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CHAPTER 1 ’

INTRODUCTION v
/ ' N [}

*

The pséudopotcntial method was first used for elemental crystals.

( , .o |

- ‘A consistent perturbation theory expansion of the electron energy in a ‘

-

metal, to second order in the potential, yielded a sjimple approximate
expression for the structure dependent conduction électron energy (1)

and (2). ‘The method was used extensively for the investigation of | ’ .
electronic band structure and understanding electrnnic properties in crystals,
as well as sensitive caiculations on the variation of axial rztios and
structure amon'g the simple metals (3). Sincé j;he pscpd‘épotential 1s ‘smaller

\

‘than the real potential, the accuracy of the perturbation expression is

. inereased by using it. ' ~

A‘
The first attempts to extend the-theory .to compounds utilized the
. - emperical pseudopotential method (L). The emperical pscudopotential method

obtains the ﬁseudopdtential or matrix elements of the pseudopotential by

~ v

interpreting experimental data and adjuétrnent to observed band structure.
This fitting of the pseudopotential .to optical and other data is convenient -

for elements and perfectly ordered compounds because only a few patrix

elements need be evaluated. The matrix element, taken as a function of the '

wave vector, is evaluated only at the first ’I‘ew reciprocal Wtors.

~

Thus the values of these matrix elementa could be taken as adjustable .

+

parameters of the theory. This method automatically overcomes a number of |

LS

theoretical and computational problems but it also obscures much of the s
) S .

physics involved and is not capable of determining :the.effects of disorder
@ ¢

in an alloy. ' Also, since the screening potential and thé ionic pseudopotential




. td .
Q0 . Y
" are not seperated in the emperical pseud%potehtial method, the bare ionic

\ ¢ .
| gupseudopotentials arc not known._ Transferability of ionic pseudopotentials
‘ . . * A

is ar} important concept in the study 6ifnlloys ﬁnd.the'cmperical pseudo~
. . i . l ¢ . . ’
‘potential method does not permit this.

. To account for the effelts of disorder and to gain fundamental iﬁsigh

. into the allYoy-problem the matrix elééents of . the ionic pseudopotential =
. Ay .
I ‘ must be known for at least the lower part ot the quasi~contimuum ot wave

Il *

vector space, and be a function of ionic properties only. A first principles
pseudopotential can be obtained from atomic wave functions (5), and Hayes

¢ ; S
(6) was the first to use these ionic pseudopotential matrix elements to

obtain an energy expression for a binary alloy with random order. The model

potential of Heine and Abarenkov (7) and its subsequent optimization by
* Shaw (8) has largely réplaced the pseu&opotential comptited from atomié wave N
functions. In the model po%ential a simple squafe'well of depth % igsiég >
some model gadiﬁs R,and the appropriate Coulopb'pbtential outside is used

S . |
\4;:: ;;; %Zz(t) Zi Y"-k;n - f

' = -2 Ie L. e
N Y - .7'7 ”m o '

. . S
This is the pseudopotential of the bare ion core of charéh Z to which has to

to“Eb%cribe the potential,

be added the potential -from the conduction electrons. T@% well ‘depth A can be

adjusted so that the specﬁroscobically observed encrgy lcvels of one eleciron

added to the ion are réproduced. A depends on the angular momentumfand Py is

the projection operator which picks out the comﬁbnént of the total wave

function of the clectron. The 41‘3 depend. slightly on the energy of the scattered.
{

electron and the matrix elements between plane waves are non-local operators.

Becuuwse spectroscopically observed energy values for one extra electron in
' v

b




{

< ‘. . \(‘3) t \\

the ionic potential are used, the fitting automatically includes all self-
consigtancy in the cdre and exchange and correlation'betweén the outer
electrons and the core.

N . s . .
. AXIthough the parameters of the model potential are experimentally

* derived, they arec .quantities which characterize the baEe ionic potential

alone; the data ﬁsed is atomic and not solid state data., The bare model

.potential is, largely independent of its environment ‘and the tfansferability

of, the model potentiai, which is basic to the study of alloys, is applicable
o AN

3 . .

(9). Since-we ultimately wish to understand the properties of solids in

T
.terms of the basic properties of atoms no physical insight is 1dst by using’

model -potentials because only atomic data is obtained experimentally. It )
ié'fér these reasons that recent theoretical work and caleulations concerning
alloys have used modél potential (9 - 12).

The formal structure of the theory as applied to elecironic structure of
’ o . g

" an alloy does not depend on the type of pseudonotentlal used The method wgs

chiefly initiated by Harrison (5) and Hayes (6). Because the pseudopotential

is small, wlthln certain restrlctlons Phillips (13), and the eloctron

screenlng is llnear (lh - page 51), perturbation theory allows the breakdown

of the entire crystal pseudopqtential into ?he sum of ionitc pseddopotentia% of

the }ndividual ions. . The mdtrix clements are broken up into sfructure factors

qnd form factors. The Yorm factors are indgﬁéndent of position and approx-

imately independent of th;ir environment, Siﬁce a basic quantity of the'theory,

the form faptoré, is approximately independent of "the concentration ahd

degree of o%der, pseudopotential theo;y is usef&l_in the’study of alloyé.
Recent dgvelopments in the theory have been mainly concerned with

. \ . .

improving the approximations involved such as the change in screening with

conéentration and the small changes in the ionic model potentials.as the

!



’
. L%
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environment changes (9) (15). These improvements are obvious in general
and merely provide more accuracy in calculations. Xogachi (11) has

succeeded in incorporating the effects of short rar‘ge order into the

structure dependent electronic energy expression, while Phillips (16)
has modified pseudopotential theor:,{ :to include oovalently bonded structures
although it ha;s not yet been applied to covalently bonded 'all_oys. \

Model potential theory has been applied to binary alloys reoently
by several authors: Inglesfield (17.) explained the tendency for inter-
mediate compounds to be ordered in systems with liyge’ei-ectronegatlv1ty ‘
difference and predicted the phases of three alloy systens, ~Pha.se changes
of disordered alloys with composition in two binary systems were calculated
by Kogachi and latsuo (12). Oxdered phases-of several .systems were

explained successfully by Kogachi (11) usiné the model potential method.,

The total energy of thirteen alloys were calculated for different structures

o

in order to predict the actual structure of the alloy, this was done by .

Hatysina (10).  Yatada et al (18) derived an expression for the structure

dependent energy and ordering energy of a hexagonal close packed binary
alloy in order io explain the existence of the ordered compounds Mgy Cd
and Z‘IngJ in tne Fg-0d system.

With the exception of Richardson (19), who us;ed the emperical
pseudopotential léethod and did not consider the effectg of dieurder,
ternary alloys have not been studied theoritically 1‘;.0 an_{ ex;:ent. ) By
extending the theory of Harrison (5) and Hayes (6) for ~t‘he structuro
dependent energy of zn alloy, a general expression will be; derived for -

! o

the structure dependent electronic energy of an alloy_as' a function of -

concentration and type of order. This wil'l be done for a binary and ternary

alloy. Me limitations of applying pseudopotential theory to alloys -~

will be examined. . .



. CHAPTER 2

- e o
'
~
n
.

' PERTURBATION ‘THEORY

2.1 . Application to Elemental Crystals

[

!

o Following Harrison (1) and Pick and Sarma (2) the energy ejgenvalues

2

of electrons'in a crystal can be written fo second order in the pseudo-

poten“blal in atomc umts as

ER)=%k+ SRNOIR) + % < 4

K- 4( 5,)‘
where(ﬁ }lVlth) are the matrix elements of the crystal pseudopotential’
between plane wave‘s of wave ‘vector K and (R.+ . At the.band gaps. this
is; a bad approximation for E(i?) however the errors cancel for states just
below and above the gap (20 - page 269). Therefore summing (k) up to

t}.1e Fermi surface Kg gives the correct electronic energy to second order.

Neglecting the’first two terms of (2—1) because they are structure

independent gives

Ups=N"* & g‘

Ubs is the ‘structure dependent electronic energy ger ion where N is the

! * \ -
number of ions and is called the band structure energy. The Fermi surface

is taken as spherical since differences in summing over the true Fermi

’

surface and the Permi sphere are of third order (5 - page 38).

Because the pseudopo'tential is the sun of potentiale centered on

the ion sites the matrix elements of the total pseudopotential can be

factored.




-

! N N I4 .
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i 4 . \"(‘ (6) L2
b .

([{r'IV(r)lh) (N.n) ‘J’,{‘(h‘* i V(?—jf-uﬁ FAF .
5 _

-

"(N.Q )J'E i ““*i"? By (r B).4 ‘I"“”dr - -

= N";Jg‘?'ﬁ -’j “‘ﬂf’ U )1‘75 Tl

o

Fjlolo= N ¥ P gl

where {10 is the atomic volume

and V(?) is the screened ionic pseudopotential.

‘!

<k+;lV<r)lB> Sy <k glvmlf) o, (2-3)

Thus the matrlx elenents of the pseudopotential factor into a part !

-depending only on the ion positions, called the structure' factor,and a .

part depending~on only the individual ionic poten&ials; called_ a form factor.
This 4s an ess’ential"part of “the pseudgpotential theoxl':yeof cr;‘ystals a.r;d
is extremely important when generalizing th.e theory to aiioy‘cryat\é.ls.

The ‘.total crystal pseudopotential is actually:the ioniec potentia.lbs
plus the potential die to the conducting ialectrons. If 'the conduction

) electron density is approximately uniform,and it is calculated only tov

flI‘Sf‘J order,lts effect is to screen the ionic pseudopotentials. .

The matrix elements of the total crystal potentials can be \wr-itt.;en /

for a local potential.

Fed=Gglvenldkep e




-ways-(Ql) but the usual Lindhard (ﬁ’i\lectric function is

. From (2—3) and (2-1;) the matri elements .of the crystal ps'eudopoter;tial '

NG

where V?f) 25 the bare crystal pseudopotentla.l (5). E(q) is the screening

factor or dielectric function. The calculation of €(q) by Blmple pertur-

bation theory gan take into account corrqlatlon and exchange in different’

X() . L
I(i)—N E[z‘ -£ey)l T )

1

6(3) /-

Y

G - L] . .
can be written as

<£+,M)1k> Sip gl
o R |

4

where o \ : s
(&;&ﬂl@ (ﬁyhfcrvlk) 'U(]) '

— ! v
.~

e - -_
and V(F) is the unscreened ionic g’se‘udopoten als ] f
. . t . |
The total energy is not juast the sum of the one electron energies -~ |
. N d '] Loy
because in a self-consistent field theory the electrostatic $elf-energy

-

. A - 7
of the electron system is counted twice. It must be subtracted to give

q

the band structure energy per ion.

y K




. ) ot hc.
. L (8)
C ) ¢

,

« 8 “~ . e
,where V(},) is the screening ;otential'of the electron gas‘and/)(q) the
\ . -
electron charge density. : .

For a local potentlal V(q) 185(5)19)(1‘6(;)) a.nd/(q) }-Q li)ﬁg)

(20 - page 97;% ‘ R .

N U,s_/%‘, lS(})l2 h@y)lzfy}f{;} C(29)

where(ﬁ‘ i (T)w <”U®,E’;> lEg) ™, for a {;cal ﬁseudopotentia]j. | '
. " w

Equation (2-5) gives the band structure energy for an elddental

- -

giving

crystal in the local appro ation.

s(q) -N Z: } ¥ = /n’l Z‘{:,v:t}z | _ , for an element.

-
s % “

-4

'where n is the number of ions per unit cell and '&mitidns within
the unit cell,
Yhen an elementali%rystal is considered S(3) = O,when § is-not a .

reciprocal lattice vector &. The general expressihon for the band structure

energy of an elemental c¥stal is then,

Mz)%'ng)l‘/w;)l’Ig) @ . L8

-

* 1}

ﬁ

lS( )l is calculated for dlfferent structures according to Harnson (5)

for instance. - . ’
- " -
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. (9)

2 ~—

A3

é.? Aﬁjﬂfcation to Alloy \Crystals
v . : . ! {
The simple binary alloy was first treated by Harrison (5). The

“band structure energy can still be written in the form

»
3
a

K

but no such factorization of the matrix elements as in equation (2-3) is
possible, because of the two different atomic potentials involved in
o ) .

V(T) the unscreened crystal pseudopotential.

The unscreened crystal potential must be written as

v

V(r) §:V¢r-r)+2 % T-7:)

. . .
where T; and ¥, are lattice vectors.

. &

This is a simple lattice of one atom per unit cell.

' Taking the matrix:elements of this é.lioy potentia;l,equati'on (2-3)
is generalized to '
- 734
(k- iIV(r)fD—N ‘ﬁx (¢ f) wnlk) o
. ‘ T (2-8)

*N"' ,vZ‘ "’<)§;} Y ?fmlﬁ>

There artxyA tyo structure factors in the matrix element.

v

’

—l}"- B : , ' ' .
N. ;,Q ' sums over all ions sites just as the structure factor

of a pure metal. If ¥ is a reciprocal lattice vector of the basio crystai

t

structure, g, this first structure faotor will be unity, oﬁhgrwise zero.




o : . (o)

< N /

-/:gf g, -
The second Ftructure factor /l/ £ J,s equal to CB ; the ratio of ',
B atoms to the total number of atoms, 11‘ Ef ig a re01procal lattice vector, ~

however .it is in general non-zero for other values of §.
-t ' 14

Thus we have for Zi =8
<E !Vcr)lk) C,q(k ml >"Cp(kaqlvp(i'l/ )

If § ¢.7 then (2-8) has the form

y‘, <E* IJ'./"')/J> 59')(5[ ,,(r)‘%(r)/é>
where S(q) ‘N 'LZ,JZ“} . - Kﬁ )

-~ N N s
The band structure energy for an alloy is now

s= 2': ['C,mquﬂzlwéy) ‘ - o
| o o o (2-9)
+ . 1, 2 _ 2 _- .
%{ [Sy)] [1(,;(}) ngfg],Ig) €g) |
‘ihe structure factor S(' ) is a function of cémcentration, degree of

order and type of structure. --All in_fon;mation ‘as to how the two types of

]

ions are situated is contained in S(¥). This structure factor was

calculated by Harrison (5) for a random binary alloy of one atom p;'

?

unit cell. Hayes (6) used this simple theory of a random alloy, t?gether

with non-local effects to lcalculate the ordering energy of Lillg. . 4

»

From the theory of Harrison (5) the matyix elerz}énts of the total
crystal potential are seen to divide into two categories, IMatrix elements

thh q g a reciprocal lattice vector and matmx elemerits with q o g.' ¥ ,
14

»

The structure factor part of the second type of matrix element mpust be _

°©

calculated and contains all information as to how the different ions are-




«

f“elements, the form factors become either averages or differences of the

situated in the crystal. -

oo
Thqresséntial feature of " the above theory is the dividing of the

sum over 6 for the band structure energy intb‘a sum over the average of

the ionic form factors (Cﬁ 1{,(;) *+Cq %C;))l ‘ and a sum over the

'difference of these ionic form factors. .This is not péssible in general.

It is made possible by the absence of cross terms when squarlng the matrix .

elements (2-8) to derive (2-9). Inglesfield (22) has shown that thls is

the case’when'all sites in the crystal ére equivalent. Therefore in

generaliéing pseudopotential theory to the alloy case,lthe structural 'f

aspects or genéralizations to the structure factor part of the matrix

elements have restricted somewhat its use. The other part of the matrix

’
\
Y

form factors of the ionic constituents.

2.3 Form Factors

oS

In the appiicatisﬁ of pseudopotential theory, the use of .second orde;
perturbation theory, a pseudopotential must be constructgg.for ionic ‘
constituents. If ?ﬁis pseudopotential is constrpcteé from first principles,
the result will be a ﬁon-fbcal operator and also will depend on the energy
of the electron being scattered. The matrix efements of the pseudopotenpial
will be non-local operators (20 - page 319). For many pseudopotentials
“%he nonlocal part is not very great and an approx1matlon known as thQ\
"On the Fermi Surface" approx1mat10n is used. The form facto;s,g;e then

Q
‘ Vs
a function of only one variable q, the wave vector. The effects of using

-

this approximation is discussed by Heine and Weaire (20) and the situation

uv
Jbﬁld be 1mproved somewhat by the quasxfiocal approxlmatlon and use of an

efTectSve mass (3) In the alloy case the local approximation is especially
B~ '

v ’ - ¥




a ) (12)

I L, ?

convenient since it is the hon-local part of tht;} form factor which changes
;)n alloying. These change:s. however can be determined as by Gupt; (15) and
Taut and Paasch (9). The érror introduced by the local approximation
di\i‘fer‘s with the quantity calculated and the amount of eré‘or is not yet
known (20 - page 324). | |

The functional simplicityfof the local pseudo-or model potential
makes computational difficulties min%mal. Because of the small number of
parameters local potentials can be applied to a large number of materials
and problems and trends can be seen ivn t’hese parameters. Simple physical

models have been pmd}lced from pseudopotential theory b:,; the use of local

‘potentials. In the light of recent calculations (10 - 12) it is apparent

"that local model potentials can also produce at least consistent numerical

results. Unscreened local form factors, when used in alloy calculation

need only be renormalized to the cotrrect atomic volume by the relation
?/n ( Z’) = Ny 7/(]), where ), .and w;)are the elemental atomic volume

and form factor. Fermi surface cha.nges need not be considered g.n the

A A

renormalizing because form factor are generally plotted aga.mst 7/1 k; ’

&2

In dealing with the struéture dependent electronic energy, the band-
structure energy, the atomic volume will be tz:t;ated as a parameter, inde-
pendent .of the structure dependent eleci‘;ronic energy. The atomic ,volume
is determined mainly by th‘e larger fJee electron enexgy which 1s first

order in the pseudopotential while the band-structure energy is qecon‘a

N 4

order in the pseudopotential. The atomie volume of the alloy can be teken

(243

to follow Yangard's Law, to very li;xearly with concentration or .taken

.

from experimental data. Appreciable error is not likely, to occur from
small” inaccuracies in atomic volume (20 - page LL7). /

In order to set pp a self-consistent potential the bare ionic

v
)
[}



(13)

I

o
b A '

pseudopotentials must be screened by the conduction electrons. fThe' Toe
Ll

conduction electron charge density is calculated only to lo\}est order in
th¥ pseudopotential, This linear approximation enables each Fourier

T .

_compénent of the bare pseudopotential to be screened seperatly, V( ;)" y
' . (4 -

vhere 'l/(;)‘ is the bare local form factor and €[J)is the appropriate

+

screening factor. There are several forms of((f} kn use. Some take

.
'

into account in an approximate way the exchange and correlation of the

conduction electrons (20 - page -305). When these scre'ening functions are

used in the screening of an ionic p‘seudopotential in an alloy it is assumed

4

that the valence electrons of each camponent of the alloy has gone into a
u'nifogcm distribution of the electron gas. With this assumption the .

parameters of the dielectric function, the Fermi wave number and the atomic’

1

. volume can be functions of concentration and 5(3) con be made a_function of

-

cog;;:gntration (12). ™ ' o
S N | ~
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CHAPTER 3 "

THE BAND STRUCTURE ENERGY OF ALLOYS

‘ .
/0 *

/

3.1 The Crystal Pseudopotential
' -

The preceeding theory is now applied to a t 1ary alloy. The unit-

cell ,is allowed to remain arbitrary, inasmuch as th;\number of aﬁoms an@‘
type of atoms in cell are not specified. To second order in the pseudo-

potentiél the structure dependent electronic energy is given‘by
Uss=N"> S eglitnli) <kIViolk ,
YRR )

z__flo Z ﬁ(cb)V 5) “ N . g

.where V(r) is the pseudopotential of the entire crystal,

From Chapter 2 and using the "On the Ferni Surface" roximation

(3-1) can be written as

%}i KE*;IV&‘)I F)l;x(i)é'(k) (3-2)

v(2) is the unscreened pseudopotential of . the entire ionic arrangement,

wvhich we must now set up. Ve assume a substitutional ternary alloy‘on.
a peffect lattice. The atomic potentials are localized and nearly
spherical around each nucleus. The atomic volume is taken to be Equal ' ‘
for each ?toﬁ and Es the weighted average of tﬁe elemental atomic volumes.

. If we consider a perfectly ordered state of this alloy, within the

unit cell there will be sites on vhich only A atoms will lie and so on

P
% »M o

-
P .
f
. .
.
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for B and C type atoms. The sites on which A atoms lie are called primary

°

‘sites and secondary and ternary i“or B and C atoms respectively. W¥e choose o

the same primdry site from each unit ‘¢ell to .form a lattice. /Tk}_e cxygi:g.l
lattice will be a lattice-with a basis. The sites within thé cell will
be associated wii;h the lattice point by basis vectors. In choosi:ng a
unit cell, we cannot do so in the sémé ma‘nnerazL chooeing\:;t unit cell for
an elemental crystal. The unit cell mlxst contain at least as ma:‘q: sites
as thefe are kinds of sites, This is done to e.nable the type of ordering

to be described within the wnit cell. A

N = number of atems in the crystal

n = number of atoms per unit cell .
P = number of primary sites per unit cell '
s = number of secondary sites per unit cell

= number of ternary sites per unit cell

(),

f’ 3(‘:’ are' vectors to primary” slte;~ within unit cell with {5 "0
5 are vectors to secondary sites within umt cell with 5 0

‘Tt” Ter 3:«) are vectors to temary ‘sites within unit cell Wl'th 50)#__0

These vectors are constant within the crystal,even if a cha.nge of order

or comp051tion ia experienced. This is so because thé vectors refer to

the type of site and not the kind of atom that happens to occupy the site.

N: = number of A atoms on primary sites !

N3 = number of A atoms on secondary sites N -

N: = number oi‘-A atoms on ternary sites . : e

'With gimilar definitions for N; . Nf etc... '
!".with a subgoript refers to a lattice point. ' . S

v

These numbers }g‘ are functions of concentration and degree of order.

In the completely disordered state N: is not G, N because the chances of
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'secondary site if the number of primary s%ifs and secondary sites are the

.-

- B ' A ] (16) L

it taking up a priﬁary site are the same as the chances of it'takiné up a

same.,

A

:
,
o

An alloy system méy have several perfectly ordered phases, each with

4 different type of ordering, tﬁrough its faqge of éoncentfation. At
concentration ‘around the;e stoichiometric ratiog thg type of ordering of
that compound must be used. . ) o -

The unécreened pseudopotential V(®) can be written as the sum of .
ionic p@eudOpotentlals1/0?)ce?tered at the 1onlc posxtlons. The cgystal
potential set up here<i111 be for a cryetal of unspecified order. In this
way the degree of orde¥r can be imposed latter through the /w, « If for 2
examplé A atoms are on secondary sites they are assumed to be equally

distributed over all secondary sites.

The unscreened crystal paeudopotent al is

Ven= z‘:z‘,’tq )f‘ffxr UG 74
Vin=lo 2 LViFtd el A 3

?) < q
o3 f WSS, )+Zf fv,«-r;‘sf U(e5ess)
/-
P

A .
* ;Z, w(rfes )-m(r- 4')& )fvé mm-m-r.,‘,; )
' (3-3)

NE .
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where Un(r:')is the ionic pseudopotential of an A atom. In writing dowh

1

the crystal pseudopotential, the A atoms were first taken to be on all:
sites and then thé Un(ft) wag\s:b-tz:acted from the sites|where an atom

different from A was situated. This was done to facilitate the intro-

2

duction of the structure factor of the entire lattice in the proceedihg

equatlona. . The sign ’Z;: means that all basis vectors are” summed over k

in this first term

mmm e X ”
it Tl tzz/”(r-n 4"1)-.212%(?.’6‘(&!' )
© =
*ZZ UlE-%-57 2 2 GlF-E- o)

¥zl i o/ t

Taking for instance the second term in (3-3) and particular basis vector,

) {2) .
say ‘Sf’ therefore ¥*2 we have
Ng

U(F- -4~ z/.(v 5“’)

This is the pseudopotential at T due 9) all B, atoms on the second pnmary ¢

.~

site of the unit cells in the crystal. Since there are p primary sites y
' n

per unit cell the second primary sites will receive only ‘/pof the total \(A

number of B atoms on primary sites., That is the number of B atoms on

4
second primary sites is _MB.
P

) . .
For the perturbation theory we require the matrix elements

betyeen all plane waves allowed by the periodic boundary conditions of '
the crystal. Ve will however use the "On the Fermi Surféce" approximation
and take tH® matrix elements between only those plane waves whose wax‘re‘

vector Tc'-lies on the Fermi surface.

o



. . ' a8

(h*ﬂV(ﬁlF)"./_ i‘wl) |rV" (e “”J? o (3-1‘)‘

_ﬂoN ) \

where, N-‘-’-.D_. the qoiume of the stal.

Substituting (3-3) into (};-h) we get

<k’ ;‘Mnlk) ) v Z:%gi - S

st f Wﬁ”’nfﬂ’*" L N“g(y’ti?mw‘i‘.w’

(3-5)

i" E("""I’ uph 12 EV ?:Gm e TG 57
| 0 K . )

t/f ’ (mq)-w)a Fred) tﬂ e T G5

\ ) :

' ' - .4 —i R‘-.}? 5 -z ‘f' 3

hip=L [ Rep?Pop g 8 dr

4 -ﬂo ? 3

- the bare ionic form factor.
/~
Since we have used the "On the Fermi Surface" a.pb‘roximation. ve

see..that "the matrix elements of the crystal pseudopotential are functions
of q only, vhere § is the difference between all wave numbers that lie on

the Fermi surcace. The q's fom a quasicontinuous set determned only by

the boundary comhtmns of the cryata.l From the theory of Chapter 2 it
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L4

-

is seen that the matrix elements taXe on a different form when the

‘plane waves differ by a reciprocal lattice vector. It is therefore

necessary to obtain a form of (3-5) when '6 - 'é‘“ a reciprocal lattice -

\\
vector, and also when it is not.

.
’ e A eed

f ;_5':? -
3.2 Form of Matrix Elements for 4 _=-7¢

>

i = . ~

When 4 is a reciprocal lattice vector ¢ then

¢
i ” “0
.
' o Y

since i goes over all lattlce pmnts., .

”P
- (?’ﬂfm) < i d
Sums of the ty'pe_é 2 ; _M_PJQ 4
v # i

(n
since g poes over only those lattice points with a C atom on the Jf

site within that unit cell.

_ Substituting into (3-5) we get

(Rl =[5 g;, gf‘m ) %(9)

0)

- J_M_.z; qﬁfﬂlg i M. t,v. ](zg(;)-mg))

A Z%E" J’Z’Ni > i ﬂg m]\@) ww)

LpN = N



where in the first term means all sites in the unit cell are summed

5t
P )

over.
Collecting the coeffié’ents of each ionic form factor we hgwe from
"~ Appendix A : .
: i35 sl{f .-ij‘-«s,(" r & _z;
</Q Wcr)[k7 Z.ﬂ Pl 2T M 28 %2)
s/V & v

The concentration and type of order is inserted into <é‘ IV(V)II>
through the A/oll y which can be expressed as functions of concentra-\
tion. The matrix elements, when § = F are seen to depend on the detailed
structure of the unit cell because of t)he presence of the bams vectors.
Sums of the type i R ‘; 5 can-be evaluated when &
-and ; 5 are put é functlons of the lattice parameters.
The sum'mati ns in (3-6) will in general be dift:erent for different .
f;f's. If the sites are equivalent in the crystal, the sum ovér Z of equation
(3-6)- squared, can be divided into several sums over the different sets
of #'s vhich Léi've the different forms of {3-6).
One set of Ms will give a summation over a’form of: (3-6) squared
depending on the pbtential of the average latti;;e. Other forms of (3-6) squared
to be surmed over with the appropriate s :«ili be functions of order aﬁd

the difference in the. ionic|pseudopotential of the constituent atoms. The

separation of order dependent- and ionic pseudopotential parts into sepdrate

©




e
L | : )

. factors will be possible only if all sites a:e/équivalgnt. - The number of
dii‘ferent forms of (3-6) squared, will depend on the ordering type involved
and the particular degree of order (Appendix B). '

The sum over I(E";“/(‘;’)‘F>'l for all ‘é'/a: which is needed in the

electronic band siructure energy is then

- ; [cathgy +c,vag)*civ¢ g{]zgfﬂ'(WW '4@)‘3 (’49')"745")” :

o g 8yl

\ N '3
‘ ¢

L

where A'A", B!'B" are smple ﬁmct:.ons ‘of concentratlon or zero for max:mm

ordeér and all zero for complete disorder. ; . /\
. ! & ‘

3.3 HMatrix Elements for § £ ¢

On specifying in (3-5) ‘that ﬁ is notka. ‘reciprocgl la};tiée vector,
* only the first term vanish ,s,'because' it has a sum over.all lattice points. \

for 34 2

therefore we have ) J

& 3l V'r)lk‘) -Z:N f(:hg) W;))i‘f Az fﬂ"ﬁv y) W)ﬂfﬁ

<\
, f:f/ é‘(w z/,,(;)) “7“‘ Rz gﬂ ﬁ(uy) !/.g)),e"f £ "; o

(3-8)

*ﬁN g(u(p U Il (& 3 E}f (mgg)-vge))x*f Wt

L. 4 . : \ L4
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"This is the matrix element for a particular ionic configuration out of

c‘\

all ihe possible configurations the lloy can have with concen'tration
. \ Ny i

and degree of“ oxder ;Zeld constant. /All information as to how the three
{ 2 fo . .
types of ions are situated is contained in <E‘; N_(?) ’E> - S

Since it is actually the product of the complex conj‘ugalted‘ matrix elements

o ety ve vt ovaste [REVIIRD)E .,

&
The actual ionic configuration of a given alloy specimen is not known,only
its concentration and degree of order. Therefore we take an average,; of
af\z8 1 ) . . .
KF"}IVG‘)‘ E)’ over all possible ionic configurations.

. 2
It is the averaged value 0f'<E"Z.:IVFaIE> I that will be used as the ma‘gix

‘elements in expression for the band structure energy.

After multiplying (3-8) by Wts complex conjugate and averaging each,

'term of this pi:oduct over .all ionic configurations,from Appendix C we have

, 1 IleEN’ [MM JMelsi-ten) &é&AkA/m) > (p)‘

S /Vs 1 fﬁ’:’

~

/‘0(3-9)-
J(V(p 2/,,(;)) L

[,o/v’ +l ;d""!')*c

. .
* - » 3
2

Again, the ﬂo‘ can be expressed as functions of concentratlon or put

_equal to zero dependu:g on ;he orderlng. Ve see that KK" N(f), E>Iz
4

1

does not depend on the structure but on the type of ordering through the

ratioa’d., _S_,_f_, : —
m m m : | -”,l

3

[}

N

A
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When the alloy is at perfect order for one ¢f its stomhlometmc ratios,
‘N;-N N_N-N~.tf 0 and Cp=m ,Cf%. (= /

. 2 ‘

the enerw due td‘dlsorder is zero because,<£7 IV(F)|F> ' is zero.

For the simple case of a completely dlsordered binary alldy of one atom
J ~ ’
per unit cell, (3-9) becomes for .

. /
Ved

»
I%:I%:?Wand-ﬁp=n=l- N

(Kglinli = sl (g-c)- Chep- g .

L

=_4c(/-c)(%g) 2708 |

‘which is Ha.rrison"s result

< (5 - page 1L5), - : .
L4 ) . /
o, ’ ) ‘
> - ‘ b e
3,3 Band Structure Energy Per Ion’
- : . To obtain the band structure enerey Ub,, of the alloy we substitute

\ in (3-2) for the matrix elements, because the matrix elements have several
forms depending on the particular wave vector % the sum of (3-2) is now
- split into several sums over the different sets of 4's. The number of

these sums depends on tlk‘type of ordering and degree of oxder.

, We first insert into (3-2) the matrix elements corresponding to

. reciprocal lattice vectors and obtain sums over the different sets of Z's

from (3-7), next we insert the form of the matrix elements for ¢ not a

-

\, Teciprocal lattice vector from (3-9).

kN !




s -'-"-‘?F(C,}) + ;(”G?;'}*B'Gc(;')]z | “‘ N
s T LRGN +B G0 T

»gj f© 6”(3) -,é’(c)G(;) 6§o + J{(d.@c(})

N\
~

(3-10)

were (6,90 = [Cathi)*Calb(p) e U] Ao €
GB(;) = ( Va'(i)'lfﬁ(f))ng)ej’W :
Gc(;) = (%(;)"%9?))\&(})6 ;J) » “

~

The ‘A'. A", B', B" are simple functions of congenti‘at'ion or zero and must
be ew.ra.luated for the particular ty'pe of order and degree of order in the
alloy‘ (Appendix B). _‘

/ (), % (), %(c) are func:tione'o.f concefiration and Qeg'r;e" af order, :
and type of oxder and are the coefficient of the ioryip pseudopotentiai form

*- factors in (3-9). ¥

Equation (3-10) gives the band structure energy per ion for a general
teim alloy with all sites equivalent.  Equation (3-10) can be reduced R
to important .special cases by removing c‘ertain terms of (3~6) and (3-9) ,
in equation (3-10). . | ¥ o
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\ ¢
.

» Some ternary alloys through certain ranges of concentration have
ordered phases with only two kinds of sites. A atoms are on the first kind

‘of gite and B and C atoms are arranged randomly on the second kind of site,

The general form of <F"iIVlf)IE> equation (3-6) becomes

<E*;Ivcnm> [m S 0 P [T

o

| l ) ;3 o _ | )
. ' [Na_ c’ 3 -(;TS, Z/’g}) '

~_ ' ‘ . _‘; s }5(» .

N -*'[ N i "A/“ o e
and Kf*;l%r)lﬁ? I equatmn (3-9) becomes

I<F+3Mf)ll? 7k [AL_(gN_Nm) M&ALM](W ‘Z))

[1&/%;.& l.NLN&ZIL](U,g) %l))(ug) 1/4(;)) - >

}( ucg)-%y))‘

# ',» *
3 ' -“

These forms of the matrix.elements‘ére mt into the sums oi‘_(}-llo).
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For a binary alloy equat'lons (3-6) and (3-9) reduce to

(% 3 “ff |
/ oglVoli)= [A%Z X Sz/y#ff ]v{,}»

/

[A{ai ‘f +J%.J§,Qlj;m]7/(}) . N

. o N2 P P TR .. 2 .
.K&ylelﬁ%[%Mff Nk i) G ug) ‘ o

. For a binary alloy with all sites equivalent

Ub; ;F(c,;)* ;ﬂ’ G (7) +§: /c)@ @ (3—ia)

- Fle j) (Cn %(;)*Calég}f Ig)e 91) S ' ': B
665) = (%(Z) i) Vipep | -
. 4
A w:.ll be zero for complete disorder or Q " . for maxim’n:u order.
¢ [3 J"‘I i /’

/(C) is the coefficient of(]/a(z) %(8)) in (B-ﬁ)
A further restriction on (3-6) and (3-9), that they' refer to a hinary alloy

and also have only one primary site per unit cell, will give Matysina‘a (23) )

o e DI, KEMVAIN®
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-and linear screening theory is no longer adequate. It is therefore
necessary to restrict "the use of this form of perturbation theory- to the

case in which V(T) is small throughout the crystal in comparison to Ers .

I

) ' CHAPTER | . )

1
i

1
THE RANGE OF APPLICATION OF THE THEORY

N Although replacing the actual potentials of atoms by pseudo-

potentials represgnts in principle an exact transformation of the ’
Sc}}/rodinger equation, it does not in itselij guarantee the accuracy of
seconé ord&F Perturbation theory for the total energy. The pseudo;;otential
V(‘f) of the crjsta}. must bé sgnall with respect to the Fermi energy g,

after the absolute level of the bottom of the band has taken as the zero \

of energy. &f VI('I“) is not small compared to 5‘0 perturbation .theory ¢

The fact that’ the pseudopotential of an atom is small compared to
the real atomic potential does not mean it 1s small compared to the kinetic
eneryy of the free electron gas. In Qact the matrix elements of an atomic
poten‘zial in an elcmental cryétaﬁl .or an alloy are of the ’same‘orderﬂas £fo '
at low values of q. These low q values of the atomic pseudopotentials "
must not enter the “'expansion for the crystal potential ¥(®) as s-uch,

although they may enter- when suitably deminished by being multiplied by

an appropriate structure factor. In particular, for an arbitrary arrange-

“

7

ment of iong, when the er(ansion for V() calls for a sum over all @ values,

matrix clements enter the\sum \»rlhi‘ch are of the same order as Ere -
o ( ' o~
We are therefore required to inspect the crystal pséudopotential V(F)

4

bgfore eeding with a perturbation expansidn of the total electronic

energy. In order to estimate the limbtgtions of perturbation theory, we
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expand the potenfial of a binary alloy of A and B atoms. The Fourier

expansion for a local' pseudopotential is

(b-1) ¢

\/(5} _L_ Viey 0" ¥

-

For simplici’cy, ve will considera cubic unit cell with two atoms per unit

cell of the alloy.
X

o \ ' N o .
Vo) =§P: 2/,,(?’-7})*2: Y(F-T-d) Z Y(F-F-8 ) -Y(F5-d)
Maximum order is assumed, with B atoms on secondary sites only. J is" the

position vector, with origin within the unit cell of the secondary sites.

4

V(g) =] [ [ 5:2/,,(r )+Zv,(r P ,s)évp(rw) wr»é)} PRI ,

. (-2)

*_L ﬁx (1/,(5) Z/,,(X))x g

. FCR) 7
where _ﬂ,’ f Vn(?*ﬁp)i ; g d i" = Z/ﬂ (Z) the screened ionic
pseudopotential. . ‘ ‘ Y 5

Substituting ();-2) 1nto (k=1) we get
.4 45) v
Veiy= ;N v,/),e"i *;N ’%(;)ﬂ
~LF(T5 :
+ Z/v i 7@ )(vpt;)-z/.ci)).e. 7.}'
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The reciprocal lattice vectors ?;' divide into two types

Y i¥1 -LF
g for R L; =1 and ¥ for .X;l{ -1

el

(3" ! | N +ig!
Veny=lo 2 57T 2 -y gl

P
(L-3)

’ | +( f‘-?}é)-
* % #g (Vi hg) 2 r} (

The term V, may be absorbed into the.zero of energy without effecting

the perturbation expansion. It is, important therefore that the total

’

potential be smooth and have no large fluctuations. Fluctuations in
space of the potential can not be absorbed into the zero and must be
small. The way in which the atomic pseudopotentials add together, and
not so much their individual magnitude is the important criterion.

Figure la shows the way the ionic pseudopotentials overlap in an
elemental crystal vhere perturbation theory is known to work. It can be
seen from figure 1b that the total ‘pseudopotential is smooth with only
emall fluctuations, <<&ro .

In the case of an alloy there are two ways by which Fig. 1 can have

fluctuations too great for perturbation theory. Firstly, when the atoms

are too far apart, that is when the unit cell becomes rather open and large;

as In Fig. 2 and secondly,”the atorﬁic poter‘xtials can be too unalike, as

in Fig. 3. The last three terms in (L-3) must be small compare to E;o .
and their magnitudes are affected by the two cases depicted in figures 2

‘and 3. The magnitude of the second term is affected by the first case,

the nagnitude of the third term Wed by both cases, and the fourth

term is affected by the second case, » <

t
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Fig. 1 ~ Potential in an elemental crystal a) overlaping potentials in
N .

close-packed array, b) total potential, .

-

The magnitude of the'tsecond term in (4-3) is governed by ;: 77@) wh’ere
179‘)'=(Cn%99*m/p(}')) » the sum is only over the first fe\y{ reciprocal
lattice vectors,and it is sufficient that each 'vg')<‘£fo .‘ The
curve 77(3) versus q is typically the same shape as the'VCl) cu;'ve of an
elemental crystal, so there are?‘i’for which 17(;)'—'0(&0) .and also

for whichﬁ(;)4< E;o . Bince'l?(l)paﬁf{es through zero at some point q,.

If the atoms are far apart a /arge‘u.flit cell can produce small ' and the
corresponding large 17(;') enters the sum. The volume dependent, structure
independent i:orces are the ones that determine, more or less, the cell
volume, because the electron gas is rather incompressible (24). Ve

therefore take the cell size as a pa.fame,ter. N\

-
!

.
]
-
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Fig. 2 - a) potentials in an open structured crystal.

b) total potential in an open structured crystal.

A}

From inspection of a typical 773) curve, we see that B's lying to the

right of ‘q¢ will satisfy+ 'l‘/-g‘)“éa. but 's on the left must be close to

. Q¢ in order to satisfy ﬁcdq')“ 5.. o obtain an approximate limitation '
on' the size of ‘the unit creil for/perturbation theory to be trustwortfny,

we restrict the minimum ' of the reciprocal lattice to ;,:m? 3//; .

From the empty core model (1L - page' 55) for T@) of an atom, we can
approximate the value of q, for an atom by q, =J—%‘ » where R, is the radius
of the physical“atomic core, or the atomic radius when the valence electrons
are’ excluded. Since our 'ljg) is the mean of two atomic form factors, it
can be thought of as the matrix el;ements of a w;irtual atom with some core
radius between the core radius of the constituent atoms. We wjlll agssume a

cubic unit cell of side a. o ) s

/ t
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’ ' ¥ £+ ,;‘N':(l«/
l . ;Where gl.. fer say, body centered cubic, is %‘_‘(‘/ 2/ 8)‘ y OTr any

g : .. s_!.l/“
combination of t1, tl and O. Therefore \the magnitude of g'is a 2.

%‘Z"_l_'f_

' v 2f i

ﬁ ar/a z 3 7 . 5
a Al A
_&.‘5.3 - 7(l-l)
R

Although no precise mathematicel siatement can be made to indicate the

breakdown of perturbation theory, from (Lv-h') we can gee that if the cell o
becomes large or open on the scale of the core radii of the ions, pertur-
bation theory, w;11 be doubtful. A similar requireme‘nt should also hold

for ~e1ementa1 crystals, since open lattices can lead to fluctuations in ‘
the potential, and the fixrst 2 terms in (L4~3) are formally, the same as ‘
the expansion of the potential for an elemental crystal. It is known that

perturbation theory fails for elemental covalent crya\t.alq, and that covalent \
. ‘,:3' 1'}: ¢ ’ M

structures arise for elements with valence 2. The’_' volume dependent forces
tend to make the unit cell more open at high values of valence, and also
the core radius of the ion is small because the high positive chargg"‘éf
the nucleus pulls the core electrons close to it. For these two reasohs,
mainly the latter, we can exi)ect #‘- to be large, and therefore pertur-
bation theory would not be & good approximation. For instance, if we

=

2 L
apply the requirement g - = & 2R to a face centered cubic or diamond

type elemental structure, we obtain
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Thus for Silicon we havet: 14.8 and perturbation theory is not a good
approximation (20 - page 357). Q‘ﬂ,

‘ v &
On the other hand, Aluminum has a value of%: 5.95 and has been the object

of many successful calculations using perturbation theory (14 - page 119).

<

4
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' \
Fig. 3 -~ a) potentials for ﬁwo different atoms in an alloy crystal.
_b) total potential in the alloy crystal. ' -

The magni tude of the third term in (4=3) is govemed mainly by the difference

in the form fabtoga} of :I;'he constituent atoms. This increases at low q,

but the restriction of (l,;-l:) puts a limitation gn‘the length of the B, \‘/
. , L .

\.
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%
of the third term. Since ‘the mﬁumum length put on the &' in term number

two was 3/l qe and those &'s are %_E Va , then the minimum on the present
g's is 1/2 qq since they are J&E"/ . The difference in V(i)'l at
this region which is the maximum forAU(}_‘) "% -% } ) within the
allgwable leng;th of the #'s must be small in order to make term number 3
small.compa.r(ed to Efo . Again, it is sufflclent for each AU(;") to w

be small for the term to be small because the sum goes over onlly the first

&~

~

~few reciprocal lattice vectors of this type. ,n

) Ry \For most elﬁements the curves Vz}versus (q) passes through zero at
approximatly thec-same point ggq , there being a slight incregse in 80 with ~
increasing valence. Tie points V/(0)for atoms in an alloy is dictated by
its valence. .In an alloy the limit of the bare pseudepotential form factor

of atom A is given by'l/% =~ vhere [} . is the atomic volume
: n8 — A,
g>o {).Z‘

of the alloy andZgqis the valence of the A atom. The limit of the '

screening factor is (20 - page 272) eAB(X) ,U 9) = "‘_6__ Z Efo
' , g ; 3“ "“i

where 7 is the mean valence and [Fo'£‘F18 the Fermi energy of the alloy.

Therefore If,0)= Vg e (g) ==2 _Z_ f.f'o
§50 €pg ( 8) 3
In the region 1/ 2 Q4 the function Uﬁ(;) is appronmatly linear in q and

the slope depends on':lzd Efo . So we let ,,(I) around 1/2 gq,be
' 3z '

V)% 220 Fro g - 2 2a Ero
' 3 7F 3

Z 0% 3 2
Va()f—?-.zaf} -
pe 2 g bug

L o *

and

_z;gd[
3 Z i '




Letting Z/q(ﬂ) ?pproximat'e a straight line with slope 2 Za é;a and
' 3 Z

putting q, as the zero poi;}t/c:f both ?/,.{,) and %(l) is useful in a

qualitative discussion, since only basic pa.rametfers of the individual atoms

- -

‘describe the form factor.

s

B evaluatix;g Un(g) and Y4fp)at 1/2 q,, and subtracting, we obtain an
oy ﬂJ v . /

expression for the maximum value of (V’l(}")‘ "‘%9 ") ) that ought to

occur in term number 3 of (L-3). Since term number 3 is multiplied by C

we multiply each term (VBE;")’ - %9") ) by Cg. 7

Pig .

To obtain a limitation on the difference in the pseudopotential, we note
that each Cg 4 U(/" in the third- term must be small compared to Leo
Putting 4 Z/y") an order of magnitude less tha.ng: .

Ca A?/(%?g.) £ ./‘[;.

\

CJ/J Eoi (Zﬂ'Z&) < ./Z—;.;
(24-25) % .23 Zo/0o (1-5)
Noting that i’ = Zp(1-Ca)+Z24Cp

\ ~
From (L4-5)} we see that, unless the concentration of one atomic type is snall,

a valence difference of 'more than one will most likely invalidate perturbation - -
théory, even if condition (L-L) is satisfied. Allays of atoms with valence
one and two seem doubtful, but - the approximations‘m;.de in arriving at

(L4L=5) are less accurate fo’r these atoms and tend to overestimate xge
differenég in U,‘ (;") and ?/09"). Therefore,-allgfs ol atoms with valence
one and two are able to be studied by pertu:}:bation theory if condition

(4=L)} is satisfied. . -
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' i . o <

. The last term in equation (L-3) can be changed to an integral by the °
relation (20 - page 276) B S B .
R : “* v /V" ; @ Q~ d’-ﬁ . ' .
“ The last term in ( then becomes
N ~ N8 — -

. ____ ] +{5(r- 'T“,‘-J) i i 2,
| \ 2 '2% l'}j‘_'/t f - (Up (i) 2/{1(/)\) 0(; | y
<. . ' T, E o ‘ . .-

v ' ¢
In spherical coordinates it jecomes &
ri
AY . - ™~
. > -
s PR :

-

> O JJ "‘5(" 61 L2 (8-0) gt~ "')Avg»)f/wneiac/day
* ’Q'j o ° o
L

] . AL . 4 ‘__‘ R -
" where B°, (I " are the cog,rdinates df the vector (Y‘ ry - J)and (2 and ¢

’ . o

-~ - - arg the coordinates of q.
’ . e - st
The magnitude of this term depends on ‘the concentrion on .o
p Q & aq‘ —/_’\
. . 3
‘ == 2

e, g dp :
. Kfa . - b

’ u » - - * -
| -~ |

¢ Y
Again,- it can be seen from (L-6), that the difference in the form factors ° |

. > must be small in order that the whole last term of equation (L-3) be _ |

,’j : small. In this case, however, the dlfference in form factors is considered
‘ \

\ at all values of q below a cutoff of about 3k, . In consider:mg an alloy
8
of atoms of different valﬁ:es, the bulk of (L4-6) comes from low q values.
. LR 1 \

The q = 0 points of the Y (J)and V,(Z)curvea are therefore important, and \x\mmt

. < LY
. . . - . . "Q

~
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be close together to ma.keAbgr) small at ghié low region of q. The smaller
the valence difference, the smaller the‘ last term in equation (h—}). will
be. Since there is aiready a restriction on the valence difference by
condition (L-5), that is the valence difference must be zero or one
except possibly %t low concentrations where a valence difference of two

(Y 4 * .
might suffice, the last term in (4-3) will have the same restriction.

While ir}rapplyzing pseudopotential perturbation theory each case
mist be considered‘according to its mertis, the criterion set up above,
though not mathematically precise, indicates types ‘of structures and,
consi:ituent atoms that are favorable and unfavorable to perturbation theory.
I"letal}ic alloys (2'53) seem most trustworthy. ‘They ‘are close packed
structures of atoms with the same valence or a difference of one or two.
Here linear screening is a good approximatior; and the close packed-
structure makes the cfystal potential smooth. | Z.A; and E.A. lMatysina .

(10) have successfully substantiated the structure of 11 of 13 metallic

" alloys by the pseudopotential method. They failed however, in an attempt

—
to substantiate the structure of the alley Li-5005 Al, indicating that a
3

valence difference of 2, at intermediate concentration, is not favorable
AN R

to perturbation’ theory. However, the structure of Li-95; Al was

substantiated, indicating that, at least for metallic alloys, a valence

difference of 2, at low concehtration, might not invalidate perturbation
theory, as inferred by condition (4-5).

1.\8 Z increase the structufes become more open and linear screening
becomes inadequate. Covalent structures have large fluctuations in the

potential (25) and perturbation theory fails, even if the valence difference .

s vk

" is zero or one. - Thus, covalent semiconductor compounds and alloys 7r’e in

general beyond the scope of first principles, linearly screened, pei‘tur—

|
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| h bation theory.
‘ Altho.ugh the expression for V(T) for a ternary ai{'oy vwidl have
more terms than equation (h-%), the number of reciprocal lattice vectors:
to °sum over ig the same for a b;glazy or t%ary alloy, of a given structure.
The total number of matrix elements is t};e same, Since there are more sums
over reciprocal lattice vectors in an expression for V(T) in a 'temary ‘
alloy, each sum will have less ;'éciprocal lattice vectors to sum over.
Each sum over § can also be reéduced by the concentration factor, since
for a ternary alloy Gy + G4+ ('t = 1 where as q' + p’- 1: for a binary z;lloy.
The quantities making the sums large or sxﬂa.il will s8till be the
- averages' and differences of atomic fonp factors eva.luatc;d at the
important reciprocal lattice vectors. The invalidation of per&bation
theory‘ arises from having large ,fl\uctuatic_)n in the crystal poi;ential.
This occurs in a ternary a.li.oy ;‘or the same reasons it does in a binary
a.lloy) therefore the same restrictions should hold for both binary ax"ld
. te alloys.
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" CONCLUSION , ‘
The expression for the band structure energy was expanded for a

ternary alloy inéﬁérms of the average and difference of ionic pseudo-

potentials, just as in the case gf a binary alloy. The expression is

general, inasmuch as binaiy and more restricted structu?al types of

expressions (5) and (10) can be derived from it. The expression,

however, was seen to be restricted in two ways. Firstly, the geometry -

of the sf/?cture must be such that all sites 1n the crystal are equivalent

(22), and secondly, the use of perturpation theory and linear screening

©

was seen to result in restrictions on the openness q; the structure and : *~\\1
the valence difference of the constituent atoms. While the theory still '
includes a large number of alloys, including most metallic alloys, vhere
the structures are cloée-packed, the semiconductor, covalent compounds
and alloys are seen to be excluded.
Katada et al (18) has modified the pseudopotential‘theo?y of: -
binary alloys to  include structures with non-equivalent sites, altﬁoﬁéh ~
it is still subject to the breakdown of perturbatlon theory. Phillips
(16) ‘has modified pseudopotentlal theory to account for c;valent or open

structures.g Possibly sore sort of fusion of these two theories would

enable pseudopotential theory to be applied to even the complex semiconduc—

tors,
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_APPENDIX A
. l ) ] '
GENERAY, FORM 0F<&i;;ﬂﬁgdli2?
On specifying that ¢ is a red1procal lattice vector (3-5) becomes

@wwpz% “ﬂw

’

[‘NN&'E -‘35 -‘5’"4(12;{/](11,9) u.;p) :

&

(A-1)
| IRAN I ANP N Y
\ ,,[Al; 2 A/_ ,AL 9 ] L~ Vn(p)
s N S f
Collecting the coefficients of each ionic form factor we see that the
coefficients of '(/39) and“l}g (;)are as given in equation (A-1). The

coefficients of 'Un (}) after expanding the first term ih (inl) is

[M "} -._n. f xad Zi‘j ﬁ: xi

_Niff 6‘"N_§£‘f5mlii‘iﬂ Lo
sN *° ' T

W) o’ . 0 v N o h C , .
-t}ts i -I,’.'S ' o b N
- N‘. Z py .2- 't »] ‘ ) . & .\

" T !

f

‘ . - 0 R PO . Y ce e

. N N g e T ALY R DL AT v

A . , PN - - oo T B g ’ e ae

N B T T L T R L T ST T S o S o PR I R Sy ;mk'mm ol SR e,
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L
' i

Grouping together the coefficients of the three different sums in (A-2) we

hgye |, " o o
) - ‘._a.S 5 ¥ 5
[_LM] >« '_,[1_-,M]Z 7
/M ',:A/ ).: ‘ m s

(4-3)

p .
NowN ¢ .1s the number of B and C atoms on prmary sitesy this must

equal the number of primary sites minus the nunber of A's on primary sites l

PNGN) e "

The coefficient of £ £ in (A-3) is then

-y

_.L—Mz J,'J.{.Mfz M
- M P/V no/Mm F/V /:/V

{t) Y

N Z ‘SQ') . -l}:&o 5

In the same manner the coefficients of and R
2/ ) 9 :
in (A-3) are M and ,A/n. respectively. )
sN tN f
. 3 ‘
: l

Substituting into (A-3) the coefficient of Uy }) in (A-1) becomes -

[MZ LTE S S ~"f-6r'"] -
ol ':/V N -



= 1

and 'the general form of <F"; , V(‘;")l I >

<k* lV(F)I/O &Z T }‘f ffé -cj‘-{" e
4 P [ ﬂﬂ. M/ g:l ],‘9)

[‘“‘Z = +Nl<‘“f g g };.y,

PN . i P

»

-L} -5 _‘i,;" ; 50)
e S E gl.;;‘,q Jugs
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o - > -
\ - . VARIATIONS IN THE FORN 0F<E+?“[(yzlk 2

7

¥ * .
Consider equation (3-6) for maximum order at the given concentration

< lyinli) = u.g)[ fici&“ Iy “ £ g

i
M

.

. lt)r.'.
.,.lﬁ"} -.C:.Zi 6'} %;)cgﬁf.& +U/)£;ZJ1
o "_ o .° o (8-1)

If (B-1) is to have the form Caljy (;)'*vap 9)-'C‘ 2/1.(/) for some set of '

\ }‘.}” " then ( .

(Y ) . ' |
Ay gt o

.J. P, “IJ. 5( , R =t i for 9 = 9 (B-2)

t

If (B-1) can also have the fomA (U,(}) 2/,‘9))"’8(?/((;) Vpéﬂ) for

" several sets of R's then

¢z ;le!k) %9)[m“i T "ﬁx"f Sw" Py 4.5‘0’]

&l

+ %‘gi" (V.g)-z/.g))*;(‘ % A “(vgp-wn ()

. ' ﬂ”zﬂ“’i_ Wi

and the sum must satxsfy for some 3 = 2

(8-3)

\
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Since (B.-3) can be satisfied in different ways there is in gex{eral more
than one form of (B-1) of the typeA(Ug(})"%(/))"’B(Vc(})’%g)) .and
correspondingiy more than one set of g's. A and B are simple functions
of composition. .
The rest;‘ictions (B-2) and (B-3) imply for actual crystal structures that
sin (2-3) = 0 for all basis vectors of the unit cell, therefore

7 S. =7 for all basis vectors and 3 (B-h)
The restrictions .(B-2), (B-3) and (B-4) restrict the number of basis _
vectors of a given kind and-also the position of sites in the unit cell. .
Tﬂese restrictions are fulfille;i only by crystals in which all sites are
equivalen*i:. "

\ We see that for the case of complete”disorder only the form ’

[C, W’?’ +Cy U,(/)"(cvcy)] is non-zero for all sites equivalent.

o
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APPENDIX C

2170 1T\ |R
FORM OF\R* .

After miltiplying (3-8) by its complex conjugate each term of:the
product will contain either(U,(])'Vp(l))l' , (7/: (3) - I/n(/)) 2 or
(votp-tp)(Utp-vagp) .

;I'hé coefficients of these t\hree “terms will be grouped into seven types.
The coefficients within a given type will be of the same form. .

Each term in the product of {3-8) and its complex conjugate must be

. 'y - .
averaged over all possible configurations. This amounts to averaging

the co;fficie&(ts of (U,(I)'I/n’(l))z . (Vc ( ]) - Vn(/)) N or
(U,(I)"V,(l))(l/g(l)‘ya(l)) ,whichever appears in the term to be averaged.

/4 R
' . -i§-(T-F.)
1. Coefficients of the form N2, g 4 * ¢ . (c-1)
. }'}' -

‘ This is the type of coefficient that arises when% a tgm in (3-8) is

multiplied by its own complex conjugate.

§ and 1'}' refer to the same set of lattice points in each configuration.

In averaging we must let '13 and f}' go over all possible lattice points '
in the crystal with the number of § and ‘1"}' in-each configuration equal

’ * e
to M . .

P ‘ ' .

1

When ?J = 1'}' the exponential is unity. For every gonfig\mation there are

./.!l’ such terms, then contribution to the sum for each configl,:.ration
P

~

4 ) - ‘ . ’ -
ie M , therefore the average for all configurations is M for z = ?}'

pN* | o Y
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Of the f’ distinct configurations i-; will contain a site of the kind
under con51derat10n (in this case we conslder lattice sites that have a B

atom on some particular primary site) in just [ML /1 configurations.

- /7"
. ] B N
0f these _M_ I" configurations ii ' will c'ontagn one of the remaining
. /"..ﬁ N -
M _/ ) sites in (_EL_A_/IESZ_ML, [7 configurations,
AY; ' FN-1) EN ' |

-l

A and - ' the averaged contribution to the sum is

- M*[(,./AJ“ //3;,&15[»’7 i T

divided by the number -of configurations.

For thJ.s part&cular

Ly

We now sum up all the averaged contributions for the !: # ij ' vhen they
go over all lattice points.

We do this first by summing over all 1: and ; ' and then subtracting
- the =T J ¢ T

b
*H)

3
Pnd -l -l

% ] P
Eiz{(ﬁy“l)w i*‘]-ts.-g.) AW({;M_)

3

. ' o _ 7

We let the crystal become large and' put .Aé. —/" .A/m

. - | P /o .

) - : .

and l - / = _l which means keeping only terms to lowest order in ’
m M )

L, asin (5 - page U5). '

W
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Qg

the sum in (C-2) is zero for

Then the averaged contribution from T = i::-' in (C-1) is

_ M ’
4

adding to this the contribution for g‘ = f;.' we get

MP gz,f‘ 4 r
1 2L, = 3

P” =y 4 ’:72 (c-3)

A1l other coefficients of the type 1 will have averaged values in the

same form as (C-3) : -

. ]
- ~
: \ ;’ | JSAIALSE
2. Coefhcients oi‘ the form /’/ j

In this case the '5' refer to lattice pointe or first primary sites ﬁat
contain B atoms. The i';, refer to lattice points that have a B aton at
J;’ of their unit cell. Since both vectors are refering to B atoms on
pi‘imary sites their number is equal becé.use I? atoms are assumed to be
distributed uniformly on primary sites,

To sum for 1: = f’we must know hov many i: are equal to T, or how many
cells in each configuration will have a B atom on the lattice point and
a B atom on S’) of that unit cell. The number of such cell is equal to

the probability of a B atom on the lattice pomt times the probablhty of

al atom on the point Jf times the number of cella.\’

} 9
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2
’ ‘P‘ N ) P N T Lo
) M | L
w— A ' ' o
P vl . .
< , & .
. “ {
/ > . | . \ +‘.7.’5f'
The contribution to the sum for each confi tion is .NQ.ﬂ-L____
! . : X Pz N?
. L
. N | -,
| A
this isfalso“the averaged contrjibution for 'Ehe 1'. = T ‘ }
0f- the ' configurations !E‘ will confain a B atom in just
. - A&z. r -
. . . s
configurations. ) w ‘
~. P ) 'l
Of these _2/2 / .- configurations ¥, vall contain a B at p in just
m N ‘5

1 | " .
('E' N: ’/ ) ‘#{ r . confi@ar#tions
AN-1) %

‘

y
therefore the average contribution to the sum fo:é this £ o

.

is I, £, is' )
£ (3Ne) ﬂz[_.x"i(’ =) ’"7‘ !
\ Nz'(iv%N‘lz/mN "

The averaged contribution to the sum for all ¥

a1l & AT i
.4
/m

IpP P -iFU-T) i :J”’/ - if ) ’ .
R TR T

e
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Adding to this the averaged contribution for ? = i"‘ ve get

v’ ; /l/’:m A oo | -
/" o f’ —

L g,

Coefficients of: this type vanish when they are averaged over all possible

z

.configurations,

@ ¢

By comparison with .type 2, it is evident that coefficients of the form ' -

R

74
2 _—2 ‘.,.E(';\.' '7' g-J’(’/) , . .
2 Fe (type 3) _

Q 3

will also vanish when averaged over all configuratiéns.
’ P P
M KA o
| -2 L ‘;‘ (7-%) '
i. Coefficiente.of the fom /V - i ; L e o
N N fa J T

‘ 0 ° A

N ]
¢

. These occur in the product of (3-8) and its com;\px conjugate vhen the

two terms multiplied togethér are sums both over reciprocal lattice

IS

: . » ,
points, but refer to 'different kir}dg of atonis. The result is that the

g

two sums have different upper 'limits._ In a given configuration 11‘ ij —_—
"goes to B atoms and ¥ '; goes to C atoms, then there is no 5- = i':( if type L.*
of the /7 conﬁguratx,one i"- will contain a B atom .in just _#/.2- /7 }
conflg;ratlons. . ’ . /n ~

s G

N * A3

- m
<Q

r / , o IR :
Of these # 4 configurations ¥, will contain a C atom in % /;,( _%. .
N g |

configurations.




(50).
i . \‘ . . . Y ) NN . ‘

"l ' . - i

L L N N SFED »

®
) We now sum up é.ll the averaged contributions for the !; and -i:( when they ~
i “, g0 over all lattlce po;.nts.
3
& i (-7
S 1 [Alm Nea] < a2 Mz[z\_/q_i /vcm]
Ps )
., pN pN - pN
i -~ 1 B
-
Y & Lag@E-§) 9 - =
= Mm;[—[— .ﬁ-‘z (" ;)_. _L ’
2 Y - ‘ C- '
AN LN Al e
) th? sum in ‘(C-)_‘)I is zero for 3 £ B ’ ‘ # ) . Y
; . Therefore the‘qave;‘a/ged value of type . is | “
. . N . ' e
/ ' .

L L . P AP « - ‘
- : N Nem - * ¢ (c-5) L
. a Al S : .
\ - - v . \ - . '
} ) P N J 4 .
. - 6ther coefficients' of thi\bfcm (type L) have averaged value@ of the
P
. same form as C-S)Q ) NN ‘{b

¢ !

’ - N_z i i -15 (i’ -05“' -5,“) : LL

Coefficients of the .form o ' . ‘
& N ® . o - !
. . ] ' . - ' - ) . :

K . /- ' M ) , L)
o - . " (type 5) |
et ) ot .
. - ‘ . e A § » L
» o , H . . - . €
o . o U PP : T
L. _ - -will also have averaged yalties of the form . . TR
‘ ' o . Lt . ":' ’ P N - ’i \,‘ 5 .
v . - - ‘ = ¢! t B . .
~, - ’ - 0 \ ) \
* Y O “ » \-‘
‘ ; . _ ) oo
. ’ : ) , %
v " R
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N N
t?(i °‘S‘m)

6. Coefficients of the fom N 2
. A

These occur in the produét when a sum' over B atoms on lattice sites is
multiplied by a sum over B atoms on some site within the cell {in this
| case the.first gecondary site)
\ There will be some ‘1)‘ =¥, because both refer to lattice points and the
same cell could have a B atom on its lattice point and also on its first

secondary site inside the cell. -

’

{

‘ P oS Py .

The number of ¥ = ¥, is the number of such cells .NZXA/B xd; N
iR : s
_ _ - rg SN m p

Mm

“ -

-

]
S : PAlS -t g‘ j
' Contr;.butmn to the sum for r = M_Nﬂ.ﬂ

‘ ; oo pS\N R S e

. ‘ o
. [ o
. of the [" d,ponf'igu.rationa 1‘; will contain a B atom in _EELE :
configurations. . ” ” ‘
/V’ ) . a w
0f the IL[ configurations T, will have a B atom on 5;
. £ N : , . .
in Just . . »

‘ ' IS \\‘
.é/{ /7 _ly:z_ configurations.’
AN =N

[y F -
- ‘The averaged contribution to the sum is then ,‘ o ' \
’ . . o . - 0 -
. P ~Ef(-0) - 15 ‘
£ f fie flo | T
= NLAN =N ' ] . aad ' ,
3 . 5 ' /
a i
. .
. { ¢
] % 'ﬁ’
7 v T
o 4 M . o
. * 4 » 1 ’
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The sum of all averaged contributions when 15 and ¥, go over the whole

lattice and T 7 %, is '

-
€
» "+ When we add the contribution for '.Ej = ‘1’] and !:‘ # !:t for the averaged sum ‘

of type 6 we see that ;‘.t vanishes. —~ . .

» Therefore coefficients of the type 6 when averaged over a.ll configurations
“ AN

i+ 8- -8Y)
Coefficients of the'form. ..Z Z f K g. . '
Nz z d _ .

are 4ero.

\
| .
) © will also average to zero as dves type 6 because we\se/ejgnat some ‘

4

!:,areequal. . .

-~
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