions. o o "

N
v
o

0 * . ' ‘
Consider a ladder structure of order 4, figure 18.

h Figure 18‘ .

Edgeéu;nand~2 are in seriés, therefore, a,degrei-z

)

reduction- is pérformed in order to reduce the size of the

graph, yielding edge A. The reliability of edge A is:

E(AL ': PyPy o
| P, * A5p

Figure 19.

43

P
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A parallel reduction\ié performed on the two parallel

edges, edges A and. 3, resulting in edge B. The reliabiliiz
N ~

I

of edge B is: -

- "+

r, = R(B) = py+q R(A) e
a . .
\ 5 i I3 "
. B Ill* ' . ¥
5 Figure 20. #’ coe

K}

Anoﬁng deéree-z reduction is performed on edges B and
4, yielding edge C, fblloWed'by‘ajparallel'reduction on

edges Cland's, resulting in'édge D.

5 > »
c B 1
Figure 21. - -
'R(C) = B,R(B) i R(D) T po+qgR(C)

. Therefore, using equation (3.I%, the overall reliability

r -

of the entire structure is: - L - B

R(L,) = [ p5+q5R(é)lx(p2+q2pi)(p;¢E:§T§TTw

L .. . ) .
’ .~ or -

Yy
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GAPATRUVET ST T e 0 T 0 . ) . . . . . Y

; o ‘ 2
p R(L,), '(P5+qsp4r1 ) I1 (P 2k)*9 (2k) T (x-1))
! Pgtagry ) k=1 ™
| : - .
— ' where r, = p,

v .
' r; = P3493P5%
p2+q2r0 . '

o

- Bxample 12.

bonsider now a'ladder structure of: order. 5. 'As in the
previous .example, thls ladder is redu%gble to a 51ng1e edge

! by Buccessive degree 2 and parallel reductlons, figure 22.

N
‘.“ * n ‘
e B Zﬁ A} -
. D=

Flgure 22, &
Thefréspectiye edde reliabilities are:
P,+d,P . ,
rl‘f R(B) = p3+q3R(Ax ) R(E) = pGR(D)
( . - : p6+q6R(D)

T R(C) = p,R(B)
% @ ph+q4B(B) — |
B | "?ﬁ - R(F) = p+q RIE)
TN ) ' R ]
- Tz T RO) = P gagRC)
b - ’
A C
Pol _
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. . : .
Applying equation (3.1) successively, the .overall
. M 1 W
reliability of this entire structure will be:’ '
. - .
R-(Ls) = [p7+q-,R(E)] (pz+ngl)(p4+q4R(B))(pG+q6R(D))k r
. .o~ B
.oxr ¥ -
‘ 3 - L.
. = * + » .
RiLs). ("7 I7P672 )H P 2) *9 ) T (x-1) o
| PgtdeT2 |, /k=1 ' ,
‘ L}
where Iy =Py i .
Ty = P3*d3Pory. SRR
PtayTy . - S . g
" Iy = PgtdgPyry < T
p +a r ] r ¥ v
42471
L
Lemma 3. " " ‘ . , ) \,"‘
The overall reliability of a ladder of n nodes is:
L~ oo~ -2y
R(Ly) =<p(2n-3)fq(2n-3)p(2n-4)r(n-3) H (p(2j)*q‘(2j-)"(j-\1).)l
| Pan-0)*2n-0)"(n-3) 7} ) , aE
i’ | | | K
Tex) T Plak+1)" 9 (2k+1)P2k) T (k-1) k #0
Prak)y™¥(2x)"(x-1) . =~ r,=p
o 1
B T
and whefe the ladder is labelled légcicographically as shown
in figurg 23A. : ' _ - ) / ‘ o
Proof : ’ ) ‘
- By induction. ’ ' LT T
) ] ,
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| Examples 11 and 12 prove the reliability equation for

n =4, and n = 5, respectively. p

Therefore, assuming R(Ln) true for n = r, what is left

to prove is that R(Ln) is true for n = (r+l).

<

5,
- " A ladder of (r+l) vertices would be as in figure.23B.

The suﬁgraph with edgeél 1,2,..... , (2r-3), would

constityte a ladder of r vertices.

1

Therefore, -
,¢~'” - " (r-2) ' ' C - )
b 3% {, R(L) = R(L,) rl (P(24)*(29) (3-1)
' =1

7]

ﬁch) is the reliability-.of edge '(2r-3), after (r-2)
. successive degree-2 and parallel reductions, starting” from

edge 1 to edge (2r-3). . .

4

o REZ) = Poro3)*9(r-3)P(2r-4)(r-3)
.. Piar-4)*%(2r-4)"(r-3)

A4

. The reliébility of edge (2r—l)vafter another degfee—z

dnd garallel reduction is: |
RY = P(2r-1)*9(2r-1)P(2r-2)R (L) -
. = - p(2r-2f+g(2r-2)g(Lr)

I

- -

Te



\

48

)

Therefore the .r'el.iability of the entire ladder of ~

(r+l) wvertices is:

| p(2r—2)+q(2r-2)§(Lr

N

L

(r-2) . o

- , II (P(24)*9(29)F (§-1)’
j=1

\

. (p(‘2r-l)+qi2r-l)P(2r-2)R(Lr)>(P(2r—2)+q(2r-2)R(Lr))
) .

¢

\

. R" =(p(,2r-li+q(2r-l)p(21;;:2)r(r-2)))(p(‘Zr-?.)"q(zr—Z)r(r-z))

P(2r-2)*9(2¢-2)F (r-2

e,

1 ®epraenTg-n’

=1
o -

R =(p(2r-1)+q(2r-1)p(2r-_2)r(ffz) )
Par-2)%9(2r-2)" (r-2)

(r-2) ‘

: Q .

~ I ®25)*929)% (3-1))
. \S':l ‘ ) ‘

’\. \

(P(2r-29*Y(2r-2)T(r-1)-1)"

' -~

'
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bl

R* =[P(2r-1)"9(2r-2)P(2r-2)% (r-2) "
P(2r-2)"9(2r-2) (r-2)
((r+1)-2) | o o . %
‘ v Q.E.D.

‘IL (P23 *9(25) % (5-1) 7= BT (pe1y)
= , :

3.3 Overall Reliability of Star-Ladders.

‘Example 13. ' .

' ‘Consider the star-ladder of figure 24.

\
‘13 12 11 10 9 8

L 8

. € * ® _, ’ .
E}gure‘! . ‘ |
oo . ' - - ey
By:‘ perfolrming‘ degree-2 ‘and parallel redﬁqtiQns on edges
‘ , 8, 9; 4C ‘10.,'11{ 6, .12, 13; a standard ladder is obtained
N "with updated edge. feliabiiiti_es, P, é;;ual to% o

©

.o Pem2) = Pem2)t 3em2)P (neom P (nrom)

M

- (1-q (ﬁ+2m)q(ﬁ+2m+l))

—
. *
[

N . . m = 0, 1' 2,'n.-n(ﬁ"4)o .-,

~ ) * 2 ‘ N
\ . . : v
where n : number of nodes of star-laddey. .

' o
4,



»
3
¥

S

2«

The reliability of the star-ladder is therefore given
. . -

by: -
- (n-4)-,
' . ‘ 2 ve ’ ’ .
‘R(Sp) = R(L(gia)) \ II (1~ (g +2m) 9 (n+2m+1)
B . 2 . . - '
m=0 -

~_where Sz : star-ladder of order n.
.Lé. s ladder of order e (Standard ladder)
In determlnlng R(S ), the updated edge reliabilities

P, 9 = (1-p), would be ‘used. R(LY) is computed using -

Lemma 3.

4

\3 4 'Overall Reliability of Wheel Structures,

JAn this section, the Factorlng Theorem will be used to

derlve a recurszve relationship for the overall rellablllty

1 o T
P :

of wheel structures

‘ N e o o'
Example 14. o ] -

Consider a wheel of order 4, figure 25,




L

\

-

By equation (2.7), R(W,) = sz(%e2)+ (1-p,)R(G-e,)

where W, .: wheel of order 4. : .

) figure 26, it is evident that R(W,) may be computed

2

) . Fiqure, 26.°

. 'In‘other words, R(Wh) é—sz(E4) + qu(L4).’

¢
R(L4) ig computed using Lemma 3.

"R(E_) can beicomputed.readily by successive parallel and I

>

degreefz reductions:

L (1-q,qy) | \
| R(i?) = 1-q,9 1-Ps (1-9;93) \\ (p5+q5(l-qlq3))
Ps*95(1-q,q 3)}
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Exanple 15. - Vi

»

Consider a wheel of order 5, figure 27.

- . o

s /

&
Figure 27.

.

\The overalltreliability of this structure is obtaihed
as in the ﬁ{evious example. The use of the Factoring Theorem

twice will decompose W5 into two ladders, one of order 5,

the other of ‘order 4, and an extra term E..

. ‘ S R(Ws): _ 2

- Figure 28.




. K
was) = p2p4(R(ES) + qu(le + p2q4RjL4))

~

where R(L;) and R(L,) can be computed ubing lemma 3, after

ébpropriate‘edge relabelling. Edge « i§w§he result of a

parallel reduction of edges 1 and 3. Hence, the reliability
K "‘-: ;“’n

§o£ edge « is;

. ) ~N
< Po= (lmqyq,).
Derivation of R(Es) would be analogous to the derivation .
of R(E4) of the previous example; in this case, however, one
of the edges, «, is the result of i parallel reductions; / /JB
i =1in the Wy case, i =0 in Fhe W, case. L e

| 'R(ES) = p7(1—qlq3q5)

Py+q,(1-q;q,59,)

&

It is evident, that for wheels of larger number of nodes,
each.sucéessiVe ladder will have the edge <«, the result of an (
increas;ng n;mber of parallel reductions.

'\ Let i: be the numbef of parallel reductions of which
edge = is composea of, for a particular ladder, Lﬁ.

P
D)

Therefore:

C o (i+n-3) | (3.3)
(i)y_ (i) | I
R(L,"")= R(Lg™7) II (P(2k+a)*d(2k+4)¥ (k-i)’ ‘
k=i
i i |
= (i), | ' S
Rzt =(1- ]| 9akeny )* - k1)) Pizn-2)T(5-3) e 33
k=0 - k=0 , '
. - P(2n-2)"%(2n-2)% (5-3) ;



- "y ‘ & - )
r; = 9(25+2i+3) P (25+2i+2) T (5-1) :
P ] + . (3)3)
(2j+2i+3) . K .
. P(2j+2i+2) T Y(29#2i42) T (5-1) |

o oo g
where r; : p(21+3) |
n : number of vertices of current ladder.
n : number of vertlces of original wheel
Let E : ‘be. the extra term graph derlved from a wheel
" 0of n vertices af;er (n-3) decomp051tlons, using
= ‘.'the Factoring Theorem. |

It is easily derived, through successive ;¥gree-2 and.

<
p;:;}1e1 reductions, see figure 22, that:

: . i ' (n—z) . 7
RE,) = A ' P (2n-3) 1- H 9 (2k-1)
1-9(2n-4)9(2n-2)f1-
g ' ‘ (n-2)
% -
: ’ P (2n-3)*9(2n-3) \* H 9 (2k-1)
k=l
; bk -
s ‘ . (n-2)
”“' P(2n-3)* 9(2n-3y |1~ H k-1 . (3.4)
. ml _
Lemmé ;.

The overall reliability of a wheel of n vertices is:.

)

(n-3) ey [ .
3 ' 1
JIURIE | U R LICR I D I e q2(i+l)R(L(n—i))
' il . im0 |ks0 |

(3.5) °
where Py = 1.
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Proof:

By induction.

Examples 14 and 15 prove the re}iability equation -for
n=4aidn=5 respectively;

R(W ) can be assumed true for n = V. - - (3.6)

, By the Factoring Theorem;

(R(H(ne1) b2 ROI) + @RLly )

or, from the induction assumption (3.6):

e

R(W(V+l))= pZR(Wv) + qu(L(O)

w(v+1))
(v=3) ) . . Jv;4) i .
(-J ’ i-l ° . N i-O k-o '
o (1) e (0)

As seen in figure 29, wn contains one edge, « ' which is s
the result of a parallel reduction of edges 1 and 3. Hence,
i is replaced by (i+l) in (3.7), where necessary, to denote

this initial composition.

(v-3) ’ . (v-4) i
R »
RO (y1))= Pof | [l * Pa(ieny | REY + :E: I Poeo
, fml ; ' i=0 [ k=0 _
(i+1) 0 (0) : ot
R (y-1))}  +9p Rlyiyy) - .

92 (i+2)

orx,
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.~ (v=3) . (v-4) -
R(W,,1)) =P, Hl Py(i+1)| R(By) # Z H p(Zk? \
. 1= i ‘ - .
. (i#1) TN (0)
I2(iv2) R (v-i) + Pody R‘L(v)’ *. qu(L(v+l))

(3. 8)

As seen in (3.8), the terms p0 and Py generated by

= 1o er
lI P(ak)| 2re redundant, because Pg 1. and P, no long
k=0

" exists in Wy; therefore performing the appropriate changes;one

o (i+1) i
may be written as I P(2x)
k=2

S, i
observes that[‘n P ok
k=0

. s : .
The main equation in the brackets, (3.8), may now be

- multiplied. through by the P, term, "and -the approprlate

changes,performed in the subscrlptlng Limits.

(v-3) ’ - (v-4) . ';j

- (i+l) -
RW(ye1)) = | ]I Py (is1y | REV) :E: 11 P(zk) T3 (142)
i=0 | = | x= :
L &
o (i4]1) (1) (0) )
R(L(v-l)) + PpyP,d, RI(L (v ) + q,R(L (v+¥)).

In order to combine the\third and fourth terms into the

second term, the term (iﬁl) P(ék) must be re-written as
(i+1) k=1 |
| Poak)| ¢ t° compensate for the \p, in the third
k=0

term; consequently, .

-~
L} v

o~



’ ' ‘ 58

ﬂu - ‘ - ‘ - . ““‘:‘“4;4-——~
RIW, 1y = 'ﬂ Py(i+1) | R(By) # :E: | P(2k)
i=0 J i=-1 k=0 o
(i+1) ’ ‘
G2(1+2) RlE(yoi)) | ;
Letting i=(i-1), one obtains, without logs of generality,. '
, ((v+1)-3) , ((v+l)-4) 4
ROt | T Pasy + RE(ar) *+ Z I rex)
i=1 ‘ , Ci=0 =0 ]
- & ’ ‘
q r(L'i) ) = R(W .
2(i+1) T 7 (v4ly-i (ri+1) ’

Q.E.D.

A

-~

4///f\w\\//);r\ : ot e
) N\ . '
s 2 Wheel of (njl)_vertices.

13

1) . L.
3 , ’ Y

4.

Wheel-of n véftices.' - Ladder of (n+l) vertices.

swmFigure 29.
\

2

- 3.5 Overall Reliability of Star-Wheels

. .
B L 4 .
) . -

Example 16

‘Consider a Star-Wheel of order 7, figure 30. The Star-
Wheel is reducible to a standard wheéi, a wheel of order 4,

in the figure 30 case.



on edges'z 7,8;

reduced to a wheel of order 4, where the rellabllltles of

e

P(2m)

Let R(W ) be the overall rellablllty of the order n

/
inscribed wheel.

/

wath the updated edge reliabilities, D q =

——ae
. The reliablllty of the Star-Wheel R(T—) lS therefore

m=1,2,3,
where p ¢
n :
R

given by:

4,9,10:%6,11,12; the star-wheel, T

' the new edges. are glven by:’

= Pom) ¥ 92m)P2m+i-2)P (2m+ii-1)

updated edge reliabilities.

°

L) (.n"l).

Y omefi-2)9 (2men-1) !

7

is

Ave degree—-2 and parallel reductions

/

, 59

number of vertid:s of standard (inscribed) wheel.

number of vertlces of §tar~Wheel

' R(Tﬁ)@"’ R(wn)

R(w ) is computed using lemma 4, along

m-l) ‘.q |
(2m+n-2)q(2m+n-l))'

m-l

3.6 Reliability Approximation

o

(1-5)

o

For many systems it is quite natural to assume .

L

’



.
\ | ) ) g
’ - . hl
: .
1 . .

that edges are highly rellable, E.G q; sO, hence it is possible ,'

J
to reduce the reliability equation of the wheel, equation

(3.5).f

Consider the extra term E . Since q;»0, it . follows that .,
n -

-

]]lqi.o,‘ and hence,. each’ such product can be neglected.
i= X . . « .

-

Thus, R(En)" equatio 3.4) reduces to:

R(E) = l'qczn—é)qtzn-3)q(2n—4)' S
A [ ¢ ¢
/ (i ))'

Similarly, R(L- .equation (3.3) reduces to:

(i+ﬁ—3) o v A .
(Lil))= n + r,, . : -
| . (P(2x+4) 9(2k+4)" (k-1 ) - o
. k=1 - . .
. ' where ry ‘is .as in equation '(3.3). , 3\

—~y Hence, equéti'on (3.5). takes the following form:

(n-3) T, . .
R(W,) = P(2i) (19 (5n-2)9(2n-3)9(2n~-4)"
i=1 SR
b ) (n-4) [T 4 I . o
BER D DN B | [ £ S R PYPRSY
- T i=0 Lk=0
| ti+n-3) , ~ - ,
7 I[ Proked)* I+4) T (x-4) |-
[ - " ’

+
k=i

1 3.7 Comparison’o’f’fé%ﬁpgtatiorm Times. T —
"~ In this section we.present a table listing the run ° '

. . 1 -
5 times for a ,wheel of order 4 -to order 8 using the Factoring

N 4

Theorem, as well as the number of subgraphs generated using
this method. 'In addltlon, }[he number of spanm.ng trees
A 'ﬁ. /‘
& ‘ .'\' \



~ where T

-
'

corresponding to each order of Wheel (order 4 thru 8) 1s listed
t 1nd1cag% the order of the number of ‘terms which would
Q 1in the overall rellablllty expke551on‘when uelng the_'
inclusion-exclusidn formula. The e&pdnentiei growth ip time

. i . ,
from use of the Factoring Theorem is observable from this

table. o ‘ o oy
‘ . ” .
S n _% run time . TS ‘ GT
4 |} 1sec. ~| 16 |- 30
R A SN ) v
5 " 6 secC. d‘s - ¢ 88 ’ ,
. ; & ) 1
6 44 sec. 121 | % 240 - :
7 281 sec. . 320 638 _ k
. . <7
i //. 8 ~ 2055. sec. * | 841 168QV&A‘
. Table 1.
: number of spanning trees.

S
GT‘g total number-of‘subgraphs generated.

~

.The computational tlme for the wheel of order 4 thru- 8

-

usxng the recursive equatlons (3 3) - (3.5) is .038‘$econds.

/
< P

% R -

‘3.8 Genetal Algorlthm for Graphs with Embedded Wheels or Ladders

The followxng algorithm could be used to determine the
overall reliability of graphs, which are embedded either with

wheels or ladders. The graphs must be connected, and must

3

’ PR



’

_equitions (3.1), (3.3), (3.4), (3.5).

: , 62
v N
_be ;educib%giby parallel, and/orldegréefz rgductions, to *‘
. the embedded wheel or ladder. ,
“'Algorithm 1. | : - e '
1. Reduce the give; graph by J%*;o} Parallel, @ggpeé—z
. feductiogs to the embedded Wheel or Ladder. ' ,
i. Detérmine the reliability of £hé fésﬁltigg ;dge after . |
’ each parallel, degree-2 reductign.froh‘steé 1. ‘,
3, :Deﬁermine the overall reiiabi;it; of the embedded
- Wheel or Ladder’from step 2 by the appropriate uségoﬁ e ~: -



4

4

CHAPTER IV

. | “

¢

' 4., . Conclusion

‘modular approach.

In this thesis, the analysis of the computationai

-

) -
complexity of several overall reliability algorithms were

analysed. These approaches included the use of: inclusion-

exclusion principle, dominatien theory aéproach, edge factoring

-~

theorem, vertex factofing theorem, polygon to chain reduction

approach, AJY reduction'apprdach,rbacktrack fusion, and the

2

Through the 60m1nat13h concept the inefficiency of the
s

1nclu81on-exclu51on principle was empha51zed U51ng an
|

extension of the series reduction, called degree-2 reduation,

-

* decomposition-reduction schefje is the creation of subgraphs |
4 A ~

the overall reliability_preblem is made EOmputationalIy
equivalent to the teiminal—pair problemsdefined on the same

graph [20]. S . .

-t o
The common approach adopted in all the above algorithms

v . 1 . EN

was to decompese 'the graph into subgraphs for which efficient

reduction techniques are applicable. ?he simplest such

T~

. containing series and paraliel edges by conaitioning on the

state of an edge, ?hie edge factoring approach, when applied

‘to the overall reliability.problem, ﬁ%s been shown to be

"exponentially &ogst" than the, vertex decomposition approach}

B d

when each is used for the purpose of creatlng subgraphs w1th

degree-2 ve;t;ces. Algorlthms based on Boolean algebra, offer

-

.

re
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altérnatives to’the graph-oriented approaches outlined in ﬁ*}
Chapter 1, Abraham [3&].

Between thé simple backtracking decomposition used in
ChaPQ's algorithm RELY [3&], and the intricate recursive
composition algorithms of Rosenthal [25], and Buzacott [37],
there are those which incorporate backtrack fusion.

In Chapter 2, recursive equations were derived for tﬁe
.overall ;eliabi%i£y of ladders and wheels. Using these
equaéions, £he overali reliability of star-ladders and star-

wheels was then derived. . -

L

~ -

An algorithm was subsequently introduced to show how .

the overall reliability of graphs reducible through degree-2

and paraile1~reductions to ladders .and wheels, could be » ﬂP.

computed. A table qf computational times for wheels of order

4 through order 8, using the edge factoring theorem is
illustrated. Ihcluqsﬁ in this table are the number.of spanning
trees corresponding to each order of wheel, aﬁd the total

o '{::}/) . - *
number of subgraphs generated for each wheel. A comparison of

the compufational times using the edge factoring theorem“and
the derived recursive equationg is sufficient to show the
linear time of these équations.

It is hopéd that the theoretical results of this thesis
will'bé heipfgl in the formulation -of better methods for ,
computing network reliabili;y, of which the main problem still:

Temains: determine the overall reliability of a general éraph

in polynomial time. ‘ ‘

—
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