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N ABSTRACT

Toward an Optimal Theory and Computer-Based Implementation of
Pattern Recognition Feature Selection

Lokesh Datta, Ph.D. 1 \
Concordia University, 1984

\

This work deals with a difficult proplem of discriminating a.
weakly stationary complex Gaussian stochasti process against anothef -
ance matrices (patterns)

\

are different. The high level of mathematical or computational

when the mean values are similar and the covar

difficulty encountered in minimizing the probabjlity of classification
error has many times led workers in the areas df pattern recognition,
information theory, coMmuniéations, and cont( ] ;peory to utilize
suboptimal statistical distance measures for feat fe selection. —A-—new—— --
feature selectipn scheme 1is presented which deélg quite directly witﬁ ~
the Bayesian error expression. The scheme i{s| developed using a
combination of classical results, information-theoretic techniques, and
concepts of distribution fqnctién‘theony. As opposed to asymptotic
results, the scheme is found to be accurate for fiinite sample size.~
The approach to feature. selection 1is shown, b§ use of numerous
exémples, to be superior to the conventional ,K;d ta-Shepp strategy
whigh‘emp]oys distance measure; aﬁd asymptotics in its formulation., A
. Qet;11ed analysis of the computational complexity of a pattern
classifier incorporating the new feature ngection strategy is included

with an eye toward a computer-based implementation.| The proposed

configuration of the classifier consists of three modes lof operation,
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© V¥iz.; the training mode, the processing mode, and the decision-directed

mode. The system parameters are established in the fraining ﬁbde, the
classification task s performéd during the processing mode, and the

sy§tem parameters -are updated using the decision-directed mode to
account for realistic quasi-stationarity of patterns.. A combination of
some well-known and a variety of new computationally efficient résu1ts
are proposed in order to realize an efficient pattern classifier. In
the process, we present characteristic equation reducibility results on
centrosyﬁmetric and centrohermitian matrices which provide ‘a
significant reduction in the driéhmetic complexity encountered in the
principal component (eigenvalue/eigenvector) extraction. In addition,

an approximation of Toeplitz covariances by circulants 1is proposed

which replaces the principal component extraction by the discrete
'Fourfer,transformation (DFT). The DFT can then be .performed quite
efficiently by the fast Fourier transformation (FFT) algorithm or by
the Winograd fast transformation algorithm (WFTA). éesu]ts on the
feature selection method are further substaptiated by a variety of
important numerical results on the effects of a free parameter found in
the theory, d priori probabilities, and the numSer of’featurés selected
on the probability of classif1cat10n.error. This study on the theory
and comﬁuter-based impiementation of feature se]ection; including
numerical exahp1es .;nd comparisons, may prove useful 1in stochastic
signal classification applications such as 1image analysis/object

recognition, speech analysis/speaker recognition, and robotics. In
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addition, the theory pres%ited here 'ls a- -useful tool for evalua? ng the

performance of compe/ting feature selection schemes *rn' sftuat1/6ns when

the error probabﬂity is extremely 1qw, and thus, simu at'lon is-

impractical.

»
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L ~ CHAPTER 1 -

INTRODUCTION °°

s

.1.1. GENERAL o

Can a-nachine‘be devised that acturate]g recogniZES a pattern? A
concerted effort to answer this question oy researchers 1n diverse
areas of'ﬁnterest,led to the conception of pattern recognition nearly

i~three decaoes‘ago. The challenge presented by the idea of deve]oping
tinte1ligent machines has translated into a considerable progress on
both the theoretica1 and practical fronts of pattern recognition.
Pattern recognition now finds applications in a wide variety of areas

such:as biomedical diagnostics, texture analysis for industrial inspec-‘

tfon, earfi~ resource satellite multispectral classiffcation, radar

remote sensing, speech analysis and speaker recognition, image analysis

3 and object recognition, and 1ndustr{a1 robotics.

recognition system. thure 1.1;dep1cts a pattern recognition system
consisting of & sequence of three stageg, viz., pattern representation,
. feature selection, and pattern;class1f1cat10n. The pattern representa-

tion stage 1nvo]ves gathering data measurements and converti them

into a suitable‘formlﬁpr machine processing. The feature selection
~‘stage of the pattern recognition system is,. perhaps. the most mportant
in that ft is. chiefly responsfble for the: performance of the system.

o ) The main purpose*of the feature selection stage is to reducﬁ the
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s
/dimensiqnality of the problem which may be necessitate& by constréints
of either a.technical or economical nature. An important part of the
- feature selection process is to ensure the reliability of the system by
extracting such information from the daka vectors that is the most
relevant to classification. The reduced dimensionality feature vectors
thus obtained are recognized by the pattern classification stage; From
a theoretical point of view, it is difficult to draw a boundary between ‘
the feature selection and classification stages. Agxrlgea1 feature
selector would make the pattern classification stééb trivial, an
almighty classifier would eliminate tﬁe need for the featufe §elector.
Unfortunately, a pattern recognition system without the feature selec-
tion component, though. theoretically feasible and‘plausible, may not be
rea1izeb1e given the practical constiaints of high dimensionality of
realistic prop]ews and computing power available. Consequently, it
generally is mandatory to incorporate the feature se1e§t1on stage as a
‘ process of reducing the)dimensiona]ity of the problem preceding the
classification stage. -

The performance of a pattern recognition system is measured in
térms of two important criteria: the probability. of classification
error and computational complekity. The problem of c]assif{cat1on is
primarily 6ne of partitioning the feature space in such.a manner that
the decisions are never wrong. In the case when tﬁislfannot be achiev-
ed, an attempt is made to minimize the probabiljty of c]assificat1on
error and, if some errors are more expensive than otherg, the average:
cost of errors. The second criterion of computational complexity f1s
viewed in terms of the cost and speed of a practical 1mp1ementation'of’

the system.’ '
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1.2. SCOPE OF THE THESIS

r

This work 1s primarily concerned with the feature selection stage
of the pattern recognition system. The problem considered here is that
qf discriminating a weakly Tstationary Gaussian stochastic process
against another. The Gaussian stochastic p'roc.esses are assumed &0 ‘have
similar n\eal;l vectors and different covariance matrices (pattl:ernsf.

A number of feature selection methods are discussed in Chapter 2.
These schemes approach-a minimization of'the probability d¢f classifica-
tion error in an "indirect" manner due to a general feeling that the
probability of classification error expression is either mathematical l’y

| or numerically intractable. Most of these !nethods. of féatur‘e ée‘lec‘tion
asymptotically approach the minimum error probability av\c_i» dre_ not work-
able and/or accurate for finite sample size. This motivates the de-
velopment of a feature selection strateqgy which deals directly witp the
probability of error expression and provides accurate classification
»results for finite sample size.

Cﬁapter 3 presents a new and accurate finite dimensionality infor-
mation-theoretic strategy for feature selection. The scheme deals in
more direct fashfon with the error probability expression. The techni-
que {s shown, by means of numerous examples, to be superior-to the
well-known Kadota-Shépp (K-S) metﬁod [1.1].l The K-S method 15 a typi-
cal example of conventional feature selection schemes 1in that it em-
ploys asymptotics and statistical distance measures in its formulation.
A more direct use of statistical distance measures, for example, the
~Bhattacharyya distance [1.2] is shown to provide "loose" bounds on the

error probability, thereby, failing to provide useful information

&
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for feature. selection. The probakegxggheme provides a: tool not only
for feature selection itself, but for & general performance evaluation
of competing pattern classification. schemes fn the case when an
’ extremé]y low error probability renders a computer simulation im-
practical.

’ Thg new featﬁre selection strategx is developed by using a combin-
ation of classical results due tovLapléce with further.refjnements by

Polya et al [1.3], distribution function theory, and information

theory. An appealing performance of the sEheme in terms of the error .

probabi1ity motivafe; an investigation into thecomputational complex--

ity of the technique in order to determine its feasibility for a
computer-based ¥mp1ementatfon. ‘ .

We begin by developing in Chapter 4 a variety of new rgsu]ts‘on
‘matrix theory with an eye towardVan efficient computer-based implement-
ation of the feature selection scheme of Chapter 3. Chapter 4 presents

the reducibility results on two classes of matrices of interest, name-

1y, centrosymmetric (CS) aﬁd centrohermitian (CH) matrices. The

results on CS matrices are a specialization of the results in [1.4] and
a generalization of the results in [1.5]. The reducibility results on
CH m&friées are the first of this kind to appear in the literature.
The results are useful for efficient principal component extraction
required by the feature selection process. In passing, we mention that
real symmetric and Hermitian Toeplitz matrices are special cases of the
class of CS and CH matrices, respectively. IH order to significantly
enhince the computational efficiency of principal component extractiop,
Chapter 4 also includes a method of approximating real Toeplitz covar-

fances by circulants. Principal component extraction can then be .



-6

replaced by the discrete Fourier transform (DFT). The DFT can be per-

formed quite efficiently by using the v;e'll~kno‘wn fast Fourier transform
(FFT) or Winograd fast transform algorithm (WFTA).

The results of Chapter 4 offer a significant*reduction in the
computational comple;/d'tyﬂof a computer-based implementation of a pat-
tern classifier employing the feature selection scheme of Chapter 3. A
?omp'lexity analysis of the classifier is presented in Chapter 5. The
/,//classifier operates in three modes, viz., the training mode, the pro-
" cessing mode, and the decision-directed mode. The system parameters
are estab]ishe‘db‘ln the training mode, the classification of patterns is
performed in thre processing mode, and the decision-directed mode, in
conjunction with the training mode, updates the system parameters
taking~1nto‘acc6unt -a realistic quasi-stationarity of patterns. The
study on implementation proposes efficient algorithms and corresponding
.computat‘lonal ‘complexity ‘analysis for every step in the c]agsification
'pr'ocess for realizing an efficient pattern classifier. A number 9f the
proposed algorithms are new.

Computer simulation results of the pattgrn classifier are present-
ed in Chapter 6. The probability of classification error results for
the feature selection scheme of Chapter 3 are compared with that of the
conventional K-S method. This comparison substantiates the claim made
in Chapter 3 regarding a superior performance of the new scheme 1in
terms of the error prq‘pabﬂity. The error probability results for the
new scheme are also ana;y_zed in view of error bounds on the' probabﬂit}/
of error using the Bhattacharyya ldistance. For the examples examined,

"~ the bounds are repeafed'ly found . to be quite loose’and devoid o? any

b

useful information for feature selection.
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Effect of a pniori probabilities of the .patterns on the overall
error prob‘at;ility,..for finixed_‘sample size is also conﬁidered in Cr;apter-
6. Althca:ugh, asympfdticaﬁ};;phg error probability is independent of a
priori probabilities [1.6],‘/’it is observed, as expected, that the
»error in.classification for finite sample size decreases as the a
priori probability of oﬁe pattern is {increased re‘lative to the other.

- Behavior of the classification error versus the number of features

d'

selected 1is examined. We find, consistent wit_h classical vthought,
that the error decreases sharply as the number of features is increased

to a certain value ‘and then the decrease in error begins to taper off -

gradually. - T~/

1.3. MAJOR CONTRIBUTIONS OF “THE WORK . |

This work offers a variety of new, interesting, and useful results
on the theory and computer-based implementation of pattern recognition
feature selection for finite sample size. The information-theoretic
approach to feature selection, deveYoped by utilizing classical methads
and distribution function theory, deals directly with the Bayes error
expr‘ession,' The work demonstrates the suboptimality of conventional
feature selection schemes employing statistical distance measures and
asymptotic formulation. A number of examples considered here and com-
parisons therof with a typical conventional scheme such as that of

Kadota and Shepp (K-S) [1.1] substantiate that the new scheme is always

at least as good as, and sometimes better, by an order of magnitude,
than the K-S method for finite sample size. The study finds the use of

‘statistical distance measures, by means of examples, often inadequate.
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A1l numerfcal examples considered discriminate between Toeplitz covar-
fances. Toethz covariances ar‘e of extreme practical importance in
that they are often used for information representation and modelling,
e.g., speech‘ representation for speaker recognition. An appreciable
data compression ratio of 0.25 (or 75% compression) is used for all
examples. These ex'ampl‘es ‘not. only permit us to demonstrate a better
performance of the new scheme in-comparison to the corventional methods
for feature selection, but also provide better understanding and
insight into the problem. Moreover, the comparisdns are the first of
this type to be found in the 1iterature. .
A computer-based 1'mp‘i ementation_ of the pattern classifier employ-
ing the new feature se}ection scheme is proposed. As with many feature

selection schemes, a prilncipal component extraction {s initially .re-

quired. Computationally efficient algorithms for this task are pre- .

sented which utilize certain a priori known structure of the covarianc-

es or covariance products involved, i.e., Toeplitz, or centrosymmetric

and centrohermitian, respectively. The reducibility results on centro-
hermitian matrices are the first to a;'apear; in the literature. In order
to increase speed significantly, approximation of the Toeplitz covar-
fances by circulants is proposed. This approach leads to satisfactory
error rates when there 1s sufficient 's_{:atist'lcal independence within
each data vector, and a]1ows the principal component extraction to be
replaced by-the discrete Fourier transform (DFT). The implementation
study continues with the presentation of most suitable algorithms and
corresponding complexity analysis for each step of the feature selec-
tion process in ‘order to realize an ‘efficient pattern classifier.

Several aspects of the implementation study may also be used to enhance
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the computational efficiency of many other’ featuf'e selection schemes.

A detailed complexity anah;sis of;‘the pattern ctassifier employing the ‘

new feature selection scheme shall prove to be an important contribu-

tion\for practical. applications of stochasﬂtic signal classification

" such as encountered in passive sonar, as well as in the areas of image

-

processing, speech recognition, and robotics.
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CHAPTER 2

METHODS IN PATTERN RECOGNITION FEATURE SELECTION ~

—

2.1, INTRODUCTION . 4

Let x be an (Nxl)-dimensional. complex stochastic data vector
with multivariate nﬁrmal (MVN) distribution, N(ani)" hnder hypothe;
sis Hi i=1,2 for the binary or two-class hypothesis testiné problem.
The hypothesis Hi is assumed to have a priori probability n, i#l,2
with n1¥x2 =1 and =n; #0,1. The, general problem“of extracting n
features (n<N) :gy be viewed as that of g{ther selecting n suitable
measurements from the N elements of x , or of selecting n appro-
priate linear functionals constituting an n-dimensional linear space
an. In‘either case, 1tais desired to ﬁave a probébiliiy measure
corresponding to each pattern class in ,feature space. " The
effectiveness 6f feature.selection relates to the performance of the
pagiern classifier, wusually in terms of probability of error or
misclassification. Thus, the solution to the feature extraction

problem lies in choosing a subset of the N elemeMfs such that the

.
probability ‘of classificatidh error is minimized.

The mathematical ‘techniques.of feature selection in pattern recog-
nition may be broadly c]aséified 5nto two categories, namely, feature
selection in the measurement space, and feature selection in the traﬁs-
formed space. The development of feature selection schemes beloﬁging

" to the first category has been based on the implicit assumption that

the aéquisition of data or measurements representing the input



-12-

patterns is costly. The main objective in this case then is to
minimize the cost associated with measurement “extraction and achieve a

reduction in the2dimensionality of the problem by reducing the number

. [ ,,
of measurements required to recognize the patterns. This can be ac-
R 3 ,

complished by eliminating the measurements which provide redundant,
irrelevant.' or 1nsignif1cant information. Reducing the number of
fnitial méasurements can, for example, lead to savings in sensor hard-
ware and computing power for data processing. A number of feature
selgbttnn séhemes in tﬁe measurement space’ are ﬁisfussed in Section
2.2. . R
- Feature selection schemes belonging to the second category ugi-
lize the entire representation vector to obtain 3'feature vector _¢f
lower dimension. The elimination of reduadant, ir?glevant, or inszgn-
ificant 1nforma§ion is. achieved by applying a transfo>mation which
mapf.the patterns from the’representatton space to a lower diménsion
feature space. The key to resolving the feature selgction problem
here 1is to construct an optimal transformation which minimizes the
probability of misclassification. Some interesting feature selection
schemes belonging to th{s cStegory are discusseq'ia Section 2.3. In
~ passing, we mention that the new and accurate technique of feature
selection presente& in Chapter 3 altso belongs to this pgrgicular cate-
gory.

Ié is interesting to note that the feature selection methods in
the . transformed space can be applied not oniy to the representati&n

vector for dimensionality reduction but also, to achieve further data

compression, in the feature space determined by feature selection

p ?N\\\

’»
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schemes in the measurement space.  Although the feature selection

schemes of these two categories are not mutually exclusive in' their
applicability, such a simplistic approa’ch to the claséification of

methods permits us to discuss various aspects of these techniques;

for example, the performance reliability in terms of error proba-,

bility.

[

-

2.2. FEATURE SELECTION IN THE MEASUREMENT SPACE

»

he key to resolving the feature selection problem in the measure-

ment space is to obtain a subset of n features y from the set of N

rpeasurements of the data vector x such that the propabih‘ty of mis-
recogﬁition’ is }ninimized with respect to any other combination of a
features selected from— _x. Unfortunately, no simple exp;'essiqns éor
classification error are avaﬂaS]e lfor establishing the best set of

fe;atures and, in practice, one has to be satisfied with a compromise of

selecting a feature set y* which optimizes some criterion , J(l)"

»

i.e.,
Jy*) = max {J(y;)} (2.1a)
) {1'1}
or, )
y*) =.min {o(y)} - (2.1b)
—{11} ) -

with an assum§t1on that  J(y) ﬁan be related to error probability

[2.1]. The members of the family {11} in (2.1) are all the possible
C , .

combinations of n features that may be selected from N measurements
of the pattern x. ' The fojlowing subsectiogs discuss a number of ways

in which the task of optimizing J(y) may be accomplished.

\
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2.2.1. S?ATISTXCAL DISTANCE MEASURES

The notion of "distance". between two hyppthesis,or patterns has

been defined in many di fferent ways in mathematical statistics and all

-

distance measures are qualitatively related to the probab111ty of m1s-.

classification in a similar manner. The underlying concept for the use*‘

of distance measures is that the larger the d1stance established be-

tween two patterns by the featbres selected, .the better the perfo;hance
of the classifier (or 1ower error probability) [2:1- 2 5]. ,

Let p,(y) “Be the probability.density ﬁynction (pdf) of the fea-
turervector under hypothesis 1~i-1 2. The classnficatiom-of features

may be based, for example, on the 1og Tikelihood ratio [2 1, 2.2, 2.4,

-

2.6], given by,

o P ()] H
S () I

\

where the quantity T 1is a certain threshold value. "It is interesting

T (2.2)

to observe that the probability of error would be smali if the average
value of 2n L(x) is large’for the patterns be]onging to Hl and small

for those be]ong1ng to H Define, ' -

2°

E'1, [an L(l)_] ééﬂ [ L)) pylpdy  1=1,2 (2.3)

-~

-
L3

where the quantity E [ o] may be 1nterprpted as the average informa-
fion for discrimination against Hy 3=1,2 with {#j. The

-J-divergence, defined as,

BE W) -g Im ) ()

ts therefore a useful distance measure for the discrifination of two
o

L]

H
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_classes [2.1-2,9]. Note that when the classes are separable, 1i.e.,

'pl(l) =0 if 'pz(x) >0 and vice-versa, the"patterns are classified

t,withi‘)ut any error and J==, In contrast, when the patterns are indis-

tinguishable, f.ee, py(y) = pyly), we have J=0.
Another common]y used distance measure for feature selection,

~known as the Bhattacharyya distance, is defined as [2.1-2.9];

‘n

. ) . . Bn = -ln pn : (2.56)
‘.1where‘ P, is' the Bhattacharyya coefficient, given by,
s ] ’ A
n = I [P, (W)p,(y) ]? d (2.5b)

The 1ntegra1 in (2.5b) is also known as Hellinger's 1htegra1 [2.10].

" Hellinger's integral may be interpreted as the inner prdﬂﬁct of two

¥

vettors of unit norm, namely, /pllzj and /pzlzj R yith. P, being

the cosine of the angle between the two vectors. Also, ng have' [2.4,,

2.6], o ) '
) 0<p, <1 _ .‘ n (2.6a)
ano,:therefore, o . - ) |
) 0¢B <= ' (2.6b)

»

It is noted that when the patterns are separable and]may be classified

£
without error, the Qoefficient Pn \U\>and, on the other hand, when the

patterns are 1ndistinguishab1e and classification is not possible, the

. coefficient Pn =1, Thus, in order to obtain an optimal c]assif1er, the

select%nn of features must be performed sSuch that the Bhattacharyya
coefficient is minimized or, equiva]ently. the Bhattacharyya distance
is maximized. -,

* In genéra],.a]] distance measures .share some common properties,
, \ .
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e.g., the distance measures are non-negative and they attain m1n1mum'or
maximum values when the classes are indistinguishable or separable,

resp;:tively. The suitability of d1staﬁ'§ measures for feature selec-
tion can be justified by the arguments presented/above but their poten-
tial could be assessed only if their relationships to error probabiIity‘
were known. Unfortunately, the probability of misclassification cannot-

be expressed precisely in terms of these measures, but it is comforting

to note that various bounds,are known which relate the error probabi- . .

lity to some of these measures [2.1-2.7], e.g.,
) b~ 4 (14 p:]é < Pg(n) < [ﬂlﬂz]ipn (2.7)
and, : . h
$ min (m;,m)) exb(-dn/8) < Py(n) < [nluz]i(dn/4)'* (2.8)
for the Bhattacharyya distance and J-divergence, respectively, where
Pe(n) is the probability of'misclassificarnon based on n features.

Feature selection schemes based on probabilistic distance measures

genere]]y involve some form 'of optimization of -these measures or some '

\ criterion utilizing the measures. Although only two most commonly used

distance measures have been mentioned, severa] other distance measures
and the bounds which relate them to the probability of error are avail-
able in the literature [2.1,2.5]. The lack of exact expressions for
error probabilty in terms of distance measures suggeéts that, ideally,
one would use a distance measure nhich provides tighter bounds with

lower error proopbility than the others, but, 1in practice, other

aspects such as “computational complexity may be taken, into account with

" the final choice being a suitable problem-dependent compromise.

4 o~

~
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2.2.2 DEPENDENCE MEASURES

Section g;z.l has presented some criteria for feature selection
which are based on the "distance" between two pattern classes, This
section deals with the criteria that are based on the statistical
denendence. The most c0mmon1y used measure of probablistic dependence

/for feature selection is the mutual information [z 1,2.4,2.11,2.12].

Let ) -

H

p(y) = ani(x) . (2.9)

be the qixture density where u is the a Eriori probabi]ity and

' 91(1) i; the pdf under H} i=1,2. .Define,

- S Iy) =
i

AN

E Eiég%; 2.10
1“1 i ‘ln | p l ' ( . )
where - E. [o] is defined as in (2.3). Each term in (2.10) represents

the information for discri fnation in favour of H1 against the

overall mixture. We mg ite (2.10) as,
2 . ] :;i(,x)
p = 1L wey) o gy o (2e)
or, equiva]éntly, ~ ]
" 2
I(y) = G(y) "_121 T G(l‘Hi) (2.11b)

where G(y), the ‘entropy or average uncertainty of y, is given by

G(y) = - {2,, P(y) #n p(y)dy (2.11c)

and the conditional entropy G(XJH1) for a given 'H1 is given by,
~

G(y|Hy) = - énp1(x) Fpgly)dy i=1,2  (2.11d)



*
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The quantity I(y) in (2.11)ds known as the mutual information
« R .
between y and-the set {H1 i=1,2}, and may be interpreted as the

" {nformation about Hi obtéjned by observihg the random vectors _y.
. ‘ A

The use of:mutual 1nf6rmd¥jon is Justifiab]é for feéthre selection
due to the fo]lowing'reason. When a feature set has high information
about a patternic]ass, one is fairly .certain about which pattern class
is present but, on the other hand, when thetinformation provided by the
feétyre sét fs 10{, one s uncertain about which class the measufement
was tpgen fron. Low or high quantity of dinformation, as one would
expeﬁt, results 155’16w or high probability of error, réspective1y
[2.4]. A feature set that does not provide any discrimination between
the clas§es gives a minimum of information, whefeas a feature set that
provides perfect discrimination attains a maximum of mutual ‘informa-
tion. ‘In practice, however, a feature vector would pfovide mutual
information which 1ies somewhere in between thesé two extremes.

Similar to the situation for distance measures, no exact'relétipn-
ship- is available which’ relates error probability to mutual informa-
tion.‘ A variety of dependence measures have been deve10ped'ut11izing
the cbncept of mutual information and various bounds are available
which relate some of the dependence measdrés to error probability [2.1,
2.11]. For example, the Bhattacharyya dependence [2.11], given by,

D _ D
Bn = n Pn (2.12a) .

where ‘
-2 o Y . .
Pp ™ 121 . é" [P1(X) p(l)] dy ‘(2.12b)



provides error probability somewhere within the region specified by,

. D ’
0<P,ln) < p - | (2.12b) |
. - for equal a grior probabilities.

L Dependence measures, Tike probabilistic distance measures, are a

——

usefu] tool for feature selection. In fact, they share the same common.

;properﬁes of non-negativity, and attain maximum or minimum when the

Eiasses are indistinguishable or separable, respectively. '

Va
d i

2.2.3. EUCLIDEAN DISTANCE MEASURES

Euclidean distance measures for feature selection in the measure-

ment space have originated from an intuitive argument that the greater °

_the Euclidean distance between the elements of different classes, the
better the classification performance. Euclidean measures are not
commonly used technigues for featur_‘e selection even though they are
significantly less complex. The Tow complexity of these measures fis
attractive but is compromi sed, at the exper’\se of system performance in
terms of classification error [2.1]. Some well-known Euclidean mea-

sures are discussed in [2.12-2.14].

2.3. FEATURE SELECTION IN THE TRANSFORMED SPACE

-

"The mef;hods of feature selection in the transformed space are ’

conceip,tuaﬂy different from the methods 1.n the measurement space 1n
that they utilize all measurements in representing the pattern. As

mentioned earlier, the feature selection schemes of Section 2.2 are

. i

based on the assumption that the aquisition of data for measurement is -

<
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e;pens1ve. On the contrary, it is on rare-oécésibns in practice that
the aquisition of d;ta is associa;ed with véry high costs; )In most
cases tﬁe data haj be aquired withdqt sigﬁifidant1y increasing the cost-
and it becomes advantageou; to utilize all available information to
design a pattern classifier. Although the meghods‘of feature selection
in the measurement %ﬁace sti11 remain a subject of th?oretical discus-
sion, feature selection techniqﬁes in_the transformed space have emerg-
ed as the methods of practical importance. . -

Linear feature selection in the transformed space {nvolves mapping
an  (Nx1)-dimensional data vector X into an (nx1)-dimensional feature

A

vector y (n<Ny" by:applying an' (nxN)-dimensional transformation A,
if.e.,

Yy=A X | (2.13)

—

The data reducing transformation ‘A may be any linear vector function
of x. Several possible ways of obtaining a suitable transformation

for linear feature selection are discussed below.

2.3.1. KARHUNEN LOEVE TRANSFORM :

The Karhunen-Loéve (K-L) transform is a well-known technique for
representing a sample function of a squa}e-infegrable stochaétic pro-
cess‘[z.ls]. It has been shown that the K-L transform is an optimal
" transform in a statiéticaI sense under a variety of criteria [2.16-
2.18]. " The K:L transform completely decorrelates an} sequence in the
transformed space permitting us to prbcess oﬁe,transform coefficient

without affecting tﬁe others. ‘. It provides most energy (or variance)

-

L]

‘
N
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in the fewest numbe;‘of coefficients\of the transform. The property
which makes thisjtransform quite appealing’ for feature seTgction, albe:
it principally for data compression, ié that it provides minimum mean .
square error (mse) between the reconstructed and original data. In
addition, the K-L transform minimizes the total entropy of the'recoq-
structed sequence. - 4

A brief &escription of the K-L transform is as follows. For a
given sequence X, tﬁé basis function of the transform are the eigen-
vectors of its covariance matrix R. “The K-L tran;?brm is a unitary
maérix, K, wﬁése columns are the normalized eigenvecto}s of R,

i

such that,
) M = oa (2.14a)
where H denotes the matrix complex conjugate transpose, and the dia-

" gonal matrix A, given by, - o s

//// A= diag Ay, Ap, .o, Ayl (2.14b)
contains the eigenva]ue;' of R . The columns of K in (2.14) are
arranged such that apoap> ... > Aye In view of the relationshif¥ ex-
pressed in (2.14), the K-L transform is sometimes called the principal
component transform. If Snly fhe n (n<N) eigenvectors corresponding
éo the first n eigenva]ué% (features) are selected for data compres-

sion, the mse in data reconstruction is given by,

N
mse =} Ay (2.15)
{=n+l

‘The mse given by (2.15) is minimum. for the K-L transform compared to

e
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that of any other discrete unitary‘transform [2.16,2.18].

The application of the K-L transform for respresenting a pattern
class 1s discussed by Natanabg,[2.17]. A necessary condition under
which more than one random ﬁrocess may by represented by‘a single ex-

pansion 1is presented by Chien et al [2.19]. Fukunaga et al [2.17]

emphasized the extraction of features that enhance the class separabi -

1ity rather than the information preserving aspects of the K-L is
representation. This was done by obtaining a diagonalizing
transformation for the mixture covariance in the manner of (2.14). The

mixture covariance is simply the sum of two covariance matrices

representing the two pattern classes. It turns out that under hypothes -

Hl’ we have 1>Af )>x£ )> vee >A( )> 0 and under hypothesis HZ’
0<A§ ) = 1-A$ )< 1. The recommendation of Fukunaga et al is that the

A, be selected such that |A,-0.5| is largest, i.e., the eigenvalues

i
closest to 0 or 1l.. This criterion for feature selection has been
disputed by Foley [2.20]. There are several other feature selection
schemes available that are based on the K-L transform, e.g., see

[2.1-2.5, 2.14, 2.21]. o

;

2.3.2, -SEPARABILITY MEASURES

The separability measures for feature selection are'based on the
assumption that the\battern classes under consideration may be repre-
sented adequately by the second order statistics, i.e., the Teah vec-
tors and covariance matrices. [t is then desired to determine an opti-
;a1 transformtion matrix which maximizes. some separability measure, for

éxamp]e. the statistical distance measures -of Section 2.2.1. Such a.

J

.

-
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)
a treatment of the pattérn recognition feature selection has been pro-
posed, for example, by Kadota and Shepp [2.22]). The Kadota-Shepp’ (K-S)
strategy stemé from the maximization of the J-divergence resulting in a
transformation matrix whose columns are the first n eigeﬁvec;ors such

that,

1 1 g 1

RS relle A+ w2 N : (2.16)

Where A,'s .are the eigenvalues of the product matrix R'?‘RZ RI% for
binary classification. This feature selection sgheme has beén disputed
by ChesIer(ég_glr[2.23], where a counterexample to .the optimality of
the scheme is presented. Morgera et al [2.24] have recently put forth
the reasons for the suboptimality of the K-S technique. The separabi-
11ty measures, such as fﬁe dependence—measures of Section'é.z.z. may
'also be ootimized to construct suitable d&ta reducing transformations
[2.25]. |

-

Soﬁe non-drthogona1 . schemes have been proposed for ,the feature
selection task [2.26]. It has been shown that it is possible to find a
feature space 6f lower dimensionality by the use of ﬁon-ortﬁpgonal
projections. Thé reliability of ;uch schemes 1s questionable as the
criteria used for feature selection depend on Euclidean interclass
distances rather than on error probability. Moreover, no analytic
expressions are available which relate the performance of these techni-
ques tq\the clagsification error; thus, the relfaﬂiIity of the schemes

can be assessed only by means of experiments.
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Several-féﬁture selection schemes for pattern c1assifigat16n have

]

been briefly discussed in gnis chapter Feature selection techniques

have been classified into two categories depending on their app11cation )

in the measurement space or in the transformed domain.

Feature selection methods in the measuremént space, where one is

mainly concerned .with saving sensor hardware, suffer from one major

sdisadvantage of excessive computational requirements. To detérmine the

best subset of n features from N measurement, it is required that

some separability criterion be computed (:) times. It is obvious that

t

this number attains an astropomical value for large N rendering-these

schemes infeasible for préctica1 utility. For gxamp)e. when N=40 and

\-

n=10, it is required that some separabflfty measure be evalu&ted nearly
. )

848 million times.

.

The.sgpafability measures are a useful tool for feature selection

regardless of their application in the measurement space or the trans-

formed space. The choice of a feature selection method is, in geneia].

fifprobieﬁ—dependent compromise Metween the computational complexity and

the reliability of the scheme. The méthods basedon probablistic dis-

tance or dependence measures may be considered better since they opti-

. mize criteria which many times can be related to error probability.

The chanenge presented by this extremely important problem of

feature selection has motivated many researchers in pattern recognition

uau‘over the last two decades.

A multitude of suboptimal and sometimes ad

hoc solutfons to the. problem s available in the literature.

£\
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Unfortunately, these sfhemes do not provide explicit and exact expres-

sions ,;'pr classification error. The reliability of the schemes may be
based on some bounds on error.probability but, as we shall see 'in the

sequel, these bounds, at times, are)quite “loose"” and fail to provide

.any useful information.

It has not been the intention in :this chapter to undertake the
impossible ta§k of enumerating al 1 feature selection schemes that are
available, but simply to demonstrate the necessitx of developing a
feature selection strategy which deals more diregtly with error proba-
bility expregsion. Such .a scheme is pr0pos?d in Chapter 3. The'scheme
has been found to be quite accurate for finite data’ dimension.

. ’
] ! -~
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CHAPTER 3

TOWARD AN OPTIMAL THEORY OF FEATURE SELECTION -

-

© 3.1. INTRODUCTION

s

/

~ This chapter. presents a featurekselection scheme for discriminat-
ing a weakly-stationary Gaussian stochastic process §g$inst another
when the mean vectors are sir‘;li'i\ar and the pattern' classes (covariances)
differ., The scheme deé]§ more 'directly with the Bayesian probébﬂity
of error 'expression than the existing methods discussed in Chapter 2.
The approach to feature selection described here has been moi;ivated by.
the desire to acqh'ieve more accurate -and precise ‘resu1ts by minimfzing
the‘ er\F’br ?robability expression, as opposed to . opti:nizi.ng some
g_r/qbab'Hsi.:'Ic measure which may provide "loose" bounds on the
Ga.ssification error. A variety of important exampies are considered
to demonstrate the performance of the scheme. Although the examples
deal w}th only one .important class of Toeplitz cavariances, the scheme
is applicable to covariances of a general nature. In passing, we
mention that some of the Jr-esults presented in t’;ﬁs chapter have
_recently been reported in [3.1, 3.2].
Let x be an (Nx1)<dimensional complex stochastic data vector

with mitivariate normal (MVN) distribution, specified by mean vector
zero and -covariance matrix Ry un&er hypothesis H; 1=1,2. We wish

to discriminate H1 against H, in the Bayesian manner assuming that

H, has an a priori probability =, 121,2 with my+mp = 1 and

i N
’ . 14
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m¢ 0,1, Ui near feature selection may be accomplished by transforming
. the (Nx1)-dimensiona) data vector x into an (nx1)-dimensional feature\
vector y (n<N) by applying an (nxN)-dimensional data re‘ducing

transformation A, i.e.,
r
Y=AX ’ (3.1)

The rows of A are assumed to be linearly 1ndepénde’nt (ﬁ:.i.); thus,
A has rank n. The (nx1)-dimensional feature vector y has a MVN dis-
tribution, N(Q,si), under hypothesis H1 , where the transformed
covariance, S; is defingd as, Sy QAHRM i=1,2, where H de-
notes the matrix compl‘ex conjugate transpose.

The pattern classification may now.be ba'§gd on the feature veci:ér'

y with an average probability of error, Pe(n), given by,

g = myn) # Ly (3.2a)
where, Ny
Corytm = f ey (yddy s 100 = P2y (3.2b)
and, ‘
-4 "

W= {yly"s {,1:321])'_ > anfs,|-anls)| + 2en(=)}  (3.20)

where p.(y) is the probability density function (pdf) of y under
hypothesis H1 i=1,2; and the region We a" is the cr!tical region
for rejecting Hl‘ . ‘
Idéaﬂy, one would 1ike to select the transformation A for opti-
. mal ‘fe'ature selection such that Pe(n) of (3.2) is minimized. Due a

general consensus expressed by the workers in pattern recognition,

-~

¢ (

[T
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informatfon theory, communications, and control systems that the mini-
mization of . Pe(n) is often difficult to carry out, several researchers

have utilized suboptimal schemes such as probab]istfc\: distance mea-

sures to .develop some bounds on the probability of classification error

* [3.3-3.10]. The application of these schemes has been successful in -

practice, e.g., discriminating between seismic records [3.11],‘
dynamical model approximation t3.12], speech recognition’ [3.13]), and
sigh’ial selection 1", communication and radar systems [3.‘14T. Although
it is.not possib]e’to dispute the utﬂit)l' «0f these feature selectiop
schemes, t\he results presénted héfe indicate that some of these

suboptimal approaches to feature se]ectién can indeed be quite inferior -

~

to a more direct use of the classification error.

A

| 3.2. .BAYESIAN DISCRIMINATION - FINITE SAMPLE SIZE

' @g{oblem of feature selection may be cast into a simpler form
,»

as follow Assume that the covariance matrices R1 i=1,2 of two

weékly-stqtionary Gaussian stochastic processes are pdsitive.'d‘eﬁnite.

There exists a non-singular (NxN)-dimensional transformation matrix

‘'L and a diagonal matrix,K A with elements arranged in descending order

of magnitude such that [3.15], -

H (3.3)

- | L"Ry4L = Iy s LU Ryl = A
where IN is the (NxN)-dimensional {identity matrix. The diagonal
elements- A >\y "'.”‘N >0 of A are the roots of the following

determi nantaj eduati on,

¥
\ -_ -
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|R2-"\)~ Rll = 0 . (3.4)

i.e., the Ay L<icN are the eigenvalues with respect to the matrix
. pair (RI;RZ) The 1th/golumn 11 of the.transf rmation matrix L in
. the simultaneous reduction of (3.3) is an eig nvector of the pair

(RI,RZ) associated with the eigenvaIue KR due .t the fact that,

Rol = RyL A (3.5a)

6;, equivalently,
Roky = MRy I<ich (3.5b)
Moreover, all Ay are posftive and, if all qli are distinct, then the
transformation [ .may be determined unique{;\except for the sign of
‘ every column. ‘

" Consider a situation where the transformation L is appiied t9 the
data vectﬁr X -prior to feature selection; then (3.1) can be
reformulated as,

: - y = Ax = A (3.6)

where the feature vector y 1is MVN distributed as N O, amt) or
N&Q,A‘AAH) under hypothesis H1 or H2 , respectively. Let L* .be
‘thé qon-singu]ar (nxn)-dimensional transformation matrix and A* be
the diagonal matrix with elements A} arranged as Afor%> -e o2y for
the simultaneous reduction of the matrix pair (A AH,A AAH) in the

“manner of (3.3). Noting that the feature vector,
\
. , 1*45 L*Hx (3.7)
! - leads to the same hypothesis test as the feaiure vector of (3.6), the

probability of.errorvexpressioﬁ of (3.2) may be reformulated as,

e

-
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Pa(nsa*) = m 1) (n;a*) + myly (n3a%)  (3.8a)
where, . o~
' n 1 , n. !
I (nsa*) = Prob { ' (1'- =)z} > 1 oamy + anC;; )} (3.8b)
=1 MO
AN nl

o n ., N
L] b1 2
. Ip(nip*) = Prof {121(1\;&1):1 < iZI L% + an(;t;-)} .(3.8c)

where z, 1<i<n are statistically independent (s.i.) N(0,1)

variates. The critical region for rejecting Hl’ based on the feature

vector y* of (3.7) for pe(n;ﬁf) of (3.8), is given by,
™

.o
‘Q(Lf)u= {zfle"[{n-ﬁ*°1]1f > 1zlxnx§ + an(E;J} (3.9)

The error probabilities of (3.8) are dependent only on the A% ; thus,

an (nx1)-dimensional vector A* formed from A] 1s called a canonical

gara%gter in the feature space q".
It shall be important to investigate the discrete empirita]

distribution function of the eigenspectrﬁm {A} I1cicn} in view of the
concept presented by}Okambto [3.16] that the values of A} distant
from unity, larger or smaller, lead to low probability of-error.: We
state his result as follows: ‘ .
Theorem 3.1. (Okamota, 1961), For fixed a priori probabil:ties =
anq =, the probability of classification error, Pe(nﬁhf), is
strictly monotonically:

i)  increasing in A if 0 aj<l, and

11) decreasing in x? if Aq>1

for each value of the index 1 1=1,2, ..., n.

Proof . 11) Let the critiCal region for rejecting H2 be,‘

5
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WCO%) = (y*|oly*) < k(a*)). '(3.10a)
where the quadratic form Q(y*) 1s given by,

o(y*) =y o "y (3.100) -

~and the decision threshold,
: .

n
k(r*) = 7§ anny + 2an( (3.10¢c)°

—)
i=1 T2
Assume: 13>l for all i l<i<n, and Tet A* and A*'' be two
canonical paraméters which differ by one component such that x;"n;'
for any i€[1,n]. Define the generalized errors, Iz(n;y.b_*‘) and

Iz(n;y,}_"“")', under hy;othesis H, using (3.8) and (3.10) as,

. om0 ]
L(nsa*a*') = Prob { § (1- —) a%'28 - k(A¥)}  (3.11a)
&

v n l .
I(n;a*, a*'') = Prob { § (1- %) Azl k(x*)} (3.11b)
2 - - i j=1 . AJ J 1 -— ‘)

¢

since (1-1M/>\'3‘)x3" > (1-1/7\3’))\*' for each J 1<j<n, we have from
(3.11), |

L (MR, ') ¢ Ly(np*%a%') (3.12)

Therefore, the value of [,(n;a*,\*') 1s monotonically non-increasing

in A% for each 1 if A%>1. It can be readily shown in a sémilar

manner that Iz(n;y.y') fs monotonically non-decreasing in xq for
each 1 1f 0<)q<1

We wish to establish a sikﬂi; r%éult fori the; probability of
classification error, P (n;A*). Assume 1 for all { lcfen and
let A* and A*' be two canonical variates which differ by one

component such that x?'n; for an& i€[1,n]. Using (3.8) and (3.12),

™~
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we have, .
Pe(n;_x;*) = ml (%) + mly(na*ax) °

/ > mI;np*) + np Lo (nsa*,a*")

With a change of critical regions W(A*) and w‘(y) to W(A*'). and
u‘(y'). respectively, and -noting that _the Bayes dierimination

threshold " k(A*') ' does not coincide with k(A*), we obtai ‘

Palnia*) > mI (nia*t) +‘n212(n;y',_k_*')

= P(n;h*') . B ! .
Ao

This completes the proof for 11\)'. . The proof for'i) may be developed in

a similar manner. ' . : . |

We see from Thet;rem 3.1 that when the eigenvﬁlues Ay are more\ distant

- from unity, larger or smaller, the smaller 15_,the probabil{ty o‘\f class-

{fication error; thus, the distribution of the eigenspectrum {k,l}
about.unity determines the performance of the pattern classifier.
In view of Theorem 3.1 and deductions thereof, we define thé—

discrete empirical distribution function (df) of the eigenspectrum

Al s, e

1 . .
| Fr(x) 8 = o # [nj[afex  1cicn) (3.13)

where the symbol # reads as "the number of". The-df of (3.13 has an '

increment 1/n and may also be written as,

1
| Fr(x) = = o g moulx-A* g y)

-~

&
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" of the eigenSpectrunﬁ*{Ai} in the manner of (3:137}\\\ )
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-

where the index i ranges over distinct x; and m, denotes the

respective multiplicities. The step function u(x)=0 for x<0 and

unity otherwise. ' The df Fn*(x) is non-decreasing with a finite

number of discontinuities of the first kind, i,e., it is pos;ible to
determine the limits F;(x+) and F;(x') everywhere. The number of
A
The quantities F;(l) and [l-F;(l)] ’representlthe cumulative distri-
bution of eigenvalues below and above unity, respectively. We wish to
select an optimal data reducing transformation A for (3.1) such that a
"suitable” df Fx(x) {is obtained in the sense of Theorem 3.1. Clear-
ly, the best choice for F;(x) is dependent on the eigenspectrum lxi}

of.the covariance matrix pair (RI’RZ)' Thérefore. we define the df

4l (3
Fule) 2§ o # {0y <x‘ 1<i <N} ) (3:14)

Note that Fﬁ(i) has an increment 1/N, and ﬁhé quaﬁtities FN(I) and
[I-FN(I)] determine the cumulative eigenvalue distribution below and
above .unity, respectively. ‘

‘As we shallféee in ihe sequel, the detailed depen&ence of thehd?
F;(k) on'fhe transformation A is extremely important, and is. vital to
understanding .the feature selection problem. The application of
various distance measures does not show any regard for this dependence
and may lead to a “"forced" selection of certain features which could be
quitg suboptimal in terms of the Bayesian error probability. Chesler

et gl_[3.9] noticed, but did not formalize, this in a communication -

1

theory contex%. \

v
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3.3. FEATURE SELECTION - FINITE SAMPLE SIZE

In this section we discuss the optimal selection of linear
functionals (features), 1{.e., the best choice from the subset of
po;si ble transformations A , any one of which projects the

A}

N-dimensional transformed observation vector Lﬂic‘aﬂ. of (3.6) onto
an n-dimensional feature space (n<N), G"_q UN._“He begin by'assuming
that the transformation | for the simultaneous reductioq of the
covarfance pair (;21 .Rz) is determj‘ned uniquely; thus, all Ny 1< icN
are distinct. In this case, the vector y of (3.6) 1is MVYN
distributed ;s MO.,AAH) and MO,M.AH) under hypotheses H1 and HZ'
)respectively,‘ and the transformation L* wused in.-(3.7) is simply an
unftary transformation. It ‘is noted that‘;either or both of thése above
restrictions ma} be relaxed; however, it is unnece%sary at this stage
to do so.

> Consider the pencils of quadratic forms _§*H [A-aIy]x* and

ZH[ A H-x*lnll associated with tt}g simultaneously diagonalized pair

(RI,RZ) and the associated pair: (51.52). respectively. An’
\

examination of the'transformation of (3.6) shows thai; we have

fmplicitly imposed (N-n) 2.i. constraints on x* of the form Lk (x*)

-

=0 k=i,2,...,(N-n), where L (x*) are the linear forms of the
variables 5"1. _:55, ve ey -’5*N‘ Therefore, the roots A* _are bounded

from above and below by certain roots X in the manner of Poincaré.
' .
Theorem 3.2. (Poincaré Separation Theorem [3.17]). Let Ay

"

>x,; be the eigenvalues of the pencil of quadratic forms x* A-J\IN]é*

‘and let~ xfn? >x; be the efgenvalues of the same pencil subject

-



N

to (N-n) -2.1. constraints, then we have,

N2 A Npyny - Lcien (3.15)8

Theorem 3.2 permifs us to directly determine a bound on the df ]
CFatx) of (3.13) in terms of the df Fy(x) of (3.18), as done in

[3.18]. This result is stated as a Temma.

Esmmé_é;l: Let F;(x). be the df of the n sﬁa11est efgenvalues
‘{kii(N-n) i=1,2,...,n} of “the eigenspectrum (A} and Fﬁ(x) be the.
, df of the n .largest eigenvalues {xi 1=1,2,...,n}, given by,

. Fa(x)

min{1, ¥ £ () - (3.162)

L
EN(x)

-

max{0,1- X F, (x)) | (3.16b)

.

for all x, ;respective]y. Then, the dt\\ ;(x) s bounqed from above

(5

by Fy(x), ,and from below by FE(x). ‘ .

t

Proof. It is obvious from the definition (3.14) of the df FN(x) and
the reguired,proﬁerties of any df [3.19] that (3.16a) and (3.16b) des- N

>

cribe the df's associated Qith the n smallest and the n largest
eigenvalues_of the eigenspectrum ‘{ki}’ The equivalent bounds on the

“df F*(:%? given by, ..
n y -
: Fy(x) > F2(x) > Fi(x) .al x (3.17)
: -l N :
J
are d;?eét1y obiaingp from Theorem 3.2 as desired. The quantity N/n,

the inéerseaoﬁ the data compression ratio appearing in (3.16), simply
. adjusts the increment of F (x) to that of the df Frix). i

>
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The upper and lower bounds of (3.17) can be achieved by selecting
the rows of A, _9_T1 1ci<n, as certain columns of the transformation:
matrix L which simultaneously diagonalizes the pair (RI'RZ')’ i.e.,

by choosing certain efgenvecto'rs associated with the pair (RI.RZ) as

-

© 7 the rows of A . More specifically,
/

[es
TN ii"’("-ﬂ) FN(X)
if _a} = . lcicn, " then F(x) = (3.18)
F‘:“(x)

L4
for.all x, where 2 is the 1'th eigenvector corresponding to the
efgenvalue Ay of the pair '(RI’RZ)' It {s shown in the sequel that,
in general, the best choice of features in the sense of minimizing th'g
Bayesian classification error is neither of the cases of (3.18), but

depends on the umderlying structure of the df FN(x).

We now consider five examples of covariance magrix pairs (pat-.

terns) in this work. Figures 3.1-3.5 display the df FN(x). and the |

upper and lo;ter bounds, F:(x) and F"i(x). respectively, for the five

examples of Table 3.1. In, all e;amples, the data and feature dimen-
sions are selected as N=40 and n=10, reSpectively, thus, the data

compression ratio n/N-O 25 (oﬁ»Sz compression)‘ For purJoses of

ﬂlustra-tion, ,qonsid\er a case when the rows of A are selected arbit—

r:arﬂy as 9}'- 9_'{ lcicn, where &, s a vector with unity in the ith
- R

position and zeroes elsewhere. The resulting df .F;(x‘)' for Example 1

{s displayed in Figure 3.6.
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TABLE 3.1

b
Toeplitz Covariance Matrix Pairs - (Ry,Rp)
Selected as Examples -

’ 4
/
EXAMPLE DESCRIPTION (RI,RZ) i PARAMETERS
1 v——————— - ] . —————————————pne l
) (Rl,'Rz) first order Markov
. au li-3] |
ok, [1-3] "¢ ol jlk‘l'z a=l, 0.5
I (Ry,Ry) first order Markov ay21, ap=0.25
I11 (R1,R5) second order Markov - 8921, y=1.429

—

-8 - ,
Pk, |§-3|=¢ kpk'l‘l-jl_1+e Ykpk.li-jl-zkzz £9%0.5, y,=2

\
i v Ry first order Markov . @y=2 .
Ry second order Markov r 51=0.5, vp=2
v Ry “"triangular® "
01, |1-3] 1=~ 1 -] © £,=0.025
- Ry first order Markov | ap=1l
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We are now in as position to make some observations which may
prove useful for a better understand1ng of the feature selection pro-
blem. . It is obvious from the df of Figure 3.6 for Example I and Theo-
rem 3.1, that this arbitrary choice of A presents more problems than
solutions. _The reason for this is that some elements of the eigen-
spectrum {)\1} are closie' to unity in contrast to the results of Theo-
rem 3.1 and deductions thereof for low classification error. Further-
more, it is apparent from Figure 3.1 for the same example, that a rea-
sonable selection of features can be made by restricting the choice to
the eigenvectors associated with eigenvalues which are quite aistant'
from unity, due to the considerable clustering of large eigenvalues.
Examples of such a se1eét10 are the eigenvectors which achieve the
bou}lds of (3.18) as shown '[(figure 3.1. In this case, the eigenvec-
tors which provide the upper bound Fﬁ(x) appear to be a better choice
with associated eigenvalues clustered about 1.85, as opposed to the
eigenvectors providing the lower bound Fa(x) for which the clustering
of eigenvalues occurs at about 0.54. It is shown in. the seque] that’
the ogt1mal choice of features, in general, leads to. a mix of the
eigenvecto#ﬂassociated with the two e(gremal sets of eigenvalues.

The problem of finding the best subset of possible transformation
A has been treated by Okamoto [3.16]. A discussion of his results fis
presented below in view of the above distribution functions and their
bounds. |

Theorem 3.3. (Okamoto, 1961). For the n-dimensional feature space, a .

basf‘s y* which minimizes the probability of classification errbr

L4

lca
-
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Pe(""l*) is given by one of the (ntl) variates (x"l', xg, ,x*p,
/x;+(N—n)+1’ s+« X) .where Oc<pen. The subsequence x{ where 1<i<p
are the coordinates corresponding to the p largest eigenvalues of the
quadratic pencil of the form _>5*H[A-AIN]§_%, and, 1f‘ p=0, nd coordin-
ates from 'd)is subsequenlce are chosen; the subsequence X*H(N-n) where

(p+l)<i<n are the coordinates corresponding to the (n-p) smallest
eigenvalues of the same pencil, and, if p=n, no coordinates from the

-

subsequence are chosen.
cZntext are that the stoch-

Proof. The underlying assumptions in this
astic data vector x ~ MO,,R;) under H, is1,2, and that AAH=In;
thus, y ~ N(Q,In) -under Hl and N(Q,AAAH) under HZ;' Forming the

product,
*H

, oy Ly
where [* 1s now a unitary transformaf;ion, we then obtain the stochas;
tic MYN feature vector y* ~N(0,I ) under H; and N(0,A*) under
Hy We.recall that the r;oots of the quadratic forms l*H[A‘“N]l* and
Z*H[A-*‘Un]l* are Apdhy>...0hy and APA%>...0f, respectively. It
has'been established by Theorem 3.1 that P (n;r*) grows smaller as
the "‘1'; are more d'lsi:.ant from unity. f‘rom Theorem 3.2, we note that
Pnia*) s minimized-at A% = (\[,Ap,ecny)’ 1 all Apl, orat
L.* a ()‘(N-n)+1’)‘(N-n)+2’ ...,xN)T 1f.a11 )\1<1. In the general case,
when some Ny are below ’un'lty ‘and some above, the minimum point \*
selects a mix of the largest and the smallest Ay some largest ki>1
and some smallest k1<1 such that a total of n are selected. The

solution is determined unfquely if the number of largest (or smallest)

RY selected is p (or (n-p)). We have p=n when all A1, or



-" . . . -5%-

p=0 when aH_x'd. |
Theorem 3.3 indicates that the optimai choice for the rows of
A is one of the following possjble " (1) subséts of efgenvectors

associated with the matrix pair (Rl.,;zz).

g, dett(p) ’
T Cnd o3
_ 2, 1€ (p)
such that, )
oft*(p)  1%(p)] = n © (3.19b)

where 1%(p)'= {1,2,...,p}, 15(p) = {p+IN-n)+l, p+(N-n)+2,...,N} with
p [O,r;] and ofe] denotes the order of the indicated set. Using the"
choice (3.19) for A in (3.6}, we ‘n.ote that [* =1, fi.e., y* o%
(3.7) is exactly the same as y of (3.6);" thus, (3.8) becomes, |

Pe(n;y) = ’tlll(“;}_*j + nzlz(n;y) (3.20a)
where, 3 -
. 1 2 . ' o
Iy(nia*) = Prob { ] (1- 5 )25 > k() (3.200)
Tyna%) = Prob { T (ayeD)2d < k(1) (3.20c)
. iJ LT
with, . . —
\ ) 1t1‘
K(A¥) € F an g+ 2nl=) (3.20d)
= id "2
and, -
3 = 1*p) v id(p) (3. 20e)

The canonical parameter \* 1is explicitly mintaingd on the left-hand-
side of (3.20), since the expressions are applicable only to the fea-
ture space.

An important question that must be addressed is which integer



\

y -

i
'

TN

‘p e [6,n] delimits the integer sets 1”(p).& i5(p) such that the

probability of tlassification error P, (na*) fs r’ninimized. For an

. answer to this we turn to a garameterization of "the df F*(x)

_terms of th,e bounds FN(x) and F“(x). Using the conmcepts of

distribution theory [3?20], consider the ane parameter family F* of

: 0
extremal df's’ given by, o '

s v 2 ’ \
F* = {F;ia(x)lFNKI) >a > FN(l)} {3.21)
Since the df F;(x) has increment «, the parameter a f{s quantized

in steps of 1/nand*' « = (n-p)/n wl;gre pe{o,n] with the family f¢*

defined for each « e-[F"(l) Fs(l)] The parameter a« may assume a

maximum of (n+l) values, but for any particular case, the bounds of

(3.16) evaluated at unity will gener&l y restrict the number that nust

- be considered as possible solutions to the feature sglection prob!em

Each member F;,a of the fam_ﬂy F* s defined assuming F (1 ) >

) F§(1), the typical situation, as -follows,

FR(x) xaMa)
Fr. (xJ°= | g xSa)exexla) o~ (3.222)
@ 1
Fy(x) ox(a) \
wheré,
B = min {a, Fy(17)}
& Fa(a) = min {xlF;(_x) > 8} ' ‘(3.22b)

F:“(a) * max {xlF:i(x) < g} |
Figure 3.7 displays the family F* of extremal df's fo‘r Example 1V,
bearing in mi?d that each family member F;,ae F* 1s a potential

w

hys

+ ‘An extremﬂ&'df is a df corresponding to the plor {n-p)) largest (or

smallest) )‘1. f.e., a df resulting from the ¢hofce (3.19)

C5
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» A .
solution to the feature select\\on problem. In ‘the case that
]

‘ F:(l-) ‘ Fi,(x). the family g* 1is obtained from (3.22) with‘_

x5(a) = (a) = 1. We now present the df coun’tfrgart to Theorem 3.3.
Theorem 3.4. For the n-dimensional feature ispace, a basis for the
subspace which minimizes the probability of classification error

'Pe(n;y) is given by the eigenvectors associated with the eigenvalues

of one member F;. (x) .of the family of extremal df's F* for each df

a

F;(x) which satisfies the efgenvalue bounds of %3.17); if F;(l') =0,
or if Fﬁ(l) = 1, then the solution is determined uniquely, i.e., F*
contains exactly one df.

Proof. It readily follows form the definition of the family( F* given

fa

in (3.21) that for each df F;“',\& (x) satisfies,
7o R

] -
FX(x) < F*_ (x)  x-1 :
n n,a0 K

. .
Fn(x) > F;;a (x) x>1

where u°=F;(1). Also, from definition (3.21), it is cle«gr that the

all «x (3.23)

extremal df F* (x) associated with F;(x) relates to one of the

niag
: * * ‘ * * * .
v§r1ates (xl,xz,,..,x po’xp°+(N-n)+1""’xN) referred to in Theorem
3.3. Thus, the extremal df F;.a results in the selection of the
. ? 0

rows a, of A as in (3.22) as the eigenvectors of the mair (Rl.réz\.
| corresponding to the na (or n(l-ao)) smallest (or larggst) eigen-
values. It is clear from Theorem 3.1 that this choice results in a

dower Pe(n;y). The parameter a is quantized in steps of 1/n, in

accordance with the’increment size of F;(x). and all admissible

values of p are considered; thereforé, the probability of classifi-
« " > a
cation error Pe(n;y') {s minimized by one member of the family F°.

. {
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* - Sl
The uniqueness follows directly from the definition (3.21) for the case
when FS(17) =0 or Fi(1) =1. " ( i
We have, thus far, established an optimality in the sense of Theo-
}'ems 3.3 ‘and '3‘.4 relative to any df F;(x) which satisfies the efgen-
———value bounds of (3.175. but not an absolute optimality of Pe(n;y)
over the efgenspectrum of the pair (Rl,gz). Afg may now wrife the two

»° types of probabﬂity of classification error (3.20)}, in terms of the

»
family F* of extremal df's, as follows,
Polni F*) = mI (n; F*) + myly(n; ¢*) (3.24a)
* o\
where, '
1,(n;F*) = Prob { 7 (1- --—-)zi > k(x)} (3.24b)
\J’ -~ a \‘ !
N Ly(niF*) = Prob { )' (xi-l)z < ki )in’ A4 (3.24¢c)
and, '
- 1[1 L
k(a) = T ana, + Zzn(;;) (3.24d)

i(a) .
with aelFN(1), FR(1)], where the index set 1(a) is the set of

integers which corresponds precisely to that set of eigenvalues asso-
ciated with the extremal df F;,a. We are now in a position to deveIop'
an explicit expression for the “two forms of classification error;
/

‘however, we shall return to a further optimizationiof P, (n;F*) over

the family Fr*, or equivalently, over the parameter

—

3.4. PROBABILITY OF CLASSIFICATION ERROR - EXPLICIT FIORM /

This section deals with the development of an explicit form for

-

- ,
the classification error P (n;f*) which {s accurate for n finite.

~_Me follow the asymptotic approach of Grenander’ [3.18, 3.'21] but bring .
IR

N
.
A

R ‘a'
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4 i

to bear more powerful results to accomplish the task. We shall then
show in the sequel the manner in which the integer set  1i(a) may be
determinez such that. the probability of c{assification error
Ped; F*) is.absolutely minimized. o |

’ Let us first consider the one type of classification error
Il(n;F*) of (3.24b) with the assumption tha% all Ay are d1§tinctf
Noting that the variates z% are xz-distribaied with one degree of
freedom, the ¢total number of degrees of freedom is the. sum

n = tr (I -A'l] , where tr [e] is a "partial trace,'
n
, Ha) i(a)

the diagonah elements consistent with the set 1i(a). Using the func-

choosing only

tional form of thé:\xztgistribution, with a 'change of varigb1es. we may

write Il(n;r *) as,

LY
I,(nyF*y =c_ [ 1 e u, ‘du (3.25a)
1 " i(a) "
where ( is the n-dimensional region of integration, given by,
) .
u= {ugfuy >0, i€ia); ¥ quuy s k/nf (3.25b)
. ila) .
.and ' "
¢, = (n/2)"™? (3.25¢)
We have defined q1Q1-1/x1 and kék(l) in (3.25b). Let,
* -y, /2 ,
oflu) = n e 1 u}/Zn (3.26a)
i(a) -
SEALTL Ry S| . |
olu) = 1 €€ Tug (3.26b)"
i(4)
we have, . .
1/n : Ny
I, (nif%) = crli/"( [ o (u) '«o(_q)dg}lln (3.27)
U i
N
" v
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Clearly, @Pﬁ) is integrable for >0, The quant;ty Y, 1nt}oducedl

in (3.27) is a free parameter, but shaf] be restricteq in the sequel.
We now examine the behavior of ¢{(u) 1in the n-dimensional region

of integration U. The partial derivatives of anfe(u)] w.r.t. th;

¥

u; show that the unconstrained maximum of ¢(u) occurs when wu,=1/n

iei(a). These coordinates, however, do not belong to the region U,
since,
\ e -
; -1 1y 2 Mk
QU; = = (1-1/7;) <« = § smn; + —an(—) = = (3.28)
la) V1 "Ja) oy 1 e
assuming n;>x,. The constrained maximum cannot be attained as ¢(u)

of (3.26a) vanishes when any u1-0; thus, the‘constrained maximum may

be attained only on the simplex, -
u= {"1|"1>0’ iefla); 1§a)q'ui = k/n} (3.29)

-

A maximization of an[e(u)] by the method of Lagrangian multipliers

yields the coordinates,

1

U? = m {ieila) (3.30a)

k)

] .
where a factor of 2 has been absorbed in the parameter u which must

satisfy the condition,

1 q ’
1?«) 1U7; n } gy .

]

The solution for , 1{ (3.30) is facilitated by the introduction of a
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functional u(t) defined as,

1 Y

U(t) = ﬁ 5‘ + q1 (3.31)

The quantity u may now be determined by ul t=u)=k/n. The coordinates

u:'" are strictly positivg and‘, thus, the independent variable t in

(3.31) must be restricted in a region (trin® tmax) With
. + _1 r\/ .
toin = -[ max {qi}] (3.32a)
i(a) :
and
3} ’ 1 . » '
thax C -[min {q3}] © (3.32b).
) ila)

where [q:} and {q;} «denote the subsets of positive and negative g,
| respectively. ' |
An, examination of the functional u(t) is imp;)rfant to the devel-
opment of the thebry. The functional u(t) exhibits large discon-
tinuities over the permissible range ,(tm'ln' tmax’ corresponding to
the points t=11/(1-11), where 1€i(a); however, the root p of
(3.30) must lie in the interval (-1,0). This observation is atfribut-
ed to the fact that p;>0 1ff we have ‘]+pq1>0; thus,‘_j_f_f0<x1<1,
then u<0.~ and iff )A‘>l, then p>-1. A comp_ound requirement may be
stated as. ue(-1;0). It {is interesting to note that in this interval,
u(t) is a contipuous and monotonicaﬂ_y decreasing function of t.
Moreover, there 1‘s always a root for each integer .set ila) 1in this
interval such that u(u)=k/n, noting from (3.24d), that k is also a
function of 1(«). The question we shall address in the sequel is

which root ., or equivalently, which integer set i(a), 1.e., value

of a, provides the Towest P_(n; F*Y.

]

~
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Figures 3.8 and 3.9 for Example I demonstrate the t§p1ca1~nature

min® Emax'"
Figures 3.8 and 3.9 correspond to the choices 1{a):i{0)=1*(p=n) and

of the function wu(t) 1in the Yestricted domain of (t

f(a)Ei(a*O.Q)sis(p=l)Uil(p'l) in (3.31), respectively. Henceforth, we
sha1i. use a more convenient and obvious notation that since n=10,
Figure 8 represents the eigenvalue selection 10*/0°%  and Figure 9, the
selection 11/95.‘ The a.priori probabilities are n)=r,=% 1in both
figures. The root u such that wu(t=y)=k/n=0.6251 {s p=-.5482 in
Figure 3.8; whereas, 1im Figure 5.9 the root U such that
'u(t=u)=-.2386 is pu=-.4782. The roots for eigenvalues selections
inbetween “the extremes represented by these fiéures fall somewhere
inbetween the two values above. We shall see that the eigenvalue se-
lection of Figure 3.8 is the ogt{hum choice for Example I in terms of
minimum Pe(n;F*) and, furthermore, it is not the selection obtained
by .the Kadota-Shepp method. In addition, asymptotically (N+=, n/N
fixed) the Kadota-Shepp method requires that the. root u=-.5 for the
optimal df.\AIn passing, we also mention that the root u in abgendent
on the a priori probabilities {=x,r;), e.g., the root u for the
selection of Figure 3.8 such that u(t=u)=k/n=0.8448 1is now u=-.9155.
We summarize the discussion in the form of a lemma.

Lemha 3.2. Llet o(u*) denote the maximum of the function o(u) in

the region u for the a priori probabilities n=;>n;. We have,
1
. an{ uf-u¥)
-k e,{n_ 1;a) 14

o(u*) = n ' (3.332)
where,
1
u: = T—"' ’ qi = (1"1/%{) 151(3) (3-33b)
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4

with pe(-1,0) is the rqot of the equation,

‘ 1 v 4 2 ™ v
7 ‘I}a)ﬁﬁ * T &a)ln k1 + 5 ln(g) -» (3.33c)

-

Proof From (3.26a), we obtain,

Ui 1

an[e(u)] = % (-7 %77 an "i]
_ i(a) C

<

Nc;té that the coordinates uf" in (3.33b) have been redefined forcon-
venience. Using (3.30a) and (3.33b), we have,

u* u¥
' i 1 i
Pl ) tgman ()]

anfo(u*)] 1

1
(an u% - u¥) - 2N n
2n ['&a) 1 i "l%a) )

L

The last tem in the ahove equ;ﬂ‘ity is a constant independent of i(a),
‘1.9., b """’EJ

% ;nn=npgnn

i(a)
Thus,

I " -& 1
an[8(u*)] = an n"7 4 5= 7 (20 uy - Uy
i{a) J

"and the desired result readily follows. ) |

‘ The né;r definition\of u*; introduced in the preceding lemma fis
employed in order to simply notation. We now utilize the absolute
integrability of " "(u)e(u) 1n the region u as we consider only a
neighbourhood of u* in expanding t;he exponent of ¢(u) in powers of

(u-u*) up to second order terms.. We obtain the following asymptotic

<«
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formulae for the classification error using the classical method of:
Laplace, as described in [3.22] and the refined method of Laplace as
described in [3.23].

2

Theorem 3.5. Fix the parameter y>0 of (3.27) and let y be suf-

ficiently smaﬁ, say vy/n <o(10'5). Then the following asymptotic

.formulae represent the two types of classification error as the number

of features n, and the data dimension N increase continuously to

infinity such that the compression ratio n/N ‘remains constant,

) 1 s Fo) o aque) o 8N - (3.342)
421/“(n;F*) ~ Aly*) o cHM(w%) (3.34b)
.where, .
Y T
, - J (2n u¥-u¥) \ :
Alu*) = (2n)- e D i(g) 1 (3. 34c)
\/\/‘\ . CE
™ 1/n :
Alv*) = A(u*) e (—;—2) (3.34d)
‘ . 2n \!’ ‘
B(u*) = ¢(u*/n) o ~ (3.34e) -
¥ 7 (u/n) -
ila)
2x ;’
c{u*) = ¢(v*/n) o _2 (3.34f)
iy 1 (vi/n)
‘ 47 i(a)
u¥ winy  i€lla) (3. 34g)

= * =
I+uq1:3 Y
with q, = (1-1/x1) and p€(-1,0) fs the root of the equation,

< 1 . Q1 1 L3
- 2 — i Ay + 2an(—) (3.34h)
s 1%a) Tugy 7 i%a) i M

~

p
for a priori probabiifties =;>x;. Finally, the overall probability of

classification error is given by the following asymptotic formula,

£ .



Pel/n(ng:*) ~ A(E*) ® {“I[B(_ll*) + c(l*)]}lln (3.341)

Proof. The asymptotic relationship of (3.34a) f(;liows directly f‘rom
Lemma 3.2 and the refined method of Laplace [3.23]). The accuracy of
the two types of errors in (3.34a) and (3.34b), and consequently that
of the probabﬂ\ity of classification error in (3.34h) for y/n<0(10'5)
follows from extensive computer simulations. Care must be exe“rcised
in fixing the value of. y. This point shall be discussed in Chapter 6.
The relationship of (3.34b) follows in an identical manner where the
chav{ge of variables v; 2 u*i'/)\i is incorporated so as to obt%in the
region of integration correspondl[\g to Iz(n;r*) in (3.24c). lNoting
that the total sum of degrees of freedom (Jn _the sum of (3.24c) fis

ny=tr [A-I,], the coordinates of -the two extrema are then immediately
a

seen to relate as in (3.34g). The root p as defined in (3.34h) is
common to both sets of coordinates, since both,maxima are attained on

“the same simplex (3.29). This eéstablishes a similar constant term

A(u*) 1n both (3.34a) and (3.34b). The equality of the constant terms
is critical to the form (3.34i) and is revealed by an examination of

the following difference,

1 - ‘ 1
{(tn u* -u*) - (an v* - v¥)
LS U R
ui

1 .
oy Z[zn(vf-) - (uf - v¥]

1 9 - S
RN T
. 1 ™ e

epmi) | (3.35)

- B
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Thus, fr&m (3.35), we have (3.34d), and, consequently, the result of
(3.34b). This {llustrates why the r:on-constant term of (3.341) only
contains the a priori probabflity =«,. Of course, it is already known
that the value of the root u of (3.34h) fs influenced by both a

+

priori probabilities, x, and =x,. . ]
It is noted that Theorem 3.5 provides an asymptotic formula for

Pe(n;F*). not an asymptotic result. The terms approaching unity as n
tends to infinity are retained, and the formulae are found to be quite
accurate for m10. Some calculations shall be provided in the next
section. |

We note that the important factor in Pe(n;r*) of (3.341), 1in
particular as n grbws. is the constant term .A(u*), the value d}_
wh°1gh is dictated by the set i{{a), .oP' the df family F*. There fs an
extremal df F;;a(x)ef* and ‘an‘associdated root . which minimizes
Aly*). It is noted from ( 3.34) that Pe(n;r-“). in the 1imit, exhibits ~
a geometric decrease as observed by Grenander [3.18, 3.21] and Kazakos -
'[3.24]. This approach to feature selection, using a rather direct
application of the liayesian error probability and its explicit depen-
dence on the extremal df F~* setsnthese' results apart from other com-
monly used mtho:is. notably that of Kadota et al [3:8].

Explicit dependence of the results on the family F* may be view-
ed by rewrit'lng‘ (3.3;$h) as,

L
1 Mmax x-1 1 Mmax N 2 M
7 [m]f;,a(X) ‘-ﬁ' X ) (2n X)f;.a(X) +i !.ﬂ(';z-) "63-36)
min ; *nin

wherelxmn = min {x,]°0, A

= max {"i} < tr(RIl’Rz) and, f;,' (x) is
(a ila) . o

max
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the empirical pdf, consisting of n Kronecker delta tunctinns in the
ca§e of distinct eigenvales. Other components of (3.34), in particular
A(u*), which also depends on i(a), may be rewritten 1nLa similar
manner. We now briefly discuss the limit point of our results (3.34)
in view of the asymptotic result nf Grenander [3.18, 3.21].

In the limit, the non-constant terms of (3.34) ‘tend to unity/:and
to reconcjfle the seeming difference® we must take into account the
possibleﬂ eigenvalue multiplicity in the constant term A(u*). This E‘ey

be done easily be replacing .1/n in’the -arguments of A(u*) by a

K . :
quantfty py such that 21p1=1; thus, there are k<n distinct
= LY
eigenvalues. This affects the integrand of (3.25a) since the 12-var1‘/‘
~ ' B N - f
2 .

ates z7 =1,2,...,k of (3.24) now each have pyn degrees of freedom.
A1so, the coefficient <, of (3.25¢) 1s now more complicéted, repre-
senting ,x -vari ates: of differing degrees of freedom Application of
Stirling's asymptotic expression Teads to a coefficient “factor of the
RN o S
fov:m gn{"f ) which introduces the additional "E" in Grenander's

expression for A(u*). Also, his coefficient should also contain a

fac.ton of (Zn)klén, which can accolnt for the quantity' (2x) 7 which
A multiplies A(u*) in i3 34a) and (3.34b). Assuming ‘éhat the df F2(x)
converges, Reimann sums of the type shown in (3.36) may then, ‘in the,.
Hm'lt, be expressed as Lebesque 1ntegrals Numerica]ly. the eigen—
values in the nefghkourhood ki()‘max')‘min)/’(zn)‘mx) of A are con-
sidered to be multiple efgenvalues. The distinct efgenvalues are then

determined as the. average-of distinct sets of multiple eigenva)ues. "

3.5. OPTIMIZATION OF CLASSIFICATION ERROR . | .

"In this section we study the behavior of the term A(u*) in -the_'

1]

g
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L)

3 "
‘ expression 3. 341) for 1/"(n F*). The value of A(u*) is determin-
ed by the jt 1(a) and the’ normalized sum appearing in the exponen-

tial argument “Under th& stated assumptions, there is i\extren(,ai‘({f

' ¢"' {(x): ; and associated root u which min/ivi#i??')\(u*) We present
/

"j

,ﬁ 1 the foHowing resuit Lemma 3.3. The[con/stant tern A(u*) of (3.34)"

' 1s minimi*zed by/ selecting the extremal df F"_ (x) such that the for-
3 A S ———————— . v
. oAt . '
ward oifference I is a minimum, where,
. N Aa .
R oL ooy T ’ ' ) ’
«?\ .o : i\ '
% N o Jur) = - o T anoug -y (3.37)
' L( : . ”\a) . .
§ fhe' porward differencé"‘ cad(u*ia) = J(u*ja*aa) - J(u*;a), where the
Lo incrgment Aa = l/n and the depeﬂdence on « if explicitly igc]uded.
o - )y & i )
S Proof. The quan‘tity J( *) appearing in (3.37) is the negative of the

» 1

", exponent’ of thé term Alu*). - Taking the forward difference of J{u*)

4 H

with®respect to « using the notations of (3.36) and bearing in mind
‘ . ¢’

. » thati the root pot s also a function of a as shown in (3.34h), we
! ¢ . . - . ﬁ‘f
Yo% Cobtain, T ol
e B ‘Q l ®
. Lo Ce 0 XJwt) et 84724 4
L R - W (3.38)
. A P . i“la) : ‘ oo

‘where 1‘-‘\(4)"\ dehotes the complement of the set fla), i.e.*” the set

oontaining' the (N'n) integers not contained in 1(a). The relationsiip

-

» of !‘,3&) presents the discrete counte*part of the vari’ationai resuit

¥
. # 18, 3.21]. A continuous fit to the discrete function of (3 38)
exhibits a we\l beﬂaved concave function of a. The discrete quanti—

ties in (3.38) aré seen to ange ov!r both positive and negative
.

o v?ﬂ‘es. thus, the”extre!baf potat, or the point closest to zero is

I - ‘ o R
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~ 7

‘ ad(u*
eytab]ished by examining l v . \
’

The funﬂ;ion (3. 38) is evaluated at a maximum of (n+1) points

a, where FS (1) > ¢ > Fl(l) Hithin the constraints of the values n
N

arld N, we shall obtain an extrema1 df, bearing in mind that this

¢

boint may not be precisely zero due to the quantization introduced by

-

the fin{te sample size. «Th{\nature of (3.38) is that of information,

} v
or negative entrapy content of the eigenvglues (eigenvectors) which are

not selected, i.e., the eigenvdlugs indexed by the set 1 (q) [3.251.

e

The complementary information content s seen to relate to the left-

‘hand-siae‘gf the equatioﬁ for the root (3.3hh). indexed by if{c).

JBue to the well-behaved nature of (3.38) and the constréints imposed on

- -
4 ~,

a by (3.21), these calculations need not be carried out for a maximum

of (n+1) values of x. Figure 3.10 outlines the basic strategy for

: ' . )
. feature selection af¥ Chapter ;5 shall provide a feta1led computer-based

classifier utilizin this strategy. Figures 3.1l -;i&S, display the
function (3.58) versus a convenient domain ap = (n-p) fcr each of the
examples of Table 3.1; thus, an=0 and an=10 .correspoqd to the
eigenvalue selection .10'/05 and Q’/IOS, ,réspectivelyl and other
chbices 11$ inbetween these two extremes. Due to the restricted range

of .—ay- the {nadmissible selections arise and are circled. | ,

"The performance of the above strategy, called the M-D method in

.

terms of classifﬁcation error may be appreciated by comparing the pro-

baoility of error actual]y obte‘ned by using this method with the pro-
‘babil{ty of error obtained emp\oying a conventional method, such as the

Kadota-Shepp (K-S) method. As mentioned in Chapter 2, the K-S method

" .simply chooses. the eigenvectors (rows of A) corresponding tg*the

N
~ ~

t

. d
'\‘ L3 H 0
N o ° f »~
S L . . . b , .
» 4 v
) . N . ' t

"
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-~

eigenvalues of the matrix pair (RI'RZ) such that >\{+1/k1 is
maximum. Table 3.2 presents a 'comparison of’the probability  of clas-
sification error Pe(n), for N=40 and n=10 with =;=x=0.5 for the
M-D and K-S methqu fobr e'ach of the covariance pair -examples of Table

hY

3.1. The root p obtained for each method from (3.34h) is also in-

) ,

L

cluded in Table 3.2.

TABLE 3.2

P _(n) For New M-D Method and Conventional K-S Method.
. With Respective Eige’nva1ue Selections; N=40, n=10, n1=n2

COVARIANCE EIGENVALUE SELECTION  ROOT, Pa(n)
EXAMPLE M-D K-S, M-D K-S  M-D K<S

I 10%°5  9%/15  -.5525 -.5425 6.07x10°8 6.16x10°
"11 10405 10%/0°  -.605 -.605  2.80x1078 2.80x10"8
1r 10%05  -9t15 6025 -.5725  2.91x1078 3.18x1077
v gt/2s 6%/45  -.4875 -.4625  2.35x107/ 1.44@{0'5

Vo o%/105  0%/105 -.2500 -.2500 8.33x10"11 8.33x10711

The features' (efgenvalues) ‘seo1e.cted By the M-D method are clearly
seen, from Table 3.2, to be consistent with Figures 3.11-3.15 by choos-
ing the points at which the magnitude of éach curve is closest to-zero.
It 1_s -interesting to note from Table 3.2 that the M-D method is always
a}: least as good as the K-S method,. and s_ometime; bette'r'by an order of

. ' / )
‘magnitude, in tﬁrms of errov;'probabﬂity, Pe(n). -



o
It 1s noted here that although the sel&gtions made by the M-D method
are based on a minimization of the term A{u*) of (3.34i) only in
(3.37), 'computer simulation results i’ndicate that the remaining factor
{r [Blu*) * (3(_\/_"‘)]}1/n does not significantly influence the shape of
the functioh J(u*). A typical effect of this factor, say, for Example
I 1s.that of simply scaling the function J(u*) by 0.92 for n=10.
Moreover, vthis factor for the same example is seen to range from 0.92
for n=10 to 0.98 ;or n=30, and the factor approaches unity, as e;pect-
ed, as the number of features is increased.

The agg?eciab]e decreasé in error probability achieved by the M-D
method implies that the ’optimum se'lection/ of features cannot be obtain-

: /
ed simply in terms of the inverse-symmetric function x1+1/)\1 as the

in K-S method. The proper selection of features must be made, as in

Ad{u*)
the M-D method, by, examining Pe(n), or Za , for all members of

the extremal df famiiy F* This is simitar to the approach presented
in.[3.26] to determine the solution to tﬁe optimal diversity communica-
tions channel problem, where tr: scheme provides, as an optimal \choice,
a mix of eigenvalues such that Ayoor 1/)\1 is as large as possible.
We note from Table 3.2 that a different value for the root ue(-1,0)
is involved in each optimal selection using the M-D method, and, ever\
asymptotically, p need not have the same value for different extremal'
df's. This is a significant and crucial difference between )zhe M-D and
. K-§ methods. The following result helps to amplify this point in the
Hmit.'

Lemma 3.4. Let the number of features n and the data dimension N

increase continuously to 1r{f1n1tx,w'lth the compressiqn ratio n/N

4

on oy,

# afls)
'Jf R

o
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fixed. As;dme that in the limit the df FN(x). denoteg by F(x), 1is

s
\

dF (x) :
and that the limiting pdf f(x) =5 is continuous and positixe.

absolutely continuous with respect to Lebesque measure on ,["min’)‘;na;(]

Under the statied assumptions, the K-S method requires u=-)% for the

ot

optimal extremal df in the family Fr*.
Proof. Using the definition (3.22) for the members F;, (x) of the

»

family F*%and the above assumptions, we have F':(bes(x) and

Fﬁ(x)»F’(x), with the 1imiting df's absolutely ‘continuous and inverti-
. -1 pd -1
ble; B = minla, F3(17)} = a; and x%(a) - FS (o), xta) = FY (a).

The functional (3.38) then becomes,
- @ i -1
. odu*) p(l+)  F x-1
da i .{,'1 X[ xtp{x=1T]
F° (a) - ‘ N
After integrating (3.39) by parts and considerable algebraic manipula-

tion, we obtain, , .
-1
i}
alu¥) 1 (1) | P |
3T " " 7 Tog[ -p+(1+p)x] + —5—log x - » (3.40)
S-l
F> (a)

The K-S selection criteria of choosing eigenvectors corresponding to

the eigenvalues Ny such that x1+1/xi' {s maximum, implies that
{ a
-1 -1
FS (a) = 1/F*
1/;&1(}:)). Now, 1f the lower integration limit of (3.40) is set in this

ad(u*) .
7 —
‘manner, we find that a necessarmx condition for v to equal zero fis

(a) or, equivalently, we have, in the limit, x>(a) =

that the root p; must equal -%. Thus, we see that in the limit, if
r —

the solutfon to (3.34h) 1s a root u#-l4, the K-S method will not be -

optimal. ' s ‘

4

R
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One final remark on the preceding 1émma pertains to the asymptotic
behavior of Pe(n). Froé (3.341), we note that in the asymptotic case
Po(n) 1is independent of the a priori probabilities n{ and =,.
Thus, a statement of the nature of Lemma 3.4 is aot bbssib]e for finite
sample sfze, ;s can be surmised frbm Table 3.2 | J
We ﬁ;w cbnsider hn interesting,pfoblem to exampljfy the superior
performance 16 terms of error probability of the M-D method as compared
to the K-S méthod. Let N=4, and the eigenvalues of the pair (RI'RZ)
be x1=x2=p>1 and k3*k4=1/p<l. The emﬁirical pdf‘ fN(x). and the
extremal pdf's f;;a(x) are given by, *
F(x) = % 6(x-1/p) + ' 8(xp) " (3.410)

f;,a(x) = a 6{1-1/p) + (1l-a) &(x-p) 0<;<1 (3:41b)

Let us choose a data compression of 50%, i.e., n=2. There are three
possible values of a, viz., a=0,1,%. We obtain, using (3.34h), the

. . & «
following value for the corresponding root, denoted by Mo for

¢

ﬂ1=ﬂ2'&, ~
{l-p)+panp ;
uO B l‘I-p’lﬂp . a® ‘
wono g (elnno " (3.42)
’ ' a ¥1 {T=pT2np @ .
HH = 'k a‘¥

..
Note, from (3.42),(that My, fg independent of the value of Py and

tthat ul'fuo-l. “H'(“o+“1)/2‘
- The optimal coordinates uj} of (3.34g) are calculated for the

roots (3.42), and then bn]y the constant term of Pe(n;a). as in

(3.341), fis cdmputed to obtain,
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A

{ C 1 )
\ - o ~looy
' Pe(Z;O) = ('2;) Tp—'IT e P a=0 |
P';(n;a) = J Pe(Z;l) = P(2;0) f=1  (3.43) |
I
L Pé(Z;‘i) = (;) TETIT e a=l

The K-S method selects two eigenvéctors corresponding to the eige-
nvalues with x;+1/x1 being largest. Assume that M is increased
infintesimally simultaneocusly with an infinitestimal decrease in A4.'

Then, the Kjf method selects N and ’x4 with error,

N * —

1 /p -1 . i
Pe(z;;i) = (.T_!) me (3.44)
whereas, the M-D method chooses either 1, and %, or X, and x,
since,, | \
) lnp.
' 1 1no -(B-:r)
PE(Z;O) = Pe(Z;l) . ('2"“-) TF'-IT e < ~Pe(2;‘i) p>1 (3.45)

The fnequality in (3.45) is strict for o-l.

A considerable improvement in classification can be seen if we

‘consider o1, e.g., if =100, the errors for the K-S and M-D
method are approx%mately 2.32% -and 0.73%, respectively. The above
result indicates that, for the example considered, selection of’gi&!gt
set of features 2%/0° or 0%/2° ‘(ax0 or a=l) {is equivalent, and
fs superior to a mixed set of features 1S (any). In the Eontext of
communication theory, Pe(Z;Qy' or P,(2;1) relates to binary 00K and
-Pe(Z:k) to binary FSK in flat fading. One final remark in regard\to
the preceding example {s that the problmnpmay pe generalized to any

even value of N to obtain similar error probability results.

v

\ -~ -

“1

@
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3.6. DISCUSSION

.
& \

In this chapter we have dealt with -the _problem of tésting one

weakly st(at}onary Gaussian stochastic pro‘cess against another. ~The

v

stochastic processes are assumed to have simiiar means -and different,, -
covariances (patterns). We have’ demonstrated’ the ' suboptimality of

o g
employing certain statistical distance measures for feature selection

as opposed ;t'o a more direct application of the anesia'n error pr\“ob‘
ability. - | \ )

A feature selection scheme, de\}eloped'by combining classicail
‘results op pattern recognition with modern concepts of distribution

~ function theory, minimizes the Bayes error more directly than the con-

ventiondl schemes. In the development of the theory, we defined :thq
‘e‘ny/rical distribution functions (df's) of the eigenvalues of covar-

»

fance pairs for both the N-/’dimension‘ai data space, F (x), and the

. n-dimensional feature space.l F*(x) This~\permits\a detailed examina-,

tion of the eigenvalue distribution of one covariance relative to the

other covariance Such an eigenvalue examination, necessary foraoo-

-

timal feature selection, {is not pert'nitted by the use of statistical

o
-

distance measures, ' Lo T ;o M‘,

Consistent with. the classical thought there {s.2a fmiziy of cxtre-
ma] df's r*, defined in the n-dimensional feature space The suembers
of F* are F;;a(x). which are the df's F;(x) parameterizod by the .
quantity a.— ‘The family fr* con'tains a mximum of (mi) such nem-
bers, where this number may be restricted to a spoevha(t Tower value
" according to the eigenspectrua of the cova_riance pair (Rl';ezi. Among

the admissible F* (x) of Fe, there is one which minisizes the

1]

/
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probability of c]assification error. The key to resolving the feature'

¢
selection problem then: is to de ermine ¢his member (or the value of

fa)
) : R

v and select the n data eige vectors éorresponﬁéng to the na smaliest

-

eigenvalues and the n(l-q) 1angest eigenvalues.
'~ The optimal feature selection sfrategy is developed by following:

the asymptotM¢ apprﬁhch of Grenande% and using thé_results of Laplace

~to obtain>an explicit form for the Bayesian error which appears quite

accurate for finite sample sizét This method leéds to an error expres-

sion containing variables (coordinates) dependent on the root p of an

equation, 1nvo]v1ng the thresho]d for hypothesis testing It is shown

that the root ., for each member of F*, 1ies somewhere in a re-
. ’ ~

*stricted range (-1,0). The Kadota-Shepp (K-S) method for feature

‘ -
selection, developed by examining the 'extremal points of statistical

distance measure, requires that, in~thF 11mit,-’p=-k, i.e., the root’

A

u must lie at the mid-point of the allowable range with no regard for
the. family = F*. Therein lies_the suboptimality of certain statistical

distance mebsures. .
\

An optihization of the c]assifibation error. expression with res-

pect to the parameter -« leads a djscrete function which . takes the.

Fd

form of an information content (negative entropy) of discarded eigen-

values. ' The information content of the eigenvalues retained is maxi-
gﬂzed by' minimizing thig discrete function. Probabi1ity of error
results are obtained using® the new strategy and the K-S nethod for
five pairs of,Toeplitz’ ¢ovariance matrices. The new sqheme always
performs at least as good as, and sometimes better, by an order of

magnitude than the conventional K-S method.



(Rl R:z)’ " is also ’requir\ed by the K-S and other nieth/f)ds. For a more
. 9 .

'complexi-ty analysis of the schemé in view of 1its implementation on\a\\

=81~ o
,“\\i N‘\‘*- l o ’ . .
f .. o B ) . - ; o
The complexity of the feature selection §cheme bfesented here ,

questions the feaéib'lﬂity of the scheme for real-time practical applis
cations, although _tj.h”e most computationally complex part of the schgme,

- A oY

the extraction of eigenvalues a‘nq eigenvecti_)rs of the pair

detailed answer’ to this, we present, in.Chapter 5, a computational \

mini/micm‘-con\u;uter-basgd pat@vl‘ discriminator. .To achieve our ob-

o

Jectjyes of Chapter 5, we presént some recent results on, métrhg theory
fn Chapter 4. It is our belief that the results of Chapter 4 and §
will lead to an-“app,eaHng pattern classification system which may prove

useful for real-time co;nputer-based image processing and robotics.
‘ . TN . N _

\,\

~—
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, APPENDIX 3.A

CLASSICAL METHOD OF LAPLACE [3.23] =
/ i ‘
/ .

Frequently in probability theory, situations arise whére one has

to deal with gxpressions which contain many factors and géfhs and the
number of events considered is large. O0ften such expfessfons@are

- o \
analytically intragtable. “The classical method of Lap)%cé pﬁpvides a

I

\,

mechanism of evaluating definite integrals of complex .integra ds con-

sist{ng of many factors and terms ohe of which may bg/raised to & large

. j \
‘power. Let p(x), h(x), and f(x) = eh(x) be defined over a fi te or
“ |

__infinite interval [a,b] satisfying the cénditiqﬁé: a) px)[flx)]" =
nhix) | \

pix)e is abso1utely integrable over [a/b] for n»0, b) {h(x)

unique1y attains max1mum‘at ¢ and the seconé derivative h"(x)} of

h{x). exists and is cont1nuous in a neighbourhiood of e with h"(x)<O,

i
c) p(x) 1is non-zero and continous at x—g/ Under the st?ted assuwr

tions, the following asymptotic formula hofGS as  nNio, % , \
\
b
b Hic) |
s p(x) [f(x)]"d p(c)e © (3.1 )
a N nh"(c) .

It must be noted here that in applying th Laplace's method to the\

present problem, the variables at?/assumed 7 ntinuod;:\EThce\\\g+w. A %ﬁ

simp1e example of the Laplace//’method is as follows. Consider the \

& . \\

> ' ’ b | v \
] ]/e : dx o (3.A.2) |

o

ol

definite integral, /
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X

where the cons;afut k>0 and a<c<b. Let y = (kn)‘s (x-c)

I

»

[y

~

. we -may

reformulate (3 A. 2) as, L
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v
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CHAPTER 4

. Z , . '
EFFICIéNT PRINCIPAL COMPONENT EXTRACTION FOR PATTERN RECOGNITION

N F EATURE. SELECTION

4.1. INTRODUCTION

-This chapter . presents a variety of-.new results leading to effi-
cient principal component (eigenva]ue/eigenvector) extraction for two

¢lasses of matrices. These resu]ts shall assist us:-in developing a

' strategy for a computer-based 1mp1ementation of the feature selection

scheme introduced in Chapter 3. It is appropriate at this juncture to
briefly discuss the necessjty and importancé of the results to be pre-
sented in relation to feature (se]ectio'n.ﬁ

Let x be ‘an (Nxl)-dimensional data vector with mu],tivarivate

norma1 (MVN) distribution, - N(O, \R‘i), under hypothesis H, i=1,2 for

i
the binary or two-class hypothesis testing problem. Dimensionality
reduction 1is achieved by applying an (nxN)-dimensional data reducing

transformation A (n<N) to the data vector x, resulting in 'the forma-

tion of an (nx1)-dimensional feature vector y éiven by,

- ’ = A X ' » (3.1)
) IS B

The matrix A. is assumed to be of rank n. Theé rows of A are appvo-

!

/

priately selected eigenvectors of the covariance matrix pair (RI’RZ)'

Let the (NxN)-dimensfonal covariance matrices, R1 and Ros

representing two weakly stationary Gaussian stochastic processes, be



[ .

r"fbr, equivalently, ..

- -89-
/

y
.
i

t . ' .,
of Topelitz form and assume that ,R1(\f5 positive definfte. The fea-

" ture selection process requires the solution of the following determin-

antal.equation,,

'RZ - }\Rl = 0 i ’ ‘ (3.3)

7 . .
I . - -

1

|RI1R2'- Al| =00

]

Extraction of the principa];components of the product matrix R'ig 2

is thé most complex stép pf the feature sé]ection process, as can be
surmised from ?1§ure 3;10. Thus, we stud} in detail the structure ;f
such a product in order to achieve computational efficiency.

There are two cases of interest, namely, when the elements of the
data vector x are in the field of real numbers, or in the field of
complex numbers. In the case of a.real data space, we ébtain covar-
1anée‘hatrices, ,R1 and 32 which are symmetric Toeplitz. Tée pro-
duct matrix Rilkz, ,Belongs to the class of centrosymmetric (CS) ma-
trices. CS matrices possess an interesting structure which is investi-
‘gated in Section 4.2 for efficient principal component extraction. The ‘
covar}ance matr{ées obtained in the case of a complex data space are of

Hermitian Toeplitz form. The product matrix Ril

Ros in this case,
belongs to the class of centrohermitian (CH) matrices. Section 4.3
deals with the structure of the CH matrices with a view toward reducihg.

the computational complexity of principal component extraction.

-



-

-

*In addition, we discuss in'Séction 4.4 'a technique for approximatj
ing symmetric Toeplitz matrices by circulant matrices for the case when

the input data vectors are real. ~ This épproximation has been found

useful in some situations. Numerfba1*examp1es are‘bresented to demon-

strate the utility of the method.

‘4.2, ON THE REDUCIBILITY OF CENTROSYMMETRIC MATRICES

This section presents the reducibility results on the class of
centrosymmetric (CS) matrices. The discussion here .on CS matrices is
res;ricted éo results pértaining to the feature selection prob]em: We

“begin. by presenting some definitions and results in order to develop

14

the terminology and notations for the sequel.

. Recall that the covariance matrices, Rl "and R are symmetric.

Toéplftz for a real data space. It has been shown that the symmetric

‘ Toeplitz matrices belong to the class of symmetric centrosymmetric

matrices and that the symmetric centrosymmetric matrices havé reducible
characteristic equations [4.1-4.4]. . Let R be an (NxN)-dimensional
symmetric centrosymmetric matrix, then R satisfies tﬁe folfowfng equa-

lity [4.1-4.4],

R = EN R' EN - (4.1)

where EN is the (NxN)—dimensionai contra-identity* matrix containing

% Also known as reflectfon, exchange, or permutation matrix.

i
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4

ones along the cnoss:;ﬁi a~gona1 and ;eroé; g1séwhere. .The premultiplica-
tion of a matrix by Ey results in a.permutaftibn c;f the rows in the
re_verse ordér, while the po“stmdltiplication by EN permutés the
columns of the matrix in the reverse order. Note that the condition
" (4.1) is a necessary, but not sufficient condition for R to be sym-

metric 'centrosymmgtri c [4.4].

Cantoni 53:__11_’[4.2] and Makhoul [3.3] have demonstrated that the -

inverse of a “non-singular symmetric centrosymmetric matrix-is also .

-

symmetric centrosymmetric, i.e., -

VAR 1 -l R
- . R EyR "Ey o (4.2)

- -

Let us now 'exl-amine the structure of the product matrix. RI]RZ . The

1

, (H,XN)-&imensjonal matrices R'l' and Ry both satisfy the necessary

condition for symmetric centrosymmetryf;J thus, we have,

. ’
" - ; . ‘) N

~—

- g -1, ole L : .
e | ‘ Rl EN Rl EN (4.3),
Rz = ENRZEN . “ ’ ‘(4-4)
* Taking t{e matrix product and using (4.3) and (4.4), we obtain, ;
-1, . -1 )
R IRZ EN R 1 RZEN (4.5’)

0' .‘ .
since EGE, = I, vhere I, {s the (NxN)-dimensional identity matrix.
Clearly, the matrix R'{kz exhibits the relationship (4.1) and, since

t*
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. -the sufficiency of (4. i) doés not hold we examine the- structure of a

matrix R which" satisfies (4.1), bearing in mind that R may not neces-

sarily. be symmetric centrosymmetric

NxN

Befinition 4.1. [4.5-4.7] Let K be the class of (NxN)-dimension-

al matrices such that

1

Iff = EyREy

/ RE !KNXN

(4i6q)

NxN

then’|K is said to be the class of centrosymmetric (CS) matrices |

‘Let the elements of R be denoted by {r1j 1<1,j<N} then, using
' Definition 4.1, we obtain, o

TR TR (4.6b)

From the above, we have ihe following result.

Lemma 4.1. The product of symmetric centrosymmetric matrices belongs

to the class'of centrosymmetric matrices. k
The proof is straightforward. . /[/ . |
| The,members of the class of CS matrices pqssess an finteresting

structure which we exploit in order to’gzuieve a reduction in the -com- ;

) putational complexity for the extraction of pr1nc1pa1 components.

NxN

 Lemma 4.2 Llet RE[K Y, then R can be partitioned as follows,

i) N=2M (even order)

-Rla ——-—_.j'..._-_ ) (4.76)
E BE I EMAEM



) \ —-
11) Ns2M+1 (o0dd order) - - '
P ]
‘ IR I -
K T TTrRTT
. | 1 -3
R& -% _ -1' ;p— ‘_'_E“E_M_ ﬁ- (4'7b)
B l v [4
_EMBEM FEwS -EMAErl

“where, A and B are (MxM)-dimensional matrices withé partic&ﬂ ,?‘
TR

structure, s and. _g' are (Mx1)-dimensiona) vectors, p Is a -

Al

scalar. The matrix E, .is'a contra-identity matrix of order M.

-

. The proof is straightforward. L .o |
- Lemma 4.3 Let. ;re KN, and 1f, : \ .
AV N s even AN=2M), then the mtrices, -
4 - ~ \
" 1 -3 . i ‘ '
) ’I{_‘A A . P-BEM, 0 |
S N S T S SR FOP R
| . LA+
|EnfEy | EAEy | Lo | MRy
1 : K
r - / u
are similar.
_ o 1) N isTodd (N=2M+1), then the matrices,
— 'I - R . \
A 1 s | B |. Ay 0 0]
e S R - - -r -7 -
C LN U P VI U LTS s S Ll (L1
- = — _L: -y SR IS - S [
, | I o
EyBEy | Eys | ELAE, 0 | /Ts | ABE, .
b ' - — i ' —

L2

, are stnila;‘. - -

- Proof 1) Let the (WxN)-dimensional matrix L be given by,

N - 3

|
, 1 M ‘N;M
- - LT [mmm-l

I
. ) . ‘ .‘. ‘/?u _LM | EH ' "\

.

-




[ ) o i
A N < Pl
" where IM is thew(MxM)-dimensional identity matrix. Clearly, L fis

an orthogonal matrix. Forming the matrix product,
L 3

v’

o ]

g | a-BEg, O |

AR aRoe [T -~ (4.10) °
) 0 : A+BEM ’

establishes .the proof for part (i). The éorrespohding

“~  "(NxN)-dimensional matrix- b for’parp (it) is;
/ ‘ .
PN . — i -
| 1 ﬁ%ﬁ' S -
L o= —e 0" /T o ~ (4.1
%3 - -t - 7 ==
- ) IM i _0_ "\ E
' - SUR . N !
«
. 3 *. 3 -
from which the desired result follows. - . 1,

We now present some definitions before s}atiné(the'theorem on

efficient principdY component extraction of CS matrices.

-

- , .-
Definition 4.2, An (Nx1)-dimensional vector. x {s said to be
symmetric iff, ~ - ,f ;- X
. ' !
.a." . ~ \|
>’= E X . ' .
xioe
]
: \ o
Definttion 4.3. An (Nxl)-dimensional vector x  is said to be
. ! . V4
skew-symmetric iff,
+ % .
- . 5.—' :.EN! '
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: » NxN \
* Theorem 4.1 Let RE€K™ "

<

and assume that ﬁ\ has distinct eigen-

‘values. - _ .
{) Let N be even ‘(N=2M) and R be partitioned as,

1 A B
‘.R“z --:...':._...._
|
EMBEM | EMAEM
i
J

then the principal components of 'R may be extracted from’ the solutions

of the following characteristic equations,

(A-BEW )Y, = Aqyy Ide (4.12a)

—— .

(ABEyJuy = yyus  T<e (4.12b)
The- M linearly {ndependent’ (2.1.) skew-symmetric eigenvectors of R

corresponding® to the efgenvalues A,i are given by _)g; =, (1//7)
. . ", ‘

(11 ’;EM!1]T’ 1<i<M. The other M symmetric eigenvéctors of R corres-
: . : ~

ponding to the eigenvalues vy are given by Yy = (1//2)
[21 .EM'Ei]T' 1<j<M. Moreover, the set [_)gf,ljlld,jm} 1s‘a 1.1, set

of eigenvectors of R . . . - - .
11) Let N be o4d (N=2M+1) and R be p’artitioned as, . .o -
1 \ . .
‘ T , .
—_AT_:- S_ L ..:._
I
R = _ é -;—p_ ‘;- .-t-_EM_ -
|
EBEy , Ens 1 B JI
- — ! b : :
. - y 4
]
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¥

then the princi'pal components of R ‘may be qxtracted from th'e” solutions

‘ . S
-of the following characteristic equations, Coe R
» . ) .
6 -~ - - * ~ . - . U
» . . ‘ (A.:BEM)Zi = AV . I<igM : (4.13a)
- l . FT ‘;rA‘ r. _ . ) ~
1 . . A . '
p | /‘f -t- aJ . . a1 ! )
T I S B P O i\{c(m+1) (4.13b)
. /25 | A+BE, ut - EJJ“ gL I
l 3 \ ] .

The M 2.1, ‘skew-symmetric eigenvectors of - R corresponding to the

eigenvalues A; are given by x, = (1/v’§)u1,0,-EM!1 ]T, 1<i<M, The

\\\{ther (M+1) symmetric eigenvectors of R corresponddng to the eigen-

~ .
. , y 5T
values v; are given by ¥ = (1v2) ng,Zq.EMg_j]

» 1<3<(M+1). More-
over, the set -{ii-’lj' 1<i<M, 1<j<(M+1)} is a f.1.-set of eigénvgct’ors

of R . a .

i

Proof: 1) The matrix product of“(4.10) is, . - y S

A ’ S
There exist two non-singular (MxM)-dimefsional matrices =X and Y .

such.that, - : PR T .
L 1 ” ..’ * , N /“
X"'(A-BE,)X = diag(x,) - l<ieM = . _  (4.13a)
.M i
¥ .- ) : .
, v ' l" . /l’l . . . \

_and, e ‘ . . "L e .
< ¥ HasBEy)Y ¢ dfag(yy) 1lej< (4.14b)

v . .U ) ) ’

-t ‘3}‘\ . B
[ . ' ) ‘a

~p -

-
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\ Forming an (NsN)-dimensional part,ittoned.matrfx:' Z as, et
\\ - ‘~ " .‘. 1‘
\ ; ‘ <
\ y
. X, 0}
a\\ Z = W om - (4015)
oY
s ' 7. :
then, we have égat, " .
| r-mguﬁ) .0 L .
. rRRLMz oo L] aehgen - (416 -
v ' ‘ - ‘. " . ..0 ¢ 'l‘ ‘q1a§(.Yj‘) + . ‘. ~ :‘ b4
- o I v. . DR

5=
»

’

cl_early. the matrix L'IZ ‘diagonalizesq R and, therefore, contains the

eigenvectors'of R as co‘1umns.‘ Forming the m;trfix pfodgct, -

"( “

.we see that the M-~ eigenvectoré of R i:er'respon‘ding to the e;gbenv’ec- »

tors of the sub-malrix (A-BE ) are skew-symetric,, and the remaining

M eigenvectors of R corresponding to the eigenvectors of the sub- ~

2l

matrix (A+BE,) are symmetric. - : L 7

-~

The proof for part (H)%,can be ‘readily established in- a similar

4

- ] a
manner. ) ) A




v

<

e

where 5i"and.;§2 are (Mxl)lqimensionaI vectors. Consider the efgen-

(i;léb),fyg have the following uncoupled eigenvalue problems,

.va1de'prob4em;

-

eigenvalues may be relaxed with certain consequences which are as fol-

L

lows,.notidg that Lemma 4.3 implied that the scheme proposed in Theorem‘ .

4.1 determines the eigenvalues of R ~with.exac"t multiplicities. Let N

be even ' (N=2M), _x  be an”eigenvector of éorrespondiﬁg to thé -
’ eigenva1u$ i, an&‘the ygctor ‘5 be partitioned as,
. . . s | o .
= [ l’ XZ] ‘n N ’ (4-18) ‘

e

¥
P

b}

RX = AX N (4.19a)
- S L ‘ <
~+ or, equivalently, using (4.16), we obtain,
e el e ax  (4.19D)

Al

-
at

‘where iﬁq matrix L 'j§ given by (4.9). .From (4.9), (4.18) and

- IR  [(A-BEy) «aLyly’ = O (4.20a)
(/+BEM) - AIM] = 0 (4.20b)
where, the (Mx1)- dimensional vectors x_ and z -are given by,
o "y =Ix, - EM52] . (4.20c)
z= [51 + EM)_(_Z] .(4.29d), :
& *
- . ,

TheArestriction jmposed in Theorem 4.2 that R must have distinct ‘
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! .
.

T following three cases 1mmed1$te1y follow  from the above formula-

-

tion:

!
)

a) If » Jds a eigenvalug,of (A-BEM) and/not of (A+BE“), we must -

have 2=0 1implying thdt x 1is skéw-symmetric.

b) If A 1is an|eigenvalue of (A+BEM) and not of (A-EEM), we must

" have y=0 1implying that x is symetric.

c) If » 1is an eigenvalue of both (A-BE;4) and (A+BEM). we may
obtain non-grivial solutions for y and 2z. ‘We may choose y=0
to obtain a symmetric ° x, or choose z=0 to obtain a skew-

symmetric x; but, if non-;tri,vial solutions for y and 2z are

selected, the resultant eigenvector x of R may nefther be sym-

metric nor skew-symmetric.
g

-Similar conc]usi5n§ can be arrived at for the case when the order N

Al

of the matrix is odd.

Theorem 4.1 demonstrates that the ‘prot;lﬂem of principal component
extraction of a matrix Ré{KN"N ha:s been reduced to the problem of
principal component extraction of two (N/2xN/2) matrices, (or .one
(N-1)/2 x (N-1)/2) and one ((N+1)/2 x (N+1)/2) matrix) for even (odd)///
order R .. These results lead to nearly a 75% reduction in the n\ult/i/-/
plicative cgmplexityl\invol ved in solving the characteristic equatign/ of
a CS matrix. The factoriz'ation results p‘resented. here'prov'lc{e '/;a re-
duction in the complexity similar to the savings achieved‘for,:'synunetric
‘In this section, we have ,ﬁresented computat‘lqnéﬂy efficient

results for the principal component extraction of .CS matrices. The

. i'esu]ts are a generalization of the results of [4.2] and.a
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specialization of the results of [4.6].  These -results shall prove

. it :
in the situation when the data vectors are real. The CS matrices

| eful in the implémentation of the feature sa1ection scheme of Chapter
A
b

/

/
/

are also encountéred in a number of other areas such as antenna theory,
mechanical and electrical systems, and quantum physics; A deta$1ed
discussion on many other interesting properties along with the examples

.
of the applications in the above areas of CS matrices is presented in

[a.5]. : ¥ >

4.3. ON THE REDUCIBILITY OF CENTROHERMITIAN MATRICES
2 / -

This section re1afes to the efficient principal component extrac-

<

tion for‘tha feature selection sch%me of Chapter 3. welstudy the

structure of the product matrix RIIRZ for the casé when the

data vectors contain complex elements and the resulting covariances,
Rl and RZ’ are of Hermitian Toeplitz form. Some properties of
Hermitian Toeplitz matrices are discussed below to establish the

structure of RIIRZ'

~

4

Let R be an (NxN)-dimensional Hermitian Toeplitz matrix. Since

[N

R is Hermitian, we have,

R= R | (4.21)

-

where H denotes the ‘complex conjugate matrix transpose It has been
shown that Toeplitz matrices belong to a broader class of persymmetric

matrices and satisfy the following equality [4.8],
| R=ERE (4.22)
NT N .

Thus, if R s a Hermitian Toeplitz matrix, the following condition,

s
k]
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Y

" obtained by using (4.21) and (4.22), is satisfied,
R = EyRY,  — - (4..2?3)

- where * denotes the compléx conjugate. .Let the element of R be,w

”

denoted by {fij '1¢i,j<N}, then we have,

",
r!'j ‘= ’rﬁ-{-l-i’Nfl-J (‘4023b)‘ .

5 o Note that the condition (4.3) is a necessary 'but not sufficient condi-
~ .tion for R to be Hermitian persymmetric [4.9]. The reason for the
lack of sufficiency. is that the conditions (4.21) and (4.22) must both

"~ be satisfied for R to be Hermitian persymmetric, a deduction, that

cannot be made from (4.23).alone. - \ ‘

QIIRZ. We note that the inverse of a non-singular Hermitian bersym—

metric matrix is also Hermitian persymmetric; the fol]bwing corFespon-

dences fot the Hermitian Toeplitz ﬁatrices Ry and Ros using

+

(4.23), my be established, - ' o

Ry

N R1 (4.24a)

L]
m

* R-l

1 N

. %* ) .
N ‘ R 2 b ENRZ EN . B (4024b)

In view of the above, we study the structure of the product matrix'

ud
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Forminﬁ the matrix prodaEf;\ﬁsing (4.24), we obtain -

°
*

RiRy = EWRTRPE . (4.25)

7/

.-

Comparing (4.23) and {4.25), and observina\thé lack of sufficiency of
(4:23) for Hermitian persymmetry, we study the structure of_an obvious-

1y more general class of matrices which satisfy (4.23) but are not

necessarily Hermitian persymmetric. v
) NxN

Definition 4.4. [4.10] Let |P be the class of (MxN)-dimensional

matrices such tﬁét,

'1

|

R = * E
iff R = Ey R Ey

|

RqPNxN

NxN

“then [PV {s the class of centrohermitian (CH) matrices. B |

From the abovg, we present the following resul
Lemma 4.4 The product of Hermitian-
of the ;lass of centrohermitian matrices. a

The structure of CH matrices is exp1o}ted-for efficient principal

component extraction by using a particular representation for compiex

matrices. This represeﬁtation*permits us to represent an (NxN)-dimen-
sional complex matrix by a (2Nx2N)-dimensional real matrix for numeri-
cal purposes [4.11]. The consequences of such a representation on the

eigenvalue problem are briefly discussed in the sequel.

“

Symmetric matrices is a member
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* .7 |let R be an. (NxN)-dimensional matrix with eiement_:s fn the field

{ R

of g_:omp]ex numbers. The matrix R may be written“acs,

. © R=A+B S - (4.26a)

a
v < -
' -~ v

w,herg.the.(N;N)-dimen'sionaI real ha;niéés, A and B, are given by,
/ . // -
/ S A= 5(R +R%) ' . (4.26b)

.
7.

/

: , &
/ | g
/ The’ (NxN)-dimensional complex matrix R may.be represented by a

. g . N
. B '23'(12 R*) :‘ L \g ...(4.26(:)

(2Nx2N)-dimensional partitioned real matrix R,

| -

|
. l L
R = "‘:“_- X . (4.27)
|

| By imposing the restriction that the complex matrix Re]PN"N, we

obtain, by using Definition 4.9, the following relationships,

A= EyAEy | | (4.28a)
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B = -E

N B Ey (4.28b)

Using (4.28), the matrix R may be cast in the form,

& et ”-:1 N
o
Rl B
’ ;)ﬁ
~ Hle o
R = - - (4-29)

W

The (2Nx2N)-dimensional matrix R is clearly a member of the class of

CS matrices, discussed in Section 4.2. '
» ~
The centrosymmetric matrices have been shown to possess a

e

reducible characteﬁst‘lc equation;. thus, the principal components of

;?may be obtained with a significant reduction of mnearly 75% in the

multiplicative. complexity by using Theorem 4.1. The eigenvectors‘ of
may be either symmetric 6r skew-symmetric, but the question remains as
to how to relate the eigenvectors of R to those of the original com-
plex matrix R . For 'an_ answer to this, we presént a brief discussion
[4.11].

Let X be an eigenvector 6f the (NxN)-dimensional complex matrix
R 'correspondin_g to the complex eigenvalue Mo then the ‘(ZNxZN)-di-
menstonal partitioned real matrix R has eigenvalues N and A}, with
the corresponding eigenvectors, [51, -;i_x_i]T and [5*,-J5*1']T. For each
real eigenvalue Ay and the éorresponding eigenvector X ® !1+Jli of
-R » the matrifo has an eigenvalue kiof mltiplicity two, and the

corresponding eigenvectors, [u,, _v_1]T and [-v,, gi]T. The problem

/

i
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of determining which one of the complex conjugate pair of eiéenvalues
of R is an‘eigenvaﬂlue of R is resolved by computing the corresponding
eigenvectors of ﬁ : Partitioning a typical eigenvector'of Ras [u v]T
we see that corresponding to \ne of the complex conjugate pair of
eigenvalues, the vector utjv 1is null; the corresponding eigenva]ue
s to be discarded. . In case of a real ejgenvalue of multiplicity two
of R , either one of the cor;-espondi ng eigenvectors of R s’ an eigen-
veci;or of r.

We ha"\‘/e shown here the manner in which the problem of' extracting

i:he principal coEnponents of an .(iixN)-‘dimens.ionai CH matrix may be re-

solved by solving the characteristic equations of two (NxN)-dimensional

real matrices. In the context of an implementation of the feature .

selection scheme of Chépter 3, the results relate to the"situation when

3}

the weakly stationary Gaussian stochastic input data vectors to the

classifier are comp]»ex'.

.

4.4. ° APPROXIMATION OF TOEPLITZ MATRICES BY CIRCULANTS:

A WAY OF IMPROVING COMPUTATIONAL COMPLEXITY

R

This section presents !natri.x approximations which may be used to
improve algorithm efficiency when the input data vectors are real.
Recall that the covariance matrices Rl and Rz representing the u::o
weakly stationary stochastic processes are symmetric Toeplitz. A suit-
able situation for this approximation is when the magnitude of the
covariance diminishes sufficiently rapidly with respect to its size N.
In this case, covarfance matrices are either banded Toeplitz or may be

truncated to form banded Toeplitz matrices. However, care must be

.

¢

\ ¢ ‘
-
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exercised while truncating thé‘covarfance matrices to ensure that the
corresponding processes ‘are being represented reasonably accurately.
Numerical exampTes'are_included in the sequel to demonstrate the manner
in which the matrix truncation. may be1performed in practice.

Let the (NxN)-dimensional banded Toeplitz matri; R with elements

{rij|1<1,J<N} be of the form,

"1 _
. . - \\\\\\\\\ -
K o= ° ) "1k (4.30)

. 1]

i.e., rlx = rll =0 .for k. The ba;ded Toeplitz matrix may bg

-
>
—
o/
1}
1
=
—
o
[ ]
[ ]
- é00

_approximated by a circulant,matrix,tzc of the form,

14.31)

ik **® - "11

Fi12 *** T«

We n&te that tyclic' matrices are a special case of CS matrices [4.5].
"It can be showh the matrices R and g° are asymptotically equivalent —

[4.i2]. The motivation for the above approximation is an attractive

. : L N . ‘

property of circulant matrices. A cirtulant matrix can be eas{ly

A . N
A ~
©
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0 /J"‘ 4
diagonalized by means of the discrete Fourfer transform (DFT) [4. 1
. 4. 13 4. 14] The eigenvalues"of a cyclic matrix may be obtained by

comp%‘lng the DFT ot the first row of elements. The orthogonal 'diagon-

' a’lization,,\&\c = F'IR ‘F , 1Is performed ‘by selecting the, element f

.

of the (NxN)-dimensional Fourier matrix F as’ ‘mn 3 w','}“, where’ HN =
, the nth primitive root of unity; and F'l. the 'lnvérse
1

Fourfer matrix ‘with elements f;m = H;‘m",‘ O<m,n<(N-1). The columns of

F are the eigenvectoscs of R® corresponding to the respective eigen-

values in the diagonal matrix AC. The eigenvalues of Rc may be

. obtained quite efficiently by padding the N _ei'ements of first row

with zeros to.a tength N’-Zk.- Then, for example, the fast Fourier

transform (FFT). of the padded sequence may be computed to provide -the

éigenvalues of RS, The computational complekity of the procedure for

s

ex*tra_cting the principaﬂl components of a cyc]lc matrix fin this manner

is N‘]ogzN';

We study the above results in the context of the feature selection

problem. The bdnded Toeplitz covariance matrices Ry and Rp Mmay be

both approximateq by circulant matrices R;: and /;zg. respectively.

Noting that the inverse of .a non-singular circulant matiri,x is a circu-

lant matrix and the product of circulant matrices fis also circulant
- - -1

- [4.14], we have that the product matrix R‘l: Rg s 2 circulant matrix.

In view of these properties, the approximation of banded Toeplitz ma-

trices by circulant matrices is quite attractive 'since the principal

-1 . ,
components of the matrix R'i: Rg may be ex#&cted with N']ogzN'+N‘

ﬁltiplicgtions, where N'>N. ¢
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»
3

The above approximation is applied to the covarfance pair examples
of Table 3.1. . The éqvar}a'nce matrices R1 ~and+ Ry for each example
are truncated to contain only 14 diagonals above and below the principal
diagonal. The banded symetric Toeplitz stru(ctures thus obtained are
‘approximated by circulant matri'ces. It is détermined that. the approxima-l
tion is suécessful for Examples I, II and IV only. The error probability

results obtained using such a circulant matrix approximation are shown in

Table 4.1.” As can be surmised from_ ' ) [
» s ! —_

TABLE 4.1

“#p_(n) with Circulant Matrix Approximation for L
New M-B Method and Conventional K-S Method; N=40, n=10.
Covariance Examples Refer to Table 3.1.

> COVARIANCE EIGENVALUE SELECTION  ROOT,u P(n)
EXAMPLE  M-D _K=S M-D K-S M-D K-S
‘ H . ) \ »
1 10°05 . otn®  -.s525 -.5425 1.7481x1077 1.9566x107°
o 1048 S 6125 -l6 . 7.321x10°8  8.9967x107
< - ) pal ‘ ‘: ’;
'I\\I 8*/2® 7235 -.49 -7 3.9995x1077  1.9115¢107°

”~

- ‘ -, J . ;"
Table 4.1, a deterioration in the error performance of the both M-D ang,~—
K-S feature selection schemes is encountered. However, it fis

L 3
interesting to note that in some instances, for example, in Example I,
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P,

the error probability for the M-D method after circulant matrix approxi-
mation in _s_gi_l_]_ lowér than the error probability for the K-S method
without‘any approx‘lm’aﬁtion. The root u for each method is nearly the
same wi tt;'g_ without the abproximation.

The approximation of symmetric Toeplitz covariance matricesh by
circulant‘matrices may not always be possible, t_)ut whenever”a suitable
situation is ffund for the approximation, a ;1gnif1cant reduction in the
c;mpu’tationﬂ complexity is obtained for principal component extradgion

\by using the results discussed above. Some details on the implementa-

. ¥ion of such a scheme are included in Chapter 5.

4.5. DISCUSSION ' ‘ '
This work offers factorization results on 'cen'trosymnetrfc and cen-
trohermitian ‘matrices. The re(fuc{bﬂity of the matrices of both \c.laése,s

< -

is discussed in view of an implementation Of .the feature ﬂselec/tion
scheme of Chapter 3. The other areas that may benefit from the results
[pres‘ented here are a?tenné theory, electrical and mechanical S)dems,
e‘stimation angf detection, and speech processing.

The principal component extracti‘on'step'is computationally the most
) intensive step of 'the feature select1og strategy. A good deal of effort
is devqtédq to this task in order to develop computatioﬁa]]y efficient
algorithms. The weakly stationary Gaﬁssian stochastic processes to be
discriminated are assumed {o have Togplitz covariances Ry and Roe
The feature selection scheme requires the principal components of the

product matrix RIIRZ' In general, n6th1ng is a-priori ‘assumed about the

.
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lR2 and the general algorithms used for solving the

characteristic equation of RIIRZ Tead to a highly comp1ex,computatioﬁ-

structure of RI

al process; thus, the structure of RIIR2 is investigated.
There are two cases of interest, namely, when the stochastic input
vectors are real, or complex. We find, in the case of real {input vec-

tors, that the covariances R1 and R2 are symmetric Toeplitz, and
1 ¢

the product matrix Ri R, is a member of the class of cent}osymne-
tric matrices. ,Thé centrosymmetric matrices are shown to possess a
reducible characteristic equation. This a priori knowledge about the

S 1

. structure of R; RZ introduces nearly a 75% reduction in extractir&

1R2- In the case of complex stochastic

N the -prfncipal components of RI
input vectors, ;ue find that the covariance matrices Rl .and Ro ar;e
Hermiti'an Toeplitz, and the product matrix RIIRZ 55 a member of the
‘class of centrohermitian (CH) matrices. We show the manner j—n which

" the characteristic equation of an (NxN)-dimens;‘onal CH matr‘ix can be

) .related to th§ characteristic equations of two (Nxﬁ)&dimensiona] real
matrices. This introduces, as in the case of real input vectors, near-
1y, a 75% reduction in t};e alggrnithm qomputati'onal complexity %or deter-

mining the principal components of R'I'IRZ . ,

We also consider an approximation of Toeplitz /matrices by cyclic
matrices for the case of real input data vectors. The results present-
ed are quite appealing in view of; the fact that the principal component
extra’ction in certain situations may be performed in Nf]ggzN'+N'

m]tiplications;where N'>N and N'=2k.

v

Y . . v\
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, ' The results presented in 4his chapter re}ate to an efficient im- - '

®

plementation of the feature se'.let':tion'scﬁ"eme.o Such an implemeritation ., -

is presented in Chapter 5. It is .felt that the implementation of a -

N

pattern “classifier using this feature selection scheme /shaH prove

useful 1n computer-baéed -rea]-t;ime image processing _systems and

robotics.

»

pra—

#

"

%

'
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CHAPTER S

TOWARD AN IMPLEMENTATION OF OPTIMAL FEATURE SELECTION

5.1. INTRODUCTION

L

&

This work deals with the complexity ané]ysis of a computér;bésed
pattern classifier employing the feature selection schemqueveIOped in
Chapter-3. The c]éssifier discriminates between two weakly stationary
Gaussian stochastic processes. The stochastic processes are assumed to
ﬁave similar means and di;}erent covariances (patterns). The feature
selection strategy,.outlined in Figure 3.10, shall be referred to fre-
quently and, tﬁerefore; for convenience, the same figure is inclqded
here as Figure 5.1.

The dperation of the pattern classifier, employing the feature
selection scheme of F/(gure 5.1, 'may be divided° into three modes of
operation, viz., }b6’2:373733~m9de, the processing mode, and the deci-
sion:directed mode. The training mode of the classifier, used for
initializing the system parameters, is .the most computationally inten-
sive one. The actual classiffcation of data vectors takes place during
the processing’ mode which 1is, comp‘utat‘lonaH‘y, the least complex. The
system parameters are updated in the decision-directed mode in order to
take 1nfo account a rea]1stiq‘huasi-stationar1ty of tpe patterns. In
this mode many of the same funct‘ions of the training mode are opera-
fl:ive‘. N

A detailed complexity analysis is presented for each of the three

‘h‘
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modes of operation. We bring to bear some well-known and_some new
computationally dfficient algorithms in order to realize an-efficient
pattern classifier. The pattern classifier thus obtained shall prove’
useful for computer-based real-time 1image processing and robotic

X v
systens.

5.2. THE TRAINING MODE

-

The main objective of the trair;ing mode is to establish thg system
parameters of the.' pattern classifier. This consists of the construc-
tion of an (nxny-dimensional diagona] matrix’ k*, the formation of an
(an) dimensional data reducing transformation A, and .the evaluation
of a decision-threshow T. The diagonal e]ements of A%, x’f>x2>
> A;, are the appropriately, selected- eigenvalues of the covariance
~matrix pair (Rl’ Rz), *.e., the selection of n among N zigen-
values ofl (RI’RZ) suggested by the feature selection schem® of Chap-
ter 3. T!‘1e rows of the transformation matrix A are the n eigenvec-
tors of (Rl,R 2) corresponding to the eigenvalues - xf 1<i<n.

| We begin by assuming that initial estimates of the Toeplitz covar-‘
fance matrices R, and R, are known. We return in the sequel to
the question of how to carry out the estimation of the covariances Ry
and RZ The training mode performs the fonow'lng steps sequentially
to achieve the objective of estabHshing the system parameters. ‘

Step 1. Matrix Inversion.

The (NxN)-dimensional covariance matrix Rl js assumed to be a
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positjve definite Toeplitz matrix. It has been noted in Chapter 4 that
the matrix Rl s symmetric (or.ﬂérmitign) Toeplitz depending on
whether the data space is real (or complex): This a priori know1edge
aboug Ry pgrmits us to obtain.its 1nver§e efficienf1y by usin§ some
well-known. algorithms. The Trench afgorithn1 [5.1] and the ;efinéd~
algorithm of Zohar [§.2] for the Hermitian Toeplitz case, and the spe-
cialized a1goritbm of Preis [5.3] for the symmetric Toeplitz case, can
be ulitized to efficientl}'invert the matrix Ri‘ A Fortran routfne é;
accomplish symmetric Toeplitz matrix inversion, using, the spheme pro-
posed by Preis, has appeared in [5.4]. The bordering scheme for matrix
inversion ﬁsed in the above-mentioned algorithms is appealing since the
multiplicative complexity involved is O(Nz). The matrices- g, and
R Il are both centrosymmetric &at}ices and, thus, the storage require-
ment for RII is N(N+1)/4 (or(N+1)2/4) for even (or odd) N.
Step 2. Matrix Product, R 4 RIIRZ.
o The eigenvalues and*eigenvectors of the covariance matrix pair
(RI’FZ)' required for feature selection, are<the principal components

1;22; thus, we need to compute R&R IIRZ'

of the matrix product’ RI
The matrix R , as shown in Chapter 4, is a centrosymmetric or a cen-
trohermftian matrix depending on whether the data vectors are real or
complex, respectively.‘"Moreover, the matrix é is completely defined
by NZJZ or (N2+1)/2 real (complex) elements for even or odd N,
réspectiver; for the case when R 1is a centrosymmetric (cent}ohermi-

tian) matrix. The elements of the centrosymmetric (centrohermitian)

/




“also, the matrices RI

\ " ql18--

R may be obtained by performing at most 5N3/244701N2) real (complex)
.o . v N
multiplications as follows.

Let the elements of R be denoted by {pijl1<1,j<N}, the elements

of R il be denoted by {ayy[1<i,j<N}, and the elements of R, ‘be .
. denoted by {Tfj|1<1.J‘N}- We first coniider the case when the data’

vectors are real and the covariance matrices are symmetric Toeplitz;

1 and R, are both centrosymmetric. From the

-

centrbsymmetry of Ril and RZ’ we obtain srg following cdrresponden- \
ces,
04§ = Ogaloi N+1-§ = 931 1<1,j<N (5.1a)
’ Tig T Nel-dN#l-j T Tgi 0 LTI s

Noting that the elements of .the symmetric Toeplitz matrix é;‘ are the
functions of |[i-j| rather than of {1 and j independently as in the

~

case of a general matrix; thus, let

-

Tij = Tli;\j‘|+1 1‘1,‘1‘" ‘U ’ (S.IC)
e
The elements of the matrix R may be obtained as,
N
pij = k§1 U‘iktkj 1‘1,‘1‘" : "'5.*)

)

'Using the relations of (5.1); (5.2) becomes,

i1 Ngl-i

) °r + g4, @ T +

A TR TS TS TR (B!

- ) (5.3)
k=E+2_1UN+1‘k,N+1-1 . T'k-j|+1 1(1,J§N .

P”

The product of the matrices 1211 and Rz and, thus, the elements of R

S
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may be_&uite efficiently obtained by using (5.3). It may not be ob-
vious from: (5.3), but at most the multip]icatjons of 015 with g
for 1<i<N, j§j<Nq1+1 and 1<k<N+1-i need be performed to completely
define the product matrix R, thus, the multiplicative comp]exity is -

5N°/24+0(N7) .

We now address the problem of obtaining the elements of R . when

the data vectors are complex and the resulting covariances Rl¢ and

R2 are Hermitian Toeplitz matrice5° also, the matrices :QRII and Rz‘
17,

are both Hermitian persymmetric. The elements of Rl /andi Ré

satisfy the following equa11;1es,
’ 2

1¢i,j<N _ (5.4a)

‘o

=d3'i

j = Oh1-1,N+1-§

15T Relei,Neleg © T 1IN

(5.4b)
Since the matrix Ry is Hermitlan Toeplitz, the elements of R2 are
functione of the difference (i-j) rather than"i and J 1ndepen-

dently; thus, let

L)

T

T C1giL g N K5.4c)
T(jei)en 1
Using (5. 4). the matrix product (5.2) may now be cast in the fol]owing
form, B
N+1-1
kgl %Ki ® T(jk)e1 t k§1 %k ® F(jek)+1 T
) N . (5.5)
' ~.
o ® T, 1<i,j<N
. ] k'N§2-1 N+1-k‘N+1‘1 (J—k)+1

v

The relation (5.5) may be used to'eff1c1en}1y obtain the elements of




-120- ~ -

.the prdduct matrix R . Care must be taken for the values of T(e)+1
whenever (e) 1is negative, in which case, the quantity 1:(')+1‘ must
be used instead. The computation of p%j 1<i,j<N, the elements of R ,

requires at most the complex multiplications of %j with .’ 1<i <N, _

K
i<j<N-i+1 and “ 1<k<N+1-1; thus, the multiplicative complexity*, in
terms of complex multiplies, is 5N3/24+0(N2). ;

Step 3. Principal Component Extraction of R g RIIRZ'

This step of the feature selection process is ccaputationdTly the
most intensive. A good deal of effort has been devoted to develop the
resu]ts‘ofﬂéhapter 4 for efffcienx principal component extraction of
the produét matrix R. The matrix R is either a centrosymmetfic or a

centrohermitian matrix depending on whether. the input data vectors a}e

real or complex, respectively. }n either case, the matrix R has been

O g

shown to possess a reducible characteristic equation. - The principal
comporients of the (NxN)-dimensional centrosymmetric matrix. R may be
obta%ned_from the solutions of two characteristic equations of order
N/2 each (one (N+1)/2 and one (N-1)/2) for even ' (odd) N. For the
other case, when R 1is an (NxN)-dimensional cengrohermiiian matrix,
the principal component of., R may be related ;ofthe chéracteristic‘

equations of two (NxN)-dimen§ion$1 real.matrices." The resulting

% Note that once the product of two complex numbers z and 25 s
performed, other product combinations such as 2 é‘ and 2
may be obtained without any additionaﬂ muitip 1cat ons. {e

] zl=a+jb, 22=c+jd, then -
\ 2112 = (ac-bd) + J(ad+bc)
Now, for example, the product,
2{zp = (ac+bd) + J(ad bc)

' may be obtatned from 227 without any additional multiplications.
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sub-problems for the botﬁ cases can be solved by the generdl techniques
available in the literature [5.5,5.6]. Tnis realization introduces a

signif.icant savings of nearly 75% in the multiplicat‘ive complexity of

Y

Step 3. - * 0 ' ¢
A

We now study the situation when the real symmetric‘ Toeplitz covar-
’ - ) .
iance matrices Rl and R2 may be Spproximat-ed by the circulant ma- {,

trices\. R§ and R; , respectively. Figure 5.2 outlines the feature
seleétion strategy for this case. As illustrated in Figure 5.2, Steps

1 and 2 may be bypassed in this case and the strategy begins direct]y’

from step 3. We now discuss. the manner in which Step 3 can provide the

v - . -1
principal cqmponents of the product matrix R‘l: R;-

g -1

~ Recall from Chapter 4 that the matrices Ri,tzg and Ri R; are
-'[—— . ~ R o &
. .all circulant matrices.  In addition, the eigenvalues of a cirdblant

i

matrix may be obtained by computing the discrete F0ur1'er transform

(DFT) of the elements of the first row. Then the procedure for_detef-
‘. ]
- 1™ .
mining the eigenval_ue§ of R‘; Rg is as ‘follows. The reciprocals of
- : -1
the DFT of- the first row of R‘i provides the eigenvalues of ni .

d
2
first row of the matrix Rg. "The eigenvalues of the product matrix
-1 '

' Ty .
Ri ‘R2 are simply the point-by-point multiplications of the’ eigen-

The ‘eigenvalues of R may be obtained by computing the DFT of the

R -1 \ . .
va'l/ues' of the matrices Ri R‘z: gince the factors of the product com-

: -1
mute.  The eigenvectors of the product matrix Ri R, are equal to

the columns of the N-dimensional Fourier matrix [5.7-5.'9]. The

&
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' 1

efficiency of performing the DFT may lge enhanced by padding the .

N-dimensional sequence of the elemeqts of the first row of a circulant
° 1

matrix by zeroes to form an N' -dimensional sequence such that N'=2"

(N'>N), where m is any positive integer. The fast Fourier transform

Y

(FFT) on the N'-dimensional zero-padded sequence  may be performed in
only N']ogzN‘ multiplications [5.10,5.11]. Additional computational

savings my be achieved by using the Winograd fast transform”a]gorithm

Al
-

(WFTA) [5.11,5.12]. In fact, a denser set of lengths is available with
the WFTA as opposed to the FFT. h

It is 1Bteresting Eo'note'that circulant matrices are a special
;ase of CS matrices and, thus,

oA

eigenvectors {5.13]. The

either symmetric or skew-symmetric

emaining discussion on the implementation of
the pattern classifier is pﬁic?ble to thd; approximaiion as well.
-+ Step 4. Construction of thﬁ Family F* of Extremal df's.

The construction of the family F* of extremal df's is‘merely a
selection, based on the criterion (3.22), of certain df's amon§ 'F;(x)
parameterize& by Q} this step does not reduire any computation. The
number of smallest (or largest) eigenvalues, a wnxi@pm of n, below
(or above) unity determines the family F*. The family F* may con-"
tai& a maximum of (n+l) neﬁbers, where - n is the dimensioﬁ of the
feature space. Each ‘member of - F*. is a potential solutionrto the
feature selection problem. step 4 may invariably restrict the. numher

of possible solutions over which the error probability expression need

he optimized.
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-
Step 5. Computaiion of the Root, u.
This step in the feature selection process appears to be quite
complex but, in fact, this is not the case. Here, the solution of the

\,following equality is desired,

1l 5 1 L ¢ oA, +2 (e ) = k/ (3.30b)
— . D e \ N N [ —— = n 3.
® Ti TR T

for.the root u (-1,0)," using the functional wu(t), given by

i % ;
. .l{‘t).= ry i%a) W (3.31)

2 ‘ th ) * '
wﬂgi; qié(l-llki) and i(a) determines the eigenvalue selection A

l<ien for each df member of the family F*. The condition for deter-
miﬂing p is that J(t=p)=k/n. We know that ue(-1,0) and the func-
" tional u(t) .s a well-behave{ monotonically decreasing funéiion of t
in the restricted region as typified by Figures 3.8 ahd 3.9, The man-
ner in which the root  may be determined efficiently is‘as follows',
Let the function u(t)- .be discrétiged a7 m points within the
restricted region of te (-1,0) with a qhantization step of 1/m. A
search for u such that g(t=u)=k/n can be performed quite efficient- '
ly.\ Due to the regular béhav?or of the functional u(t), ‘4heﬁye1]-
known binary search [5.14] may be-utilized to accomplish the task in at
'Eﬂéﬁ. log2m+1 steps, provided an appropriate tolerance is incorporated
to account for the quantization of u(t) 1in the comparison of u(t)

with k/n. Note that the‘'discrete value of u(t) need be computed at a

maximum of log,m+l discrete values of t, as suggésted by the
—— 2
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bipary -search procedure., This process must be repeated for each mem-

ber, a maximum of (n+1l), of F*,, to obtain the corresponding root

\ /

He
{

Step 6. Retermining the Optimal df. )
Step 6 is the final step in obiainihg the solution for feature

. . ad(u*)
selection. "This step requires the computation of | = [, given
by,

2I(u*)  w(1+w) %/
- Ax = "7n ! 14~pq,i ' (3‘3?)

.C

: iv{a)
where 1c(a)* is the complement of the set of eigenvalues determined by
i(a), i.e.,  the ic(a) determines the set of (N-n)‘eigenvalues not
contained in the set determined by 1i(a). The expression (3.38) should

v

be evaluated once for each of a maximum of (n+l) members of the family

-

' ' AJd(u*) .
F*, The df that provides min |‘—-j§———| is the optimal df.
' i(a) -

In the training mode, Steps 1 through 6 are perfoiwed in drder to
sestablish the system parameters. The eigenvalues AY 1<i<n of the
covariance matrix pair (RI’RZ)’ appropriately selected by the optimal
df, are arranged in descending order to form the diagonal matrix A%,
an& the 'corresponding ‘eigenvectors ar? arranged as the rows of the
(an)-dimensf6na1 data reducing transformation matr{x A. The deci-
sion threshold T=k/n is c&mputed ug%ng (3.30b). Having estaﬁlished
the system\parameters, we are ready to initjatg processing input vec-

1

tors fbr classification.

) . £ ¢

\
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'5.3. THE PROCESSING MODE

The classification of patterns is perforied during the processing
mode. JThe dimensionality reduction, or data compression, .is achieved

by applying the (nxﬁ)-dimensignaT' (n<l"l) transformation A to tﬁe

A Ld

*
LIS

(Nx1)-dimensional data vector x to obtain the (nx1) -dimensional fea-

ture vector y, i.e., &

y =Ax _ (3.1)

o]

‘The structure of the transformation A must be e;afnined in or‘der to
éeﬁform (3.i) efficientvly. Note tha;: the rows of A are the n apprq-
briat‘e]y se]gltted ei genvectors of the matrix pair E/(RI,RZ), or equi-,
valently, that of th;a product matrix RéRI R?_-' Two cases of interest
immediately follow, viz., R is a centrosymmetric matrix for real input
vectors, or, R is a cegtroher'mitian matrix for complex inpupvectors.
We first examine the case when R is a centrosymmetric matrix. It
hasjbeen established, by Theorem 4.1, that the eigenvectors of R are
,either symmetric or skew-symmetric; thus, the rows of transformation
A are either symmetric or skew-symmetric. In view of this,‘we state
the following result on the inner product of two~vectors, given that
one of them is either symrﬁetric or skew-symmetric.
‘Lemma 5.1. Let f énd g be (Nx1)-dimensional vectors.
i) Let N be ev'e'n (N=2M), and the vector g be partitioned as,
. ]T

9= g9,

where' g, and g, are (Mxl)-dimensional vectors.
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a) If f is a symmetric vector partitioned as,

= fl’EMELJ

then the 1nner product of the vectors f.and g is given by,

+

. T T
u [

f'g =f,'[9 +Eyg,]

where f, is an (Mx1)-dimensional vector, and E," is the
- (MxM)-dimensional contra-identity matrix.

b) If f s é/skew_-gmmetric vectar partitioned as,
X
. )
.t = [Ttl’"EMt]_] ,

thep the inner product of the vectors f and g is given by,

*

T T "
. fg = £,09; - Eygyl X

v
~

ii) "‘Let\ N be odd (N=2M+1),\ and the vector g be partitioned as,

2

- -

¥

\
- T
9= [9.1’ @y 5.2]4

. where 9 and g, are (Mx1)-dimensional vector, and a is

scalar.

'a,)_ If f is a symmetric vector partitioned as,

T

s B Byfy]

then the inner product of the vectors f and g is given by,

iT.Q. = b.f_lT[s_l + Enﬂ_z] +a B

- 1
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”where"il is an (Mx1)-dimensional veétor, EM ‘15 the
(MxM)-dimensional contra-identity matrix, and B 1is ;\scalar.

b) If f is a skew-symmetric vector partitioned 55,

' T
o= e 00 Byl

L4

then ‘the inner product of the vectors f and g is given by,

-

.I'

flg = £l - Eg,) -

The proof is straightforwafd. . 4 ' ; * B
The operation (3:;) may now be performed, using Lemma 5.1, wiph a near-
1y 50% reduction in the multiplicative complexity.

The class1f1cat1on of patterns, based on the feature vector y, is
performed in accordance with binary hypothesis testing rule,

H1 -
y I -y ior . (5.6)

"2 ' '
where In is the (nxn)-d1mens1ona1 identity matr1x; The quantites A*
and T have already been computed in the training mode. The left-
hand-side of the inequality (S.p), zT[IQ-A*'l]X, may be directtly
computed in 2n ﬁultiplications. The overall complexity of the proces-
sing mode is then approximately (nN/2)+2n, in the case when is a»
. centrosympetric matrix. ! )

We now examine théxcomp]exity of.the<proces§?hg mode fqr~the'case
when the input vectors are complex and the covarjance / R.1 and Rz are

1

Hermitian Togp]itz matrices. In this case, the product matrix R 8 RI R2

is a member of the class of centrohermitian matrices. We have

=)

)

*

.

o
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discussed in Sec:;ion 4.3 that an’ (NxNj-dimensiona] centrohermitian

matrix R may be represented 6¥ a (2Nx2N)-dimensional real centrosym-
— . LY
metric matrix R for numerical purposes. The manner in which the

characteristic equatioh of R may be related to R has also been dis-
cussed in Section 4.3. bue to the a priori knowledge that R ‘has
strictly real positive‘eigenvalu;es, the\ discussion here is restricted
to this. particular case. For each real eigenvalue A, and and the

corresponding eigenvector "% =u, +jv, _of the complex matrix R, the

real matrix R has a double eigenvalue )‘k with corresponding f.i.
| :

~
eilgenvectors_given by [l‘-k’-‘ik]T and [-v,,u, ], where 2, u and

v, are (NXI)-}dimensional vectors. Moreoverge corresponding to a double

real eigenvalue of fz , the eigenveltor -lik+j-‘-’-k derived from either of

the eigenvectors [ﬂk’lk]T and ["l’.k’_‘.'.k]T of R is an eigenvector of

7 . -
the matrix R . However, the centrosymmetric matrix R has eigen-
vectors which are either symmetric or skew-symmetric. Thus, the matrix

R".\has.(ZNi%l‘)-dimensional p_artitibned eigenvectors of the férm [gk,EN
]T

‘ T .0 L c ae
u bl or [gk,-EN gk] w1‘th vector g =u +jE, u,or 2 =u -JE U,
respectively, corresponding to the/e‘lgenvectors of the matrix "R .
The rows of the transformation # A » the n appropriately -selected
eige‘nvecto‘rs of R, are of the form -&kﬂkt‘j'ENﬁk' In view of the

above, we examine the inner product of two vectors of the f_orm

>

> _f_=flszN _1_‘_1 and _9_=3_1+jg_2, where f,g are (Nx1)-dimensional complex '
v\ectors, and il,gl.gz are (NXI)-dimensignal real vectors.
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Lemma 5.2. Let the((NxI§-dimen§iona1 complex vectors f and g be of

\\qghe form, - \‘\ | ' . !
A ) A
f = ,11 t jE f1 .
.7 94 +tig)
\ .

where il’-gl and g, are (Nx1)-dimensional real vectors,uénd EN i§
the (NxN)-dimensionat contra-identity matrix. The inner product of "the

vectors f and g 1is given by

flg = .f.1T [(g,7 Ey gp) + (g, + Ey g))]

L

The proof is straightforward. . . B
/

Lemma 5.2 offers, similar to Lemma 5.15\3\50%‘réduc;ion in the

multiplicative complexity involved in performing the operation (3.1).
The computations ceqbife& to perform the decision threshold testing of
‘(5.6) in this case ére similar to those of the previous case of real
input vectors. The deciéidn ruie in this case is, )

H
G . * .
< P Ay 2t | (5.7)
Hy

. I - ,
where H denotes ;hg matrix complex conjugate transpd?e.

Sections 5.2 and 5.3 have demonstrated that a pattern classifier
employing the feature selection scheme of Chapter 3 may be imalemented
quite efficiently. . Thé pattern .classifier incorporating only the
training “‘mode and the processing mode may be extended to include a
decision-directed mode. - The decision:ﬂjrected mode is used to updatg
the system parameters using the training mode functions, thereby taking

into account a realfs;iquuasi-stationarity of the environmentf in

- . !
f

|
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which the features evolve slowly with time.

5.4. THE DECISION-DIRECTED MODE

The initial estimates of the covariance matrices Rl .and RZ may

be obtained from training data as,

i i i -
rok = Elxgxg b 1eg kN +(5.8)

lk denotes the 2kth entry. in the® Ri i21,2 matrix. The
1 b

quantities xj 1<j<N are the entries of the input data vector x

where r

ﬁnder"hypothe;is Hi i=1,2. The'covariance'mag;icés thus obtained are
used to Estﬁb]ish the system paramefers A*, A, vaﬁd T as discussed‘
in Section 5.2 before the pattern classification process of Section 5.3.
is in1?11ted The complexity of the processing mode is nominal as can.

be surmised fr¢m Sectlon 5.3 and the processor can easily rate in

rea\ctime. This nmchaqisnm of pattern classification is satisfac
provided the input tb the processor is of stationary nature, but the
problem becomes somewhat more complex if quasi-stationarity of patterns
is assumed. This is attributed to the fact that the system parameters
A*, A, and T must be updated as we move from cne intemyal of sta-
tionarity~to tﬁe next. Therefore, a means of estimating the covar-
fanchs Rl and RZ; and egtablishing the system parameters in

parallel with the processing mode is required.

The underlying assumption of the foilowing discussion on an itera-~

tive estimation of covariapnces is that the classification error of
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the pattern classifier is low, say 0(10'6'). The classification de-
cisions made by the classifier can then be. utilized to estimate itera- .
tively the matrices Ril and.'R2 in the following manner. Let G be

an (NxN)-dimensional covariance matrix related to the (Nx1)-dimensional

sample vectors g. .Then the estimates of Gm and G':‘ at the mth
‘jteration may be obtained from ém-ll' and ém:%’ respectively, by
using the relations [5.15], ' ' ' F

T A T

Gm,= (1 -ﬁ‘-) Gm-1 * 7 Iodn (5.9a)"

and, - _ . -

- -1 T H el

1 . h -_1 Gm-lgm'gm Gm-l

Gm =m Gm-l - — ‘ (5.9b) .

(m-1) +2mH Gmi 19n

-~

here denotes an estimate of the quantity enclosed. ‘Some adaptive
mechanisms such as least-mean-squares (LMS) method [5.16], o? rﬁodified
Kalman filtering technique [5.17], may also be incorpc;rated to estimate
the covariance matrices iteratively. The system parameters may be
computed périodicé]]y via the training mode, in parallel with process-

Il and Rz are obtained.

ing mode, after good estimates for R

An alternate approach of estimating th; covariances R1 and R'z
as f:onst'rained Toeplitz matrices is due to Morgera et al [5.18, 5’;‘19].
The method is simple and appealing, as the estimation is quite acc,urat;e
when the number of input vectors is small. Howevery it does not seem
possible to extend the approach to a recursive form similar to that of

N\
(5.9) due to the fact then an insﬁantaneous covariance estimate is not

rank one.
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-

A [detailed -comptexity ahalysis of the pattern ftlassifier.is pre-

sented’ in view of a computer-based real-time implemeptatio . The pat-

tern classifier incorporates the feature selection $cheme proposed in

Chapter 3. The training mode, the processing mode, |and the decision- ‘

directed mode .are three modes of operation of the |classifier. The
training mo&e, used to estab]ish the system pafameté s, is quite com-
plex and~the results of Chapter 4 are 9sed te reduce the compléxity of
this mqde significantly. The processjng.médé during which the classif-
ication of patterns is performed, is shown io have nominal complexity.
The decision-directed mode is used to update the s}stem pérameters Qia
the training méde to account for quasi-statiﬁngrity of patterns.

A number of new results along with some well-knowh results are

incorporated to realize an efficient pattern clqséifier. The computa-

" tional complexity involved in every step of the classifier is discus-

sed. This study shall prove useful in the practical implementation of
mini/mjcro-compuger§based pattern classifiers for image processing

»

system and robotics.
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CHAPTER 6

¢
PERFORMANCE EVALUATION OF THE FEATURE SELECTIONAJ
ILITY

SCHEME AND EFFECTS OF CERTAIN PARAMéTERS ON ERROR PROB

|

{

6.1. INTRODUCTION

]

The pérférmance of. a pattern recognition feat%{e selector is, in
/general. evaluated on the basis of two important criteria, viz., reli-
dbility and economics. The reliability of the classificati%n system-is
mea;q;ed in- terms of the probability' of isclassificatio‘ or error,
whereas the economics of the system is related to the costor éoﬁﬁ&la-

tional complexity of the system. A detailed codmlexity analysis of a

classification system emﬁ\oying the feature selection scheme of Chap-
ter 3 has been presented in Chapter 5. This chapter deals with assess-
ing the performance of the classifier in terms of error pTobabilfty in

= comparison with conventional feature se]gction schemes, notably that of

Kadota et al (6.1]. - ’ /
. ' " This work presents numerical resblts regarding varij:s aspects of
) _the pattern classiftgr Numerical simulation results are included on

the error probability achieved by using the Morger$¥D tta (M- D) and
. Kadota-Shepp (K-S) methods. These results are then analyzed in view of
the error bounqs avaflable using statistical distance ‘measures, for
_examplei the error bounds ° for féature selection wutilizing the
Bhattacharyya distance as discusssed in [6 2]
' We examipe the behavigr of tqt}error probability expressioq of
(3 34) in re]ation to varfation 1n the values of certain system

\

-13;- ' ) /

%

-
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parameters, Effects of éfﬂﬁlﬂﬁl probabilities =y,n, are studied on
the root pu of (3.34h) and, thus, on the classification error. We
discus§ the reasons for restricting the value of the free parametér Y
of (3.26b) in Theorem 3.5. In addition, we present the changes observed
in“the probability of c]assificafion error as the feature dimension\ n
is varied while majntaining the data dimension N fixed. |

.
6.2. COMPUTER SIMULATION OF PATTERN CLASSIFIER~PERFORMANCE EVALUATION

Simulation of the pattern classifier was ca}ried‘out on CDC Cyber
172 computer. Three examples of covariance matrix pairs (patterné) of
Table 6.1 were' considered. Due to limited computer resource allocation
to a user, some difficulties were encountered for generating a suffici-
ent number of:data vectors of size N=40 with specified second order
. statistics. This problem was overcome by reducing the data and feature
dimensions to N=12 and n=3, resﬁectively, thereby maintaining the

data compression ratio n/N=.25 (or 75% compression) for all the exam-

ples of Table 6.1. This value of the compression ratio is in agreement
with the examples of Table 3.1. We note that the usage of the examples
of Table 6.1 shall be restricted to this secgion only.

., Feature selection for the pattern classifier simulation is per-
formed by employing both the M-D and K-S methods. The (&2*})-dimen-
-sfonal data vectors with zero mean and multivariate normal (MVN) disg-

tribution with covariance matrix specified in Table 6.1 are generated

using the International Mathematical and Statistical Library

L4
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(IMSL) subroutine -GGNSM. The a]gorith}n used in GGNSM for generating _
MVN distributed randOfn vectors with speciﬂed second order statistics
is similar to that discussed in [63] For any particular covariance
matrix pair exampie, ZOOO\data vectors are generated }or ach pattern.
The simulated pattern cla§sifier processes 4000 input vectors of two
weakly stationéry Gaussiaﬁ stochastic ;;rocesses ’fqr each exar;lpIe of
Table 6.1. ’

The number of data vectors used in the simulation is deemed to be
statistically adequate. . Assumi‘ng that the number of misclassified
samples s distributed according to a binomial probability distribution,
a. 95% confidence interval for the error probability estimates in the
range of 0.1 to 0.25 is extremely tight for sample size in excess of
1000 vectors f6.7]. Using this type of model we calculate, for example,
that Prob{ P,(n)-P (n) <1.56x10"2}=0.95, where P,(n)=.15 is the true
error rate of the classifier and Pe(n) is the error rate estimated by
sin;ulation using 2000 vectors. We shall present the error probability
results of the simulated classifier in the sequel, but now we study the
feature selection fgir each example 'by using M-D and K-S methods.

Table 6.2 presents the eigenvalue selections and a comparﬁison of
the probability of,c‘léssificaﬂon error 'Pe(n) for the M-D and K-s

methods for each covariance pair example of Table 6.1. The results of

Table 6.2 are obtained for equal a priori probabilities, f.e.,

R1=1530.5. The value of Pa(n) listed in Table 6.2 is the theoretical

value obtained by using the error probability expression (3.34). The
4

root u of (3.34) for each method is also included in Table 6.2. It

i§ interesting to note from Table 6.2 that the M-D method 1s always at

}
)
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- TABLE 6.1

AN
Toeplitz Covariance Matrix Pairs CRI'RZ)

Selected as Covariance Examples

-

Examgle ‘ DESCRIPTION ~LRLLRZl PARAMETERS‘
I (Rl.R ) first order Markov
. ’ .‘h}“- .
-a i-jl .
kli=sl
pk;li_-j‘-e ) a=1, GZ-O.S
\
11 ‘RI’RZ) first order Markov a1=1, a2=2
11 izl first order Markov = a =1
‘ RZ second order Markov

.. = "5 ' =Y N =(), =
li-gh = ® Pl T E Pz PR Y
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y TABLE 6.2 :
P (n) for New M-D Method and Conventional K-S Method
wiEh Respective Eigenvalue Selection;, N=12, n=3, mi==n2-
COVARIANCE EIGENVALUE  SELECTION ROOT, u pe(q)7~
. EXAMPLE M-D K-S M-D K-S M-D K-S
ol I 370 305 -.ss00 -.5500  .1716  .1716
Y | . - . . , '
1 0t/3° 1%/ -l4625  -.4850 ' .1439 1557
o */0° ' - o555 -.5175  .1287  ,1378
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least as good as the K-S method and sometimes betfer in terms of error

' probability, Pe(n).’ The decrease in the error probability obtained by

the M-D method\ implies that the optimum selection cannot be achieved

o

simply in terms of the inverse symmetric function x1.+1/x1. as in the

K-S method. .The proper selection of features must be made, as in the

- 80 (u*) <

M~-D method, by examining —a of (3.38) for all members of h&
"

extremal df family F* of (3.21). We shall now substantiate this

claim as we return to presenting the classification error results of
the computer simulated classifier.

Tables 6.3-6.5 present the simulation results for the probability
of classification error Pe(n) for each of the three examples of Table
6.1. Each table prgsents Pe(n) achieved for all possible eigenvalue
selections for a particular example. In addition, the error :bS"\;'nds on
Pe(n) obtained by using the Bhattacharyya d{stance for each eigenvalue
se]ec:.tion are included.’ The.error probabj]ity for the eigenvalue se-
l'ection, obtai-ned by the M-D method, as‘ can be surmised from Tables
6.3-}6.‘5 by examining the respective eigenvalue selections, is always at
least as gpod as the K-S method. It is also obvious from the same

tables that the error bounds on Pp(n) obtained by using the

Bhattacharrya distance measure are quite "loose” and fail to provide

‘any useful information for feature selection, e.g., the error ‘bounds on

the eigenvalue sel(ection .31/05 and 211/1S in Tablg 6.4 are identical
for Example 1I1. For the same examples, these eige'nvalue selections
seem to be equally good and best for feature selection, whereas it can
be seen from the simulation ‘results of Table 6.4h and the theoretical

results of Table 6.2 that the optimum choice of features is given by
' - v

o
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TABLE 6.3

Error Bounds using Bhattacharyya Distance and
Simulation Résults for Pg(n), for all Possible Eigenvalue
Selections for Example I of Table 6.

EIGENVALUE P.(n) 'ERROR
SELECTION CLASSIFIER SIMULATION BOUNDS

L,.8 "
s . .185 .058<P_ (n)<.233
%18 . .207 .058<P_(n)<.234
1%/28 .227 | .063¢P_ (n)<.238
ot/38 .235 .064<P_ () <.244

TABLE 6.4

Error Bounds using Bhattacharyya Distance and

Simulation Results for .P.(n), for All Possible Eigenvalue
Selections forlgxample Il of Table 6.1

¥ . Y

EIGENVALUE Po(n)- ERROR
. SELECTION - . . CLASSIFIER SIMULATION BOUNDS
\
2,58 ‘

370 221 © J061<P,(n)<.240
2*ns .223 L061¢P, (n)<.260
/7o .215 ' .062¢P,, (n)<.241
oS - -203 .063<Pe(n)<.244

3 3
L 4




<,/
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. , .
— N ) TABLE 6.5

. P'

Error Bounds using Bhattacharyya Distance and

Simulation Results for P_.(n), ,for All Possible Eigenvalue
Selections for Example I11 of Table 6.1 ‘

-~

EIGENVALUE Pln) . ERROR

. SELECTION CLASSIFIER SIMULATION " BOUNDS

3%/08 | .186 . .058¢F(n) <.234
*1s .205 ‘ .056<P, () <230
128 . .223 v .089<P(n) <.236
%73 - .231. : .062¢P <.2417
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the eigenvalue selection 0*/35. A-similar-sithation is encountered
for Example III ‘as shown 1in Tible 6.5. In this case, the eigenvalue
selection 21/15 made by the K-S method aﬁpears tB be the best in
terms of the rgspective error bounds, but it is- obvious from the simu-
lation results for Pe(n) that this is not the case and and the selec-
. tion of the M-D method is optimum.

To reconcile the seeming differences between the the&retical and
simulation values'bf Pe(n), we present the following discussion. This
discrepency may be attributed to two reasons, namely, the size of the
" problem and the numerical inaccuracies. The feature selection approach

of Kadota et al uses asymptotics‘iﬁ the formulation, and the M-D méihod
optimizes the aéymptotic formulation for finite sample size. The data
and feature dimensions of N=12 ‘and n=3, respectiveig, are too small
to hangle by either method. owever, it is interesting to note that
regardless of thé discrepencies in the theoretical and simulation
values of Pe(")’ the M-D method always makes ‘the optimum selection.
The second argument relates to the numerical 1naccuérac1es embedded 1in
the dgﬁg generation. On computing the second order sgatistics of the
7 " generated data(for simulation, the mean vecﬁors were seen to be non-
zero valued and some discrepencies in tnﬂ'covariances were apparent.
As a direct consequence, the eigenvalues of the matrix pair (RI’RZ)
of the generated data are in a maximﬁT of 8% error relative to that
obtained from the desired means and covariances. Therefore, the small
stze of the problem compounded with the numerical inaccuracies share
baét of the blame for differences between the theoretical and

simulation values of Pe(n). ' . -
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‘ 6,3. EFFECT OF A PRIORI PROBABILITIES ON ROOT p

The parameter u {is the root of (3.34h) and lies in the restrict-
ed range of (-1,0) as shown in Chapter 3. In the limit, as Ne= with
n/N fixed, the K-S method requires thagE}he.root u be -1 for the
optimal d%. A critical difference between the K-S method and the M-D
method is that for the M-D method, a different value for the root
ne(-1,0) is involved in eacrL)optima1 .selection and, even
asymptot1ca11y, p need not have the same value for different extremal
df's. Although it is true that in the asymptotit case Pe(n) is
\\N independent of the a priori probabilities [6.4-6.6], we study the
‘\effects of a priori probabilities on the root u and, thus, on ﬁe(n) i
for finite sample size. This section deals with the variations in EEE/,”"d“/
value of the root u as the~3_priori probabi]itiés n;,%y change.
Section 6.5 'shall present th; effects of a priori probabilities on the
probability of classification error Pe(n). We consider five
covariance pair (RI,RZ) examples of Table. 3.1 1; this section and for
‘ .the remainder of this chapter. For each of the examples, the data and
f:ature dimensions are taken as N=40 and n=10, respectively,

resulting in a data compression ratio of 0.25 (or 75% compression).

»
'
<

Tables 6.6-6.10" illustrate the change in the value of the root
for the M-D and K-S methods as the a priori probabilities my,n2 vary,
for°@a£ﬁ of the five examples o} Table 3.1. ‘Since the results of
Chapter 3 are valid for nl;%q, the value of ny is varied form 0.5
to 6.95 in steps of 0.5. We obse:;e, from Tables 6;6-6110. that an

increase in the value of nL, or, eqqivalently. a decrease in the value

2

o]

o? n_ causes the root u to he more negative in' the restricted range
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TABLE 6.6

\ L 4
i Effect of A Priori Probabilities =j,n; on

Root pu- for Example I of Table 3.1.
3

A PRIORI PROBABILITIEi ROOT n

Tl "2 : M-N K-S

0.5 0.5 -.5525  -.5425

0.55 0.45. -.6475  -.6425

0.6 0.4 | -a735 -.7325

0.65 0.35 - . =815 -.8175

0.7 0.3 T -.8925  -.8975

075 0.25 -.9675  <.9675

, 0.8 0.2 , -.9975  -.9975
] 0.85 0.15 | -.9975  -.9975
0.9 0.1 . -.9975  -.9975

0.95 0.05 ¢ o -.9975 .9975




A PRIORI PROBABILITIES

L

TABLE 6.7

Effect of A Priori Probabilities =y,%; on
Root u- for Example I] of Table 3.1

1 %2
0.5 - 0.5
0.55 0.45
0.6 0.4
0.65 0.35
0.7 n.3-
0.75 0.25
0.8 0.2
0.85 0.15
0.9 0.1
0.95  0.05

K

e
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L 4

>  TABLE 6.8
..)\’ . R -
oo ffect of A Priori- Probabilities =;,x, on -
. * Root u for Example I!I offTab]e.J.l.
L . . - , l / ‘ ‘ -
‘,, : ! «

A PRIORI PROBABILITIES: ROOT pv .
% *2 S : M-D, K-S

0.5 . 0.5 | -.6025 - -.5725
o ' -
Yo 0.55 o  0.45 L <o X

© L . 4 R " 31.
0.6 0.4 -.65 -.625

- T 0.65 0 ~ 0.35 ; -.6725  -.6825 J
+ \ N ‘ Py LT e
s 0.7 . 0.3 ., -.695 . -.672% -

0.75.  0.25 - *.72 -7 g

’v-—.

N 0.8 0z .. | -5 725
L NBs - 0u1s [, =725 . -®575-
L LA J ’

0.9 ' 0.1 ’ -.805 ° -£7925

o - - ! )
N i . . LI u-gk > 0.05 4 . -.85?5‘ -..845
J [} ‘ -
g - : a7 , .
s . 4 ' N J . .\‘ /
. R . . ) \?
e , ; f"
b P - L. ) . ‘
+ \
. . - o ’a




alh . ) N N
5 | 5 -
. CTMBLE6. -
_ Effect of A Priori Prob:‘h ties ul,nz on
""" Root u for Example. IV of Table 3.1.
P . Al
A PRIORI PROBABILITIES  _ .  RoOT
w1 %2 o M-D K-S
0.5 . 0.5 . -.4875 - .4625
0.55 '0.45 _ : -.545  -.5175
0.6 0.4 . ..605  -.575
0.65 . 0.35 . <665 -.635
"0 Y 03 725 -.6975
0.75 0.% P AN O
0.8 - 0.2 | ° -.8575 %-.8425
0.85 0.15 ‘ | -.9325, V-.9275
0.9 04 -.9975  -.,9975
0.95  “,0.05 Y .9975  ‘-.9975
. .
‘ o
™ ]
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TABLE 6.10

., ’

Effect of A Priori Probabilities il,n on

Root u for Example V of Table 3.1.

A PRIORI PROBABILITIES

Xl . ‘lz
‘.‘ ‘
0.5 0.5
" 0.55 0.45
L 0.6 0.4
0.65~ 0.35
~i0.7 0.
3 0.3
0.75 0.25
0.8 0.2
0.85  0.15
0.9 0.1
0.95 0.05 -
-/

-

ROOT {’:' .

M-D and ( K-S

\

© .25
-.2525"
-.2575
-.26
-.2625 \_
-.2678
-.2725
-8
-.2875
-.305

L]

' *
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of’ (-1,0). The probability of error expression (3.34) is directly
fnfluenced by =«; and 'x2, and the root u wh{ch itself is a func-

tion of =), np. The effect of the a priori probabilities on the error

probability is discussed in Section 6.5.

A
A

.

-

, 6.4 EFFECT OF THE PARAMETER y ON THE PROBABILITY OF CLASSIFICATION

' ERROR 2

T&e parameter vy, fintroduced in (3.26h) as a free parameter, was
restricte& in Theorem 3.5. Thg‘reasons for restricting the value of v |
in relation to the feature dimensfon n are discussed in this sécfion.
But first, we present the effect,of the value of y on the error pro-
bability P,(n) of (3.34).. Tables 6.11-6.15 show the quantity P(n)

as a function of the paraTeter -1 for each of the five examples of,
Table 3.1. For each case, the root .is appropriately seiected with
x1=x220.5. Jt 15x€ieét’froﬁ Tables‘g.lfLG.ls that the paraméter Y
influences the probabiiity of classification error, Pe(n), of (3.34).
Since the parameter y was artificial]y introduced to derive the'
expression for Pe(n). it 'is destrable that the effect of Yy on
Po(n) be slfght. It may be obsgrved from Tablesv6.11~6l15 that @
large value of y {mplies a lower probability of error, with the error
probability 1n;reasing as the value of y s reduced until a certain ‘:
point, féﬂ example, 7-10’4, when the error brobability agpears to be

merically 1ndepgpdent of further reduction in the value of y. This

observation, tonsistent for all the gfamples of Table 3.1, has -

established the constraint of Theorem 3.5 on the value of vy that v"

-
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TABLE 6.

»

11

R

-

Effect of Parameter y on Error Probability, Pg.(n),

for Example 1 of Table 3.1.
Appropriately Selected for m)=xj.

PARAMETER

—_

1
0.2

0.04 .

gx10"3

1.6x1073
4

6.4x10"°

1.28x107°

2.56x10°°
5.12x10"7
1.024x10""
2.048x10""
9
10

10

4.096x10"
8.192x10
1.6384x10"

The Root pu is

ERROR PROBABILITY, ' P (n)

M-D K-S
. 3.5807x10"%  3.5686x10"7
5.4543x1070  5.5184x10"77
5.9443x10"8  6.0278x10""
"5.0479»‘10‘8 ' 6.1356x10" 7
6.0688x10"8  6.1571x107
6.0731x10~8  6.1616x1077
6.0739x10"8  6.1624x10"’
6.074x10"8  §.1626x107’
6.0741x10"8 - 6.1626x107"
6.0741x10"8  6.1627x10"’
6.0741x10"°  6.1627x10"
6.0741x10™  6.1627x10°7
6.0741x10""  6.1627x107"
6.0781510"%  6.1627x10"’
616272107

6.0741x10

©

LS
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TABLE 6.12

for Example Il of Table 3.1.
Appropriately Selected for = =n,.

PARAMETER

—e

B

1
0.2

0.04

gx10"3

1-6’210-3 '

3.2x10‘4

6.4x10"°

1.28x10">

2.56x10°

5.12x10""

- 1.02ax10"7
2.048x10°8
4.096x10°
8.192x10"

1.6384x10"

6 .

10

10

ERROR PROBABILITY, Pe(n)

LY

The Root u is

M-D

{

and

Pa(n),

2.7965x10"
2.7965x10"

(\/

1.5033x107

2.4501x107"
2.7226x107°
2.7815x10™
2.7935x10°8
2.7959x10"8
2.7963x1078
2.7964x10""
2.7965x107°
2.7965x10"°
2.7965x10"8
2.7965x10"8
8

2.7965x10
8

8

- K=$
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TABLE 6.13

Effect of Parametér Y on erroT Probability, P,(n),

for Example III of Table 3.1.
_Appropriately Selected for =j=nj.

PARAMETER

e

1
0‘2

0.04

8x10"%.

1.6x10°°

3.2x107%

6.4x10"°
J\?SXIO'S

2.56x1070
«

5.12x10"7

1.024x10"7

2.048x10"8

4.096x10"°

1.6384x107

The Root p .1iS

ERROR PROBABILITY, Pe(n)

10

M-D K-S
1.57?6%10'8 1.6421x1077
2.555x10™8  2.7785x1077
2.8365%10%  3.007x10"7

2.8973x10"%  3.1654x1077
g.gogsxlo'a 3.1792x10"7
2.9121x10°8  3.182x107"

2.9126x10™  3.1826x1077
291271078 3‘1327x10'7
2.9127x107%  3.1827x1077
2.9127x10~8  3.1827x1077
2.9127x10"% " 3.1827x1077
2.9127x10"%  3.1827x1077
29127107 3.1827x107’
2.9127x10°8  3.1827x1077
2.9127x10"%  3.1827x1077
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TABLE 6.14

;

’

Effect of Parameter y on Error Probability, P.(n),
for Example IV of Table 3.1% The Root u 1is '

PARAMETER

——

¢

]
0.2
0.04

gx10"">

1.6%1073

3.2x10°%

5.4x1o‘5

1.28%107°

2.56x10~°

5.12x10""

1.028x10"7

2.048x10°8

4.096x10"°

8.192x10~1

1.6384x10"

0

10

Approprjately Selected for my=my.

~

ERROR PROBABILITY, Pe(n)

-

6

6

M-D K-S
1.3818x1077  ”.7247%10"7
2.1097x1077  1.3017x10°
2.2973x10°7  1.410%1075
2.3364x10"7  1.4329x107°

2304077 1.4375%10°8

" 2.306x1077  1.4384x107°
2.3063x10" 1.4386x}e‘5
2 3060x107  1.4386w10"
2.3464x107  1.4386x107°
2.3064x10"7  1.4386x107
2.3464x10"7  1.4386x10"°
2.3464x10"7  1.4386x10"°
2:3464x10"7  7.4386x107°
3.3464x10"7 1:4386:10'6
2.3068x10"7  1.4386%107°"
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TABLE 6.15

Effect of Parameter 'y on Error Probability, Pu(n),
for Example V of Table 3.1. The Root u is
_Appropriately Selected for n1=n2.

PARAMETER . ° ERROR PROBABILITY, P (n)

S M-D K-S
1 " : 2.2836x10711 .
0.2 ‘ S eaoseot |
0.04 : }, . 78wttt ’ ]
81073 | BT W7 S T T
1.6x1073 . 8.3079x1071!
3T2x10" 8.3249x10™ 1! '
6.4x10° . | 8.3283!10i11
1.28x10"° ’ " - 8.329x10" 1! R \
2.56%10"° 8.3201x107! S
5,12x10"’ 3292x10" 11
1.q2§x10“’ 8.3202x107 21
2.048x10°8 " 8.3292x10" 11
4.096x10" 8.3202x107} o
g.a92x10°0 . 8.3292x10" 11 - .
. 1.6384x10710 8.3292x10" 1} Sl
; ‘\\ |
> 4
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be sufficiently small in relation to the feature dimension n, say

y/n ~0(107%). .

t 4

6.5.  INFLUENCE .OF A PRIORI PROBABILITIES ON THE PROBABILITY OF
]

CLASSIFICATION ERROR FOR FINITE SAMPLE SIZE

I

/’ N . .
. L . - ?

-The probability of classification error, in sthe limit, has been
shown to be independent of the a priori probabilities [6.4-6.6]. The
discussion here deals with the manner in which the a priori probabili-
ties influence the-erro;‘ probability for finite sample size., It ha's
beén noted in Section 6.3 that the root p of (3.34h) is affectéd by a
priori probabilities. =;,n;. The root pu is appropriately §e1ected
from Tables 6.5-6.10 for Tables 6.16-6..20, wh.ere the variations in the
value of Pe(n), are presented as a function of a E"riori probabilities
for the five‘éxampies of Table 3.1. The parameter y 1is chosen to be

4 for all the examples.

] ‘ 10
We find,\ from Tables 6.16-6.20, that consister’ut with classical

thought,‘the probability‘o'f\ classification error is the largest for a

grior\i probabilities n1'=n2=0.5. The error probability is seen to

decrease, as.éxpected, és the a priori probability for one pattern

class in increased in relation to the other. This behavior of the’
{ \ - .

error probability is consistent for all the five examples consi;iered.

6.6. PERFORMANCE ENHANCEMENT' BY INCREASING THE NUMBER OF FEATURES

Thisl section deals with observing the improvement achieved in the

1
probability of classification error, Pe(n) by increasing the number
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; TABLE 6.16

]

Effect of A Priori Probabilities n,x, on Error

" Probability, Pg(n),

p 1is Appropriately Selected for =1,%2 and y=10"".

A PRIORI . PROBABILITIES

for Example I of Table 3.1.

TheaRoot

ERROR PROBABILITY, Pe(n)

K-S

S 2 R M-D
' 0.5 . | 0.5 6.07%x10""
0.55 0.45 . 6.067x10""
0.6 ' 0.4 5,9592x10"5
0.65 0.35 5.6358x10"5
0.7 0 5.1404x10"8
0.75 0.25 4.939x10"8
0.8 0.2 4.0487x10"°
0.85 0.15 3.8308x10"°
0.9 " oa - 3.603x1078
0.95 0.05 3.3751x1078
i i

6.1623%10~7

6.1368x10"’

6.0713x10°7

6.0021x10""

5,4888x10"
. -7
4.866x10"7

4.4209x10"’

4.2427x10°!

4.0646x10"’

3.8865x10"7




o TABLE 6.17

14

AN

Effect of A Priori Probabilities =;,x, on Error

Probability, P,(n), for Example’IIl of Table 3.1. The Root
p is Appropriately Selected for wi1,x2and y=107".

LY
~ ~ f

' )
o -
-

A PRIORE PROBABILITIES . '~ ERROR PROBABILITY, P_(n)
1 r2- - M-D K-S
° s
) 0.5 0.5 : 7L 2.7963x107
0.5 - 0.5 . 2. g625x10"
0.6 0.4 .. 2.6823x10"° ‘
0.65 . 0.35 o 2.5436x10"°
. . 0.7 0.3 ' 2.38\83}10‘8
 0.75 0.25 C o 2a78ex10°® ‘ ’
0.8 0.2 : 1.9306x1078
' 0.85 0.15 . : 1.6072x10" “
0.9 ° 01 ’ . 1.2153x10°°
0.95 0.05 F' 7.2513x10"
A y
-
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TABLE 6.18

Effect of A Priori Probabilities =;,n, on Error
Probability, iP,(n), for Example III of Table 3.1. The Root
p s Apprppriately Selected for =1,%2 and y=10"".

PROBABIL ITIES
n) "2
0.5 0.5
T '0.55 0.45
0.6 0.4
0.65 0.35
0.7 0.3
0.75 0.25
0.8 0.2
) . 0.85 0.15
0.9 0.1 )
£ 0.95 0.05
- - s
§
\ N

\

ERROR PROBABILITY, P_(n)

M-D K-S
 2.9125%10™°  3.1825%107
- 2.8716%1078 3.1065x10”
2.7938x10"%  2.9943x10"’
2.6697x10"%  2,9099x10”7

2.5006910‘8_ 2.645x10""
2.2693x10"8 ,2.3649x10"7
1.9961x10°8  2.0769x10"7
'1.6651x10'§ 1.6834x10”"

1.2633x1078  1.255x10"7
7.4401x107%  7.0829x10°8
N

PRI

g
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~
L ly N -
- [ 4
TABLE 6.19
Effect of A Priori Probabilities =;,x, on Error
Probability, PeTh), for Example IV of Table 3.1. The Rog%
- “ p is Appropriated Selected for =1,m2 and y=107".
LN
e
A PRIORI PROBABILITIES . ERROR PROBABILITY, P (n)
*1 . ®2 ‘ M-D ' K-S
- ‘
- | 7. -6
0.5 0.5 . . r2.3463x10 1.4386x10
. . ‘ <
0.55 0.45 p < 2.3801%10"7 a.4133:007°
0.6 L 0.8 . . 2339077 1.3887x1078
. - Ly -6
0.65 0.35 ‘ 2.2324x10"7  1.3691x10
0.7 0.3 : . 2.0789%1077  1.3523x107°
" 0,75 /0.25 | . 1.8/{9‘2)‘10‘7 1.3l’§5x10‘5
0.8 0.2 . 1.5663x10"7 . 1.1476x107°
" 085 L 0.5 o . 1.2213)710‘]/ 9.1423x10°
0,9 0.1 © 8.8289%107° - 6.1748x30"7
0.95 .  0.05 _ -7,2389x10"%  6.8993x107"
v o, S
: SO
.‘
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. Effect of 'K Priori Probabilities
: (n),» for Example v of Table 3.1.
= .ow IS Apprq’ 1ate1y Selected f?r xl,%x2 and ¥=10"

TABLE 6.20

~

o«

M-0

X}, %z oOn Error

The _Root

q
.

4

K-S

| ERROR PROBABILITY, P _(n)

,' g
8.3278x10
8.3188x10
8.2928x10

. \"
~ - 98¥6x10
7.7326x10
- 1.6024x10

e 'i.3841xqu

7.0001x30"
-11

6.8327x10
6:5016x10

.

-11
»11
-11
-11
-3 -
~11

11
11

-11

- . \
1 -
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of features n, with the data dimension/'ﬁi fixed. LThe error probh-

ab1|15y for each of .the five examples of Tahle 3.l .is shown in Tables

4
6. 21 6.25 as a Mbnct!on of the feature dimension n. The qudntlfy N

~

is varwed from 5 to 30 in steps of S5 to provide data compressions of

80% to 25.‘ respectively, Tables 6.21-6.25 also include thefeiggnvalue

§elect1ons and’ the root, ‘ﬁ for the M-D and K-S.method for each value

A
of n.~ Figures 6.1- S”Jsplay " P (n) vs n  for the M-D method
<
and a cont1nuous exponent1al fit to the discrete values of th P (n).

¢

It 1g noted, however, that tnis continuous fit is asrrude approximation

of the behavior of° P _(n) in vi-e'w@f the results in [6.4-6.6] that S N
) € ‘ ) ’ ?‘ ‘ l BN .
Pe(n) exhibits a ggometrié decrease as.  n is increased. *‘{ )

" We obs&rve from Tables 6.21-6.25 an «simprovement in the error pro-

N

bability is obtained, as expected, by increasing the number of fea-

tures. However, “the improvement 1n the performande tapers as the num-
ber of features becomes large n relation to the data dimension. add};:
tion, we note that "Pe(n) for both the M-D and K-S methods approach

. t

the valué for lar%e featu'e d1nensxons It 1s 1nteresting that, for .

:

n>10 the M-0D and K-S schemestmay begin wwth d\fferent e‘genvalug'se-
lections, but, ‘more often than not, approach a similar selection for

n=30. The groblem with the small feature dimension (n=5) observed he

is cdnsistent with the observattons of Section 6.2 in that the error »
/ o
probability is large. The ‘most important observation of. th1s section

s
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TABLE 6.21  ° T
Probability of Classifigation Error as a Function
. of Feature Dimensiornn n for Examp]g [ of « . :
\ ~Table 3.1; N=40, =)=x2, y=10"". .
AU o ' : ' i
) A IGENVALUE SELECTION ROOT, ERROR PROBABILITY, P_(n)
| M-D K-S M-p* K-S M-D < K-S
N : ‘ ) o
. (“ o A .
5 ' ’ : , ) .
5. 5408 s'/0° 5525 ~.ss2s 2.3325x107° T2.3328x107% L
10 10%0° o'/1°  -.s525 T -.s425 6.0738x10°°  6.1623x1077
15 1st0° 132t Lssw o -sd e 2.ae3x07M 1.a2s7x107Y0
20 1828 sVt s -.54  2.585x10°1%  2.sgsx10712
c2s o 2t Mt lsws. -sars z.ssex1o” 2.051k107H
0 26%/4°  2sYyst _s3s -.s3s 3.mzsomaoM - 46.1381x07
\
' [
- ‘ . )
\ W, 3 . . ' .
T . : [ \
K v"w‘ »
: !
[} R




R

— e

-166- .

£
TABLE 6.22

.

Probabf]ity of Classification Error as a/Function

of Feature Dimension n

for Examplg [l of

~ . Table 3.2; HN=40, =x1=x2, y=10"7.
b -0 . .
, EIGENVALUE SELECTION = ROOT,"s  ~ ERROR PROBABILITY, P_(n)
M-D -5 MD g Ke§ D K-S
h |
‘ 1]

5 s sY0® 605 -.605  1.5866x1070  1.5866x10"
10 10%0° 10'0% . -.605 605 2.7963x10°%  2.7963x10"
15 18415 - 1af1®, -ise2s € -.s92s 1.4645x10710 1.464sx10”
20 18%/2° 1991%  -.s875 .50 7.6887x10" 13 1.3403x10°
25  23%/2° 23%/2°  -.sg15  -.5875 1,2407x10713 “1.2407x10"
0 21%3° 21%73% - .585 ..585  5.8262x1071% 5.8262x10"

!

A% o

4
8
10
12

13

14

1

i
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i . "t TABLE-6.21. ’
. - & ]
| : v ~ *
| Probability of Classification Error as a Function - S
of Feature Dimension n for Example gllvof\ -
Table 3.1; N=40, =x)=¢2, y=10"". -
. EIGENVALUE SELECTION . RQOT, & ERROR PROBABILITY, P_(n)
M-D K-S M-D K-S M- - K-S
5 508 a* /15  _.6075  -.5475 1.0756x10"%"  4.8363x10"
10 10%/0° o'15 - -.6025  -.5725 2.9125x10°° © 3.1065x107"
15 15Y0° N 18491° -6 -.58  1.084x10"'1  2.1954x10710
Y0 't - - osezs 7.9930a07!t 15992610713
£ ' - -
250 )0° 24%/1°  _.s975  -.5825 R.9200x10° 10 1.8309x19 N
. - / .
29'1° 2015 -sees 5825 2.5425x1071°  2.5425x1071
¢
[ » \ N )

LR Y

e
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TABLE 6.24

~

Probabi]ity of Classification Error as a Function
of Feature Dimension n for Examp]g vV of
Table 3.1; N=40, m=)1=x2, y=10"".

I

_ EIGENVALUE SELECTION  © ROOT, u ERROR PROBABILITY, P_(n). .
M-D K-S u;uaz////A7 K-S MD K-S
\\ T
s a'nS . 1Ya® C.as2s | -.a15 1.onex10”t s7R279w107°
10 8Y2’ 6'/45  -.187s, 2.3463N1077  1.4386x107"
15 13%Y2° 11%/4° 508 -.4875 4.8537%107°°, 5.3816x107
20 1738 16%45  -.5025  -.4975 s5.0826x10"''  2.R976x10710
25 22*/3° 20%/55  -.5075  -.5025 5.1384x10"'% 9.6727x107 )}
30 26%/4° 2st/sS 505 -.505 \.0933x10‘12 “a.2809x107 1L,
) T
\ , ™M
L] ' \\_\/
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TABLE 6.25

érobability of.Classificaiion Error as a Function

of Feature Dimension n

for Exampl

Table 3.15; N=40, =}=x2,

y=107".

g V of

~ EIGENVALUE SELECTION ROOT, u ERROR PROBABILITY, P_(n)
MaD K-S M-D__and k-5 M-D and K-S
5  ots® ot/s® .35 9.0785x10"8
0 o't oYt - - 8.3278x10"11
15 o'st 0*/15° -.25 5.912x10"1°
c20 oYt of0t - .28 ~ 4.2024x1071E
25 oYas®  oYes® t-. 255 L Larsixgori
o oYt oYzt s 1.1766x10"16
> .

L )
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is that regardless of the fee;ture dimension the eigenvalue selec\ti_on
1 4
made by the M-D method is always at least as good as and sometimes

better, by an order of magnitude, than the K-S method in terms of the
*

prc;babﬂity of classification.error. .

6.7. DISCUSSION

This chapter takes a detailed look, by means of numerical exam-
ples, at the probabil{ty of error expression deriveﬁ in Chapter 3 for
feature selection/in order to provide a better understanding and. in-

sight to the problem. Computer simulations of a pattern classifier

"indicate that the eigenvalue selection provided by the Morgera-Datta
L 8

) method is always at .least as good as and sometimes better than .the
~:.onventiona1d Kadota-Shepp method. The results also demonstrate that
the error bounds provided by the Bhattacharyya distance measure ar:e
quite "ioose" and, at times, fail to provide any usef'u1 1nformation for
feature selection. |

We also study in detail the effect of certain parameters on the
error probability. The manner in which the a EI.E’L_ probabiht'les of

the pattern classes affect the error probability is consistent with

classic thought, 1.e., an enhanced -error performance is observed as .
the a priori probability o/f one class increases in relation to the
\

other., The effect of the'“a'_ priori probabilities on error probability.

4s compounded with their influence on the root, .

-

The reasons of restricting the value of the parameter y are

1+
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discussed. It is observed that for suﬁficiently small va!ues of y

u

,(elat1Ve to the feag»re dimension L &he\probabiiity of ergor expres-

sion 1s independent of y.° Sincg/the parameter vy is artificial in-

troduced in thd ror expression, it is re ommende« that* y 'must be
y 3 £

chosen such that y/n< (107 ) to eliminate its 1nf1ugnce on_the error

probabil{ty.. In pa5§ingm we mention that the parameter -y does not

atw . '
play any role in the actual implementation of th%'feature selection

;
14 i ‘.
N

strateqy.

We examire the behavior of the error probability pe(")/“?41\

function of .the feature dimension n. Ii is opserved, as e;pebbed,

I

that Pe(n)~'decrgases as n increases., The results also indicate

that the M-D and K-S methoﬁ' may cbnverge'xo the same error probability

-

for the large feature dimensions. CI . -
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CHAPTER 7

" CONCLUSIONS

N ¢ .
N

7.1. INTRODUCTION

This work h§s dealt with the difficult problem of d%scrimipating
two weakly stationary cdmp]éx Gaussian:stochas ic processes with sim-,
11ar‘$¢an values and different.covariances (patterns). High Dimen-
sionality of dgta SO o%ten encountered in practical pattern/peéaénitioq
applications necessitates th;:‘the clgssif}cation task be preceded byA
feature selection. DNimensionality reduction of data vectors is per-
formed by feature selection, a mechanism for select1ng only those(fea-
itures which are most relevant to the classification objective, 1.@., in

, such a manner that the brobabi}i}y of c]assification~errb} is minimiz=
ed. A minimization of the error probability is oftén either mathema- - |
tig\1]y or computationally difficals to carry out, This genena] fee]--
ing among many researchers in the areas of pattern recognition, commun-
ication, control systems, and 1nformation theory has led to the use of
suboptimal and *sometimes ad hoc feature ,se1ection strategies. The
scheme; are &evised to optimize a certain éritefion instead of aealing
with the classification. error, for e§§mple, optimizing a sstatistical
distanée measure like the Bhattagharyya distance bet&ee; patterns which
provides bounds on tﬂe error proba?ility. In addttion, most schemes
provide only asymptotic results., A brief discussion on the available

feature selection schemes is presented in Chapter 2 to emphasize the

(need for a feature selection technique which deals more directly with
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the error probability expression- and exhibits reasonably accurate

results for finite sample size.

-

7.2. CONCLUDING REMARKS ON THE THESIS

4 In this work, a new feature selection scheme, referred to as the

. °~,\MTD method, has been éroposed in Chébter 3. This scheme deals directly
with the éayeg error probability expression’. The results ére obtaiged
by uti]iziég c]assiéa] results on discrimin;tion, 1ﬁ}ormatién theory,

* and concepts of diét;ibutiqn function theory. The work demonstrates
the syboptiﬁility of,cértain\statistica1 distance measures employed in
ihe fga;ure selection or data compression mechanisms as opposed to a
direct application of the error probability expression. It is noted

tthat for extremely small error prbbabilitiés, simulation is.impracti-

n°ca1= In this regime of importance, the proposed technique provides a
tool not only for featdre selection itself, but for a general perfor-

.mance evaluation of competing pattern ciassificathn- schemes.  Some

" 1nterestin§ aspects. of the theory merit a brief mention,

‘ Using concepts of djstribﬁtion function theory, the empirical dis-
fribution functions (df;s} of the eigenvalues of the covariance matrix
pair associated with the two hypotheses are defined for both the-N-di-
ménsional data Apace, FN(x),A and the n-dimensional feature space,
F;(x). The qudntity n/N<l is defined as'the compression ratio. A
detailed characterization of the eigenvalues of one covariance relative

[~ 4
to the other in both the feature and data spaces, not possible using

~  statistical distance measures, is permitted by the empirical df's.

A family of extremal df's F* is defined in the feature space.

4
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The family: F* contains-a maximum of (n+1) members w1tw a typical

member F*n.a(x)' being parameter1zed by the quantity - «. However,

I

only one member of §* yields minimum error probabi]ity. | The problem

. { .
of . feature selection is reformy]ate&\ to that qf determining the para-

A

meter a or, equiva]ent]y, the df F* ’a(i) such that error probabil-
ity 1s minimized. The optimal feature select1on strategy 'is to choose
n data‘eigenvectors corresponding to the na smallest and 'n(l-a)
la}gest eigenvalues sas the. n rows of an (nXN)-dimeﬁsional
transformation matrix which premultiplies the input data vectors. '
The theory is 'developed by fo]idwing the excellent asymptotih
approach of Grenander and the results of Laplace to obtain an error
proBabi]ity expression accurate for finite sample "sizé. The error
expression contains coordinat;§ dependent .on the root u of an equa-g
tion invo]vingxfﬁe threshold far hypothesis testing. The value of the
root p depends on the family = F* iand lies in a restricted range of
(-1,0). This fact sets the results presented here apar 'from, say, the
conventiona Kadota-Shepp (K-S) method for feature selection developed
' by examining the ext;emal points .of a statistical distance measure
knéwn as J-divergence. The suboptimality of the K-S method also becomé
.apparent by noting that, in the limit as N with n/N fixed, the

" method requires that the.root u be -} with no regard to the family
F*. - N

o

The final step in the development of the theory is the determina-

tion of the extremal point of the error expression with respect to the
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parameter a. This leads to a functional taking tHe form of an

information content (negative entropy) of discarded eigenvalues. This

functional is minimized in order to maximize the information content of
the eigenvalues (eigenvectors) to be retained. The performance of the
scheme 1s shown, by extensive use of examples, to be at~least as good

as, and sometimes better, by an order of magnitude, than conventional

techniques. The ideas presented here are also discussed in the context
6f previous inferences drawn from statistical communications theory.
Performance of the new feature selection strategy 1; terms of
error probability encouraged an investigation into the comput;tional
complexity of the scheme to assess its feasibility for practical appli-
cations. . Some welT-known and a variety of new algorithms are proposed
which are suitable for, realizing an efficient computer-based feature
selection and pattern &]assification' system. In the process, we
present the characteristic equation reducibility results on two class
of matrices, viz., centrosymmetric (CS) and centrohermitian (CHf
matrices. These matrices are encountered in pattern recognitjon
feature selection among many bther areas, such as antenna theory,
e]ectrica] and mechanical systems, and quantum physics. The
reducibility results on CS and CH matrices prévide a significant
savings in the process of principa] coﬁponent (eigenvalue/eigenvector)
extraction required by the feature selection strategy. In addition, a
method of approximating Toeplitz covariances by.circulant matrices is
dis;ussed for a further reduction in the complexity. This approach

leads to satisfactory classification error when there ié sufficient

statistical independence within each data vector, and allows the

’
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pfinc1p51 component extraction to be replaced by thg discﬁeté Fourier

transformation (DFT). Several efficient algorithms such as the fast
Fourier transformatién (FFT) and Winograd fast transformation algorithm
(QFTA) are available for computing the DFT; |

A detailed complexity analysis of each step 1in £he pattern
classification process 1is presented. The proposed configuration
utilizing well-known and new algorithms render the computer-based .
pattern c]gssification system quite appealing for practical
applicatibns.

The proposed computer-based pattern classifier consists of three
modes of operation, viz., the training mode, the processiﬁg mode, and 1

the decision-directed mode. The training mode is used. to perform fea-

ture selection and establish the system parameters. The actual classi-
fication of patterns takes place in the processing. mode. The pattern
classifier configuration also provides a means of taking into account a
realistic quasi-stationarity of patterns, in which case, the features
evolve slowly with time. The decision-directed mode updates the systeh
parameters from one interval of statiqnarity to the next vié the\;rain-
ing mode.

A variety of numerical results based on a computer simulation of
the patterﬁ classifier are included. The new’featﬁre selection scheme
is consistently found to be at least as good as, and frequently better,
than the conventional K-S method. The error bounds obtained, for ex-
ample, by using thé Bhattacharyya distance are repeatedly found.to be
quite loose and, thereby, failing to provide any meaningful deductions

for feature selection.
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Some extremel); important numerical res‘uus-on’ the theory are .,pre/rj
sented in view of classical thoughts. I;or example, an improved errdr
" performance may be obtained by increasing the number of features. A’he
usual reduction in the error probability is also observed when lt/de a
priori probability of one  pattern is increased in relation ):/o/a the
other. The numemcal exexamples are felt to be an important cdntmbu-
tion because jdeas are not readily accepted in pattern recognition,
particularly, if the theory 15 highly complex. Although the/ examp‘les‘

/

considered are confined to thosé associatéd with weakly stqtionary
stochastic ;;rocesses, it is important to note that the discrimination
theory presented is generally applicable to other under/]/)/nng prob- -
abjlity structues; however.,'the implementation comple;;‘f’ty has to be

reexamined accordingly. g /

This work on the development of a feature se/l/ection strategy and

its computer based 1mp1ementat1on shall prove usef‘u] in stochastic

signal classification problems such as encount red in image processing"

and robotics. It iste1t that the new approach to feature selection
, ” ‘ -/ |

. may contribute to a better,understanding of ,the problem.

7.3. IDEAS FOR FUTURE WORK ./ ' ,

\ ’ / .
Performance of the feature sele’ction and pattern‘c]ass1f1cation

system proposed here 1s quite attra tive in terms of the error propro-
babﬂity and computational comp1e%1ty It would be useful and inte-
resting to deve]op a "VLSI 1mp17mentation of the proposed system. The -

. system shall be useful for,many- applications, e.g., image ana]ysis/-
. / .
,.';/4 .
: /

/ »
/T | -

//
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object recogﬁit1on, speech apalysfs/speaker recognition and robotics.
The development of a VLSI architedturg requires a considerable

'effort, A number of ﬁntrix-arithmetic networks must be developed for
1arge;sca1e matrix computations such as multiplication, inversion, and
princiqa] component extraction. The efficiency of networks may be
significant]x enhanced by utilizing special covariance structures,
e.g., Toeplitz and circulant approximation of Toeplitz matrices.

A comptete study on VLSI implementation of the new scheme would
consist of the following tasks. A study of‘various relevant VLSI arc-
‘archite&tures avali§b1e is needed. This may be followed Qy the
development of new architectures and a comparison. of various
altérnativés in terms of the speed and space requirements of the
system; The goal of the proposed study is, of course, to develop a
VLSI layout and specifications for custom chip(s).

Tﬁe proposed’ comﬁuter-based implementation of the pattern
glassifier jé somewhat restrictive in that it assumes certain a priori
structures of covariances, i.e., Toeplitz and circulant approximations.
Although these structures are frequently encountered in practice and
are of exfreme practical interest, it would be worthwhile to expand the
. scope of this work to, say, near Toeplitz or other useful covariance

. structures. However, computational complexity of such an im-
plementation must be of prime concern in view of its practical utility.

An interesting <class of covariances to which the proposed
implementation ﬁay be extended is that of separable covariances.

Separable covariance matrices are used to represent certain two
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dimensional random fields where an appropriate choice of c;ordinates ‘
for horizontal” and vertical components reg@er"s t}?‘e row and co]umr; ,
covariances uncoupled.  Such covar_iancesﬁ arise in image analysis for
texture and seismic signature analysis. A separab]e* covariahce matrix

.S has the Following form, - .
S = C@R

-

?

"where C is the ‘(MXM‘)-dimensiohal witﬁin-:column covariance %natri'x, R is |
the * (NxN)-dimensional within-row covarianfe matrix, -and the op?rator.' ®
denotes the Kronecker product. -

| Let Sy and S, be the separable covariance matrices represent-,
ing the two weakly st-ationar-y Gaussian' stochastic processes under hypo-b

thesis Hl and - Hy , respectively. The proposed feature seléction

scheme requires the principal components of the product matrix. ilsz

%o obtain the transformation matmx which premultiplies the input data
~ ]

.vectors for dimensionality reduction. " The product matrix $1182

exhibits the separability property similar to that of the individual

covariances Sl -and 32, i.e.,

stls. = el

-1
132 12@)’2’2 i

»

where'. C"i and R1 "relate to the separable covariance S1 i=1,1 as
" within-column and within-row govariances, respectively. Now assume
that the matrices C1. and Ri' are foethz as found in a vaHety of:
practf,_cal qppHcatfons. The 'results of Chapter 4 on efficient princi-'
pal component extraction, and Chapter 5 on the computer based imple-
mentation for pattern classification are applicable for the realization

. of an efficient clasifier.

’
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