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t ' ABSTRACT

- o

Tree Parser

“Periyasamy Kasilingam § ’

] ) LY

: Lo A parser generator and.a parser for trég grammars have
Qeen'impleﬁ%nied. The parser has two passes; the -top-down
pass recognises the iﬁput'and the bottom-up pass builds the
. ‘ outpst. The' parser handles ambiguous inputs and writes oy}

v all possible parses. The parsing\tipe is- linear to the size

of the input. The performance of the tree parser has been

critically compared with similar parsers. ?heetxee parser

could be applied to code generation in bompi;ers:? syntactic

v .

pattern matching and tree transformation techniques.

¢ . N . o

A
s . B - " . . > . f . :
B . - N . R » I oL U e



- Q
4 n‘ . ’. ) \
ACKNOWLEDGEMENT'S
' . - . I N /.f
' ) Pe [
L N . -
. I wish to express my sincere thanks to my thesis -~
L[] ‘ ' J- -

supervisor Dr.Hendrik Boom who initiated this thesis. His
" valuable guidance during%he course of this work and his
. Qpﬁienée in cdrrecting the mapusc:ipt Are greatly
appreciated. His proven exﬁeriehce in the area of compilers

enabled me to understand the subject in great detail.
o I would like to thank the membefs of the Programminé

L]

Language Study Groﬂp of the Department of Computer Science

~ at Concordia Universityrfor their help and suggestions.,

L ——

-
9

My special thanks is to my family members -~ aad friends

for their moral support and encouragement.
. . o :

-

N « ¢ .
A .
.

; — P y
. O - :
’—V.'f" . N - B -

IYed - “

» . - L] . .

.o U oofe o . ° -
: rooedl S gy . - . L. . . , .
g% ‘f,:méﬁk‘vi.mm/\.’eh- I 27y I - o - . ) N




N . - Table of Coptents
t s A o
Ab‘s/(:radct'é ) L :
Acknowledgements >

1. Introduction '

2. Definitions . . .
, 3. "Par's.i_ng ngori.thm o . R .
" 3.1, Pfecompu!:at‘ion . ' ;
3.2. Precomputation Algorithm o
/ . 3.3. Recognition LW 22, __
3.4 Parse Tree Construction . . 24
4. Implementation 30
" 4.1. Representation of the Various Eleme ks | L 30
4.2, Printing the Outpu?' - ' " ‘ . 34
- 5. C;pnélusion “ 37
6. References . ‘ ©L40 .
7. Appendix A ‘ ’ 44
» | - |
y
! ’ A
\ ’ - . \
‘ - .
- e r | - =
T, - |
"\ /




“N‘ ’ . - Chapter 1

. 3 %
p Introduction

Parsing is Ege process of identifying the syntactic

structure of the sentence in a language based on’ the rules

of a grammar.'. A grammar is a way of specifying‘ a.

potentiaily infinite language (set of strings composed from

_the symbols of the langhage) in a'finitg way [6]. The rules

.0f the grammdr are cailed 'productions which- specify the

valid patterns of the input to appear for a correct

sentence. The parsing algorithm or téchnique very much
» ¢

£l

depends on the underlying grammar. The prdérém which
B , , !

. implements the parsing algorithm is called—a parser. The

output of the parser is generally the syntactigkftructure of

*
the sentence being parsed, wusually a tree called a

derivation tree. It shows how the input sentence is derived

in steps from a symbol (called the start symbol of ‘the

¢

grammar). The design of the parsing algorithm thus becomes
the design of the/rules of the hnderlying g:ammér and the
implementation of the parser depends on the system on which

it is implemented.

!
.
p)

.

Context-free, Context-sensitive and Regular grammars &

are the ones normally used for the- specification of

-

programming languages. A tree grammar is a special kind of
grammar in which the sentences of the associated language

have a specific structure called a tree structure. -Even

X

v
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though the notion of tree grammar was known much earlier (in
the early sevengies f, its application became- popular only %{7
recently. in the past few years, tree grammars have be;n
used for tree patfern matching féchniqpes aﬁplicabie to
syntactic pattern feébgnition, tree transformation and code
generation in cdﬁpilers. ‘In.these applications, the valid

patterns are described by the productions of a tree -grammar

and¥ the pattern matching is achieved through parsing the

input. . - . \ , "

s 4

!/

>
P

~

In the code generation phase of compilers, - the

!
productions represent ‘the patterns describing . the

instruction set of the target machine. The input. is the

expression’ tree from the parser which is then parsed by the

——

tree parser to match the different patterns of various

or

productions. Once a match 1is found, that pattern in the

expression tree is replaced by the left side symbol of the

production. At the same time, the production number is

4

attached to another skeletal tree which préégrves the

structure of the expression tree. This process continues
until the expression tree is reduced to - a single symbol;
0 + - \\ -

Then the generation of code is simply a table looK-up

procedure which emits code for each production in the
/ .

skeletal tree when the tree is .traversed, usually in

préorder. The code generation process could be ‘deferred

until the . complete skeletal tree—is built, up 8o that °

v

ambigquities could be preserved or resolved before code

Lo
Ay @
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generation. i

In their paper, Aho and Ganapathi[l] have described an
algorithm for tree pattern matching applicable ‘to code

generation. They have provided a tree automaton with

attributes associated with each symbol.\mﬁln fact, it was

developed with the idea of incorporating the tree pattern

matching along with dynamic brogramming to develop a
language. for code generation.’ The attributes are consulted
at run time in case of ambiguous situations to select a

unique match.

Turner(19] has described a wery similar parsing
technique with prefix grammars. A prefix ‘g;amméﬂ is
essentially a . tree' grammar with the trees flattened into

strings using polish prefix notation. The similarities

between Turner's parsing technique and the .tree parser

presented here, are discussed in a later section.

Hatcher[9] has presented an algorithm for code

. e
generation using bottom-up Egeéigattern matching. He uses

. ~ .
three passes over the in tree - the first bottom-up pass

identifies the colleétion of patterns at each node of the

expression tree, the second top-down pass selects the

-—

appropriate pattern at each node using the cost information

code by a table look-up. Hatcher claims that his technique

Ll

o

P

. passed from the parént node and the third pass emits the

&,
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generates optimal and efficient code.

4
~

The pattern matghing techniques in tfé%s have Qeen well
M'discussed‘ by Hoffmann and ‘O'Donnell[}l]. They have
. described both bottom-up and top-down appgéaches and - also
have critically compared both thewapproaches. Yet their

algorithms and constraints are based on strings; the trees

are reduced to strings using polish notations. X

AR

)

+Akoi[3] has described the tree grammar and top-down
parsing algorithm and Akoi a?d Matsu ra{4) have described
the bottom-up parsing applicpble tojtree language;. Since
béth,thé publications are ini\gapanese, Ic aﬁ unable' to
.explain the- nature of their aléﬁrithms. However, ‘they could
still be compared with the tree paréer presented here, if

b
they were translated into English,

\
-
-

The tree parser presented here is a top-down parser ' . :
based on tree grammars (which are context. free tree grammars

in our case). It reads an expressibn tree as input and
constructs the skeletal treé with production numbers used in
the de:ibation, as mentioned earlier. .A special feature of -
interest about this parser is that ‘ix handles ambiguity;’
i.e. for the same input tree, the parser outputs ail
posﬁible skeletal trees, if any. ‘It éreserves all the

outputs - so that a later phase can resolve the ambiguity

based on an criteria. Also, precomputation ‘of patsinq
y : s :
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tables makes the tree ba{ser fast.
\ _ o ‘
The definitions are mentioned in the next section,
followed By the discussion of the parsing algorithm in/ the
gubsequent section. After the parsing algotithm is the
section which explains the precomputation procedure and
tables. The section on impiementafion follows immediatel}
and is followed by the Conclusion. 6 Appendix A' at the end
gives an insight into some details of the progra@si A list
of references at the end cite tHe related works in the

field. ’ . ' .

’a



Chapter 2
Definitions o
The notations and the definitions described here are
4

'quite similar to.those used by Rounds[16]). Let L denote

, : : L S
* , the set of symbols treated as operators in the tree grammar.

v

Basically these symbols represent the nodes or vertices in

. the tree. It 1is conventiornal to represent a tree upside
» .

down with the root at the top and the leaves at the bottom.

As an example, a tree for the arithmetic expression a*x*x +

b*x + ¢ will look like

/\
LA

AN

N

and XY in this case will be {+.*,a,b,c}.

A ranked alphabet is a .pair ( ¥ ,r) ".where Z is a

finite set of symbols and r is/d mapping r : I --> N,

- ‘

A
6



_— Zn = t:l {n}. - —_— :

associating-a rank with each symbol in L ; N here is the
set of natural\numbeEé.

We write

H ' - ! ‘o w
[} P
o

‘fn trees, we ¢« refer the' ‘tank as_ the number of

Al

0 . ' CEEEN
descendants of the symbol at a node. Thus for the above
‘example, r(+) = r(*) = 2; r(&) = r(b) = r(c) = 0. '

\. - ‘ LI

| - - . . -

Let us first define. context free grammars and later

show the analoéy'between-context free grammars and context
ffeg tree grammars.

* * © .

A context free drammar is a quadruple G = (N,T,S,P)

. - - 4
wpere N is called the set of non-terminals, T is another set

i -
called the set of°‘ terminals, disjoint from N. S is an

element bf_N'called‘thé start symbol of the grammar and P is

the set of rewrite tules calded productions. . Each

'

production is of the form X --> w, where X is d non-terminal

and W is a string -of symbols from N'U T. -

Let w be ‘a‘ string from N u- T, By replacing one

.
- A

non-termingl occurrence of w by a string x, where the

non-terminal’ 4nd’ x constitute a production, another string

- could be derived from w.. Such a réplacemenﬁ step is known"

<

as 'derivation'. We use the notation '-->' for derivation

—

in one step, tmean§‘? that one of the ngbj?;rminal




. accurrences, say E, on tﬁe,left side of --> is teplagedﬁpy a
stringd éay w, and E --> w is a production in the grammar.
As an example, aEb --> awb is a one-step detivation.if there -
igs a production E --> w in the grammar. ( The seé of all
strings of terminal-syﬁbqls that could be derived from the
start symbol by successive replacement of the non-terminal

~occurrences “BY their associated produgtions is the language . "
accepted by the gréﬁmar and these §§ring§ are the -sentences %

‘of, the language. . If tﬁe string derived from the start |

. a '

. symbol contains. nop-terminals, then_it is called

————

Vel hd

sentgntEaI form in the grammat. Symbolically, it could be

. 'stated as ’
L6y = { w | S -->* w,' w is a sentence}

(-->* refers to the transitive reflexive‘élgéure‘of -—>

\ ) 2 o . il -
and indicates derivation in zero or more steps). / R
o , ) A
. P - ‘e
‘\1 = . ’ .
"Let us next define the tree and tree grammars. " :
- ' t ’ @ S

Let X be an arbitrary set of ranked s?mbols.

The ‘set I' of trees over L is inductively defined as

¢
1

.follows:

i)  Eg 'Q r-- T o . <

-e

- _'__ ~ 0
~ z .
LY

Yo represents the set of symbols fdrming singl® node

"

" trees with no descendants. Typi;aliy Lo forms the leaves

Y - [

of the trees. I — - T

w ?

i) if tgs...stp-) € ' and o€ I

then 0 (tgs...,tn-1) € T .

[
14

.
' 8
.
.




A tree grammar (being a context free tree gram@aq

t

in our 'case) is a quadruple defined as Gt = (v, £ ,S,P)

. where V is the set of non-terminals and Y is the 'set of

p.

" operators, S is, in ¥, beéing the start symbol of the grammar,
and P is the set of productions of the form N --> e where N

is a non-terminal and e is a ‘treedover V ‘U Y. A
* e

non-terminal in V has rank zero.- We put - the restriction
that each non-terminal ?ccurs at the left éide of at least
6ne production. ' ‘

Y contains the éét of'ozerators. An operator of rank n

has n operands. Operators ane,analogoué to the terminals in
-
the context free grammar.We use the same notation =-> for

)

~ ' derivation in one step and -->* for the transitive reflexive

closure of --> indicating derivations in zero or more steps.

The sentences of.the tree grammar are the trees derived in

zero or more steps from the start symbol S. The language
" . / ]
accepted by the -tree grammar is the set of all sentences_

)prqduced by the t:eérgrammar. Mathematically,

L(G¢) ={t | s-—>*tand t €I }.

-~

To save space in this document, Polish prefix notation i .
a

‘ugsed to represent trees. (This is only for typdgraphic

convenience and is not the computational representation). v

A smurf is a tree over VU L in the tree grammar. It

14

is a single terminal, ngn-termfﬁal or part or whole of the

S @»right side of a prodﬁctkon. Turner[19) and Aho and
. - ( - -

-

9
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' <
—
' 2 a L
;
N
. -
b

Ganapathi[l] refer to this as a 'pattern'. A smurf is said
to be frivial iff it is a“single'nbn—terminal; consequently,

a trivial proéucqion is the one whkch has a trivial smurf as-

.

the right side. The conceﬁt of trivial 3murfs "will be

useful in summarizing the derivations, due to trivial

productions, (chain productions [19]).

M a N “‘

’ ’ N .
A smurf f is derived from another smurf e in one

—

‘step(writtén e --> . f) iff £ is obtained from e by replacing

one of the non-terminal occurrences in e (say N) \bx a

LY

subtree x (x being a subtree of‘f)‘and N --> % is in P\ .

1
.

- , Y

Recognition 1is the process of identifying’or verifying *

a;sentence qf the trée grammar. Parsing {thhe next phase
which indicates the derivation steps of this ‘'sentence frém
the start ,symbél of . the ‘tree grammar. " The outputf éf
re;ognitién'is the colleétion of smurfs which constitute the

input tree whereas the output of parsing is another tree or

trees °byer’the pfoduction numbers of the tree grammar ‘which

indicate thé order in which these smurfs are derived in zero

-

or more steps from the start:symSol.

We define. Recoqpition and Parsing mathematically as

follow:

o .
o . 5 t

C

. : ' ( -
For a sentence e in the tree grammar and a set of smurfs gq,

‘chog(e,q)'is defined as

/

) , . . ’ )
10 - ' .
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"1

Recog(e,q) = { M € q | M ;-?*‘e}.
Notice that ‘ E

Recog(e,q) = Union (Recog(e,{M}) | M'.e q) and .
Recog(e,{M}) may be exther (M} xtself or empty.

Since sentences are deklved from the start symbol, we start

the recognition process from Recog(e,S).

-

tet PN = {n € N | P, ¢ P} is the set of all "production

numbers.

bl

‘'Let PT be the set of trees ovér PN, where the rank of a
. 8ymbol n in PN is the number of non-terminal occurrences on

.the right side of tﬁe production Pp.

J

The parseltree tpvis defined as follows:

1

‘Each vertex n of tp, having a rank k, is associated with

k-tuple subtfees (t1+...,tk) with roots nl,...,nk (nly...,nk

-all in PN) such that the non-terminals on the. left side of

‘ productions Pj,...,Ppk "exactly match the non-terminal

occurrences on the right side of the production Pp.

T

. The set .of "all parse. trees Pré is a subset of PT. Each -
, element of PTp represents the derivation of a sentence "in-

‘the tree 'grammar, 1n terms of production numbers.

L

If tp is a parse- tree with root.n having a rank k ‘and

associated subtrees ty,...;tk., then ‘expansion' Ex(tp)-of tp

is the result of replacing n by the right side of production.

11
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‘ Ve .

Pnp and then replacing the non-terminal occurréences in the

right side of productién Pn in order, by thelexpangions.

Ex(tl),...,Ex}tk)“of the subtfeeg t1reeer tkeo

N If te is a pérse tree for a sentence e, then expansion
: Ex(te) is the samé as e. '
, M -->* e‘iff e = Ex(t) for some'parse'tree t with k.as its
& ' top syhbol. = |
Thus Ex(te) is said to aeriég éhe input e fromz the parse
tree tea. Mathematiézlly, ;
' - . .

Parse. (e,q) = { sequences tj,...,tx | tj is in PTp,

| t; is a. parse tree starting with non-terminal
- . ' © Nj., ’ ’ o |

\

Nj is the i-th non-terminal of X,
X is a smurf in q,

: | ¥

‘ replacement of each Nj in X by Ex(tj) results

. in the derivation of e.}

Notice that for a t£}v131 smurf X,
Parse (e,{x})_= { t ] e = Ex(t), n is the root of e and X is
‘the left side of production P, }/and

Recog” (e,q) = { X € q | Parse(e,X) is non emptyl}.

12
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Chapter 3
\ Parsing Algorithm j
, /
( ‘ - » ! . ./
The tree parser presented here 1s functionally similar

to a conventional LR parser. It has a parser generator

routine  which generates the pafsing tables from the

‘specificationsfof’the grammar. These tables are s?ored in a
compact way and the 'parser' rodtine (the LR parser calls

. .
“"this as driver routine) later uses them to parse the input.

LI

The performance of the tree parser ﬁs comparable with a
conventional LR parser. In addition, it also’ haﬁdles
ambiguitieg while parsing but the LR parsén,doeé not.

The 'recogniser' of the tree ’parsér is a top down
éléorithm, idé%tifyidg the smurfs from the start symbol of
the grammar. As it gets down to the leaves in a top-down °
left-right order, it identif;eé all possible sentential
forms at each node or 'vertex‘ oé the input tree. After

recognising the input tree, it outputé the set of smurfs in

a bottom-up order. For the effective computation of both

‘the 'recogniser' and the ‘'parser', the) valid . subtree
s

patterns at each vertex are all precomputed ' and stored in
four tablés. The ':par;er'. routine afte; ‘recognition
conétructs the parse tree from the productions used in the
derivation. \

AN

The following terms are used in the parsing algorithm

Iy

N e B ar N
O ot - JUR IRV, RN
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described below:

-

We QOnsisténtly use the symbol.q to denote a state (set of

smurfs) and Q to denote a set of states (i.e., set of set of -
'smurfs). . ‘ ]
'Expand' is a relation between smurfs. Expand(u,v)

holds iff v is non-trivial and either' U = v or u =->% w —-->
v and w is trivial. Thus v is the first ‘non-trivial smurf
in any derivation u -->* v, If u itself is ngn—triviaL,
£hen expand (u,u) hoLdg with- no derivation steps. Fét all”
the smurfs in the tree grammaf, expand is precomputed and

tabulated. ‘ - g ot

‘The Closure of aléet‘bf smurfs q is defined as
b Y
Closure(q) - = q U {\y | expand(x,y) holds and x € ql.

The sét'q is said to be closed iff closure(q) = q.

The input tree has operators at its nodes. The leaves
have ' 'terminal symbols' which "are operators with :no
operands. We write f(x3,...,xn) for.a subtree whose .root

operator is f and whose descendants are X],...,Xp.

’

) //’ The following 1is the algérithm for the ‘recogniser’

which computes Recog(f(el,...fén),q) when q is closed. The

functions Scan, Dowq, Across and Up are defined in the

had H
-

subsequent paragraphs.

¢ 7,
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S1 : U := écan\(f.q);

§2°: for i 1= 1 to ndo
ﬁM~:= DOJ% (i,p):\ ‘
U := Across (i,U,Recog(e;,RM));
endfor;

S3 :.return (Up'

\ N \ \
U and RM are sets of smurfs and they keeﬁ track of the

current ' possibilities much 1like the jgtates (sets of

#~ configurations) of an LR parser. U and RM are eventually
' coded as small integers in the same way as LR states.'

* Y

We classify §murf sets into states, substates and

retracts based on their'roie in the aﬁoye algorithm. A

single smurf set may be a siat§,_a substate and a retract at

different times depending on its ﬁsage in the algorithm. We

define the states, substates and retracts as follows:

S

a state is Closure({S}) or a set of smurfs produced by -

k]

Down.
a substate is a set of- smurfs produced by Scan or Across.

a retract is a set of smurfs produced by Up.

¢
* ~
The four parsing functions are defined below:
Scan : For a set of smurfs q, Scan(f,q) is the set of smurfs
e

. ¢ 3
in q with £ as root. :

! ’ 15
o ' -
G
55
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Scan (f,q) = { f(xl,.;.,xn) € q.},- '

.

Down : For a set, pf smurfs gq, Down is defined for each °

operand i of each Operatar f in ‘' the grammar. It is the

14

.

collectjon of operandS‘and theirdexpahds when each operator

. |

1;\zﬁ§lysed in a top down order. Thus, J ’

Down (i,q) = Closure ({xi’l Xxi is the 1i-th son of isome
\ . f{x1,....,x5) € q and some operator f}).

1

Across . Across. is defined for each operand i "of each.

operatorif in the grammar over a set of smurfs q and a set
of retracts r. It 'is the subset of .smurfs from q £for which
the roqéfof subtrees is' operator f and the set of all

possible i-th operands have been found in r. Precisely,

&

. . ' \
Across (i,q,r) = { £(%1, ...,%xp) € q for some £ | xie€ r}

Up : This is the set of all smurfs (a subset of q) returned

after recognisihg the input subtree for an operator £.

.Typically, .‘ v

Up (U,q) = { M € g | expand (M, X) for some X € U}.
. ' C.o .
This set is analogous to the set. of ,'handles' in an LR

S . ;.6

-




parser, defined by Aho and Ullman(2].

3.1. Precomputation

RENE I P a7 St

The precbmputation process starts with the start symbol

of the érémmar. All the sentences of the language originate

from the set of smurfs created from the start symbol. This

is the initial state of precomputation. Each step in the

a

precomputation performs one of the following:

a) creates a new state to be processed

J

- b) creates a new‘substate (feturned by Scan or Across) for
the state under processing -
c) creates a retract (returned by Up) upon recognition of a
— - part of input. ' —

The precomputation proceeds until none of the above is

possible.

For each"new state q created, Scan computes a substate
for _each operator £ in the grammar. This set of substates
are entered in the Scap table for the respective indices f

and gq. Alsb, this substate is added to the 1list of

\

L
>, substates if it. does not exist already.

’

For each ofdthg substates, Down computes a state Which

is a collection of operands of operator £ in the substate.

- i,

As before, Down table is updated for the respective indices

and the state is added to the set of states if it is new.

i - _ « ~

= </ ’
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1,: .

3

L, S—

R S S WITU DL STV TS o ¥ SNy S U P I S



‘Once the retracts have been found for the collection of
operands comp?ted by Down (empty for the first time), the
pecR

; .
Across operation computes ax set of substates for each

7 T
"'VJ ——

operator f. Consequently the list of substates is expanded
accérdingly if new substates are computed by Across. The
Across table is also updated—for the cogresponding indices.
. @
After all the substates of a state q have been computed
.and processed, thé rétracts are finally computed and added
to the set of retracts for that stateﬁq.. These retracts are
also entered in the Up tahle for the respective indexes. )
J -

These four steps intergct and are repeated until no
fu;ther séate, subsfate or’ retracé can be createdz For
instance, if Scan produces a substate then Down and Across
follow computing further states and subst;%es respectively.
After the rétracts have' been comphted,.Scan proceeds again
for the next state produced by Down ;n the previous step.

. This may create another néw substate and the computation
proceéaé. Down will use the new retracts to continue the

iteration.

~
3.2 Precomputation Algorithm

We simultaneously construct ' 1
: '—- a set Q of 'states' '/ "
- sets Q'(q,f,i) of ‘substates' _for each state q in Q, ) -

» -

18 - : ‘ .-



CN
operator f and integer i (with i <= rank of f)

~ sets R(q) of 'retracts' for each q in Q
by ggnetating these elements as follows:

-

SO

Initially Q is empty.
S1

Insert closure ({S}) into Q; S being the start symbol.

S2 For each state q in Q and each n-ary operator f.in the

grammar, the following steps are iterated until all the
states are processed with all operators.
§21 : Insert Scan(f,q) into Q'(q,£f,0) as a subséate.
§22 : For each U in Q'(q,f,i-1), 1 <= i <= n, insert
Down(i,U) into Q as a state.
§23 : For each UU in aQ'(q,f,i—l), 1 <= i <= n, and r in
R(Down(i,U)), insert Across(i,U,r) into Q'(q,f,i) as
) i a substate. S
T $24 : For eaéh U in Q'X@,f,n) insert Wp(U,q) into~R(q) as

a retract.

The following example 1is ‘an illustration of the
precomputation p}ocess.‘ |
Tﬁé nullary operators are {a,b}
The non-terminals are (E,F,G} -
There are two binary operators {+,*}
The Start gymbol is E
T . The following are the productions: (Note that the right side
of each production is a tree, ‘here written in polish prefix

form.)




E --> +EE
E --> *EE , T
E-->F ‘ ) K |
s E->G ' ( .
F --> a _ i .
G-->b .
Th; " smurf  set computed from‘ this grammar is
{a,b,E,F,G,+EE, *EE}. . ,

The initial state is the closure of the start symbol; i.e.

’

- closure({E}) = {E,+EE,*EE,a,b} = q).

These are the. smurfs that could be expanded directly from

the start symbol. Note that’the}e is ‘no production E --> a
. N
or E --> b but still the smurfs'a and b appear in glbecause

" of the trivial productions E --> F and E --> G respectively.

As 'expand' between tq?)smurfs is precomﬁﬁted and tabulated,

these trivial expansfois are computed only once thus saving'"

a lot of time in the later processing. .

« Consider the operator +, for exaﬁple. Scanninq q11f0t
+ yields the substat; Scan(q1,+) 5’0'(q1.f,0) = {+EE}. The
Down opefation for the first operand of + yields
Down(l,+,qj) = Closure({E}) = {E;¥EF,*éE,a,b) = qi. The

>

second operand . also creates the same. Since no retracts

-

have been computed yet, Across does not yield anything at

this moment. So the bpération on + is suspended until a new

~retract is computed. “Scanning for the operatpr a yields a

\ ) , .

»

3
4
7
14
.o
o
‘.
-4
o
e
]
)
,

t
‘l
E%&ga‘



LA - - S TE - I » o o u
'y . ~ ’
e - . ' N
B - - .
S & [ . .
o .
. .
R

I —— N 7 .
- oW

{a}. Since a is a -

;\‘ substate Scan(ql,a) = Q'(qy,a,0)”
. 7

Cf” nullary operator, there is no further proce531ng by Down and

~. ' Across on a. The Up oggratlon on Q' (q1.a, 0) w111 -caompute

the retract {a, E} Once thlS retract is computed, Across on

r

+ ccntlnues to compute the substate {+EE} for the flrst ‘and -

gecond operands. In the next step of iteration, - Scan does
not operate since no new state was compyted by Down; neither

does Down. The'bp operation on + now computes the retract

Ve Up(+,Q'(q1,+,2)) = (E,+EE}. *

~ . S
L

| ' . -
_Proceeding in this way for all operators, we .get the

- following table: ‘ . \. . -
Initial state 3 Q= {E,+EE)$EE,a,b}i )
_ Scan(qy,a) = {af T ]
' Scan(qj,b) (b}:g» . . . :, )
'4? 5caa(q1,+9 = {#EE)}; ‘ o ) L |
Scan(gy,*) = {*Eﬁli - “ ' . -

L]
1]

<Down(1l,+,qy) -DQWﬁ(2r+;q}) = Down(1l,*,q1)

“ - N - .-

q1- . .

Down(2,*,q1) =

There iafno eitry‘nghihe Down tab%e“for the'operators a and

b, since they are operators with no operands.

P ' - ) y
”b\/—'—Y

‘rl; ' ¢

6p(a.q1) = {a,E}

',. ‘.‘Up(bIQI) = {brE} = 1‘2;' . Co
Up(+.,q1) = {+EE,E} = r3; . oo
Up(*.q1) = {*EE,E} = r4. e T .
X ] o
. ) 21 .-
Y L
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.Across(1,+,q1,r2) = Across(2,+,q],r2)

«Across(1l,*,q3;,r3) = Across(z,*,ql,r35

v N Y

Acrbss(l,+,q1,rl) Across(2,+,q1.rl) = (+EE};

1]

{+EE}; . ‘

Abross(l,+,q1,r3) = Acro (2,+.qi.r3) = {+EE}: , K

Across(1l,+,q1,r4) = Across(2,+,q),rd) = (+EE};
Across(l,*,q;,rl) = Across(2,*,q1,rl) = {*EE};

Across(1l,*/q1,r2) = Across(2,%*,q;,r2) = {*EE}; .

1}
M

{*EE};

Across(l,*,qy,r4) = Across(2,*,q1,rd4) = {*EE}.

™,
. .
ta . ) \
* ~ N
.

After cfeaéing all‘the\foﬁr parsiQ? tables, the parser

L]

'is now regdy to parse the inputs. The parsing process is

divided4 1into two phases - recognition and parse ttee

construction. ' Recognition identifies the 1ihput tree

belonging to the grammar and the latter constructs the parse

v

tree.

, ~
3.3 Recognition

A
.k

In the recognition phase,

§

.top-down by scanning over each vertex and identifying- the
¢ N \ .

subtree beiow it recursiveiy. It is a top-down algorithm
performing 1left-to-right processing. The scanning and

downward analysis are all done in the precomputation process

itself and so recognition simply wuses . these tableé and

“’fdentifieg the‘inbut'Vefy quickly. An error in recoén;tion

-

s . . v

" o 22
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the 1input is analysed.
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(which indicates that the input sentence is invalidyg is
flashed out immediately when there ‘is no entry in any of the

parse tables for a set oﬁ" appropriate parameters.

‘Recognition in that case is stopped immediately and the next

1. . A

/ " .phase is abandoned.
) ¢ The following is the recognition * algorithm for
recognising the input e in a closed set of smurfs q. o
T - . . . .
. "Algorithm Recog(e,q) \ g )
- . ~ \‘ . ,
- Let q be the initial state (the set of smurfs computed as
\closure({start_symbol})). Let e be the input tree. We use
the notation e = f(x3,...,x3) where £ is the n-ary operator
‘ - at the root of the input tree e and €l,..+¢ ©€n .are its n
% . operands. v

S1 : U := Scan(f,q); (* Scan for the subset of smurfs-with f
. ' , T Y

.as root. Error, if Scan(f,qg): is

not'available *) e

‘RM  := Down(i,U); ({(* 4et the ééllectign‘-of :i—th
| operands. ‘Error, if Down(i,U) is
not available *) ) .
.9 U := Across(i,U,Recog(ei;RM)); (f tge recursive call
recognises the i-th operand ej in

RM. Across filters out those

b

elements of U that. are compatible

-~



&

with .the smurfs -reéu?ned by t;e
. ' recursive call. Ergor, if there is

"_ . | ,’fw‘ no entry in the Across table for
these arguments *)lv

endfor

'S3 return(Up(U,q)); (* returns the retracts corresppnding

o

to U -and’ q. Error if Up table

entry for U and g is not found *)

3.4 Parse Tree Construction . :

(/ . - _—
.

The output of recognition is a collection of 'retracts

¢

returned at each level of recursiont. Since the analysis is

top-down, recognition stores the retracts in bottom-up order

in a linear array Q. Hence the sécond phase constructs the

parse tree in bottom-up fashion étarting' from the  leaves.

.

The retract is a set of smurfs constf?uting the subtree at

that level of” recursion where it is returned. If there are

multiple choices (i.e;, "different  sets " of smurfs
constituting the same subtree) then recognition dutputs.fall

of them. It is  then thé task of the second phase to

construct the ambiguous tree for the multiple choices." This

is the most significant feature of the ttej/parser.f
2

The parse tree written out by the second phase is a
, . : e ‘
tree of productjon numbers. These are the productions used

in the derivation of. the input tree from the start symbol of

~ ’
N
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¢ - 4

the tree grammar. . Obviously, in order to construct the ,
\parse' tree from the output of recognition, there must exist.

a mapping, between the set of smurfs and the productions. We

define- the mapping as follecws:

Prodsmurf(u,v) ' is a sequence of production numbers where

.the sequence is ¢ycle-free. A sequence is cycle-free |if

- there is no repetition of production numbers. o

. The sequence for prbdsmurf(u,v) represents the

xproductiéns used in qgg derivation of v from u (i.e:{'u a'"~->"*_'»

" v). - If the derivation involves only one step, theh the-
sequence'will contain only one production number. uff: the’
derivation involves no step, then the sequence is embty and‘
8o prodsmurf(u,v) is an empty sequence. Thus prodsmurf(u,u)
is always an embtx sequenEe. If there is a cycle in any of
the sequences, then a status information 1is stored along
with that sequence indicatiné the presence of the cycle.

The retracts as well as the set of productién chains for
all combinations of sﬁutfs lin each retract are all\
precomputed. For Ithe ‘ease of constrgctidn of the parse
. tree, the recogniser writesogpt a pointer to the input tree
alogg with each, retract. This pointer points to‘the root of

. the.subtfggiwgich'has been recognised by,thaf retract. | .

" We use a iiniar array vtalled 'fggie' to store gpé nodes

of the parse tree temporarily while they are being
i . * ‘

’ , - . * . * k'S
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A

constructed. Initially Table is empty. ° ‘

Let Q be the set of retracts written out by the recogniser.

Q= {g91v....,9Qn), g written out -first in bottom-up .

order. .

13

The following algorithm ‘describes.the construction of the

parse tree. v

For each g in Q, do the following: .

P 4

i)For each pair of smurfs sj,s in g, check whether
» Prodsmurf(sj,s;) is nop-empty; if it-is, then enter the
first node in the sequence Prodsmurf(sy,s2) lnto Table.

ii)For each node t in Table that are stored in step (i),

. .
construct the subtree with node t as:the root. If the
(=

node t is the first node of a sequence, then the subtree

is constructed with the last node in that sequence as the

root. This implies that the sequence itself is to be

constructed with each npde having only one son. The

construction procedure involves the following steps:

. f
Por each non-termifal occurrence N on the right side of

the productlon at. the‘ node t, select the node r from

[

Table (r is not t) saﬁﬁsfylng the following conditions:

a) the left side non-terminal of the production at node r

.be N. ..’ ]
4 ‘ .
b) Expansion Ex(t) matches the subtree pointed to by the

901nter written out with the retract q.

Ass1gn node r as the i- th son of node t (N bexng the i-th

-

non-terminal occurrence).

._ d | | ) ﬁ/
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If there are

-t

multiple choices for the son of a node t,

then all the possible subtrees are assigned as the sons

. off a dummy node which is then assigned as the son of t.

4
~

b *

<

The example below illustrates this feature. .

The following are- the productions:‘

P1: E ~<> + GG '

P2~; Eth> + FG

P3 1'G s> * P G

Pg : F-->%*ab

Pg :"F --> a "
Pg :Lé --> b

* The smurfs are { a,b,E,F,G,+GG,

’

b b

For the input + * a

returned by the recogniser in the bottom-up order.

{ a,F j \ pointer
(Jb.G.} . pointer
{.G,*FG,F,*ab } pointer
‘{ b,G } ‘pointer

. . > -
case’ .

{ E,+GG,+FG } pointer
- e ' ' * \

N

-

sy
+FG,*FG,*ab }. -
» the following retracts are

to a

to b
to * a‘b
to ... the second b in this

)

to+ * abb

There, are -two parse trees corresponding to this input, as

AN

- . below:

27
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The output of the tree parser for this input is a parse tree
<

with production numbers which is given below:
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- . ( Note that the node with '?' indicates that there are

. T —~— . ) -

multiple ch®ices at that node and the number of choices
—— - ' N

corresponds to the number of spns of the'nodé with *'2').
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o | Chapter 4 ‘ e
| Implémentation

- The tree parser has been written in Pascal and tested
‘on MicroVAX-II running under the QMS ogerating(;yétem« Few
of the ‘routinés use the special features in the VAX Pascal

Compiler (printing the pointer values, getting the memory
statistics’ etc). Thé precomputation and parsing have been
‘separated so that precomputation routine ruﬁs only once for
a ‘'grammar and generates the parsing tables.. The table
entries are coded as small integers and stored in a compact
manner. The parsi;g routine later uses these tables. The
tree pafser'dutpdts all possible subtregs at each node of
the parse tree. At present, the same data structures have
been used for precomputatior anﬁ éarsing' to simplify the

coding and debugging lefforts. Howevér, making them

different from each other might improve effiéiency._

Different kinds of data structyres have been tried out for
the sake of run-time efficiency ﬁgd ‘storage and their
‘effects will be discussed. ) '

i

4.1. Representation of the Various Elements
g : | ¥

~

As stated earlier, the basic entity'in a tree grammar
is a tree as opposed to a string in conventional context

free grammars. Trees in tree pacrser are written using

« Pascal record structure containing necessary infofmqtions

30 .
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/
and poinﬁerst\uTypically, each node in.the tree will contain
the symbol (name or informat%on), its type; number of sons
snd so\on. Since smurfs and the right éides of productions
are all trees, they are all represented using. the same
record structure. The idput‘grammar is read as strings with
trees ' written in prefix notation and the smurfs and
productions are later constructed from these strings by a
separate procedure. Both of them-are entered inté separate

linear arrayg‘Bo that any particular smurf or production can

be ‘easily indexed for future reference.

Once the smurfs are constructéd, zhe next step is to
create the Expand relation between the various smurfs. This
is a square table indexed by the smurf indices on both
sides. Each entrys in the table is a 1 or 0 indiEating
whether the relation is true or false. The Expand table is

' 3
thus coded as bit vectors of Pascal enumerated type {0..1]}

to save space.

The states, substates and retracts are all sets of
smurfs. They are implemented as linked lists, each eiemegt
being a smurf index. Codingl;he lists -with smurf indices
rather than smurfs themselves, makes the construction éna
manipulation of the lists -much easier; at the same timé, it

avoids the duplication of the smgrf(tfee) gtructure§
a

‘everywhere. As the precomputation process computes - the

-

various sets of smurfs, they are entered into-a.linear array

-~
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(as in the case of smurfs) along with their ﬁypes as state,
substate or fetract.‘ This will be helpful later while
creating the parsing tables. It also eliminates the
dgplicage entries whenlthe same set bqlon?s to\mpte than*bne
type (e.g. a smurf set méy be a state in one ‘caée and a
retract in another). . Some attention has been paid to reduce
the storage. °The entrie; of Prodsmurf are set of 1lists of
production numbers. These. sets themselves have been
implemented as lists. - The same list structure used for ‘the'
smurf set is also employed for these relations except. that
the list elements now rep}esent the production numbers. —
— S A
The choice of data structure for the parsing tables
;ffects the speed of the parser. Because these tables are
created by the precomputation routine' and used by the
parsing  routine, they are expected to be compact and easily.'
accessible. A;sé they must be comg§tible with the 'Qa;a
structures of other elements. The sizes of the tables
depend on the input grammar. -
\/_,_,-u.- A \ . ‘ ]
At first, all the tables were designed as
multi-dimensional arfays, the number of dimensions depending
_on the bérémeters of each table. The parser wasﬂfound to be
faéf but the tables occupied a lot of memory (approxiﬁately
GOOK‘bytes). Also in this case, e;ch table was found to be
at r!asi- 75% sparse. Hence -it became necessary to swltch

rs

over to an alternate structure. .

32 ‘ ’
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The next choicg was a structure of multi level
pointers, the numbef of levels depending on the number of
paramelers of Ehe parsing functions (éban{ Down, Across and
Up); Each level had either an array of pointers or array of
valugs. The' first level was initi;lised@.to an array of
pointers, since all tables had two levels at the minimum.

As an example, Scan table had an a;?hy of pointers at the
14

ate indices; each pointer

‘first level corresponding to the
po@nfed to an array of values ¥grresponding to the
operators. Similarly, Down table had two levels of array of
pointers, the first leQel for the substates and the second
level for thé operators; gthe last level was an array of
v?lues corresponding to the number of opeiands of each
6perator. The advantage of this scheme over theée ﬁre;ious
one is that a level of pointers.will be creaeed gqu if at

least one enéry in the level is non-empty. The dynamic data

allocation feature using function 'new'”in Pascal dis much

-

useful in this case. Even though this technique was found
to occupy less storage compared to the previous one, it is
s}ightly siowe} Eécause "of the pointers. Also-when there
are very few entries in an array,.the whole array must still
be created, obviously underutilized. Since the parse t%bles
are known to be highly sparse for a reasonable number\\of
~parameters; a lot of memory is still wasted in peinters.

The third‘ and most recent Qcheme uses hash tables,

which -are well-known for compact sto}agé and fast

Ve~ I
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-access[18). -+ It s possible to have tables of reasonable

-\

size so that the hashing technlque will be fairly tast. and

there will be enough room for all the computed values. The

__T__entries of the hash tables are records which contain the

appraopriate  parameters and -the values Lcomputed For

example, Scan table entries are records of thrée parameters,

<

viz. an,operator index, a state .index and the value. Since
all entries in the records are now indices of arrays, the
tables become more compact™and easily accessible. Also they

v . ‘ : -

could easily be passed between rout{nesu

-~ -~
1

N
L3
\ -

-The.ogtput of the tree parser)is also a tree but witq
production numbers, ?his “is also implemepted‘uﬁing Pascal
record structure with pointers. At nodes ‘where multiple
choices are possible(i.e.,'the nodes with ‘?f), zeroes are

stored instead of production numbeg; in order to distinguish-

them from other nodes_of;thg tree.

4.2. Printing the Qutput : S

a
~t

érinting a tree ‘structure on paper. is quite .cumbersome,~

espééfally when the size of the tree (depth and breath){ isa

not preaictable. The tree output by the tree parser is a

good example of'Ehis kind. Generally a mote complicated

‘printing routine is written in such cases which receives the

depth of the eree and the width of the paper as input, =
comphfes the printfng ﬁositions of each node- and prints the
[ 3

B
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tree. The tree parser, instead, makes use of a  special .
- teatufe in _VAX/VMS Pascal comgiler to print the tree in a
) \tabular format. The VAX/VMS Pascal- compxler has a built-in
- function called. 'Hex' which converts a pointer value into
its character skring representation. For exemple, if P is a
poiﬁter holding 'an' address‘F?FA4 (addrgss in Hexadeécimal) ,
then th Statement | : U - , : B
writeln (Hex(P)) . L
will output the string 'FFFA4' The’ parser makes use aéf //

" this novel. feature ta output the tree 1n a user- readable
format. " Each node is output on one line with 1ts address ' 0
ﬂollowed;bx the 1nformdtzon or ;ontents of the nodé and then.

' the addresses of the desCendants. Thus it is posslble to
—

.output a tree w1xh each node having an arbitrary number of

descendants. A typical output is shown. beloy with its

v

- interna? representatlon-
-o..l

: . . )
L. . -
.. '
A S
< * . a
. A
~ ! -
¢ ' :
" 3 ”
- - PG . -~ r -
. e o . : . . . . &
| ‘e . : (a) internal stru;tute.
g . .
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&‘:I '\’_‘ ’
— _ hd . . ’
. - /‘
-, ’ s . -
- . . .Node Information - : Descendants
:,"h - ) > ‘I . . ) ’
© .7 35620 , ? 355D8 35608
C jsspe Bl 35578 355C0
35578 P3 35548 . 35560,-
. . 35548 N | -
" 35560 ®6
' 3, ' 4 ' . ry . . *
) '355C0 P6 ,
: 35608 .7 p2 ¢ .. . 355AB ° 355C0°
~ 355A8 " s ' ] '
s ] T . (b) tree parser output
AN ' .
. ~nNot;\that the node P6 (WIth address 355C0) is shared by
two parent nodes (355D8 and 35608) because of )éhe multiple '
r 'cho;ces at the upper level. Sharing in this way eliminptes
jf- . stofage‘ of redundant information- this is “espeéially'
important when the trees are fagrly bzg and the -?' nodes
arise at the upper levels (close to the toot) -
a ) N. . ’ ' ’ e l-/b
l:".s . - 36 N
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Chapter 5

. Conclusion - g'

' : A :
A top-down parser based .on tree grammar ‘has’ been

presentea.{ The interesting-feature'of this'parser is that o

it ontputs all possibrixparse trees in embiguous situations.
The parser traverses the input tree twice and so the par51ng
time blll be linearly proportlonal to the size of the input-
tree.- . . .o
——— \ '
ﬂygyxrner[l9] has independently constructed a very 51mxlar -
algorlthm for par51ng,'.usxng prefrx grammars." A prefrx .

»

grammar is essentlally,e tree grammar in which the trees are

.flattened into strings using polish prefir notation. The

‘items' of Turner's algorithm are the same as the 'smurfs’

in tree parser. 'Both tHe»algorithms“precompute the states
: R . _ c,
from the grammar specification and code them as small

;nteéersﬁwhrch represent the indexes of the state array.

The terminals are treated .as  nullary operators in both

-

cases.
v' ) . .. | s | 'o ) \
.gven-thougﬁ the purpose is the same in both the

" algorithms, there are quite’ a few dlfferences between them.

Turner' 8 algorithm has two passes like the treg parser but |
the passes are reversed. murner s first pass is bottom-upi
and collects the patterns and numbers the - states at each

vertex and' his second pass is top-down identii&ing the input

. ..
. N -
. .
! /
- -
P - . b o/
“ ’
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}

+
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patterns in the first‘fpb-dqwn“trave;sél and then builds the

parse tpe;s while proceédiﬁg ﬁp in’the second pass. This
:chahge in traversing‘ﬁdifections- leads to one significant

, advaﬂfgge ih'ttree parser;' That  is, it preserveé 'a1i
possiple pakge trees 'in Smbiguous situations:until one of

" ‘them is selected at a later’staéé.» Keeping all the parses

‘e

~is ‘nmot so hazardousland‘is'affordablé at the current lower
co#t‘of memorieél_ Turner's' algérithm ycollects all the
poésjble patterns at eaéh vertex but it doesn't bﬁild all
the parse trees. Thé5time taken for parsing an input is
foﬁnd to be 1inéér tg the size of the input and so the tree
parser .is quite comparable in performanée with Turner's and

I

_Aho and Ganapathi's algorithms. -

+ " “\ ’ , . - . ',
B, . Cattell's[8] 'method of code generation also applies
, B ? 1

~ tree pattern matching algorithm. The input tree 1is first

converted into . TCOL (Tree-base CcOmmon Language)’
téptesenfation before pattern matching. His pattern matcher

is a top-down single pass algorithm; ig@gmité code as soon

aé a match is found during the top-down traversal. Also the

searching technique is exhaustive; .i.e., at each node of the

input, TCOL tree, a number of patterns may match and the

code sequendé.' Selecting a'locally cheapest one may ‘-cause
‘:“'" 'blobkiﬁg later‘and force backtgacking. This situation will

1 ' . .
never arise in the tree parser as ft’outputs all parse trees

< -
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' tree. The tree parser, 6n the other. hand, collécts the

appropriate one is selected which gives the least exbenéive’

-
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7

and the appropriafe one is selected later. Computing the

patterns of the machine description is quite similar to  the

Twa

precmputation process of the tree parsef.

i ’
‘ . A

3 ’
‘- . " As st;ted earlier, the ‘tree parser may write out
multiple parse trees for a single inpuf. In such case, the N
‘'routines which use the output pf.the treg parser, have to
, . ) . select the a@propriate parse tree. For example, tﬁe ‘coae
' ) ' generator in a compiler ma; use the tre‘; parser; the
multiple choices in that case will indicate the possibility
of several set of coqes for the sepe input. The code
'gene;ator may then select the o&e which‘i?volves less membry
access or - fewer -instructions. psuallyﬁ this is done by
‘1héorporating attributes with each symbol in the tree
grammar and 'evqlﬁgting the attributes. The tree parser
could be made to process and write out attributed trees.
Tﬁe ;tttibutes could be computed during either or both the
traversals or carried out at the eﬁd as a separate process.
}t' ig 'algo‘ possible to compute certain attributes of the \
input tree during precomputation which -w}ll make the v,
‘att;ibute _evaluation easier, fhe' tree parsing will then
resemble the method describe@ by Aho and Génapathi Ilj. The“

tree parser is well suited for applications like syntactic

- pattern recognition[14] and tree transducers[20].

:
‘.4
-
[
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Appendix A" —_

- 4

. , ,
The. tree parser has been implemented on MicroVAX-II

running under the Vms_qperatiﬁg. system. It has been
tested with several grammars’ including the,ﬁpe with 70

4

productions. This grémmar is derived from , an éxisting

LISP compiler. The precomputation created. 68 smurfs and

’

a total of ‘232 smupfsets (states,. substates and
retracts). The Scan, Up, Down and Across tabgig have

187, 221, 44 and 695 entries respectively. During- the

" test ‘runs, it was observed that the numbér of entries in

the Scan table is linearly proportional to the number of

P

operators and smurfs and those in the Down table depends

oﬁ’the number of operands of each//operator. This

’

_prediction could be helpful in esi/;atlng the size of

the hash tables before the precomput§t1on. The current

version of the parse tables’ using hashing ” scheme
occupies approxxmately 4ox bytes of memory whereas the

previous versions PEQUIIEG 1000K bytes and meore. The
precbmpu;ation procesé‘took approximately -2.5 minutes on

MicroVaX-II and required a virtual storage of 40K bytes

at :k run-time by the VAX/VMS run-time  routine

'beSstat VM’ callable from Pascal.

f

!

As stated earlier, the current implementation ha:

two sepatate,\toutineg - precomputation :and phrsing.

Y R )
!

~ M i ®
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for the computation. This virtual‘storage is claculated.

.
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?arsiﬁg includes procedures for the two passes -

top-down recognitidn and bottom-up byilding of the parse

_tree. Most of the functions and procedures are

available in both the routines. For the ease of
debugging and understanding, the routines have been
diviﬁed into a number of small subprograms.. Typically,
the éubprogramé for the ;onstruction, comparison and
writing} of the smurfs, accessing and,manjpulating the

hash tables etc. are the operations common to the both

‘the routines. .- At present, all these subprograms have

been duplicated in both the routines because they use

identical data structures for the 'various elements.

'However both the precomputaiion and parsing routines can

be modified independently to imprpve their efficiency.

Since the parsing tablles are coded as small integers,

"

which ar passed between thesé routines, modifications
in aﬁylgéfthe routines will not affect the other.

’ ) I4
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