. * l National Library Bibliothéque nationale
of Canada duCanada

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch  des services bibliographiques

395 Wellington Street 395, rue Wellington
QOttawa, Ontario Ottawa (Ontario)
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

Your tle  Volre iétdence

Our e Nolre idldience

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfiimage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuiilez
communiquer avec luniversité
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



Training and measuring word recognition skills

from an automaticity perspective

Johanne P. Courte

A Thesis
in
The Department
of

Psychology

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Arts at
Concordia University
Montréal, Québec, Canada

April 1992

© Johanne P. Courte, 1992

PSR Y.

L an




National Library
of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

395 Wellington Street
Ottawa, Ontano
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Your e Votre rétorence

Our e Note rolorence

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
these. Nila thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN ©-315-80953-1

Canada




Abstract
Training and measuring word recognition skills from an
automaticity perspective
Johanne P. Courte
The purpose of the present study was to investigate processing changes in
word recognition following training. Of particular interest was whether
consistent practice would facilitate word recognition by speeding its
processing stages. A consistent mapping category search task was used to
train processes involved in word recognition. In addition, a lexical decision
task was implemented to evaluate automaticity in word recognition prior to
and after training. It was expected that word recognition in the category
search task would improve as evidenced by shorter response latencies and a
reduction in reaction time variance as a function of training. Also increased
automatic net effects were anticipated as measured by the primed lexical
decision task in support of a continuum view of automaticity. A significant
reduction in mean reaction time and reaction time variance was found in
the category search task for trained items between sessions 2 and 13 in a 31
session training process. However, the hypothesized effects of training on
word recognition were not supported. No significant difference between pre-
and post-training automatic effects were observed. The discussion
integrates a new direction in the research on mechanisms involved in the

development of automaticity. New methods for evaluating automatic and
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controlled processes within a task are considered in view of the present

findings.
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Training and measuring word recognition skills from an
automaticity perspective

Reading is very much a part of our everyday life. It is a tool that we
can hardly live without. As adult readers we take for granted the fact that
we can perform such a complex task quite effortlessly. This overt lack of
effort in our ability to read is simply one feature of the complex skill of
reading that we have acquired over many years. Other characteristics of
skilled reading include speed and greater text comprehension. Typically the
skilled individual reads faster and/or has better comprehension than a less
skilled reader (Perfetti, 1985). When learning to read, the unskilled
individual might be overwhelmed by the information and consequently,
processing or assimilation of this information is laborious. With practice
however, the beginner will overcome certain information processing
difficulties and acquire the ability to read fluently. Although improvement
in task performance is expected to occur with practice, Frederiksen, Warren,
and Rosebery (1985a; 1985b) have demonstrated that training individual
components of a complex skill, specifically reading, can lead to better
general improvement (also, Crossman, 1959; LaBerge & Samuels, 1974).
This thesis will investigate practice effects on a specific component of
reading skill.

Within the framework of reading a text, time is spent in processing

information at different structural levels and these levels are somehow



interconnected (through top-down, bottom-up, or interactive processing;
Stanovich, 1980). For example, the reader must make use of the printed
information to identify words (e.g., decoding the letter string), select from
long-term memory the appropriate meaning of these words, integrate the
meanings into working memory, then apply his or her prior knowledge to
form or modify an on-going mental model (schema) of the text for the
purrose of comprehension (Perfetti, 1985). In an attempt to identify the
features that distinguish skilled from less skilled readers researchers have
grouped these components into separate levels according to their cognitive
processing demands. Lexical access (the extraction of a word’s meaning
from its visual features; Stanovich, 1991), syntactic and propositional
encoding are compone:is that require low level processing. Components
that help build a meaningful text model or sct.2ma require higher level
processing. Comprehension in skilled reading requires the proper
coordination of these components. Reading ability differences can arise
from within either of these two processing levels (Graesser, Hoffman, &
Clark, 1980; Perfetti, 1985). Graesser et al. (1980) examined the
distribution of processing times to different structural components of
reading. Graesser collected reading times as a measure of resource
allocation to sentences in text passages. The macrostructure components,
which require higher level processing, consisted of the number of new

argument nouns, passage familiarity and narrativity. The microstructure



components, which require low level processing, consisted of the average
time required to process a word including semantic activation, syntactic and
propositional analyses. The results from the first experiment revealed that
macrostructure components required most of the reading time compared to
the microstructure components. However, differences between slow and fast
readers were found in processing times of microstructure components:
slower readers took more time to perform lexical, syntactic, and
propositional analyses within sentences. Perfetti’s (1985) research also
revealed that individual differences were located in the processing of
microstructure components. For example, he found that skilled readers
were more accurate and faster than less skilled readers in lexical access and
naming tasks. In addition, skilled readers were faster in tasks that
required lexical look-up, i.e., identifying a string of letters as a word or
nonword. Although more attentional resources are required for the
processing of macrostructure components than microstructure components
regardless of reading ability, less skilled readers are slower at processing
lower level components than skilled readers.
Models of Reading

Perfetti’s (1985) verbal efficiency theory states that individual
differences in reading skill arise from differences in the efficiency of
processing lower level components. Also, LaBerge and Samuels (1974) have

suggested that lower level reading components must become automatic
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before higher level ones can develop fluency. These models are based on the
assumption that we have a limited-capacity pool of attentional resources
(Kahneman, 1973) and that the efficient allocation of these resources is
fundamental for comprehension. If each component involved in the complex
skill of reading required attentional resources then performance would be
greatly limited if not impossible because resource capacity would be
exceeded by the competing demands of each component. If, on the other
hand, very little attentional resources were required for processing lower
level components then resources would be available to be used more
efficiently in the processing of other reading components such as the
integration of propositions and general text comprehension. It is believed
that some reading components have become overlearned after years of
reading experience. For example, it is assumed that skilled readers are
faster at lexical access because this component has become overlearned or
automatic, i.e. capacity-free. Consequently, for the skilled reader the word
recognition component can operate in parallel to the text integration
component because they are not competing for resources. In other words,
skilled readers can direct their attentional resources more effectively
because some components are being processed automatically while others
are being processed concurrently. If lexical access has not become |
automatic it will compete for attentional resources and reading speed will

be slowed because components requiring attention cannot operate
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simultaneously. Therefore it would seem that automatic processing in the
word recognition component is a critical if not an essential attribute for
successful reading performance and this can be achieved through practice.
Stanovich (1991) has recently introduced an alternative to the
limited-capacity approach to understanding reading ability differences. This
approach, referred to as ’acquired modularity’ of the word recognition
module, emphasizes that differences between skilled and less skilled readers
can be traced to the word recognition level in reading. In contrast to the
above mentioned theories, the word recognition component is seen as a
module that becomes independent of the reader’s background knowledge, as
reading skill develops. Thus, as skill is acquired in recognizing words, this
component becomes modular in that it relies less on other sources of
information (such as context) for recognition. The acquisition of modularity
means that a component, such as word recognition, would become
functionally autonomous, i.e., independent of other informational structures.
The idea of modularity is very different from acquired automaticity in that
efficiency in word recognition is not seen as a reduction in resource
demands (or an increase in resource availability) but as an acquired
independence from other structures. Although Stanovich’s theory is
attractive because it does not involve the notion of limited cognitive
resources, no methods have been suggested for training componential

‘'modularity’. There is, however, a method for training automaticity and this




is what will be addressed in the following section.

Training Automaticity

There is a general consensus among researchers that practice leads to
changes in task performance, i.e. improvement. Such changes are measured
as faster reaction times (RTs), improved response accuracy, a reduction in
task interference when two tasks are performed concurrently, an increase in
task interference such as in a Stroop-related task, and even changes in
evoked-related potentials (Crossman, 1959; Fisk & Schneider, 1983;
Frederiksen et al., 1985a; 1985b; Hirst, Spelke, Reaves, Caharack, &
Neisser, 1980; Logan, 1985a; Newell & Rosenbloom, 1981; Rabbitt &
Banerji, 1989; Schneider & Fisk, 1984; Schneider & Shiffrin, 1977; Shiffrin
& Schneider, 1977; Strayer & Kramer, 1990). These performance
characteristics are commonly associated with the concept of automaticity in
that practice has somehow transformed the cognitive processes involved in
the task from controlled to automatic. These two forms of processing are
qualitatively and quantitatively different from each other. On the one hand
automatic processing is characterized as being fast (Neely, 1977; Posner &
Snyder, 1975), effortless (Schneider & Shiffrin, 1977), undemanding of
attentional resources (Hasher & Zacks, 1979; LaBerge, 1981; Schneider &
Shiffrin, 1977), obligatory, i.e., unable to stop processing once it has begun
(Logan, 1985a), and autonomous, i.e. stimuli elicit processing in the absence

of intention (Logan, 1980; Posner & Snyder, 1975; Shiffrin & Schneider,
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1977; Zbrodoff & Logan, 1986). In contrast, controlled processing is

characterized as being slow, effortful, serial in nature, and demanding of
attentional resources. These qualitative distinctions have often served as a
foundation in studies on the acquisition of automaticity.

There are certain difficulties concerning the criteria involved in
establishing that a process is automatic. The characteristics that are said
to represent automatic processing do not necessarily co-occur hence
violating the internal consistency of the concept. For example, letter-
encoding which was thought to be automatic, i.e. resource-free and
obligatory, has been found to require resources (Paap & Ogden, 1981).
Letter-encoding might possess one characteristic of automaticity, i.e. it is
obligatory, but this process requires attentional resources. It would seem
that the criteria for establishing automaticity should be dissociated from the
concept. A process might be considered automatic even if the criteria are
not all met. Furthermore, much of the research on automatic processing
fails to consider all of the characteristics of automaticity. The present
research will only evaluate a subset of characteristics and will therefore be \
unable to verify if all the criteria have been met. In addition to these
difficulties, other researchers have criticized the labelling of improvements
in task performance as acquired automaticity (Cheng, 1985; Logan &
Stadler, 1991; Ryan, 1983). These issues will be addressed later.

In their research on training reading skills, Frederiksen et al. (1985a;
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1985b) assumed that a skilled reader possesses more automatic components
than a less skilled reader. These researchers have demonstrated that
training specific reading components to automaticity is helpful to less
skilled readers. They developed instructional systems that were focused on
training particular components to automaticity. It was believed that
training would ultimately lead to improved reading performance overall by
automatizing certain components that previously required processing
resources. Developing skill in using contextual information to retrieve and
integrate word meanings was one of the lower level components that was
trained with an instructional system called SKIJUMP.

The SKIJUMP system was a computerized game in which the goal
was to quickly determine if a presented word was semantically appropriate
for a given context. A sentence appeared on a computer screen with one of
its final words deleted. Then a series of targets were exposed, one at a
time, and the subject had to judge the semantic appropriateness of each
target. Manipulations included high- and low-constraining contexts, and
high- and low-probability words that were semantically related to the
context. Semantically unrelated foils were also included. Targets were
preceded and followed by visual masking to increase the need to use
contextual information. Subjects obtained higher scores when they
responded as early as possible upon target presentation. The ability to

identify a word that is barely visible required the use of context. Also,



when subjects’ performance had reached a criterion level during the task
this resulted in a decrease in the time between target exposures (executed
by the com>uter program) so that subjects would be compelled to integrate
information more rapidly and efficiently. Therefore subjects were
continuously challenged as the game progressed. And in order to maintain
high performance standards they were required to make the most efficient
use of the context to decide on the appropriateness of a word. The faster
the subject responded to the targets the higher the score in the game. No
score was given for correct rejection of a foil, however an incorrect decision
was penalized by decreasing game points. When subjects had mastered the
game training was terminated.

Training resulted in faster RTs at judging the semantic
appropriateness of targets and foils. Mean RT at the end of training for
high-probability words was 430 ms, 572 ms for low-probability words and
1083 ms for foils. Learning curves were typical in that there was a sharp
decrease in mean RT following the first session, next there was a gradual
decrease and, finally mean RTs asymptoted. However, there was evidence
of a speed/accuracy trade-off for foils. It was suggested that the game
provided an incentive for responding earlier rather than maintaining a
100% accuracy rate. Despite the improvement in responding to foils, words
were consistently responded to faster and more accurately.

Subjects also demonstrated improved performance on a criterion
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context priming task (pre- vs. post-training) which was analogous to the
SKIJUMP task. Measures of judgment accuracy improved significantly
(83% on pre- vs. 95% on post-training) for low-probability words. These
results indicated that SKIJUMP training had increased subjects’ ability to
use information contained in context to gain access to semantic memory
regardless of probability status. Since the criterion measure involved a
unique semantic domain improved performance could not result from the
familiarity with sentence context. Subjects must have developed a general
facility in using the semantic information to activate concepts in semantic
memory. Prior to training subjects were more accurate at rejecting foils in
high-constraining contexts (68%) compared to low-constraining contexts
(61%). Following training the difference in accuracy between high-
constraining (72%) and low-constraining (74%) was negligible. Improvement
in foil rejection may oe attributable to an increased ability to rapidly
evaluate the meaning of words.

Transfer of training was also measured in unit detection, pseudoword
and word pronunciation tasks. The components required to process the
information in these transfer tasks were not directly trained in SKIJUMP
(as they were in other training procedures used by the authors). Only
marginal effects of SKIJUMP training on transfer tasks were found.
Finally, SKIJUMP training failed to transfer to a real reading situation as

measured by the Nelson-Denny Reading Test.
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In summary, the SKIJUMP training procedure required subjects to

combine perceptual and word recognition skills while concurrently making
use of semantic information provided by the sentence to facilitate word
identification and semantic interpretation. As SKIJUMP performance
improved many skills were developing. For example, the criterion and
transfer tasks measured improvements (although marginal) in perceptual
encoding of orthographic units in words and word recognition skills, and
inference tasks measured improvements in reading and understanding
sentence contexts. Improvements in component processing contributed to
improved SKIJUMP performance. These results support an interactive
componential approach to training reading skills (Stanovich, 1980).
Although Frederiksen and his colleagues have provided a framework
for studying the development of reading skills, their interest lies mainly in
developing training procedures and not in measuring automatic processing.
For example, it was assumed that the assessment of faster RTs and greater
response accuracy was indicative of automatic processing of components but
these results could simply demonstrate that controlled processing had
become more efficient (faster) without necessarily becoming automatic.
Subjects could have developed a game strategy as opposed to acquiring
automaticity. Although the benefits of their training procedures are
obvious, Frederiksen et al. did not offer any suggestions concerning learning

mechanisms that may be responsible for the changes due to training and
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whether these learning mechanisms were strategic or automatic.
Purpose of the Study

The goal of the present study was to train one specific reading
component to asymptote. Performance changes resulting from training
would then be measured on a criterion task involving related components.
Finally these changes will be related to learning mechanisms. Specifically,
sukjects will be trained on a semantic category search task using a
procedure that is assumed to develop automaticity. The training will be
preceded and followed by a lexical decision task that measures automatic
and controlled processing. The category search and the lexical decision
tasks involve similar processing components so that the latter criterion task
will measure any changes in the components that are associated with
training. Learning mechanisms responsible for changes due to training will
be addressed in the discussion (Logan & Stadler, 1991). What follows is a
description of these tasks.
Category Search Training

The reading component to be trained in the present study is word
recognition for which a category search paradigm was used. This task
constrained subjects to access semantic memory. The design was based on
a visual search paradigm developed by Schneider and Shiffrin (1977;
Shiffrin & Schneider, 1977). Briefly, a typical search task involves the

presentation of a memory set-frame followed by a test set-frame. The
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memory set-size usually varies between one and four items. The subject
must study the list of items in the memory set and then indicate as quickly
as possible whether or not any of the items in the test set-frame matched an
item in the memory set. The test frame is composed of distractor items
and, potentially, an item from the memory set (the target). Two classes of
effects based on the relationship between the distractor and target set have
been observed. When the target and distractor items are systematically
different from each other (e.g., searching for a letter among digits) this is
called consistent mapping (CM). In the CM condition a target item can
never be a distractor and a distractor is never a target. In this condition
when a target item is present in the probe frame it is always responded to
positively; the mapping between stimulus and response is consistent. In
contrast, when the targets and distractors are not qualitatively different
from each other (e.g., searching for a letter among other letters) this is
referred to as varied mapping (VM). In a VM condition an item is on one
occasion a target and on the next, a distractor. In this condition the
response to an item can be positive or negative; the mapping between
stimulus and response is varied.

It has been demonstrated that whether the task consists of searching
for characters (Schneider & Shiffrin, 1977), words, or categories (Fisk &
Schneider, 1983; Schneider & Fisk, 1984) CM and VM training produce the

same pattern of results, i.e. search task complexity seems to be irrelevant in




14

determining the pattern of results. When given extensive training in search
tasks, CM and VM designs produce dissimilar results. VM searches are
typically slower than CM searches. VM searches are affected by memory
set-size (200 ms per comparison), show only minimal improvement with
practice, and searches suffer a deterioration in performance when a
secondary task is added. CM searches on the other hand show significant
performance improvement with training, are not affected by memory set-
size (1.7 ms per category comparison), and suffer only a temporary
reduction in resource capacity when a secondary task is added (Fisk &
Schneider, 1983). Practice leads to a flattening of RT slopes regardless of
memory set-size in CM searches but not in VM searches. VM searches are
said to result from controlled processing; serial, slow, effortful, and capacity-
limited. Automatic processing is said to evoive from CM searches; parallel,
fast, effortless, and not limited by short-term memory. Initially, controlled
processing will occur during the performance of a novel task but with
extensive, consistent practice automatic processing should develop (Fisk &
Schneider, 1983; Schneider & Fisk, 1982b; 1982c).

Schneider and Fisk (1984) investigated the development of automatic
category search and its transfer. Fisk and Schneider (1983) had previously
demonstrated that automatic category search can evolve from a CM design.
However, it was speculated that perhaps subjects were learning the

category exemplars and not actually performing a semantic search in the
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CM condition, since targets were never distractors and vice versa. In other
words, if subjects were learning the category exemplars during training
(e.g., dog, cat, horse, etc..) they would not have to make a semantic search
when they saw the category name (e.g.,, ANIMAL); they could simply
respond positively to the target since it was never a distractor or the targets
would appear to "pop out" of the screen (Shiffrin & Schneider, 1977). If this
was the case then subjects could have developed a task strategy and not
necessarily automatic processing. In addition to answering this question,
they wanted to see whether training would transfer to untrained items of
the same category. If transfer did occur then they could argue that subjects
were in fact performing a semantic search.

In a series of visual search experiments subjects were trained in both
VM and CM conditions. The goal of the first experiment was to determine
the number of exemplars per category needed to develop asymptotic levels
of automatic performance. Subjects were trained in CM4 (4 exemplars per
category), CM8, CM12 and VM conditions; different categories were used in
each condition. The memory set consisted of a single category name and
was followed by a probe containing three items (one target and two
distractors). The subjects’ task was to locate the target as quickly as
possible (top, middle, or bottom of the video display); this way a target could
appear on every trial. Results indicated that the CM searches (4, 8, and 12)

improved significantly over trials but the VM search did not. It seems that
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training category searches in a CM condition, regardless of the number of
exemplars per category, will lead to asymptotic levels of automatic
performance.

The goal of the next experiment was to investigate the transfer of
training in CM conditions. In the transfer condition the number of
exemplars per category was increased to 12 from either 4 or 8. Thus, if
subjects had been trained with 4 exemplars from a category in the first
experiment, 8 new and untrained category members (from the trained
category) were added and transfer was measured on these new items. In
the case where 8 exemplars per category had been trained, 4 untrained
exemplars were added. Subjects were also trained on six exemplars in a
VM condition and six exemplars from a new category in the CM condition.
Results indicated that VM performance did not improve significantly over
trials, confirming the findings in the previous experiment. On the other
hand, performance significantly improved over trials in all CM conditions.
Over the same number of trials, RTs for the exemplars in the new category
in the CM condition were significantly faster than RTs in the VM condition.
CM training on a subset of exemplars from a trained category resulted in
high positive transfer to untrained exemplars from that category. When the
trained set-size within a category was 8 exemplars there was the higﬁest
percentage (92%) of transfer to the 4 untrained exemplars from that same

category; compared to 60% transfer when the trained set-size was 4
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exemplars to 8 untrained exemplars for the same category. The difference
between the transfer conditions (4 and 8 exemplars) was interpreted as
resulting from the following: a) with a smaller trained set-size subjects may
be memorizing the exemplars and, b) the training of more exemplars per
category would be required to properly activate semantic features of the
category which would in turn be beneficial in the search for untrained
exemplars. From these experiments it was concluded that automaticity
develops as a function of the number of consistently mapped detections at
the category level since improvement was determined by the number of
trials per category rather than trials per exemplar.

In another series of experiments Schneider and Fisk (1984) added a
second, concurrent task to the training procedure to investigate the effects
of load on category search and its transfer. In the single-task conditions
subjects performed a VM digit search, a CM or, VM semantic category
search. In the dual-task condition the VM digit search was the primary

task and the category search was secondary. It was hypothesized that CM

searches would remain unaffected by a secondary task since one
characteristic of automatic processing is that it is undemanding of
attentional resources. Thus, CM searches could occur in parallel to a
secondary task without any detrimental effects on performance. On the
other hand it was expected that there would be a definite performance

deterioration in the secondary task, when this task was a VM search.
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Results in the dual-task condition revealed that performance on CM
searches suffered a temporary decline but with training, performance soon
improved. However, when resources were allocated to the primary digit
search task the VM category searches were impeded and performance on
this secondary task did not improve with training.

In the transfer experiment a dual-task condition was used on every
trial; subjects performed digit and category search tasks. If CM training
developed automatic processing at the category level it was expected that
new exemplars from a trained category would be detected even in dual-task
conditions. Results indicated that there was a fairly high positive transfer
to vntrained exemplars (72%) in CM training condition. Subjects detected
untrained CM exemplars significantly better than the exemplars in the VM
condition, and exemplars from a new category in the CM condition.
Untrained exemplars were detected on average 82% of the time on the first
presentation and simultaneous VM digit search suffered a decrement of
5.6%. These results demonstrate that CM training leads to high positive
transfer to untrained exemplars even in high-workload conditions.

In summary, the above studies have shown that a) CM category-
search training develops artomatic processing at the category level, b) that
CM searches suffer a temporary decrement in RT when a secondary tésk is
added, and ¢) CM training provides a potential for the occurrence of transfer

of training. Given that the purpose of the present study is to train a
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component to automaticity then it follows that a CM design should be used.

Learning Mechanisms

Skill acquisition has been demonstrated in a category search task and
it has been shown that consistent practice is essential for the development
of automatic processing and this is characterized by faster RTs, reduced RT
variance, reduced error rate, and an increase in the ability to perform two
tasks simultaneously. Although CM training results have been associated
with the development of automatic processing and VM training results have
been associated with controlled processing, not all researchers agree with
this interpretation. For example, it has been argued that CM training
might compel subjects to develop strategies as opposed to developing
automatic processing. As previously noted, subjects might learn the
category exemplars in which case they would not be developing automatic
processing. The following section addresses criticisms and theories of
performance change related to the memory search task.

Schneider and Fisk (1984) proposed a coactivation strengthening
hypothesis to explain their CM training and transfer results. Learning in
the CM training results from differential strengthening of context nodes.
These nodes are activated by the experimental situation and they are not
under direct subject control, i.e. they are autonomous (excitation without
intention). Since targets can never be distractors, they are not ignored but

the distractors are repeatedly ignored. By consistently detecting targets,
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target nodes become strengthened. On the other hand, by consistently
rejecting distractors, distractor nodes are inhibited. It would seem therefore
that consistent practice is required for developing automaticity. Also,
transfer would occur in the CM condition because the target context
becomes activated as opposed to activating the target word exclusively.
Performance would not improve in the VM condition because there is no
differential activation between nodes; a target is not consistently a target
and therefore no strengthening can occur. Automaticity is the product of
strengthening of category nodes.

Schneider (1985) has extended the coactivation strengthening
hypothesis. He proposed that performance improvement in the CM
paradigm is associated with the transition from an initial controlled
processing phase to a final automatic processing phase. The proposed model
states that processing results from the transmission of messages between
processing units. It is argued that consistent mapping between stimulus
and response influences the strength of association between processing
units. Learning evolves from the enhancement of message transmission
power through consistent practice. Increasing message transmission power
results in the reduction of transmission time (increasing in speed) and fewer
errors. The transmission message power of distractor items should n;)t
change or perhaps should even diminish whereas the transmission power

between consistently mapped targets should become stronger. Learning in
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the CM design would lead to the final phase of development which involves

automatic processing. Since learning is dependent on consistent stimulus-
response relations, VM training should remain in the controlled processing
phase.

Cheng (1985) and Ryan (1983) have criticized the interpretation of
the results from the memory search studies (Schneider & Fisk, 1984; Fisk &
Schneider, 1983; & Shiffrin, 1977; Shiffrin & Schneider, 1977). For
example, Cheng disagrees with the claim that improvements in performance
in CM training are necessarily due to the development of automaticity. She
proposes a strategy-based theory of learning. It was suggested that changes
in performance could be attributed to a restructuring of task cornponents
rather than to the development of automaticity; the procedures involved in
processing the task components are reorganized into new, more efficient
procedures. For example, subjects could develop an efficient category-tag
strategy in the memory search paradigm that would enable them to respond
quickly in the CM condition. The category-tag strategy enables subjects to
look up the category tag of the displayed words and simply locate the target. \
In other words subjects could either be learning the consistently mapped
targets or they are probably using a category strategy so that when an
untrained target appears (from a consistently mapped category) they will
associate the target to the category-tag. Since the category-tag strategy

would be inefficient for VM searches these would never improve with

Wmﬁou A
5
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training. Transfer to untrained exemplars is predicted in both CM and VM
training to the extent that the exemplars are well-learned items. However,
Schneider and Fisk (1984) did not investigate transfer of training in the VM
condition.

Logan (1988) has suggested that automaticity reflects the transition
from an algorithm-based performance to performance based on direct,
single-step memory retrieval. This theory makes no assumptions about
resource capacity to explain automaticity. In Logan’s theory of automaticity
each encounter with a stimulus represents an instance, and each instance is
stored in memory and retrieved independently. Initially a response to a
stimulus is algorithm-based, then with training, the response to the
stimulus becomes a racc between algorithm and direct memory retrieval;
the fastest path wins. Finally, memory retrieval dominates the algorithm.
Learning is associated with the accumulation of instance which produce a
gradual change from algorithm-based to memory-based performance. Since
memory retrieval is based on the number of individual instances that have
accumulated, tr:ansfer of training (to untrained items) should not occur.
Thus, the transfer results in memory search tasks are problematic for the
instance theory. It should be emphasized that Logan’s (1988) theory
stresses that the transition to direct memory retrieval requires repeated
exposures to a consistent set of task components. The importance of

consistent practice on the development of an efficient mechanism has also
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been stressed by others (Anderson, 1982; MacKay, 1982).

To briefly summarize although researchers do not all agree with
Schneider and Fisk’s (1984) interpretations of the memory search results,
most would agree however that consistent practice is required to develop
automatic processing or to at least produce changes in task performance.

According to the instance theory if each encounter with a stimulus is
stored in memory then it is feasible that automatization has no limits. The
idea that automaticity follows a continuum has been supported by Logan
(1988), Klapp, Boches, Trabert, and Logan (1991) and MacLeod and Dunbar
(1988). These researchers have found that automaticity is not simply an
all-or-none phenomenon. Their training studies have provided evidence for
a continuum view of automaticity. If the development of automaticity
follows a continuum then changes in task performance should be apparent
on a criterion task that is presented prior to and after training. The
criterion task should possess related components to the training task. If
performance is considered automatic prior to training (i.e., if the component
is already automatized) the magnitude of automatic processing effects
should be larger following training. The criterion task used in the present
study will be used to assess the magnitude of automatic and controlled
processing effects following training.

Primed Lexical Decision Task

Primed lexical decision tasks have been used to study the nature of
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word recognition and semantic memory (Antos, 1979; Burke, Diaz, & White,
1987; Favreau & Segalowitz, 1983; Neely, 1976; 1977). Though Seidenberg,
Waters, Sanders, and Langer (1984) (also Balota & Chumbley, 1984) have
questioned the use of the lexical decision task as a valid indicator of word
recognition, by making the claim that a lexical decision involves post-lexical
access, this paradigm is still commonly used to isolate the worc  cognition
component. In this type of task subjects must decide whether or not a letter
string forms a real word. According to Coltheart, Davelaar, Jonasson, and
Besner (1981; also den Heyer, Goring, Gorgichuck, Richards, & Landry,
1988) the mental lexicon must be accessed in order to decide upon the
'wordness’ of a letter string especially when the nonwords are legal, i.e.
when the nonwords resemble real words and are pronounceable. It is
assumed that there are at least two processes involved in recognizing a
word. One process involves matching the word’s visual features to an
internal representation in the mental lexicon. And the second process
involves attaching the appropriate meaning to the lexical entry (Becker,
1980; Morton, 1969; 1979). In an activation metaphor of lexical access it is
further assumed that word recognition is achieved when the activation
threshold of a word unit is exceeded (McClelland & Rumelhart, 1981;
Morton, 1969). If no word unit has been activated above some criterion
threshold then the decision is to opt for a nonword (den Heyer, Goring,

Gorgichuck, Richards, & Landry, 1988).
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Connectionnist models of word recognition assume there is no need to
postulate the existence of a mental lexicon (Seidenberg & McClelland,
1989). According to the model, recognition results from a specific pattern of
spreading activation through several layers of features (phonological,
orthographic, or semantic) that represent the stimulus-word as opposed to
activating one word unit in a lexicon. Despite this alternative approach to
explaining human cognition Neely (1990) argues that this model has yet to
fully explain semantic priming effects.

In a typical primed lexical decision task a prime precedes the target
letter string. When a target word is preceded by a semantically related
word (e.g., DOG-cat, ANIMAL-dog, BREAD-butter) subjects make faster
lexical decisions, i.e., RTs are faster than if the target followed a
semantically unrelated word (Favreau & Segalowitz, 1983; Neely, 1977,
1976). This is known as semantic priming.

The paradigm used in this study was similar to that of Burke et al.
(1987) (see also Favreau & Segalowitz, 1983; Neely, 1977). A primed lexical
decision task was used to investigate semantic facilitation and inhibition
resulting from automatic and controlled processing. It was therefore
necessary to isolate automatic processing from controlled processing and
this was achieved by using three techniques. One of these was the
manipulation of the stimulus-onset asynchrony (SOA), i.e., the time interval

between the offset of the prime and the onset of the target. Automatic
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processing is typically isclated from controlled processing at very short
SOAs. Favreau and Segalowitz (1983) found that automatic processing
occurs at SOAs as short as 200 ms'. In addition, Neely (1977) found that
facilitation resulting from automatic processing seemed to be inactive at
SOAs of 700 ms or greater, suggesting that spreading activation decays
unless sustained by attention. On the other hand, controlled processing
appears to be effective at longer SOAs (of at least 410 ms or longer).
Therefore, to obtain automatic facilitation an SOA of 410 ms or less should
be used. To isolate facilitation resultine from controlled processing an SOA
of at least 700 ms or more should be us.u (guaranteeing decay of automatic
spreading activation).

Two other techniques used for isolating automatic processing from
controlled processing are a) the manipulation of subjects’ expectancy and b)
prime-target relatedness (see Table 1). For the expectancy manipulation,
subjects are instructed to expect a target that is related or unrelated to the
prime. However, subjects are also shown targets that are unexpected.
Subjects’ expectancies have been found to increase or decrease RTs in
lexical decision tasks. Favreau and Segalowitz (1983) found that subjects
responded significantly faster to expected targets than to unexpected targets

at the long SOA. In addition, subjects’ expectancies have been made to vary

'Burke et al. (1987) used a short SOA of 410 ms, while Neely (1977) used a short
SOA of 400 ms. Both reported obtaining automatic facilitation.



Table 1

Relatedness and Expecti.ncy Conditions in a Primed Lexical Decision

Paradigm
EXPECTANCY
Expected Unexpected
PRIME-TARGET
RELATEDNESS
Related ANIMAL - dog SPORT - hockey
(RxR) (RxU)
Unrelated SPORT - maple ANIMAL - hammer
(UxU) (UxR)

The RxU and UxR conditions indicate unexpected trials.



orthogonally with prime-target relatedness (Burke et al., 1987). The

relatedness manipulation pertains to whether the prime is semantically
related or unrelated to the target. In the case where the prime and target
are related, the target (e.g., dog) is from the category indicated by the prime
(e.g., ANIMAL). In the case where the prime and target are unrelated, the
target (e.g., apple) is an exemplar from a category other than the one
indicated by the prime (e.g., ANIMAL). It has been found that subjects’ RTs
are faster for semantically related targets than for unrelated targets at the
short SOA, and faster to related items that are expected at the long SOA
(Favreau & Segalowitz, 1983; Neely, 1977).

When the SOA, expectancy, and relatedness manipulations are
combined the effects ensuing from automatic and controlled processing are
as follows (Burke et al., 1987; Favreau & Segalowitz; 1983; Neely, 1977):

1) It has been found that when subjects are instructed to expect a
target related to the prime (e.g., ANIMAL-dog) and they get such a target,
there is facilitation. This facilitation is said to result from automatic
processing at the short SOA and controlled processing at the long SOA. At
the short SOA, automatic activation has not yet decayed and it has spread
to related targets, resulting in facilitation. At the long SOA, the subject’s
attention is maintained on the related targets, resuiting in facilitatioﬁ.

2) When subjects are instructed to expect a target unrelated to the

prime (e.g., ANIMAL-apple) and they get such a target then there is
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facilitation at the long SOA. This is said to reflect controlled processing, at

the long SOA only. Subjects have time to shift their attention to targets
from the semantically unrelated category and this results in facilitation.
However, no facilitation is fcund at the short SOA because there is
insufficient time for the slow acting controlled processes to operate, i.e., the
subject does not have enough time to shift attention to the unrelated, yet
expected, target category. Note that automatic processing, which is only
measured at the short SOA, is effective only when the target and the prime
are semantically related.

3) When subjects are instructed to expect a related target (e.g.,
ANIMAL-dog) and see an unrelated target (e.g., ANIMAL-apple) there is no
facilitation, only inhibition at the long SOA. This occurs because subjects
have to shift their attention, after having been maintained on the expected
relationship, and this shifting results in inhibition. Automatic processing
effects are facilitory, not inhibitory and no facilitation is expected for
unrelated targets.

4) When subjects are instructed to expect an unrelated target (e.g.,
ANIMAL-apple) and they see a related target (e.g., ANIMAL-dog) there is.
facilitation at the short SOA (reflecting automatic processing), and
inhibition at the long SOA (resulting from controlled processing). At the
short SOA spreading activation to semantically related targets

automatically occurs resulting in facilitation. However, at the long SOA
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subjects have already shifted their attention to the semantically unrelated
category, thus when a related target appears attention must be re-shifted,
resulting in inhibition. At the long SOA, automatic spreading activation
has decayed. Thus the benefits arising from automatic spreading activation
at the short SOA for recognizing semantically related, yet unexpected,
targets are not present at the long SOA.

To recapitulate, at the short SOA there is inhibitionless facilitation
for related targets only, regardless of expectancies, and this is thought to
reflect automatic processing. The short SOA was set at 150 ms in the
present study to ensure that expectancy would not influence responding. At
the long SOA, there is facilitation for expected targets and inhibition for
unexpected targets regardless of prime-target relatedness and this is
thought to be a result of controlled processing. The long SOA in the present
thesis was set at 1900 ms to ensure that automatic spreading activation has
decayed and that expectancy would influence decision time (see Table 2 for
a summary of these effects). In Table 2 the '+ signs indicate a facilitation
effect in word recognition and this is measured by faster RTs (compared to a
baseline). The facilitation effects result from both automatic and controlled
processing. The ’-’ signs indicate an inhibition effect in word recognition
which is measured by slower RTs (compared to a baseline). Inhibition
effects result from controlled processing only. The blank areas in this table

represent conditions in which automatic and controlled processing are
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Table 2

Predicted Effects of Automatic and Controlled Processing by SOA,

Expectancy and Relatedness

EXPECTANCY
Expected Unexpected
PRIME-TARGET
RELATEDNESS
Auto. Control. Auto. Control.

150 ms (short SOA)
Related + +
Unrelated

1900 ms (long SOA)
Related + -
Unrelated + -

Auto. = predicted automatic effects
Control. = predicted controlled effects
+ = Speeding of RT (facilitation)

- = Slowing of RT (inhibition)
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presumed to have no influence on response time. According to Burke, et al.
(1987) the same pattern of controlled processing effects found at the long
SOA can also be obtained at the short SOA. They claim that the attentional
effects (reflecting controlled processing) are small and are not always found
at a short SOA. This claim, however, contradicts much of the speculation
that controlled processing effects are usually found at a long SOA only.
Neely’s (1977) research has revealed that controlled processing effects are
slow acting and require sufficient time to operate, at leas: 410 ms.
Therefore, calculations of controlled processing effects will be limited to the
long SOA and calculations of automatic processing effects will be restricted
to the short SOA in the present thesis. Using a short SOA of 150 ms in the
present study will ensure that the slow acting controlled processing effects
are not in operation. These calculations will be addressed later in the
introduction.

Many of the previously described effects obtained in the primed
lexical decision task have been explained via automatic spreading
activation. This particular mechanism is adequate for explaining the
facilitation effects resulting from automatic processing. However, it fails to
explain inhibition effects resulting from controlied processing. In the
following section several semantic priming mechanisms will be described.
They each attempt to clarify certain elements of the primed lexical decision

task.
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Semantic Priming Mechanisms

Although several theories have attempted to describe the mechanisms
involved in semantic priming no one single theory has managed to explain
all of the inhibition and facilitation effects obtained in the present
paradigm. According to dual-process theory (Collins & Loftus, 1975; Posner
& Snyder, 1975b) the prime activates information in semantic memory and
this activation automatically spreads to related concepts, thereby lowering
the activation threshold of these concepts. In other words, when a
semantically related target follows the prime it is rapidly acted upon
because the concept (word) has been activated and the threshold has been
lowered. When the prime and the target are related there is semantic
facilitation and this is thought to be a result of automatic processing.
However, when the prime and the target are unrelated semantic facilitation
can occur only if the subject’s attention has been shifted to the unrelated
concept, i.e. by instructing the subject to think of an unrelated concept.
Semantic facilitation in this case is thought to be a result of controlled
processing. Automatic spreading activation thecry can account for
facilitation effects but not for inhibition effects such as in the unexpected-
related condition at the long SOA.

A second theoretical mechanism proposed assumes that a prime
establishes an expectancy set consisting of potential targets semantically

related to the prime. If a target is part of the expectancy set then
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recognition is faster than if it were not part of the set, such as when the
prime and target are semantically unrelated (Becker, 1979; 1980; 1985). In
Becker's verification model of word recognition a prime establishes a
semantic set. When a target appears the search begins in the semantic set
for a match of features while a sensory set is concurrently being established.
If there is a match between the stimulus and an item in the semantic set a
‘word’ response is given. If no match is found then stimulus analysis
proceeds to the sensory set. If a match is found in the sensory set then a
'word’ response is given; if no match is found a 'nonword’ decision is made.
This theory can account for facilitation and inhibition effects for
semantically related category-target relationships found in the lexical
decision task, as well as instruction-induced priming (Neely, 1990).
However, it fails to explain the facilitation obtained in the unexpected-
related condition at the short SOA. The verification model would predict an
inhibition effect since the subject prepares an internal semantic set based
on instructions. The target (being unexpected yet related) would not be part
of the 'prepared’ semantic set. If verification on the ’prepared’ set reveals
no match then the analysis proceeds to the sensory set. Hence, the
predicted inhibition effect.

In both the dual-process and the expectancy-set theories the processes
are assumed to be pre-lexical because priming is said to speed access to the

lexicon thus facilitating target recognition. In contrast another set of



mechanisms that are said to account for these effects are referred to as

"post-lexical” (Balota & Chumbley, 1984; Chumbley & Balota, 1984;
Seidenberg, Waters, Sanders, & Langer, 1984). It has been suggested that
facilitation effects of related primes are pre-lexical, whereas i hibitory
effects of unrelated primes are post-lexical (Lorch, Balota, & Stamm, 1986).
Others have suggested that post-lexical processes cre effective only after the
lexicon has been accessed for the target entry and they facilitate by
speeding lexical selection and decision. Two mechanisms are briefly
discussed below and they can account for many, but not all, of the effects
found in the primed lexical decision task used in the present study.

In Norris’ (1986) plausibility-checking theory, priming context helps
in the selection of a plausible entry once lexical access has occurred. Thus
on a 'word recognition time continuum’ the influence of the priming context
is located after lexical access but prior to conscious word recognition.
Facilitation results when the prime and target are related because the
recognition threshold is lowered (contextually plausible). When the target
and prime are unrelated inhibition ensues since the recognition threshold is
raised (contextually implausible). This model can also explain the
facilitation effect obtained in the expect-unrelated condition at the long
SOA. Subjects have time to build a contextually plausible set containing
features of expected, yet unrelated items. However, the problem with this

model is that it fails to explain why facilitation is not followed by inhibition
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in the unexpected-unrelated condition at the short SOA.

A second post-lexical theory is advanced by Ratcliff and McKoon
(1988). Their compound cue theory assumes that, upon presentation, the
prime and target join together to form a compound cue that is used to
access recognition memory. The strength of the connections between items
in memory and the compound cue determine a familiarity value. Once
access occurs the compound cue’s familiarity value is what ascertains the
lexical decision. The greater the familiarity value the more likely the
decision will be 'word’. The lower the familiarity value, the higher the
probability of a ‘nonword’ decision. The intermediate familiarity values
require more detailed analysis. Priming in the compound-cue model results
from a high familiarity value between related items. The priming strength
is dependent on the prime-target compound cue and not solely on the prime,
via spreading activation as in the automatic spreading activation model. As
a matter of fact in this theory the prime only plays a passive role inasmuch
as it is connected to the target, in contrast to the autcmatic spreading
activation model where the prime plays quite an active role in speeding
lexical access.

The concept of familiarity values has also been employed by Balota
and Chumbley (1984) in their investigation on lexical decisions (however
they proposed a familiarity/meaningfulness (Chumbley & Balota, 1984)

model of word recognition that minimizes the necessity for lexical access).
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The compound cue theory can easily account for the facilitation effects of
related primes. One also assumes that in unrelated yet expected conditions,
subjects generate an 'internal’ prime and with the target form a compound
cue thus producing facilitation in the expect, yet unrelated condition. This
explains facilitation in the long SOA. Facilitation for unexpected yet related
targets at the short SOA can be accounted for by assuming that the subject
has no time to generate an internal ’prime’ to form a compound cue with the
target and therefore uses the presented prime with the target to form a cue.

This thesis does not attempt to solve the debate on whether semantic
priming is pre- or post-lexical nor does it plan to resolve whether making a
lexical decision requires accessing the mental lexicon. These issues are
nonetheless relevant in explaining the effects obtained in the primed lexical
decision task.
Neutral Prime

In most studies using a primed lexical decision task (e.g., Favreau &
Segalowitz, 1983; Neely, 1976; 1977) neutral primes are used to calculate
the net effects of automatic and controlled processing, also referred to as
cost-benefit analysis of RT (Antos, 1979). In other words, if for the same
target the RT following a word prime was faster than the RT following a
neutral prime, then this was taken as evidence of a facilitation effect
(benefit). On the other hand, if for the same target the RT was slower

following a word prime than a neutral prime this was taken as evidence of
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an inhibition effect (cost). However, the ‘neutrality’ of the neutral prime
has been questioned (Antos, 1979; Burke et al. 1987; de Groot, Thomassen,
& Hudson, 1982; Jonides & Mack, 1984). Evidence s.7gests that whether
the neutral prime is a string of letters (XXXXX), the word "NEUTRAL" or
the word "BLANK", the potential exists for underestimating or
overestimating facilitation and inhibition effects. For example, facilitation
would be underestimated at the short SOA if target processing is delayed
because processing of the prime is incomplete when the target appears. De
Groot et al. (1982) found that subjects expected primes to be words so that
when they saw a nonword prime (e.g., a row of Xs) they treated the target
as a prime and this effect slowed response times to targets. This resulted in
underestimating inhibition effects and overestimating facilitation effects.
Therefore, the paradigm used in this study omitted the use of the neutral
prime. Although omitting the neutral prime has also raised some concerns
(Neely, 1990), Burke et al. (1987) have demonstrated how automatic and
controlled processing can be measured without the use of the neutral prime
(see Table 3). On the one hand, automatic processing, as previously noted,
occurs at the short SOA and produces a facilitation effect for related targets
only (regardless of expectancies). Hence, the net effects of automatic
processing are calculated by collapsing across all expected and unexpected
trials, within the relatedness conditions, and subtracting the latency for

related trials from unrelated trials. Facilitation is said to have occurred



Table 3

Calculating Automatic and Controlled Processing Effects without a Neutral

Prime

SOA
SHORT LONG

Prime-Target
Relationship

Expected  Unexpected Expected Unexpected

(same) (different) (same) (different)
Related RxR RxU RxR RxU
Unrelated UxU UxR UxU UxR

Automatic Processing Effects = Unrelated - Related

Short SOA only

(UxU + UxR) - (RxR + RxU)

Controlled Processing Effects = Unexpected - Expected

Long SOA only

(RxU + UxzR) - (RxR + UxU)
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when the mean latency for related trials is smaller than the mecan latency
for unrelated trials. On the other hand, controlled processing occurs at the
long SOA and produces facilitation or inhibition depending on expectancy,
regardless of prime-target relatedness. To measure a controlled processing
net effect, related and unrelated trials are collapsed within the expectancy
conditions, then mean RT on expected trials is subtracted from the mean

RT on unexpected trials. If the difference is significant then controlled

effects are said to have occurred.

Questions addressed in this Thesis

The purpose of the present study was to examine the effects of
training on the development of automatic word recognition skills. In order
to explore this issue a consistently-mapped-category-search training
procedure was implemented. As discussed earlier, the CM design has been
used to train the automatic processing of components. To examine whether
the CM design had successfully trained automatic processing a second task
was implemented. This task, a primed lexical dacision task, was
administered prior to and after training. The design that was used in this
study was similar to one used by Burke et al. (1987). A formula, developed
by Burke et al. (1987), was used to assess automatic and controlled
processing net effects that occur in the lexical decision task. One of the

benefits associated with the use of this specific design is that these net
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effects could be calculated for each subject. Task performance results will

address the following questions: Does CM training develop automaticity?
And does training transfer to untrained exemplars of a trained category?
Does the lexical decision task detect the acquisition of automatic net effects
produced by CM training? And can these effects be detected in a single
subject?

The CM category search RTs were expected to decrease significantly
and asymptote as a result of training. A concern in the training procedure
is that subjects might memorize the targets and somehow ignore the prime.
Therefore, surprise trials were added to ensure that processing of the prime
would facilitate locating the target in the display. A surprise trial consisted
of an exemplar that was related to the prime but it was only seen about six
times throughout the entire training procedure (in contrast, trained words

‘ were seen 124 times). If subjects were following the instructions and fully

} processing the category name, then RTs to surprise items should become as
i fast, with practice, as RTs to trained items. On the other hand, if subjects
|

i were memorizing the exemplars then Rts to surprise items should not

' decrease in comparison to RTs to trained items.

Automatic and controlled net effects were calculated using the Burke
et al. (1987) formulae. In order to eliminate the possible confusion of
obtaining controlled processing effects at the short SOA (as did Burke and

colleagues) this was set at 150 ms. An increase in the automaticity net
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effect was expected following training. Controlled effects were not expected
to change since CM training should develop automaticity. Nonetheless, a
smaller net effect due to controlled processing might be observed following
training since RTs to related items are expected to decrease. As noted
earlier, controlled effects are obtained by subtracting the mean RT of
expected items (related + unrelated) from the mean RT of unexpected items
(related + unrelated). During training subjects receive consistently-mapped,
semantically-related trials. Therefore, subjects always obtain what is
expected, and what is expected is always related. In the post-training
lexical decision task expect-related (xR) items should be responded to faster.
If training results in a general improvement in response times for all
conditions, and specifically for the related items (RxR and RxU) this might
result in a decrease in the post-controlled net effects. In other words the
post-controlled net effect might be smaller than the pre-controlled net effect.
A 2-way within analysis of variance will be performea on the group data to
measure the differences between pre- and post-training net effects.
Analyses will also be conducted on the pre- and post-effects for each subject
and these analyses will be compared to subject’s performance on the
training task.

Finally, results for the lexical decision task are expected to replicate
the typical pattern of lexical decision task effects discussed earlier. Overall,

collapsing across the pre- and post-training lexical decision RTs, at the
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short SOA RTs to related items are expected to be faster than to unrelated

items, regardless of expectancy. In contrast, at the long SOA, RTs to
unexpected items should still be slower than RTs to expected items,
regardless of relatedness. If transfer of training occurs then untrained and

trained items should exhibit a pre-post decrease in RTs.

Method

Subjects

Eight students - three women and five men, aged 31 to 52 - from
Concordia University volunteered for this study and were paid five dollars
an hour for their participation. The subjects’ first language was English
and their mean reading rate was 216 words/minute with 85%
comprehension in the screening procedure (described below). Each session
lasted one hour for a total of 11 hours per subject. The implications
underlying the use of a small sample size will be addressed in the result
section.
Materials and General Procedure

In addition to the screening procedure, there were three phases in the
experiment: 1) the first phase involved a memory task and a primed lexical
decision task, 2) the second phase consisted of the training task which
lasted a total of 8 hours and, 3) the final phase involved the reintroduction

of the memory task and the primed lexical decision task. All of the above
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tasks were carried out on an Apple Ile computer. The procedures were
initiated by the experimenter from one computer, which controlled the
sessions and recorded subjects’ RTs and accuracy. The subjects had their
own monitor (Apple Ile) and a remote control box on which to record their
answers. Subjects were instructed to use their preferred hand in all phases
of the experiment when manipulating the control box.
Screening Procedure

The screening procedure was essentially a reading task. This task
required subjects to read texts in English so as to assess their reading
proficiency, and then answer multiple-choice questions pertaining to the
texts so as to assess their reading comprehension®. There were three texts;
one practice and two test texts. The practice text was of narrative type and
this was followed by five multiple-choice questions. One of the two test
texts was an expository type and the other was a narrative type. The texts
were selected from similar scientific magazines and were assumed to be
equal in terms of difficulty. Each text was followed by 13 multiple-choice
questions. Prior testing had revealed that the multiple-choice questions
could not be answered correctly at more than chance accuracy without

having previous knowledge of the texts. The average length of the test texts

was 956 words.

? For the purpose of creating our own screening procedures, texts were selected
from scientific magazines and multiple-choice questions were prepared.
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Subjects were instructed to read the texts silently and as quickly as

possible without sacrificing comprehension. Once the subject had initiated
the task, by pressing the appropriate button on the control box, a page of
text appeared on the monitor. After having read the portion that appeared
on the screen the subjecl would press the appropriate button on the box to
call up another page of text. No button allowed them to return to
previcusly read portions. Following each text presentation was a series of
multiple-choice questions. Subjects’ reading proficiency, for both texts, was
measured in words per minute and their comprehension was measured as
percentage of accurza - .y answered questions.
Testing Stimuli

All of the stimuli used in this study originated from the Favreau and
Segalowitz (1980) and Battig and Montague (1969) norms. The Favreau
and Segalowitz norms were obtained by asking students to write, in order of
preference, four items that best represented a particular category. In
selecting items for .his study instances that comprised two words (e.g.,
koala bear) were eliminated. Six categories and 18 representative
exemplars were chosen to form two target lists in the memory and lexical
decision tasks. Two lists were created to ensure that the potential observed
effects could be generalized to the chosen categories in both lists and not
only to one list in particular. No main effect of list was expected. Subjects

were required to read through a list of all potential targets in this study
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(even those that were not in their set) to ensure that they recognized and
knew the meaning of each word (see Appendix A).

Memory Task

Pilot testing on the primed lexical decision task revealed that some
subjects completely ignored the prime in long stimulus onset asynchrony
(SOA) conditions regardless of the instructions given. It is crucial to the
logic of the primed lexical decision task that the prime be processed because
of the advantage it confers on the RT of the lexical decisions. Thus, it was
necessary to create a preliminary task that forced subjects to focus on the
prime as a predictor of the target, especially in the unrelated condition (e.g.,
see the prime ANIMAL and think of the category TREE). For this purpose
a simple memory task was given before each block of primed lexical decision
trials. Each list of word-word pairs in the memory task comprised the same
prime-target relatedness condition as the ensuing lexical decision task.

In order to create lists for the memory task five of the initial 18
exemplars from the six selected categories were chosen. Each of the
exemplars was paired with a related or unrelated category. For example, if
the instructions in the ensuing lexical decision task were to expect related
items (e.g., see ANIMAL and expect animal) then the memory list would
contain related category-exemplar word pairs. If, on the other hand, the
instructions were to expect unrelated items (see ANIMAL and expect a type

of tree), then the memory list would contain unrelated category-exemplar
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word pairs. Together four word lists were created, each containing 10
category-exemplars pairs (see Appendix B). Two word lists contained
related category-exemplar word pairs and the two others contained
unrelated category-exemplar word pairs, for each target list (A and B).
These five exemplars were reasonably representative of the category to
which they belonged but they were items which would not appear as targets
in the subsequent lexical decision task. The category-exemplar pairs were
randomized so that each time the subject studied the list (until recall), the
pairs were in a different order. The goal was to have the subject remember
category-exemplar relationships rather than order of presentation. Subjects
were given a brief study period of 30 seconds after which they were required
to recall the pairs. They were given 50 seconds to write them. Once the
subjects had recalled the list of words three successive times they would
then proceed to the appropriate primed lexical decision testing block.
Lexical Decision Task

Thirteen representative instances from the original set of 18
exemplars were used in this task (see Appendix C). In the lexical decision
task the prime was always a category name whereas the target words were
always category exemplars. Pronounceable and orthographically legal
nonwords were created by changing one letter in each of the target words.
The position of the letter that was changed varied across targets. Since the

nonword was created directly from the target word it had the same number
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of letters and syllables.

From each of the two lists of words, two testing blocks of 64 prime-
target pairs were created (see Table 4). One testing block contained related
items and the other contained unrelated items. Each block contained 32
prime-target word pairs and 32 prime-target nonword pairs.

There were four types of trials; one type of trial consisted of expect-
related (xR) targets in which subjects saw a target that was related to the
prime. This was called a related-expect-related (RxR) trial. A second type
of trial consisted of expect-unrelated (xU) targets in which subjects saw a
target that was unrelated to the prime and expected. This was called an
unrelated-expect-unrelated (UxU) trial. The last two types of trials included
unexpected trials. Essentially, subjects were instructed to expect one type

of target but saw another. One type was called unrelated-expect-related

(UxR) trials; subjects expected a related target but saw an unrelated target.
The other type was called related-expect-unrelated (RxU) trials; subjects
expected an unrelated target but saw a related target.

Within the related testing blocks there were 52 RxR trials - 48 test
trials and 4 buffer trials - and 12 UxR trials. Within the unrelated testing
blocks there were 52 UxU trials - 48 test and 4 buffer trials - and 12 RxU
trials. Thus, 81% of the time subjects expected a particular type of target
and saw it, and 19% of the time they expected a particular type of target

and were shown an unexpected target.
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Testing Blocks in the Primed Lexical Decision Task
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EXPECTED UNEXPECTED TOTAL
RELATED RxR (26) RxU (6) 32
UNRELATED UxU (26) UxR (6) 32
TARGET LIST A

EXPECTED UNEXPECTED
RELATED ANIMAL-animal (13) SPORT-sport (3)

FRUIT-fruit (13) VEGETABLE-vegetable (3)
UNRELATED SPORT-tree (13) ANIMAL-flower (3)

VEGETABLE-tool (13) FRUIT-clothing (3)
TARGET LIST B

EXPECTED UNEXPECTED
RELATED SPORT-sport (13) FRUIT-fruit (3)

VEGETABLE-vegetable (13) ANIMAL-animal (3)
UNRELATED FRUIT-tool (13) SPORT-flower (3)

ANIMAL-tree (13) VEGETABLE-clothing (3)

1) The number in brackets indicates the number of word trials for that

condition.

2) The words in uppercase indicate the category type used and the words in
lower case indicate the category from which the exemplars were taken.
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In the related testing block subjects were instructed to expect a target
word related to the prime. In the unrelated block subjects were instructed
to expect a target unrelated to the prime and they were given the
appropriate unrelated target category. Subjects were instructed to indicate
whether the target was a word or a nonword and to respond as quickly and
as accurately as possible. Each block of trials was seen twice, once with a
long SOA and once with a short SOA. The relatedness manipulation was
blocked; there was a related (expect-related) testing block and an unrelated
(expect-unrelated) testing block. The SOA was also blocked. Thus, there
were four blocks of trials; long SOA (expect-related), long SOA (expect-
unrelated), short SOA (expect-related), and short SOA (expect-unrelated).
Since the same ’expect-related’ block of trials was seen at the short and long
SOAs, the prime-target pairs were randomized. The order in which these
blocks occurred was counterbalanced across subjects. One group of four
subjects received target list A and the other group of four received target
list B.

Each trial began with the presentation of a fixation cross for 1000 ms,
followed by a prime (50 ms), followed by a blank screen and finally a target
word appeared (2048 ms). The prime always appeared in upper case letters
whereas the target always appeared in lower case letters (see Figure 1).
The SOA was either short (150 ms) or long (1900 ms). The first four trials

of each block were buffer trials consistent with the instructions given for
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Fixation:
1000 ms

PRIME:
50 ms

SOA:

short 150 ms
or

long 1900 ms

Target:
word

or
nonword
2048 ms

Figure 1. Example of a primed lexical decision task trial.

horse
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that block (i.e., the buffers never included unexpected trials).

To summarize, there were four types of trials combining semantic
relatedness between the prime and target (semantically related or
unrelated) and subjects’ target expectancies (expected or unexpected). In
addition, the trials were blocked into long and short SOAs. The prime was
always a category name (word) and the target was either a word or a
nonword. Subjects saw only two category names per block of trials.
Training Procedure

The training procedure consisted of a semantic category search task.
Subjects were trained on old categories (expected category exemplars from
the lexical decision task) and new categories (unexpected category
exemplars from the lexical decision task). All the words chosen for the
search task (targets and distractors) were 3 to 8 letters in length and were
ranked between 1 and 40 for typicality in the Favreau and Segalowitz
(1980) and Battig and Montague (1969) norms.

From two categories in the expected conditions (UxU and RxR) used
in the lexical decision task, seven of the 13 exemplars were chosen for the
training task. These seven items were repeated four times during each
training session for a total of 124 times for the 31 sessions. From the
remaining six exemplars, five were selected to appear at a rate of one item
per training session. These five exemplars were referred to as surprise

items and were seen at least six times each throughout the entire training
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procedure. It was necessary to insert surprise items to see if subjects were
reading the prime (category name) or simply memorizing the target words.
Only one item from the original set of 13 was actually untrained in each of
the trained categories. These will be referred to as untrained exemplar from
a trained category. The exemplars t.. the two other categories in the
expected conditions were untrained and will be referred to as untrained
category ilems.

Other trained items were selected from the unexpected conditions
(RxU and UxR) in the lexical decision task. Only three of these items are
seen in the lexical decision task so nine additional items were chosen from
the norms to obtain a set of 12 exemplars for the purpose of training. Seven
of the 12 exemplars were seen 124 times, and the other five were seen at
least six times (surprise items).

The four target categories for series A were; four-legged animal,
clothing, sport, and tool. Those chosen for series B were; flower, fruit, tree,
and vegetable. The distractor items were chosen from categories that never
appeared in the memory frame of the training task. They were selected
from among the 14 most representative items in the following categories;
drink, dwelling, fabric, furniture, metal, part of the human body, vehicle,
and weapon (see Appendices D and E). These items were selected from the
norms mentioned earlier. The same distractors were used for both target

lists.
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Subjects were shown a memory-set frame, consisting of a single
category name, followed by a target display list. The category name was
displayed for 50 ms. The target display, consisting of three items, would
then appear and remained on the screen for approximately 2 seconds (2048
ms) or until the subjects responded. On every trial only one of the three
items in the target display was semantically related to the category name.
For example, a trial could consist of a memory frame with the category
name ANIMAL and this would be followed by the target display containing
boat, horse, cotton. Only one item is semantically related to the category in
the memory frame and the other two items are distractors (see Figure 2).
The subject’s task was to locate the position of the related item by pressing
the appropriate button on the control box (in this example the subject would
press the middle button). The distractor items were chosen from categories
that had never appeared as primes or as category names in the memory
frame. The target items were thus consistently mapped, i.e., target items
were never used as distractors and the distractors items never appeared as
targets.

Each training session began with 10 buffer trials for orientation
purposes; these data were not used in the final analyses. After every 16th
trial the subject was given feedback pertaining to accuracy and mean RT for
the past 16 trials. The feedback was printed at the bottom of the screen.

Beginning with the second set of 16 trials, and for every ensuing set of 16
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Fixation:
1000 ms
+
Category:
50 ms
ANIMAL

Target display:
2048 ms boat

horse

cotton

Figure 2. Example of a consistent mapping trial.
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trials until the end of the session, subjects were given updates of their
performance based on the last 16 trials along with the accuracy/RT
feedback. For example, if they had decreased their mean RT by 25 ms from
the previous set they would read "GOOD, GETTING FASTER", if they had
increased their mean RT by 25 ms they would read "GETTING SLOWER",
and if the change in RT was less than 25 ms from the previous set they
would read "ABOUT THE SAME SPEED".

There were 31 training sessions in total but the first served as
practice and the other 30 sessions were used for the following analyses.
After the final training session the memory task and primed lexical decision
task were reintroduced. For this part of the lexical decision task, the
untrained exemplars from the trained categories were shown again as

targets in order to see if transfer of training had occurred.

Results
RTs to words and nonwords in the lexical decision task data set that
were found to be extreme (at least two standard deviations from the mean)
were replaced with values that were two standard deviations from the
mean. Less than 4% of the words and nonwords were outliers. Only correct
response RTs in the lexical decision and category search tasks were used in
the following analyses. The number of incorrect responses was used to

calculate error rates and RTs over 2048 ms were eliminated from further
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analyses, resulting in the exclusion of a total five response times across all
eight subjects.

The words used in the lexical decision and CM search tasks were
divided into four levels on the Training factor. The trained level refers to
exemplars that were seen 124 times during training. The surprise level
refers to exemplars that were seen on average 6 times during training. The
untrained level refers to exemplars that were never seen during training.
Within the untrained level some exemplars belonged to a trained category
(untrained exemplars from a trained category) and others to an untrained
category (untrained exemplars from an untrained category). The untrained
exemplars from a trained category were used to assess whether transfer of

training occurred.

Did the CM training result in automatic processing?

In order to answer this question the training data were analyzed as
follows. First, a regression analysis was conducted on mean RTs as a
function of training. Linear regressions were also performed on RT
standard deviation scores and accuracy scores as a function of training.
These analyses served to indicate whether or not training resulted in
significantly reducing mean RTs, RT standard deviation scores and
increasing accuracy scores. Second, a regression analysis on mean RTs, as

a function of training, was conducted specifically on sessions two to 13.
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Inspection of Figure 3 reveals that up to session 13 mean RTs decreased
substantially comparcd to the mean RTs in the ensuing training sessions
where they seemingly asymptoted. And ti .d, a regression analysis was
conducted on mean RTs to surprise items as a function of training. The
reason for analyzing surprise item RTs was to evaluate subjects’
performance (e.g., their compliance with the instructions) and to examine
whether or not items seen on average six times profited from training.

The first training session (session one) served as practice so it was
excluded from further analysis. Note however that session one was
included in Figures 3, 4, and 5 to show initial improvements in task
performance which is indicated by a decrease in mean RT. Also in the
following section, when training results are addressed, the first training
session to be included in the analysis will be referred to as session two (2).
In addition to excluding the first training session the first ten trials per
training session were omitted from the analyses; these served to help
subjects become adjusted to the task.

Trained Item Analysis (30 sessions) Regression analysis indicated
that there was a significant correlation (r=+.86) between mean RT for
trained items and training (F (1,28) = 73.806, p <.001). Training accounted
for 74% of the variance in mean RT for sessions 2 to 31 (see Figure 3).
There was a 4.79 ms improvement in RT per session (at 100 trials/session).

Regression analysis of the RT standard deviation scores revealed that
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the correlation (r=+.62) between standard deviation and training sessions
was also significant (F (1,28) = 17.397, p <.001) (see I'igure 4). The mean
standard deviation improvement per session was 0.88 ms.

The correlation between response accuracy and training (r=+.42) was
marginally significant (F (1,28) = 5.839, p <.022). The improvement in
response accuracy with training was 0.04% per session (see Figure 5).

Overall, these analyses indicate that subjects’ mean RTs and RT
standard deviation scores decreased significantly with training for sessions
2 to 31. The marginal improvement in response accuracy indicate that
there was no speed/accuracy trade-off.

Figure 3 clearly shows that the mean RT per session for the group of
subjects asymptoted around the 13th session. There was a sharp decrease
in mean RTs up to session 13. The decrease in mean RTs for training
sessions following session 13 was gradual. Given this observation, further
analyses were conducted on the block of sessions showing the greatest
decrease in mean RT, specifically sessions 2 to 13 (which consist of a single
block of 12 sessions).

Trained Item Analysis (12 sessions) The regression analysis on this
specific block of sessions (2 to 13) revealed that mean RT correlated
significantly (r=+.97) with training (F (1,10) = 141.695, p <.001). Training
accounted for 94% of the variance in mean RT between sessions 2 and 13

(note that session one is considered as practice and is not accounted for in
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these analyses). There was a 12.24 ms improvement in RT per session.
Regression analysis on mean RT as a function of training on session 14 to
31 indicated that training correlated (r=+.49) only marginally with mean RT
(p <.04). The mean RT slope for these sessions was -1.47 ms. A clear
illustration of a linear decrease in RT as a function of training is shown in
Figure 6. This figure demonstrates a linear trend in the decrease in mean
RT as a function of training sessions when the 30 training sessions are
blocked into sessions of 5. Both mean RTs and standard errors are
indicated for the trained and surprise items.

Regression analysis on RT standard deviation scores for sessions 2 to
13 revealed a significant correlation (r=+.76) between RT standard deviation
and training (F (1,10) = 13.918, p <.004). The RT standard deviation slope
for these training sessions was -2.73 ms. The RT standard deviation slope
for the sessions following session 13, i.e. 14 to 31 was +0.006 (p >.9).

Regression analysis on response accuracy scores revealed that
accuracy correlated significantly (r=+.89) with training for sessions 2 to 13
(F (1,10) = 36.674, p <.001). The correlation between response accuracy and
training was r=+.12 (p >.6) for the following training sessions (14 to 31).

Together, the analyses performed on the data for the trained items
indicate that training resulted in significantly decreasing mean RTs and RT
standard deviation scores. However, further analyses revealed that much of

the variance in mean RTs (94%) was accounted for by training in sessions 2
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to 13. The significant decrease in mean RT and RT standard deviation

scores and the significant increase in accuracy scores was accounted for by
the first 1300 trials (sessions 2 to 13). Following session 13 training did not
seem to help subjects in substantially improving their mean RTs, RT
standard deviation scores or response accuracy.

Surprise Item Analyses (30 sessions) A regression analysis of mean
RTs for the surprise items as a function of training revealed that training
accounted for 45% of the variance in mean RT. There was a 4.36 ms
improvement in mean RT per session. The correlation between mean RT
and training (r=+.67) was significant (F (1,28) = 22.756, p <.001) (see Figure
3).

Analysis of RT standard deviation scores as a function of training
indicated that the variance did not decrease or stabilize with time, resulting
in a correlation of r=+.11 (F = (1,28) = 0.357, p >.55) (see Figure 4). Though
mean RTs to surprise items decreased with practice there was some
fluctuation across sessions which affected the variance scores.

In order to examine whether mean RTs to surprise items followed a
pattern similar to the mean RTs for trained items, regression analyses were
conducted on mean RTs to surprise items as a function of training for
sassions 2 to 13.

Surprise Item Analyses (12 sessions) These analyses revealed that

mean RT for surprise items correlated significantly with training (r=+.85) (F
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(1,10) = 24.945, p <.001). Training accounted for 72% of the variance in
surprise item RTs within these sessions. RT mean improvement per session
was 15.24 ms. In the subsequent sessions (14 to 31) the improvement in
mean RT was 3.60 ms per session (p <.05). Analyses of RT standard
deviation and response accuracy for surprise items indicated that neither of
these factors correlated significantly with training.

Overall, these analyses show that training significantly decreased
mean RTSs to surprise items. Also, as with the results from the trained item
analyses, training' accounted for much of the variance (72%) in mean RT to
surprise items in sessions 2 to 13. These results could be taken as support
for automaticity. However, since RT standard deviation scores for surprise
items were inconsistent caution must be exercised in interpreting these
results as direct evidence of automatic processing. In addition, given the
relatively moderate number of trials (1300 trials) at which asymptote
appeared to have occurred it is reasonable to speculate that further training
might have helped RTs to reach a lower asymptote. This issue will be
addressed in the discussion. The following section addresses questions
concerning the estimates of automatic and controlled processing net effects

as measured by the lexical decision task.
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Did the CM training result in automatic processing net effects in the lexical

decision task?

In order to measure effects resulting from training, automatic and
controlled processing net effects were estimated in the pre-training (PRE)
and post-training (POST) conditions using the Burke et al. (1957) formulae.
The data from the lexical decision tasks (PRE and POST) were used to
calculate these effects. First, to calculate automatic processing net effects
the mean RT for related trials was subtracted from the mean RT for
unrelated trials at the short SOA. Second, controlled processing effects
were calculated by subtracting the mean RT for expected trials from the
mean RT for unexpected trials at the long SOA.

Two separate ANOVAs were conducted to evaluate differences in the
PRE- and POST-automatic and controlled processing net effects. One 2x2
ANOVA focused on automatic net effects while the second 2x2 ANOVA
focused on controlled net effects. There were two within factors: Phase
(PRE and POST) and Training (trained and untrained). In these analyses
the untrained category items and the untrained exemplars from a trained
category were collapsed. In addition, simple t-tests were conducted on each
of the net effects to evaluate whether they were significantly different from
zero.

Group analyses (N = 8) The 2x2 ANOVA conducted on the automatic

net effects indicated that the main effects of Phase and Training were not
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significant. The difference between the PRE- and POST-automatic net
effects for the trained items and the untrained items was not significant.
The Phase x Training interaction was not significant. A two-tailed t-test
conducted on the automatic net effects indicated that for the trained items
both the PRE- and POST-automatic net effects were significantly different
from zero (t (7) = 3.16, p <.02, and t (7) = 3.78, p <.01, respectively). For
the untrained items only the PRE-automatic net effect was significantly
different from zero (t (7) = 4.33, p <.01) (see Table 5).

The results demonstrated that for the trained items automatic net
effects did not increase following training but these effects were still
significantly different from zero. Though training might not have increased
automatic processing effects it did not significantly diminish these effects,
as measured by the lexical decision task. On the other hand, automatic
effects for untrained items were not significantly different from zero in the
POST condition. Untrained items clearly did not profit in any way from
training and the automatic processing effects were even reduced.

The 2x2 ANOVA conducted on the controlled net effects revealed a
marginally significant Phase main effect. The PRE-controlled net effect
(80.34 ms) was significantly larger than the POST-controlled net effect (0.83
ms) (F (1,7) = 5.381, p <.05). There was also a significant Phase x Training
interaction (F (1,7) = 13.549, p <.008). This interaction arises from a large

decrement between the PRE-controlled net effect (101.96 ms) and the POST-
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Table 5

Automatic and Controlled Processing Net Effects (in ms) for Trained and
Untrained Items for N = 8 resulting from the Burke et al. (1987) formula

Net Effect (in ms)

Phase N Automatic Controlled

Trained items

Pre 8

M 106 102
SD 95 103
Post 8

M 93 -32

SD 69 72

Untrained items

Pre 8

M 110 59
SD 72 208
Post 8

M 38 34

SD 107 145
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controlled net effect (-32.18 ms) for the trained items. However, the
decrement between the PRE-controlled (58.71 ms) and POST-controlled
(33.84 ms) net effects for the untrained items was negligible.

Training seems to have significantly reduced the controlled net effects
in the POST condition for the trained items. Since related items were
trained, even the items that were unexpected (yet related) in the lexical
decision task would seem to have profited from training. The reduction in
mean RT for each of the four components in the equation were examined
and the following pattern was obtained: the decrease in mean RT between
the PRE and POST net effects for the RxU (211 ms) and UxR (303 ms) was
greater than the reduction in the RxR (102 ms) and UxU (144 ms)
conditions. Consequently, the difference between the latency for unexpected
items and latency for expected items was greatly reduced. Not only was it
reduced, but given the negative POST-controlled net effect it is clear that
response latency for unexpected items was shorter than latency to expected
items. Nonetheless, this POST-controlled net effect for the trained items
was not significantly different from zero. On the other hand, the PRE-
controlled net effect was significantly different from zero (t (7) = 2.80, p
<.05). Finally, no significant difference was observed between the PRE- and
POST-controlled net effects for the untrained items. Table 5 iHustrai;es the
net effects of automatic and controlled processing for trained and untrained

words obtained for N = 8. It could be argued that, following training, the
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Expectancy manipulation in the lexical decision task was ineffective.

Did the CM training result in automatic processing net effects in the lexical
decision task? And were these effects detected in a single subject?
The rationale for using a small sample in the present experiment was

to examine training effects and the impact of training on automatic and

controlled processing for each individual. If, following training, the lexical
decision task detected changes in automatic processing as measured by the
Burke et al. (1987) formulae then the lexical decision task could potentially
be used as a tool for measuring the acquisition of automaticity in a single
subject.

Individual Analyses (n = 1) Group analyses of the training data
revealed that mean RT asymptoted around session 13. However, not all

subjects asymptoted at the same mean RT, or around the same session.

Each subjects’ training data was graphed to uncover at which session mean
RT asymptoted: five subjects asymptoted around the 13th session, two
asymptoted around session 15, and finally one asy.nptoted around session
17. Regression analyses were conducted on each subject’s traiuing data to
further verify if training correlated significantly with mean RT for surprise
and trained items within the sessions showing the greatest decrease in
response latency. These analyses will be related to the estimates of

automatic and controlled processing effects obtained for each subject.
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To evaluate automatic and controlled processing net effects for each
subject, the lexical decision task data (PRE and POST) were analyzed in
separate ANOVAs (n = 1) where target items were treated as "subjects” for
purposes of analysis. Two three-way ANOVAs were conducted on each
individual’s data: one at the long SOA ard one at the short SOA. At the
long SOA there were two between factors: Expectancy (expected and
unexpected) and Training (trained and untrained) and one within factor:
Phase (PRE and POST). The Phase factor is considered as a 'within’ factor
because each of the target items was seen twice. Individual word RTs were
collected for the same target items in the lexical decision task, prior to and
following training. These analyses would indicate if there were any
differences in controlled processing net effects resulting from training. At
the short SOA the two between factors were Relatedness (related and
unrelated) and Training and the within factor was Phase. These analyses
would indicate differences in automatic processing net effects.

Not all of the individual effects will be reported here. It should be
noted that mean response latency for one subject (JG) was very
inconsistent. Although this subject’s mean RT decreased significantly with
training, the learning curve never smoothed out. It was speculated that
because this subject was on cold medication during some of the training
sessions this could have hindered her performance. Nonetheless, her data

were not excluded from any of the group analyses since sample size was



small.

Upon inspection of the net effects for each subject (see Appendix F),
MC produced some of the highest estimates. Regression analyses on MC's
training data revealed a significant correlation between mean RT and
training (r=+.985) for sessions 2 to 17 (F (1,14), 471.025, p <.001). Training
accounted for 97% of the variance in mean RT. Also, a significant
correlation between mean RT to surprise items and training was found
(r=+.77) (F (1,11) = 15.827, p <.002) for sessions 2 to 14. Analysis of
variance on MC'’s latencies revealed a significant main effect of Relatedness
at the short SOA (F (1,45) = 5.871, p <.02). Related items had faster RTs
(642 ms) than unrelated items (734 ms). There was also a main effect of
Phase at the short SOA (F (1,45) = 46 955, p <.001. RTs to items in the
POST condition (613 ms) were significantly faster than RTs to items in the
PRE condition (756 ms). No Training effect was found at the short SOA for
automatic processing. A main effect of Phase was also found at the long
SOA (F (1,41) = 23.77 p <.001). Words in the POST condition (639 ms) were
responded to faster than in the PRE condition (782 ms). No Training effect
was found at the long SOA mezsuring controlled processing. As speculated
in the introduction the POST-controlled effect are smaller than the PRE-
controlled effects. This subject was faster on related items regardless of
Expectancy.

DW produced high net effects as well. The regression analysis on
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this subject’s mean RTs indicated that training accounted for 88% of the
variance in mean RTs for sessions 2 to 13. The correlation between training
and mean RT for these sessions was r=+.94 (F (1,10) = 74.008, p <.001).
Analysis of variance at the short SOA revealed a main effect of Training (I
(1,38) = 11.66, p <.002). Trained items were responded to significantly
faster than untrained items (664 ms and 780 ms, respectively). There was
also a main effect of Phase (i {1,38) = 7.839, p <.008) indicating that RTs in
the POST (685 ms) were significantly faster than RTs in the PRE (790 ms)
condition at the short SOA. There was also a main effect of Phase at the
long SOA (F (1,45) = 8.227, p <.006). RTs were faster in the POST (726 ms)
than in the PRE (841 ms) condition.

It is interesting that subjects producing some of the highest
automatic and controlled effects also show strong correlations between
training and mean RT, until mean RT asymptotes. On the other hand,
subject AB might not have produce the smallest effects, but this subject’s
regression analysis revealed that training did not correlate significantly
with mean RT. To further corroborate this finding the main effect of Phase
in the analysis of variance on Short and Long SOAs for AB was not
significant.

The only strong trend in the analysis of variance was a Phase main
effect at the long SOA demonstrated by six subjects and seven subjects at

the short SOA. Otherwise, no consistent pattern of main effects or
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interactions was found. The mean RTs for trained items for seven subjects
were significantly correlated with training (see Appendix G). Further
reference to these results will be addressed in the discussion.

The follcwing question concerns transfer of training to untrained

exemplars of a trained category.

Did transfer of training occur?

To examine the effects of training on untrained exemplars from a
trained category a 2x2x4 ANOVA was conducted on the lexical decision task
data. There was one between factors: List (A and B), and two within
factors: Training (surprise, trained, untrained category items and, untrained
exemplars from a trained category) and Phase (PRE and POST). A
significant Phase main effect was found (F (1,6) = 29.113, p <.002)
indicating that RT was significantly faster in the POST condition (612.72
ms) than in the PRE condition (712.85 ms). A significant Training main
effect was found (F (1,6) = 7.390, p <.002) (see r'igure 7). Scheffé’s post-hoc
test revealed a significant differeace between response latency to surprise
items (635.73 ms) and untrained exemplars (699.68 ms) (p <.01). There was
also a significant difference between trained item (643.32 ms) and untrained
exemplar response latencies (699.68 ms) (p <.05). Although there was a
significant reduction in mean RT overall, no significant difference was found

between mean RTs for untrained category items and untrained exemplars
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from a trained category. Had untrained exemplars from a trained category
profited from training through transfer, a significant difference should have
been observed between mean RTs for untrained category items and
untrained exemplars. This result indicates that untrained exemplars from
a trained category did not benefit from training since transfer did not take
place.

The following section deals with questions pertaining to the primed

lexical decision task.

Did the lexical decision task produce the expected effects of Relatedness and
Expectancy?

This section addresses the question of whether the lexical decision
task produced the expected effects of Relatedness and Expectancy in the
PRE- and in the POST-lexical decision tasks. For this a 2x2x2x2 analysis of
variance with one between (List: A and B) and three within variables: SOA
(long and short), Relatedness (related and unrelated) and, Expectancy
(expected and unexpected) was carried out on the data from each Phase of
the lexical decision task.

PRE condition Analyses on the PRE-lexical decision task data
revealed a significant main effect of Relatedness (F (1,6) = 38.538, p <.001).
Mean RT to related items (687 ms) was significantly faster than mean RT to

unrelated items (787 ms). There was a significant Relatedness x
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Expectancy interaction in which related items were responded to
significantly faster than unrelated items when they were expected (671 ms
and 703 ms respectively) (F (1,6) = 5.991, p <.05). The SOA x Relatedness
interaction was not significant (p >.1), neither was the SOA x Expectancy
interaction (p >.1).

POST condition The same analysis as above was conducted on the
POST-lexical decision task data. A significant SOA x Expectancy
interaction was found, F (1,6) = 12.484, p <.01. At the long SOA expected
words were responded to significantly faster than unexpected words (601
and 627 ms, respectively). This is an expected effect of the lexical decision
task at the long SOA. However, unexpected items were responded to
significantly faster than expected items at the short SOA (584 and 622 ms,
respectively). This latter result is unexpected in the primed lexical decision
task.

Overall, the results from the word analyses failed to replicate all of

the expected effects characterizing the primed lexical decision task.

Did the lexical decision task produce the expected effects of Phase? Nonword
Analyses

Nonwords were analyzed to reveal whether nonword RTs were faster
in the POST- than in the PRE-lexical decision task. Ifindeed subjects were

faster in the POST-lexical dccision task on nonwords this would indicate



79

response improvement despite training since nonwords were not trained.
Nonwords were created by changing one letter in each of the targets, so
each nonword had an analogous word. If a word was related to the prime,
the comparable nonword was also classified as 'related’. Consequently,
differences between ’related’ and 'unrelated’ nonwords, as well as ’expected’
and 'unexpected’ nonwords (Favreau & Segalowitz, 1983) were examined.

A 2x2x2 analysis of variance was conducted on the nonwords. There
were three within factors; Phase (P.RE and POST), Relatedness (related and
unrelated) and Expectancy (expected and unexpected). The List factor was
collapsed for nonword analyses since there was no List main effect in the
word analyses.

Phase A significant main effect of Phase was found in which RTs
were significantly faster in the POST (641 ms) than in the PRE (766 ms)
condition (F (1,7) = 83.049, p <.001). Subjects were either becoming more
skilled at the task or were becoming familiar with the nonwords.

Relatedness and Expectancy A main effect of Relatedness was found
with mean RT for 'related’ nonwords (690 ms) being significantly faster than
mean RT for 'unrelated’ nonwords (717 ms) (F (1,7) = 9.368, p <.02).
However, an interesting result is the main effect of Expectancy where xU
(expect-unrelated) nonwords (691 ms) were responded to significantly faster
than xR (expect-related) nonwrrds (716 ms) (F (1,7) = 5.678, p <.05). The

reasons for this result ure unclear.
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A Phase x Relatedness interaction was found with the nonwords (F
(1,7) = 9.359, p <.018). Mean RTs were significantly faster for ‘related’
nonwords (618 ms) than for 'unrelated’ (664 ms) nonwords in the POST

condition.

Other results concerning the primed lexical decision task

Although the previous 4-way ANOVAs on the PRE- and POST- lexical
decision word latencies answered questions pertaining to expected patterns
of effects in this task, an analysis combining all six factors (6) of the lexical
decision task might reveal significant effects that could not otherwise be
obtained in the 4-way ANOVA, such as a main effect of Phase. Thus, a six-
way analysis of variance was carried out to answer questions pertaining to
a) differences between Lists A and B, b) whether RTs were significantly
faster in the POST condition than in the PRE, c¢) whether RTs were faster
to related items than to unrelated items, at the short SOA, d) whether RTs
were faster to expected items than to unexpected items, at the long SOA
and e) whether RTs were faster to trained items than to untrained items.
There was one between factor: List (A and B). The five within factors were
Phase (PRE and POST), SOA (short and long), Relatedness (related and
vnrelated), Expectancy (e:pected and unexpected) and, Training (trained
and untrained). The untrained exemplars from a trained category and the

untrained category exemplars were collapsed in these analyses. What
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follows are the significant effects obtained that were not observed in the 4-
way ANOVAs.

Phase A main effect of Phase was found indicating that subjects were
significantly faster in the POST (602 ms) than in the PRE (735 ms) lexical
decision task (F (1,6) = 32.797, p <.001). A Phase x Training interaction
was significant (F (1,6) = 14.628, p <.01) indicating that subjects were faster
on the trained items (5666 ms) than on the untrained items (637 ms), in the
POST condition. There was no difference between mean RTs in the PRE
condition (733 ms for trained and 734 ms for untrained items). A Phase x
Relatedness x Expectancy interaction was significant (F (1,6) = 10.999, p
<.02). This interaction arises from a significant decrease in mean RT for
the UxR items from the PRE (843 ms) to the POST (635 ms) lexical decision
task. Although there was a decrease in the mean RT in the RxR, RxU, and
UxU conditions, these were less considerable.

Relatedness There was a main effect of Relatedness indicating that
subjects responded significantly faster to related items (628 ms) than to
unrelated items (708 ms) (F (1,6) = 38.204, p <.001). A Phase x Relatedness
interaction was significant (F (1,6) = 11.367, p <.015). RTs were
significantly faster to related items (680 ms) than to unrelated items (790
ms) in the PRE condition only.

Training There was a main effect of Training which indicated that

trained items were responded to significantly faster than untrained items
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(650 ms and 687 ms, respectively) (F (1,6) = 6.506, p <.05). There was a
significant List x Relatedness x Expectancy x Training interaction (F (1,6) =
12.615, p <.01). This four-way interaction reveals that the pattern of effects
for the untrained-unrelated items, specifically the UxR itums, was different
across Lists; the mean RT for UxR items in List A (863 ms) was slower than
the mean RT to UxR items in List B (641 ms). It should be noted that
Phasc is collapsed in this interaction and that overall, the mean RT to
untrained items was slower than the mean RT to trained items.

It should be noted that the same lexical decision task was given twice
prior to training, once with the short SOA and once with the long SOA and
the orders were counterbalanced across subjects. Paired t-tests were
conducted to compare mean RTs for the first and the second lexical decision
task (regardless of SOA and Relatedness) given prior to training. It was
found that subjects were already responding significantly faster to words (¢
(441) = 3.196, p <.001; 735 and 690 ms) and to nonwords (t (444) = 4.790, p
<.001; 799 and 738 ms) in the second lexical decision task, prior to training.
On the one hand, this would seem to indicate that simply giving the
subjects the lexical decision task a second time improves their word
recognition speed significantly. On the other hand, subjects may not
necessarily be responding more quickly to the items because they recognize
them faster, rather RTs could be improving because subjects are becoming

more skilled at the task. This repetition effect will be addressed in the




discussion.

Discussion
The results from the present study do not support the hypothesis that
the primed lexical decision task could detect automatic processing effects
resulting from CM training. The results also fail to support the hypothesis
of transfer of training (to exemplars from a trained category). The following
discussion will focus on each of the questions addressed in the result

section.

Does CM training develop automatic processing?

The results from the CM category search task indicated that training
was effective in (a) significantly reducing mean RTSs to trained and surprise
items, as indicated by the negative RT slope, and in (b) marginally
improving response accuracy on trained items (items seen 124 times).
These results replicate Schneider and Fisk’s (1984) CM training results.
Although the mean response times for the surprise items decreased
significantly, standard deviation did not. This finding could indicate that
subjects were not performing a category search after all. Rather they could
have memorized the target items. This indirectly supports Logan’s (1988)
instance theory. Although the evidence in the present study does not make
the distinction between direct-memory ac~ess and algorithm-based

performance, it clearly shows that performance improvement is related to
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the accumulation of stored instances (124 and 6).

Logan and Stadler (1991) have suggested that changes in
performance in the memory search task can be associated with process
improvement or process switching mechanisms.

On the one hand, process improvement simply means that the task is
carried out the same way except that processing of the task components has
become more efficient with practice. On the other hand, process switching
mechanisms refer to the development of certain strategies. Three switching
mechanisms were identified: item-based learning, category-comparison
strategy, and superset strategy. Item-based learning is consistent with
Logan’s (1988) instance theory, it was also the alternative interpretat:on
provided by Ryan (1983) of his criticisms of Shiffrin and Schneider’s (1977)
results. The item-based strategy develops with CM training when target
responses are retrieved from long-term memory as opposed to being
compared to the memory set in short-term memory. In other words,
subjects have memorized the targets.

A second process-switching mechanism is the category comparison
strategy. This mechanism is consistent with Cheng’s (1985) interpretation
of the Shiffrin and Schneider (1977) results. In the CM paradigm subjects
learn the category from which the targets are selected and simply assess
category membership upon target display presentation.

The third switching mechanism is the superset strategy which
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involves learning a superset of positive items. This strategy is not really
applicable to the present design because the superset of positive and
negative items were actually from separate categories or ’supersets’ and not
from within the same category. For example, all 12 exemplars for the
category ANIMAL were responded to positively. There was no subset of
exemplars from that category that required a negative response.

The data from the surprise trials were used to discourage subjects
from memorizing the targets. The design was meant to encourage semantic
learning but it may have inadvertently encouraged subjects to develop a
category strategy. If this was the case then performance on surprise items
should not have been so inconsistent. Although mean RT to surprise items
was correlated with training, the standard deviation scores were not. This
finding would support an item-based strategy which, according to Logan
and Stadler (1991) takes longer to develop than category-based learning.
Consequently, if improvement is seen as a decrease in mean RT and
stabilizing of RT variance, then only half of this claim is supported by the
present data for the surprise items. If subjects were in fact learning the
targets then according to Logan and Stadler (1991) improvements in
performance would not be associated with automatic processing but rather
with the development of strategies, i.e. item-based learning.

The memory set in the present study only contained one item and the

display set included three items. All of the targets were semantically
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related to the prime, they were typical members of the category and they

were familiar items. Thus, it is possible that the task was so simple that
performance improvement (reduction in RTs) could be associated with
process-based learning. This does not necessarily mean that automaticity
had developed, perhaps response times were becoming significantly faster as
a result of task familiarity. This thesis was not designed to support any
particular learning mechanism therefore more than one mechanism can be
interpreted as being responsible for performance changes with training.

The training procedure in the present study indicates that
performance improvement in the CM design may not actually be related to
the development of automaticity. Simple and efficient strategies could have
been used by the subject to perform this task. It may also be possible that
the number of trials in the present experiment were too few (3534 trials in
total) to develop automaticity. Fisk and Schneider (1983) gave their
subjects over 11,000 trials of practice even before the training began.
Although this might be a plausible explanation for assuming that
automaticity failed to develop, Schneider and Fisk (1984) had their subjects
complete approximately 4,000 trials in their transfer task; a significant
decrease from 11,000 trials . Also Logan and Klapp’s (1991) results from an
alphabet-arithmetic task reveal that automaticity could develop in a single
session and that extended practice may not be necessary after all for

developing automaticity. It should be noted that Logan and Klapp’s (1991)
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view of automaticity concerns direct-memory access whereas Schneider and
Fisk (1984) view automaticity as a reduction in resources costs. Therefore,
caution must be exercised when dealing with the issue of automaticity.
Some tasks may require many training trials, while others may require
fewer training trials, before performance is noticeably different. It seems
that the number of training trials can be a misleading factor in concluding
that automaticity has developed.

In order to determine whether automatic processing is acquired
through CM training or through any other consistent training procedure
automaticity must be directly measured, such as was proposed in the
present study. The problem with many tasks is the assumption that they
are direct measures of pure automatic processing. The primed lexical
decision task is assumed to measure automatic and controlled processing by
manipulating SOA, Relatedness, and Expectancy. However, Burke ef al.
(1987) noted that small controlled effects can sometimes be found at the

short SOA. Thus, measuring automatic and controlled effects is not always

straightforward.

Does the lexical decision task detect the acquisition of automatic net effects
produced by CM training? And are these effects detected in a single subject?
The automatic and controlled effects obtained in the PRE condition

replicated those obtained by Burke et al. (1987). PRE-automatic and
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controlled net effects were significantly different from zero. However the
predicted POST-effects were not observed. If training developed automatic
processing then significant differences between PRE- and POST-training
should have been, but were not observed. Controlled processing effects, on
the other hand, were significantly different in the POST-training for trained
words. However, this difference is problematic since the POST-effect itself
is not significantly different from zero. Together these results would lead to
the conclusion that a) CM training failed to develop automatic processing or
b) that the lexical decision task failed to detect differences because subjects
were already efficient at word recognition.

The attractiveness of this design is that automatic and controlled
processing could be measured for each subject. Individual analyses
presented in this research are somewhat compelling because some
interesting trends were obtained. Nonetheless, given the reservations
concerning the tasks that were used to measure and develop automatic

processing, these trends remain inconclusive.

Did transfer of training occur?

Transfer of training did not occur for untrained exemplars from a
trained category. Perhaps the present application of Schneider and Fisk’s
(1984) design was not favourable to transfer. It has been argued that

training specific components to automaticity using the CM paradigm leads
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to specific improvements that do not transfer to other tasks. Logan (1985)
has stated that "automatization should result in very specific ways of
performing a task, which should provide a rather narrow generalization
gradient when transfer to other situations is tested” (p. 378). This raises
concerns about whether transfer of training occurs for untrained exemplars
from a trained category, or whether training transfers to an entirely
different task.

As Schneider and Fisk demonstrated transfer occurred in the same
type of task in which the exemplars were trained. Thus, it is reasonable to
speculate that transfer did not occur in the present study because the
lexical decision task demands were different from those in the training
procedure. Also according to Logan’s (1988) instance theory transfer of
training should not occur because 'automaticity’ relies on the accumulation
of instances. Since the untrained exemplars were only seen a fraction of the
time that trained items were seen, the accumulation of instances for
untrained exemplars was unequal. Thus, these results would support

Logan and Stadler’s (1991) hypothesized item-based learning mechanism.

Primed Lexical Decision Task
The pattern of results that are usually found in a primed lexical
decision task were not replicated in the present study. Due to a genuine

confounding variable of repetition it seems that training might not have
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been a contributing factor in the changes measured in the POST-condition.

The confounding variable in the primed lexical decision task was item
repetition. This repetition effect refers to response facilitation (repetition
priming) for items that have previously appeared on the target list
(Durgunoglu, 1988). Results in the present study revealed that prior to
training subjects had already improved their performance on words and
nonwords in all conditions (significantly faster RTs) in the second lexical
decision task (collapsing across SOA, prime-target relatedness, and
expectancy conditions). It could be argued that repetition priming, in
addition to semantic priming, was in part responsible for any of the
observed response facilitation effects obtained in the lexical decision task.
However, further analyses, reported below, indicate that there was no
interaction between semantic priming conditions and task repetition (where
items were repeated across tasks).

The primed lexical decision task was given to each subject four times;
once at each SOA prior to and after training. Two separate three-way
ANOVASs (one on word RT and one on nonword RT) were conducted with 2
between factors; lexical decision task Repetition (1 to 4) and SOA (short and
long) and 1 within factor; Semantic Priming Condition - RxR, UxR, UxU,
RxU.

No main effect of Repetition was found (p >.05) for words. There was

a Semantic Priming Condition main effect in that the RxR trial RTs were
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fastest and the UxR trial RTs were slowest. The Semantic Priming x
Repetition interaction was not significant (p >.05). A non-significant
interaction would support the claim that facilitation in the POST condition
(for automatic processing) was due to training rather than repetition of
words in the lexical decision task.

These results support den Heyer, Goring, and Dannenbring (1985)
findings that semantic priming and repetition are additive factors
(Sternberg, 1969). The additive relationship was further supported by den
Heyer (1986) and Durgunoglu (1988). To explain the non significant
interaction it was suggested that semantic priming and word repetition
effects occur at different stages of information processing as long as the lag
between repetitions is more than 7 intervening trials (Den Heyer & Benson,
1988).

The lexical decision task in the present study differs from the above
study in that item repetition never occurred within a task, only across
tasks. In addition, prior to training, subjects completed the short and long
SOA lexical decision tasks on separate days, and within at least 30 minutes
of each other in the post-training phase. Given that the lag between
repetitions.was long enough it can be assumed that the semantic and
repetition facilitation effects were additive.

To summarize, the results from the lexical decision task are

problematic since the usual pattern of effects were not observed either in
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the PRE- or the POST-lexical decision tasks.

Conclusion

The results from the present research have led to the following
questions: Is consistent training necessary to develop automatic processing?
Is the lexical decision task a valid measure of automatic and controlled
processing? What is a good measure for evaluating changes in automatic
and controlled processing following training?

In the semantic category search task the 'to be trained’ exemplars
were already well known and were in effect 'pre-trained’. Also, the pool of
transfer items was rather small (a single item per category). Perhaps
training methods should manipulate information that subjects alreadv know
(words) in novel ways in order to eliminate the ’pre-trained’ effect. For
example, the 'rule’ in the present design was to locate a semantically related
target. If the rules required subjects to process words in a novel way then
the development of automatic processing could be more strictly monitored.
For example, subjects could learn to associate polygons with exemplars from
specific categories. When the polygons can be correctly identified as
exemplars, then priming could be measured by presenting the category in
which the ’polygon’ belongs (see MacLeod & Dunbar, 1988). Also, the pool
of words used for training could be increased so that they are not easily
memorized. Further research could also vary the number of consistent

mapping trials for a particular rule to assess the number of trials needed to
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produce a significant change in automatic and controlled net effects. This
type of training has been implemented by Kramer, Strayer and Buckley
(1990) in a rule-based memory search task and by MaclLeod and Dunbar
(1990) in a modified Stroop-like task. These studies could indicate whether
CM training develops automaticity or efficient strategies.

As noted in the introduction, the lexical decision task has been
criticized as a valid measure of word recognition (Balota & Chumbley, 1984;
Seidenberg et al, 1984). Although the present study did not attempt to
verify these criticisms it is possible that the problem with the lexical
decision task is that it is not an accurate measure of automatic and
controlled processing in word recognition. Recently Jacoby (1991) has
offered an alternative approach to the issue of measuring automatic and
controlled processing. Rather than assuming that task performance is a
direct reflection of either automatic or controlled processes, he advances
that task performance reflects a blend of both types of processes. Jacoby’s
process dissociation method measures the unique contribution of both
automatic and controlled processes within a task.

The idea of combining both the category search task and the lexical
decision task was thought to be a novel way of measuring automatic
processing of word recognition skills following training. It was also a
method for measuring changes in individual performance (n = 1). The fact

that the results did not support the hypotheses does not invalidate this
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approach. In order to claim that automaticity has been trained, research
should focus on the resulting changes on a PRE and POST task that
measures automatic and controlled processing. Perhaps the old approach of

trying to obtain pure measures of automaticity should be revised.
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Instructions and list of targets in the memory and lexical decision tasks

Below is a list of words, some of which will be presented to you in this
experiment. If you do not know the meaning of any one of these words,
please do not hesitate to ask. It is important for your task that you know
the meaning of each of the following words.

apple
apricot
ash
asparagus
axe
balsam
banana
baseball
basketball
bean
bear
beaver
beech
beet
birch
broccoli
cabbage
carrot
cat
cedar
celery
cherry
chisel
climbing
corn

cow
cypress
daisy
deer

diving
dog
dogwood
donkey
dress
drill
elm
fencing
fishing
football
fox
garlic
goat
golf
grape
grapefruit
grinder
hammer
hemlock
hiking
hockey
hoe
horse
knife
lathe
leek
lemon
level
lily

lime
lion
mango
maple
melon
mouse
mushroom
oak
onion
palm
pants
peach
pear
peas
pick

pig

pine
pineapple
pliers
plum
poplar
potato
prune
rabbit
raccoon
radish
rake
redwood
running

sailing
sander
saw
scissors
screws
sheep
shirt
shovel
skating
skiing
soccer
spinach
spruce
strawberry
swimming
sycamore
tangerine
tennis
tiger
tomato
tulip
turnip
watermelon
willow
wolf
wrench
wrestling
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Appendix B

Memory Task Stimuli
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SERIES A SERIES B

CATEGORY TARGETS CATEGORY TARGETS

ANIMAL beaver SPORT baseball
donkey basketball
raccoon climbing
sheep football
wolf wrestling

FRUIT grapefruit VEGETABLE asparagus
pineapple broccoli
strawberry garlic
tangerine leek
watermelon mushroom

TOOL grinder TOOL grinder
level level
sander sander
scissors scissors
screws screws

TREE hemlock TREE hemlock
cypress cypress
dogwoad dogwood
palm palm
sycamore sycamore
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Appendix C

Lexical Decision Task Stimuli
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SERIES A SERIES B

CATEGORY TARGETS CATEGORY TARGETS

ANIMAL bear-blar SPORT diving-duving
cat-dat fencing-mencing
COW-gow fishing-lishing
deer-deet golf-goaf
dog-doy hiking-hizing
fox-fod hockey-wockey
goat-loat running-rinning
horse-horpe sailing-sairing
lion-rion skating-shating
mouse-couse skiing-skoing
pig-pag soccer-soucer
rabbit-mabbit swimming-saimming
tiger-tiver tennis-ternis

FRUIT apple-ipple VEGETABLE bean-blan
apricot-aprilot beet-beeb

banana-balana
cherry-clerry
grape-trape
lemon-vemon
lime-lome
mango-margo
melon-melor
peach-peath
pear-peam
plum-plim
prune-prine

cabbage-cabbare
carrot-cabrot
celery-celerp
corn-carn
onion-inion
peas-pras
potato-zotato
radish-gadish
spinach-stinach
tomato-yomato
turnip-jurnip
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Lexical Decision Task Stimuli (continued)
SERIES A SERIES B
CATEGORY TARGETS CATEGORY TARGETS
TOOL axe-ixe TOOL axe-ixe
chisel-chipel chisel-chipel
drill-drull drill-drull
hammer-haymer hammer-haymer
hoe-koe hoe-koe
knife-knire knife-knire
lathe-rathe lathe-rathe
pick-pice pick-pice
pliers-pleers pliers-pleers
rake-ruke rake-ruke
saw-saz saw-saz
shovel-scovel shovel-scovel
wrench-brench wrench-brench
TREE ash-osh TREE ash-osh
balsam-palsam balsam-palsam
beech-geech beech-geech
birch-firch birch-firch
cedar-cudar cedar-cudar
elm-ilm elm-ilm
maple-eaple maple-eaple
oak-onk oak-onk
pine-bine pine-bine
poplar-poolar poplar-poolar
redwood-remwood redwood-remwood
spruce-sprice spruce-sprice
willow-sillow willow-sillow
CLOTHING* dress-druss CLOTHING* dress-druss
pants-panks pants-panks
shirt-phirt shirt-phirt
FLOWER* daisy-paisy FLOWER* daisy-paisy
lily-lity lily-lity
tulip-turip tulip-turip

*These category names never appeared as primes and only the exemplars
were used in the UxR conditions.
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Appendix D

Training Stimuli
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SERIES A SERIES B

CATEGORY TARGETS CATEGORY TARGETS

ANIMAL bear FLOWER daisy
cat iris
cow lilac
dog lily
horse orchid
lion pansy
tiger tulip

CLOTHING coat FRUIT apple
dress banana
pants cherry
shirt grape
shoe peach
skirt pear
socks plum

SPORT diving TREE birch
golf elm
hiking maple
hockey oak
skiing pine
soccer spruce
tennis willow

TOOL axe VEGETABLE bean
chisel carrot
drill celery
hammer corn
pliers peas
shovel potato
wrench tomato




Training Stimuli (continued)

111

DISTRACTORS

(DRINK) beer (METAL) brass
coffee bronze
coke chrome
gin copper
juice gold
milk iron
rum lead
rye nickel
scotch ore
soda pewter
tea silver
vodka steel
water tin
wine zinc

(DWELLING) cabin (BODY) arm
castle brain
cave ear
dorm eye
duplex face
flat foot
home hand
hotel head
house heart
hut leg
igloo mouth
motel neck
shack nose
tent torso




Training Stimuli (continued)

112

DISTRACTORS

(FABRIC) cloth (VEHICLE) bike
cotton boat
dacron buggy
denim bus
fur car
linen cart
nylon jeep
rayon ship
satin subway
silk taxi
suede train
tweed truck
velvet van
wool wagon

(FURNITURE) bed (WEAPON) arrow
bench bomb
buffet cannon
chair chain
couch club
desk gun
lamp pistol
piano rifle
shelf rope
sofa spear
stereo stick
stool sword
stove tank

table whip
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Appendix E

Training Targets
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wrench

SERIES A

CATEGORY TARGET SURPRISE

ANIMAL bear deer
cat fox
cow mouse
dog pig
horse rabbit
lion
tiger

CLOTHING coat blouse
dress hat
pants jeans
shirt slacks
shoe suit
skirt
socks

SPORT diving fencing
golf fishing
hiking running
hockey sailing
skiing skating
soccer
tennis

TOOL axe hoe
chisel knife
drill lathe
hammer rake
pliers scissors
shovel
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Training Stimuli (continued)

SERIES B

CATEGORY TARGET SURPRISE

FLOWER daisy aster
iris azalea
lilac begonia
lily dahlia
orchid peony
pansy
tulip

FRUIT apple apricot
banana lemon
cherry lime
grape melon
peach prune
pear
plum

TREE birch balsam
elm cedar
maple hemlock
oak poplar
pine redwood
spruce
willow

VEGETABLE bean beet
carrot cabbage
celery onion
corn spinach
peas turnip
potato

tomato
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Table F-1
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Automatic and Controlled Processing Net Effects in ms for Trained Items as

a function of n = 1 resulting from the Burke et al. (1987) formula

Net Effect (in ms)

Subjects Automatic Controlled
Trained items
AB
Pre 54 84
Post 137 15
DW
Pre 124 137
Post 109 -47
JD
Pre 106 100
Post 129 -16
JG
Pre 217 -43
Post 147 -196




Table F-1 (continued)
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Automatic and Controlled Processing Net Effects in ms for Trained Items as

a function of n = 1 resulting from the Burke et al. (1987) formula

Net Effect (in ms)

Subjects Automatic Controlled
Trained items
JM
Pre -99 121
Post 103 3
MC
Pre 153 304
Post 102 -14
MM
Pre 161 113
Post 89 39
SG
Pre 133 1
Post -72 42
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Automatic and Controlled Processing Net Effects in ms for Untrained Items

as a function of n = 1 resulting from the Burke et al. (1987) formula

Net Effect (in ms)
Subjects Automatic Controlled
Untrained items

AB

Pre -3 40

Post 116 -10
DW

Pre 240 1

Post -65 25
JD

Pre 53 -46

Post 22 -41
JG

Pre 74 -146

Post -34 -186
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Table F-2 (continued)

Automatic and Controlled Processing Net Effects in ms for Untrained Items

as a function of n = 1 resulting from the Burke et al. (1987) formula

Net Effect (in ms)

Subjects Automatic Controlled

Untrained items

JM

Pre 142 76

Post -89 128
MC

Pre 124 545

Post 242 288
MM

Pre 139 33

Post 35 -60
SG

Pre 112 -32

Post 72 128
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Appendix G

Training Figures
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Figure G-1 Mean reaction time (ms) per session as a function of training
for surprise and trained items in the category search task

1or subject AB.
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Figure G-2 Mean reaction time (ms) per session as a function of training
for surprise and trained items in the category search task

for subject DW.
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Figure G-3 Mean reaction time (ms) per session as a function of training

for surprise and trained items in the category search task
for subject JD.
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Figure G-4 Mean reaction time (ms) per session as a function of training

for surprise and trained items in the category search task
for subject JG.
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Figure G-5 Mean reaction time (ms) per session as a function of training
for surprise and trained items in the category search task
for subject JM.
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Figure G-6 Mean reaction time (ms) per session as a function of training
for surprise and trained items in the category search task
for subject MC.
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Figure G-7 Mean reaction time (ms) per session as a function of training

for surprise and trained items in the category search task
for subject MM.
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Figure G-8 Mean reaction time (ms) per session as a function of training
for surprise and trained items in the category search task

for subject SG.



