- . - '
N B

I* National Library of Canada Bibliotheque nationale du Canada

N

i NL-339 (3/77}
ro

Cataloguing Branch
Canadian Theses Division:

Ottawa, Canada
K1A ON4

"NOTICE

. The quality of this microfiche is heavily dependent upon

the quality of the original thesis submitted for microfilm-
ing. Every effort has been made to ensure the highest
quality of reproduction possibte.

If pages are missing, contac! the university which
granted the degree.

Some pages may have indistinct print especially if
the original .pages were lyped with a poor, typewriter
ribbon or if the university sent us a poor photocopy.

Previously copyrighted materiais (journal articles,
published tests, elc.) are not filmed.

.

Reproductionin full or in part of this film is governed
by the Canadian Copytight Act, R.S.C. 1970, c¢. C-30.
Please read the authorization forms which accompany
this thesis.

THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

Direction du catalogage
Division des theses canadiennes

AVIS

La qualité de cette microfiche dépend grandement de la
qualité de la these soumise au microtilmage. Nous avons
tout fait pour assurer une qualité supérieure de repro-
duction. - '

S'il manque des pages, veuillez communiquer avec
l'université qui a conféré le grade.

F

‘La qualité d'tmpression de certaines pages peutl

"laisser a désirer, surtout si les pages originales ont été

dactylographiees al'aided un’ruban usé ou sil'universite
nous atait parvenir une photocopie de mauvaise qualité.

‘Les documents qui font déja I'objet d'un droit d au-
teur (articles de revue. examens publiés, etc.) ne sont pas
microfilmés.

Lareproduction, méme partielle, de ce microtfilm est
soumise a la Loi canadienne sur le droit d auteur, SRC

1970, c. C-30. Veuillez prendré connaissance des for-

mules d'autorisation qui accompagnent cetite these.

[}
L]

LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L'AVONS RECUE

e T T

. THE USE OF FRAGMENTS
- ' ' FOR

DATA COMPRESSION

by -
SUDESH GUPTA

A thesis submitted to the Faculty of Graduate Studies and
‘Research, in partial fulfillment .0f the requirements for

the degree of Master of Computer Science.

Department of Computer Science
Coricordia University
Sir George Williams Campus

Mopéreal, Quebec

“ - SEPT. 1977

© SUDESH GUPTA 1977 .

.

ALY

. hm e by b e S p AT TS ST e e ¥ i e ey

P

‘ | L A I

- ABSTRACT

s
& -

THE "USE ‘OF FRAGMENTS
FOR

DATA COMPRESSION

SUDESH GUPTA

‘ The purposeq?f this thesis is to study the storing
of large amounts of data in an economlcal way by fragmentatian.
Fixed length.and varlable length text, as well as word
fragments, are d;scussed. An,algorlthm has been developed
to generate vdriableﬂlengéh dictionary fragments which give
some pfeference to the longest fragments with a f;eguency

exceeding a glven threshold It has been found that the word

‘dictionary 3ize is much larger than the frangnt dlctlonary

-

The techniques discussed take lnto c0n51deratlon that the

compressed data must be completely rever51ble.

T e, e) e e T e T - -

B) . , QIV
ACKNOWLEDGEMENTS -)

T wish to express my sincere appreciation té pProf. H. 5. Heaps
ny supervispr for his advice.agaréuidanée throughout the

course of research and preparation:of_this thesis. I am also
thankful to my family and my husbgnd for providing the needed

. encouragement.

My special thanks to my friends for their assistance during

‘thé writing of .this thesis.

v
TABLE OF CONTENTS

List of Figures........... '..{...;....; e ve.. VI
List of Tables....iueiineninneneeenuniln, P eeceece VII
I. INTRODUCTION..... s e e, 1

II. MARC TAPE FORMAT AND EXPERIMENTAL DATA .
"DESCRIPTION. +.ovensrunnernnennnn. e i 17
2.1 Monograph Format.......... R TN 17
. ' T

2;2 Experimentals Data Description....ciceeeeecennann 25
TII. gIXED LENGTH FRAGMENTS. - . - v v v oo v \29
3.1 Definitions.............. e 29
3.2 Coding Methods..... ‘.p..;....,:..f 31

3.3 Data Basé Représgnéation using Dictionary .
and Coded Data........ S e e eec e 33
3.4 Stofaée‘Requirements.:J..;...i...............:. a4
3.4.1 Text Fragméntsl.....L......}...' 34
3.4i2 ﬁord Fragments...ceeeieieenneennann eee. 44
3.4.3 WOTAS.iuuurnnennennennnnn b 55
3.5 Conciuding'Remarks T- 59
IV. VARIABLE LENGTH FRAGMENTS..... e e eeateatanea- " g2
’ 4.1 Data Structure........ eeae ettt eceieeenaeaea 65
4.2 Selection AlgOrithmS...ve e tie e eeneennnnes .. 70
4.3 Storage Requinements.....:5.:; 87
4.4 Conclusions..........ieriuineannnn. ;...; 95

g e

Y
[-

*

CONCLUSIONS. ... vsnenrsad

+

5.1 - Concluding Remarks,

-5.2 Recommendations....

REFERENCES .+ v venunraens

cev...100

« o -102

1.1
1.2
2.1
2.2(a)
2.2(b)
2.3(a)

2.3(b)

2.4
2.5(a)
2.5(b)
2.6

¢

LIST OF FIGURES h

Inverted index file ©rganization.,.... .. IR 4
Inverteqd index file Organization wWith coded data 6
Monograph I 19
Cutline of HERSTL T 20
éontents of Leader.... LT 20
Outline of Record Dlrectory 21
Contents of Recorgd Dlrectory 21
Control ang [Ariabledtielas..... ... 7T 22
Outline of_figids...‘ 23
Contents of flelas.m.... e, 23
Comparison between number of words and different

words of a given ength.. ... e 28
Text fragment léngth.vs‘total fragments....,.40
Text fragments length vys different fragments.;.,...4l
Téxt fragments length vs average code length., 42
Text fragménts length vg Space requirement. ... , . 43
Word fragments length vyg total fraéments ‘Sl
Word fragments length vs déffgrent fragments 52
Word fragments length vs dictionary Space.......... 53
Word fragments length vs Space requirement.: 54
ey T 66
oY R 67
Pure JITARY e T 67
Representation of tree in binary tree form....... .. 68

-

Ve

r

VIIIT

LIST OF TABLES

Field.statistics for MARC LAPE. ceorsonnncsanassnes 24)
Character freQuency COUNE.....se-eseensecceccnnenes 26
Word frequency count...... ,.- iereceas e 27
.Space reguirements using character codeS....s-«.-- 35
Text fragments statisfics 39
Word fragments statlstlcs 50
Space requlrements using word cpdes.- 58
Rate of increase in word fragmentsS.e..eeeeseeaasens 61°
" Word count for Sample l....cecescceccnacrec-n R B9
Word count for Sample 2......c.ccerienneener e 90
Varlable length fragments(Sample 1 t=30).ccceaeen 91
variable length fragments(Sample 1, t=50).£} 91
variable length fragments (Sample 2, t=30)......... 92
Variable length fragmepts(Sample 2, t=50}cceenans-- 92

" Space requirement using different dictionaries.... 93

Space requirement using one dictionary.........--.. 94 .

CHAPTER 1

INTRODUCTION

Data storage amd rétrieval problems arise_in many
applications. -fhey are encountered by buéiness professionals
who review periodic reports‘that arrive ffom various depart-
‘ments within a plant or from plants within a company. , (/
Enormous amounts of storage allocations, and freguent retrieval
of periodicals. books and other bibliographies, are performed
by librarians each year. The library in its traditional
concept ié oriented more to the-provisibn of documents than
to the supply of information: ﬁut this is changing. More

and more people are interested in having fast access to more

.and more reliable information.

: There has been an 1nformatlon explosion 1in all
scieptific disgiplines. Thus two 1mportant problems in
informétion retrieval are i) the organization of information
-and'the_optimization of stbrage, and ii) reduction of the
time of retrieval of relevant documents. ThisAthesig is

intended as a contribution to the first problem.

Salton (1968) describes extensive file organization
and retrieval mcthods. Collmeyer (1970) gives a crltlcal ¥
ahalysis of retrieval performance for selected file organiza-

tion techniques. One of the simplest file organization is the

.

sequential file structure in which information is stored on

e

-t

A

magnetic tape in AIphabetic order with respect to some field.
The retrieval of a record involves rQllingjthe tape backward
or forward until the desired record may be, retrieved. Any
additions and deletions require a complete rewrite of the |
entire sequenﬁiél file. As explained by Chapin (}965),
sequential file organizatibn typicall?‘nécessitaﬁés extensive

and frequént sorting operations to reorder the file. In many
' .)
installations the total sorting time is as high as one-

guarter or one third of the total computer usage.

. - »
It is often desirable to store and retrieve records

using more than one key. This is most easily accomplished'
by sorting the data in duplicéte files with the first file
sorted by‘one key and the second by a second key. This
duplication, however, uses twice the storage space and
involves double the maintenance cost, since records to be
updated must be accessed and changed in both files. The
method becomes useless if more than twb.keys are used for
storage and retrieval of file recordé. It is not practical

to store the same file as many times as the number of keys.

s B . . »

One alternative to the sequential file is one

b1

W
organized in the form of 2 multilist file. Associated with .

.each key is a pointer to the list of records that have that

key. Only the Beginning address of each list occurs in the
'sequential index directory. The ‘successive records of a

parﬁicula: list are obtained by means of the pointer that

-

[

e g g T TR ST T T

*

»

“5 T

resides in each record and points to the next record containF

ing that key- The major advantages of this file structureare
programlng 51mp11c1ty and updating flelelllty as explalned
by Lefkov1tz (1969) However, the disadvantages of the
multlllst structure are: i) that in order to respohd to.a
multikey query, the records corresponding to the shortest
list must be brought in core, even though only'a.small

”
1ntersectlon of the llStS satisfies the gquery: and ii) the
total file requires much more storage space-thap-occupied
by the actual data, because of the pointers that reside

within the repords. -

It is desireble to use file‘structure‘in which the
only records brought into .core are the ones that satisfy the
query-, Th%s-allows 2 rapld search and reduies less storage
space thanfrequ1red.for tﬁe multilist file. One of ,such

file structures 1s the inverted index file. As explained

by Lefkov1tz (1969) the inverted ind€x structure allows a

shorter tine for initial and succe551ve responses to querles.'
Tt is therefore appropfiate to describe the details of the’

inverted index structure.

INVERTED INDEX FILE °)

in the 1nverted index organization each search‘key

'appcars 1n a key dlrectory. Correspondlng to- each key~

the key'dlrectory there exists a peinter in a position
»

*

N - ic

Cea -
.
et e e T

SMITH G. DETROLT 33 ANALYST

| Jqﬁps’s. ROYAL OAK 26 ANALYST

/ 1

q ABEL B. WARREN 19 PROGRAMMER

ABEL A. DETROIT 26 -PROGRAMMER

»

Y v

Four Records -in Sequential File

Dirﬁé{ory éﬁ%@&i@p I?EEZEEd
Analyst 1 . 1
Programmer 3 2
" 19 5 3
26 6 4 -
33. 8 -3
Detroit g 2
Royal Oak 11 4
Warren - 12 1,
Abel A. ‘ 13 1
Abel B. 14 3
Jones S. 15 2
Smith G. 16 3
/177777777 17 4
: 3
' 2
\\ 1
FIG. 1.1 Inverted Index File Organization

directory to point to the ?irst record number in an inverted
index list- of numbers of records which contain that key.

The record numbers are stored in the iﬁverted index as
explained by Lefkovitz (19g9), Dodd (1969).and Lowe (1968).

The complete file may be stored sequentially. The Fig. 1.1

r

.

shows an inverted file organization for four records. = ¢

In an inverted index organlzatlon it is poss;ble :
to process a guery using the key dlrect;ry and the inverted
index; the sequentlal data base is accessed only after
determining the record'numbers-gf_the relevent :gcords: For
example, let us assume that a rbquést for information on

° . .

all the 'Analysts' who live in "'Royal oOak' is‘recieved. ‘The
'analyst' eﬁtry in the index showg that record numbers 1
and 2 contain this key. Aan examination of tﬁ?"R0yal Oak'
entry in the index shows that the becond.record satisfics
the required key. Application of the 'AND' operation on
these two lists [(1,2),{2)] shows that only the record
number 2 satisfies the’intial rcquest. An access of the

sequential .file may then be made ard the record having the

namz 'Jones' retrieved. -

Hence, retrieval can be done efficiently with the

inverted file organization;but it’ requircs additional storage

for the inverted index .and the key directory as explaincd-by

Cardenas (1973, 1975). It is possible to reduce the total

storage by coding each key in the key directory and storing

r

¥

.- ‘!""'

ﬁﬁ 65 1{11 7 4 1]10 8 3 2§49 6 4 2 ¢

Coded Sequentiai File

e, ool | TREDS
Analyst 1 1
Programmer 3) - 2 .
19 5 3 - .
26 6 “ 4
33 B o 3
* Detroit 9 2
. Royal Oak 11 4 ,
Warren 12 1
Abel A. 13. 1 ’
Abel B. 14 3
Jones S. : 15 2
Smith G. 16 3
1771771077777 17 4
3
2
- 1

FIG. 1.2 Inverted Index File Organization With coded
Data Base

i

% | 7

a sequential data'base that contains the coded representation
I J

of each key. If the indexes of the. key directory are
o~ . ’ -
assigned as the codes of the corresponding entries (keys) in
the directory then the records (fig..1.1) and their coded

form will be as shown in Fig. 1.2.

The size of the: dlctlonary (key dlrectory) depends
on the number of words present in the data base. It is a
well known empir;cal law, which has been proved ;nalytically
bf MandelbroEL(IQSB), that if D, is theé number of words in
the data base and Nw is.the total number of words inlthe data

base, then . - B

D =EN
W W

where B and E are constants determined by the data base

characteristics and 0 < B < 1.

"The abéve equation indicates that the number of
dictionary entries increaseé‘as the data base grows, and
there is no upper bound to the size of the dictionary.

Even if the mOst freéuent words are stored in core, there
will be many more words to be stored in random access devices
and their decoding will require disk accesses. As the data
base increases there will be_neﬁ entries in the dictiocnary,
many of-;which will be words‘that goccur infrequently. It is
also well known, Zipf's law (1949), that if the different

words are ranked in order-of decreasing frequency then their

frequency is related to the rank as follows:

24w

f(r) = k/r

T

where f(r) is the frequency of word of rank r and k is a

constant, which can be determined from the equation

N =k.] 1l/r.
As described by Booth (1967) it follows that 50% of the
different words occur only once in the data base, 16.66%

occur twice and 100/ [n(n+l)]% occur only n times. Thus
: -
coding the 50% infreguent words that appear only once in' the data

base would hardly save any storage but would greatlf increase
the size of the dictionary requir€d for coding and dedoding
of the sequential data base. Thus it is important to .
investigate suitable codes to obfain maximum possible
compression of the data base with a dictionary of moderate

size. -

First we survey, briefly some of the important
techniques that may be used in the coﬁpression of a data

base and then give the scope of the thesis.

A coding scheme for compression of text in document
data base has been described be Heaps and Thiel (1970) and
subseqguently been analy zed by Heaps in (1972). The compres-

sion is achieved by use of a dictionary in which each

uncoded word is stored only once. Each word in the data

base is expressed in coded form. For a term of frequent

occurrence the space required to stqre Qiiﬂrepetition of -

the code is significantly less than that. required to
) . .

store the }epetitions of uncoded term. The, above éading
scheme, gives a compression ratio 25% for lO0,000‘different

words, but gives rise to a large dictionary.

Several authors have considered the use of the

.

most common words or phrases as codeable elemeh;s for

comp

ssion. ‘Wagner (1973) has developed a method. for
comRact generation of diagnostic messages in a compiler.
This™ technique dépends on manual selection of a set of text
strings ich are common to one Or more error messages.
These.phrasF may be stored without redundancy, gnd adoption
o% the methdd for PL/C compiler messages showed a minimum
saving of728% approximately. White (1967) has 6btained
compression of printed English text by dictionary encoding
through storage of the most freguently océuring words,
phrases, and in addition letter and letter combinations.
The designed encoder for‘Fhis scheme obtains the longest
possible match between the input text and dictionary
entries, and generates a code which contains feber binafy
:digits than the entry itself. Extensive experiﬁents with

F
this scheme indicates that 50% compression can be obtained

for a broad type of English language text.

A\ : ‘e . ™

10

In crder to reduée the storage‘iéquirements of an
exhaﬁstive word coding scheme, Schwartz (1963) has degigned
a'split dictionary which'contains, not only frequent:words,
but stems and suffixes fromlwhiéﬁ the less common words
can be synthesized. The eﬁperimental dictionary implemented
by him contained 3,849 words and stems and 36 suffixes from

whicH® an additional 2,261 different words could be synthe-

©

. 'sized.

Y

Colombe and Rush (1969) have discussed the use of
word fragments in computer based retrieval systems. The -
fragments are stored in a pair of'dictionaries;‘the first

one contains all the shortest word fragments listed

alphabetically together with the set of words in which

each occurs; the second one contains words listed alphabet--

_icallyKEOgether with the fragment which uniquely represent

them. This paiY of dictionaries enables the selection of

appfopriate fragments both for 'generic' retrieval and

retrieval of specific words.

-

Rickman and Gardner (1973) have shown that bigramsb
can be'used-for automatic indexing. Their experimental

results reveal that the term predicted by using bigrams are

efffectively the same as those predicted by using both

bigrams and longer letter strings. An alternate technique,
in which commonly occuiing digrams are replaced by codes

of shorter length, has been discussed by Snyderman and

11.
s . _

Hunt (1970). They obtained a compressed text by using
EBCDIC 8 bit codes thch are not present'in the data base.
The digrams are chosen so that.their initial létteré
belong to a.set of 8 'mastert characters which are seleéted
primarily by frequency but arranéed to include vowels. The
second letter of the digram belongs to a set of 21 combining
éharacters. Thus a total of 168 digram combinations are
obtained. The decision to use such a combinatioﬂ of 8
master and 2l.combining characters is not baséd,on any

theory but purely on a trial and error basis. They obtained

"a reduction of about ‘35% on 200,000 records.

An improvéd version of digram coding has been
studied by Schieber and Thomas (1971), but tHe basic techniqgue
is agaiﬁ to use EBCDIC 8 bit codes. The ‘algorithm used
by Snyderman and Hunt does not basé the selection of these
two~character pairs (called digrams) on their freguency

of occurrence in the data. The technique described by them

is an improved and-extended concept of encoding digrams on

the basis of frequencies. The technique is based on the
principal of taking two alphabetic characters tﬁat frequently
apﬁear in combination and replacing them with one unused
special character code. ‘Their experimental data base .
conatins 40,000 bibliographic records taken from the Central
Libéary and Dccumentation branch of International Labour

Office, Geneva. As only 58 characters are used in the data

—e T s T e

12

base, 198 codes are available. Saving one character for
son® special quction, 197 most fregquent digrams are selected
4

for éoding, and* a rédu;tion-of 43.5% has .been obtained.

A common problem in the publishing and banking
industr§ is the generation of a set of keys to be used for
subsequent searching of the data base, with the input words
‘preserved in the keys. One solution is to truncate the

words to fixed length, usually by dropping the rigthmost
letters. The unigueness of the resulting keys as a function

of the key length has been studied by Lowe (1971) and the

effectiveness for retrieval by Lowe (1967).

Bourne and Ford (1961) have discussed thirteen

codiné techniqueSffor’abbreviation of words to standard
'lenéth and have illustrated them by application to two small
data bases of 2,082 and 8,184 terms. It is }egarded\aé
desirable that each coded word shbuld_be-decipherablé_as
a-string of characters withAsome mnemonic'similarity to
thetuncoded word. This criterian becomes of little concexn,
however, if the code is computer dec;dable into its English
spelling. Four compression techniques have also been
discussed by Nugent (1568). Dblbf, has described a method
of variable‘length name compression and a method based on
truncation. He states that it is desirable to retain at
least five characters in the truncated ‘code. an advantage

of compression based on truncation and character supression

.......

13

-

is that the codlng is’ an operatlon-perfdrmed directly on

the orlglnal word without” the nece551ty for search through
a large table. As a result, the 1nformatlon,dlscarded cannot

be reconstructed from the coded term.

Gottlieb et al (1975) have surveyed dlfrerent
techniques for canpression. ;n partlcular, they compared
differencing and statistical encoding, and.results based on

examination of large insurance files show that, -for a variety

) of file structures, the stastistical compression.methods are

“more generally applicable than dlfferenc1ng, but at a higher

cost.of CPU time.

Clare et al (1972) hate proposed the use pf'variable
1ength character strings as codeable elements ' These strings
are not limited to be substrings of whole words, prov1ded
they are part of the record. For_this féason, ‘the fragments i'
are called 'Text fragments'. Note that the text fragments .
may contain embedded bianks. ‘Clare et al place an.aﬁditional
restriction on the text fragments that are to be included
in a dictionary, namely that the dlctlonary fragments should
occur in the data base with\approximate}y equal frecuenc1es.
These dictionary fragments are intended to be used as the
indexing, compression and retrieval elements. The fragments
below a certain thresholé\are alsc included in tﬁe dictiomrary.

However, it 1is not advantages to replace a fragment of low

frequency by a code pecause of the fairly high cost of

-

14

including it in the dictionary which must be kept in an
easily accessible, andg therefore more expensive, storage
mgdium. ~

A method of selection of‘equlfrequent fragments has

been desCrlbed by Schueqraf and Heaps (1973). Use of equi-
frequent character strlngs has conSLderable merits. As has
been observed by the authors, this technique i) allows
maximum compression to be achleved by use of flxed length
codes, 'ii) requires flxed length buckets for Storage of
documents numbers within the 1nverted index, and iii) permits
the use of a fixed size dlctlonary and. Eilows more freedom

of de51gn They haye observed that the use of fixeqd length

’ codes for fragments of text glves much greater compression
than the use of fixed length codes based on run length,

"eoding as descglbed by Lynch (1973).

because it offers Cost saving and the potentlal for 1ncreased
capac1ty in mass storage devices and channels. As observed

by Ruth (1972) ‘the one characteristic of compression whlch

change of data can'be tolerated in business applications, The
compre551on techniques discussed in this thesis a1} allow

a reduction of the 51ze of files, but probably at the price

cf increased CPU activity needed for compre551on and decom—

Pression. Compaction of data may be achieved by means of any

— . e

T e————

15

technigue which reduces the size of the physical representa-
tion of the data includiﬁg, perhaps, a reduction in the
relevant information. Compression of data is a compaction
technigue which is cdmpletély reversibie and hence does not

? ' N . :
reduce the amount of information.
,

The file oriented technique described in this thesis
'are compression technigues which are easy to implement in a
general fashion. 1In each technique a dictiocnary of distinct
fragments is maintained and codes are assigned for these
fragments. We consider téxt fragments as well as word\frag-
ments, and fixed length codes as well as vafiablé length
codes. Thus the four diffe;ent compression techniques
described in this thesis refer to the four possiblejcombina—

‘tion of fragments (word/text) and codes (fixed/variable) .-

In Chapter 2 of the thesis a description of the MARC
tape reqo;d format is given. While a familiarity with the
éemantics of a file ﬁay be necessary forlmaxmial compaction,
the compression techﬁiques have the advantége of automatic
applicability to a variety of files. Thus only the format
and not the semantics -of MARC tapes is relevant for our

purpose.

In chapter 3 we describe compression by use of fixed
length fragments. The experiment is done by using MARC tape-

samples to generate the set of text/word fragments of_a

- e

QL s e S

< 16

particular length N (2 S N < 8). For each N, the correspond-
1ng fragment dictionary is then uSed to code the data base by

a551gn1ng either fixed length codes Or variable length 'codes.

In éhapter 4 proceduree are given for the selection
of variable_ length fragments. a certain threshold frequency
acts as a parameter whose value determines the number of
distinct fragments. The selectlon algorlthm has been :
de51gned to -give some preferance to the choice of the long-
est fragments with a frequency greater than the threshold.
Use of .a. fragment dictionary, and coding of the data base

by using concatenation of non-overlapping fragments, allow

data compression. We notice from the experiments that the’

dictionary size in this case is much smaller than the word

dictionary (refer chapter 3). Hence it may be p0551ble
to store ;he dlctlonary in core which leads to a rapid

decoding of the record that satisfy a query.

e e e et t r— = = gtk e i e e A - J—— r _—

: 17
, CHAPTER 2
MARC TAPE FORMAT AND EXPERIMENTAL DATA

.) N
In-this Chapter we describe the data base used for

testing the algorithms used to process text. and word(frag—.

ments. We have selected a sectlon of MARC (Machlne Read—

able Catalog) tapes issued by the U. S. "Library of Congress

in 1969.

2.1 MONOGRAPH DESCRIPTION

The MARC tapes are available as either seven or

"nine track tapes. Each‘'physical record on the tape is less.
than or equal to a maximum of 2048 characters. The informa-
tion pertaining to a single monograph may consist of one or

more physical records: calleﬁ a logical record.
L]

Each menograph.description contains a leadef,“.
followed by a record eirectory, followed by a one-charactér ' E
field terminator, followed by a set of control fields and
-followed by a set of Qarieble length fields. The differ—:
ence between the contreol fields and the variable fields is _\
that the latter contain internal tags to indicate the posi;
tion of subfields. Each_conprel field_and each variable.
field contains a field terminator as ifs last character, ex-
cept that in the last variable field, the field terminator

is replaced by a record terminator. The general format of

a monograph is illustrated in Fig 2.1.

. 18,
The leader is a fixed lengtﬁ field for all the

records and consists of 24 characters. The subfieglds of

-

the leader are shown in fig. 2.2.

The record directory consists of a seriés-of fixed-
length subfields (12 characters each) which contain the identi-
fication tag (Tj), the length (Li) -and'?he starting
character position (Pi)’ in thefrecord of each of the wvariable
or control fi@lds. Thé ‘description of (51; record directory

entries is shown in Fig. 2.3.

» The control fields contain alphanumeric data elements,
" TWany of which have a fixed length. All the control fields end

with a field terminator (FT).

- The variabl? fields are made .up of variable length

alphanumeric data. All the fields end with a field termina-
tor code, except thé last £ield in the-Iogicai record. The
format 6f control and variable length fields is given in -

lFig. 2.4. The format ang description of the variable length
] o

field is given in Fig. 2.:5. For a detailed description of
"

MARC tapes refer The Library of Congress MARC manuals (19707.

' -
5

Reéord Control '{ Variable
Leader | pi cctory | Fields ' | Fields
FIG. 2.1 MONOGRAPH FORMAT

13

44

20

45 6 7 .89 10 11 12 16 17 23
. u o "
a|581%=sle o S 1%
Recor Base Address
.) - o
Length “loo il e nelEde of Data Blanks
. ¥ 0,0 o> < - 3 1 02
{RL} (%] gjlmuli2a oo
S lan|aleo |2 VY
: - 7
{2)
Character "
Name of Leader position in bescription
Data Element the Record
RL (Record Length} 0 -4 3 Total number of charac—
ters in the logical re-
. cord ingluding itself
Status 5 n, cor d
n = new
¢ = corrected or
. revisced
d = deleted
I.cgcnd s
a) Type ot record 6 o ¢ language matsTizl,
b) Bibliographic . printed
level m = monograph
¢) Two blank g - 9 .
characters
Indicator. Count 10 Each variable fiecld
begins with two charac-
ters called indicators
which providc.ccrtain
information about the
data which follows.
7 .
Subficld Code 11 Each subfield within a
Count variable length field
is identificd by a two-
character code
Base Address of 12 - 16 Indicates the position
bata in the record at ‘which
the set of control
fields begin '
Scven Blank Charace- 17 - 23 Not used at present
ter
(b) . c-
4
FIG. 2.2 LEADER

{a)
(b)

outline of Leader
contents of Leader

‘)p;?‘

21

T1JL1|P1 Tzle\Pz Tnanan FT
(a)
Name of Record ; . .
Directory Data 2har2§t2£s Descr;ption
Element
Tag (T;) 3 ' The numeric
symbol which
identifies the
field .
Field Length 4 The number of
(Li). characters in
t+he field iden-—
tified by the
tag
Starting Character 5 The character
Position (Pi) position in the
record of the
first character
of the field,
relative to a
base address
. (b)
FIG. 2.3 RECORD DIRECTORY

(a) Outline of Directory
(b} Contents of Directory

}

(b) Variable Fields

L. 3
FT| FT| FT FT FT FT FT
.
I + 4 + 4 4 %
+ + . ‘ . .
B-;l;;& B4P; B+P3 BHPy B-*;Pl B+?1+l B+Pl+2 B+Pn__1

B . ' s
1
]

' (a) Control-Fields

d

FIG. 2.4 CONTROL AND VARIABLE FIELDS

_————— ko

IN |SC;, | DE; | sC; {DE,

23

SCm | DEm FT

‘Name of Variable
Fields.Data Elements

Description

Indicators (IN)

Subfield Codes (sC;)

Data Element (DEi)

Each variable field
will begin with two
Characters which provide
descriptive information
about the field

The subfield code pre-
cedes each data element
in a field and identi-
fies. the data element.
$ is the first character

tontents of the subfield

or data element, which
may be of variable length

FIG. 2.5

(b)

OUTLINE OF VARIABLE FIELDS

(@) outline of Fields
{b) Contents of Fields"

24
TABLE 2.1 MARC TAPE (ISSUE 1969), USING 646
RECORDS ' T
Field

Tag - -

Minimum Maximum Total No.of Average

Length Length Frequency |y aracters Lengtg
1 12 12 646 7752 12,00
. 8 40 40 646 25840 40.00
15 14 14 1 14 14.00
20 13 20 42 553 13.1%

40 34 46 -2 * BO o 40.00 -,
41 7 16 33 327 9.91
50 7 33 646 . 12038 18.63
51 24 24 1 24 24 .00
. 82 7 26 632 7510 11.88
100 15 55 520 13846 26.63
110 19 112 79 4375 55.38
111 62 112 11 854 77 .64
130 29 29 1 29 29.00
240 10 93 25 953 38.12
245 8 369 646 51553 79.80
250 10 44 124 1762 14.21
¥ 260 18 208 646 29496 45,66
300 16 68 643 17839 27.74
360 8 27 290 2455 8.47
' 410 29 69 8 379 47.37
440 22 86 30 1131 37.70
490 10 123 164 6807 41.51
500 10 279 261 17304 66 .30
504 24 113 279 - 9923 33.41
505 18 713 - 27 7468 276.59
520 77 238 13 1784 137.23
600 13 79 67 2434 36.33
610 21 68 29 1182 40.76
"1 611 31 31 1 31 31.00
630 12 57 10 302 30.20
650 8 81" 659 20155 30.58
651 11 58 17 578 34 .00
652 10 74 119 4426 37.18
700 10 64 167 5722 34.26
710 20 121 83 4565 55.00
730 11 66 5 176 35.20
740 16 72 43 1356 31.53
810 37 126 23 1728 75.13
840 43 - 62 3 159 53.00

FIELD STATISTICS

-y

25

2.2 EXPERIMENTAL DATA DESCRIPTION

The data base used for experiménts consists-of 646
logical records. The Table 2.1 indicates the frequency of
occurence of each of the tags, minimum length of each field,
maximum length of each field, total number of characters in

each field and average length of each field in the data base.

The textual data used in the experiment consists

‘of the contents of each control field excluding end of field

mark - (FT) and the contents of each variable field excluding
indicators, ‘subfield codes and end if field. The leader and

record directory are not part of the textual data.

The textual portion of the 646 logical records

‘ amounts to 229,309 characters, of which 48 are distinct.

Table 2.2 illustrates the distinct characters and the fregu-

-

encies of their occurence.

A word, in the experimental data, is any string of
non blank characters chosen from the textual data. Blank cha-
racters are used as word separators. The textual data yielded

34056 words of which 10,829 were different.

The characteristics of the experimental data are

shown in Table 2.3 and the word length distribution is

shown in Fig. 2.6.

\\

f:"f_fs; E

i e

26
TABLE 2.2 MARC TAPE (ISSUE 1969), USING 646

RECORDS
CHARACTER | FREQUENCY CHARACTER FREQUENCY
B 31356 v 3664
E 14383 8 3024
T 11257 2 2907
A 11244 3 - 2798
N 11202 F 2503
s 10204 5 2127
0 10053 7 1903
R 9905 4 1888
. 9451 W 1721
T 9110 V. 1448
L 7025 K - 1218
C 6597 - 1185
0 6343 (1073
1 6263) 1065
9 5164 J 675
D 4974 / 634
H ¢ 4715, X 511
6 4435 = . 352
P 4420 % 279
U 4411 A 236
M 4187 ; 234
, 3963 % 152
B 3721 o) 127
G 3584 ~ " 18
Y

; Character freguency count of textual data

‘of MARC tapes, using 646 records. This count

includes every field of each record, except Leader,
Record directory., FT,- Indicators, and Subfield

codes.

27

TABLE 2.3 MARC TAPE (ISSUE 1969),
USING 646 RECORDS

Length Number Number of i
of Words Different Words
1 694 22
2 4716 240 -
3 4634 793
4 3626 - 883
5 4269 . 1205
6 3614 1313
7 = 2859 1276
8 3154 1894 t
9 1783 1 974
10" 1666 856
11 = 1400 , 448
12 496 317
13 .'458 183 s
14 148 100
15 260 71 -
16 50 45
17 C 26 , 24
18 89 82
19 49 48
20 30 23
21 . 15 15
22 - 6 5 &
23 4 3
24 6 5
25 2 2
27 2 2 '

WORD FREQUENCY COUNT P

28

PERCENTAGE

16 t

12 |

10 |

zmawmh of different words

o

+ Number of words

0. 12 14 16 18 9p 22

‘'FIG. 2.6 WORD LENGTH . _

29

CHAPTER‘ 3

FIXED LENGTH FRAGMENTS

This chapter will discuss methods for coded representation of
a dat4 base using a suitable dictionary 0" store fragments of the words
or/texts. Before we consider the methods for such a representati;:m we

equire the following preliminary definitions:

3.1 DEFINITIONS .

Definition 1 Suppose a up of M characters (including blanks) is

partitioned into K sub-groups, such that each sub-group contains the same
| q number N of characters. Each sub-group will be called a fragment of
fixed _iength N.

Definition 2 Instead of partitioning a given set of characters into

equal size we can have a pértition resulting in fragments of different

lengths. . Such fragments will be called variable length fragments.

f

Definition 3 A group of characters of which no character is a blank

will be called a word.

- Definition 4 A text will consist of a group of words such-that one

‘or more blanks separate “two adjacent words.

~

__._‘.rj !' ’

-in fixed length word fragments

30

Definition 5 A word, fragmented according to definit-

ion 1 and padded with right blanks 1% necessary,-w1ll result

Definition 6 =~ A text, fragmented according to defini-

tion 1, will result in fixed length text fragments.

Definition 7 Each word or text fragment can be repr-

esented uniquely b& means of a numeric code {section 3.3}.

If the number of bits in such a-coded representation is the

same for each fragrlent, then we call the code a fixed length

code.

]

Definition 8 If the number of bits required for &

-

unique representation varies from fragment to fragméng (as

in the case of Huffman codes); then we call the code a

variable 1en§th code.

31

3.2 - CODING METHODS

Based on the previous definitions we give below

some possible methods of coding a given data base:

Method 1t In this method we partition the data base
into fixed'length text fragments and store the data bise in
a coded form by using fixeq;length codes for each text-—

fragment.

Method 2 The only difference between this method and
the previous method is that here we use variable length codes
instead of fixed length codes for each text-fragment.

“ .
Method 3 This is the same as method 1 except that

instead of text-fragments we use word-fragments. _
o .

Method 4 . This is the same as method 2 except that
instead of-text—fragménts,we use word-fragments.
Method 4 This will assign fixed or variable length

codes for each word in the data base,

Example 1 - Consider the text: _ -
BIBLIOGRAPHICAL REFERENCES INCLUDED IN NOTES

Let N =3 be the. length Qf-eacﬁ fragment. Then the fixed
. . b

kv

32°

length word-fragments are:

- BIB, LIO, GRA, PHI, CAL, REF, ERE, NCE, Spg, INC,

.

LUD, EDW; INE, NOT, ESK. ‘ {

In éhe actual imple&entation of the'bodéé
for the data base we generate a fragment of blanks
to:mafk the end of each word the.length of which
is an éxact multiple 6f N. This islpecesséry.l
during the decoding process of the data base
and for exact kepr;ducﬁion of it in the textual * =

form. .) ‘}A ‘

; Since the lengéh'of the firs£ word in the
textvof Ex. 1 1is a”muitiple of N («=3)}, a
fragment of blanks will be gene;ated‘aﬁter‘CAL
duringcthe implementation. éhus,frégmenfingwthe
text into'wqrd—frégments will ;gsult in six£een,
instead of fifteen fragments.
F;r_éhe same value of N tHe fixed length
textﬂfragménts are BIB, LIO, GRA, PHI, CAL, ¥RE,
FER, ENC, ES¥, INC, LUD, ED, IN4, NOT, ESH.

Thus there are fifteen text-fragments in total

. and we need exactly fifteen codes, one for each

fragment. In adopting this scheme, no fragment of-

blanks needs to Be generated.

33

3.3 DATA BASE REPRESENTATION USING DICTIONARY
AND CODED DATa

The fiVEn@thods_which we described in the
previous section are all minor variations of the
general method which makes use of a-dictionary
and a‘coéing scheme. The dictionary consists &8f
distinct_fgagmgnts (word or'text) generated by r
scanning the given data base. The data base can
be coded eatﬁer by‘using fixed length codes for
the fragments in the dictionary or by variable
length coaes for the fr&gments. Suppose there
4re D fragménts in the dictionary, then j=1log,D]
bits are required to give a unique address of a
location in the dictionary.. Thus any fragment.fj
in the dictionary can be coded in terms of the
address Ej which is a fixed length code.
Alternately, ;f we use minimum redundancy
codes (Huffman éodes) for the fragments in the
‘dictionary; then we will keep the fragments as
well as their codes in the dictionary. Whatever
‘coding scheme we use; the method of coding the
daté base is simply to replace every fragment in
the data base by the c;rresponding code. We shall

see in the following sections the advantages

and’ disadvantages of the five methods. ay

34
3.4 STORAGE REQUIREMENTS

-

3.4.1 TEXT FRAGMENTS

A,
_ If method.]l is used, we partition the data
base into text-fragments such that the lehgth of

each fraément is N. Let Dy be_the number of different
fragments of length N in such a partition of the

data base. If c is the number of bits required

to represent a character iﬁ'the'machine, the storage
for the dlctlonary of dlstlnct fragments would be
cND,\T bits. If 2t l<D <2% » then we need t=[log DN]

bits to code a fragment in the dictionary. Thus

the total space (in bits) necessary to store

the dictionary and the~ccded-data base is

T (N)=cND +thC/N], where Nc‘lS the number of characters
in the data base."- In partlcular, for N—l, the total

-
storage (in bits) is ch+Nc{logzD 1.

L3N K
AS described in chapter 2, ' the experimehtal data

base consists of 229,309 characters of which 48 are

" different. If such a data base is stored by uéing fixed

length codes for each character then the space require-

ments are as shown ‘in Table 3.1. . '

35

Number of characters in the data base N,
Nuﬁber of Aifferent characters Dy
Average code length/character ¢

space for coded data

Space for dictionary

space for dictionary and coded data Tf(l

229,309 Co
a8 o

.6 bits
1,375,8‘54' b.ité. h
288 bits

y 11,376,142 bits

“

SPACE REQUIREMENTS USING CHARACTER CO

L]

DES

4
V4

36

Now we discuss the storage requirement when

.variable length codes are used to represent fixed

length text-fragments. As mentioned earlier, let
N be t?e length of each fragment and DN be the
number of distinct fragments in the dictionary.
An effic;ent coding scheme is to assign codes
for the fragments depending on the probability
of their occurance. One sych scheme 1is due to
Huffman (1952).

Let Pj(N) be the probaﬁility of occurance
of the jth text—ffagment (lijiDN } in 'the data
base. Then the average information content of
each group of N characters when coded without
reference to adjacent fragment is given by

Dy

H(N) ="~ jilpj(N) log, pj(N).

This is also the average code length in bits
of the most compact codes that could be used to-
represent the.te*t—fragméht. It has been observed
Héaps (1972) that for large data bases such a
coding scheme, is not suitéble because of the time

and the space requirements during the decoding

process.

37

Thus the total space (in bits) required for the coded data base

and the dictionary is
4 — “:,
ATf(N) = Qb +.H(N) , /N

Since the actual data used consists of a sequence of substrings
selected as explained in chapter 2, we find that we do not have exactly
NC/N fragments for a given string consisting NC characters. We represent

the actual nurber of fragments of length N by NFN.

Fig 3.1 illustrates the decrease in the total number of fragments
as N increases from 2 to 8. Note however, as shown in Fig 3.2, the number
of different fragments increases in the range 2sNs6 and thereafter decr-
eases slowly. Fig 2.3 shows the average number of bits required to repr-
esent a fragment of length N, using both fixed and variable length codes.

In both cases this nunber increases for 2sNs5 and then remains constant.

In Table 3.2, we give the storage requirements for the coded data
base using fixed length as well as Qariable lenéth codes for fixed length
text fragments of size N, 25N$B8. We infer from the results that the
storage requirement for the data base is minimm, when N=3, whether we
use fixed length codes or variable length codes. This is graphically

represented in Fig 3.4.

Wé can conclude from Table 3.1 and 3.2 that the amount of storage
required to represent the dicticnary and coded data for a text of given

size is less when the text is fragmented into strings of length N (2:Ns8)

P~

rather than of strings of length 6ne.

38

39

&

SOTLSILVIS INAWOVYJI ILXAL

s

212'082°T | 2608VE‘T €T ST HLY LT 0%6 €€
LTO'¥92°T | Ly9’6EE’T €1 ST T6€/8T ST8LE
LTL'TEZ'T | 6L99Te"T €1 ST b.8'8T 187’2y
982°L0Z°T | 0L1'608'T €1 ST 89181 2¥6 05
2T0L0T‘T | 988‘0€z’T ZT A LST’ST LE6'TY
Zvp’ZT0’T | 29672LT T 1 €1 66T L 09z ‘08
p8O‘TLO’T | vze'soe’T 6 1T L97'T 0ZELTT
(M) 72 (v 31 (N) H |Na%Bo1) Ng Nin
z'¢ TTAVE

¥? al

- el

NUMBER OF FRAGMENTS (in k)

120

110

100

30

80

70

60 -

50

40

30

20

10

+
» +\ .
+\\\\
1 x I 1 1 1 1 !
1l 2 3 4 5 6. 7 8 »

FIG. 3.1 TEXT

L

FRAGMENT LENGTH (in characters)

40

41

[

1 1 L 1 -2 — 1 L)

w ‘ ~
2 q 0 8 6 4 2 0 8 .6 4 Dﬁ 0
o o~ -t - — —~ —

(3 UT) SINZWOWII INTIHIATIA J0 HAGWAN

TEXT FRAGMENT LENGTH (in characters)

3.2

FIG.

16

15

14

13

12

11

.
o

AVERAGE CODE LENGTH (in Bits)

w
~4

—0— Fixed length code

A~ variable length code

FIG.3.3 TEXT FRAGMENT LENGTH (in characters)

SPACE FOR DICTIONARY AND CODED DATA (in 100k Bits)

15,

14

13

12

11

10.

43

o Storage for fixed length..
code: (Tf(N))

+ Storage for variable length
code: (TE(N))'

FIG. 3.4 TEXT FRAGMENT LENGTH (in characters)

.3.4.2 . WORD FRAGMENTS

‘We will considér_fraémenting the words of tﬁe
data base into fixed length frégments with a view
towards efficient coding and economy of storage.
We achiev?‘efficiehcy in retriéval since most of the
" time the search in the data base is word oriented.
Schemes of text-fragmenting the data‘base‘as explained
"in the previous section are context depenﬁént in
the, sense that the téxt—fragments of a parﬁicular
word‘aepend on the predecessér and successor words.
In contrast, word fragﬁénting schemes are Fontext
free. Thus the nuﬁber'of‘different word-fragments will

be less than the number of different text-fragments

for a givén subset of the data base.

Each word in the data base is partitioned into
fragments of length N, followed if necessary by a
fragment of a smaller length to terminate the word

4

without inclusion of right blanks. "The choice be-
tween keéping.word—fragmqpts, each of length exactly

N (padding with blanks, if‘neceésary), and keeping
rthose Qord—fragments without blanks, is crucial in terms
oﬁ storage for the coded data base.' To economise on

storage the stored wofd'fragments_will be of varying

lengths M where M < N.

45

word-fragments of length M. Let T(N) be the-

total number of word-fragments in the data base.

Let Q (M) be the Probability that the worq chosen ' f
from the dats base is of M characters. Then

\ N-1 N-1
TN =N { © om) + » oM + P,
w 1) N

. where NW is the total number of words in the data’

base. We must consider the follow1ng cases.

Case 1:

By padding fragmenﬁs of length smaller than

N with blanks, we keep a dictionary consisting of

DN(N) fragments of length N. Thus the nﬁmber of bits

item in the dlctlonary is t = [log 2D (N)7.

Hence, the total storage for dlctlonary and thc

coded data base is

Sf(N) = cNDN(N) + tT(N).

Case 2:

-

Instead of paddlng each word—-fragment of length

M (M<N), we can store fragments of different

7
1engths. We store fragments

© the number of different frag

of length j in DICJ Let

ments in DICj be.

Dﬁ(j). if TN(j) is the number of fragments, each

of length exactly J, in the

is : i ‘N
T(N) = I ml? (3)
1.

data base:s tHEn the

. total number of word-fragments in the data base

Also, the\number of bits required to give a

unigue code to each item in
code o identify the N dicti
preceed each coded fragment

decoding. procedure they cou

DIC, is t.=flogDN(q)j.

JWe_also requlre Flog N1 bits to giveg a unique

B

onaries. These bits could

and during the

ld be checked to

determine to which dictionary the correspondlng'

fragment belOngs The total

space required to

store the dlctlonarles and coded data base is

N : N
g" (N) =c I M DN(M) + I
=1 =1

thN(j) + T(N)[1092N1

ry "

47

Case 3:
This is the same as Case 1, except that we use

variable length codes, instead of fixed length
codes. Thus the total space required to store

the dictionary and the coded data base is

sfun = chN(g) + T(N) H(N),

where H(r) is the average length of the Huffman codes for

4

fragments of length r. . '

Case 4:

This is the same as Case 2, except that we use
variable length codes. It is easy to, see that
the total space required to store the dictionary

and the coded data base is

N

-~

N N .
SF'(N) = c I-MD (M) + T H(3)T () + T(N)[log N] °
3 g N =1 N | 2

.- -
] - -

R i

48
We have applied each of the above methods to the data

base described in Chapter 2. The results are shown in

-Fig. 3.5 to 3.8 and inﬁ‘ab;L‘_g_B.B.

Fig. 3.5 illustrates the decrease in total number of
word fragments as N increases from 2 to 8. ’However, we
observe from Fig. 3.6 that the nuhbér of different frag-
ments increases as fragment length varies from 2 to 8.

This increase is rapid for 2 £ N £ 4 and relatively slow

for 5 < N < 8.

As we would expect, the total number of characters in

the dictionary becomes greater when we pad each fragment with

blanks to maintain fixed length, as shown in Fig. 3.7, this
difference becomes significant only for fragment lengths

greater than 4.

Fig. 3.8 presents a summary of relative space require-

ments for each of the four cases we have just @escribed.

In conclusion, the storage required for the data base
is less when variable length codes are assigned to word
fragménts. The use of separate dictionaries for fragments
of different lengths, further reduces space requirements.
We should note, however, that the extra storage reguired
for fixed length Gdes may well be compensated by the speed

gained in -the decoding process.

—-.r.p-.—-—:-v--n——-a,—r:rzp--g_—-.g--,-—-—-‘—v—"*——'v""—,—," A

49

1t may be observed that the use of word frééments
éequires more storage in all éour different methods
than does the use of text fragments, the difference
being very significant for N 2 4. For text fragments,
it was found that minimum storage resulted when N = 3.
In contrast, for word fragments thé minimum storage
space results for values of N > 6. Usiné fixed length
codes, the use of word fragments with N = 7 or 8 requires
_approximately 85% of the storage required when using text

fragments with N = 3.

50

’

9zL ' VET'T hmm~mwm 65L7z00’'TjZTZ'8L8 A 1T 0£T’ 99 ogv‘os| ors‘oT| 686°EY | 8
gyo‘ZIT'T| 9TV '866 .Nom~0ﬁm 9TL’'8L8 FAl T |- £08°66 6TO‘SL| LTL‘OT| T8C LY L
ops’20T'T| 626'€20’T| 5997156 p16‘V06 b1 1T ov8‘zs gzz'c9l 8€s40T|Lz0’2S 9
8T0'zGT T| VLG LBOT|LYL TLE 090’956 b 1T y96°SY oLs‘zs| prs‘ot{LsL’es | S
06z 'vT2 T]86Y 90T T| 69T S00'T L9Z'€ve6 A 1T 880 ‘LE 7€L'6E| €€6°'6 | LOL 69 | ¥
6cc’vyz’T| zes’8Tz 1| 1887890 Zy8‘9€0’T £T 1T 869°9T z6Z'LT] voL‘s | 6EL'LB | &
mmv~hwm.a 9z ' Tre‘T| 698/ LET'T 090°8S0'T 1T 6 T6€'C vev'z | L1z'T | so8'veI| T

0 7s) 3s w?s | @ Fs |Leofasor|L () sl 0| codan | Ve | wa | ox

' o e N .
y .

SINTAOVHd QYoM €€ FTEWL

NUMBER OF FRAGMENTS (in k)

140

130
120
110
100
90
80
70
60

50

40

30

20

10

+~

‘FIG. 3.5 WORD FRAGMENT LENGTH {in characters)

51

A

{(in k)

NUMBER OF DIFFERENT FRAGMENTS

13

— - -
o | b

Y I

(ot Bt egmierrm e 20

. ‘-—-__-+____
¥
+ /
. :
/
+
[
A L 1 I i 1 1 1 1_‘

1 2 3 4 5 6) 8 9

FIG. 3.6 . WORD FRAGMENT LENGTH {in characters)

-

52

53

1 1 A 1 1 1 1 1 1

ND, (N) '

(o]

1

N
z

1

MDN(m)

1

L

o -0 = 1 o tn o)

50

(sao3orIrynp 'Yy

o
-

wn
™

’

o
(34

UT) FDVdS XUYNOIIONIA

[Vg]
o

o
[}

15

10

WORD FRAGMENT LENGTH (in characters)

3.7

FIG.

" 15

SPACE FOR DICTIONARY AND CODED DATA (in 100k Bits)

14

13

12

11

10

54

1 1 L

° ‘ Sg (M)
S%(N)
X sy

M- PR)

] 1 1 1 L

‘1 2 3

FIG. 3.8 WORD

4 5 6. 7 8

FRAGMENT LENGTH (in characters)

55
3.4.3 WORDS -
So far we have considered coding schemes for .

text and word fragments representations of a data base.
In this section we consider each word as a unit and
discuss the storage requirements on the basis of coding

schemes for these basic units.

By scanning the eﬂtire data base we may form a
dictionary consisting of different words of the data
base;. Based upon the size of the dictionary or dn the
frequencies of the words in the dictiopary, we—assign

codes to the distinct words in the dictionary.

Let D be the number of words in the dictionary,
Nw be the Aumber-of words in the dgta base and Aw be
average number of characters per word. Since words
in the dictionary may be of different lengths, we
use a special character {say a blank} as an end of word
mark. ‘fhds, the space required to store the dictionary
is

c (Aw + l)Dw

56

The spxe required for the coded data base
depends on the coding sheme. If we use fixed length

coding scheme, then the space is
N, ., -where t = rlogsz].

If we use a variable length Huffman coding scheme,
then the space used for the coding is
Py

"H N , where H =- L
WowW

P (i)log.,P (i},
w i=1 w 2" w

and P_(i) is the probability of occurrence of the
ith dictionary word in the data base.

Thus, the total space required for the‘
dictionary aﬁd coded data base, ﬁhen fixed length

~

codes are assigned to distinct words is:

L= o+
Sw C(AW, 1) PW + tN

1
When we use variable length codes the total
space required is

1 = 1
Sw c Aw + 1) Dw + HwNw

57

Experimental results, obtained by applying this

technigue to a section of the MARC tapes are shown in

Table 3.4.

=

w
"

s' :

o)

Number of words = 34,056

Number of different words = 10,829

Averdge word length = 5.,B13

Space for coded data base with fixed
¢ length codes = 476,784 bits

Space for coded data base with variable

length codes = 374,616 bBits

Space for dictionary = 442,640 bits

58

Total space with fixed length codes = 919,424 bits =

Total space with variable length codes

Average number of bits for variable
length coding scheme = 11
Number of bits for fixed length

coding.écheme = 14

Table 3.4

817,256 bits’

‘59

Concluding Remarks o

In this chapter we have investigated text-
fragments, word—fragments and words as codeable

elements of a 'data base. The results of our.
experlments on MARC tape as a model data_base have
been given in the preceedlng Tables.'From the tables
we infer tha£ the total .space fequired for
dietionary‘end coded dats base using a variable
length coding scheme for words is the least among '
all the-otner'nethods. This; however, does not

mean that this scheme is suitable for storage of
anyadaga basé: We also f£ind that the change'in'the.
size of the dlctionafy is epnsiderabl§ more when
words are used as codeable elements as -compared

to using word- fragments as codeable elements. .

Thus we flnd that, when the data base remains
static over a long period of time, words can be
used with advantage as codeable elements. The
results indicate that the size'of the word- fragment

dictionary increases rather slowly and the total

space requirement per word-fragment is optimum when

‘the length of the: fragment is 6 and variable length

codes are assigned.

o —

B i . —— -

: data bdse are related by Dw==EN3 where E and B are

60

. As‘has been mentioned in Chaﬁ%ér 1, the number of

‘different words D, and the total number of words N in the

™

e

constants®depending on the data base and O*EF¢:1. This

implies that the dictionary size increases with the in-
crease in the size of the data base. The results in
Table 3.5 substantiate this. f ‘ -

When we consider word gédgments, instead of words as
codeable elements; we observe a similar but strictly im-~
proved situation: Compéred to the increase in the word
dictiohary size, we find the increase in the number of
different wora frgghenté ta‘be considerably smaller. It

may be noted that the,statistics given in Table 3.5 satisfy -

a relatiga‘simiiar to the one due to Mandelbrot (1953).

: _ B(N)
D, (N) =E(N) [N_(N)] - (3.1)
R

" where , ,T

N B(N)" L EM)

) . r

.188 s 135.0709
Y3 €259 45.4767.

4 . .6883 © £.5476p

‘
hY

These results have beeh obtained using least sguare fit on

* ! X ”
the data shown Ain Table 3.5 and using the formula (3.1)..

]

We also observe that B(N) and E(N) are related by

v logeE(N)==ci exp(—c2

ci: exp(2.1434), 'c2:32.3692

B(N)),

TABLE 3.5

‘RATE OF INCREASE IN WORD FRAGMENTS

N “%1,187 22,374 - 34,056
N (2) | 37,172 74,097 124,805
N (3) | 28,644 57,123 87,739
N (4) | 25,062 . 50,043 69,707
D_ 4,445, 7,723 10,829
D (2) 971 1,127 1,217
» w .
D (3) 3,586 4,875 5,764
D (4) 4,880 7,663 9,933

61

62

CHAPTER 4

VARIABLE LENGTH FRAGMENTS

It has been noted by Booth (1967) that in many textual
data bases different words occur only once. However,
the total space saving due to compression of infrequent
words in the data_base is negligible. As mentioned in the

introduction of,tpis thesis, and discussed in considerable
detail by Scheugraf and1Heaps (1973) and Clare et al (1972),
it_seems advantageous to use particular variable length

fragments as codeable elements.

In this chapter we propose an algorithm to discard
certain charaéter strings that occur in the data base with
low freguencies and will retain only the longest variable
length fragments whose frequencies exceed.a given threéhold,
t. The dictionary that stores all the non-overlapping
fragments will also contain all members of the character set.
In addition, we also store those prefixes whose frequeﬁcies
lie within a small range of t. This attempts to maximize
the average fragment lquth of the set of fragments in the
dictionary and allows the whole data‘base to be represeﬁted
as a concatenation of clements of the dictionary. The
_dic£ionary is thug 'complete' in the sensc that its elements
may he concatenated fo represent the data base and also any

further extensions of it due to update or corrections.

wat

63

We first informally describe the problem of partion-
ing the déta base into variable length fragments of frequen-=
cies greater than a given threshold t. Let us suppose that
the, ?robabilitieé p(cl), p(c1 025 and p(cz/cl) { this is
thelprobability that c, immediately follows cl) have been
found experimentally. We denote fragment names by a., their

predicted frequencies by f(a) and K(a) their actual ffeq-

uvencies.

Initially we store all single letter fragments and
their frequencies in a dictionary. We also store in this
dictionary all two letter fragments for which f(a) 7y t.

We set K(a) to zero for all & in the dictionary.

The selection process consists of making several
passes th;ough the déta base, each pass adding fragments to
the dictionary. The selectioh process is terminated if.during
the previous pass, no more fragments are selected by the
procedure. Since identical actiéns are done in all passes,

we explain a single pass through the data base.

The data base is scanned from left to right (starting
with the next character to be scanned) until a fragment a of
the dictionary can be matched with a string in the data base.
At this stage, we compute predictioﬁ frequency to decide on
the possibility of extending & and thug extracting a fragment

of bigger length. This process of scanning the next character,

64

computing prediction frequency and comparisonlwith the
threshold t is continued until we hit a character which if
included in the string e« would make the prediction frequency
smaller than or equal to t. If the fragment o« is not already
in the dictionary then it is'stored in the dictioﬁary and
K(a) is incremented by 1. The selected fragment a is
considered to be removed from the data base,. Repeatedly '
performing this prﬁcess, the entire data base can be reduced
to an empty set by successive removal of fragments. The
reduction of data base to a null set marks the 'end of one
pass through the‘data base. At the end of each pass, for
every o in the dictionary for which the actual fregquency K(a)
greater than t, thé predicted frequency fla) is set to K{a);
for all other fragments the predicted frequency to zero. For

all fragments ¢ in the dictionary, K(a) is reset to 0.

We will first describe tﬁe data structure used for
building variable length fragments and this is done in
Section 4.1. We give a férmal description of the algorithms
to select and generate variaple length fragments in Section
4.2. Finally, in Section 4.3, we give specific results
conecerning variable length fragments selected by the algorithms
from a section of the MARC tapes, the storage for the diction~

ary, and the coded data basc.

"l

- ‘___—__________’-—'—'—‘_—__—.-._-nv-,-:,u!".".‘_—:‘:z. o [

65

4.1 DATA STRUCTUEE

We use a tree structure for storing fragﬁents during
the selection procedure. » tree consists of a finite set of
one or mMOre nodes such that +here is one specially designated
node called the root that has no pointers directed to it, and
all other nodes have single pointers directed to them. A1l
nodes may contain any finite number of pointexrs directed away

from them. A node which has no pointer directed away from

it is called a rerminal node.

a level of a node with respect to the tree 1S defined
by saying that the root has level 1. and the level of any
other node is one more thanAthe jevel of its father. Thus
in Fig. 4.1 the ncdes L, I, 7T and A are at level 3 and node

U is at level 5, Thus the height of the tree is five.

66

Level 1 Root

Level 2
Level 3
Level 4

ﬁével 5

FIG. 4.1 Tree

An ordered set of zero or more disjoint trees is
called a forest. Thus, in FIG. 4.1, if root QO is removed

the tree becomes a forest consisting of two disjoint trees

with N and R as roots.

67

A binary tree consists of a finite set of nodes, in

which each node has either 0, 1 or 2 pointers directed from

it. In the case where there is one pointer in a node we

"distinguish betWeen the right and the left pointers.. If

every node of a tree has 0 or 2 peointers, we call it a

-

pure binary tree. ‘

FIG. 4.2 Binary Tree FIG. 4.3 Pure Binary Tree

In the above representation of a tree, the number of

pointers per node is variable. This gives rise to variable

- node size, which may involve extra computational time during

implementation of .the algorithm which uses this structure.
Therefore we transform the tree of Fig. 4.1 into the pure

binary tree as shown in Fig. 4.4.

ey LT T P

__,___________________;,mm,ﬂ;

68

FI1G. 4.4 Representation
in Binary tree

In Fig-.

a single left pointer to on

which sons at leve

"right pointers. This representati

fixed length node size. .

of tree in Fig.
form

4.4, each node at le

e of its sons at level X-

1 X-1 aretconnected by .

4.1

vel X, is connected by

1 to

a single chain of

on enables us to use @

~

69

DEFINITION

Let p(Clcz) be the probability of occprancé of the
character pair c,C, when the data base is partitioned into
character strings of length two. Tbe'probability that C2 is

-immediétely'following by C1 is.thusﬁ
\ _ P(ClCZ)
pl{c,icy) = ———
2
1 P(Cl)

provided p(Cl) # 0.

If this probability is conditional only on the
pkeceeding character and not on the preceéding string, then
Cy is given by:

the frequency f of a string ClC2

(3.1}

where f(ClCZ) represents trhe freguency of the pair Clcz'

70

4.2 SELECTION ALGORITHMS

" In this section we describe_the algorithms which
build up the daéa structure to store vafiable length frag-
ments and their frequencies. The algoritm CFQ will set up
the root nodes in .the forest T1 and store the frgquencies

of distinct characters.v The algorithm PAIR builds up the
second - level of tree structure to store distinct bigrams and
their frequencies in T2. Then the algorithm VLF builds the

forest of trees by selectlng and storing varlable length

fragments in T2.

Since the hésh function H is 1-1 mapping, a character
Ci is nog expl;cifly stored in the root node T1, but we
store only the frequency f(Ci) in Tl. For example in
Diagram 4.1 we show the storage for the four variable length
fragments ONLY, ONIOU ONTA and CORAN during a certain pass of
the algorlthm VLF. During a subsequent pass, if the fragment
ORANG is selected, then a new-node will ge inserted, as shown

in Diagram 4.2. -

P
!

i

. » . ,) . L4
I
. ~
~ .
~ T°v WHIOVYIQ
N : . \\ N ‘
| ,
; g)
_ ' +if{noIno} ¥ [(no1xo)z |n
b . -
H .
_ 0y
: ‘ us £
| T T 0 ’
’ _zuao; (RvEp) 7 | {VINO) X |{vINo)}7 |v {o1no)x |(o1n0) 7 |o (AIN0) ¥ Xﬂzo.w X
1
| L .
i . T
1 il (veoy x [tvaor 3 v oy ltanod 3 fau b {Klruoyy liznoys |1 {TNO) X Eﬁz 1
li
| : X
__, . .
B . .
g . . - ! , o)X luo)3 |u K < ¢ - £ ¥ RO}y | (uo)F |u
; . ”) ,
! . . - - . - . . .
(s e e L, e e ., _ (0}3
¢
. - _..

115

%)z

72

e LIRS

o

(s

¢y WIDYIqg
1o ¢ gl
w -
{noIno)x |(noINo)3 |n
(DN |{onvio)d |9 . . .
0 gl
w
(HO) M (VO 3 | N Hileznol 2 HvanO) 3 fv I loIro) ¥ [(o1no} 2 |o Al (ATHO) H [(KRi0) 7
) >
FIITLTMA
Hl:néeu.ésu ¥ (INOYY [(THD) 2 |3 p({1ro)d {(IRO)F |2 {"I80) ¥ {{IKO) F
o) l(woyy |u & — € + (KO)Y | (HO) 3
e)) - " " " - - . - * . - . - - - - . - . aOv H
-

w3

o

- .73

Let us assume the existance of a function NEXTFHAR,_
which when called repeatedly gives the next character from -

the data base. Byrinvoking this function we compute the

' frequencies of distinct characters, say,'Cl,.L;Cm in the data

base aﬁd store the frequencies as in the following algorithm.,

-

 ALGORITHM CFQ

Il

Le£~there be N rooﬁs in the forest, whose each root
" (say the itD) will have two fields £(i) and DOWN(i) (see
&iégram 4.1). The field £(i) will contain the frequency of
a chafacter Cs and will be used in algoritﬁ@ VLF; the field

. i
DOWN (i). is a polnter to a node of another table T2 (see

algorithm PAIR).

-l

Let H be a Hash function, defined as follows:
H(Cj) =i C :
where

=L
H{Ci)T'H(Cj)_ !

for all distinct characters Ci' Cj in the data base. .

STEP 1, (Initialize) Set fields f and DOWN to zero in all |

roots'of the forest.

STEP 2. (Store freguencies of each characger'in Tl:)
s For each C; , : - lgism
" E f(i) « frequency of Ci'

74

\ ‘Let us assume the existance of a function BIGRAM,

}

E whlch when called repeatedly gives the next two characters

from the data base By calling this function, we compute the

frequenc1es of distinct character palril say cl,az...lau.

.

‘ e
w17 a.;l = Ci+1ci+2)' We store those character .

pairs aiqfor which f(a;) > t, by using the following algorithm.

(eg. oy f C. C

ALGORITHM PAIR
' [

Let H be’ the number of nodes at level two in the
forest, where each node will have fields CH, f, K, LLINK and

RLINK as shown in Diagram 4.1. The significance of these

_fields is as explained below: ’

The field CH stores one character (say Cl);the f
fleldﬁstores thc frequency of a’ fragment ac, as cohputed by
the formula (3.1) ;. where o is unlquely determined from the

root to father node of this node; LLINK is a p01nter to the

;nodc which stores a character Cz_such that aClC2 is a fragm-

ent selected by the algorithm; the RLINK pointslro a node
which containsgg character which is an alternate successor -
of o« and the K field of this node stores the actual freq;éhcy'

of occurrence of_aci.

STEP 1. - Set ficlds £, K, LLINK, RLINK.to #®o and CH to

. blank in all nodes of table T2. Setvi < 0 and AV + 0,

KN R . <,

\»-d"&l ‘, . \|

STEP 3.

75

i« i+ 1, let ag.=cCC

r H(Cr)

If DOWN(r) # 0; go to 3.

-

Otherwise

Set AV + AV + 1 .

DOWN (xr} + AV |

CH(AV) <« Cs

f(AV) <« frequency of pair q;

and go to step 2.

X + DOWN (r)
If RLINK(X) # 0 set

Xp+ RLINK (X) and repeat this step.

Otherwise ' ‘ :
AV. « AV + 9
- RLINK (X) « AV
CH (AVW) . + ‘Cs _
?£1%V) + frgquency.of a.

-

and go to step 2.

76

ALGORITHM VLF @

Let

This algorithm selects the longest fragments with

Afrequencies »>t, a given threshold, from a given data base.

leczp --------------- N

be the data base. ZLet P(X;Y¥) denote the probability that -

character X is immediately followed by Y.

Step 1

Step 2

Step_3

(Initialize pointets) Let I and K be pointers to the

first character of the data base. Lét E be the

pointer to the last character of the data base.

(Frqgment of length > 1)
p‘a—nown(ﬂ(cln', If p=0 set T«I~+1

and repeat this step; otherwise Kel

-

{End of data base?)

K«<K+1 ; If K>E, go to step 8.

' Step 4

77

G

(Find the longest fragment)

l

If CH(p):&CK then (fiﬁd match ameong the alternatives)
If RLINK(p) = 0 then .
Set: L+K+«K -1 and go to step 5.
(We have found the longest fragment)} Otherwise
Set: P+ RLINK(p) and repeat step 4.
Otherwise (search next level) |
If LLINK(p)= 0 then
Set: Lk;K and go to.gtep 5.
{We have found the longest fragment, otherwise).

Set: P= RLINK(p) and go to step 3.

step 5

Step 6

(Find the frequency) Let

pe the longest fragment of the data base just

found. Use the algorithm FINDF to find the

frequency (FREQ) of the fragment

-~ ¥
(The fragment length 1s already maximum) If

FREQ > t go to step 7

Otherwise let
K« I+«1+1 and go to step 2.

78

79

Step 7
(Find the longest possible fragment of data base)
K«~K~+1, if K> E go to step B.
3 * -
Ll « K, if (FREQ P(CLl,CL))>t
Then
*
FREQ « FREQ P(CLl;CL)
L+«Ll
. acac, o
Use the algorithm STORE to store
and its fregquency, and répeat this step.
Otherwise
(Remove the fragment Use the algorithm INCK to
from the data base) increase K{a).
K« I+L1 and go to
step 2.
Step B

(Completion of one pass)
The entire data base has been reduced to a null set
removal of successive fragments. The values of f(a)

are predictions of the freguencies K(a). Reset for

all fragments a.in D:

-Step 8

fa)

it

K{a) if K(a} > t

0 if K{a) s t

Il
o

K{a)

Repeaﬁ step 1 through step 9 until no more

fragments can be selected.

80

Q.

81

ALGORITHM STORE

This algorithm stores a given fragment a,f (&) and k(a)

in the dictionary D. Let

i-i+1 m

Step 1

(Initialize pointers) I and M are the pointers to the

beginning and the end of the fragment . i.e.,
I «i P M« m
(K points to the current character) \\

X « DOWN(H(CI)) P K« I 4+ 1

Steé 2
(Is the Fragment found in the dictionary?) If K > M,
stop ; otherwise go to step 3..

Step 3

(Find a match amonyg the alternatives) If CH{X) # -CK

and RLINK(X} # 0, set X « RLINK(X) and repeat step 3.

-

&

Step 4

{(Match is not found in the alternates; hence store
Ck as one of the alternates) If CH(X);ﬁqk and
BLINK(X)tzo, set

AV« AV + 1 (Pointer to next free location)

RLINK (X) « AV

CH(AV)*‘Ck
X« AV

and go to step 6. Otherwise go to step 5.

Step 5
(Look at next level)

If CH(X) =C, and LLINK(X} #0

k
{ Then let X« LLINK(X), K<K +1 and go to step 2;

otherwise go to step 6. ~~

Step 6
(Stoye the rest of the string in D)
For Vv es of J : K+1, K+2,...,M
DO |
AV« AV +1, LLINK(X) & AV,
 CH (AV) « c:j s x—e AV

Then set: f (AV) « FREQ
kK{AV) «Q

and terminate

“s

K

83
ALGORITHM INCK :

This algorithm increases the counter K(a) by 1 of a

fragment a stored in the dictionary D.

Let
A

Cjcj"—l..-...'..-'-.-.-c

Step 1
(Initialize pointers) J and I are the pointers
to the beginning and end of the fragment a., i.e.,
Jej i L « %
(K points to the current character) '
XG*DOWNHHCJ}) ;7 Ke g+1°
Step 2

(Fragment of length 1) 1f K>L,
K(H(CJ)) *‘K(H(CJ))+-1 and stop;

otherwise go to step 3. p

Step 3

(Find a match among the alternates)

If CH(X) # CK' set X + RLINK(X) and repeat

this step. (Always a match will be found.)

Step 4

(Next character) K+« K+ 1

if ¥ > L (end of fragment a)

and stop: otherwise (look at the next level)

x « LLINK(X) and go to step 37

then K(X) + K(X) + 1

~

85

ALGORITHM FINDF

This algorithm finds the frequency of a fragment o

gtored in the dictionary D.

Step 1

(Iﬁitialize pointers) I and L are pointers to

the beginning and the end of the fragment a.

i.e.,
‘ I +1i ; L+« §
{K points to tge cur;ent-chérac£er) &
’ X « DOWN(H(CI)) ; K« I+ 1

[.

Step 2

(Fragment of ieﬁgth l) If K > L, frag « f(H(CIS)

and stop ; otherwise go to step 3.

g

- A
Step 3

(Find match of CK'among the alternates)

If CH(X) # C,. -set X « RLINK(X) and repeat

this step. (Always a match will be found.)

]

"

Step 4

86

(Next character) K+ K+ 1

If K > L (end of fragment a) freqg + f(x) and stop;

otherwise (look at the next level) X +« LLINK (X} and

L 4

go to step 3.

-

" ’ . \ L.) "
. ‘_J. .) .

87

4.3 STORAGE REQUIREMENTS

-]

- - ‘ .

In this secticn we estimate the storage regired for
the dictionary and the coded data base. Let t be the given

threshold.

Case 1. The total dictionary space DIC is partitioned so !
that the j—th part, called DICj,_will store variable length

fragments of length exactly Jj. Let Dt(j) and D, denote the

number of fragments jn DICj and-DIC. If Tt(j) and T, denote

the number of fragmenté of length j and the total number of
AR,

fragments in the data base, then

H
i
el e

Tt(j) , where H(is the
]: .. -
maximum length ‘of the tree as in algorithm VFL. Thus the.

.

tota} Ee required to store the dictionary and the coded

-is given by (Ref. Ch 3, Sec. 3.4.2).

-) .H H .
S (th =&) MD_(M) + § t.T (j) + T_ [log,HI
v Twn b e TR R
where %

£y = [log,D, (3]

and llogzﬁl-represents the number of°bits required to give

a unique code to. H dictionaries.

4

88

-

Case 2. In this éase, we store all variéble length fragments
in one dictionary. A speéial charécfer {(say a blank) is used
to ma}k the end of each fragment in the dictionary DIC. .

Thus the number of bits reguired to store the dictionary

and’ the coded data base is:

' - H ’
Sv(_t) = c. Mgl(mﬂ)nt(m + Tt[logth'l

iy -

TABLE 4.1 SAMPLE 1

89

LENGTH NO. OF WORDS NO. OF DIFF. WORDS
1 347 20
2 2548 164
3 2403 503
4 1809 510
5 2203 748
6 1953 ; 801
7 1507 742
. 8 1561 1029

9 936 562
10 893 500
11 737 279
12 278 199
13 245 113
14 79 54
15 140 48
16 31 31
17 18 17
18 52 50
19 25 24
‘20 20 15
21 11 11
22 3 3
23 ’ .3 3
24 3 ' 2
25 1 1
27 1 1

Total number of words = 17,807
Total number of different words = 6,330

- 80

TABLE 4.2 SAMPLE 2

R

LENGTH NO. OF WORDS NO. OF DiFF. WORDS
1 347 . 18
2 2168 172
3 2231 491
4 1817 - 567
5 2066 ‘ 684
6 1661 - 729
7 1352 725
8 1593 1031
9 847 . ' 527

10 773 , 451 .
11 663 252
12 218 _ 153
13 213 , 88
14 69 . 54
15 120 30
16 19 17
17 8 - 7
18 37 - 33
19 24 24
20 10 9
21 4 4
22 3. 3
23 1 . 1
24 3 3
25 1 1
27 1 1

Total number of words = 16,249
. “Total number of different words = 6,075

VARTABLE. LENGTH FRAGMENTS

91

TABLE 4.3 SAMPLE 1, t = 30

LENGTH NUMBER OF FRAGMENTS | DIFFERENT FRAGMENTS
1 10,111 47
2 25,203 444
3 11,819 440
4 1,145 31
5 607 8
6 60 _ 7
TABLE 4.4 SAMPLE 1, t = 50
LENGTH - NUMBER OF FRAGMENTS DIFFERENT FRAGMENTS
1 12,837 47
2 28,466 361
3 9,152 243
4 1,081 13
5 408 3
6 60 1

lkﬁ’?M

"

¥

92

VARIABLE LENGTH FRAGMENTS

TABLE 4.5 SAMPLE 2, t = 30

45

LENGTH . NUMBER Of FRAGMENTS DIFFERENT FRAGMENTS
1 9651 47
2. 22,695 . 426
3 10,500 384
4 . 987 24
5 - 649 9
6 45 1
TABLE 4.6 SAMPLE 2, t = 50
LENGTH NUMBER OE.FRAGMENTS DIFFERENT FRAGMENTS
1 13,247 a7
2 25,736 . 328
3 7,329 . 198
4 1,092 15
5 532 6
6

1

93

-

SHIMYNOILOIU LNJJUdLId DNISN LNIWIFINOTE dOV4S

£00°82S - Sy9‘61S £5¢'8 566 186° LY . 0§ :
196°0TS | . ELL LGV .+ 88T €T 168 Les'yy -7 0€g
.0T0LLS " p8GfL9S 9zv ‘6 : 899 v00‘ZS 0% \11//4
G6L'z9s | . SvZ'8YS 055°PT . TLE SP6‘8Y o€
FYAS TY.LOL YIVa (QI00D DIYNOTLAIA . INTIAIITA TYI0TL . (3
SILIFE NI JDVdS - SINIHOVII aTOHSIIHL
, -
Ly FTIAVL : . _
|
e , |

y

-

94

.

AUVNOILOIA INO ONISN INIFRIVINOEE FOVWdS
7

gL Ted 0T8‘6LY 8Z6°'TT) 565 186°LY 0§

9GT'E9Y oLe'syv 988°LT . 168 - LZS' VY 0¢

- Z9V'EES 0v0°02Zs Zev'ET 899 y00°2S . 0%

p0Z’L0S -0Sh‘68F pGeLiLT 9L6 - . Sv6‘8Y 0¢

qAOVdS TYIOL yI¥ad aIaod " RYYNOILOIG INTEIIIICA T IYLOL ()
SIL1d NI do¥dS SILNAWOWVI A : JTOHSIMHL

g dI1dYL

S 195
. L DN .
4.4 CONCLUSIONS - o T T

we.have used tso-difterent-samples of;MARCftapes-tor
our- experlments. ‘The'algorithms of section’4.2 were applied)
to each sample of the data base 1n ordqr to"elect varrable o
_length fragments, and ‘the storage spaCe was determined wheh'l
all the fragments of dlfferent lengths are kept 1n one

dlctlonary The space requ1rements when fragments of

£

fjdlfferent lengths are acconoaated 1n different dlctlonarles'

have-been determlned. THe results - may be sumarized ‘as follows:

. The first sample consists of l%,BO?‘words of which
6,430 are different (Refer Table 4.1). If these words are
coded by assigning codes to each différentncharacter, the
space required'for the dictionary and the coded data is
515,530 bits. The second samplc con51sts of 16, 249 words of
which 6,075 are dlfferent In this case the soace requlred
Jto store the dlctlonary and’ the coded data base when 51ngle
characters are used as codable elements lS 661,800 bltS

(Refer Table‘d.Z).. o,

-

For the'threshoid'value 30,and‘50'the total'number~-
.of fragments and«the'total nuober of different fragments are
shown in Tables 4.3 to 4.6. The different fragments shown“
in these tables ‘form a 'cooplete' dictionary. Table 4.7
-shows the storage required to store the podéd-@ata base and

the dictionaries to store‘fragments of variable sizes.

- (Refer Case 1). from‘this we observe that for‘sample 1 and
o 7;.t - 30, the total storage is 562,795 (in bits) and £or
t = 50, the storage regulred is 577 010 bltS. Similarly for"

.sample 2, the storage required for t =.30 is 510,961 bits
R and for t'= 5qflls 530,003 bits..

Table 4. é gives the statistics\on the stbraoe req-
ulrement when fragments of varlable length.are stored in.a -

e
. . b 3

p 51ngle dlctlonary (Refer Case 2) . We observe that for"i.
semple 1 and £t = 30 the total storago is 507 204 bltS ‘and -+
for £ =-50.the storage'requlred 1s 533h462'b1ts. SlmllarLy
‘for sample 2 the Lotal storage regulred for t = 30'rs 453,156‘S

‘bits and for t =50 is 491,738 bits. It is clear £rom Tables

4 7 and 4. 8 thatiﬁor 2 given'threShola‘Gélde?aod for,a giveh:

T

yo
W - mes

el sample, the storage of uarlable length fragments in a 51ngle

. .
Y S ~ . A

-’;.ﬁﬁ;ﬁ‘: . dlCLlOnary requlres 1ess storage than the stprage of varlab]e :
- . " ""' : -:l ' f ‘ .) ";‘l
’ Iength fragmegts 1n driforent dlctlonarles . , _
e N -', N . . E - Y : ,l 2
. T ‘:;, 'oti_ The amount‘of savxhg in storage achleved by u51ng one
. .- --,-_.‘ . i . - s . _.u S “ . .
R dlctlonary as opposed to dlfferent dlctlonarles.has bcen
AL - O RS .
. v [y . v L
‘ compﬁted for both the samples and the resuLﬂs may be 3’”g.f&| "
. 3 : o . “ : ‘. ’ '.‘-,..:f"- S T T - A
summarlzed as folloWs RS "\u?': T ';;fo‘ o R
. - ’ 4 1\'__,.;," - "“ -_.- .- [: .,';. . ‘.'-:-xs oL ..,'.i. . L .
1) Iﬂ d%fferént dlgtlonarles aro usod fot fpagments of ”LﬂJ

s
varlable lengths, there is 21 35‘1 of savlng for samplé 1 w1th

. ‘- R ‘:---1

t = 30, whlle a savmng o{ l9 36ﬁ As. achaeved for«t = 50 _
- ‘_‘....- Coe

However for sample 2,,w1th t 30 thcre 15 22 8% of saV1ngs v

- and a sawving of 20.22% is avhleveﬁ wmth t =*50. f\.

L] .'I— L4

L.

-
A

'J'... - ’ ’ ’ 97

If all fragfents are stored in one dlctlonary, the

2}

'sav1ngs achleVed for sample 1 and t = 30 1s°29.11%, while

.a‘sav1ng of 25.45% is achieved when t = 50. Similarly for

samble 2 and t = 30 there is a sav1ng of 30% in storage,

whlle for t = 50 the sav1ng is 25.7s%. ' .
T -

We remark that the amount of storage gained for
sample l by the use of a single dlctlonary, a?;bpposed to

‘use Qf different dlctlonarles for fragments of different

. lengths, varies between 6.09% and 7.76%; while for sample 2,
8

4 \

the net perccntage galned is bewteen 5. 48 and 6.2. Thus the
space requlred to store tﬁa data base is less when fragments

are ~used as codable elements ‘than when single characters are

‘used as codable clements.

- o

98

CHAPTER 5

. CONCLUSIONS

CONCLUDING‘REMARKS

~.We have investigated compression technigues for a

data base using fragments .as codable elements. The

—_—

experimental data base consists of bibliographic 1nformat10n

obtained from a. section of MARC tapes issued by the Library
of Congress. Word fragments which are substrinés of wo:ds
és well as téxt fragments which are strings possibly
extending over word boundaries are considered as codeable

elements.

In chapter 3 the advantages of using fragments
instead of‘words as codable elements are discussed. I£ has
been chown that the word-dictionary size is.much larger than
the size of fragment dictionary. In the case of fixed
length frégmeﬁts, the dictionary size increases as N, the

ffagment length, increases. _For Rz3, the dictionary size is

-

much smaller than word' dictionary and can be kept in

" core. It is noticed that flxed length fragment dictionary

1ncreases as data base 1ncreases. But the rate of 1ncrease
J‘
is much smaller for N= 3 than the rate of 1ncrease for a
word dictionary. Hence the fragment dictionary can be kept
. ,

in core for fast coding and decoding.

98

The fixéd leﬁgth fragments selected from the data
base are assigned either fixed length or variable length
codes. It is g&pgrimentally found that when fragments as
opposed to characters are used as codable élements, the
amount of compression achieved is 36.18%‘when the fragment
length N=8 and '24,66% when N=3. Since .the dictionary size
for N=3 is much smaller than that for N=8, and hence can be
kept in core for fast decoding. It’is concluded that both

economy of storage (24.66% compression) and speed of

retrieval is achieved for N=3.

Use of particular variable length fragments selected -
to have_frequencies greater than a given threshold t has

been explained in chapter 41: Algorithms for selection of

- fragments having this property are also described. It is

found that the dictionary size is always smaller than the
word-dictionary size and hence can be kept in central meﬁory.
It is also found through experlm_nts that the total spacc
required to store dlctlonary and the coded data base changes
by a small amount as the threshold@ value t changes. The
choice of t which is optimal in terms of total storage
requirement is not obvious from our results. It is felt
that the choice of t must be left to the designer , sinc%

this may depend on other characteristics of the data and

system resources.

RECOMMENDATIONS

-

a . The use of fragments in informat

peen .the subject of study for several res

100

ion retrieval-has

b

earchers. , The

present study has treated only one of several aspects, i.e.

using fragments codable elements for data compression.

Despite the 1imited scope of the present
the study has led to several questions wh

further study.

investigation,

jch are worthy of

w

The only input to the algorithm which generates

variable length fragments is t, the threshold. It is founﬁ

{n our investigation that the total space

used for dictionary

and coded data base is a function of t. However it is not

obviows how the change in t affccts the total storage.

X
Thus we can ask, given S, the total storage space'available,

what is the choice of t so that the dictionary and the

coded data base requires at most s amount

of storage?

another question is, what choice of t will give rise to

maximum compression (i.e. minimal storage

and coded data?)

. How will the addition deletion ©

_base affect the distribution of fragments

+hat additions to a data base increase th

fragments, but at a much slower rate than

t, '

the 'nuniber of dif ferent words.

for dictionary

(,

-

—

f records in a data

? We have found

e numbér of different

the increase in

=TT S e

101

Is it possible to have hierarchical storage '
organization of.fragments which can be used for efficient
retrieval purposes? If so then fragménts are useful both

. -~ . a . ' !
for cormpression as well as for retrieval.

'\

s —
it d

1}

(2]

{3]

[4]

[51]

6]

(7]

(8]

(9]

o s o et e~ AT b s

102

REFERENCES

-

Barton, I.J., Creasey, S.E., Lynch, M.F., Shell, M.J.,
"an Information Theoretic Approach to Text Searching
in Direct Access Systems,"” Private Communication,

M.F. Lynch. - ’ '

'Bobth, A.D., "A 'Law'-of Occurrence for Words of

Low Frequency," Inf. and Contr. Vol. 10, (1967),

'pp. 386-393.

Bourne, C.P., Ford, J.E., "A Study of Methods for
Systematically Abbreviating Englush Words and
Names," JACM,. - Vvol. 8, (1961), pp. 538-552.

Bryne, J.G., Mullarney, A., "A Survey of Text

_Compression,” Paper presented IV Cranfield Intl.

Conf. on Mech. Inf. Storage, and Retrieval Systems,
(July 1973). ‘

Cardenas, A.F., "Evaluation and Selection of File
Organization. A Model and System," Comm. ACM,
Vol. 16, (1973), pp. 540-548.

Cardenas, A.F., "Analysis and Performance of Inverted
Data Base Structures," CACM, Vvol. 18, No. 5, (May 1975},
PP- 253-263.

Chapin, N., "A Comparison of File Organization
Technigues,"” Proc. 24th ACM National Conference,

. (1969), pp. 273-283.

Clare, A.C., Cook, E.M., Lynch, M.F., "The Identifica-
tion of Vvariable Length, Equifrequent Character
Strings in a Natural Language Data Base,” Corputer

J. Vol. 15, (1972), pp. 259-262.

Collmeyer, A.J., Schemer, J.E., "Analysis of Retrieval
Performance for Selected File Organization
Techniques," Proc, Fall Joint Computer Conf. {1970},
pp. 201-210. ’

{10}

(11]

[L2].

(13]

[14]

[15]

16)

(17}

(18]

[19]

102

Colombo, D.S., and Rush, J.E.. "Use of Word Fragments
in Computer-Based Retrieval Systems," J. Chem. Doc.,
Vvol.'9, No. 1, (Feb. 1969), pp. 47-50.

Dodd, G.G., "Elements of Data Management,"
Computing Survey.’ (June 1969), pp. 117-133.

-

. \' .

pDolby, J.L., "An Algorithm for variable Length
Proper Name Compression,’ Jr. Library Automation,
vol. 3, (1970), pp- 257-275.

L]

Gottlieb, D., Hagerth, S.A., Lehot, P.G.H., and
Rabinowitz, H.S., "A Classification of Compression
Methods and Their Usefulness for a Large Data
Processing Center,” Nat. Comp. Conf., (1875},

pp. 453-458.

Heaps, H.S., "Storage Analysis of a Compression
Coding for Document Data Bases," INFOR, Vol. 10,
(1972), pp. 47-61. AN

Heaps, H.S., and Thiel, L.H.., "Optimization Procedures
for Economic Information Retricval," Inform.
Stor. Retr. Vol. 6, (1970), pp. 137-153.

Huffman, D.A., "A Method for Construction of
Minimum Redundancy codes," Proc. IRE, Vol. 40,
(1952), pp. 1098-1101.

Information Systems Office, Library of Condress

MARC Manuals, used by the Library of Condrcss
Tnformation Science and Automatic Division, American
Library Assoc., Chicago, (1970).

Lefkovitz, D., File Structure for On-Line Systcms.
Spartan Books, New York, (1969).

Lowe, T.C., "Direct Access Memory Retrieval Using
Truncated Record Names," Software Age, Vol. 1,
(Sept. 1967), pp. 28-33).

.- ' " 104

[20] Lowe, T.C., "The Influence of Data Base
Characteristics and Usage on Direct Access File
Organization," JACM, Vol. 15, No. 4, (1968),
pp. 535-548. :

[(21] Lowe, T.C., "pffectiveness of Retrieval Key. .
Abbreviation Schemes," J. ASIS, Vol. 22, {1971) ,
pp. 374-381.)

[221] Lynch, M.F., Petrie, J.H., and Snell, M.J., "Analysis
) of the Microstructure of Titles in the INSPEC Data-
Base,” Inform. Stor.- Retr., vol. 9, (1973},
pp. 331-337.

{23} Mandelbrot, B.M., An Informational Theory of the
Statistical Structure of Language, Proc. Symp. Appl.
Communication Theory, W. Jackson, Ed., Butterworth,
London, (1953).

[24] Nugent, W.R., "Compression Word Coding Technique
for Information Retrieval," J. Library Automation,
vol. 1, (1968), pp. 250-260.

[25) Rickman, J.T., Gordner, H.W., "On-Line Index Perm ’
Rredictions Using Bigran-Term Association," Proc.
ACM Nat. Conf., (1973}, pP- 262-268.

[26] Ruth, S.R., Villers, J.M., "Data Compreésion and-
Data Compaction,"” Tech. Rep. AD 723525, (1972).

[27) Ruth, S§.R., Kneutzer, P.J., "Data Compression of
arge Business Files," Datamation, Vol. 18,
(Sept. 1972), PP- 62-66.

[28] Salton, G.A., "Coﬁputer Evaluation of Indexing and
Text Processing, “J. ACM, vol. 15, (1968), pp. 8-36.

[29] Salton, G.A., Automat: Information Organization and
Retrieval. McGraw-ilill, New York, (1968).

. [30-]

[31)

[32]

(33]

[34]

(351

(36]

- [37)

[38]

(391

{40]

105

Schieber, W.D., Thomas, W.G., "An Algorithm for
Compaction of Alphanumeric Data, "J. Library
Automation, Vol. 4, (1971), pp. 198-206.

Schipma, P.B., "Term Fragment Analysis for Inversion
of Large Files," Paper presented at the ASsOC. of
Sci. Inf. Centre Meeting, Washington, D.C. (Feb. 1971).

schuegraf, E.J., "The Use of Equifrequeﬁt Fragments

Retrospective Retrieval Systems. Ph.D. Thesis,
Univ. of Alberta, Edmonton, Canada, (1974) .

Schuegraf, E.J., Heaps, H.S., “gelection of
Equifrequent Word Fragments for Information Retrieval,"
Inf. Stor. Retr., Vol. 9, (1973), pp- 697-711.

e

Schuegraf, E.J., and Heaps, H.S., "A Compression
Algorithms for Data Base Compression by Use of
Fragments as Language Elements," Inform. Stor. Retr.

Schwartz, E.S., and Kleiboemer,A.J.}'“A Language
Element for Compression Ccoding," Info. and Control,
vol. 10, (1967), pp. 315-333.

. $chwartz, E.S., "A Dictionary for Minimum Redundancy

coding," J. ACM, Vol. 10, (1963}, pp: 413-439.

Snyderman, M., Hunt, B., "The Myriad virtues of
Text Compaction,” Datamation, Vol. {Decc. 1970) ,
pp- 36-40. :

Thiel, L.H., .and Heaps,;H.S., "Program Design for
Retrospective Searches on Large Data Bases," Inf.
Stor. Retr., Vol. 8, (1972), pp. 1-20 .

Wagner, R.A., "Common Phrases and Minimum Space Téxt,“
Comm. ACM, Vol. 16, No. 3, (March 1973), pPP- 148-152.

White, H.E., "printed English Compression by
Dictionary Encoding," Proc. IEEE, vol. 55, No. 3,
(March 1967), PP- 390-396. : -

1

™\

a LY
106
[41] 2IPF, G.K., Human Behaviour and Principle of Least v
Effort; Addison-Wesley, Cambridge, Massachusetts, ; :
(1%49) . o ~
| 'S
; -
" ey
[

