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ABSTRACT

Three Dimensional Composite Finite Element
for Stress Analysis of Anisotropic Laminate Structures

Qian Huang, Ph.D.
Concordia University, 1989

This thesis covers three aspects. Tnese are the
formuiation of the "combined energy" and its wvariational
principle, development of a technique to remove spurious
kinematic modes in hybrid finite elements and formulation
of a three dimensional composite finite element that can be

used to calculate stresses in laminated structures.

In the formulation of the "combined energy", the
conjunction condition is utilized. The conjunction
condition specifies that at the interlaminar surfaces in
composite structures, the in-plane strains, ey, Eyr Yxyr
and the transverse stresses, 03, Tyxz, Tyzs, Mmust be
continuous, while the transverse strains, €3, yYxzr Yyzr and
in-plane stresses, oy, Oy s Txyr are allowed to be
discontinuous. The in-plane strains and transverse
stresses constitute the basic variables of the combined
energy which is different from the traditional potential
energy or complementary energy. A variational principle

was developed and tested based on this combined energy.

- iii -



Finite elements involving assumea stress fields have
to be free from the spurious kinematic modes. And to
achieve this, the concept of modal analysis is introduced -
for deformable bodies with finite degrees of deformation
freedom. A-two dimensional 4-node hybrid element and a
three dimensional 8-node hybrid element are proposed. In
these elements, the stress modes are orthogonal and
uncoupled. The zero energy kinetic modes are definitely

removed from these hybrid finite elements.

A three dimensional 8-node composite finite element is
successfully formulated based on the variational principle
of combined energy with incorporation of the modal analysis

technique to determine stress modes.

The three dimensional B8-node composite finite element
was used to solve problems of a three dimensional isotropic
body subjected to hydrostatic pressure, uniaxial extension,
pure shear, pure bending, pure torsion, as well as simply
supported beam and cantilever beam problems. Comparison
with displacement finite element and hybrid finite element
shows that for cases where stresses are constant, perfect
agreement with elasticity solution was obtained by the
the three methods. For bending cases, the composite finite
element method shows closer agreement with the hybrid

“inite element method than the displacement finite element



method.

By means of the composite finite element, stresses in
a symmetric angle-ply laminate subjected to uniaxial
extension are calculated. The result is quite different
from the so-called classical laminate theory. 1In classical
laminate theory it is assumed that strains remain the same
throughout the thickness. Also the in-plane
shear coupling strains are zero for symmetric
angle-ply laminates subjected to a wuniaxial tension,
Numerical results show that the shear coupling strain
caused by anisotropy appears in most parts of the lamina,
whereas only within 1/5 ply-thickness near the interlaminar
surfaces the shear deformation vanishes abruptly. This
creates a strong concentration of the in-plane stresses
near the interlayer surfaces. The average tensile
stiffness of the 1laminate calculated with the composite
finite element method is higher than that of the free
extension case, but much lower than the results obtained

from classical laminate theory.
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Chapter 1. Introduction

Composite materials are different from the
conventional materials because they possess anisotropic
relations between stress and strain and, in practice, they
appear as laminations in structures. The anisotropy causes
coupling strains. On the other hand lamination may restrict

the coupling strains and result in coupling stresses.

In the 1950s5-1970s, the 3-D anisotropic elasticity
theory was developed [1]. It is applicable to each lamina
of the composite, and does not cause great difficulty for
computation. However, lamination introduces discontinuities
in composithe structures. Thus, for te 3D elasticity,
the interlayer surfaces constitute boundary conditions if a
conventional approach is followed. One of the objectives
of this thesis is to provide a differential formulation and
a corresponding variational ©principle based on 3-D
anisotropic elasticity that considers discontinuities at
the interfaces.

In the 1970s, the so-called classical lamination
theory was presented 1in graduate text books across North
America and Europe [25,26,27] and has been widely wused to
estimate the stress and strain in the central region (far
from traction boundaries and free edges) of 1laminated
composite plates. This practical theory is based on an
assumption that the strains are uniform across the
thickness of the 1laminate for wuniaxial extension and

linear for pure bending. However, numerical results



o

presented in this thesis show that in an angle-ply laminate
subjected to uni-axial tension the shear coupling strain
vanishes only within a wvery thin layer close to the
interface. The influence of this constraint only spreads
over a thickress about 1/5 of the ply-thickness. The shear
coupling strain appears in most regions of the lamina with
a value almost the same as under free extension without
bonding between layers. This causes a large error in
results obtained by classical theory. For a symmetric
angle-ply laminate with ply angle at +42°, the maximum
axial stress (along loading direction) calculated by the
finite element method is 86% larger than the one calculated
by laminate theory. For ply angle at 1579, the maximum
in-plane shear coupling stress calculated by finite element
is 255% larger than the one calculated by laminate theory.
The numerical results also show the existence of a second
coupling stress, the in-plane transverse stress, due to the
non-uniform Poisson's effects, whose maximum value is up to
1.26 times the average applied tensile stress. This is not
accounted for in classical 1laminate theory. From the
numerical results, it can be seen that there 1is a strong
concentration for in-plane stresses near bonding interface.
On one hand, the average tensile stress of symmetric
laminates wunder uni-axial extension obtained numerically
is close to that 1in the laminate without bonding
between layers. On the other hand, the maximum axial

tensile stress near bonding interfaces obtained numerically



is up to 3.3 times than average applied stress when 8=30°.

Obviously, it is necessary to improve the practical theory

for engineering design.

Since the 1960s, determination of the interlaminar
stresses in composite materials, especially near the
traction-free edges, has been a topic attracting a lot of
attention. Most of these works involve 1local stresses.
Some authors discovered that the effects of shear
deformation in the interlaminar regions are of importance
with respect to strength and other properties of the
composites. The failure of composites has often been
attributed to delamination due to interlaminar stresses
near the traction free edge regions. These previous
studies can be classified as follows:

a) Finite Difference Method: Pipes and Pagano (1970,

1972, 1974) [2,56,57], Altus et al (1980) (31,
(displacement formulation).

b) Finite Element Method: Displacement Formulation with

a high order plate element, Heppler et al (1980) (5],
Engblom et al (1985) [4], Pandya et al (1988) [74]. With a
3-D element, Yeh et al (1986) [6], Natarajan, Lucking and
Hoa (1984,1986) (7,8]), Chaudhuri et al (1987) [65]. Stress
Formulation, Rybicki (1971) [9]). Hybrid Formulation, Mau ,
Tong and Pian (1972) [54], Nishioka and Atluri (1980) [73],
Wang et al (1983,1984) (13,72], Khalil et al (1986) [10],

Spilker (1986) [12]), Sun and Liou (1987) [60,63], Mixed



formulation Moriya (1986) [50], Kwon and Akin (1987) [61],
Hvang and Sun (1988) [59]) (iterative procedure).

c) Perturbation Method: Hsu et al (1977) [14],

(displacement formulation). Boundary-layer Matching
Method, Tang and Levy (1976) [15], (stress formulation).
Boundary Layer Theory, Ye and Yang (1988) ([79]. Matched
Asymptotic Expansion Method, Bar-Yoseph and Pian et al
(1981, 1983, 1986) [16,17,70], (stress formulation).

d) Variational Method: Rayleigh-Ritz Method, Pagano

(1978) [18], (mixed formulation), Garlerkin Method, Wang
and Dickson (1978) [19]), (mixed formulation), Mixed
Variational Principle, Vong (1986) [71], Chatterjee and
Ramnath (1988) [58], Force Balance Method, Kassapoglou and
Lagace (1987) 1[82,83] (complementary energy principle),
Energy Method, Zhang (1988) [75].

e) Transfer Matrix Method, Oery et al (1984) [20].

f) Experimental Method, Whitney et al (1972) [21],

Berhaus et al (1975) [22], Herakovich et al (1985) [86].

For theoretical and numerical methods, a simpler way
to classify the above works is as follows: 'Displacement
Formulation', 'Stress Formulation', 'Mixed Formulation' and
'Hybrid Formulation’, In displacement formulation, the
displacement field is assumed. 1In stress formulation, the
stress field is assumed. 'Mixed formulation' means that
both stress and displacement fields are assumed. ‘'Hybrid

formulation' means that at the boundary surface the assumed



field is different from that in the interior.

Some  authors gave attention to the conjunction
cenditions at the interlayer surfaces, such as Spilker
(1980) [23), Bar-Yoseph and Pian (1981) [16], who emphasize
the continuity of stress2s 0z, Txzs Tyz and prefer the
stress formulations. Reissner's work, (1984) [48], based on
potenti .l energy principle, presents a mixed variational
theorem, which requires a semi-potential energy density
through partial Legendre transformation. Later he (1986)
[49]) based his work on a dgeneralized potential energy
principle, which requires a semi-complementary energy
density through partial Legendre transformation. Reissner
gave some examples, however he did not give the general
form of the semi energy densities. Moriya (1986) [50]
developed an 8-node mixed plate finite element based on the
modified Hu-Washizu principle. Both Reissner and Moriya
took in-plane strains, ex, eysr TYxy: and transverse
stresses, 0z, Txzs Tyzs, as independent quantities for
analysis of laminated structures. The author (1987) [55]
presented a new type of elastic energy, in the quadratic
form, in terms of in-plane strains, ey, €y, vYxyr and
transverse stresses 0z, Txzr Tyz. On this basis, the
author developed a laminate functional and established a

corresponding variational principle.

Considering the shear deformation, some authors



modified the laminated plate theory to include various
high-order terms. Those include Pagano (1969) [93],
Whitney (1972) [62], Lo , Christensen and Wu (1977) [91],
Reddy (1984) [92], Whitcomb et al (983,1985) [84,90], .
Rehfield et al (1985) [89], Valisetty et al (1985) [88],
Ueng and Zhang (1985) [B7], Conti et al (1985) [85],
Murakami (1986) [94], Krishna (1987) [77,80], Toledano ,
Murakami et al (1986,1987) [66 — 68] whose works were based

upon Reissner's mixed va. fational theorem [48].

Suppression of the free-edge delamination also
received attention in works by Kim et al (1985) [95]), Hong
(1987) [81], Garg (1988) [78], Moriya et al (1988) [76].
Moriya controlled the order of the singularity by varing

geometrical shape of the free edge.

In summary, stress analysis in laminated composites

encounters two difficulties.

The first difficulty is the discontinuity in laminated
structures., At the interlayer surfaces, the in-plane
strains and the tra.-.verse stresses must be continuous,
while the other strains and stresses may be described by a
finite discontinuity which is caused by the abrupt change
of material property or orientation. For the stratified
discontinuous medium neither stress nor strain tensors are

continuous. Some components of stress or strain are



continuous, but others are not. Therefore the conventional
displacement formulation and stress formulation are not
capable of handling the stratified discontinuous medium as
a whole. With traditional approaches, the interlaminar
surfaces must be treated as boundaries with six continuity
conditions between every two adjacent layers (three
stresses and three strains). The other three stresses and
three strains must be permitted a finite discontinuity. If
the six globally continuous components of stress and strain
are taken as basic variables, then the six continuity
conditions  at the inter faces should be satisfied
automatically. Also if restrictions on other ~omponents of
stress and strain are imposed properly, the possible
discontinuities will occur naturally. Reissner's mixed
variational theorems (1984,1986) [48,49], Moriya's nixed
plate finite element (1986) [50] along with the author's
third type of elastic energy and its variational principle
(1987) [55] are all formulated based on the globally

continuous components of stress and strain.

If the transverse stresses are taken as independent

unknown variables, a second difficulty arises. This
difficulty is the spurious kinematic modes. Finite
elements involwving an assumed stress field are

cursed with zero—energy mode. These have plagued the hybrid
stress method since the beginning. Some experienced authors

added higher order stress field terms to suppress the zero



energy deformation modes. However, the additional terms

may cause stiffening of the elements. A few authors give
necessary or sufficient conditions to avoid zero energy
modes for hybrid element (see Chapter 3). Spilker (1982)
[34] suggested using a complete set of each order of the
polynomials for the stress field., Rubinstein , Punch and
Atluri (1983, 1984) [35,36], using symmetric group theory,
gave some choices for a least-order stress field. Using the
polynomial terms they constructed the stress modes.
However, most of these choices of stress modes result in
wveakened stiffness matrices for some high order stress
modes. Pian et al (1983) [51] provided a systematic
procedure to determine the irreducible polynomial terms

of the stress field.

To assume a partial stress field for the analysis of
laminated structures, it is necessary to reconstruct those
irreducible polynomial terms into natural stress modcs.
This thesis introduces a modal analysis concept for
de formable body with finite degrees of freedom and tries to
find out the natural stress modes for the complete and
partial stress field in 3-D, 8-node hybrid and composite
finite elements respectively. Then the 3-D, 8-node composite
finite element 1is formulated hereby for analysis of
composite laminates, whose stif fness matrix is formed by
combining a semi-displacement stiffness matrix in terms of

in-plane strains and a semi-hybrid stiffness matrix in



terms of transverse stress., Moriya (1986) [50}, based on a

modified Hu-Washizu principle, formulated an 8-node plate
element , in which the stiffness matrix also consists of two
parts. It can be shown that these two parts are equivalent
to the two semi-stiffness matrices presented in this

t hesis.

Chapter 2 of this thesis discusses the continuity and
discontinuity in laminated structures, It introduces a
concept of combined energy based on particuiar stresses
mixed with specific otrains. It also presents a
corresponding variational principle for the stratified

discont inuous medium as a whole.

Chapter 3 introduces a concept of modal analysis for a
deformable body with finite degrees of freedom. It also
presents the natural stress modes for 2-D, 4-node and 3-D,

B—node hybrid finite elements.

In Chapter 4 a 3-D, 8-node composite finite element
for laminated composites is developed. Its formulation is
based on the variational principle of combined energy with
incorpor:tion of modal analysis technigque to determine

the stress modes.

Chapter S shows a numerical example. A symmetric

angle-ply laminate subjected to a uniaxial extensional



loading is analysed using the composite finite element
method. The numerical results are in agreement with the
results obtained by displacement FEM and hybrid FEM, but
are quite different from results obtained by the classical

laminate theory. The results are discussed in detail,

_lo_



Chapter 2. Variational Principle of Combined Energy

The conventional approaches for stress analysis
of composite 1laminates have encountered discontinuity
problems. In this Chapter, the cl continuity of
displacements in the in-plane directions and C° continuity
of displacement along thickness direction are discussed.
Also , the global continuity of transverse stresses and
local continuity of in-plane stresses are examined.
Then, the formulations of stress analysis in both
differential equation form and variational functional

form are presented.

2.1 Continuity in laminated structures

In the composite laminates there are discontinuities
due to variation in material property or the
orientation of fibers. On the other hand, for
perfectly bonded laminates, the displacements are
continuous and <so are the reaction forces at interlaminar

surfaces.

The lamina plane is denoted by cartesian coordinates

X, ¥ , and in the thru thickness direction by z.



Within each lamina, all components of displacement,
strain and stress are continuous.

At interlaminar surfaces in perfect bonding, the
displacements are continuous. Their in-plane derivatives,
€xr Eyr Yxy are therefore continuous. The reaction
forces give rise to transverse stresses 0z, Txzs
Tyz and these are also continuous.

This means the in-plane strains and transverse
stresses are globally continuous, and other components of
strain and stress are at least locally continuous within

each layer. The partial stress or strain can be defined as

€g = { ExrEyrYxy )T, €L { €zrY¥x2zrYyz }Tr

Og = { Oz1TxzrTyz }Tr oL, { Oxr0yrTxy }T-

To consider the effects of discontinuities in
properties and orientations of anisotropic materials, the
in-plane sirains and transverse stresses are combined and

defined as global field vector q.

eg} T

q-= = {ExreerxyrUz:sz,Tyz} . (2.1.1)
9

and the in-plane stresses and transverse strains are

combined and defined as local field vector p.

a1,
P =J ] = {eroyrTxy'"ezr'szr'sz}T' (2.1.2)

|-eL
in which the negative sign is introduced to ensure the

symmetry of the combined constitutive relation. The global

field vector g and the local field vector p are related by,
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Pp = R q. (2.1.3)

where R is called the combined constitutive matrix.

If we denote

g = { oLl = {ox,oy,rxy,oz,rxz,tyz}T (2.1.4)
"gl
€
e = { g\ = {ex,ey,yxy,ez,yxz,yyz}T (2.1.5)
| e )
then,
(o1 2] (¢
o =Qe¢€ = 1']'_‘ 2 I g\ (2.1.6)
L 027 03 ) |enf
(57 s3]
e=Saga-= lT 2 | feord . (2.1.7)
[ 82 53 ) 109]

where ¢ is the stiffness matrix and S is the compliance

matrix of the lamina.

Using equation (2.1.6), of and €, can be expressed in terms

of og and €g then, the matrix R in eq. (2.1.3) is given by,

"

[ 01-0203710,T  u0371

R = . (2.1.8)
L @3710,T -0371
Similarly, using eq.(2.1.7), R can be alternately written as
(5,71 -5171s;y )
1 1 2
R = . (2.1.9)

L -Sszl—l SZTSI-182—S3 )

Because S and Q are symmetric matrices, it can be
shown that,

RT = R. (2.1.10)

At the interlaminar surface, the global field vector q

_13_



is the same for two layers, but the constitutive matrices
R are different (caused by variation in material or fiber
orientation). Generally, the 1local field vector p is

described by a finite discontinuity.

P(l) = R(l)q|interface

. (2.1.11)
p(1+l)

— i+ \
= rld l)qllnterface

where i refers to layer i.

This is a clear approach for satisfying the
continuity conditions automatically and for calculating the
discontinuity naturally. The basic equations of 3-D

laminate theory are developed in next section.

2.2 Basic Equations

The following six globally continuous variables are
taken as the basic variables.

r = {u,v,w,cz,rxz,tyz}T (2.2.1)

Using these variables, the governing equations and

boundary conditions are shown as follows.
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1. The global field vector g is related to the basic

variables by,

q=Br (2.2.2)
where
-~ N
]
_— 0 0 0 0 O
ax
0
0 — 0 0 0 0
ay
B = 9 0O 0 0 O
- 9y 9x
0 1 0 O
0 0 0 0 1 o
. 0 0 0 0 0 1 P

2. The combined constitutive relation is :
P = R q . (2.2.3)
The matrix R can be denoted as,

R = [R1T,RoT,...,RgTIT

where R;j is the row vector of R. Thus, the component of
local vector can be expressed as

Pi = Rjq = RjiBr (2.2.4)
3. The equilibrium equations are :

0 d ] —_
9 R3B +a R-B +a +F, = 0 (2.2.5)
ax( 3Br) ay( 2Br) az('l'yz) y = sl

3 9 —_
’a_;('l'xz)+ ‘a_y(Tyz)"' 5;(02)+ Fz = 0.



4. The compatibility equations are :

RABr = ow
450 = 0z
ReBr = - oo - ¥ 2.2.6
58 = 9z ox (2.2.6)
ReBr = v aw
651 = 9z ax

The physical meaning of left hand terms in the three
equations are the locally continuous strains €z, Yxzr Yyz-
These three equations are similar to the strain -
displacement relation. However, the 1locally continuous
strains are functions of the globally continuous stresses
and strains, i.e. the global field vector q. The left
hand terms of above equations involve the transverse
stresses and first derivatives of displacements with
respect to Xx,y. They become the compatibility equations.
This is a rigorous form to relieve the requirement of cl
continuity of displacements along z-direction and to allow
a finite discontinuity for first derivatives of

displacements with respect to z at interlaminar surfaces.

5. The boundary conditions are :

at prescribed displacement boundaries,

u=1u
v = _V. (2.207)
W =W

and at prescribed force boundaries,
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Ty

RlBrnx+R3Brny+sznz
R3Brnyg+RyBrny+tysnz = Ty (2.2.8)

sznx+ryzny+oznz = Ty

6. Conjunction conditions at interlayer surfaces are
ali) = u(i+l),
vlil) = v(i*l),
wll) = y(it+l), (2.2.9)
og(1) = g (i+1),
xz (1) = ez (1*1),

i i+
Tyz(l) = Tyz(l 1),
2.3 Vvariational Principle of Combined Energy

In the previous section, it is mentioned that the
combined constitutive matrix R is symmetrical

(egq. 2.1.10). Thus,
(2.3.1)

If we define C as a quadratic form of the global

vector,
2C = (R1149)+R)292+R13q3+R1494+R1505+R1696)41
+(R21931+R22q2+. . .+tR2646) 42
teoo
+(Rg191tR292+. . . +Rg05 ) dp (2.3.2)
or
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Rjijqiqj. (2.3.3)

- ™

Then,

9C/3qj = Rj1q1+Rj2q2+...*Rjgde = Pi. (2.3.4)

Obviously, C is a new type of energy and it can be called
the combined energy (in the first presentation [55]}, tne
author called it the hybrid energy). Similarly the
potential energy can be expressed as a quadratic form of

strain,

—

A= 5 'X.QijEiSj. (2.3.5)
i, 3

Also the complementary energy can be expressed as a

quadratic form of stress,

1l
B = 5 . ijoioy. (2.3.6)

S
i,j

A variational principle could be established by means
of the weighted residual method corresponding to the basic

equations stated above.

If the basic equations stated in the previous section
are expressed in terms of the globally continuous basic

variables in the functional form, the conjunction

- 18 -



conditions at the interlaminar surfaces will be satisfied,
and the necessity of involving conjunction conditions is
therefore eliminated. This  means the continuity
conditions are satisfied as forced constraints in advance.
Also if the relation between the global vector and basic
variable in eq.(2.é.2), which contains a part of the
strain-displacement relation, is also chosen as forced
constraint in the functional form, the number of variables
in the functional can be minimized. The prescribed
displacement bLoundary conditions are easy to satisfy and
and they are handled during the numerical procedure 1in

in order to reduce the integral calculations,

Thus, the following relations will be satisfied as
forced constraints in advance.
a) Partial strain-displacement relation (2.2.2).
b) Prescribed displacement boundary conditions (2.2.7).
c) Continuity conditions at the interlayer surfaces

(2.2.9).

The following other relations are Euler -equations or
natural boundary conditions of the functional, which will
be satisfied by the stationary conditions of the functional
a posteriori,.

a) Equilibrium equations (2.2.5).

b) Combined constitutive relations (2.1.3).
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c) Compatibility conditions (2.2.6).

d) Prescribed force boundary conditions (2.2.8).

Introducing these relations into the weighted residual

integral and denoting it by I, we have,

aox aTxy Bsz _
= *
1 Efé{[(ax ¥ 3y oz TExIAMH

3Txz 9Tyz 803

dTyxgy 90y 3T
Y+ Y+ ye
o9x dy 9z

+Fy)B*+

+ + +—+F, )C*+
(3% dy 9z Fz)C
+( - D*+ 2 E*+ F*+
a€x OX) (aey oy) (any Txy)
+ ac +e,)G*+ 8c + H*+ o¢C + I*+
(302 €z) (3sz Yxz) (a_[yz sz)
. ow Th4 au w K+ w L*]dv+
(ez 82) (Yxz 3z 3}() (Yyz 3z ay) v
+[J [ (oxng+Txyny+Tyany—Ty)M*
Soi
+ ( Txynx+°yny+'ryznz—'_l‘.y)N*+
+(sznx+Tyzny+°znz‘Tz)Q*]d5=0: (2.3.7)

where A*,B*,...,L* are arbitrary functions within each
layer in the interior of an anisotropic elastic body Vj,
M* ,N*,Q* are arbitrary functions at the force

boundaries Sgzj, and . refers to the layer number.

Without 1loss of generality, these arbitrar: functions

can be defined as,
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A*= =§u, B*= -§v, C*= -8w,

Ju v
D*= 8(37),  E*= 5(5;).

du v
F*= 6(5; + 5;) (2.3.8)

G*= 80z, H*= S1xz, I*= 8Tyz,
J*==-80z, K¥==8145, L#¥=-8Ty,
in the Vj; of each layer,and
M*= §u, N*= §v, Q*= §w (2.3.9)

at the force boundaries.

For each layer, the normal direction of the upper
interface is,
(nx,ny,ng) = (0,0,1), (2.3.10)
and the normal of lower interface is,

(nx'ny,nz) = (010"—1)0 (2.3-11)

Integrating by parts and using boundary conditions

(2.2.7), we have,

90y 3 Txy ITyz
+ + Su dv
gféi (ax ay 9z )

au du ou
- -_ 4 —_— 4+ -_—
g{ Iéi (oxﬁax Txysay szsaz ) dv

+[] (ogng+igyny+txznz)éu ds

Soi
+] Txz8u ds ‘II Txz8u ds }
Sup S1ow

du ou du
- —_— —_— 4+ —_—
g {f%{ (0x83~ rxysay Txz85; ) dv}
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+[f (oxNx+TyxyNy+Txznz)8u ds, (2.3.12)
Soi

in which the 1y, are continuous at the interface and Syp,
Siow refer to the upper and 1lower interface. At the
interface the normals of the two adjacent layers have

opposite signs and the same magnitude.

Performing the same operations for the other

directions, the integral I can be written as

Ju du ou v
I=2I I((UXG"*'TxyG"*sz6 2+ (Txy 857
i

3y 3% +Oy6 +Tyz§ )
l

ow
"‘(szs""'*"l'yz&—"

oW _ — -
+ —_—) = + +
3 3 ozsaz) (FxSu+Fydv+Fgzéw)+

aC aC aC
+6€x(5‘s— "O'x)""&ﬁy('a?‘ -Oy)+6ny(5Y—"" "‘Txy)"’

X y Xy
aC aC
80z (Fo-tez) +8Txz | tYxz) +8Tyz (g 4+Yyz)"
z Xz Tyz
ow Ju dw v ow
—80z(ez- 57)~8Txzlvxz™ 55755 ) "8 Tyzlvye" 5;-;;)]dv-
- (Tx8u+Tydv+T,8w) ds=0. (2.3.13)

S¢

Simplifying, we have,

w
rost B

aw au
- EI‘J;{{GC”’G[OzS;“'sz(S— ) Tyz(az ay

- §(Fyu+Fyv+Faw) }dv-

- éf&(?xu¥Tyv+Tzw)ds=0. (2.3.14)
oi

It can be seen that the weighted residual integration

is a complete variation., Thus, the integral can be
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rewritten as the variation of a functional:

14 c+ 8w+ au+aw N av+8w Fu-F F,wldv)
nL'g Ié{[ 0z5,  Txz (5153 ) * Tyz (53 ay) xu-Fyv-Fzw]dv
-J J (Txu+Tyv+T,w)ds. (2.3.15)

Sg
and, 8N = 0 under the conditions (2.2.2, 2.2.7 and
2.2.9).
The author give I, the name of laminate functional
It can be shown that the process of derivation
used above can be reversed step by step. The author
introduces the following stationary variational principle
of combined energy for solving a laminated composite as
follows:
Principle
among all the sets of admissible displacements u,v,w
and admissible stresses 0z,TxzsTyz, Which possess global
continuity and satisfy the prescribed displacement boundary
conditions, the partial relation of displacements with
strains ex,e€y,yxy as well as the continuity condition
at the interlayer sur faces, the actual set of
{u,v,w,02/Tx2,7y2} can be given by the stationary

conditions of the functional I}, defined in eq.(2.3.15).

The above variational principle can be extended to any

elastic body and can be stated as:

Principle

Among all the sets of admissible displacements u,v,w
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and admissible stresses 0z,Txz/Tyz, Which possess global
continuity and satisfy ths prescribed displacement boundary
conditions, the partial relation of displacements with
strains Exr Eyr Yxy’ the actual set of
{u,v,w,03,1x2,Tyz} can be given by the stationary

conditions of the functional I}, defined as:

I _III[C+ aw+ au+aw . av+8w F F Fowld
L= v Ozt Txz (574 5x) Y vz (5 ay) xU=FyV=tewidv

- [ (Txu+Tyv+T,u)ds. (2.3.16)
Sg

It came to the author's attention in the later part of
this thesis that Reissner has already done some work along
the 1line of what has been presented earlier in this
thesis. In the following discussion, comparison between

Reissner's theorems and the author's will be presented.

2.4 Comparison with Reissner's mixed variational

theorems
2.4.1 Reissner's mixed variational theorem 1 (1984) [48]

The section "Derivation" from [48] can be quoted as
follows:

- "We begin with a statement of the <classical
variational equation for displacements, for simplicity's

sake subject to the assumptions of absent body forces and
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traction-free boundary portions z=th/2, and of displacement
boundary conditions over all cylindrical boundary portions
£(x1,%x2)=0. With a view towards our ultimate purpose, we
write this equation in the form

§ JJJ uleiyieryi)dedxidey =0 (2.4.1.1)
where eij=(ui,j+uj,i)/2, €e=uy,; and Yj=uj,ztuz,ir for

i,j=1, 2.

To obtain the intended result we begin by rewriting
(2.4.1.1), with the help of Lagrange miltipliers ¢ and 1i,
as

§ [[f (U+(ugy, =) ot(ui , z*uz, 1-vi) T3 }dzdx1dxp=0, (2.4.1.2)
and we separate the function U in this intc two parts
Ulei 5,6 vi)=Uolejf)tUy(e/visei]) (2.4.1.3)

such that Uo(eij)=U(eij, 0,0) and U;=U-U,.

We next use three of the Euler equations associated
with (2.4.1.2),
0=9U7/9¢, 1§=3U1/3v3 (2.4.1.4a,b)
as three simultaneous equations for the determination of ¢,
Y1 Y2 in the form
e=e(0,Tir€3 ) Y5=Yj(O,Ti/€515)s
and we define a complementary function W through a partial
Legendre transformation
Wio,1i/€15)=0e(0,1ir€54)7TiYilse0)
“Uzleles )i¥jlec)reyy] (2.4.1.5)

where then, in the usual way, €=d/3c and +v;=0W, 3tj.
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Introduction of (2.4.1.5) and (2.4.1.3) into
(2.4.1.2) gives as the wanted mixed wariational theorem
the equation

s jJJ {Uo(eij)+Uz,z°+(ui,z+“z,i)fi‘
~W(0,T{ ,€44) }dzdx1dx =0 (2.4.1.6)
with arbitrary Suj, Sug, étj» 6o, and with

Sejg=(buj, j+6\1j ,i)/2.

An alternative version of (2.4.1.6) , with the
variations 60 and &71; restricted so as to be consistent
with constraint conditions (o,1i)z= thy/2=0 and tj, +0,2=0,
evidently may be deduced from (2.4.1.6) so as to read

8 [[] {Ug-uiTj,z-W}dzdxydxy=0." (2.4.1.7)
2.4.2 Reissner's mixed wvariational theorem 2 (1986) [ 49)

The section "Derivation of the mixed theorem" from
(49] can be quoted as:
- "We depart from a statement of the known variational
theorem for displacements ana all stresses, in the form
§ [[f [Wo1,02/03,71,T2,13)"
—0ojei—Tjyildzdx1dx =0
e eeer (2.4.2.1)
Here vwe have written 03,73,72,T3 in place of the
conventional 112, Tlz, T2z and 0, with
€15U1,1, €2=U2,2, €37uj, 2tu2, 1,

Y1=U1,z+Uz,1» Y2=up,ztugz,2r Y35Uz, » (2.4.2.2)
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with W a given function, and with the wariations §&§oj, &7ti,
Suj, 6u, arbitrary. We assume for simplicity the absence
of body forces and we omit consideration of the surface
integrals which are associated with a complete statement of
the theoren. We recall that (2.4.2.1), with the
constraint (or defining) relation (2.4.2.2), has the
eqguations of equilibrium and all const itutive equations as

Euler differential equations.

With a wview towards the result to be established we
now consider the three Euler constitut ive equations
ei=dW/d0j (2.4.2.3)

as equations for the determination of oj;, and we use the

solutions

0i=03 (€§:T5), (2.4.2.4)
of (2.4.2.3) to define a ‘'semi—~complementary energy
density* V(e 5 1 15) through the '*partial’ Legendre
transformation

V=ejo(ejrTy)Hlog(ej,T5)15] . (2.4.2.5)

Equation (2.4.2.5) implies as a subsystem of inverted
constitutive equations

03=9V/3¢j, (2.4 .2.6)
with these to be considered, in what follows, as constraint

equations.

The introductionof W from (2.4.2.5) into (2.4.2.1)
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]

gives as the desired variational equation for displacements
and some stresses

§ JJJ V(e5,19) +1575 1dzdx1dx2=0 (2.4.2.7)
To establish the correctness of our statement it is only
necessary to verify that (2.4.2.7), with the constraint
equation (2.4.2.6, and (2.4.2.2), does in fact have the
three equations of equilibrium and three constitutive
equations, giving the yj as functions of the t4 and ey, as
Euler equations. We obtain this result by deducing first

from (2.4.2.7) that

v v
I“[ae -6€j+a'r _61j+1j67j+yj61j Jdzdxj dxy=0 (2.4.2.8)
J J
and then with (2.4.2.6)
v
Jfloj8ejttj8yit(g+v3) 81jldi:dx1dx 2=0 (2.4.2.9)
D)

Equation (2.4.2.9) implies the three Euler constitutive
equations

Yi=—aV/a-cj, (2.4.2.10)
with the equilibrium equations for stress following as
Euler equations upon expressing <Sr-:j, and Gyj in terms of
Suj,kr 8uj,z, duz, i and &Suz,z,in accordance w®*:h equation

(2.4.2.2)."
2.4.3 The comparison with Reissner's theorems

The var iational principle of combined energy stated in

this thesis gives a general form for the variational method



in laminated structures. Reissner's theorem 1 gives a
corresponding potential energy form, and Reissner's
theorem 2 gives a corresponding complementary energy form,

All of the three principles have the terms

aw w du w 9w
cz(-a-;) + sz(5;c+5;) ttyz (o) (2.4.3.1)

to relieve the cl continuity requirement of displacement
along z-direction and to satisfy the continuity requirement

of transverse stresses,

Because the energy functions are different and the
constraint conditions wused in the derivation are also
different, therefore, in these principles, the Euler
equations and natural conditions, enforced a posteriori,
are different (see and compare sections 2.3, 2.4.2).
Strictly speaking, the three principles are not exactly

equivalent to each another.

Reissner's theorem 1 is based on the principle of
minimum potential energy, taking the potential energy
function A(€). By wusing Lagrange multiplier method, a
complementary virtual work is introduced. The required
final enerqgy €form should be a 'semi-potential energy
density' through ‘'partial' Legendre transformation, from

A(e) to A(Qq)

Uo-W=A(q)-0ze2(q)-Txz* Yx2(Q) ~Tyz* Yyz(d) (2.4.3.2)
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where

q= { ExrEyrYxyrOziTxz s Tyz }T (2.4.3.3)

Reissner's theorem 2 is based on the generalized
potential energy principle, taking complementary energy

function B(o)

W-oiei-Tjyi=B(0)—0jje4 4 (2.4.3.4)
Its requiv.d final energy form should be a
'semi-complementary energy density' through 'partial’

Legendre transformation, from B(g) to B(q)

V=-B(q) +ey4'0x (Q)+5y'°y(Q) *+Yxy* Txy(Q) (2.4.3.5)

Before wusing the two theorems, it is necessary to
derive the partial Legendre transformation for the
semi-potential energy density A(q) or the

semi-complementary energy density B(q).

It can be seen that the combined energy principle
stated in this thesis is complete and clear for both
physical understanding and numerical calculations. A
summary of tne similarities and differences between
Reissner's *heorems and Huang's principle is shown in the

Appendix.
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Chapter 3. An Approach to Determinat ion Natural

Stress Modes in Hybrid Finite Element

Three-dimensional hybrid finite elements have been
developed in recent years [13,30,36,38-47,60,63,72,73].
They are based on the assumed interior stress field and
boundary displacement field or mixed interior fields.
In this Chapter, attempt is made to determine natural
stress modes.

modes definitely.

3.1 Assumed Stress Field in Finite Element Method

In the displacement formulation of the finite element
method, the nodal displacements are taken as unknown
parameters, The displacement field can be described by
using the interpolation function for the nodal

displacements.

In the stress or hybrid-stress formulation, the stress
field can not be described as above, because the total
number of nodal stresses is usually more than the degrees
of deformation freedom. In principle, there are not enough

control equations to govern all the nodal stresses.



Pian (1964) [37]) developed a technique to assume this
stress field. In his hybrid finite element method, the
assumed stress field consists of several stress modes
multiplied by a corresponding stress parameter:

B1
82
= [ 01,02/« ,0p) .
)
=P8 (3.1.1)

where
P=[01,001¢00,0nls

o; is a vector and is a function of the coordinates. Also,
on the boundary of the element, the displacement field
is assumed.

u=N3g$ (3.1.2)
where N is the shape function of displacement and § is
nodal displacement. The strain can be expressed as

e=B§ (3.1.3)
where B is a first derivative matrix of the shape function.

Since the £irst development of Pian [37], many

modifications have been made. Pian and Tong (1972) (96]
based on Hellinger-Reissner principle, proposed a mixed
model of the hybrid finite element in which both stress and
displacement fields are assumed in the interior of the

element. If the prescribed displacement boundary
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conditions are satisfied in advance, the Hellinger-Reissner

principle can be expressed as
§ Myp = 0
wvhere
1
yr = I(--OTSo+oTe—?Tu)dv - [1Tuds
v 2 Sg
Substituting egs.(3.1.1, 3.1.2, 3.1.3)
1 ToT
Mgr = J (-=8 P sps
v 2
+B8TpTBS-8TNTF)dv
~ [TTuds
So
1
= — =T ([PTspdv)p + gT([PTBAv) &
2 v v
- 6T ([N"Fav+[NTTds)
v SO'

If we define

H = [ pTsp ar
v

G = P'BAr
v

£ = [NTFav + [NTTds
v So

then
1
IyR = - EBTHB + gTgs - 87Tf

Using partial stationary condition

dllyr

38 0

into

(3.1.4)

(3.1.5)
eq.(3.1.5)

(3.1.6)

(3.1.7)

(3.1.8)

(3.1.9)

(3.1.10)

(3.1.11)



we have
B = B 1gs (3.1.12)

Substituting eq.(3.1.12) into functional (3.1.10),
17, ~Ty-1 T
HHR=56 (G'H “G)8§ - §°E. (3.1.13)

If we define
K = ¢Tr1g (3.1.14)
then

1
IyR = ESTKG - §Tf (3.1.15)

From another partial stationary condition

allyr

SE—— = 0, (3.1.16)

the governing equation of nodal displacement is expressed
as follows:

Ké6=¢£ (3.1.17)
The meanings of the matrices introduced above are:
stiffness matrix in nodal displacement space
equivalent nodal force

compliance matrix in stress parameter space

@Q m m R

mapping matrix of stiffness matrix from stress
parameter space to nodal displacement space
If the stress modes in matrix P are assumed
improperly or if the matrix P does not include sufficient

modes, the rank of stif £ness matrix K will be
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less than the total degrees of deformation freedon. Thus
equation (3.1.17) will be singular and it will not be
able to govern the nodal displacements. In this case, the
matrix P will contain some zero energy stress modes.

The problem then is how to make a proper selection of
the stress field modes.

It is possible to suppress zero energy modes by
adding stress field terms of higher order. However, more
stress terms cause stiffening of the element and, thus,

impair the stress analysis.

Fraeijs de Veubeke (1966) [29], Pian and Tong (1969)
[28] gave a necessary, but not sufficient condition
condition to avoid the zero energy modes.

m » n-r (3.1.18)
in which m is the total number of assumed stress field
modes, n is the total number of generalized displacements,
of which at least r must be constrained, r being the number

of rigid body degrees of freedom of the element.

Brezzi (1974) ([32], Babuska, Oden and Lee (1977)
[33], presented necessary and sufficient conditions for
stability and convergence of a finite element with
an assumed stress field. These conditions are called the

Ladyzhenskaya-Babuska-Brezzi conditions.
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Ahmad and Irons (1974) [30] suggested use of an
eigenvalue technique to assess a hybrid element and

determine the kinematic modes.

Spilker et al {1981) [31] stated that matrix G
controls the rank of the element stiffness matrix. Later on
Spilker (1982) [34] investigated the 3-D hybrid
elements and suggested using complete sets of each order of
the stress field terms. For example, in the 3-D, 20-noded

element, he suggested using the 698 element.

S.N.Atluri et al (1983,1984) [35,36], tried to solve
the zero energy mode problem by using symmetric group
theory. From the displacement interpolation function, they
gave all the possible displacement field modes, then,
using the group theory, they gave all the possible
strain field modes (54 for 3-D, 20-node element).
On the other hand, they gave all the equilibrated
stress field modes(90 for up to 3rd-order stress modes).
Thus, the displacement, strain and stress could be
described by the product of their field modes and their
unknown parameters respectively. By checking the
integration of the products of the strain and stress modes

in each subgroup,



K 0, k#L
a:e= J 0ij eidev ={ (3.1.19)
v nonzero, k=L
€ij€ Ty (3.1.21)
they gave two choices for 2-D, g4-noded hybrid element (58),
8 choices for 3-D, 8—noded elements(18B),and 384 choices

for 3-D, 20-noded elements(54B), where I'k,Tf represent the

subgroups.

Numerical analysis shows that for Atluri's 8 sets of
stress modes for 3—-D, 8-—node hybrid finite element, all
result in stiffness matrices with 18 nonzero eigenvalues.
Hence zero energy modes do not exist in these 8 choices of
stress fields. Howewver, the f£irst 7 choices give low
eigenvalues for some high order stress modes. This means

the structure is weakened for these 7 choices.

pian and Cchen (1983) [51] showed that the product
o:€ have the physical meaning of deformation energy.

2u3 = [ ole dav = BTGS (3.1.22)

Fur thermore, they decompose the nodal displacement and
matrix G into two ©parts: one represents the rigid—body
modes, §g and Gp, and the other part represents the
deformation modes, 8o and Gg.

3
2Uq = BT[GQ,GR]{ Q} = B8TGyd, (3.1.23)

SR



Then, Pian and Chen provided a systematic procedure
for the choice of the necessary assumed stresses such that
kinematic defoimnation modes will not appear. They
indicated that an examination of the strain energy
due to the applied stresses and due to each individual
deformation mode or pocsible combined modes gives a clue to
the existence of kinematic deformation modes and uethods
for their suppressions. It is necessary to ensure all
columns of the G matrix in the deformation energy
term are linearly independent.

Pian and Sumihara (1985) [97] investigated finite
2lements with shape distortion, and gave a method to select
the assumed stress terms., In this case, the
structure of stress mode associated with polynomial terms
of coordinates may become more complicated. A selection of
these separated terms may be an easy way to extract
information for the choice of an assumed stress field that

does not contain zero energy modes,



3.2 Modal analysis of deformable bodies

with finite degrees of freedom

A finite element has finite degrees of deformation
freedom. For each degree of freedom, there may exist a
natural deformation mode. Stress modes that are free of
zero energy problems should correspond to natural
deformation modes. It is therefore necessary to find out
the natural deformation modes of the finite element with a

certain shape and certain constitutive properties.

In this section, the existence of natural deformation
modes 1is assumed. Also, the energy of the element is
assumed to be decomposable into these orthogonal modes. A
superposition  theorem of stiffness matrix is presented and
proved. A postulate about invariance of eigenvalue is
suggested. Based on the above assumptions and theory, an
eigenvalue analysis technique is developed. It can lead to
the correct stress modes 1in a 2-D, 4-node hybrid finite
element of isotropic material with rectangular shape. The
results provided by the present element show very good

agreement with the elasticity solution,

In 3-D, 8-node hybrid element, a few of eigenvalues
are the same. For those multi-eigenvalues, the
eigenvectors have certain arbitrariness. It 1is difficult

to find out the natural deformation modes in this ease.
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o

Modal analysis of 3-D, 2-node hvbrid element, result
in uncoupled set of stress modes yet without zero energy
modes. A technique of diagonalization of the compliance
matrix H in stress parameter space is utilized, and che
invariance of the eigenvalues in the stiffness matrix for

the individual and ensemble stress modes is checked.

3.2.1 Natural Deformation Modes

In vibration, a structure has its natural modes.
The energy of the structure can be seen as distributed into
these separated vibration modes. Also the total number of
modes 1is exactly the same as the vibration degrees of

freedom.

In a finite element, the deformation is considered to
consist of finite number of degrees of freedom. It is
possible that there exists a set of natural deformation
modes and the elastic energy of structure can also be
distributed into these separate deformation modes. The
total number of deformation modes will be the same as

the number of degrees of deformation freedom.

In finite element method, for both displacement
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formation and hybrid formulation, the governing equation of
nodal displacements has the same form
K§=°f¢ (3.2.1)
where
K Stiffness matrix in nodal displacement space
) nodal displacement

£ nodal forces

Here one element is considered as the system, thus,
K is an nxn matrix, &8 and f are n-dimensional vectors,

where n is the total number of generalized displacements.

The following equation,
(K-AI) 6§ = 0 (3.2.2)
gives r zero eigenvalues for rigid body motion and m
(m=n-r) nonzero eigenvalues for deformation. There are m

eigenvectors corresponding to the n nonzero eigenvalues.

In the displacement formulation of the finite
element method, the stiffness matrix Q is mapped into nodal
displacements space:

K = [ BTQB dv (3.2.3)
v

It can be seen that the eigenvalues and eigenvectors only
depend on the geometry and elastic properties of the

element.
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In the hybrid finite element method, the compliance
matrix could be mapped into stress parameter space as
follows.

H = [ pTsp dv (3.2.4)
v

Its inverse, the stiffness matrix, could be further mapped

into nodal displacement space.

K = T lc (3.2.5)
in which
G =/ PTB dv (3.2.6)
v

So the eigenvalues and eigenvectors of the element
stiffness matrix are sensitive to the assumed stress field
modes and also depend on the geometry and property of the

element.

The difficulty is how to get the natural stress

modes from the natural displacement modes.

In hybrid formulation, there exists a relation between
nodal displacement and stress parameter, eq. (3.1.12). For
each defo.mation mode §, (assume it is an eigenvector of
the stiffness matrix in the displacement formulation), the
improved stress mode o, can be written as

oy = PBy (3.2.7)
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8, = B-1G§, (3.2.8)

where P, G, H are associated with the old stress

A systematic procedure in the form of a computer
program is presented based on the two points mentioned
above, first is that the eigenvectors of the stiffness
matrix in the displacement formulation depend only on
geometry and constitutive properties of the element.
These eigenvectors could be assumed to be the natural
deformation modes. The other point is that the eigenvalues
of the stiffness matrix in hybrid formulation is sensitive
to the assumed stress field modes. There is the chance to
improve the stiffness matrix to be superpositionable and

uncoupled.

3.2.2 Superposition Theorem for the Stiffness Matrix

and A Postulate on Energy Decompnsition

Theorem: In the hybrid finite element method, if the
stress field modes are assumed such that they can result in
a diagonal matrix H, then, the stiffness matrix satisfies

the superposition principle:

K =] Ki, (3.2.9)
1
where
K; = G;TH; 1G; (3.2.10)
H; = | P;TSP;av (3.2.11)
v
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G;i = [ p;TBdv (3.2.12)
v
P=1[ P1,P2,...Pj,...Pp | (3.2.13)
and
K = ¢Talg (3.2.14)
H = [ pTspdv (3.2.15)
v
G = [ pPTRav (3.2.17)
in which Y

Pj column vector of P, one mode of the stress field
Gi row vector of G,

Hj compliance matrix in 1B stress parameter space

Proof:
If we denote
¢ = 1/Hi4 (3.2.18)

for diagonal matrix H we have

cl O e & o 0
0 c2 [ I B ] O
l=|. - . (3.2.19)
0 ... c&
and
Bl =1[c;] (3.2.20)

Then, the stiffness matrix
cy 0 ...0 Gy
0 co 0 G2
K=1[67%,67T,..6q71 | : . :

0 LI cx;l Grn
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} 6iTciG;
1

H

} 6:Tm; 716
1

1 Ky end of proof, (3.2.21)
i

Postulate

If and only if the elastic energy of the structure
with finite degrees of freedom is decomposable, the
eigenvalues obtained from separate mode equations

(Kij-AI)8 = 0, i=1,2...m (3.2.22)
should be the same as the eigenvalues obtained from the
total equation

(K-AI)8 = O, (3.2.23)
where

Ki stiffness matrix for individual mode,

given by equation (3.2.10)

K stiffness matrix for the ensemble of modes,

given by (3.2.14)
The alternate postulate can be stated as:
If Aj is the eigenvalue obtained from eq.(3.2.22) and
a4 are the eigenvalues obtained from eq.(3.2.23) for the

structure with finite degrees of freedom in a complete set

of uncoupled stress modes, there is one and only one
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aj corresponding to Aj; and has the same value as \j.

3.3 Modal Analysis of 2-D, 4-node Hybrid Element
3.3.1 Procedure

The procedure of modal analysis for 2-dimensional
4-noded hybrid elements with isotropic elasticity and

rectangular shape is as follows.

Step 1. Calculate the eigenvectors of the element stiffness
matrix of the displacement finite element:

6\" V=l,2,...n-r (3.3.1)

Step 2. Assume a complete set of the stress field modes
p(0) = [ 01(0),02(0),...0L(0) 1, (3.3.2)
where

L > n-r (3.3.3)

Step 3. For 1i=1,2,3,...k do step 4 - 6 until the matrix H

becomes diagonal and the stress modes P are stationary.

Step 4. Calculate matrix H(i),G(i)

(i) = [ (p(1))Tgp(i) gy (3.3.4)
v

cli)

[ 1eti)TB gv (3.3.5)
v
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Step 5. Modify the stress field modes.
oy(i) = p(i)m(i))-1glilg,, (3.3.6)

where

\)=1'2'--u'n_r (3.3.7)

Step 6. Square-power normalization of the stress field
modes.

vy(l) = g (i) /g, (1) g (1) (3.3.8)
oy (311) = o (1) /max( vy t1) ) (3.3.9)
A

plitl)=(gy (i+1) g (141), o, (3*¥1)]  (3.3.10)

Step 7. Obtain the stress modes.
p = p(k) (3.3.11)

Step 8. Calculate the compliance and mapping matrix.

H = [ pTspav (3.3.12)
v

G = [ pTRdv (3.3.13)
v

Step 9. Solve the following equation with multiple right
hand terms for the unknown matrix [X].

B[(X] = G (3.3.14)
we have

[X] = B lG. (3.3.15)

Step 10. Calculate the element stiffness matrix.

K = GT[X] = GTH l¢ (3.3.16)
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Step 11. Considering boundary conditions, solve the
governing equation,
K&8=¢f (3.3.17)

in which £ is the equivalent nodal force of loading.

Step 12. Calculate the stress parameters and stresses.

c=PB (3.3.19)
In the above procedure, two additional considerations

were given:

(1). Modification of the eigenvectors for multiple
eigenvalues.

For multiple eigenvalues, there are a lot of choices
for the directions of the corresponding eigenvectors.
However, not every choice can result in a good stress mode
which gives a diagonal matrix H and superpositionable
element stiffness matrix K. This means that for multiple
eigenvalues the orthogonal displacement eigenvectors may or

may not result in orthogonal stress modes.
For example, from numerical results the following two

eigenvectors, shown in Fig. 3.1, have the same

eigenvalues.
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§y1= {0.,-.5,.5,0.,0.,.5,-.5,0.}7T (3.3.20)

§y2= {-.5,0.,0.,-.5,.5,0.,0.,.5}7T (3.3.21)
3
2T~———j3 2
i
{ s 4 —— '4
Syl 8y2

Fig. 3.1 Two original eigenvectors

They can be modified as follows and shown in

Fig. 3.2.
8\\)1 = .5(8y1+8y2) (3.3.22)
82 = .5(8y1-6y2) (3.3.23)
thus,

2 T
6vl={-.25,_.25'025,_025’025’¢25,_0251025} (3.3.24)

€§2={.25,_.25,.25,.25’_.25’.25’_‘25’_.25}T (3.3-25)

J
2 2 3
3
! 4
4 f !
A N
Sy Sy2
pure shear antisymmetric extension

Fig. 3.2 Modified eigenvector
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Then, the following stress modes are derived from

them, as

op1 = ( 0, 0,1 )7 (3.3.26)

oy2 = { 1,-1,0 }T (3.3.27)

(2). The computation is always accompanied with some
accumulated er:iors. In the 12 step iteration procedure,
the stress mode is not sensitive to small errors.
Therefore, small numbers which give a relatively small
errors can be ignored. In addition, the
nondimensionalization and normalization techniques are
applied. Thus, the purification consists simply of

ignoring terms of magnitude less than 10720,

3.3.2 Results

By using the displacement finite element, the
computation accuracy of the hydrostatic, antisymmetric
extension, and pure shear cases is perfect. Only the pure
bending is poor. Denote the ratio of the numerical solution
to the elasticity solution of pure bending deformation as
Rp, this ratio could be taken as the index mark for the

different formulations in 2-D, 4-node finite elements.
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For the displacement finite element,

Rp = 67.4%

For hybrid finite element:

Example 1.

p(0)

p(1)

p(2)

p(3)

p(4)

p{5)

Example 2.

p(0)

p(1)

pl2)

p(3)

1 1 0 n O
1-1 0 0 ¢
Lo 0o 1 0 0
,
-n .045E 0
.045n - 0
-.045 -.045n0 1
- .002E 0
.002n -£ 0
(-.002¢ -.002n 1
[ -n 4E-6E 0
4E-6n - 0
|-4E-6F -4E-6n 1
[ -n  2E-11%
2E-11n -
|-2E-11¢ -2E-11n
(-n 0 0 1 -1
0 -£ 0 -1 -1
0 0 1 0 0

1 10£00n
1-120E£00
(0 0100¢0
[ -n .09E 0
.09n -£ 0

| -.12¢ -.12n 1
[ -n  -.008f 0
-.008n -E£ 0
[-.015¢ -.015n 1
[ -n -6E-5F 0
-6E-5n -E 0
|~2E-4f -2E-4n 1

3 O

Rp(0)=87.7%

Rp(1)=94.7%

Rp(2)=99.73%

Rp(3)=99.999%

rp(4)=100.0%

Rp(3)=100%

Rp(0)=67.43

Rp(1)=78.83%

Rp(2)=96.7%

Rp(3)=99.95%



-n
p(4) = [T4E—9n
-5E-8C
e
- 0
p(7) = L o —¢
0 0

The comparison of

the elasticity solution

Table 3.1 Comparison

-4E-95 0 1 -1
- 0 -1 -1

, Rp{4)=100.0%
-SE-8n 1 0 O

0 1-1

0-1-11|, Rp(7)=100%

l1 0 O

displacements obtained by FEM with

is as follows.

of 2-D, 4-node FEM

hydrostatic pure pure pure concentrated
pressure extension shear bending load beam
Atluri.l 100% 100% 100% 360% 346.5%
Atluri,2 100% 100% 100% 100% 99.3%
Present 100% 100% 100% 100% 99.3%
Displa. 100% 100% 100% 67.4% 68.2%
Note 1:
Atluri's 2-D, 4-Node element:
Choice 1.
1 1 0 0 -x
P = 1-1 0-y O (3.3.28)
0 0 1 x vy
Choice 2.
1 10y o)
P = 1 -1 0 0 x (3.3.29)
0 01 0 O J
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Pian's 2-D, 4-Node element:

1 0 0 y O

P = 0 1 0 0 x (3.3.30)
0O 0 1 0 O

Present 2-D, 4-Node elemer .:

1 1 0 n O

P = 1 -1 0 0 ¢ (3.3.31)
o 0 1 0 0

in which
x = xp+taié
y = yotazn (3.3.32)

Note 2: The theoretical solution of a cantilever beam under
concentrated load at the free end of the beam is taken from

"Theory of Elasticity" by S.Timoshenko.

Usually, it takes time to form the element stiffness
matrix in finite element method. However, for a rectangular
element, it is possible to calculate the element stiffness
matrix in advance, if the formulation is in nondimensional
form. Especially, for 2-D, 4-node hybrid rectangular
element, the nondimensional element stiffness matrix K
and matrix K, G can be given by formula. (see [98] Froier,
1974). Using superposition theorem, the H, G, K
matrices of 2-D, 4-node rectangular hybrid finite element
with isotropic elasticity can be calculated by hand, and

is shown next.
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The element stiffness matrix K of present

rectangular

elements with isotropic elasticity is as follows.

r sytr)

mp S17r2
my rj+s?2 mp
S1-1r2 mo si+ro
K=ck -my ti-s2 -mp
-s1-tpy -my -s31+t)
-m) -ti1-sp -m2
-s3jtty -mp -s3-ts
§ my -rij+s») mj
in which
s1=3c1(1-v)
£1=2c1 (2+v?)
r1=2c1(4-v2)
my=3(1+v)
ck=E/24(1-v?)
where
ci1=ai/as
x=xptajls

-m5
ti1-s2
-my
r,+ts2

m2

“r1-s2

my

~ti1-s3
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-s1-t; -my; -s3+tj m2
-m] -t1-sp2 -mp -rj+sj
Ts1tty -mz -sy-t; m
my -~o1+s) my -t;-s»>
S1+ts my S1-r3 -my
myp rjtsz mp  t;-sp
£1-I2 mj sytrpa -my
~-mj t1-s2 -m ry+sy
ceesesssees (3.3.33)
s2=3c3(1-v)

t9=2cy(2+v?)
r2=2c2(4-v2)

my=3(1-3v)

cy=az/ay

y=yotazn




The compliance matrix in stress parameter space, H, is

0
0
E 0
0

0 0 0
0 0 0
1+v O 0
0 1/6 0
0 0 1/6

and the mapping transformation matrix G is

3-4

[taz -a; ap -a;
-az a3 az ai
-a] -ap —-aj} aj
az/3 0 -az/3 0

.0 a1/3 0 -ay/

.

a a; -az aj

a; -aj; -aj -aj

ay] a2 @8] -ap
az/3 0 -a3/30

30 ay/3 0 -a3/3j

(3.3.34)

(3.3.35)

Modal Analysis of 3-D, 8-node Hybrid Element

First, the nondimensional quantities are as follows.

ci=aj/a;=l1
co=aj/aj
c3=aj/aj;

X = x/a;

X = Xotc1§
Y = Yotcan
Z = 50+C3C
|g] = C1C2C3
§ = §/a

o = o/E

_55_

(3.4.1)
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(3.4.3)
(3.4.4)
(3.4.5)
(3.4.6)
(3.4.7)
(3.4.8)
(3.4.9)
(3.4.10)



B = aiB (3.4.11)
G = G/Ea;2 = [ PTB|J|dednde (3.4.12)
v
H = B/Ea;3 = [ PTSP|J|dednds (3.4.13)
v
K = K/Ea; = GTH™1G (3.4.14)
in waich
~ N
l1 =-v -v 0 0 0
-v 1 =-v 0 0 0
- -V =V 1l 0 0 0
S = ES = 0 0 0 2(1+v) 0 0 (3.4.15)
0 0 0 0 2(1l+v) O
. 0 0 0 0 0 2(1+v)]
~
B=[ (aNy),(3N3),...(3Ny) ] (3.4.16)
where
8 19N; h
c19E 0 0
13N;
0 coan 0
_19Nj
(3Nj;) = 0 0 c39¢
19Nj 19N;
C29N c19§ 0
19N; 19N;
0 c39% c29n
19Nj 19N;
L €39 0 c19& |

Similar to the modal analysis of 2-D, 4-noded hybrid
elements, the following stress mndes are obtained which
satisfy the requirement of:

(1) Having a diagonal compliance matrix in stress parameter
space, H:

(2) Having a stiffness matrix which 1is adaptable to
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superposition principle in nodal displacement space, K:
(3) Having non-zero eigenvalues totalling n-r=18:
(4) Having the same eigenvalue for each mode in the

individual case Kj and in the ensemble case K.

Hydrostatic mode

H

01 = 0 (304.17)
0
0
Antisymmetric extension mode
1 -1
-1 52
0 2
{ 62,03} =Y0 o (3.4.18)
0 0
0 O
Pure shear mode
0 0 O
0 0 O
0 0 O
{ 04,05,06 } =Y1 0 0 (3.4.19)
0 1 o0
0 0 1
Symmetric bending mode
Z 0 n
¢ &£ 0
0 & n
{ 07,0809 } =Y 0 0 © (3.4.20)
0 0 O
0 0 O
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Anti-symmetric bending mode

1
OO OO

{ 010,011,012 } =1

Symmetric torsion mode

013 = \ ¢
2
n
Antisymmetric torsion mode
0 0
0 0
HE
{ 014,015 } =y ¢ 4
1—& ;
0 -2n

Saddle distributed mode

|

{ 016,017,018 } =l

OO0 O0O03

The various stress

combining the above modes,
tensile stresses by 03,07,03:

012: the arbitrary torsion by

0 n
E 0
=& -n
0 o (3.4.21)
0 0
0 0
(3.4.22)
J (3.4.23)
0 O
£ 0
0 &n
0 O (3.4.24)
0 O
0 O
cases can be formed by
for example, the avbitrary

the arbitrary bending by o7 -

013 ~ 015.

_58_



The antisymmetric extensions have the same eigenvalue
as the pure shears, because by rotating 45° it is a pure

shear exactly.

Atluri et al [35,36] gave eight choices of the stress
field for the 3-D, 8-node hybrid elements according to the
group theory. They assumed stress fields as follows:

Choice 1
( 1 1000006 0 O02x 0 OO0 O O 0 0 0 b
1-110000 0 O 02y 00 O O0 O 0 0

10-100006 0 O0 0 0220 0 O 0 0 0

P= 2
0 00100z 2 O0-y-x 0Oy x 0 -2xz -2yz x2+y
0 00010 x-x-x 0-2-y0-2 -y y2+z2 -2Xy =2x2
(0 00001y 0 y-z 0-x-z0 x-2xy x?+z2 -2yz |
e 9 8 &8 & 8 9 (3.4.25)
Choice 2
(1 100000 0 02¢x 0 00 0 0 0 0 yz ]
1-110000 0 O 02y 00 O O O0=xz O
10-10000 0 0 0 0220 0 Oxy O0 O
P = 0O 00100z 2z O0-y-x 0y x 0 0 O0 O
0O 00010x-x-x 0-2-yO0O=~-z-y 0 O0 O
_,0 00001y 0 y-z 0-x-20 x 0 0 O )
® 06 ¢ 0 0 0 @ s (3.4'26)
Choice 3
/7
1 100000 0 02x 0 0y 0 z 0 0 0 |
1-110000 0 O 02y 00 x-2 O 0 0
10-10000 0 0 O 02z -y-x0 O 0 0
P=

0 00100z 2 0-y-x 00 O 0 -2xz -2yz x2+y2

0 00010x-x-x 0-z-y 0 0 0vy2+z2 -2xy -2xz

(0 00001y 0 y-z 0-x0 0 0-2xy x?+z2 -2yz |

ceeeeeees (3.4.27)
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Choice 4

o
OO0 il o

OCOOKHHKH

Choice 5
(1
1

10

Choice

-

OCOoOOHMKHH =)

Choice
(1
1-

10

o

o

I
OOOHKFHO
OCOHOOO
OHOOOO

100
110

-1 0
001
000

000

o
OOOl
OCOOHKHO

100
110

-1 0
001
000

000

OO OOO
O OODODOO

o o

HOOOOO

KX NOOO

HOOOOO

0 0 2
0 0
0 0
z 0 -
-X =X
0 y -
0 0y
0 00
0 Oy
z 00
-x -x 0
0 yo
0 0 O
0 0 O
0 0 0
z z 0
X -X —-X
y 0 vy
0 Oy
0 00
0 0y
z 00
-x -x 0
0 yoO

N O OCOX

o oo o
COOX X O

o

60

N

ON X O O

c O O o

o o O ©

0
0
22

-y
-X

0

-2

OOCOONN

Y
0

y
0

0

X
-2

0

o OO0

0 z 0 0 yz )
x -2 0xz O
-y x0xy 0 O
0 0 0 0 o
0 0 0 0 o
0 0 0 0 O
¢ 8 & 0 0 0 0o (3.4.28)
o o o0 o0 |
0 0 0 0
0 0 0 0
0 -2xz -2yz x2+y2
-y y2+22 ~2xy -2xz
X =2xy x2+22 -2yz
cese e (3.4.29)
-~
0 0 0 0 y=z
0 0 Oxz O
0 0O0xy 0 O
x 0 0 0 O
z-y 0 0 O
0 x 0 0 0 |
s e * e (3.4.30)
z 0 0 0
-2 0 0 0
-y -x 0 0 0 0
0 -2xz2 -2yz x2+y2
0 y2+z2 -2xy -2xz
0 -2xy x2+22 -2yz |
o ® 0 O 0 8 8 00 (3.4.31)



Choice 8
(1 100000 0 OyOzy 0 z 0 0yz |
1-110000 0 00xz0 x -z 0xz 0
10-10000 0 O0OyxO-y-x0xy 0 0
P = 0O 00100z 2 00O0O0OO0OO0OC O O O O
0 00010x-x-x00000 06 O 0 O
0 00001y 0 y00O0O0G O0 0 O 0 0

ceseeeses (3.4.32)

The assumed stress field of Pian's 3-D, 8-node element

is:

(1 00000yzyz 000 000 000
010000000 xz22x000 000
001000000 000 yxxy o000

P=|000100000 000 000 02z0
000010000 000 000 00 x

(000001000 000 000 yo0O ]

e ® & & & 0 2 0 @ (3.4.33)
The stress modes represented in this thesis is

1 1-1000¢z0n £ 0 n0O O O0mnzO0O ]
1-1-1000¢¢E£EO0-f £ OO0 O O0OECO
1 0 20000Ef(n 0-£E-n0 O 0O 0En

P={0 0 0100000 0 0 0z ¢ £O0 00
0 0 0010000 0 0 O0FE-E E£E0Q 00
[0 0 0001000 0 0 On O0-2n0 00 |
. & & 0 8 0 0 (3.4.34)

The advantage of present element over the others is
that each stress mode corresponds to one eigenvalue of the
stiffness matrix K. This eigenvalue is the same with the
eigenvalue of the matrix Kj, which is resulted in only by
the one stress mode. Each eigenvalue thus corresponds to a
single stress mode without any energy coupling between

these different stress modes.
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The eigenvalue analysis shows that the Atluri's f£irst
7 choices give low eigenvalues for some high order terms.
These are not zero which satisfy nonzero requirement, but
the structure is weakened. The eigenvalues of 8th choice

agree with that of Pian and the author.

Further examination of the diagonalization of the
compliance matrix H shows that only the author's method
results in complete diagonalization 1lead to complete

decomposition of the elasticity energy.
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Chapter 4 Composite Finite Element

for Stress Analysis of Laminate Structures

A 3-D, 8-node composite finite element 1is formulated
based on the variational principle of combined energy with
an incorporation of the modal analysis technique for a
deformable body. It is suitable for stress analysis

of laminate structures.
4.1 derivation procedure

The variational principle of combined energy presented
in Chapter 2 can be expressed as the laminate functionail
taking a stationary value wunder the constraint conditions

represented by egs. (2.2.2, 2.2.7 and 2.2.9), i.e.

1 — -
HL=£(EqTRq+ogTeL-FTu)dv—I fluds

So (4.1.1)
8, = 0 (4.1.2)
in which
u = N¢ (4.1.3)
ag = PgB (4.1.4)
€
q-= ‘ g\ (4.1.5)



( R} R ]
R = T

L R2° R3
[ 0;-0,037%0,T 020371
L 037%0,T -3~}
(5,71 -s; " 1s,

= _ ) (4.1.6)
L -s27s;7 1 s;Ts;7isp-83 )

oW au W 3V W

_ CAJCARCLIET B
U 32’9z 3x'3z ay} D 8 (4.1.7)

where,
u displacement,
8 nodal displacement,
N shape function,
Og globally continuous stresses,
Pg assumed partial stress field,
B partial stress parameter vector,
£g globally continuous strains,
and
og={oz,rxz,1yz}T, (4.1.8)
{exreyrvxy}T = BgS. (4.1.9)

From eqg.(2.1.3), the locally continucus stresses and

strains can be obtained as

o, = J= Rjeg + R30q (4.1.10

lTxy
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€2
€L = szl= RzTeg + R3og (4.1.11)
szj

The combined energy can be changed to the form

1
C = -q'Rq

1 rPR +1 TR o
= -t lE g 0 3
29 97279 779 (4.1.12)

+ogTR2Teg

Thus, the laminate functional can be expressed as
M, = -l-GT(J'B TRy Bydv) 8+
L 2 v g *1%g
+ -]:BT(IP TR3P,dv) B+
2 v g R3%g
+ BT(ngTRzTBgdv)6+
v
+ BT (fpg"Drav) 8-
v
- 8T ([NTFav+[NTTds)
v

It can be seen from eq.(4.1.6) that

R; = 871, (4.1.14)
Ry = -S1”1s,, (4.1.15)
R3 = -037 L. (4.1.16)
If we define
- T, -1
Kg = [ Bg"S1 "Bgdv (4.1.17)
v
B= —[ pgTQ37lpgdv (4.1.18)
v
6 = J PgT(DL-SpTs; 1Bg)av (4.1.19)
v
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£ = | NTFav + [ NTTds
v Sg
then

1 1
HL=§6TKd6- -Z-BTHB+BTG6—6Tf

Taking the partial stationary condition

ollg,

—_— =0

38 !
we have

HB = G§

(4.1.20)

(4.1.21)

(4.1.22)

(4.1.23)

Therefore, the stress parameter can be expressed by

nodal displacement.
B = H1GS
Using symmetry of stiffness matrix, i.e.,
23T = 03
and eq.(4.1.18), it can be shown that
BT = §
Substituting stress parameter B into the

functional I, we get

1 1
Iy, EaTxds— -z-cTGTa‘lcc+

+ 8T¢Ta~1gs -8Tf

1 1
EsTde»r EGT(GTH'lG)G -8TF
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(4.1.25)

(4.1.26)
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Denoting

Knh = GTH 1G (4.1.28)
and

K = Kg + Kp (4.1.29)
then the laminate functional is transformed into the

following final form,
1eT T
I, = 55 K§ - 6°f (4.1.30)

Carrying out the other partial stationary conditicen of the
functional I,

ally,

— = ‘ 4.1.31
948 ) ( )

the governing equation in nodal displacement space is
finally obtained as follows.

KS = £ (4.1.32)

It can be seen that the stiffness matrix of the present
finite element consists of two semi-stiffness matrices, Ky
and Kp. Therefore the present finite element can be

referred to as the composite finite element.

The first semi-stiffness matrix, Xgr in displacement

formulation, 1is based on the globally continuous strains,
i.e., the in-plane strains ex,ey,Yxy- It can be called
semi-displacement stiffness matrix. Another semi-stiffness
matrix, Kp, in hybrid formulation, is based on the
globally continuous stresses, i.e., the transverse stresses

OzsTxzs Tyz. It can be named the semi-hybrid stiffness
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matrix.
4.2 Composite finite element method

In the composite FEM, the governing equation for the
unknown nodal displacement § is

K§ = £ (4.2.1)

where K is the stiffness matrix in nodal displacement

space, and f 1is the equivalent nocd.. force. They are

assembled from elements.

The element stiffness matrix is

K® = JeBgTsl'lagdv + GTE 1g (4.2.3)
v

and the element equivalent force is

£€ = [ NTFav + [ NTTds (4.2.4)
e e
v Sq

The matrices H and G are

G = éePgT(DL—Sszl’lBg)dv (4.2.6)
where,
Pg assumed partial stress field,
Bg partial strain-nodal displacement relation,
Dy, compatibility relation,
$1,52,Q3 submatrices of constitutive relations.
We have
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= PgB (4.2.7)
( 2 0 0 \
9x
=10 2 0 | u® = By6® (4.2.8)
ay g
9 0
9y 9x
~ /
/ N
ow ) o o 3
az 9z
au+aw _ 9 0 9 e _ e
3z ax? I EFY ax | ¢ T DLS (4.2.9)
a 9
am— - — 0 —— —
a3z 8y) 9z dy
~ /
Ox
g
Yy
81 82 Txyl
= T Oz (4.2.10)
S2° S3 Txz
Tyz)
Ex )
y
Q Q Yxy
= o €z (4.2.11)
Q2" Q3 szJ
Yyz
(18N, )
ayag 0 0
1 _aN;
0 azan 0 AR R (4-2.12)
1 N7 1 3N
_a20n ajdf 0 )
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L 0 a33z azdn

where B is the stress parameter.

(4.2.13)

The displacement u, stress ¢ and strain € can be given

by following relations, in terms of nodal displacement §.

u = N&°
B = H-1gs®
og‘:Pg B
- ~1lnce
= PgH G§

o, = R]eg + Rzog
= [51_139—81-182P9H—IG] 8¢
eg = Bg &°
‘ ep, = RaTeg + R3og
| = [-S3Ts;71Bg-037tPgE 1G] &8¢
|
|

or say

= Bg 68
-5,7s171Bg-037pgE 16

...70..

(4.2.14)

(4.2.15)

(4.2.16)

(4.2.17)

(4.2.18)

(4.2.19)

(4.2.20)



where,
g = { 0x,0y,Txy,Uz'sz,Tyz }T (4.2.21)
e = { ExrE€yrYxyr€2rYxzrYy2 }T (4.2.22)
From the above equations, the stiffness matrix K&,

stress mapping matrix I'® and strain mapping matrix @€ can
be calculated by assuming the partial stress field Pg.

Then, the procedure is similar to the displacement FEM.

4.3 Nondimensional formulation

In order to generate the element stiffness matrix and
to calculate stress and strain, in the composite FEM and
the hybrid FEM the computer takes more time than it does
using the displacement FEM. Stiffness matrix , stress
mapping matrix and strain mapping matrix can be made
to be nondimensional, provided the above mentioned
elements have the same ratios in three dimensions, elastic
property and orientation. Tbhz nondimensionization makes it
poss. ble to calculate stiffness matrices and stress - nodal
displacement, strain - nodal displacement matrices in
advance. Thus, when the FEM program is running, it reads
them from storage, and adjusts them to real dimensions and

real elastic modulus.
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The nondimensionization procedure is as follows. Take
aij, the first lamé coefficient, as a characteristic length,
and Ej,, the largest elastic modulus, as a characteristic

modulus, i.e. a=aj;, E=Ej, and denote

c] =ayj/a=1 (4.3.1)
cy = az/a (4.3.2)
c3 = az/a (4.3.3)
[Jl = c1cac3 (4.3.4)
¥ = x/a (4.3.5)
or
X = ¥o*tc1k (4.3.6)
¥ = Yotcan (4.3.6)
= Zpotc3t
and
G = o/E (4.3.7)
By = Pg/E (4.3.8)
§ = ES (4.3.9)
Q = Q/E (4.3.10)
By = aBy (4.3.11)
Dy, = aDy, (4.3.12)
G = G/Ea? (4.3.13)
f = B/Ea3 (4.3.14)
K = K/Ea (4.3.15)
T = al'/E (4.3.16)
? = ad (4.3.17)
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then we have

o
1

=
il

=
"

L 0 c33g c29n ,
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9
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1

0 0

Q
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1 aN;
0 c23dn

0'-..--«

1 9Ny 1 9N;
. c2dn c39f O -

1 aNj
0 0 c39

g
1 _9Nj 1 3Ny
Clag, o e 0 a0 e e

1 aNj 1 3Nj
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(4.3.20)

(4.3.21)

(4.3.22)

(4.3.23)

(4.3.24)

(4.3.25)



® = (4.3.26)

The nondimensional matrices ﬁ, f} ® can be stored into
some files. The real element stiffness matrix, real stress

and strain matrices will be adjusted as follows.

K = EakK (4.3.27)
I = ET/a (4.3.28)
¢ = 8/a (4.3.29)

The real stress and strain will be

o =T8¢ (4.3.30)

€ 03 (4.3.31)

4.4 3-D, 8-node composite element for isotropic materials

Chapter 3 investigates the deformation modes and their
stress field modes of 3-D, 8-node hybrid FEM. It could be
useful to have the corresponding stress field modes in
the 3-D, 8-node composite finite element for isotropic

materials.
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4.4.1 Nondimensional constitutive relation
for isotropic materials
Isotropic materials have two elastic constants, for
example, E and v. The nondimensional constitutive
relations are as follows.
" 1-v 0 -v 0 0 )
-v 1 0 -V 0 0
- 0 0 2(1+v) 0 O 0
S = -V =V 0 1 0 0 (4.4.1)
0 0 0 0 2(1+v) O
. 0 0 0 0 0 2(1+v) |
r&—v ) 0 v 0
~ 1 v 1-v 0 v 0
= m—— 0 0 (1-2v)/2 0 0 5.4.2
Tz |y oy B2 0 (5-4-2)
0 0 0 0 (1-2v)/2
L0 0 0 0 0 (1-2
-~
~ 1 1 1 v 0
5177 = —, v o1 0 (4.4.3)
1-v¢ | 0 0 (1-v)/2
~, 1ty [1=2v 0 0 ]
Q3 = 109 0 2(1-v) O (4.4.4)
V Lo 0 2(1-v),
- l1 1 O
aA m~ v
§,T8,71 = — 0 0 0 (4.4.5)
1-v 0 0 O



4.4.2 Number of modes of the assumed stress field

There are a total of 24 degrees of freedom for 3-D,
8-node element, 6 of which are the rigid body motion. So
the total number of degrees of deformation freedom for the
3-D, 8-node element is 18, or

m = n-r

24-6 = 18 (4.4.6)

According to the numerical test, the displacement
semi-stiffness matrix of 3-D, 8-node element, K4, have 10

nonzero eigenvalues.

mg = 10 (4.4.7)

To avoid the zero-energy kinematic modes, the hybrid
semi-stiffness matrix must have the orthogonal stress field

modes of at least

mp = m-mg

18-10 = 8

On the other hand, when as many stress field modes as
possible are incorporated intc the assumed stress field Pg.,
the maximum number of nonzero eigenvalues of the
semi-hybrid stiffness matrix Ky must be 8. So the
semi-hybrid stiffness matrix can have at most 8 orthogonal

stress field modes.
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In summary, according to numerical tests, the
correct number of modes of the assumed stress field is 8

for the 3-D, 8-node composite finite elemant.

If the number of nonzero eigenvalues of the hybrid
semi-stiffness matrix in stress parameter space, H'l, is
equal to 8, and those of the semi-stiffness matrix in nodal
displacement space, K, is equal to 8, then, the composite
finite element will be free from zero-energy kinematic

modes.

4.4.3 Assumed stress field of the 3-D, 8-node

composite element for isotropic materials

The following assumed stress field satisfes the

requirments in the above section.

Pg = { 01/02,...,08 }
100&En0 0&n
= 01000n n O (4.4.8)
001 00¢-¢§ O
in which
oi = { 0zirTxzisTyzi )T (4.4.9)

Based on this stress field, the semi-hybrid stiffness
matrix in stress parameter space, 51, is diagonal and has

8 nonzero eigenvalues.
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It is easy to formulate 3-D, 8-node composite finite
elements for isotropic materials by means of the formulae
stated in section 4.3 and based on the partial stress field

Pg as described in eq.(4.4.8)

Numerical tests show that composite FEM gives perfect
agreement with hybrid finite element solution in constant
stress cases and in two transverse bending modes for
laminate plate shown in Fig.4.1 and Fiqg.4.2. These two
bending cases are of importance for plate and shell

elements.

Once the valid shape function of displacement
field and mode function of stress field feor anisotropic
laminates is found, it will be possible to use only one
composite element to span the whole thickness of laminate,
satisfying the continuity of in-plane strains and
transverse stresses as well allowing the possible
discontinuity of in-plane stress and transverse strains at
interlaminar surfaces. This will be the advantage of
composite FEM over traditional displacement FEM and hybrid

FEM.
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Fig. 4.2 Bending mode B solved by composite FEM
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Chapter 5 Numerical Results for A Symmetric Angle-ply

Subjected to Uniaxial Tension

By wusing the present composite finite element,
and the traditional displacement element and hybrid
element, a calculation is made for a symmetric angle-ply
laminate under uni-axial extension, For this simple
loading, the results from these three elements agree very
closely. However they are quite different f:om those

given by classical laminate theory.

The classical laminate theory is based on the
assumption of constant strains across the whole thickness.
When a symmetric angle-ply laminate is subjected to a
uni-axial tension, the shear coupling deformations are

cancelled by adjacent layers with opposite orientation.

The numerical results show that this is not true. In
most part of the lamina, the shear coupling deformation
exists and has almost the same value as in the case of free
extension of unbound layers. Only within a thin region near
the interluminar surface, the coupling shearing |is
constrained and in-plane stiffness has a higher wvalue.

This causes a strong stress concentration.



5.1 example

The geometry of th» sample is shown in Fig.5.1. Its

elastic constants are:

E;r, = 145 GPa

Ep = 10.7 GPa

Gy = 4.5 GPa (5.1.1)
Gpp = 3.6 GPa

vie = 0.31

vpp = 0.49

where the subscript L denotes the value along the fiber
direction, T denotes the property in the transverse

direction.

The loading and boundary conditions are given by
fixing the amount of displacement in X-direction at two
ends of the strip given a strain of ex=0.01. The reaction

force is in the X-direction only.

For constraining the rigid body motion in the
transverse Y-Z plane, another three displacements in Y-2

plane have to be restricted also.
When the strip is very long along X-direction, the
stresses and strains should be independent of the X

coordinate. The displacement along X-direction in identical
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Y-Z2 planes should be the same. If the same displacement is
assumed in any of the two Y-Z boundary planes, then the
length of sample in the X-direction does not matter for the

stress analysis.

The real size of the sample is
L = 1.0 mm

2b 12.125 mm (5.1.2)

4hy = 10.25 mm

The constitutive relation is anisotropic and is as

follows.
[ €1 } g 1/E;, =vp,/Ep 0 -vp,/Ep O 0] {cl \
€2 -vpr/Ep, 1/Ep 0 -vpp/Ep 0 O 02
Y12 0 0 1/Gip O 0 o0 112\
\es |[= [-vuo/Ep -vpp/Ep 0 1/Ep 0 0 | o3 f (5.1.3)
Y13 0 0 0 0 1/Gpp O T13
\v23) L o o 0 0 01/Gpy) |r23)

where subscript 1 indicates the direction along the fiber,
2 and 3 are transverse to it, and more specifically 3 is

in the thickness direction.

The compliance matrix can be mapped into x,y,z space
by transformation matrix T

S(x,y,2) = TTS(1,2,3)T (5.1.4)
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in which

( m n?2 2mn 0 0 0 h
n? m? -2mn 0 0 0
-mn mn m2-n2 0 0 0
T = 0 0 0 1 0 0 (5.1.5)
0 0 0 0 m n
. 0 0 0 0 -n m

where,

cos 6

=
]

=
it

sin 0 (5.1.6)
5.2 Numerical Results

The numerical results for uniaxial tension on
the symmetric angle-ply laminate are shown in Fig.5.2 -
Fig'5.36.

5.2.1 Main tensile stress ay

The <classical laminate theory gives a uniformly

distributed tensile stress og, which is indicated by "LTH"

or "Laminate theory" in Fig.5.2 - Fig.5.10.

If the 1layers of the laminate are not bound

together, they also should have a wuniformly distributed
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tensile stress, which is indicated by "free extension" in
the figures. Also the average stress calculated by dividing
reaction force with the cross section area is shown, this
is indicated as "average". The reaction force was

calculated using finite element method.

The stress values calculated by composite FEM are

denoted by "at mid-line" or "near free edge". Mid-line
means:

x =0

y=20

0 < z < 2hg (5.2.1)

Near free edge means:

x =90
y = 0.9997b
0 < z < 2hy (5.2.2)

From Fig.5.2 Fig.5.10, it can be seen that
a) Tensile stress is not uniform across the thickness.
b) In most part of laminate, i.e. when,
z < 0.8hg
or
z > 1.2hg (5.2.3)
the numerical results of tensile stress oy is almost the
same as with the free extension either at mid-line or near

the free edge.

c¢) There 1is a tensile stress concentration near the
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interlaminar surfaces within 1/5 of the ply-thickness, i.e.
ho-0.2hg < z < hot+0.2hg (5.2.4)

d) At mid-line, the peak value of tensile stress at the
interface may be higher than the solution of laminate
theory for locations within 1/20 of the ply-thickness, i.e.

ho=0.05hg < 2 < hg+0.05hg (5.2.5)

e) The peak value of tensile stress oy at mid-line is
higher than laminate theory, if the orientation is within
the following range.

0° < 6 <~68° (5.2.6)
In the rest of the orientation range, it is lower.
The error is more than 10%, if the orientation is between
20° < 6 < 60° (5.2.7)
The Maximum error is 86% at about 6 = 42°,

f) The tensile stress gy near the free edge is close to
the laminate theory for all orientations.

g) The average tensile stress oy (total reaction force
divided by section area ) is close to the free extension
for all orientations.

h) In comparison with 1laminate theory, the average
tensile stress o0y is lower. The error is more than 10%
when

5° < 8 < 50° (5.2.8)

The maximum error is 60% at about 6 = 24°,
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i) 1In comparison with the average tensile stress, the
peak value at mid-line is higher when the orientation is in
the range of eq.(5.2.6). The stress concentration
coefficient is larger than 1.1 when,

50 < g < 60° (5.2.9)
The maximum concentration coefficient is 3.3 at about

e = 30°.

5.2.2 In-plane stress due to Poisson's effect

In classical laminate theory, Poisson's effect is
uniform across the thickness of the whole 1laminate. So Oy

remains zero.

However, in the numerical test, the in-plane shear
coupling deformation is restricted just near interlaminar
surfaces. The in-plane contraction in the transverse
direction is somewhat restricted. The non-uniformity of
Poisson contraction in the Y-direction causes a
concentration in oy. For equilibrium, the average oy must

be zero.

From Fig.5.11 - Fig.5.18, it is shown that
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a) There 1is a concentration of oy near the interlaminar
surface within 4/25 of the ply-thickness, i.e.
ho=.16hg < 2 < hgt+.16hg (5.2.10)
Outside this range, oy has value of opposite sign to the
peak value.
b) The peak value of oy is positive if the fiber
orientation is
0° < 8 < ~68°, (5.2.11)
negative when
68° < & < 90° (5.2.12)
c) In comparison with the average tensile stress oy, the
peak value of oy is larger than 10%, when
15° < 8 < ~65°
and at about
8 = 45° (5.2.13)
The maximum concentration coefficient of oy to average

tensile stress oy is

€ = Oy.max/%9x.average = 1:26 (5.2.14)

5.2.3 The in-plane shear stress 1iyy

Restriction of the shear coupling deformation in
classical laminate theory results in the in-plane shear
stress Txy uniform within each layer, and it changes its

sign at the interface.
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However in the numerical results generated by the
composite FEM, the in-plane shear stress tyy appears just
within a thin portion near the interlaminar surface, and

it remains zero in the rest of the laminate.

Fron. Fig.5.19 - Fig.5.27, it can be seen that
a) The in-plane shear stress Tyxy is not uniform within
each lamina.
b) In the majority of lamina, i.e.
z < 0.8hg
and
z > 1.2hg (5.2.15)
the shear stress tyy remains at zero.
c) There is a concentration of shear stress T4y near the
interlaminar surface within 1/5 of the ply-thickness, i.e.
hg-0.2hg < z < hgt+0.2hg (5.2.16)
d) There is a finite discontinuity for the in-plane
shear stress 1xy at the interface.
e) The peak value of shear stress tyxy is positive when
the fiber orientation is
0° < 8 < ~68° (5.2.17)
and negative when
~68° < 8 < 90° (5.2.18)
f) 1In comparison with laminate theory, the peak value of

the shear stress T4y is higher for all fiber orientations.
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The error is larger than 10% when
20° < 9 < 80° (5.2.19)
The maximum error is +255% at about =579,
g) The concentration coefficient of shear stress tgy to
average tensile stress oy is more than 1.1 when
50 < 9 <~63° (5.2.20)
The maximum concentration coefficient of the shear stress

to average tensile stress is 1.76 at about 0= 37°.

5.2.4 The transverse stress 0z, Txzs Tyz

Classical lamination theory neglects these transverse
stresses. These stresses are assumed won-existent away
from free edges and traction boundaries. This is confirmed
by numerical results which show that their magnitudes

remain quite small in the central region.

It can be seen from Fig.5.28 - Fig.5.34 that
a) Near free edge, there is a steep concentration for o,
within 1/5 of the ply-thickness, i.e.
ho-0.2hg < z < hg+0.2hg (5.2.21)
b) There is a smaller slope of concentration of ty;
within 1/2 of the ply-thickness near free edge.
¢) The peak value of o, is negative when

0° < 8 < ~68° (5.2.22)

-89_



It is positive when
68° < 8 < 90° (5.2.23)
The maximum peak value appears at about
8 = ~30° (5.2.24)
d) The maximum peak value of ty, appears at about

e = 12° (5.2.25)

5.2.5 The effect of a free edge

This computer test gives its main attention to the
central part of laminate ftar from the free edge in the

arrangement of the element mesh.

However the results also show some effect from the

the free edge. It can be seen from Fig.5.35 and 5.36 that:

a) The main tensile stress oy looses its high peak value

at interlaminar surface near free edge.

There is still some concentration of tensile stress oy
at interface. Near the free edge, for the most part,tensile
stress is close to that of £free extension and near the
interlaminar surface, there is a peak value, which is close

to the uniform solution of laminate theory.
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b) The first coupling stress 1is the in-plane shear
stress. It looses its high peak value near the free edge.
It should bhe zero at the free edge. But in the FEM
calculation, at those stress sampling stations very close
to the free edge, iL still has a quite high value which \is
close to the uniform solution of laminate theory so as to

restrict the coupling shear deformation at interface.

c) The second coupling stress oy is caused by the
differences of shear coupling deformation. It vanishes

near the free edge.

The numerical resulls of oy show some instability near

the free edge.

d) The decreasing of Txy and vanishing of Oy causes a
disorder in the transverse stresses 0, and Tygz. These

stresses increase abruptly near the free edge.
e) If the algorithm is changed so as to show the

vanishing of Tyxy, then o; and 1yz must increase much more

than in these numerical results.
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5.3 Conclusion

l. The stress analysis of anisotropic laminated structures

is necessary both for the free edge and central region.

2. In the central region, the shear coupling deformation
is restricted only within a thin piece 0.2h®. This causes
a strong concentration of tensile stress oy, in-plane shear
stress Txy and Poisson effect stress oy:

a) of oy when 5° < 8 < 60°,

at 8=30°, 0y/0y.average = 3.3

b) of oy when 15° < 8 < 659,

at 8=42°, oy/0x.average = 1.26
c) of tyy when 5% < 8 < 63°,

at 9':'370, Txy/ox.average = 1.76.

The laminate theory has a significant error:
a) of oy when 20° < 8 < 60°,
at 8=42° the maximum error is 86%,
b) of 14y when 20° < @ < 80°,

at 8=57° the maximum error is 255%.
3. If we use one composite or hybrid element to span the
whole thickness of the laminate, i.e. use of plate or shell

element, the stress mode and shape function must be
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modified by considering the discontinuity of Txy and the

concentration of oy, Oy, txy at the interlaminar surfaces.

4, For stress analysis of laminated structures, it is
better to use a 3-D composite element. Because the
continuity conditions of in-plane strains and transverse
stresses will be satisfied surely and the possible
discontinuity of in-plane stress and transverse strains

will be allowed.
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Fig.5.8 Stress — fiber orientation relation

ox versus 6 for symmetric angle-ply laminate
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Fig.5.25 Stress - fiber orientation relation

Txy versus 6

for symmetric angle-ply laminate
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Fig.5.46 Stress - fiber orientation relation

Txy.FEM/Txy.LTH Versus 6

for symmetric angle-ply laminate
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Txy.max/Ox. average

Fig.5.27 Stress - fiber orientation relation

Txy.max/Ox.average versus 8

for symmetric angle-ply laminate
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Fig.5.34 Stress - fiber orientation relation
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for symmetric angle-ply laminate
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1)

2)

3)

4)

1)

Chapter 6 Contribution And Suggestion

For Future Work
The contributions made in this thesis are:

Introduction of the concept of combined energy,
formulation of the laminate functional and verification

of the variational principle of combined energy.

Introduction of the concept of modal analysis of
deformable bodies with finite degrees of freedom, a
superposition theorem of stiffness matrix and a postulate
of energy decomposition in hybrid finite element.
Development of a procedure to find out natural stress
modes from natural deformation modes. Modal analysis for

2-D, 4-node and 3-D, 8-node hybrid finite elements.

Formulation of three dimensional composite finite element
which consists of two semi-stiffness matrix, one is
semi-displacement stiffness matrix, another is

semi-hybrid stifness matrix.

Calculation of the in-plane stress concentration near

interlaminar surfaces for laminate structures.
The following future works are suggested:

sevelopment of the modal analysis technique for 3-D.




2)

3)

4)

5)

6)

20-node hybrid finite element and other plate and shell

elements.
Modal analysis for anisotropic materials.

Development of the distribution of the displacements and

stresses in wvarious laminate structures using many

elements per each layer.

Determination of the rational shape function N for

displacemen. field and mode function P for stress field

for laminate structures.
Modal analysis for laminates.

Stress analysis by means of composite FEM with one

element to span the whole thickness for laminate

structures,
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