National Library
of Canada

du Canada

Biblioth nationale

Canadian Theses Service Service des thdses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microform is heavily dependent upon the
guamy of the original thesis submitted for microfilming.

very effort has been made to ensure the highest quality of
reproduction possible.

if pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
origina Rages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microformis governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

NL-339 (1. 88/04) C

AVIS

La qualité de cette microforme dépend grandement de la

qualité de la thése soumise au microfiimage. Nous avons

:put fait pour assurer une qualité supérieure de reproduc-
ion.

S'il manque des pages, veulllez communiquer avec
funiversité qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées a l'aide d'un ruban usé ou si f'université nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme esl

soumise & la Loi canadienne sur fe droit d'auteur, SRC
1970, ¢. C-30, et ses amendements subséquents.

Canada

Universal Multilingual Information Interchange System
With Character Reader and Terminal

Suban Krishnamoorthy

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University
Montreal, Quebec, Canada

November 1990

© Suban Krishnamoorthy, 1980

R ———————.S
National Library Bibliothéque nationale
.*l of Canada du Canada
Canadian Theses Service Service des théses canadiennes
Ottawa, Canada
K1A ONd

Canadi

The author has granted an irevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, foan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothadque

- nationale du Canada de reproduire, préter,

distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése & la disposition des personnes
intéressées.

L'auteur conserve (a propriété du droit d’auteur
qui protége sa thése. Ni la thése ni des extraits
substantiels de celle-ci ne doivent &tre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-64750-7

el

i

ABSTRACT
Universal Multilingual information Interchange System

With Character Reader and Terminal

Suban Krishnamoorthy, Ph.D.
Concordia University, 1990

The need for a universal multilingual information interchange system with
character reader and terminal has been emphasized. A scheme for recognizing
machine-printed and handprinted Indian characters has been developed. In this
scheme, the characters are assumed to be composed of symbols which in turn are
assumed to be composed of line-like elements, called primitives, satisfying certain
structural constraints. Attribute graphs are used to describe the structural composition
of symboils in terms of the primitives and the relational constraints satisfying them. In
the first stage of the two stage recognition process, the correlation coefficients are
computed with the attribute graphs stored in the knowledge base for a set of basic
graphic symbols and then maximized to recognize the symbols constituting the input
character. In the second stage, the input character is recognized from the graphic
symbols using a decision tree. The recognizer is intelligent enough to differentiate
invalid combination of graphic symbols that do not constitute a valid character. Some
preprocessing techniques are discussed to convert the input image into an attribute
graph. A coding scheme has been developed to describe multiingual texts. Tamil
and Malayalam characters were used to test the recognizer. The results for Tamil are:

91.33% recognition rate, 6.83% rejection rate and 1.83% substitution rate. The results

v

for Malayalam are: 89.5% recognition rate, 8.3% rejection rate and 2.2% substitution

rate.

A design is presented for a keyboard based multilingual terminal system for
Indian languages. An interactive, computer aided, pattern recognition based,
methodology has been developed to identify the best dot matrix size for a given
optimality criteria. The nearly optimal dot matrix size for the Tamil symbols was
computed to be 11x14 using a graphics terminal having 60 dots per inch resolution.
From the symbol size, the character size has been computed as 15x18. An iterative
method of determining the most distinct set of dot matrix characters is described
based on the distances and information content of the dot matrix characters. Symbol
based keyboard design and character generation methodologies have been

developed.

Finally, the design of a multilingual data communication system using the
multilingual character reader and terminal is considered as an integrated information
interchange system. Various communication aspects such as character coding,
multilingual document representation, and protocol changes needed for multilingual
information interchange are described in detail. Also, a methodology for handling
multilingual texts using the existing programming language tools such as compilers

for software development is described.

To

Friends and Foes

R

o I g R Lo o

hadiai

vi

Acknowledgements

I am very grateful to my supervisor Professor C. Y. Suen for his excellent
guidance, support and encouragement without which | could not have completed this

challenging endeavor.

| am thankful to many friends like Dr. Pervez Ahmed, Dr. N. L. Sarda, Dr. V.
Bhavsar, Dr. Narayanan, and others who have helped me during the course of the
program. In particular, my special thanks to Dr. Pervez Ahmed and his wife Mrs.
Shama Ahmed. They have gladly accommodated me to stay with them on several

visits to Montreal and rendered help in many ways.

My thanks also to Professor T. Radhakrishnan, Professor J. W. Atwood, the
members of the thesis committee and several other faculty members of the
department of computer science for their many folded kind assistance. | am thankful
to the staff members of the graduate office and the department of computer science

for providing assistance during registration and other times.

| would like to take this opportunity to thank my family (Kokila, Saravanan and
Mala) for not only tolerating the inconveniences but also providing constant

encouragement.

vii

List of Contents

Contents
LiSt Of FIQUIESoooeiiiiiiiniiinsscicnnisininese e cennnenesssnsssssassasssssassassans
LiSt Of TADIBScocvviiriniiiriiintiinennae et ssecssssessenane

Chapter 1

Introduction
1.1 TINAS ..ot entie s sessenes s s ssasssasssisessssssssssnrens
1.2 Linguistic Limitations of CCSScccccvvvveirrnrnnnnsinsnsessncseensinns
1.3 Universal Needcccccomicniiiiiisicsinnnssisanensniesessseeene
1.4 Universal CCSScocvvniniiniunnicninnicrininnnenninmiisseeses .
1.5 Theory of Symbolizationceeiirennnnnereinninnie .
1.5.1 Properties of SYMDOIScccvrieirnnisneeinnnn,
1.5.2 Universal Applicability of Theory of Symbolization
1.6 Outline of the ThesiSc.ccveneeriirnieeeensensnniecssenensnesn,
1.7 THUSHEHON ..ottt e

Chapter 2

Muitilingual Character Reader

P2 S Ty (e o [F o1 {1 o OO
2.2 Representation of Multilingual Textscccvcevirerveeersnecrieinnne
2.2.1 Implicit SPECIfiCationcccovvvvveeneiininsniricnineeeneecnienens
2.2.2 Explicit Language Specificationccecveirsinieiicsunneccnsinininnes

2.3 OCR System Componentscccccceeuiviessesuenssscssneereereecsereessss

Page
Number
i

xvii

10
14
15
17
28

30

40
40
42

45

24
24.1
24.2

243

3.1
3.2
3.2.1
3.22
3.23
3.3
3.3.1
33.2

3.4

4.1

411

4.1.2

4.2

viii
PreproCeSSINGcoeeiurmversusesimisnssecssenmnsisrsssaessnssonsssssssssssanans
BiNAriZAON ...vciccceereereereeerreneeneerirsesesssessersssasessesssssansassossesssasssss
Elimination Of NOISEc.ccvtverrerrnreereancrennissssscssssrsesesssssrrassssanas
TRINNING ..vvveererireniesirisnnseressinsesessansimesssseessssasssssssassasssnsans
Chapter 3
Features

Definition, Extraction and Representation

INtFOAUCHION ...ooeereriernierccinssisies s sniiessessessessnesssasessesssnnes
Structural Description of Characters Using DAG
PrMITIVES ..vvevreceeinincssnnssuriiscnnisniensusiimesssmeniamiesaseesssssnnns
Structural DesCriptioncccccocininieeriinnienueciininerienisneann.
Representation of Directed Attribute Graphcccccevueneennnen.
Definition and Extraction of Primitivescccc.ceceeniiinciuennnenns

Definition Of Primitivescocevvveeremerinneicernicrnrenetenecneeeneen.
EXIractionccccevnemnimnsiiniiiicnnienescnienennnesessen
KNOwIedgebaseccccvveriecininninnicnsmemniiiierennenenniieseieeasees

Chapter 4
Character Recognition

[g1(gee [To: (o o [OOSR
Overview of Classification Methodologiesccceeereennisunneen.
Muttistage Hybrid Classifierc.cccceuivvercrrerrcrcriccnmnanninneneee.

Stage I: Recognition and Removal of Symbols

47

47

51

63
65

65

69
69
72
73

75

79
80

85

ix
4.2.1 Correlation CoOfficiontccccirirrerinnerrnnerenninenseiserenecnens 87
4.2.2 Computation of Correlation Coefficientcceevrreeervecreennenes 20
4.2.3 Symbol ReCOGNItIONcccccvecvrmerresrirreesersinrinsensssseasnssssersssanas 97
4.2.4 Removal Of SYMBOIScccovveeeriinineeessssneesnsoneesssseenseessessesesss 98
4.3 Stage lI: Character Recognitioncccvvirierneesecensaressesansens 100
4.3.1 Order of SYMbDOIScccccvriiricninniccreinnnrennnneicnseeneessresenesnnnens 100
4.3.2 CRT: Character Recognition Treeccccceevverennervercvessneernnne 103
4.3.3 Operations 0N CRTcciciiiiniisnniinnieneiesieenseeensaeeessenes 110
4.3.4 Construction Of CRTcccceiivmieinnicninmniieeseiiennseniones 111
4.3.5 Searching CRTc.ccocvrumnicrinnminisnncinnsessnssanssserenenaseesssnaens 114
4.3.6 Space for CRTccccccerrvicmrimniintrsninsneennineessesssessssessessssessees 116
4.4 Results and DIiSCUSSIONcccccieieiseninnnieniencessssensencrnonesssssansanne 117
4.4.1 Test Data Basesc.c.eveverissisissnninissessniisessisessnisnsessesssssnsans 117
4.4.2 Recognition Results and Analysiscccccervrecreererreesrniensens 121
4.4.3 Merits and DEMETNILSccceevvvvrmivrirenccersnsnnsinssiennsisesesesencne 130
4.4.4 Future research for Improvementsc.cccvrecererennnnercrsscnennens 137
Chapter 5
Multilingual Terminal Design
5.1 INtroductioncccveeeiimiiienninninsrrne s 141
5.2 DEAINHIONSoocoreicirciiiicnnieninenrctnssnsss s s sessnessasnenssssns 142
5.3 Symbol Size Determination Methodcccceeerverrreevnnenrcrnenns 146

5.4 ThinniNG ProCeSScoceiririiinisssnnnssasinnnsnnesssssssssssssassnesssenes 149

5.4.1
5.4.2
5.4.3
544
5.5

5.5.1
5.5.2
5.5.3
5.6

6.1
6.2
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.4
6.5

SegmMeNntation ProCESSccveieneneriseiinsesessssssssnsanesissssasnss

Knowledgebasec.cceemnmennnineninnsensnnneninnnsesescnereasssissenies

ReSegMEeNtationccoceeerneinincnninntnninnsannnnnnissssssssscnsscsassnnens

Thinning Of SEGMENEScccririrnnenineeiniiiiienenietseniisnsenin

Analysis

Analysis of SYMDOIScccovveviiiiniiniensinnininnnseenenesssncanns

Algorithm 5.

3. Nearly Optimum Size Computation

Analysis of Charactersc..cccevviinimneernnisenesstnsninneesnnessnne

DiISCUSSION .ovvveerrereeveesecerssssssesssssssssssssnssessssessesssnsersnssscesnnanssssssas

Introduction

Chapter 6
Determination of Symbol Set

DEfINItIONS ..eeevvveeeereeeeereersssssserssssssssssssasssssssssssssssnsssssnsasassssssanasss

Functions and MeasuUremMeNtScccceeeeeerreererciesersnsssesserreenccenne

Identity FUNCHIONcoeveeiicrinniiiiiniinecnineninesessesens

Hamming D

IStANCE FUNCLIONccovvvvereriereniereenesesscsnssessensesnesnnens

Linear and Cross Correlation FUNCLIONScccceeeveciirennneniennenns

Self-information and ENtropyccecceeinneerniiinsiescsiancnseecssaneenne

Nearest-neighbor DiStanceccceeeieiniinscrnniieniecnieenenns

Elimination AlgOrithmcccceevinininiiesnnnnnineennieincneinenen

Conclusion

149
156
161
163
165
165
167
171

172

173
184
185
185
186
188
190
192
193
199

7.1

7.1.1
7.1.2
7.13
7.1.4
7.2

7.2
7.22
7.23
7.24

7.3

8.1
8.2
8.3
8.3.1
8.3.2
8.33

8.34

Chapter 7
Multilingual Keyboard Design and Character Generation

Multilingual Keyboard Designc..ceceiecivenneecnennennreessnnneesessanee

SYMDBOlIZALONccceeeiiiiiriccrninrtinniitiii e sesseaaens

Assignment of SYmMbOISccceennicincinnicnnnnnneneneerinenns.

g-symbol and p-symbol Keyboardsc.ccoocvueernnnivecnnninenens

Comparison of g-symbol and p-symbol Keyboards

Multilingual Text Generation Systemccccecvceeivirinnircnienneens

ISSUES iN TEXt GENEIAtION ...ccccverievreeerruresesrenssesiesesersssesernrrsnsens

Unified Approach

--

Techniques for Grapheme Generationcceeveveernniiinnenes

Storage Optimizationc.ceeiiinieinienieeee.

TeChniCal ProDIBIMSc.ccveviiiieereeiiireiiseenereecrseeraersssesssssassrsassses

Chapter 8

Multilingual Data Communication System

Introduction

--

Muttilingual Document Structurecccvvcenrenieencninesinne.

Language, Character Set and Codingccccorverrrrrecccraneeseaneenns

Evolution of Character Stccccvevrmeererennirieeenenrssisresrossnnnnns

FULUre Character Stccccceveerreeeeeneiisessscosssessrensssasseenrerssosses

Language Coding
Character Coding

201
202

212
222
223
224
225
228
232

240

241
243
244
244
245
248
249

xii

8.4 Protocol Changesccccuieeeeririivninnnenecninsiesnensneeseseessseens
8.4.1 NFS Protocol Enharncementc.cocvuveernenieennninnenesseensnninne
8.5 Multilingual Programming Interfacec..ccocvveerienrieveennenevernnnes
Chapter 9
Conclusion
0.1 CONCIUSIONenreirireeeeeririirriresesesesesrsieeraeseraensesesneseessnssentotaes
8.2 Future RESBArChcccccveiiiiiceeieiinrevicneee e

252
255
263

266

270

273

xiii

List of Figures
Figure Title Page
Number Number
1.1 Numerals in different languagescccovveeceseenneninnene 5
1.2 Bilingual texts in Tamil and Englishcccccvnnveeeniinnnan. 6
1.3 A sample land revenue record written in Tamil Nadu 7
1.4 Muitilingual information interchange system 11
1.5 Additional characters of Latin script languages 19
1.6 Additional characters of Cryllic script languages 21
1.7 Samples of basic characters of Indian languages 23
1.8 Tamil characters ...t 24
1.9 Sample ArabiC textcccceiriiincririnininniiiniiess e 26
1.10 Sample Chinese textccoccevcneinineneeeincninecsesnienes 27
1.11 Braille SCrPt ...ccivviiviiiriciercerrsir e 29
2.1 Implicit representation of languagececevceeeeiiiinnnee 41
2.2 Explicit representation of language codec.u... 44
23 Block diagram of a multilingual OCRccccevniiiinnee 46
24 Neighbors of a pixel p; and their representation 50
25 . Image with single gap and isolated pixel noises 52
26 Image without single gap and isolated pixel noises 53
2.7 A sample input pattern to thinning algorithm 54

28 Output from Stefanalli and Rosenfeld’s algorithm 56

Badaalg 20 sl R et

.

Xiv

29 3x3 pictorial conNditioncveeemerierinissessniniesssenninin

210 Output from thinning algorithmcceeeeeieciiccninnnn.
3.1 PrMIIVESccoveeenenriiiiensnstiiineensniniissessenessesasassin

3.2 Common geometric characteristics of major scripts
33 Directed attribute gr.ph (DAG) of as(GHA)
3.4 C-matrix of M (GHA)ovvrvereeermmersssecesmssstssseassseninnn
3.5 Curved primitives and their approximations
3.6 C-matrix of input image in Figure 2.10cceeeeernn.
4.1 Unknown pattern é](CI) and known symbol & (CA)
4.2 Major and minor symbols éf Tamil .ooceveeeiriiniciicneninine
4.3 Major and minor symbols of Malayalamc...cceennenes
4.4 Data structure for a CRT nodeccceeuerenirinnerennennnnn.
4.5 Character recognition tree for Tamil characters
46 Character recognition tree for Malayalam
47 Operations of CRT NOAEScceeeervininnsrnnnniiniisnessscsaniinns
48 The insert character procedureceeeeeiiereeeenaniins
49 Sample Tamil symbols from the test data base...............
410 Sample Malayalam symbols from the test data base
5.1 Set of Tamil SYMDOIScocvneieemiinmniecsiimienennn.
5.2 Automatic method of size determinationc.ccceunuue.
5.3 Unwanted limbs iner (LLA)cocovniinieriiiieeccceennnninnn
5.4 Segmented & (KA)ccceerieriimmminneinccnnnnenessenn

57
62
67
68
70
[a
76

77

102
104
105
108
109
112
113
122
125
143
147
148

163

5.5
5.6
5.7
5.8
5.9
5.10
6.1
6.2
7.1
7.2
7.3
7.4
7.5
7.6
7.7
78
79
7.10
7.1
7.12
7.13

7.14

Segments of & (KA) as in the knowledge base

Resegmented & (KA)ccccveeeccnnnins

Extrapolation and limb removal from (a) to (d)

Thinned & (KA)ccvvrencmimiinncssanninn

Analysis of symbolsccceevnnnivernceninnns

Near optimum size of Tamil symbols in Figure 5.1

Three different fonts for Tamil symbols ...

Distinct set of Tamil symboISc...

Set of g-symbols for Tamil characters

Set of g-symbols for Malayalam characters

Set of p-symbols of Tamil and Malayalamcccc.o.n.

Set of p-symbols of ten Indian languages
Muittilingual g-symbol keyboard for Tamil
Multiingual g-symbol keyboard for Englis

Multiingual p-symbol keyboard for Tamil

5 TP

.......................

Multiingual p-symbol keyboard for Malayalam

Frequencies of Malayalam p-symbols

State machine for generating Tamil characters

State machine for generating Malayalam characters

Sample Tamil texteceeeerirreniencninens

Sample Malayalam textcccceccvnnnes

Dot matrices for ewr (NNA) and ewr(NA)

ooooooooooooooooooooooo

158
162
164
166
169
170
175
200
205
206
207
209
213
214
215
216
218
229
230
233
234
236

DA R At

S

xvi

8.1 Elements of multilingual data communication system ...
8.2 CCITT GO character Stcvmeeiimmniecnnnmmniecensin
8.3 CCITT G2 character Stcuveeeeemieneaceiniisenin
8.4 7-bit p-code for Tamileeeeiviiesecceaninennnenniiinenenn
8.5 7-bit p-code for Malayalamccccccuenecminniiiiinsennnnnns
8.6 Layers of Major Protocolseceeemmimisscssimineseasann, '
8.7 NFS client and serverinclude fileccooeemminiinneinn
8.8 NFS server moduleceeeermvmnneiieiecenninieee s
8.9 NFS client moduleeveeeeene PR
8.10 Multilingual PL/1 Programceeeeemmseesaenmsee i

242
246
247
250
251
253
257
258
261
265

Table
Number

4.1
4.2
4.3
4.4
4.5
4.6
6.1
6.2

71

List of Tables

Title

Partitions of P (cﬂ)ands (&

Partitions of P (ﬂ)ands (&

Recognition result for Tamil

Page

T

Recogpnition result for Malayalamccveeeaniiiiinenenn,

Confusion MatriX for Tamil cee...eiiieeeearmmniteescoermmmseecess

Confusion matrix for Malayalam

Seven measurements of KA

Results of elimination of KA and

Frequencies of Tamil characters

TA (e

Number

94

96

127
128
131
134
187
194

211

1. INTRODUCTION

1.1 Trends

Computers were unheard of or were a dream at the beginning of this twentieth
century. Five decades ago, computers were for only the elite engineers and scientists
and the rich. Until a couple of decades ago computers remained as a standalone
system with small amount of memory and costing multimillion dollars. In recent years,
computing science and technology have advanced tremendously, the cost has been
reducing drastically, the computing power kept increasing many folds, and personal
(micro) computers started to proliferate everywhere Today, powerful computing
system with a million bytes of main memory has become an affordable household item
like a TV, even though computers have not found as much use as TV's in houses.
One could buy a computing system for a few hundred dollars to play games or to

perform word processing at home.

The proliferation of cheap personal computers have made valuable hardware,
software and information resources distributed throughout an organization. Systems
have become more and more resource hungry. A couple of decades ago, information
was stored in several different disjoint files. The information existed in the system
over several files could not be retrieved without reprogramming. This has resulted in
the consolidation of information to form a database and a new system called database

management system was developed to manage the database. In a similar way

geographically deployed computing systems resulted in parallel and rapid growth of

corporate information. However, those resources could not be shared and retrieved
when needed without the ability to talk to each other. This has created a demand for
interconnectivity or networking computing systems. In the last two decades several
noncompatible computer local area networks such as carrier sense multiple access
with collision detection (CSMA/CD), token bus, token ring, etc., were developed. The
advances in computing techniques also helped the rapid development of
communication systems which enabled wide area or public networking. Today,
networking and computing are becoming an integral part of a system. Some
computer manufacturers have been making (multiprocessor) systems in which the
user terminals are connected to the network via a network terminal server (NTS) rather
than directly connecting them to the system like in the earlier days. Several protocols
such as System Network Architecture (SNA), Open System Interconnect (OS!), X.25,
DoD TCP/IP family, IEEE 802 family, etc., were developed. To reduce the
incompatibilities, several standards organizations such as CCITT, ISO, CSA, ANSI,
IEEE, etc., were formed. File transfer and network file systems have been used so
much that the protocols File Transfer Protocol (FTP) and Network File System (NFS)

have become defacto industry standards.

" We should call the current and future systems as Computing and
Communication Systems (CCSs) or NetComp Systems (NSs) to be more

appropriate.

In today's technology driven society, compute-s are widely used throughout the
world, in the developed nations as well as developing nations. CCSs are being used
in different fields such as humanities and social sciences, engineering, economics,
education, etc. The economy of each nation is no longer completely independent; it
is becoming global due to multinational companies and international trading using
CCSs. More than people mobilization, rapid electronic information mobilization
between nations is rapidly increasing day-by-day with high volume and becoming
more and more critical. In the near future, the entire CCSs in the world will become
a single interdependent distributed computing and communication (information

interchange) system.

1.2 Linguistic Limitations of CCSs
The information handled by the CCSs can be divided into (1) AlphaNumeric
and (2) Non-AlphaNumeric. The alphanumericinformation can be further subdivided

into (i) Alphabetic and (i) Numeric.

The alphanumeric information has two important attributes. They are:
1. Language
2. Script
For example, the alphabetic information generated by the alphabets Ato Z, ato z are

in the English language. The letters Ato Z and a to z are the scripts of the English

language. The numeric information generated by the digits O to 9 uses Roman script.
Even though the digits 0 to 9 are universally used, there are nations, which use

different scripts even for these ten digits as shown in Figure 1.1 (Gilyarevsky [1970]).

May be with a few exception, all the existing CCSs are capable of handling
information only in English. Almost, none of the existing CCSs is capable of handling
multilingual textual information such as the one shown in Figure 1.2 (Lifco {1975])).

One should realize that this is an important limitation of the existing systems.

However, there are many languages in the world which are different from
English. In fact a major portion of the world population do not use English in their day
to day life. These people generate, maintain and assimilate large volumes of
information (about their business, literature, culture, etc.) in their native languages
(other than English). As an illvstration aland revenue bill used in the province of Tamil

Nadu, India, is shown in Figure 1.3.

1.3 Universal Need

CCSs are increasingly used in the non-English nations. For example, in India
which has almost a billion people, fifteen different languages with ten different scripts,
computers are reaching the common public like in utility billing such as electricity bills,

land taxation bills, family planning, demography, etc. Currently, in India, computerized

Q

6 _7 8

2 3 4 O

..OOOwOoOOOOOooo.oN.oWoo..OoQ
rerRU9TELE RBYOVvIVerdPer Y flhoerruyy
<<pCNENSEKIBaLl Uy cuevetFhaccw g
>>0G 9 -~[AdYPOORa9aS>OX™S>AE0A>>O 3 4
11&@?15&#*m€59€€1€61\&;5ﬁ1iQk

apaﬂu &ﬂﬁﬁ@QAtﬂu(um {@xV((QQ£
vEoorr¥» A0 r2nEop Ly »yELnag
LG Rt emmimad L § E meri »mdl)
VVQJRJEJ==Q§a)?DYQ@?E242YvQ3=
\\301890__MQOQQQ\ﬂm\man?\\Qu_
= “

= s _ =2 =% E %

< d836 2252352628355 S2235 5%

Figure 1.1 Numerals in different languages.

46. @Hp upGuorifisdr - Parallel Proverbs

Méad viad uri gl CGus.
HE4Bdr Mp® cpspSlw.

N o sojauglune syawawer
b9 o gqyurisen?

HNworsurensd Gerp ersvmpE
S H&LUPwT?

agesy HwGp Garédvgud |
Qgliaub gargy Qs gyid.

HTeskeadia Gy s aciagh.

Walis have ears.

The face is the index of the
mind.

Spare the rod and spoil the
child.

Christmas comes but once a

year.

The mills of God grind slow
but sure.

As isthe king so are the sub-
Jects.

silaw: (1) e g ; urgamriy,
help; protection: (2) &L .G,

company.

(3) 5 o L g,

friend. (4) Qrienw, a pair,
(5) aowessr by 3w,
husband or wife. (6) ardr
Spiy, brother or sister,

) ey,

comparison,

(8) sarey, quantity ; pumber.
(9) sz svegayk, until,

SO

Silow
Sw pord gésh

— Podwpir-651.

Friend

A man's friends bring
prosperity to him.
«— Tirukkural-651.

Figure 1.2 Bilingual texts in Tamil and English.

Qareuy vfiime aaw:

WTUL LD A DY A&
QLLW: s AOun rv\

@rrww: X b Qe FEO8 Dn b &
ucer aart | 20

do
e L euwrerfer Quui s .Qd X @i A Py an

ssiu®ig up: (Bhensi]

epsauf s @%& S an@e N Q\“\@»W%

':Zv y -
T ¥

N?g».—%—:—"/
W WIrT

o

Figure 1.3 A sample land revenue record found in the State of Tamil Nadu.

6 Qeyss Cacmyw daafider @ eard

ued,
Srensy. 13891 13.... 13....
G- au, & |ou ®. [y
2. yoirQes ve
3 perCe ud v [o ,Lp
3. alsh o wd .. 3 01-,-
¢ alph gavald
Bub o

8. vedd Bma
0. Eftma dava
7. sarece Owb we. | Lo 1SS
8. -8 &7

‘:&"-a. o du ls~ ‘%
0. vermrs IPUYy ..

Queds o 32 m

GMHpuLy.

1' d mm . ce
2. yGed P Léasd
3. pirGeds ot gisd| 2 3]
4. vaoe @ pUY.
Qurgps gmpiy .o 9 X’I

Cegpss Sowairg.as
perd Cgrma,

Siowgd B
cnsf.‘ucuué‘ w

(contd.).

Figure 1.2 A sample land revenue record found in the State of Tamil Nadu

bilings are generated (and can only be generated) in English. The public who are the
end users do not understand these bille thus, they tend to become anti-computer or
pressure the computing community to change their system to handle their native

languages and scripts.

Another example is the telex and telegraph communication systems in India.
Right now people in India can send telex or telegrams only in English. Common
public who want to send and receive telegrams have to depend on the English
speaking minority (less than tenth of the population) of people in that country. The
limitations of the existing computing systems have made these literates (in their native

language) illiterates.

One should clearly understand that the linguistic limitation of the existing CCSs
is a great drawback for non-English speaking countries and people. There is a great
pressure on the con:puter scientists and engineers to eliminate linguistic barriers.
Technically advanced nations such as Japan already developed computing systems
to handle the Japanese language. Similar situation is now happening to the Chinese
language. European people such as French and German enhanced their
communication systems to handle their scripts by adding diacritical marks (used in
their language) to the international telex and telegraph character set. Developing
nations such as lﬁdia, Middle East, etc., are i~ the process of developing systems to

handle their scripts and languages.

10

Still, the designs of the existing systems are not general. The solutions
proposed so far are partial in the sense they could handle only one or two additional

scripts.

"It Is the contention of this thesis that at present a unified solution to
handle information in any (variable) number of scripts and languages

does not exist."

The world is moving rapidly towards global integrated system. As stated
before, the entire CCSs in the world will soon become interdependent distributed
computing and communication (information interchange) system. For such a world
what is needed is a universal multilingual CCS capable of manipulating and
interchanging multilingual information between linguistically different nations of the
world. Such a system should adopt a coherent and uniform methodology to handle
the multilingual information. The design of such a system is the main theme of this

thesis.

1.4 Universal CCSs
An universal multiingual information interchange system considered in this
thesis is shown in Figure 1.4. Notice that CCSs are composed of several language

dependent subsystems to handile information. They are listed below.

11

a9sn
pud

‘wa)sAs abueysiajuy uonewopu) lenbuyyniy v°L @anbidy

ualsisans wajsisqns
Kxjug wajysdsqns| | wajsdsqns| | ws3sisqns KAxjug
IXSL abexols abeaoas abpexoys IX9L,
or3jewmoany | | oTj3ewo3nvy
_ | H |
_ _
wajsAsqns wajlsdsqns
Kxjug Ewumhmndm.llllemumhmnzm.lIILEmumhmnzm Axjum
IXSL |—»| buT3ndwod je— °WWOD putanduod AX3L
Tenueln _ _ TenueRr
_ _
* _ -
wajsdsqns wajlsdAsqns
uorye; _ _ uotjel
=uasaad -uUasaxd
_ _
3SOH JdaomisN 3SOH

12

1. Text entry subsystems.

2. Presentation subsystems.

3. Computation subsystem.

4, Storagse and retrieval subsystem.

5. Communication (transmission and reception) subsystem.

Till today the most popular text entry method is by typing using the keyboard.
Even though it is manual, it will continue to remain popular in the future as well.
However, cost of manual keyboard based text entry is raising steadily throughout the
world (Schantz {1982]). For rapid and large volume text entry an automatic text entry
system such as the character reader is the solution. Currently, character readers are
increasingly used in the office automation, banking and postal systems in America,
Europe and Japan (Suen [1983], Downton, Kabir and Guilevic [1988], Hull, et al
[1988], Ciardielio, et al [1988], Nishino and Takao [1988], Banno [1988]). More and
more PC based character readers for English are being introduced in the market. Use
of character readers will continue to increase in the future as they become more

reliable, versatile and economical.

For these reasons multilingual character readers have been selected for the
automatic text entry subsystem and multilingual terminals have been selected for the
manual text entry subsystem in this thesis. The design of character readers itself

poses so much challenge, it has been an independent research topic for the last few

13

decades. The techniques developed to design the various components of a
multilingual character reader such as scanning and preprocessing, feature extraction,
classification and language identification are described in detail in the subsequent

chapters.

Even though voice based text entry and presentation systems are another
alternative, voice recognition and synthesis are two separate research topics in their
own domain due to their complexities. They are out of scope of this thesis, hence will

not be discussed any more.

Printer and display based presentation subsystems are very popular and in
wide use and will remain so for a long time. Herice, the terminal is considered for the
presentation subsystem. The techniques developed in this thesis to design a
multiingual terminal (text entry and presentation subsystems) are explained in detail

later in this thesis.

This thesis addresses and makes original contribution towards an integrated
multiingual computing and communication system with input, output, facility for
manipulating multilingual texts using programming languages, multiingual document
representation, storage, retrieval, transmission and reception of such documents with
coherent and uniform solution. Methodologies and algorithms developed for such an

integrated CCS are explained in the rest of the thesis.

14

1.5 Theory of Symbolization

The English alphabet has 26 letters and 52 characters (26 uppercase letters
and 26 lowercase letters) for representation. A set of fifty two characters is relatively
small compared to major world languages such has Indian languages, Chinese and
Japanese languages, other Asian languages such as Sinhalese, Burmese, Thai, etc.,
Cryllic script languages and other Latin script languages. Most of the languages in
the world have a large number of characters. For example, the Chinese language has
more than 48,000 characters in the literature and at least 5,000 in use; Indian
languages like Telugu can have theoretically an infinite number of characters and in
practice about two thousand characters. The characters of these lenguages are more
complicated than the characters of English. They also vary in size considerably.
These languages are used by more than 2 billion people, a major portion of the world

popuiation.

The large number of complex characters in a language makes it impossible to
design a keyboard of reasonable size by assigning one character per key position.
Character generation requires a large amount of memory to store the graphemes of
all the characters. Also, the knowledgebase for character recognition will be huge.
in general, the computing and communication systems (CCSs) become complex,
expénsive and unmanageable. To handle the large number of characters in a
manageable way, a new scheme called symbolization is proposed in this section. its

universal applicability is demonstrated using the scripts of major world languages.

15

The word symbol, as used in this thesis, is an abstract entity representing a
character or part of it in a language. It may or may not have a graphical

representation like the character.

1.5.1 Properties of Symbols
Let,
C = {c,, Cy ... Cp}
S = {8, Sy - S}
be the set of characters and symbols, respectively, in a language, L. The set of

symbols, S have the following properties:

Property 1.1: Each symbol must represent a partial or complete character in the

language.

Property 1.2: There must exist an unique ordered set of symbols {s, s,, ... §,} for

each character in the language which uniquely identifies that character.

Property 1.3: The members of the set of symbols, S may or may not have graphical
representation. If members of S are derived from the graphemes of the script, they

will have graphical representation. However, if they are derived from linguistic

16

properties other than graphemes, they may not have graphical representation.

Property 1.4: The cardinality of S is normally much smaller than the cardinality of C,
thatis, |S] < <|C|. If |S|=|C], then each symbol uniquely represents a character
in the language. In other words, if the mapping £:S-->C is 1:1, then each symbol
stands for one character in the language. This will be the case for languages having

small number of characters like English.

Property 1.5: |S| should never be greater than |C]|.

Property 1.6: The internal or machine representation of the members of S should be

such that sorting of texts should give collating sequence. This may or may not be

possible for all languages.

Property 1.7: It is possible that one set of symbols may be used to represent the

characters of one or more languages.
Definition 1.1: Symbolization
The process of identifying the set of symbols, S for a language is called

symbolization.

The simplest method of symbolization is to assign one character to one symbol.

17

However, for languages having a large number of characters, |S|<<|C|. If |S] is
too small, then the unique sequence {s,, s,, ... §,} identifying the character may
become longer. On the other hand if |S| is too large, then the abcve sequence will
be shorter, however, use of such symbols will result in the same problems like large
number of characters. Because of the trade off, identifying an optimal symbol set, S,

that is symbolization, may become a challenge for certain languages.

1.5.2 Universal Applicability of Theory of Symbolization

The analysis of the scripts of major world languages has revealed that the
theory of symbolization is universally applicable to major world languages. To
demonstrate the universality of the theory, let us consider the languages of the
following scripts:

1. Latin script
Cryllic script
Indo-Asian scripts
Arabic script

Ideographic script

o o & @ N

Braille script

Latin Script Languages: Most of the European, American and Australian languages

use the Latin script. The well-known languages such as English, French, German and

18

Spanish fall under this category. The characters of these languages include A to Z
and a to z and a few additional characters. Some of the additional characters of the
languages of this category are listed in Figure 1.5 (Gilyarevsky [1970]). A careful
consideration will reveal that we could apply symbolization to these languages and
identify a set of symbols as:
a2 = { Ato Z, a to z and diacritical marks }

where the diacritical marks are .., ., *, ~, ', etc. Interestingly, the small symbo! set,
1 could be used to represent all the Latin script languages shown in Figure 1.5 and

many more.

Cryllic Script Languages: More than fifty different languages use the Cryllic script
or an extended version. The Russian language comes under this category. Most
nations of the Soviet Union and other nations of foreign countries use scripts based
on the Russian alphabet. Certain languages use, apart from the Russian characters,
some additional characters. The set of additional characters of a few Cryllic script
languages is listed in Figure 1.6 (Gilyarevsky [1970]). Again, a careful analysis wil
reveal that it is possible to identify a set of diacritical marks, like in the Latin script, for
these additional character and obtain a symbol set as:
¥ = { Russian alphabets and diacritical marks }
where the diacritical marks are .., ., -, etc. As in Latin script languages, the symbol

set ¥ could be used to represent a set of Cryllic script languages, not just one.

Albanian
Aymara
Basque
Breton
Bui
Catalan
Choctaw
Chuana
Cree
Czech
Danish
Delaware
Eskimo
Esperanto
Estonian
Ewe
Farcese
Fiji
Finnish
French
Frisian
Fulbe
German
Guarani
Hausa
Hungarian
Icelandic
Irish
Itatian
Javanese
Juan
Kasubian
Kurdish
Lahu

Latin
Lettish
Lingala
Lithuanian
Lisu

Luba

Malagash
Mala
Mandingo

19

o
ée i6, 860
y 9, n.m. l'. ‘l- 2, b 3,3
¢.é.é. 6, o, i, u
Loy
‘.:I.. ' v v v
é, & d (d,d, D).6,& 0 0,6kt (1 T)0ay3
' X 0
4,481,168
& 8&i0,8¢
Lah)s b

80,0
d(D)n o HF), 1,059 %8133, (d, gv h, 4,3

]
n
é, fi
é
E, a
i
2,

- 1ot o e
B oy -

£, 900 £ e g0 D
9@959@
-
.-‘-

o

- O
.Otw

i

=

X
y Oby 3, b, 3,2, 4,5 It
a ¢l 1 66,6 6y 2, £
lraq)_

6 & 1,84, x (in Syrla)

54,28¢81,1,0 8,0, 8,0

.lélelel(q v'nka‘on'g “v

[O O‘IOO:’ U

aéeéldyd
n%.m:mmnz&mmh

a2 vun0,0 2,/,2%,.45,a,3, x
:.‘,é , &, 101 .2.5.)!'. B

Lid &6 e gl 0506068

« o O
e =X af

G g

A“‘

-

Figure 1.5 Additional characters of Latin script languages.

20

Minankabaw £, @, 0, u &1
Mohawk é
Mossi 5, 4,888 (¢) € ¢\ 1T 0,0 (2) pt'

Navaho k , l. i, 0, t’
Norwegian
Occidental l' n. d, &1,6,4d (ord 1,9, 0)
Ojibwe aie; 2,1 o; 3
Polish 3éelnész
Porluguese a, i. a.a . & & i: é 7,1,6,0,06,06,u
Quechua 4
Rhaelo-Romanic i i. é. e. %8,
Rumanian :t. i. 5
Samoan a. o. i
Seneca i
Scerbo-Croatian &' é. d‘ (D), 8 s.
Sioux a'co v\'ko R vk D P P 5-£'-‘bii
Slovak a. a & d (@ d'D), &l (I.'), f,6,6 st (1T,
Slovene é §
Spanish 4, é {46,104
Suto 0 0, i
Sundancse
Swahili ng'
Swedish a, i
Tagalog ig)
Turkish a, [ﬁ' 1y l 1, 6. $ ﬂ q
Uolio b,d, i
Vietnanicse a. a.c(a).e 6, 0,n .

vowels in combmahon with diacritical signs {o denote
the toncs

Volapiik l. &b
Welsh i dé c. é 6,6, Y, $ W
Wendish é & & I. no ki
‘Volol 2 ‘ﬁ.)l. K a

a © (@)%Y 0 X Hhd
Yoruba o hlki
Zulu 6(5),

Figure 1.5 Additional characters of Latin script languages (contd.).

21

Abazin 1 -1

Abkhasian - u b, 3 (3) K k(K),
. oc ‘bo 1- ln “v '(. 0

Adighe 1 - |

AHaic - §, 0¥

Avar] - ,

Azerbaijant -rndjNe Y by

Bashkir =A% Lo ¢y h oo

Buryal =96,y h

Byelorussian -hLY

Checlien -1

Chukcha -~ %Y

Chuvash -3, 8¢f

Dargwa -

Dungan -3 XY

Eskimo -y ..

Even (Lamut) - 40,0

Fvenki (Tungus) ‘ -4

Gapauzi -, 8, ¥

Ingrush -

Kabardian (Circassian) -1) .

Ka'myck - a'l hv)ﬁ' i, 0, Y' (ac 6- ,)

Karachai -y -

Kara-Kalpak — K Ff X,H@,7.y9

Kazakh -3 F KN, 0, ‘.n Y~ b. i

Khakass - b0 §, un

Khanty (the language of the Vakh Khanty) a4 5,1, 0,0, 8 ¥, 0,3
Khanty (the language of the Kazym Khanly) ~ &, 3, §, 8§ @, {

Khanty (the language of the Surgut Khantg} - 3,5,4,8,0,Y,9
Khanty (the language of the Shuryshkar Khanty)¥

Kirghiz I, e,y

Komi-Permian -1 8

Komi (Zyryan) - i, 0

Kul’dish -3, 0, ho Q(Q)a w

Lak -1

Lesghin -

Macedonian — 1, Kb I,

Mansi (Vogul) -3

Mari (High) - 3,0, ¥, il

Mari (Low) -mno¥

Mongolian -6, Y

Ossetic - () .

Scrbo-Croatian = h(b)) v w1, h(h), §

Tajik - LK ¥ x.u

Tatar -0, 8 ¥, N 1D

Touvinian =6,y

Turkmen -& K0,V 9

B'dn‘uﬂ - ’T‘l ﬁ-‘"a oY. §
igur - % WF Y. 0NN

Ukrainian - L1 ' e

Uzbek . -0 K rx

Yakut - 30 0y

Figure 1.6 Additional characters of Cryllic script languages.

Indo-Aslan Script Languages: Fifteen different Indian languages and Asian

languages such as Sinhalese, Burmese, Thai and so on (except Ideographic and
Arabic languages) use more than ten different scripts. Devanagari, Dravidian and Pali
are the most commonly used scripts. The number of characters in each of these
languages vary from a few hundreds to a few thousands. The characters of these
languages are more complicated than the characters of the Latin and Cryllic scripts.

Figure 1.7 gives some of the basic characters of a few Indian languages.

Symbolization has been found very useful for Indo-Asian languages. As an
illustration consider the complete character set of the indian language Tamil shown
in Figure 1.8. The original character set had 247 characters. Later, an additional 65
characters infiltrated into the language from other languages to accommodate the
words derived from those languages. These 65 characters are not shown in the figure
and are not considered for analysis. By applying symbolization, it is possible to
identify a set consisting of about sixty graphic symbols to represent the 247 Tamil
characters. The set is given in the next chapter. As an illustration, notice that all the
126 characters in the rectangle frdm columns 7 to 13 can be obtained by using the
18 characters in column 1 and by just five additional symbols & , & ,m , rr, * ,

a total of 23 symbols.

Such symbolization has been found applicable to other Indian languages and

Asian languages such as Sinhalese, Burmese, and Thai.

eps®pe
2e3332

g P
i lAr oy Nk
O LTURE
menad IJTTID

&)
a0 DDD2 aBODT
t.Beow; F037Y

A gean
BELasy
Sﬂsﬂai‘wut
e

HA: =wa=

HINDI

SR EELE N

23

z 99
s a9
5 @M

e &

3
2
°

BENGALI

eSS

G0

RN

aé& e
&t

E§DADLBY .
oy2064
G PGS
NPREINCH
COOTILD

)

TELUGU

comaagd
O d S B

D0 g O e

D¢ nH o DY

® 6 ¢ ©

s g

SINHALESE

Figure 1.7 Samples of basic characters of Indian languages.

SB[Fe o gop g g gm

& an & & B & (s Cs ms Qsr Car Gsm

wowr 8 f oy B Om Cm omOmr Gmr Quer | ™
§ sn 8 & & @ Os Gs s Qer Gor Qsen ¢
S e ¢ f o ar O Co me g Gt | ©
L el o o B @ Ou Go s Qur Gur Guen |-
o @ ol et gn g Glenw Germ %rwr Ggmy Gy Clevwr o | &7
5 5" & £ & & Os Gy wmg Gpr Ggr Oge | 5
morr B & m mr Gn Gs s Gor Ger Gmsr s
v our 8 8§ g y Gu Gu mu Gur Gur Guer u
w wr B S @ @ Gw Go e Gur Gor st 1D
wowr 8w oy oy Gu Gu ew Gur Gur Guwer W
7 or A F ® e G G ew Gom Grr Qyen | F
o or o &S g o Go Go 2% Ger Gor Gleer | ©
o am o of o & Geou B ewar Geur Gour Gleust| &l
e wr P 5 @ e Gy Gp e Qur Ger Quer §
o enm afl ofF @ ¢ Gen Gon Zmw Glewm Gonm Glemwem &7
D g A5 o or Op Comp O Gy Gusr O
o e of of @ @n@m@m&wa@e@(ﬂmmaﬁ

Figure 1.8 Tamil characters.

25

Arabic Script Languages: The Arabic, Urdu and Farsi languages belong to this
group. These languages are wide-spread in the United Arab Republic, Iran, Iraqg,
Kuwalit, India and other Arabic countries. A sample text is shown in Figure 1.9 (Amin
[1988]). The complexity of the characters of these languages falls between the
Indo-Asian languages and the Ideographic languages. Again, we could see that
symbolization could be applied to the characters of these languages even though it

is relatively complex.

Ideographic Script Languages: Chinese, Japanese, Korean, etc., are examples of
ideographic languages. Chinese language has about 48,000 characters; around 5,000
characters are used in writing and about 3,000 in printing (Shyu, et al [1988]). The
presence of Katakana and Hiragana syllabic alphabets distinguishes Japanese from
Chinese. Japanese characters are somewhat simpler than Chinese characters, still
the graphemes of these languages are extremely complicated. Toillustrate, a Chinese

text is shown in Figure 1.10.

Keyboarding techniques have been proposed to input Chinese characters
based on the phonetic characteristics (Kung [1983], Dong [1986], Cheng and Yu
[1987], Yuhang [1987]), and stroke-sequences (Hung [1987]). Such phonetic and/or
the stroke entities could be treated as symbols for Chinese characters. Thus,

symbolization is applicable to Ideographic languages too.

wlalll idatidell inw 8l Claglaal! indlind ideatlied ! il |

- U..\:.r.:a it b g o SAISS e @il e AT Jea gt

Slaphiat | dadlie o law Law oL ko)! (1 olltU cqu..
[}

Clygiomad | Lalidl) 1 Jads edey S M e U Gasdadl
¢t ol b I
Wi N el Gl (et e LSSy deladt JSladd H b)
e ls oS ,.‘:3.,\..... Lyeds Glaaglaall plaly JLa3! i ppd'l § e
Pl 05 339 SRy b A G T e i e Kl
COliisdt U e Jrpbmld 1 o8 Clygiaad b puan Js c28 ¢ Pmmd 1
M Ldaay Ly 00 0 a0 i gy pt Kt 0D ga g) dmndd
et R Jallmald | Uy ey Sluliniel)
LS 90) Jdas Pl e .;u,.:.n..'ﬂ TloASs a1 inat clgul -4
I R TR T I i el ririe Tt
G35 Leayw dalg 098 o D a F O Wl pae ciadSI el Dl
IR Jendasd plidl Juaso WO e T2 s el JUS
(SRS S) iy S G VRS SR WY a7 WY Sy pdtlan., Llasr outads
) A p L balin) Sas kSl 1 O) LUdieed! JUe A 1 dlay
G Lol 10nis Clgle® o)) JSalin) 98y il 5 dde Jay Woy
-~ ey \’"‘"'WJ" ot) mul,&ml,ﬂ.’ Lﬁ,ﬁ.ﬁ-’huléhp".
B Ay Wl Ay gy Gy) Sl a.,h'.,.::ufu,l.,;.,
Cad

Figure 1.8 Sample Arabic text.

27

H X

ERBEALERE
xg

XEBREANE
PEH R B HE R
FERA S8 {Faa
SHEICE ' i

Bt (H3E - AW H
hRER

HRESE

AtHBEE

hEd

% - BHRY - Ml
6F - LenRER
Eif - e . W
X

EEERENE

R ers

LREE

o2 I AK 4 -8 -}
BE - XF
RN - ARW
Bk

Figure 1.10 Sample Chinese text.

Braille Script: Braille is a system of raised characters formed by using combinations

of six dots in three rows and two columns as shown in Figure 1.11. The dots
represent the projections (so that blind people can read by touching) on the output
paper. The Braille script uses the English alphabets and differs only in the
presentation of the characters on the output medium. Hence, whatever symbolization
scheme that is applicable to English could be applied to Braille script also. In Figure
1.11 the character strings and, for, of, the, with, ch, gh, sh and th have more than one

English character, each could be treated as a single character in Braille script.

1.6 Outline of the Thesis

The next three chapters describe the design of a multilingual character reader
that could be used with the CCSs. Preprocessing techniques, namely binarization and
thinning are presented in Chapter two. The structural features used for classification,
their extraction and the scheme developed for representation of symbols and
characters are explained in Chapter three. In Chapter four, a two stage classification
scheme developed to recognize the characters from symbols is described and the

results are presented.

Chapters five through seven explain the design of a multilingual terminal that
can be attached to a CCS or used as a stand-alone typewriter. The techniques

developed for the determination of nearly optimal dot matrix character size and the

e ki P ok S

e e Korlp o e diles sy g Lt

29

« o
.J

Figure 1.11 Braille script.

J k 1 m n o P q r
s t u v w X Yy z
and for of the with ch gh sh th

determination of optimal dot matrix symbol set are given in Chapters five and six

respectively. The multiingual keyboard design and character generation techniques

proposed are presented in Chapter seven.

Chapter eight presents the scheme developed for designing a multiingual data
communication system that can be configured with the multilingual character reader
and the multilingual terminal developed earlier. The techniques developed for
multilingual document representation, character coding, storage and retrieval of
documents, and the protocol changes needed are described. A scheme for handling
muttiingual texts using the existing programming tools such as compilers with minimal

change is also shown in this chapter. Chapter nine concludes the thesis.

The Indian languages Tamil and Malayalam are used for illustration and
experiments throughout the thesis. The symbolization technique is uniformly
employed for the design of multilingual character readers, terminal and the computing

and communication systems.

1.7 lllustration

Indian scripts and languages (in particular Tamil and Malayalam) are used for

illustration wherever needed for the following reasons:

1. the representative nature of the Indian scripts and languages to the

31

world situation (India has fiteen different languages and ten different
scripts recognized by the constitution),
2. a considerable amount of work has to be done to handle Indian scripts,
3. there is a great need and local demand that CCSs be made to handle
Indian scripts, and
4. familiarity of the Indian languages to the author.
Howevey, it should be noted that the methodologies and algorithms developed in this

thesis are general and could be used for other languages too.

This thesis covers several areaé of computer science: pattern recognition,
communication, and input/output subsystems. In addition, it includes natural
languages aid scripts. Each is an independent research area. For example, several
dissertations have been submitted just on character recognition alone. A thesis having
width may lack depth. However, in this thesis depth is not sacrificed for width of
coverage. Each chapter that follows has some new contributions to the knowledge

of computer science.

The thinning algorithm of Stefannalli and Rosenfeld [1971] has been extended
to eliminate variable line thickness. A new scheme has been proposed to extract
features from thinned characters. The recognition methodology and algorithms
developed in this thesis will enhance the knowledge of pattern recognition, in

particular, the structural approach to character recognition. Also, the thesis

contributes to the knowledge of systematic and scientific approach to the design of
ergonomic keyboard based multiscript terminal system for indian languages. A new
knowledge based thinning algorithm has been developed for the determination of
character size for the design of output devices. The pattern recognition based
character size determination and font design methods simplify the task of developing
fonts and reduces the time required for font development. An information content
based scheme has been proposed for the evaluation of different character fonts. The
unified approach to multilingual data communication scheme developed in this thesis
adds to the knowledge of designing communication networks for the multilingual
nations of today and the world of tomorrow. The scripts and characteristics of several

natural languages have been studied and analyzed for these purposes.

The proposed methodologies and algorithms have been tested by conducting
experiments using the scripts of Indian languages. The new results obtained have

been reported in this thesis.

Note: The usage of the following words should be interpreted only as defined in this
thesis. The words correlation and correlation coefficient are used in this thesis not
as in Statistics (mathematics). They are used more in the (American Heritage)
dictionary meaning of "correspondence (closeness) between two comparable entities".
Similarly the words Hamming distance, self-information and entropy should be

interpreted only as defined in this thesis and not as in the general use in mathematics

or other science and engineering. The definitions of these words, as used in this

thesis, are given in the appropriate chapters.

2. MULTILINGUAL CHARACTER READER

2.1 Introduction

More and more organizations, business and non-business, are moving towards
automation in networking for interconnectivity and instant access to information using
computers to reduce increasing labor cost. The human race is generating more
information than ever before not only in one language but in several languages. This
has created great demands for faster and less expensive mechanisms to generate,
acquire, transmit, store, access and present texts that represent information. The cost
of storing and processing texts is declining steadily over the years, however, the cost

of manual data entry has been rising and it will continue to rise (Schantz [1882]).

Nowadays fax machines are used for transmitting documents on paper by
scanning them on the sending end and transmitting the digitized image. It is
reproduced on the receiving end, may be with some loss of quality. However, the
digitized image requires several orders of magnitude more storage and transmission
time compared to sending the textual document in character codes. This increases
the storing, processing and networking cost. Another disadvantage with image
transmission of text is that it cannot be used to synthesize voice output, if necessary,

from the text. The character readers are an ideal solution to solve this problem.

35

The origin of character recognition (Anderson [1969]) dated back to 1870 when
Varey invented the retina scanner, that is an image transmission system using a
mosaic of photocells, and later in 1890 when Nipkow invented the sequential scanner
which was a major breakthrough both for modern television and reading machines.
However, character recognition first appeared as an aid to the visually handicapped,
and the first successful attempts were made by the Russian scientist Tyurin in 1900.
The next attempts that have been reported are the Fourier d’Albe’'s Optophone of
1912 and Thomas' tactile "relief' device of 1926. The historical development of some
of these machines, covering the period from 1800 to 1980 are presented in Schantz

[1982].

Later versions of OCR (Schantz [1982]) appeared in the mid 1940 with the
development of the digital computers. For the first time, OCR was realized as a
dataprocessing approach, with particular applications to the business world. Machine
simulation of human reading has been the subject of intensive research for more than
three decades. Several books on OCR (Gonzalez [1978], Fu [1982], Goos and
Hartmanis [1988]), as well as special reports on OCR (Schurmann [1982], Schantz
[1982)) have been published. Additionally, extensive bibliographies on OCR (Tappert,
Suen and Wakahara [1990], Suen [1978], Suen, et al [1980], Mantas [1986]) have
been compiled. An extensive survey covering major databases, recognition

techniques and their comparative performances can be found in Suen, et al [1986].

36

Reasonable amount of success has been obtained and now commercial
character reading machines are available. The basic problem confronting a character
recognition device is the following: given a set of prototype characters and an input
character from the above set, the task is to assign the input character to one of the
prototype characters. This approach, called the classificatory approach, treats a
picture as a single atomic entity. Such approaches often fail when the input picture
is more complex than alphanumeric characters. Inadequacies, like lack of facility to
include structural information, etc., of such models have been studied by scientist
(Narasimhan and Reddy [1971], Fu [1982], Suen [1986]). To overcome the
inadequacies of classificatory approach, the linguistic (or syntactic) approach has

been proposed (Narasimhan [1966], Fu [1982], Wang [1988b]).

In the last two decades linguistic (descriptive) method of picture processing has
gained popularity. In the linguistic approach, the input picture is assumed to belong
to a class of admissible pictures, the admissibility criteria being specified by a
generative grammar. Such a grammar is used to analyze the input picture belonging

to the admissible class and to generate a structured description of the input picture.

Narasimhan (Narasimhan [1966]) is the pioneer who suggested and applied the
linguistic model for solutions of non-trivial problems in picture processing. His model
is restricted to the class of pictures containing thin line-like elements. Many attempts

have been made by scientists in this area to develop syntax-directed recognition

37

procedures for picture processing languages, analogous to the syntax-directed
compilers for programming languages. Narasimhan has given a syntax directed

interpretation for a specific class of pictures.

Narasimhan and Reddy [1971] have described syntax-aided techniques for
picture processing as applied to the recognition of handprinted English letters. In the
syntax-directed techniques the grammatical rules are exclusively used to parse the
input picture as in the case of syntax-directed compilers of programming languages.
But in the syntax-aided technique, the syntactic information is used as an aid along
with other contextual information while analvzing the picture. They have argued that
only syntax-aided systems can cope with the real life situations. Kanal and
Chandrasekaran [1972], and Fu [1983] have critically examined the various aspects
and claims of grammatical approaches. Regarding the suitability of the different
approaches to pattern recognition problems, they are of the opinion that a good
pattern recognition system has as an integral part, a versatile too! kit and uses
statistical, linguistic and heuristic tools in various stages of processing of the patterns,

with each tool being applied at the stage for which it seems most suited.

Considerable amount of research and development have been carried out in
the recognition of English and numerals (Le Cun, et al [1990], Suen, Nadal, Mai,
Legault and Lam [1990], Krzyzak, Dai and Suen [1990], Nadal, Legault and Suen

[1990], Bozinivic and Srihari [1989], Stringa [1989], Lam and Suen [1988], Hu [1982),

38

Ahmed [1986], Huang [1986], Shridhar [1986], Mantas [1986]). Syntactic and
statistical approaches have been used in the recognition of Chinese chaiacters (Suen
[1982], Wang and Suen [1984], Nagy [1988], Xia and Sun [1990]). The extent of
work done in the recognition of Chinese characters can be found in the proceedings
of the International Conferences on Chinese and Oriental Language Computing from
1982 to 1990 and in the survey by Nagy [1988]. Several researchers (Akamatsu
[1983], Arakawa [1983], Hagita [1983], Izaki [1983], Suen [1983], Kurakake [1988],
Yamada [1988] have developed methods to recognize Kanji characters both on-line
and offine. A detailed review of the state of the art of on-line handwriting recognition

can be found in the paper by Tappert, Suen and Wakahara [1990].

Amin [1984], Amin and Masini [1988], Amin [1988], Parhami and Taraghi
[1981], and Taraghi [1978] have developed techniques to recognize Arabic and Farsi
texts. Mantas tried to recognize Greek characters. Kushnir has written a dissertation
(Kushnir [1983]) and several articles (Kushnir, et al [1982, 1983, 1985]) on the

recognition of Hebrew characters.

Very little work has been done on the recognition of Indian language characters
which are more complex in structure and larger in number compared to any of the
European languages, e.g. Telugu (Rajasekaran [1977]), Devanagari (Sinha [1973,
1984}, Sethi and Chatterjee [1977], Bansal and Metha [1988]), Bengali (Som and Nath
[1977]) and Tamil (Gift Siromoney, et al [1978]).

39

The recognition problem may be divided into a number of subproblems.
Rajasekaran and Deekshatulu [1977] have proposed a two stage recognition system
for Telugu. In the first stage a given character is split into primitives and basic letters
using a directed curve tracing method; based on the result of first stage, classification
is achieved by means of a decision tree in the second stage. Sethi and Chatterjee
[1977] have adopted a multistage decision process where each stage .of the decision
narrows down the choice regarding the class membership of the input token which
is constrained handprinted Devanagari alphabet (vowels and consonants only). The
recognition scheme uses loop and line-like primitives. Gift Siromoney and
Chandrasekaran [1978] have chosen the less stylized Barathi Antique fcnt type printed
Tamil alphabets for recognition study. A given character is hand coded into a 0-1
binary matrix and fed to the recognizer. It is further coded into a small string
depending on the frequency runs of "1°s" in both columns as well as rows. This string

is compared with the stored string patterns for recognition.

Most of the work done in the character recognition area were confined to
unilingual characters. Not much effort has been spent in deveioping multilingual OCR
systems. The work reported here is an attempt to develop a muitilingual character
recognition system using the linguistic approach. It is expected that the following
study of the .inguistic approach as applied to the recognition of handprinted Tamil and
Malayalam characters would contribute to the larger field of multilingual picture

processing.

40

2.2 Refiesentation of Multilingual Texts
For a multilingual OCR system to work properly, it is necessary that the system
knows how m itilingual texts are presented to it. The language to which a text

belongs could be specified either explicitly or implicitly as explained below.

2.2.1 implicit Specification

One way to represent multilingual texts is to freely use the text of appropriate
languages as needed in a multiingual document as shown in Figure 2.1. In this case,
the character set for the OCR is the union of the characters of the languages
supported by the system. The cardinality of such a set could be very large,
particularly, when several languages are supported. In addition, it has the
disadvantage of not being able to uniquely determine the language to which a
particular text belongs because there are languages that use the same characters.
Without the knowledge of the language it is not possible to use the text for voice
synthesis. Absence of language code will make a multilingual OCR more complex and

less modular; it will also take more time to recognize a character.

Human readers identify the language by apriori knowledge, for example,
knowing a dictionary as English-French. Similarly, an OCR system could be instructed

about the text to be recognized which will limit the knowledgebases to be searched.

41

GLOSSARY OF IMPORTANT
WORDS

onHO1de
BRNANe
BRHE0

[VLT
®(S Do

a@ol

msoun

BRoNe
@DeN1BHDTH8B

®wsTgY

aneraIs

B ace i bibcd il

Not artificial.
A numeric al figure

The opposite side of a
river or sea.
At that time,

Iniquity, confusion,
impropriety.

A wicked person.

Fire.

Body, a limb, a member.

To accept, to receive,
to approve,

There, yonder, far off,
you (honorofic term)

Bazaar, market.

Figure 2.1 Implicit representation of language.

In addition, the following algorithm could be applied:

Algorithm 2.1: Identification of Implicit Script Code

Step 1: Process a character and identify to which script the character belongs, say
it belongs to scripta. (This may involve searching several knowledgebases.) Set this

script as the current script for further recognition.

Step 2: To recognize the sutsequent characters search the knowledgebase of script

a first. If the system fails to recognize the character, then go back to Step 1.

This algorithm will work with the possibility of increased error rate and

computation time.

2.2.2 Explicit Language Specification
The disadvantages of implicit specification can be avoided by explicitly
specifying the language code as part of the text as
<lid> <text>
whe;e <lid> is the language identifier of <text>. In this scheme, the language
identifier precedes the text belonging to a particular language. The /id consists of two

parts:

i e e e TR ey

43

<lc> <n>
where <lc> is the language code that indicates the occurrence of the change of
language and n is the language number. Each language is assigned a unique integer
number of, say 2 digits. For example, 00 for English, 01 for Tamil, 02 for Malayalam,

03 for French and so on.

To specify the language code in the written form, it is necessary to invent a
unique symbol that does not appear as a character in the languages supported by the
system. After carefully studying several world languages the symbol L& has been
designed to designate the language code. Let us call it language selection symbol.
The language number follows the language selection symbol. A sample

English-Malayalam multiingual text with language code is shown in Figure 2.2.

This scheme will work effectively even if multilingual texts having the same script
are specified. The disadvantages are: (1) the existing multilingual texts do not have
the explicit language code specified, (2) people have to learn to read with the new
convention which should be comparatively easy, and (3) publishers have to accept

this scheme.

In this scheme, the recognizer will only search the part of the knowledgebase

corresponding to the current language code and not the entire knowledgebase, thus

44

I&oe GLOSSARY OF IMPORTANT
WORDS

——————

Eelang®iae LS 0@
o2 gpnoane. LCo0 —
€02 @nasn &eoo —

\S02 mnasndel. Eo® —
01 ERiGD. L60° —

802 an@ol £00 —
i€o2 @ruN L& 00 —_
\!"1 MReNe icoe —_
[€02 @R.NIeHNT BB IE00 —

1602 mragy L& OO —

[¢02 @nesas 1&0° —_

Not artificial.
A numeric al figure

The opposite side of a
river or sea.

At that time.

Iniquity, confusion,
impropriety.

A wicked person.

Fire.

Body, a limb, a2 member.

To accept, to receive,
to approve.

There, yonder, far off,
you (honorofic term)

Bazaar, market.

Figure 2.2 Explicit representation of language code.

w

reducing recognition time. If the current character does not belong to the current
language and is not the language selection symbol, the recognizer will reject it.
(Misrecognition or rejection of language code will result in increased error rate at
which point the system could be programmed to notify the operator for human

intervention.)

Due to the generality of the explicit language specification, this scheme has
been used in this thesis. (it is not difficult to make an OCR system to work with both
explicit and implicit methods of specifying the language code.) The texts of Tamil and

Malayalam are used for testing and illustration purposes.

2.3 OCR System Components

The block diagram of the multilingual OCR system is shown in Figure 2.3. The
OCR system consists of

1. digitizer

2. pre-processor

3. feature extractor

4. two stage (symbol and character) classifier

The digitizer which is an optical scanner scans and digitizes the input

characters into a multilevel gray scale images. The digitized image has 16 gray levels.

46

“4O0 fenbuyiinu e Jo weibelp yoolg £'¢ eanbyy

3Tnsax

r

u °puetr aojg T *buet ao3 1 -Hbuey ao3z
saejoeaeyo sxajoexeyd sIx9j3o0eIRYD
3o 3o JFo
uot3zTUbOOBI uoT3TUbOOOI uot3Tubooax
cOpod
*pueT
uoT3oRIIXD J9300IRYD
E.|J vcﬁmmwooummunrl UOTIRZTITOTD je—
aanjeaz 3ndut

47

Both printed and handprinted Tamil and Malayalam characters have been used for

digitization. The texts are written/printed on a paper.

in the preprocessing stage, the gray level image is binarized, and some noise
such as isolated pixels and single pixel gap are eliminated. it is assumed that the
characters and some symbols appear separately without touching as defined in the
language. The feature extractor expects the image to be in a line-like form and not
thick. Hence, the binary image is thinned by the preprocessor before feeding it to the

feature extractor. The preprocessor is explained in detail in the following section.

The set of features, their extraction and the representation of the characters in

the knowledgebase are explained in the subsequent chapters.

2.4 Preprocessing
Preprocessing consists of binarization, noise elimination and thinning. They are

explained below.

2.4.1 Binarization
The muilti-gray level image from the scanner is binarised into a two level

(background and object) bit matrix. The background region is represented by 0 and

the object (character) region by 1. In binarization techniques a threshold A is

selected; then, all gray levels greater than the threshold A are assigned to character
region and others to the background region. The threshold could be selected based
on the gray levels of the pixels in the image (Pal, et al [1983], White and Rohrer
[1983], Pal and King [1981]). It is called global technique. It could be based on the
gray level of the pixel p; and the gray levels of a window of certain size around p;
(Rosenfeld and Smith [1981], Ahmed [1986]). This method is called local technique.
It could also be based on the location (i,f) of p, the window, and the gray level of p
(White and Rohrer [1983]). This method is called dynamic method. A survey on

thresholding techniques could be found in (Weszka [1978)).

In this thesis, the global technique has been used with a threshold value of 8.

The pixels having a threshold value less than 8 are assigned 0 and the rest 1.

2.4.2 Elimination of Noise

The binarized output obtained by the above method is likely to contain noise.
Simple noise cleaning operations such as filing single pixel gaps and removing
isolated pixels are performed using Algorithm 2.2 and Algorithm 2.3 respectively. The

folloWing notation and definitions are used in explaining the algorithms.

Notation

49

A pixel p; has eight neighbors as shown in Figure 2.4a. For simplicity, they are
represented by their relative coordinates with respect to the pixel p; as shown in
Figure 2.4b. For example, the pixel, p,,, is represented as (/,/+ 1) and the pixel, p;

is represented as (if).

Definition 2.1: Isolated Pixel

A pixel p, is said to be isolated if (i-1, j-1) = (i-1,) = (-1, j+1) = (i, j-1) = (],
j+1) = (i+1,j-1) = (i+1,)) = (i+1,j+1) = 0and () = 1.

Definition 2.2: Single Pixel Gap
A pixel p; is said to be single pixel gap if (i-1, j-1) = (i-1,j) = (i-1, j+1) = (i, j-1)
= (i, j+1) = (i+1,/-1) = (i+1,)) = (i+1,j+1) = 1and (j) = 0.

Algorithm 2.2: Single Pixel Gap Filling
procedure single_pixel_gap_filling;
declare P : input binary image;
begin
Vpye P

it py Is single_pixel_gap then

end; /* single pixel gap filling */

50

(a) Eight neighbors of a pixel p.

(i-1,j-1) (i-1.,§) (i-1,j+1)
(i’j'1) ('ol) (i'j+ 1)
(i+1,-1) (i+1,) (i+1,j+1)

(b) Representation of neighbors of p,.

Figure 2.4 Neighbors of a pixel p, and their representation.

51

Algorithm 2.3: Elimination of Isolated Pixels
procedure eliminating_isolated_pixel;
declare F : input binary image;
begin
VpyeP
it py is isolated_pixel then
Py = 0;
end; /* eliminating_isolated_pixel */
Binary character images with and withuut the above types of noise are shown

in Figures 2.5 and 2.6 respectively.

2.4.3 Thinning

The image of the input symbol will have unspecified line thickness as in Figure
2.7. Features can be extracted by processing all the pixels in the images with varying
line thickness (Ahmed [1986]). Features can also be extracted from images having
constant line thickness. Both the methods have pros and cons. The later method
needs the input image to be thinned to extract the features. However, it is easier and
takes less time to extract features than the former method since the number of pi«els
to be processed by the feature extractor is reduced. The later method is used in this
thesis. It has been used by several others (Suzuki and Mori [1980], Lam and Suen
[1989], Cheng and Hsu [1987], Zhang and Wang [1988], Wang and Zhang [1989],
Xia [1988], Zhang and Suen [1984]) as well.

52

000000000000000000011110011111101114111100000000000000000000
000000000000000001111111111111111111111110000000000000000000
00000000000000011111111111111111111111110000000000000000000
000000000000000111111111111111101111111110000000000000000000
000000000000001111111111111111111111111110000000000000000000
000000000000001111111111111111111111110000000000000000000000
0000000000000011111111111111111111100000000000001000I0000000
000000000000000111111110001111111000000000000000000000000000
000000000000000111111100000111111000000000000000000000000000
000100000000000111111100000111111000000000000000000000000000
000000000000000111114110000111111100000000000000000000000000
000000000000000111 114110000111111400000000000000000000000000
000000000000000011111111111111111111111111100000000000000000
000000000000001111111111111111111111111111110000000000000000
000000000000011111111111111111111111111111111000000100000000
000000000000111111111111111111111111111141111100000000000000
000000000001111111111111111111111111111111111100000000000000
000000000011111111111011111111111111111111111100000000000000
0000000000111111111000000001 1111111000011 1111100000000000000
000000000011111111000000000011111110000111111100000000000000
000000001011111110000000000011111110000111111100000000000000
0000000000111111100000000000111111100001 11111100000000000000
00000000001 1111111000000000011111110000111111110000000000000
000000000011111111000000000111111110001111111100000000000000
000000000001 111111000000000111111100111111111100000000000000
000000000001111111111111111111111100111411111100000000000000
000000000000111111111111111111111000111111111000000000000000
000000000000111111111111111111110001111111111000001000000000
000000000000011111111111110111100001111111110000000000000000
000000000000001111111111111111000000111111100000000000000000
000000000000000011111111111110000000000000000000000000000000
000000000000000000011111111000000000000000000000000000000000

Figure 2.5 Image with single gap and isolated pixel noises.

000000000000000000011110011111111111111100000000000000000000
000000000000000001111111111111111111111110000000000000000000
0000000000000001114111111111111111111111110000000000000000000
000000000000000111111111111111111111111410000000000000000000
£00000000000001111111111111111111111111110000000000000000000
000000000000001111111111111111111111110000000000000000000000
000000000000001111111111111111111110000000000000000000000000
0000000000000001 11111110001111111000000000000000000000000000
000000000000000111111100000111111000000000000000000000000000
0000000000000001 11111100000111111000000000000000000000000000
000000000000000111111110000111111100000000000000000000000000
0000000000000001 11111110000111111100000000000000000000000000
000000000000000011111111111111111111111111100000000000000000
000000000000001111111111111111111111111111110000000000000000
000000000000011111111111111111111111111111114000000000000000
000000000000111111111111111111111111111111111100000000000000
000000000001111111111111111111111111111111111100000000000000
000000000011111111111111111111111111111111111100000000000000
000000000011111111100000000111111110000111111120000000000000
00000000001 1111111000000000011111110000111111100000000000000
00000000001 1111110000000000011111110000111111100000000000000
000000000011111110000000000011111110000111111100000000000000
000000000011111111000000000011111110000111111110000000000000
00000000001 1111111000000000111111110001111111100000000000000
000000000001111111000000000111111100111111111100000000000000
000000000001111111111111111111111100111111111100000000000000
000000000000111111111111111111111000111111111000000000000000
000000000000111111111111111111110001111111111000000000000000
000000000000011111111111111111100001 11111110000000000000000
000000000000001111111111111111000000111111100000000000000000
000000000000000011111111111110000000000000000000000000000000
00000000000000000001111111100000000000000000000000000000GO00

Figure 2.6 Image without single gap and isolated pixel noises.

54

1111113111111121
13323111131111131111112111311111111131111121)
131311111111212132131132121311131211112131111112111

111111 111111111311131111112113111

1111 111

111 i1

111 22

11 111

1111 111

1111 111

1111 111

1111 1111
11111 121
1111 111
aan 1
1111 11
111 111
111 111
11 111
1111 111
111 111
i 111
11 111
1] 1111 111

bR B 111 111

1 111 111

b3 b3 b} 111

11 11 111

111 111 111

111 1111 111

11 111 111

i1l 1 122

a2 11 111

111 i1 111

11 11 111

111 111 111

111 111 111

i1 111 311

111 111 i1

i b3 i

111 11 11

111 111 111

111 11 1

111 111 i

111 111 111

1111

Figure 2.7 A sample input pattern to thinning algorithm.

-

55

A paraliel thinning algorithm has been developed to thin the characters. It is
an extension of the thinning algorithm by Stefanalli and Rosenfeld [1971). Application
of Stefanalli and Rosenfeld’s algorithm, sometimes, gives thinned characters with aline
thickness of 2. For example, the result of application of Stefanalli and Rosenfeld’s
thinning algorithm to the pattern in Figure 2.7 is shown in Figure 2.8. The extended
algorithm described below always gives line thickness of 1. The following notation and

definitions are used in explaining the thinning algorithm and the feature extractor.

Notation

Very often pictorial conditions in the form of a 3x3 cellular array are required.
The pictorial conditions can be explained best with an example. Consider the pictorial
condition givenin Figure 2.9. The condition states that the pixel (i) should be "1*, the
neighbors (/-1,/-1), (i+1,/-71) and (i+1,/+17) should be "1", and the neighbor (j, j-7)
should be zero. The pixels in animage satisfying the pictorial condition can be found
by applying the boolean function, corresponding to the pictorial condition on the
image. The boolean function corresponding to a pictorial condition can be obtained
by using the operators '.’, *+' and '~ representing AND, OR, and NOT respectively.
The condition in the example can be expressed in terms of the boolean expression
as (i,)).(-1,7-1).(+ 1,j-1).(i+ 1,j+1).= (7,j-1). The and operator ’.’ can be omitted when
there is no confusion. For example, the previous condition can be specified as

CNU-1FD 110+ 1/+ 1) = (i)-1).

1111111111111111

1111 11111111111121111111111
11 1

1 1

11 1

11 1

1 1

111 1

1 b %

1 1

1 11
1 1
1 1
11 b
1 1
1 1
b 1
11 1
1 1
1 1
1 1
1 1
1 1

b B § 11 11

1 11 1

1 11 1

1 1 1

1 11 b

11 11 1

1 1 1

1 11 1

1 1 1

11 1 1

1 1 1

1 1 1

11 1 1

1 1 b 3

1 1 1

i1 1 1

1 11 1

1 1 1

1 1 1

11 11 1

1 1 1

1 111 1

111

Figure 2.8 Output from Stefanalli and Rosenfeld's algorithm.

e

o eats otk e a vk

57

Figure 2.9 3x3 pictorial condition.

Definition 2.3: Contour Pixel

A pixel p; satisfying any of the following conditions is called a contour pixel.
C1: (LN -+ 1))

C2: (il)-(j+ 1)

C3: (.1)~(-1.])

C4: (L)~ (iJ-1)

Definition 2.4: Medial Line Pixel
A pixel p; satisfying any of the following conditions is called a medial line pixel.

- M

-t

L NG =G+ 1) + 1)+ 61+ D)0+ 1)+ (+ 1) + [+ 1,j+1))
L (=L 0+ 1 D010+ -1+ D+ G+ DI+ 0+ T/1)+ (+ 1))
L @)1 -+ LT+)+ (+ TN+)+ + 1) +(+ 1,7+ 1))
s ()0 1)~ -1+ D011+ G- 1)+ -1+ 1)+ (+ 1+ 1)+ (i + 7))
o M5 (0,)(+ 1)) =+ 1,j-1) =0+ T)((-14-1)+ (-1.7) + (-1, + 1))

« M

N

e M

W

e M

o

o MB: (,)(i,j+ 1) -+ 1,0~ (-1.j+ 1)((-1.j-1)+ (j-1) +(I+1,j-1))
o M7: (-1,))~ (-1,j+ 1)~ G- NN+ 1J- 1)+ ((+1,/) +(+1,j+ 1))
o M8: NU-1) = (1) = G+ 1-1)((-17+ 1)+ (Lj+ 1) +(i+1,j+7))
o MO: (i N+ 1,j-1)-(ij-1)~{i+1,))

o M10: (i N(+1,j+1)= (i j+1)~(i+1))

o« M11: (i)(-1, 5+ 1)~ (-1,0)~(j+ 1)

« M12: (-1/-1)=(-1.0) = (/-1 05

-

o Th T T TR e

e Bwd

A

59

Definition 2.5: Redundant Pixel

A pixel p; is said to be redundant if any of the following conditions are satisfied.

« R (L)GE+1.DGj+1) - (-1/-1)
« R2: (LNUF)E1)-0+1,j+17)
e R3: (NU-11DG+1)=(+1)-1)
« R4 (LNEF)(+1,)-(-1,j+7)

The extended parallel thinning algorithm is given below.

Algorithm 2.4: Thinning

procedure thinning;
declare
P...: input binary image;
Toxn - thinned binary image,
C_ ., : contour points;

mxn *
begin
T= 0
do forever
begin
fori:= 1to 2
begi—
T=T+A(P,I)
it (T = P) then exit;
C:=a(Pl);
P:=P.-C+T,
end;
end;
7(T7);

end; /* thinning */

function a(P, i)
begin

iti =1then
extract contour points satistying C1 and/or C2;
else /*i = 2%/
extract contour points satistying C3 and/or C4;
return{contour points);
end; /*a(P,I)*/

function A (P, i)
begin
iti=1then
extract mediat line points satisfying M1-M10;
else
extract medial line points satisfying M1-M8, M11-M12;
return(medial line points);
end; /*A(P,1)*/

function ¥ (T)
begin

set redundant points in T satisfying R1-R4 to 0;
end; /*P(T)*/

The skeleton of the input image is formed by iteratively removing the contour

pixels, except the medial line pixels, from the input image. To avoid nonconnected or

empty medial lines for a connected image, each iteration is divided into two

subiterations (Stefanalli and Rosenfeld [1971]). In subiteration 1, contour points

satisfying conditions C1 and/or C2 are removed. In the next subiteration, contour

points satisfying conditions C3 and/or C4 are removed. The medial points detected

at each subiteration are accumulated. In order to avoid the elimination of contour

points which are also final points, all the contour points are first deleted from P and

then the final points are added. The functions A (P, /) and a (P, /) compute the contour

points and the medial points respectively for subiteration i.

S

61

The line thickness of the image is reduced to unity at all points, by removing
the redundant pixels defined in R1 thru R4. The function ¥ (T) removes the redundant
pixels from 7. i takes the value 1 and 2. Figure 2.10 is the output of Algorithm 2.4 for

the input pattern shown in Figure 2.7.

The features, extraction and their representation are described in the next

chapter.

62

1111111111111111

111111111 1113111111111

11111111

R R o R o N R R R R R R R N

Ll R R R L

Figure 2.10 Output from thinning algorithm.

3. FEATURES
DEFINITION, EXTRACTION AND REPRESENTATION

3.1 Introduction

Any pattern which can be recognized possesses a number of discriminatory
properties or features. The number of features needed to successfully perform a
given recognition task depends on the discriminatory qualities of the chosen features.
Feature selection and extraction plays a central role in pattern recognition. One of the
important steps in any recognition process is to consider the problem of what
discriminatory features to select and how to extract them. During the past several
decades considerable research has been done to define and extract the good quality
features (Stringa [1990), Ott [1974], Suen [1982a], Zhan [1988]). However, the
problem of feature selection is usually complicated by the fact that the most important
features are not necessarily easily measurable, or, in many cases, their measurement
is inhibited by economic considerations. In fact, the selection of an appropriate set
of features which takes into account the difficulties present in the extraction or
selection process, and at the same time result in acceptable performance (in terms
of speed and reliability), is one of the most difficult tasks in the design of pattern
recognition systems (Tou and Gonzalez [1974]). Also, one should keep in mind that

recognition techniques vary widely according to the features chosen, the way these

64

features are extracted, and the classification scheme used (Suen et al [1980)).

The features used in solving character recognition problems can be divided into
two categories: (1) mathematical (statistical) features, and (2) structural features.
Commonly used mathematical features are: transformation and series expansions
(Wakahara [1988], Yoshimura [1988], Takahashi [1988], Kushnir {1985]), Lai and Suen
[1981], Ott [1974]), correlation coefficients based on the pixels in the pattern
(Tsukumo and Tanaka [1988], Minneman [1966], McLaughlin and Raviv [1968]),
density of pixels in overlapping and nonoverlapping regions in an image (Linquan
[1988], Yamada et al [1988], Akamatsu and Kawatani [1983]), moments of character
pixels about a chosen point (Tucker and Evans [1974]), crossings such as transitions
from background to foreground and vice versa (Holt [1974]), distances of elements
or line segments from a given boundary (Fu [1982]), multidirectional loci (Suen
[1982a]), and n-tuples (occurrence of zero (background) and one (foreground) pixels)

(Leveridge and Leedham [1988]).

Structural features describe the geometrical and topological shapes of a
pattern. Commonly used structural features are strokes and bays (cavities) in various
directions (Chang et al [1988], Cheng and Hsu [1986], Ding, Wu and Zhu [1988], Hsu
and Cheng [1985], Hung [1987], Jian-long and Wenhao [1988], Zhang, He and Ge
[1988], Ahmed [1986], Suen and Shillman [1977]), end points, intersection of line

segments, loops (Ali and Pavlidis [1977]).

A b 1

65

The structural features have high tolerance to distortion and style variations and
tolerate a certain degree of translation and rotation whereas mathematical features are
highly sensitive to style variations, translation and rotations. On the other hand, it is
easy to design and implement machines to extract the mathematical features are easy
compared to extraction of structural features. A comparative study and an evaluation
of the relative merits of various features based on the sensitivity to deformation of

patterns and practical implementation can be found in Suen et al [1S20;.

3.2 Structural Description of Characters Using DAG

3.2.1 Primitives

Characters and symbols are composed of line-like elements called primitives.

The following primitives are used to describe them:

=9

. Vertical line
2. Horizontal line
3. Left diagonal
4. Right diagonal

Left curve

o o

Cap

N

Right curve
8. Cup

The pictorial representations of these primitives are given in Figure 3.1. The numbers

shown along with the primitives in Figure 3.1 will be used to represent those primitives.

Each primitive, p has a set of attributes, A.
Ap) = {a,, a,, ... ,a,}
Several attributes such as type, size, location, etc., could be defined for a primitive.
The minimum required attribute for a primitive is its type; others can be left as optional

to the specific implementation.

An analysis of the characters of the Latin, the Cryllic and the Indian languages
revealed that they have some common geometric characteristics. The characters of
these languages can be divided into 3-tiers as shown in Figure 3.2. The size of tier-2
is almost double the size of tier-1 and tier-3; tier-1 and tier-3 are of approximately the
same size. This fact can be used to divide the input image into three zones with the
size ratio of 1:2:1 instead of three equal sizes. The location attribute can be defined

based on these divisions.

3.2.2 Structural Description
The structure of a character/symbol (primitives present in it and the relations
satisfied by them) can be described by a directed attribute graph (DAG). The nodes

of DAG correspond to the junctions of the character. By junction we mean either the

LR o

1. Vertical

/

4. Right diagonal

7. Right curve

67

2. Horizontal

5. Left curve

N4

8. Cup

Figure 3.1 Primitives.

\

3. Left diagonal

TN

6

6. Cap

68

Tier-1 .

we OF 2

Tier-3

—— -‘————-

534! @___kis:

Latin Char. Indian Char. Cryllic Char.

Figure 3.2 Common geometric characteristics of major scripts.

S

' 69

end point of a primitive or a point where two or more prirnitives meet. The edges and
direction of the DAG are the primitives and the direction associated with the primitives
respectively. The attribute set A(p) of the primitive p is assigned as the label of the
edge representing the primitive p in the DAG. Graphical representation of pictures
consisting line-like elements has been used by Narasimhan [1964] in the analysis of

bubble chamber photographs and by Hildich [1968] in the analysis of chromosomes.

3.2.3 Representation of Directed Attribute Graph

The DAG of a character can be represented by a connectivity matrix (c-matrix).
The c-matrix of a DAG is a square matrix of size nxn, where n is the number of nodes
in the DAG. Let, ¢, represent the element in the /" row and /" column of a c-matrix.
Then, ¢, is non-zero if and only if the nodes / and j of the DAG are connected by an
edge. When non-zero, ¢; represents the label (attribute) of the edge (corresponding
to the primitives joining the junctions represented by nodes / andj). ¢; is positive a (p)
if the direction of the edge is from i to j, otherwise it is negative a (p). The DAG of the
Malayalam letter) (GHA) and its c-matrix are given in Figures 3.3, and 3.4

respectively.

3.3 Definition and Extraction of Primitives

70

'

6
6 b 10
2
5 < >7
k ‘Ji
A —4—s

Figure 3.3 Directed attribute graph (DAG) of QQI(GHA).

71

10

Figure 3.4 C-Matrix of af/(GHA)

Uy

72

3.3.1 Detfinition of Primitives

Definition 3.1: Vertical Line

The pixels satisfying any of the following conditions are declared as a vertical
line.

1. ((-1,-1)+ (-1, + @17+ D)NG+ 1.7)

2. ((+1,j-1+({+1,)+(+1,j+1)UNHU-1.))

Definition 3.2: Horizontal Line

The pixels satisfying any of the following conditions are declared as a horizontal
line.

1. ((-1,j-1)+ (i j-1)+ (i + 1,j- DN+ 1)

2. ((F1,j+ Y+ (@ j+ 1)+ @+ 1,j+D)G-1,/-1)0.))

Definition 3.3: Left Diagonal

The pixels satisfying any of the following conditions are declared as a left
diagonal.

1. ((f+ 1)+ (+1,/+ 1)+ [+ 1,/+ 1)-1,4-1)(0.f)

2. ((-1)-D)+01)+G-DNG+1,j+7)

Definition 3.4: Right Diagonal

The pixels satisfying any of the following conditions are declared as a right

S

73

diagonal.
1. (1) + T+ 1))+ G+ 1)) N1,/ + 1)
2. ((F1.N+(-1,j+ 1)+ (@j+ DN +1,)-1)

Definition 3.5: Vertical Junction Point

The pixels satisfying any of the following conditions are declared as a vertical
junction point.

1. ((-1,j-1)+ (-1))+ (-1,j+ D)GN =+ 1j-1) =+ 1)~ (+1,j+1)

2. ((+1/-N+(+ 1)+ 0+ 1j+ D))~ (-7,-1)~ (1)~ (1,j+1)

Definition 3.6: Horizontal Junction Point

The pixels satisfying any of the following conditions are declared as horizontal
junction points.

1. ((-17-1)+ D+ + 1,10)0N - -1,i+ 1) j+ 1)~ (i +1,j+ 1)

2. ((-1j+ 1)+ G+ 1)+ (+ 1,j+ D))~ (-1,5-1) = (Gf-1) ~ i+ 1,j-1)

3.3.2 Extraction

The extraction of primitives from the input image is very important because the
succéss of the classifier mostly depends on the correctness of the extracted primitives.
The various primitives present in the input image are extracted using the above

definition. According to this scheme the pixels belonging to the lines making small

74

angles with any of the principal directions are assigned the primitive corresponding to

the principal direction, thus nullifying the effect of small distortions in the input symbol.

The junctions in the input image are determined, tentatively, as the points which
are assigned v-primitive or h-primitive and satisfy the conditions given in the definitions
3.5 and 3.6 above. The set of junctions so determined will have many redundancies,
but the redundancies will be eliminated at a later stage. The computed junctions are
numbered. A preliminary connectivity matrix consisting of only straight lines along the
principal directions as primitives, is constructed. The primitives are qualified with
attributes short and long, depending upon the length of the line segment compared
to a threshold value, computed from the skeleton size of the input image. Between
junctions / and j of the image a line segment in a particular direction exists if the
junctions are connected by a chain of pixels satisfying the condition given
(corresponding to the direction) in the definitions 3.1 to 3.4. The program for
constructing the preliminary c-matrix of the input symbol is speeded up by testing for
only possible line segments between a pair of junctions. For example, it is not
necessary to test for a horizontzl line between junctions which are almost vertically

apart.

The redundancies in the preliminary c-matrix constructed by the above
procedure should be eliminated. Some of the short line segments should be

combined to get curved primitives. The extractions of curved primitives are achieved

75

by approximating them as combinations of straight line segments in the principal
directions as shown in Figure 3.5. When a curved primitive is obtained by combining
three line segments, the two intermediate junctions in the curve should be deleted
from the set of junctions. Also the junctions within a radius of a threshold value (3 in
our case) should be treated as one junction. That is, the columns and rows of the
preliminary c-matrix corresponding to these junctions should be merged. With these
modifications on the preliminary c-matrix of the input image, the actual c-matrix of the

input image is obtained. The c-matrix of the image in Figure 2.10 is given in Figure 3.6.

3.4 Knowledgebase

The knowledgebase contains several databases, one for each language. It also
contains the mapping between languages and language codes. Each database
contains the c-matrices of the symbols in the language and a decision tree called
character recognition tree (CRT). In the first stage of a two stage recognition system,
the c-matrices are used to recognize the various symbols in the input image. in the

second stage the CRT is used to recognize the characters from the symbols.

One c-matrix for each symbol in the language is stored apriori in the database.
This set is enhanced further during the training period. The CRT for each language
is built apriori in the database after careful analysis of the structures and symbol of the

characters in each language.

Left curve

B

6'

Cap

Figure 3.5 Curved primitives and their approximations.

76

Right curve

N/

8

Cup

77

-1

Figure 3.6 C-Matrix of input image in Figure 2.10

The techniques (the two stages of the recognition systems, including CRT)
developed for the recognition of symbols and characters are discussed in detail in the

next chapter.

4. CHARACTER RECOGNITION

4.1 Introduction

The classification or recognition of an unknown character pattern P is a
decision making process that assigns the unknown P to a member of a set K= {k,,
k,, ... ;k.,} of m known classes or rejects P as & non-member of K via the extraction

of significant features or attributes (p,, p,,p,,) of P from a background of irrelevant

detalil.

Sometimes, a classifier may mistakenly recognize P as ki when it really belongs
to k. This error is known as substitution error. Ideally, a classifier should have zero
substitution error and zero rejection error as long as the input pattern is a member
of K. Achieving an ideal classifier is highly impractical due to noise and deformation

like unexpected breaks, holes, limbs, etc., in the input pattern.

The development of a good classification method having minimum rejection and
substitution errors has been one of the major topics of research in pattern recognition
since the inception of this field. Methods from various theoretical and applied fields
of science and engineering, such as mathematics, formal languages, graph theory,
etc., have been explored and applied for this purpose. Stil, a good general

classification method applicable to various classes of patterns such as characters of

TR AL FT TR Tt e S -

several scripts or characters of a single script with printed, handwritten and cursive
characters, supplied either on-line or off-line, is not available. It shows the complexity
of the character recognition problem. The different classification methods cited in the

literature are reviewed briefly in the following paragraphs.

4.1.1 Overview of Classification Methodologies

The pattern classification methodologies reported in the literature can be loosely
grouped into three different categories: decision-theoretic, syntactic and hybrid
categories. The decision-theoretic approach is based on the utilization of decision
functions for classifying patterns. In a simple way, this approach could be stated as

follows:

Let m be the number of classes. Establish m decision functions d,(x), d,(x), ...
dm(X) with the property that if a pattern x belongs to class v, then
d,>dl,j=1, 2, ...,m, jui
This relationship specifies a decision rule in which each pattern to be classified is
substituted into all decision functions. The pattern is assigned to the class whose

decision function yields the largest numerical value. Ties are resolved arbitrarily.

The decision functions may be expressed in a general linear form

81

K
dk(x) = [-21 wkl¢l(x)l k= 1! 2. e M

where the {¢ ()} are real, single-valued functions of the pattern x, and {w,;} are the
coefficients of the decision function corresponding the class w,. The usual approach
is to specify first the functions {$,(x)}. The problem then becomes one of determining
the coefficients {w,} for each class, so that the foregoing decision rule will hold for
as many patterns as possible and will satisfy the given criteria. The decision-theoretic
approach to pattern recognition deals with algorithms for estimating these parameters

using sample patterns in a training process.

There exist numerous adaptive algorithms that can be used for training a
pattern recognition system (Sabourin and Plamondon [1990], Tappert [1990], Simon
and Baret [1990]). These algorithms can be divided into (1) deterministic and (2)
statistical procedures. The deterministic algorithms deal with the estimation of the
decision function coefficients directly from the patterns without resorting to statistical
considerations, while statistical algorithms are based on the statistical properties of the
various pattern populations under consideration. The use of decision-theoretic
approach for classification can be found in (Shyu, et al [1988], Wang and Suen

[1984], Dattatreya [1980]).

In the decision-theoretic approach, if the pattern recognition system performs

82

well during training with a well-chosen set of representative patterns, it may be
expected to perform satisfactorily when confronted with unknown ‘field" data during

normal operation.

The decision-theoretic approach lacks a suitable formalism for handling pattern
structures and their relationships. However, the structure of a patter;w carries very
useful information that could aid or play an important role in the classification process.
The syntactic approach to pattern recognition possesses the structure-handling
capability. The terms linguistic, structural and grammatical pattern recognition are also

often used in the literature to denote the syntactic approach.

Syntactic pattern recognition is based on concepts from formal language
theory, the origins of which may be traced to the middle of 1950s with the
development of mathematical models of grammars by Noam Chomsky [1956].
Considerable theoretical as well as applied studies have been reported in the pattern
recognition literature (Stringa [1990], Hsieh, et al [1990], Lu and Suen [1990],
Morasso [1989], Downton, Kabir and Guillevic [1988], Ding, Wu and Zhu [1988], Hsu
and Cheng [1985], Liu and Tai [1988], Xiu-Guang and Jia-Ruo [1988], Leow [1986],
Shridhar and Badreldin [1985], Fu [1982], Zhang [1980], Wang [1985]).

Basic to the syntactic pattern recognition approach is the decomposition of

patterns into strings of subpatterns or primitives. Each primitive is interpreted as being

83

a symbol permissible in some grammar, where a grammar is a set of rules of syntax
for the generation of sentences from the given symbols. Strings generated from a
pattern class are used to construct the grammar for the class of patterns. Thus, n
grammars (G,, G,, -.- ,G,) are constructed for n classes (C,, C,, ... ,.C,) of patterns.
The language L(G) generated by grammar G, would consist of sentences representing

the pattern class C, where 1<in.

Given a sentence S(P) representing an unknown pattern P, the recognition
process is one of deciding in which language P represents a valid sentence. Thus, if
S(P) € L(G) only,then P e C,. A unique decision cannot be made if the sentence S(P)
belongs to more than one language. In this case, additional features and/or a
different approach may be needed to resolve the conflict. If S(P) ¢ L(G,), 1sisn, then

P is rejected, that is, assigned to a rejection class.

Several different types of grammars and parsing techniques are described in
the literature (Tsai and Fu [1980], Gonzalez and Thomason [1978]). In general, the
various techniques of the syntactic approach could be classified into the deterministic,
stochastic and attributed grammar methods. In the deterministic method, an unknown
pattern could be successfully parsed by more than one language hindering the
decision process. The stochastic grammar method was proposed to help in resolving
the uncertainties (Fu [1974]). Stil, the stochastic method fails to capture the attributes

related to primitives or subpatterns. The attributed grammars provide semantic rules

84

to incorporate attributes associated with each primitive. This approach allows

recognition of patterns of greater variability.

Graphs facilitate representation of pattern primitives, their attributes and
connectivity. Hence, some researchers used graph-theoretic techniques for patten
recognition (Dong, Wu and Ding [1988], Ping and Cheung [1988], Tsai and Fu [1980],

Faris [1983], Wang [1984)).

Researchers have found that application of either decision-theoretic or syntactic
approach alone is not sufficient where there is a high degree of variability, complexity
and distortion in the input patterns. Therefore, hybrid systems empolying both
decision-theoretic and syntactic approaches have been suggested by several
researchers (Suen [1990], Downton, Kabir and Guillevic [1988], Ahmed [1986], Fu

[1983], Tsai and Fu [1980]; Duerr et al [1980]).

Characters can be recognized either on-line (Berthod and Maroy [1979],
Berthod [1982]) or off-ine. The ciassifier developed in this thesis recognizes

characters off-line. It is explained in detail in the rest of this chapter.

4.1.2 Multistage Hybrid Classifier

The classifier developed in this thesis is a two stage recognition system. In the

85

first stage, the symbols constituting the input pattern are recognized using
graph-theoretic approach. In the second stage, the character is recognized from the
symbols using a decision tree and the properties of the language. Thus, this

approach falls under the hybrid category described earlier.

The two stages are explained in detail in the following sections.

4.2 Stage I: Recognition and Removal of Symbols

Let,

S = {8, Sp - Sp}
be the set of symbols constituting the character set of a language L. As stated in the
previous chapter, the c-matrices, that is, DAGs, of the members of S are stored inthe

knowledgebase.

Let,

P = {P,, Py ... Pm}

be the set of symbols in the unknown input pattern P. Notice that P c S.

" The first stage of the recognizer has to identify the symbols p,, p,, ... Py, in the
unknown pattern P. The a-priori knowledge stored in the knowledgebase is used for

this purpose.

The symbol recognition problem can be stated as follcws:

"Given the DAG(P), if DAG(s,) is isomorphic or subisomorphic to DAG(p), then

the symbacl s, is in P, where s, € S for 1<ikn.’

Theorem 4.1: The symbol recognition problem stated above is np-complete.

Proof: The normal method of proving a problem to be np-complete is by converting
the given problem to a known np-complete problem. Hence, we will prove the
theorem by converting the symbol recognition problem to a known np-complete

problem.

DAGs for P and S are graphs. In order to recognize a symbol, the recognizer
has to compute whether the graph DAG(s) is isomorphic or subisomorphic to the
graph DAG({P). In other words, this problem is the same as identifying isomorphism
or subisomorphism between the two graphs. It has been prove.. that computing
whether a graph G, is isomorphic or subisomorphic to graph G, is np-complete
(Garey and Johnson [1979]). Hence, the above symbol recognition problem is an

np-complete problem.

87

4.2.1 Correlation Coefficient

Obtaining isomorphism between the unknown pattern and the known symbols
is not always possible due to noise and variations in the patterns since isomorphism
is a 1:1 correspondence between two graphs. Also, as proved earlier, checking for
isomorphism is computationally expensive. Therefore, instead of computing
isomorphism, a method of computing correlation coefficients between the known
symbols in the knowledgebase and the unknown pattern is proposed and explained

in the following paragraphs.

The following definitions are used to describe the methodology and the

recognition algorithms.

Definition 4.1: Null Graph
The DAG(P) of a pattern P is said to be null, f DAG(P) has no edge or node

in it. The c-matrix of a null graph will have no or zero entries. It is denoted as op.

Definition 4.2: Null Pattern

A pattern P is said to be null or has only a background, if DAG(P) is ep.

Definition 4.3: Null Pattern Furiction
Given P, the function ¢ determines whether P is a null pattern or not. It is

defined as follows:

88

1, ¥ b
P = G, comins
Definition 4.4: Neighborhood Rule
If junction ¥ of pattern P corresponds to junction o of pattern Q, then the

junction connected to ¥ by a primitive p in P corresponds to the junction connected

to o by the same primitive p in Q.

Definition 4.5: Primitive Correspondence Rule

if junctions ¢, and ¥, of pattern P correspond to the junctions o, and o, of
pattern Q respectively and the primitive connecting the junctions ¥, and ¢ jIs same as
the primitive connecting junctions o, and o p then the primitive connecting ¢, and ¢ jin

P corresponds to the primitive connecting junction o, and g, in Q.

Definition 4.6: Correlation Coefficients
Let, {p;, P,P,} De the set of n primitives in the unknown pattern P, {94, 9.
- Jm} be the set of m primitives in the known pattern Q and {p,, Py - P} be the

set of k primitives in P for which correspondences were found with primitives in Q.
Wae define the following two types of correlation coefficients:

P-Correlation: The P-correlation coefficient, denoted as a (P,), indicates the extent

of correlation with respect to the unknown pattern P. It is defined as:

89

0 p(P.Q) = £

Q-Correlation: The Q-correlation coefficient, denoted as a 4(P,Q), indicates the extent

of correlation with respect to the known pattern Q. It is defined as:

2olP.Q) =X

3

a is also called the correlation coefficient function.

Definition 4.7: Junction Complexity
The complexity of a junction g is said to be x, if x primitives meet at 8. The

junction g is ax-complexity junction.

Definition 4.8: Same Complexity
Two junctions g, and B, are said to have the same complexity, if both are

x-complexity junctions, that is, the complexity of 8, is equal to the complexity of 8.

Definition 4.9: p-neighbor

The p-neighbor of a set of junctions X is defined as a set Y of junctions such

that the junctions of X are connected to junctions of Y by primitive p.

oo e se AR T o

T T

In order to corpute the correlation coefficients, the c-matrix corresponding to
the DAG(P) of the unknown input pattern P is compared with the c-matrices
corresponding to the DAGs of the member of S in the knowledgebase one by one and
correlation coefficients are computed. From the set of correlation coefficients, the
maximum correlation value is computed to select the symbol which has the maximum

correlation coefficient with the input symbol.

4.2.2 Computation of correlation coefficient

Let us consider an example to illustrate the method of computing correlation
coefficient between two patterns. Let the unknown character P be (Cl) and the
known symbol s, be (CA). They are shown in Figure 4.1 with junctions numbered
starting from 1. The correlation coefficient has to be computed between P and S;
To compute the correlation coefficient between P and s, correspondence between the
junctions of P and s;, must be established based on the structural similarity between
P and s;. Suppose at some stage we conjecture that a junction p(8) of pattern P
corresponds to a junction s,(6) of symbol s; the correspondence is denoted as
8<->6. Then, by assuming that P and s, do not have any disconnected components,
we can extend the correspondence to other junctions of P and s; by applying the

neighborhood rule.

In the example, with the correspondence 8<->6 and by applying the

91

3 4 5
6 7 8 9
10 11 12

(a) Unknown Pattern (Cl).

1 2 3
4 5 6 7
8 9

(b) Known symbol (CA).

Figure 4.1: Unknown pattern &) (Cl) and known symbol & (CA).

92

neighborhood rule we can find correspondence between junctions 9<->7, 7<->5,
4<->2, 11<->8 of P and s. By repeatedly applying the correspondence and
neighborhood rule, we can establish further correspondence to junctions 6<->4,

3<->1, 5<->3, and 10<->8.
Note, the junctions 1, 2 and 12 of P do not correspond to any junction of S,

From the correspondences between various junctions of P and s, we can
compute the correspondences between the primitives of P and s; by applying the
primitive correspondence rule. In the.example, the unknown pattern P has 13
primitives. The known symbol s, has 10 primitives out of which correspondences
could be found for all 10 primitives with P. Therefore, the P-correlation coefficient is
10/13 and the Q-c=rrelation coefficient is 10/10. The Q-correlation indicates that the

known symbol completely (100%) matched or present in the unknown pattern P.

In the above method of computing the correlation coefficient we assumed a
junction correspondence to start with. If the starting correspondence is wrong then
the correlation coefficient computed will not be correct. So the following heuristic
techiniques can be used to get the initial correspondence between a junction of P and

a junction of s,.

Algorithm 4.1: Computation of Initial Correspondence

93

Partition the set of junctions of pattern P and the symbol s, according to the
equivalence relation “same complexity”. The partitions on the junctions of P and s, of

Figure 4.1 are given in Table 4.1.

If the symbol s, is to be a derived from pattern P, a junction of s, of
x-complexity will correspond to a junction of P of the same complexity, except the

junction at which the additions or deletions are made.

For example, consider the 4-complexity junctions of symbol s, and the pattern
P of Figure 4.1. P has got 2 junctions {4,8} of complexity 4 and the symbol s, has got
1 junction {6} of complexity 4. So there are two possible initial correspondences: (1)
4<->6 and (2) 8<->6. Suppose we choose the first correspondence 4<->6 and
extend it by the neighborhood rule, we get the correspondence between the junctions
as 1<->2, 5<->9, 3<->5, 8<->9 etc. All these correspondences are between
junctions of different complexity and so this cannot be a good choice. If we choose
the second correspondence 8<->6 the junction correspondences can be found as
9<->7, 7<->5, 4<->2, 11<->9, etc. This time all the junction correspondences
except 4 <->2 are between junctions of same complexity and so this is a better choice

than the first one.

Algorithr 4.2: Computation of Initial Correspondence

An alternative method has been developed by which a set of initial junction

e TTTRRRERRT s WYY

R R R R BTN " Vb T 7 TR R v &

i
l

04

Table 4.1 Partitions of P (é\)ands (&)

Junction
Complexity

Partitions on
junctions of P

Partitions on
junctions of s,

(59,12)
(1,2,3,6,10,11)
(7)

(4.8)

(8,7)
(1,4,8,9)
(2,5)

©)

95

correspondences between two patierns P and Q can be found. The method is

explained below.

Partition the set of junctions of P and s, as in Aigorithm 4.1. Form the subset
pairs (P}, sy), where P, ands; are the j-complexity partitions of P and s, respectively,
for all possible j. From these initial subset pairs generate additional subset pairs by

computing the p-neighbors of the subsets in each pair, for all p.

Then, intersect the generated subset pairs with the initial subset pairs. If the
result of intersection is a pair of singleton subsets, a correspondence between the

junctions (singleton elements of the pair) is assumed.

The result of the application of the above algorithm for the pattern P and the
symbol s, in Figure 4.1 is shown in Table 4.2. Intersection of the subset pairs in line
3 and line 12 gives one junction correspondence as 7<->5. Similarly the intersection
of the subset pairs in line 2 and line 9 gives a correspondence 3<->1. Other
correspondences between junctions can be found in a similar manner as follows:

6<->4, and 8<->6.

The second method was used in the implementation. The reason for that is,
even if the pattern has disconnected components, the method will succeed. For

example in the case of Tamil consonants such as & , ew, etC.

e o g

96

Table 4.2 Partitions of P (#1) and s, (&)

Line No. Symbol P

1 (5,9,12)

2 (1,2,3,6,10,11)
3 (7)

4 (4.8)

5 (4,8)

6 (4,7,8,12)

7 (4,7,10,11)

8 (6,10)

9 3)
10 (6,8)
11 (1,4,8,11)
12 (8,5,7,9)

mm

(37)
(14,8,9)
(25)
(26)
(56)
(25.8,9)
(4.8)
(1.8)
(1,34,6)
29)
(5.7)

1-complexity
2-complexity
3-complexity
4-complexity
2-neighbors of
subsets of line 1
1-neighbor of
subsets of line 2
2-neighbors of
subsets of line 2
S-neighbors of
subsets of line 2
1-neighbor of
subsets of line 3
2-neighbors of
subsets of line 3
1-neighbor of
subsets of line 4
2-neighbors of
subsets of line 4

g7

4.2.3 Symbol Recognition

Algorithms 4.1 and 4.2 explain the method of computing the initial correlation
between the unknown pattern and a known symbol in the knowledgebase. In order
to decide which symbol is in P, it is necessary to compute the set of correlation
coefficients between P and each member of the symbol set S. Then, maximize the
set of correlation coefficients to select the symbol which has the maximum correlation
coefficient with the unknown input symbol P. The symbol recognition algorithm is

given below:

Algorithm 4.3: Symbol Recognition Algorithm

procedure recognize_symbols;
declare
P : unknown pattern;
S : set of known symbols in the knowledgebase;
K: set of DAGSs for S;
¢ : set of recognized symbols;
o : array of P-correlation coefficients;
¥ : array of Q-correlation coefficients;

begin
compute = {o};
read DAG(P);
do
begin
fori:= 1 to |K|
begin
compute k = K]i};
compute symbol s ¢ S for k;
compute o [i] = a,(P, 8);
compute y[i] = ay(P, 8);
end;

a8 g

compute symbol r such that maximize(w, v);
Hr=o
compute found_symbol = faise;
else
begin
compute = £ u {r};
compute found_symbol = true;
remove r from P; /* using Algorithm 4.4 */
end,
while((found_symbol = true)&(DAG(P) != 2p));
end;

4.2.4 Removal of Symboils

Once the existence of a known symbol s, in the input pattern P is recognized,
it is removed from the DAG(P) using Algorithm 4.4 given below so that the other
symbols in P could be recognized. The algorithm removes all the edges and nodes
which are in DAG(s,) and DAG(P) and not in DAG(P’) where DAG(P’) is the directed
attribute graph corresponding to the pattern P’and P’ = P - s,. In other words, P’ is

the pattern obtained after removing the pattern corresponding to symbol s, from P.

In order to describe the symbol removal algorithm, the nodes and edges in
DAG(P) are grouped into three categories as follows: (1) E, and N, be the set of
edges and nodes, respectively, belongs only to s, and not to P’. (2) Ep and N, be
the set of edges and nodes, respectively, that belongs only to P’ and notto s,. (3) £,
and N,.. be the set of edges and nodes, respectively, that are common to both s, and

P'.

Algorithm 4.4: Symbol Removal Algorithm

procedure remove_symboli(P, s);

declare
P : unknown pattern;
s : known symbol to be removed;
E, : set of edges belonging to s;

begin
compute E,;
fori:= 1to |E,]|
begin
compute nodes (i,j) for edge E(i);
compute DAG(P), = 0;
end;
remove N,;
end;

Theorem 4.2: Algorithm 4.4 does remove s, and only s, from P.

Proof: As defined in Chapter 1, a character is obtained from one symbol or by

combining two or more symbols without any overlapping of primitives. Therefore,

there is no common edge between s, and P’, that is, E;p. = e. However, Ny, may or

may not be empty since the character could be obtained by combining symbols at

one or more junctions which form the cuiimon nodes. Since the algorithm does not

remove any common nodes, all the nodes of P’ are preserved. Removal of an entry

from the c-matiix of DAG(P) removes only the edge (primitive) connecting two nodes

and not the node itself.

100

After removing all the edges corresponding to s,, all the nodes in the set N, will
have zero complexity. Removing nodes in N, that belongs only to s, should not have

any influence on P’. Thus, the algorithm removes s, and only s, from P.

4.3 Stage Il: Character Recognition

After individual symbols are recognized, some of the adjacent symbols and or
multiple symbols in a single pattern are to be combined to recognize the characters
in the input text. The symbols €1, € , em, etc., are not characters by themselves.
They combine with the succeeding symbols and form a character. The symbol T

combines with preceding symbol or symbols to form a character.

Stage |l recognizes characters from the set of symbols recognized from Stage
I using a decision tree called Character Recognition Tree (CRT). The organization,

construction and searching of the CRT are described below.

4.3.1 Order of Symbols

For the purpose of construction and searching the decision tree, it is essential
that the symbols recognized in Stage | be presented to Stage Il as a string in a
specific order. Let us illustrate the importance of ordering with an example: In Tamil
Q(K!) is a character constructed from the symbols & and 1 . Stage |, after

recognizing the two symbols, could present them to Stage Il as either & and) or

101

as /] and &. If the decision tree expects the symbols as & followed 1, and
Stage | presents them in the reverse order, it is not going to recognize the symbols

as a valid character.

The ordering becomes an issue only for those characters that have symbols
touching each other (example, &\ (KI)) or one below the other (example, & (K)).
Depending on the language, one could order the symbols of such characters in any
way one wants since there is no advantage or disadvantage of one ordering over the

other.

However, symbols which appear isolated and side by side (example, A &(KE))
must be presented in the ordger in which they appear; reordering such symbols may
resultin wrong character recognition. For example, if a person delibsrately presents
the symbols of the character §1& (KE) in the order &6, then it is wrong to reorder

and recognize it as a valid character since the sequence &6 is not a valid character.

The Tamil symbols, for the purpose of presentation and construction of the
CRT, are divided into two groups: (1) major symbols and (2) minor symbols as shown
in Figure 4.2. Stage | will always present the minor symbols first followed by major
symbols unless the input pattern dictates otherwise. That is, if the input appears as
& (K1), it will be presented as & followed by 7). On the other hand, if the input

appears as 1&, it wil be presented to Stage ll as 1&.

102

GMFEELOrSH UL W

TeUuelloar M em & Sy @ F 2
200 T 6] & IV % ML ¢ (D (€5
B&Fg (bHbOG H (WP (UHA
O M & G 0O ED o lem

(a) Major symbols.

e "2 9¢,

af

(b) Minor symbols.

Figure 4.2 Major and minor symbols of Tamil.

103

Similar ordering has been done for Malayalam characters as well. The set of

Malayalam symbols are shown in Figure 4.3.

4.3.2 CRT: Character Racognition Tree
Let,
S = {8, Sp ... 1Sy}

be the set of symbols in a language.

Let,
Y =8u{|}
where -| is the end of text (end of all symbols) indicator. (Let us assume that Stage

i will indicate the end of text by -|.)

The CRT is constructed as a multiway tree. Ina CRT, each path from the root
to a leaf corresponds to one valid character in the language. This way, the nodes of

the CRT correspond to the prefixes of the characters in the language.

The data structure for a CRT node is given in Figure 4.4. A CRT node is an
array of n+1 elements; each element is a CRTnodeltem. The first element of a CRT
node corresponds to the first member of Y, the second element corresponds to the

second member of Y and so on. Hence, the CRT node is indexed by the members

104

B U 1 Al B a an g ou
€ 0 W a8 M ® 1 6
4 A0 W R @ ® B 8l
0O B O QU N B ®m ©y
2 8) A 8 o °

o
11y oy 4@ e @
m o & @ é @z S

(a) Major symbols.

(b) Minor symbols.

Figure 4.3 Major and Minor symbols of Malayalam.

3¢3g

c

105

type
sym = (sp 8y oor 1Sy 'I);

structure CRTnodeltem

j
ki
!
:
{
|
)
’j
.i.
k
.

char NodeType;
short CharCode;
CRTnode *CRTnodePtr,

I
CRTnode = array[sym] of CRTnodeltem,

Figure 4.4 Data structure for a CRT node.

106

of Y.

Each CRTnodeltem contains thiee fields: (1) Type, (2) CharCode, and (3)
CRTnodePtr.

The 'Type’ indicates the status till the current symbol. ‘Type’ could be any one
of the following values:

1. Intermediate

2. Termirial

3. Extendable-terminal

4. Not. character

The ‘intermediate’ type means that the string of symbols encountered so far is
not a complete character; however, the string is valid so far. The CRTnodePtr field
of the item is a pointer to the next CRT node in the tree to be : sed for searching. Any
value in the ‘CharCode’ field is not meaningful for this type, hence could be set to a

known value, say zero.

The 'terminal’ type indicates that the string of symbols including the current
symbol constitutes a valid character in the language. The 'CharCode’ field of the item
corresponding to the current symbol coni~ins the code given to the character for

internal representation. The value of CRTnodePtr is not meaningful for this type and

107

hence set to NULL (zero).

The ’extendable-terminal’ indicates that the string of symbols encountered so
far, including the current symbol, constitutes a valid character. However, the string
could be followed by other symbols to make another valid character. For example,
68 (KE) and €&« (KO) are two valid characters in Tamil. In this case, the item
corresponding to the symbol & (KA) in the string will be of tyce "extendable-terminal’.
When the symbol & (KA) is encountered, we cannot immediately declare the
character to be KE. The decision can only be made after seeing the next symbol.
The CRTnodePtr field of the item points to the next CRT node. The CharCode field

of the current item contains the code given to the character for internal representation.

The 'Not-character’ type indicates that the string of symbols seen so far,
including the current symbol, constitutes an invalid sequence; there is no further path
for searching. The CRTnodeptr and CharCode fields for this item are set to NULL and
zero respectively. Depending on the input pattern, one or more symbols from the

start of the string must be declared invalid and discarded.

The CRT for Tamil characters is given in Figure 4.5. The details of individual
items in each node are omitted to accommodate the figure in a single page. It is easy
to compute the value of the type fields from the figure. A similar CRT constructed for

Malayalam characters is shown in Figure 4.6.

108

RooT

¢ ? LI ¢

—
=) o
: d I\
(%4
]
d

14

c‘ * {o" a"mlm.'L'u' ﬂlglgl Q; ‘3"'!—' é.&,‘ﬁ“*'o.o,\c-}

cct =$_tb,\y'.5.@'g}
“te 1o @ e 9,2 2]
ce3 = i@:O,@}

cey = Levv cc1 U ecz U €3

Be : {6, m & 5, L, v, g, m,u, 12, W, 0,0, ,0T,7,]

sBEY : § em, @, o, &1

spez T L W,

Figure 4.5 Character recognition tree for Tamil.

109

[
6\ » &
)
a\ v\ A\ \
D O @ €6
K9 > ?
o 10) %

Ki>{ @ m. @ oD aQ, ¢n, 5 em, s, o, B, @, b, o3
Kies § o, m}
Ks. io'.\' qlé‘b.b"ﬂ“’}
Kée 194,@,._\]
B, xn.a}
Ks. { &,&, 0 an,n D,
Kz - ig,gi
e 1@1 m,moﬁ-’, MS
K7: 1 W, m al, om)
Kgs (D, a0 all, M nl, N, R AW, o0 S0, AL, W,
m’ mo eowo ml 2‘,0 IID, ‘ml GI m’ w, n, EJ‘

'm: an, &‘ &g'ns
Ke= KPUKD

Figure 4.6 Character recognition tree for Malayalam.

ST RS Y

0 ERTRETT TN e e e

110

Theorem 4.3: The maximum depth of the CRT, for a given language, is x where x

is the maximum string length of a character in the language. (The length of a string

is the number of symbols in the string.)

Proof: Starting from the root, we descend one level down in the tree for every symbol

in the string constituting the character. Therefore, the number of levels needed is the

same as the length of the string of a character. The maximum number of levels in the

CRT will correspond to the character with the longest string which is x. Hence, the

proof.

4.3.3 Operations on CRT

The following operations are defined on the CRT.

Create new node (CreateNewNode).

Initialize node (IniNode).

Set item of a symbol (Setitem).

Insert the string of a character (InsertCharacter).

Search for a character (Search).

The CreateNewNode operation creates a new CRT node and returns the

pointer to the node. If creation fails, NULL is returned. The IniNode operation

initializes all the items in the given CRT node to zero/NULL. The Setitem sets the

111

fields in the CRTNodeltem such as the NodeType, CharCode and CRTnodePtr. The

procedures to perform CreateNewNode, IniNode and Setitem are given in Figure 4.7.

4.3.4 Construction of CRT

Given the set of strings corresponding to the character set of a language, the
CRT can be constructed by inserting each string into the CRT using the
InsertCharacter operation. The procedure for InsertCharacter is given in Figure 4.8.
The input parameters to the InsertCharacter procedure are ine pointer to the root of
the CRT and the string of symbols of thé character to be inserted into the CRT. Itis
assumed that the string is NULL terminated. On the st cail to InsertCharacter, the
root pointer will be NULL and on return, the root will point to the root CRTnode. In
the subsequent calls to InsertCharacter, thu root pointer will be non-NULL and it will

not be modified. The Insert procedure assumes that the string is valid.

The CRT construction algorithm is given below. Each character string is read
and inserted into the CRT. The end of all character strings is indicated by an empty
string. After constructing the CRT, that is, when an empty string is read, the algorithm
returns the pointer to the root of the CRT. The returned root pointer should be used

for searching the CRT.

Aigorithm 4.5: CRT Construction Algorithm

il

112

procedure CRTnode *CreateNewNode()

,--.,
S LY ¢ NRLIE R S

declare
CRTnode *nodeptr;

begin
nodeptr = mem_alloc(sizeof(CRTnode));
return{nodeptr);

end; /* CreateNewNode */
procedure IniNode(nodeptr)

declare
i CRTnode *nodeptr;
tg sym i;
Vi
i

§ begin
fori=s,, to-]in sym
begin
nodeptr[i].NodeType = Not-character;
noder " ;!].CharCode = 0;
nodeptr[i]. CRTnodeptr = NULL;
end;
end; /* Ininode */

procedure Setitem(nodeptr, symbol, ntype, ccode, nextnodeptr)

declare
CRTnode *nodeptr, *nextnodeptr;
sym symbol;

char ntype;
short ccode;

begin
nodeptr[symbol].NodeType = ntype;
nodeptr[symbol].CharCode = ccode;

nodeptr[symbol].CRTnodeptr = nextnodeptr;
end; /* Setitem */

Figure 4.7 Operations on CRT Nodes.

IR

et

113

procedure InsertCharacter(crt, string, charcode)

declare
CRTnode *crt, *nodeptr, *newnodeptr;
sym string[]; /* string is NULL terminated */

sym 8;
short charcode;
int i

begin

if(sizeof(string = 0))
return(NOT_OK); /* error status */
if(crt = NULL)
begin
crt = CreateNewNodse();
IniNode(crt);
end;
nodeptr = crt;
s = string[0];
for(i=1; | < sizeof(string); i+ +)
begin
if(nodeptr[s].CRTnodeptr = NULL)
begin
newnodeptr = CreateNewNode();
IniNode(newnodeptr);
Setitem(nodeptr, s, Intermediate, 0, newnodeptr);

end;
nodeptr = nodeptr[s].CRTnodeptr,
s = string[i];
end,

nodeptr[s].CharCode = charcode;
if((nodeptr[s].CRTnodeptr |= NULL) and
(nodeptr[s].NodeType = Intermediate))
nodeptr[s].NodeType = Extendable-terminal;
else
nodeptr[s].NodeType = Terminal;
return(OK);
end; /* InsertCharacter */

Figure 4.8 The Insert Character procedure.

114

procedure CRTnode *CRTconstruct()

declare
CRTnode *root;
short charcode;

begin
root = NULL;
read(string, charcode);
while(string # o)
begin
InsertCharacter(root, string, charcode);
read(string, charcode);
end;
return(root);
end; /* CRTconstruct */

4.3.5 Searching CRT

Given a string of symbols, the task of the search algorithm is to search the CRT
from the root and identify whether there is a valid character in the given string. A valid
character is a substring of the given string starting from the first symbol. If so, return
the character code and the character string. Appropriate status should be returned,

if no valid character could be found. The search algorithm is given below.

Algorithm 4.6: CRT Search Algorithm

procedure search(crt, string)

declare
CRTnode *crt, *nodeptr;
sym string[]; /* NULL terminated string */

115

sym S;
int parent |, |;
short parent ! CharCode,

begin
if(sizeof(string = 0)
return(-2); /* NULL string status indicator */
nodeptr = crt;
parent | = -1;
for(i=0; strlng[l] # NULL; i++)
begin
s = stringfi];
switch(nodeptr[s].NodeType)
begin
case Terminal:
return(i, nodeptr[s].CharCode);
case Extendable-terminal:
parent | = |;
parent CharCode = nodeptr[s].CharCode;
nodeptr = nodeptr[s].CRTnodeptr;
break;
case Not-character:
if(parent_i # -1)
return(i, parent_CharCode);
else
return(-1); /* Not-character status */
case Intermediate:
nodeptr = nodeptr[s].CRTnodeptr,
break;
end;
end;
if(parent_i # -1)
return(i, parent_CharCode);
else
return(-1);
end; /* search */

Theorem 4.4: The CRT search time complexity is O(x) where x is the maximum

string length of a character in the language.

Proof: For each symbol in the string corresponding to a character, we access one
node starting from the root by using the symbol as the index to the array elements in
the node. Hence, the number of nodes to be searched is equal to the length of the
string of a character. The maximum number of nodes to be searched will correspond
to the longest string of symbols of a character which isx. Therefore, the search time

complexity is Ofx).

4.3.6 Space for CRT
Theorem 4.5: The CRT space complexity is O((6 +1)(n+1)7) bytes where § is the
number of distinct suffixes to the first symbols of the set of character strings, n is the

number of symbols in the language and r is the size of the item in bytes.

Proof: The first symbol of each character string is represented by the root node.
Every other distinct suffix will be represented by one node in the CRT. Therefore, the
number of nodes in the CRT is (§ +1). Each node has (n+ 1) items; the size of each

item is r bytes. Therefore, the size of the CRT is O((s + 1)(n+1)r).

The amount of space required for the CRT is far more than the total length of
the strings of the characters in a language. However, the direct indexing feature of
the array representation reduces the search time of the CRT. If minimizing space is

more important than search time, the CRT could be represented by a linked list. The

117

linked list representation of the CRT will take more time to search than an array

representation.

4.4 Results and Discussion

Various Tamil and Malayalam characters have been tried for recognition. The
types of characters used, the recognition results, the analysis of the results, merits
and demerits, and future research for possible improvements are discussed in this

section.

4.4.1 Test Data

Two test data bases: (1) for Tamil and (2) Malayalam have been used for
testing purposes. The Tamil test data contained a mixture of the following types of
characters:

1. Printed characters.

2. Handprinted characters

3. Handwritten characters

4. Handprinted bilingual (Tamil and Malayalam) characters.
The Malayalam test data contained printed and handprinted characters only. The
authors' limited knowledge and complexity of Malayalam are some of the reasons for

the limitations on Malayalam test data. It has been felt that to have true handwritten

R

118

characters, the subject should have Malayalam has native language. Since the author
is not such a subject, the Malayalam test data base did not contain handwritten

characters; the omission is not due the recognition methodology or the algorithm.

Most of the composite Malayalam characters were “one consonant and one
vowel (cv)" type. Only frequently occurring "two consonants and one vowel (cev)"
type composite characters were in the data base. The language has provision to
generate large number of complex ccv characters. It is almost impossible to
enumerate all the combinations. Characters were written according to the new script
scheme. In this scheme the cv type characters obtained by the vowels 2. (U),2?
(U) and € (R) are very much simplified like that of the cv characters generated by
the vowel 2 (l). Malayalam was primarily included to demonstrate multilingual
character recognition. "Not much has been done in the recognition of Malayalam
character" is the second reason for selecting Malayalam; any work done in this area

will be a contribution to the knowledge of recognition of Malayalam characters.

Bilingual (Tamil and Malayalam) characters were used for multilingual character
recognition. Only handprinted characters have been used for this case. The explicit
muttilingual language coding schemes described earlier was used to distinguish Tamil
and Malayalam texts. The digits 1 and 2 were used as the language code for Tamil

and Malayalam respectively.

119

The data bases contained a total of six thousand seven hundred and eighty
three symbols of which four thousand one hundred and forty three were Tamil and
two thousand six hundred and forty were Malayalam symbols. The Tamil symbols
were composed of one thousand six hundred and seventy nine printed, one thousand
two hundred and forty four handprinted and one thousand two hundred and twenty
handwritten symbols. In the case of Malayalam, one thousand six hundred and twenty

six were printed and one thousand and fourteen were handprinted symbols.

The printed characters were taken from different text books. A significant
portion comes from the school text books that were in the authors possession. For
handprinted and handwritten characters, seven subjects have been used for the Tamil

data base and one subject (the author) for the Malayalam data base.

Characters were written/printed on paper. The writing was flexible since there
were no line or character position markers on the writing paper. No special restriction
was placed on the writing instruments; they were mostly ball and fountain pens. The
handprinted characters were constrained in the sense that attention was paid to write
clearly, legibly and a bit slower than normal speed. The handwritten Tamil characters
were unconstrained. They were written by different subjects. Most of the characters
were taken from the letters received by the author from friends and relatives over

several years.

120

A Dest optical scanner has been used to digitize the characters using 4-bit gray
scale providing 16 values per pixel. The characters were scanned at a resolution of
300 dots per inch. From the scanned image, characters were segmented manually
at appropriate places and the extracted images were written on a file. Using the
preprocessing techniques described in Chapter 2, the gray level images were
binarized, and noise such as isolated pixels and single pixel gaps have been
eliminated. These binary images have been used for feature extraction and

classification.

The data pose a variety of problems faced in real life applications like paper
quality and color, pen types, ink colors, writing style, etc. The printed characters were
of different fonts, shapes and sizes, and so are the handprinted/written characters.
The style of writing varied considerably. The quality of some of the writing was very
poor. The language has no provision for writing cursive characters which are touching
like in English. However, due to variations in writing style, characters sometimes
touch and overlap each other. The handwritten test data contained characters which
were touching and overlapping. The recognizer assumes that characters and symbols
(where applicable) are not touching. Hence, the characters were manually filtered and
only fairly good quality, nontouching characters were taken for feature extraction and

classification purposes. Some of the characters were distorted in shape. Due to

121

smudging, a few characters have lost their loops. Some of the characters were

broken, and a few had unexpected/extra loops or open loops and islands.

Various samples of Tamil and Malayalam characters from the data bases are

shown in Figures 4.9 and 4.10 respectively.

4.4.2 Recognition Results and Analysl§

The recngnition results of Tamil and Malayalam characters are given in Tables
4.3 and 4.4 respectively according to various categories of characters mentioned
above. Considering the complexity and versatility of input characters, the recognizer
performed very well. The language code has been recognized 100% (may be due
to careful writing). As one would expect the percentage of successful recognition
decreased from printed characters to handwritten characters with the corresponding

increase in the percentage of rejection and substitution errors.

Characters were rejected due to several reasons. They are listed below:
1. Distortion in the shape of the characters
Broken characters

Unexpected loops

H> 0O N

Unwanted limbs from the thinning algorithm due to the distortion in the

shape

122

[ed
g%
ae sesint atastiie
atas b UAMILINIMAARIEELLLL 11
E -"-“"““"'“"‘“““"'m{:‘
w ‘SabaBAAM
L £ st ol
[[rrrond
= = g S R
-"““‘.‘] mu"-‘:‘u:irnu:-‘::: i

Ty Pty
aatasssis
Y A SALSA
o vl s
| -““.. AIOSAMIAM ‘:‘“
i oy ™) ““ .‘m.u
f ot) oas
Pt s
e [T i
CTy [Prrrerty - mait
addans o1y s ity
[e ! AN sty
vyt an L HY]
el oasi vl
) Masns
TR
AMAILMMMSLAS
eesaiMAL
F,
4
enaseasats
e el
000s0sMIEMNLILIIY
aneeassesass
eeaMin

- -
Qaendatestals
[WO vy
MARLLAALL
Sa5L00L803 AAAMLADANGA
ut
i ——
BASIIMLIASR
™ lmnuuuu
o Y
, 1808444
” = .mﬂ:ﬂ:uununu:u
" e s
LA % r aasiun
AN MM mu ; '
hanan un B -:::
oy st i “::"
BAS3S BadSEY L 1T ; :
LTt uu i
' L ilI.m
F i M
. un gl
; b 1]
Illl-ﬂu :.‘l ‘== i n‘l:‘
uun 3 3 5
M i .
th i '" j 4
ttity a}: ”:l
-
i1
L1
SA1 AL}
-
Ty
AL
" adisasaun
— 0 Aﬂuuuu‘nuu
arctitteaninntitiii [-H & i
i oy
A Wane unt
nite ; :
& e B =

[

Figure 4.9 Samples from Tamil test data base.

123

Yot

.

i

mwm Il mwmmw#mzmmm

Haianamnd

_JEEEn
%mm L |
4
4 mmwﬁm%m MM
mw
S

wmmwmmwummm

Figure 4.9 Samples from Tamil test data base (contd.).

T e S T gy S T e

124

L trerd
SEEAS]
"
& .g T % st
E - Sttt
1808 04 T
= GALMAL g 2 =ﬂ
-l) s
& E e, . ::::::. Saseiet
, it ettt
g Jﬂm&“:‘“‘”'
o Ty
ﬁ = ﬁﬂr&wuuﬂn
Sadtug

ﬂ!ﬁ
;
£

i
B
i an
ALY o otaetiss
guupiti gu ol
I -] ’“‘Iﬂulnlumnun _—
T b e Eg.u' Hiih é'puug::nn—-""
= fu " hithy)l
£ B v i -
441
] g&‘:ﬁ NN
-)
d 1

i
LTy
()

Figure 4.9 Samples from Tamil test data base (contd.).

125

o _;-!HH ,,==§=ﬂ:=“§ﬁ‘is:‘ ” I:L mlnnr‘ -,
g o8 T S x. b,
EE H] H E :ﬁal ﬁﬂ =| ity
Hy Wi @ ho th
" o adiill T i :: H
T “"-'m"m W!
ittt
s sasennn "
s ..3.':2: . ..".335“33‘3;. '&:ﬁ EEE:' dlln
it it] |: v [TTETy
th, & & E W ittty W
(137} AL “Il«ll ‘ L (Y .:::I
L w nmnw] th
- s) i
i el “Gue, bt
SAAMAAAY
B J}O:.a.t:uuigi“l
_-m‘-::.“"mﬁz:um m""“.fn':“ a uﬁg
u"“‘ : ‘RE: u"mu“ -==IMIII u "":”u % it
i A ') T B
3 OB 0§ g b
L+ MSALAAMAIMIAN ! I3
b %, o i &‘:,
i

Figure 4.10 Samples from Malayalam test data base.

3235,
umuuu

3

...... }

']
PertErEiiy mm.amunw

L)
Santithin
1841

333322,
uww mmmwmww.uwwwwn
-wmum mwmumm numu

nmmmu&mmmmm

DR F
gt e e

20
uli
na

L
wiue

mw mﬁmmm
33
gy B
323 mmm-m .nmqumumn mmmm

i
mw

nwnuu- . lum g i
332355 ummmmmwmmwmmu m wm%mm
L

i
< u-nuwmmm mm w
N g i, i

RS

13
5083
iy
TN
ulll‘
:
.
DL ROR R
R
i
8R4
AMIAMIALANALE
it
Mt
[ey

8
91
1
"
i
3
3
iy
Tty
weaa

Figure 4.10 Samples from Malayalam test data base (contd.).

127

Table 4.3 Recognition result for Tamil.

F———'__é_———————w
Successful
Char. Type Recogpnition Rejection Substitution

Printed 97.0% 2.5% 0.5%
Handprinted 91.0% 7.0% 2.0%
Handwritten 86.0% 11.0% 3.0%

Average 91.33% 6.83% 1.83%

128

Table 4.4 Recognition result for Malayalam and language code.

Successful
Char. Type Recognition Rejection Substitution
Printed 95.0% 4.0% 1.0%
Handprinted 84.0% 12.6% 3.4%
Average 89.5% 8.3% 2.2%

Lang. Code

129

5. Deficiency in extracting the curve primitives effectively

6. Rejection of a symbol in a multisymbol character.

Substitution errors occurred due to several reasons. It occurred due to part of
a broken character being recognized as a valid character. Rejection and/or
substitution of a symbol in a multisymbol character resulted in substitution error. For
example, in the Tamil characters, the rejection of symbols suchas «,a , €, etc., in
the multisymbol characters such as g« , mg. € & » 06 resutted in the substitution
error. As an illustration, if the symbol f is rejected in the character & &« (KO),
then the character is recognized as a&(KE). In the characters like €& evr (KAU),
rejection of &, results in the recognition of the remaining symbols as two characters
8 (KA) and e (LLA); rejection of e (LLA) results in the recognition of €& (KE),
and the rejection of & (KA) results in the rejection of 9 and the recognition of evr
(LLA). Figure 4.9 contains some such characters. Substitution errors have also
occurred in the symbols having considerable amount of similarities like ew> and eer
(NA), & (KA) and & (CU), (¢ (MU)and & (MUU). Confusion occurred between
2 (U)and 2(TWO). However, it has been resolved successfully by performing a
context checking, that is, to see whether the previous symbol is a language code
symbol. If it is, then the current symbol is treated as TWO instead of U when the
character is confused. Similar confusion among multisymbol characters occurred in

the case of Malayalam also.

130

Confusion matrices have been constructed from the substitution errors. Tables
4.5 and 4.6 are the confusion matrices for the Tamil and Malayalam respectively. To
avoid lengthy listing of large number of characters, only symbols are used in the
confusion matrix. Even though it may not directly give the substitution errors of some
of the multisymbol characters, we can easily infer that from their symbols. The
numerical value in the matrices indicate how many times a symbo! has been rejected

or confused as another symbol.

4.4.3 Merits and Demerits

The preprocessor designed to convert the input image to directed attribute
graph is very basic. It has the following advantages and disadvantages. By using the
thinning algorithm of Stafanelli and Rosenfeld, the preprocessor succeeds in the case
of input characters having variable line thickness. By the labelling scheme developed,
small distortions and rotations of the primitives in the symbols are taken care of. The
output of the preprocessor is independent of the sizes of various primitives in the

image.

The preprocessor is not efficient in extracting the curved primitives since the
approximation of curves to straight lines as shown in Figure 3.1 is not sufficiently

accurate. It is very sensitive to distortions in the curved primitives.

131

Table 4.5 Confusion matrix for Tamil.
—————-Wm
Actual symbol Suc- | Reje- Confused as
cess | cted
code sym | # # # sym, # | sym, # | sym, #
A W | w0 37| 3
A g 17 15 2
1 30 26 4
I . 12 11 1
u &~ | 20| 19| 1
U 2 14 12 2 -
E o 30 26 2 sE 1 E 1
E g 15 14 1
Al ® 12 11 1
0 5] 17 15| 2
0 3 15 14 1
AK oo g 9 0

T R T Y W VUV R, R < Y -2

132

Table 4.5 Confusion matrix for Tamil (contd.)

Actual symbol Suc- | Reje- Confused as
cess | cted
Il code | sym # # # sym, # | sym, # | sym, #
|« & 266 | 239 [20 | cU 7
N w 37 | 27 7 | sAA 3
C & 86 78 8
N S 22 18 4
T (= 97 87 7 P 3
'W N over 43 31 12
T - 235 | 213 | 22
N - 82 70 6 R 6
P u 171 | 166 5
M Lo 142 | 133 9
Y w 110 | 96 9 P 5
R 7 87 75 5 N 7
L o~ 94 85 S
\Y o 154 | 138 10 L 6
Z '$ 22 7
L o~ 56 11 | sE 3
R ? 7 N 4
N Al 12 | sAl1 §

133

Table 4.5 Confusion matrix for Tamil (contd.)

Actual symbol Suc- | Reje- Confused as

cess | cted

code | sym | # # # |sym# [sym# | sym#

sCon | ° 492 | 482 10

SAA il 165 | 154 9 sl 2

sl n 221 | 214 7

sll e 71| 61 7 |sl 3

sU ' 37 37 0

sUU1 [19 16 3

suu2 [7 23 | 21 2

sUU3 | ¢ 22 20 2

sE 6 167 | 162 5

sEE 6 129 | 123 6

sAl1 | ow g5 | 79 7 | N 5|N2AA 3| L 1

sAl2 | 2 12 11 1

LC L« 20| 20 (0]

TWO | 2 20| 20 0

Ti Y 25 22 2 M 1

Tl T4 15 14 1

KU ® 12| 11 1

Cu & 15 14 1

NU |y 6| 5 1

TU w 35| 33 2

N3U | & 11 10 1

THU | & 65| 58 7

NU 5 15| 12 1 RRU 2

MU & 15| 14 1

RU G 53| 45 4 RAA 4

LU > 17| 15 2

ZU C 14 | 12 1 MU 1

LLU |5 17 | 16 1

RRU | & 27 24 2 NU 1

N2U | o 17| 15 1 RRU 1

KUU | 12 11 1

CUU | & 11 10 1

RAA | m 10 9 1

N3AA | o | 12| 11 1

N2AA | ® 16| 14 1 sAl1 1

134

Table 4.6 Confusion matrix for Malayalam.

B s

¢ Confused as
cess
code | sym # # # sym, # | sym, # | sym, #
A |® | 15| 12| 2 |A 1
A @y 10 9 1
| 2] 14 12 2
u e 12| 10| 1 L 1
R ¢ 4 41 0
e o 4 4 0
E |~ | 11] 10 1
E 10 9 1
o) :‘? 121 1] 1
AM o 25 19 2 TH 4
AH | o 5 5] 0)

!
|

F.
L
|4
y

TR ATV

135

Table 4.6 Confusion matrix for Malayalam (contd.)

Actual symbol Suc- | Reje- Confused as
cess | cted
code | sym # # # sym, # | sym, # | sym, #
K | ® 6 | 59 | 7
KH | & 45 41 3 |V 1
G o 39 34 4 s 1
GH |0 | 40 | 32 7 | PH 1
N m 37 29 6 D 1 sE 1
c 2 55 51 2 P 1 vV 1
CH | an 41 37 4
J % 39 34 4 1
JH | "w 40 31 7 DH 1 miT 1
N oo 42 32 9 | T 1
T) 37 35 2
TH © 30 25 2 | AM 3
D w 40 35 3 DH 2
DH | v 35 31 4
N m 54 44 <] NTA 1
T n 61 56 5
TH | '@ 40 37 2 | PH 1
D 3 43 35 6 BH 1 o 1
DH | w 43 39 4
N m 39 34 3 R 1 miN 1
P nl 50 45 3 |Vv 1 Cc 1
PH | 0 41 36 4 | TH 1
B) 39 30 7 |V 1 sE 1
BH | @ 36 32 3 | D 1
M) 50 47 3
Y @ 35 31 4
R n 50 47 2 |R 1
L & 37 34 3
\Y; al 40 36 2 P 2
s’ A 36 34 1 G 1
s |- 25 | 21 4
S Y 40 36 4
H af) 33 32 1
L e 30 23 6 | U 1 |
L 9 29 27 2 |
B (g 46 44 2 1

— T Fp e T AT T T

Lol

136

Table 4.6 Confusion matrix for Malayalam (contd.)

Actual symbol Confused as

sym # | sym #

TH 3 | AM 1
sl 2
sU 3
sU 2

1

.

AM 2

3rdanbsRICenncanscecasoly

137

Errors in the DAG of the input image affect the computed correlation
coefficients which in turn affects the recognition result. The preprocessor and the

classifier work well with variations in the size and shape of the characters.

The preprocessing, feature extraction and building the DAG are common to all
languages. They could be used for other Indian languages and European languages.
The features used may not be directly applicable for Chinese characters since in
Chinese strokes are used to form characters. However, the concept of DAG could
be used to represent the Chinese characters. Stages | and Il of the classifier are
language dependent; State Il is more language specific than State I. However, the
proposed methodology and the algorithms can be used for other languages too. A

separate knowledgebase and CRT must be built for each language.

4.4.4 Future Research for Improvements

The symbol matching program can be modified to compute the correlation
coefficients taking into account the possible rotational transformation on the input
image. Suppose we find that junctions x, and x, of symbol n correspond to junctions
y, and y, respectively of ¥ and the junction pairs (x,,x,) and (y,,y,) are connected by
primitives. Let the primitive connecting x, to x, be p, and the primitive connecting v,
and y, be p,. Then by finding out the transformation T needed so that the primitive

p, can correspond to p,, we can extend the correspondence by the following rule:

:
1
é.
H
i
1
%
if
v

R

138

"If the junction x, of symbol n corresponds to the junction y, of P, then the
Junction connected to x, by a primitive will correspond to a junction connected
to y, by the transformed primitive T(p)."

This should enable us to identify characters that ére rotated by 90 degrees, for

instance.

To further improve the successful recognition rate, additional structural features
such as loop could be used. Different schemes which are less sensitive to distortion
could be used to extract curved primitives. Special or additional processing such as
statistical classification, parallel processing, etc., could be applied to the rejected or
all characters. Appilication of statistical methods will require extraction of statistical
features; it will also add an order of magnitude of complexity to the recognition
system. Parallel processing will improve the throughput with increased cost of the

product.

The classifier assumes that the characters (and symbols where applicable) are
isolated, thus avoiding the problem of segmenting the characters. However,
handwritten characters sometimes touch and overlap each other. The recognizer

could be enhanced to take care of segmentation.

Another enhancement that is possible is to use contextual feature such as

syllables, words, syntax, etc., of the language. Again this will add different dimension

139

and complexity to the system.

In the case of Malayalam, more ccv characters can be included in the test data.

Accordingly, the Malayalam CRT could be improved to recognize such ccv characters.

5. MULTILINGUAL TERMINAL DESIGN
DETERMINATION OF CHARACTER SIZE

Present day computers are capable of displaying and printing Latin characters
in the form of dot matrix patterns. Laser printers with high resolutions are now widely
used. Some efforts have also been made to enable the computers to handle
non-Latin characters such as Chinese, Japanese, Russian, Indian characters
(Balasubramanian [1990]), etc. Due to the graphic properties of these characters, the
dot matrix type of output devices seems to be more suitable than the regular
type-face. Hence, the dot matrix type output device is considered for the multilingual

terminal.

The design of a multilingual (hardcopy or softcopy) terminal involves the
following aspects:
- Analysis of the character sets of the languages to be supported

» Decomposition of characters into symbols

Design of keyboard for manual text input

Determination of dot matrix character size, if output device is dot matrix

Determination of dot matrix character set, if output device is dot matrix

Character generation

The analysis of scripts and the theory of symbolization have been covered in Chapter

141

1. More on symbolization will be covered in Chapter 7. The methodology proposed
for the determination of dot matrix character size is explained in this chapter. A
scheme for the determination of dot matrix character set is explained in the next

chapter. Algorithms developed for character generation are described in Chapter 7.

5.1 Introduction

The parameters to be considered in designing dot matrix characters are
character size, luminance, font, display area, dot size, dot shape, dot spacing, number
of dots, etc. Significant research has been conducted to determine these parameters
for English fonts (SID [1980]). It is yet in the infant stage for Indian characters.
Certain results from the experiments conducted for English characters such as dot
shape, dot size, etc., could be used in designing fonts for Indian characters.
However, the 5x7 and 7x9 dot matrix size commonly used for Latin characters are not
suitable for Indian characters because they are complex graphemes. Therefore, to
develop dot matrix type output devices capable of handling Indian, in general
non-Latin, characters, it is necessary to identify an optimal dot matrix size to code the

character patterns required to generate characters of indian languages.

Manual coding of the dot matrix patterns for each and every character of a
language, assuming an arbitrary dot matrix size, is very tedious and time consuming.

Above all the dot matrix size may not be optimal. To store these characters as they

142

are for character generation (printing/displaying) will require a large amount of
storage. Therefore, graphic symbols, which require less storage, will be used to
generate the characters. By suitably composing one or more symbols, any character

in the language could be generated.

In this chapter, a computer-aided interactive method to determine a nearly
optimal dot matrix size is proposed. A new specialized knowledge based thinning
algorithm based on the techniques of pattern recognition and graph theory has been
developed to skeletonize the symbols. This algorithm is different from the thinning
algorithm proposed in Chapter 2. Experiments have been conducted using a graphic

terminal and the symbols of the Tamil language shown in Figure 5.1.

5.2 Definitions

The definitions of a few terms used in this chapter are given below.

Definition 5.1: Nearly Optimum Dot Matrix Size
The dot matrix size of a character/symbol is said to be nearly optimum if the
following two conditions are satisfied:
1. The character/symbol size should be as small as possible so that it will
require minimum space for storage, display, and printing.

2. Each character/symbol must be legible to human eyes as a separate

143

sl 52 s3 s4 s5 s6 s7 s8 s9

s10 sl1 s12 s13 sl4 s15 s16 sl7 s18

s19 s20 s21 s22 s23 s24 s25 s26 s27

s28 s29 s30 s31 s32 s33 s34 s35 s36
m g o8y O
s37 s38 s39 s4Q s41 s42 s43 s44 s45

s46 s47 s48 s49 s50 sbl s52 s53 s54
QO ¢ m @ 0@ A
s55 s56 s57 s58 s59 s60 s61 s62 s63

Figure 5.1 Set of Tamil symbols used for size computation.

KR i T e WA AR Ty

144
entity.

What is the 'smallest’ and ’legible’ size depends on the individual as well as the
equipment used. Hence, the 'nearly optimal size’, as defined here, is to certain extent

subjective.

Definition 5.2: Character Pattern
Let
P=p, i=1..m, j=1..n
be the binary picture pattern of a symbol, where p; is a pixel in row i and column .
py = .’ (dot) when it belongs to the character and p; = 'b’ when it belongs to the

background, where ‘b’ is a blank (space).

Definition 5.3: Component
A component is a set of consecutive dots in a row.

¢, = {Py | Pa=pPp="0"andp, ="'},

where c; is the /" component in the *' row and a<k<b.

Definition 5.4: Component Length
The length of a component L(c,) is given by
L(Cu) = b-8-1,

where a and b are as in the ‘component’ definition 5.3.

145

Definition 5.5: Component Connectivity

Two components ¢; and ¢,,,, are said to be connected if any one of the
following conditions are satisfied:

1. {a,a+1,..b}n {d,d+1, .. 6} » {o},

2. d = b1,

3. a=e1,
where

Cy = {Pi Pias1r = Pio}

and

Civik = {Pis1d» Pis1dsr - Pistel}-

It is denoted as ¢; <=> Cj, y

Definition 5.6: Segment
A segment is a set of connected components satisfying the conditions specified
in the *segmentation process’ described later. In other words, ¢, € §;, C € §; =>

cpqm Crq

Definition 5.7: Segment Number
Every segment is assigned a unique number. The function S(c,,) gives the

segment number to which the component ¢, is assigned.

146

The function NS() gives the next number that could be assigned to a new

segment.

5.3 Symbol Size Determination Method

The methodology for determining the optimal size is shown in Figure 5.2. This
method does not involve manual coding of symbols: instead, the printed symbols of
the language under study are digitized and binarized using a digital scanner and
binarization technique stated in Chapter 2. (It should be pointed out that printed
characters are available for Indian languages.) This method makes use of some of
the pattern recognition techniques, graph theory, and a-priori defined knowledge base

to get a smoothly thinned symbol.

Most of the time the binary patterns contain noise due to ink smudging,
distortion, etc. To eliminate part of the noise, single gaps are filled using Algorithm

2.2 and isolated pixels are removed using Algorithm 2.3 described in Chapter 2.

A number of generalized thinning algorithms have been reported in the literature
for pattern recognition (Dessimoz [1980], Zhang and Wang [1988], Xia [1988], Ogawa
and Taniguchi [1982], Hilditch [1969], Stefanelli and Rosenfeld [1971]). They do not
require any knowledge of the input pattern for thinning. However, they tend to give

unwanted limbs (refer Figure 5.3) due to noise in the digitized input pattern. These

Printed
symbol

Digitization,
binarization,
noise reduction

—

147

Knowledge
base

L

Binary

image

Segmen-

tation

Thinned

symbol

Resegmen-
———ﬂ -——#Thinning >
tation

Image reduction,
enlargement, and
size computation

—

Figure 5.2 Automatic method of size determination.

148

E 3
E 3
»

*® a2k e o K » —
x L EEEEEEE ¥ M
B ERMERKEE »)

- =
» »
- x| E
. c
»)]
= 0

] = m

*® - —

» = E E T I S kL o
"l!l x Wk & N ®

= -

» ® Nk = c
»] x *x ©
» - » S
» e— — c

: 2] >

x »

E J »n ™

= ¥ 0O

» * » ax W ek

] » W X 5% ® o

» w] » » 5

* . e - (o)
» a* » [T

t » *
» » n »
wak wx o W W *

® T Y ™
* =
o &

149

limbs hinder the experimental results considerably, hence they need to be eliminated.
A structural knowledge of the input symbols is required to eliminate these limbs and
to smooth the symbol shape. The knowledge based thinning algorithm which
eliminates the unwanted noise to give a smooth pattern is described in the next
section. The thinned symbols are studied using the algorithm explained later in this

chapter. The new thinning algorithm is explained in the next section.

5.4 Thinning Process

The thinning process consists of three stages. In the first stage the input
symbol is segmented. In the second stage the segmented input symbol is
resegmented using the a-priori knowledge base and the symbol identification supplied
by the experimenter. In the last stage the segments are skeletonized. These three

stages are described in the following paragraphs.

5.4.1 Segmentation Process

The character pattern P is scanned row by row from top to bottom. For the
purpose of segmentation, the pixels p,, and p; of two consecutive rows are considered
at a time for processing. /-1 is the previous row and i is the current row under
processing. This approach has the advantage of less memory requirement. The

components in p,, and p, are identified and numbered separately as 1, 2, 3 and so on.

Sl e

|
|

150

In order to identify the connectivity of components in two rows, a component
connectivity matrix (c-matrix) CC is constructed as shown below:
CC = [cc,] p=1,..m, q=1.,.n,

where

1, k.<->°("1)'
CChq = {0, otrerwiee

m and n are the number of components in the (-1)™ row and * row, respectively.

From CC, two additional vectors, a and 8 are computed

n
@, = LCC k=1, 2, ... ,m
k Iz k]

m
pk=§wlk k=1, 2, P 41
F

a, indicates that the K" component in p; is connected to g, number of components

in p.y- The reverse is indicated by the values of g.

To begin with each component in the first row is assigned a new segment
number and the row is declared as the (-1)" row. Then, the components in the
current row (" row) are assigned segment numbers. The status of segments and
components are updated. In the process of assigning components to segments, any
of the following five states may arise:

1. start of the segment at the /* row,

151

continuation of a segment from the (-1)™ row to the /" row,
termination of a segment &t the /™ row,
merging of two or more segments from (l-1)‘h row with the /" row and,

splitting of a segment in the (-1)™ row into two or more segments at the

™ row.

In state (4), the merging segments are terminated at the (-1)™ row and the
components in the ™ row on which the segments merge is assigned a new segment
number. In state (5), the splitting segment is terminated at the (l-1)‘h row and each

of the components emerging from this segment is assigned a new segment number.

Theorem 5.1: There are at most five states (mentioned above) ini the process of

assigning components to segments.

Proof: The possible components appearance in row (i-1) and row / are as follows:

1.

2.

No components inrow (i-1) and row/. In this case there is no segment.
One or more components in row (-1) and none in row /. In this case,
all ssgments in row (i-1) terminate at rovv / which is state 3.

No components in row (i-1) and one or more components in row /. In
this case segments start at row i which is state 1.

One or more components in row (-1) and one or more components in

row i. In this case all five states: starting, continuation, termination,

152

merging and splitting of segments can take place.

Thus there could be at most five states.

The conditions to detect the five states are stated below:

1. fa, = 0then a segment starts with c,.

2. fle, =cy=8=1)A [ILley)-Llciy| < 7], then S(c..q;) continues with

c,» where r is a threshold value.

3. if8, = 0, then S(c,,,) terminates.

4. fe, > 1,thenV cc, =1, S(c,,) terminates. ¢, is assigned a new

segment if not already assigned.

5. If8, > 1, then S(c,,,) terminates. Vv cc, = 1, ¢y is assigned a new

segment if not already assigned.

The complete segmentation algorithm is given below. The result of segmenting

the symbol & (KA) is given in Figure 5.4.

Algorithm 5.1: Segmentation Process

segmentatlon_process procedure;

begin
c1 = [ciq]: q= 1: oo ,I‘l,;
V¢, ¢ Gy, S(cy) := NS(1);
fori:=2tom
begin (* for each row *)

cl = lciq]’ q=1,.. Ny

1583

L
mUOULO
MmMuOLLLO
aLoLLL
MmLOLOLOLO
MNOOOLLO
muULLUL
mOoLOLC

-
L Cx A
IRl L Ly bttt Pt A -

e beale, Lo, Lo bttt g =
[iz (rln, 2, Lo =ttt bt =t e i
(el bl £ Lo b=t =4 b=t A =
[dr frfn, Lo, Drt—i— Attt g i
[la o ba, (. Er ==t A b i

[IRIMIMININ N e e
((WIRTHIN RN (Sl i]
[ERIM I NN [Lo o e I L]
[IRIHIHEN TN I -

[ENTNTNEN T Fra ace le ofe e ore o

(73 ST CNTHEN B ¢ Pha e e nte ote oea ote Digr o)

LT N ETHFIE AT TITENENTN N N e ave nda whe ove o0o ote wigr gL gr)
MUOO OO Il (sl (L L DL D TTT R

S S BT SN TR RS N PN PN PR TN W R voe e ote ote v te g g
MO0 0O OG0 frda e b L D RITTIT I
MO OO 2] (e e Lo fa b, 2,012
muOLOLOID

mOLLLOO
LLOLLOLO
LLLOOLOL

cOOLOOU
<OLLLOLLOOOOO il
COLLLOLOOOOA i,
COOLLLOLUALOOA riuiai i
(T T T FE S alalala'alinin oA N NG

et 1o ol lac g]

(IR ININ RN N lor 1o tar 1or 1o tor 1or)
[EWTHINI AN A or 1or lor 1o~ 1o 1ar 1or)
[(RINIH IR IA N lar Lor o 1ar 1o 1o 1ar
[CRIMCHIN NN Lo Tor tar or Lo te-1ar)
[a'aYINIR RN TN Lo Lo ar 1o Lo lar or |
[Larar 1o dacloc 1o

lor 1o 1o 1or 1o o 1o}

lor 1ar o o 1or lar- 1o |

e b 2 KD SOOI
(0L L OO 00000
(LR INdo do T TdoTdo o Tdo fgn

ELOOOO0O

Figure 5.4 Segmented & (KA).

154

CC = [ccpq], P=1,..,n, q=1, ... ,n;

1. e, <->c‘_1
Where cc,q = (i Nira %

Npq
K= E;Oc” k=1, - ,n"

n
= Xeg, k=1, .. ,nq;
Bx e k J -1

fork:= 1ton,
begin (* for each component in row | *)
ifa, = ccy =B, =1
then
It |L(cy) - Lic,y)| > 7
then
begin
terminate S(c,,);
S(cy) := NS();
end
else

S(cy) == S(cy,);
fi

elseif «, = 0 then S(c,) := NS();
elseif o, > 1 then

begin

S(c,) := NS();

V cc,; = 1 terminate S(c, ,);
end

1i;
end; (* for each component in row i *)
fork:= 1ton,
begin (* for each component in row i-1 *)
6, =0
then
terminate S(c,,,)
elseif B, > 1 then
begin
terminate S(c_,,);
Vv cc, = 1 if S(c,) Is undefined
then S(c,) := NS(); fi;

185

end
fi
end; (* for each component in row I-1 *)

C,:= Gy
end;(* for each row *)
end segmentation_process; (* end of aligorithm *)
Theorem 5.2: The segmentation algorithm will work correctly iff all the above five

conditions are considered.

Proof: In order to prove this theorem, we have to show that the five conditions are
necessary and sufficient. We could easily see that omission of any one condition will
not detect one or more of the five states and therefore, all five condiions are
necessary. Since the five conditions detect all the five states, they are sufficient and

no additional conditions are needed, thus, proving the theorem.

Theorem 5.3: The segmentation algorithm has a time complexity of O (mn).

Proof: The outer i loop is repeated (m-1) times since there are (m-1) pairs of rows
out of m rows to be compared. The two k loops are repeated as many times as there
are number of components in each row. In the worst case, there could be a
maximum of n/2 components in each row. Therefore, the total number of times the
loops are executed is (m-1) times (1/2 + n/2). Thus, the complexity of the algorithm

is O(mn).

156

Theorem 5.4: The segmentation algorithm has a space complexity of O(n(m +n/4)).

Proof: The character pattern, P requires a size of mn. The cc-matrix, CC requires
a worst case size of (/2)x(n/2). The vectorsa and g each requires a size of n/2.
Thus, the total space requirement is mn+(n/2)2+(n/2)+ (n/2). By ignoring the

constant and linear terms of n, we getmn + n*/4 = n(m+ n/4).

5.4.2 Knowledge Base
The knowledge base contains the segmentation details for each symbol in a
language. The following assumptions are made in describing the symbols.
1. A symbolis made up of one or more primitive segments from the set PS
given below. The pattern corresponding to the segment is specified

within square brackets.

PS = {
joint[.],
horizontal line[-],
vertical line [|],
left diagonal line [\],
right diagonal line [/},
left curve [(],
right curve [)},
cup [~],
cap [}

2. Each segment except joint has three *connectivity points’ from the set

157

CP given below. The abbreviation for the elements of CP are specified
within brackets.
CP = {

left end(L),

right end (R),

top end(T)

bottom end(B),

middle(M)

}

2. The sets {L,R} and {T,B} are mutually exclusive. A joint which is a
junction point for many segments has only one connectivity point. It
could be represented by any member of CP. The connectivity points for
the members of CP are shown in Figure 5.5(a).

3. One segment can be connected to another segment only at the
connectivity point(s).

4. The segments of a symbol are numbered from top to bottom and left to

right in the order of appearance as done in the segmentation process.

The symbol & (KA) as represented in the knowledge base is shown in Figure
55(b). Note that these segments are the 'expected’ segments and not the 'actual’
segments (compare with Figure 54). It is easy to specify these segments for the

symbols of a language.

LetS = {s,, S, --- 5} be the segments constituting the symbolp and T = {t,,

158

T T T
— > — M M M
L M R
B B B
Horizontal Vertical left Right
line line curve curve
/;\ M T T
L R L R . M M
\lf/ L R B B
Cup Cap Joint Right Left

diagonal diagonal

Figure 5.5a Connettivity points of segments.

) [T ﬁ
[{ J) =/

H X

Figure 5.5b Segments of 8 (KA) as in the knowledge base.

189

t,, ... {,} be the set of attributes of the segments of S. Thatis, f,e T is the attribute of

the segment s, € S.

Each symbol in the language is represented as an attribute graph AG(N,E).
The symbo! p is stored in the knowledge base as (1) the c-matrix CAG of AG(N,E)
and (2) the node attribute set A = {a,, a,, ... ,8,} Of N. ThesetN = {n,, n,, .. n}
is the set of nodes of AG. The node n, represents the segment s;. The type of
segment s, is represented as the element a, of A. There exists a 1:1 mapping f.5+N
and g:T»A. E is the set of edges of AG: that is, the unordered pair of elements given
by

E = {<n,n> | i*jAs <=>§]

where 1<<|Nj| and 1s/<|N}.

CAG gives the connectivity of the segments of p.
CAG = [x;], 1sik|NI, 1siIMI,

where

<pg> ¥ ny<=>n &t p A qwhere p qgep
Xu=‘o. otherwise

<p,q> is en ordered pair. The matrix CAG and the set A for the symbol & (KA) are

shown in Figures 5.5(c) and 5.5(d), respectively.

160

1 2 3 4 5 6 7 8 9
1 LT | MT
2 T,L B,L
3 ™™ B,R
4 TL | BT
5 LB | RB LT RT | RT
6 T,B B,L
{ 7 T.R B,R
8 T,R
|| 9 TB | BR |
Figure 5.5c Connectivity of & (KA).
H Vv \Y RD RC CUP
1 2 3 4 7 8 9

Figure 5.5d Attribute set of & (KA).

161

5.4.3 Resegmentation

In this stage the segmented input symbol from the segmentation process i
compared with the corresponding symbol in the knowledge base. The comparison
may involve one or more of the following operations:

1. merging of two segments into one,

2. reallocation of part of the segment to another segment,

3. elimination of part of a component which is estimated to he

noise due to irregular boundaries of a symbol, and

4, filing gaps larger than one pixel wide.

Comparison of symbols requires the usage of the c-matrix CAG, the attribute
set A and the analysis of individual segments. The symbol & (KA) after

resegmentation is shown in Figure 5.6 as an example.

Compare the segments of & (KA) in the knowledge base and in Figure 5.4.
The segments A and B in Figure 5.4 are not the same as those in the knowledge
base. The sizes of A and B are too small compared to other segments. The segment
C is the same as in the knowledge base. Therefore, A and B are declared as part of
C and connected. While resegmenting, the gap between A and B is filled. The
segments D and E are as defined in the knowledge base. The c-matrix in the
knowledge base indicates that the segments E, H, and / are connected to the right

end of segment F. However, it is not so in Figure 5.4. Therefore, the pixels of F to

162

1111111 LALLM
e ey OO OOV
e e e e OO OO O LA OO\

LN OOV

111111111 OO
111111122”%&35? TN
OOV

Figure 5.6 Resegmented & (KA).

163

the right of E and H are reallocated ta /. By similar analysis, the pixels of F to the left
of segment D are assigned to a new right diagonal segment during resegmentation.
The segments G, H, and J are as indicated in the knowledge base, hence not

modified.

5.4.4 Thinning of Segments

A symbol after resegmentation contains only segments of type A. Hence, the
thinning process has to thin the (1) joint, (2) line, (3) diagonal, and (4) curve only.
Vertical and horizontal lines will result in the same type of operations except for the
direction of thinning. Therefore, they could be treated as just lines. Similariy the four
different curves could be treated as just ‘curves’. During the thinning process care is

taken to preserve the connectivity of segments.

A joint is thinned to a single pixel. However, the connectivity criteria may force
to retain more pixels from the joint. A simple way to thin a line is to take the mid
points of each component in the appropriate direction. However, this may result in
an uneven line. To avoid the unevenness, we analyze the line segment and identify
an even line which is approximately at the middle of the segment. To preserve the
connectivity, a thinned vertical line is extrapolated, if necessary, in either direction
[refer to Figure 5.7(b)]. Unwanted limbs emerge at the junction during extrapolating
horizontal and vertical segments [refer to Figure 5.7(c)]. Care is taken to eliminate

these limbs [Figure 5.7(d)].

164

11191111

—e= SOOI

e QOO

IRABRRRRRER

(3VaVI4V[aV]4V]

11111111111

-
L ot ol ot et
L ad and sl ool g ol
— e
Lkl ol ol ot Q V] [qV[4V]
€ » == r~e=r=r= \JOJOJONI\)
== OO
~— e OO OO O
=== OO
===\ OO\
===\
Lanl ol aad ol ol QVIAVIaVT4 V] 4 V]

—— —

(d)

(c)

(b)

(a)

Figure 5.7 Extrapolation and limb removal from (a) to (d).

165

Methods reported in the literature (Pavlidis [1977]) can also be employed to thin
the curves. Curves are approximated to polygons. The result of thinning the symbol

& (KA) is shown in Figure 5.8.

5.5 Analysis

5.5.1 Analysis of Symbols

The thinned symhols may or may not be optimal in size. Therefore, the
symbols have to be analyzed for optimum size. The images of the symbols are either
reduced or enlarged as necessary and displayed. Algorithm 5.2, listed below, is used
for image reduction and enlargement. The aesthetic features and distinctness of the

images have been studied for different sizes.

Algorithm 5.2: Image Reduction and Enlargement

The digitized picture is treated as binary matrix P of size m rows and n
columns.
s: scale factor (s<1 for scaling down and s> 1 for scaling up).
py: value (dot or blank) of the pixel at the ™ row and /™ column in the
unscaled picture.

sp,: value (dot or blank) of the pixel at the K" row and /M column in the

166

ooooooooooooooooooooooo

ooooooooooooooooooooooo

Figure 58 Thinned & (KA).

167

scaled picture.
Then, the pixels in the scaled picture are given by

SPu = Py
wherei=1...m, j=1..n, k= Lixs! and/=Lj¢!.

One may also employ functions such as ri.sy and rj.s, instead of Li.s' and

List.

5.5.2 Algorithm 5.3: Nearly Optimum Size Computation
For each distinct symbol p, in a language, let o, be the corresponding nearly
optimum size. The nearly optimum size, OS, required to code any symbol in the
language is given by
0S = o, | 020, 1i<jcmand jek
where m is the number of symbols in the language. The optimum dot matrix size to

code any character was derived from the symbol size.

Theorem 5.5: Algorithm 5.3 has a time complexity of O(m).

Proof: To start with let us assume that OS = o,. Compare OS with the rest of the
(m-1) symbol sizes. If 0S<o, then assign OS=0, for 2<jsm. Thus, the algorithm
requires (m-1) comparisons and, in the worst case, m assignments. Thus, the

complexity is OQ(m).

168

Theorem 5.6: Algorithm 5.3 has a space complexity of O(1).

Proof: Even though the size of input is m, we could get (read) one value at a time and
compare with OS as shown below:
OS := get(o,);
forj:=2tom
begin
get(o));
compare OS and o;;
end
Therefore, the space requirement for the algorithm is independent of the size of m.

Hence, its space complexity is O(1).

Experiments have been conducted using the Tamil symbols in Figure 5.1. A
sample output of the analysis of the symbols is shown in Figure 5.8. Figure 5.10 gives
the nearly optimum size of each symbol obtained from the experiment according to
Definition 5.1. As stated earlier the results are subjective. It may vary to certain extent
depending on the individual and the equipment used in the experiment. For example,
a high resolution graphics terminal will display a dot matrix character of certain size
much clearer than a low resviution or a raster scan display. A 60 dots per inch
resolution graphics terminal has been used in this experiment. The results reported

are accurate to the judgement of the author and a couple of subjects used in the

169

Figure 5.9 Analysis of symbols.

170

Symbol Size Symbol Size Symbol Size
si 7x8 s2 7x10 s3 7x8
s4 8x9 s5 7 s6 7x14
s7 10x8 s8 7x8 s9 7x6
s10 7x7 si1 7x9 si2 9x5
s13 7x9 si4 7x9 s15 11x7
s16 7x9 s17 8x7 si8 7x10
s19 7x11 s20 11x13 s21 11x11
s22 7x9 s23 7x9 s24 7x14
825 7x7 s26 9x7 s27 9x9
s28 9x9 s29 9x9 s30 6x6
s31 9x9 s32 7x9 s33 10x10
s34 7x9 s35 10x10 s36 7x7
s37 11x15 s38 11x10 s39 10x10
s40 10x11 s41 10x10 s42 11x10
s43 11x10 s44 11x12 s45 9x12
s46 11x11 s47 7x14 s48 10x12
s49 7x6 s50 7x4 s51 4x4
s52 4x6 s63 7x3 sS4 3x3
sS85 7x” s56 9x6 s57 7x9
s58 10x15 s59 7x12 s60 10x11
s61 7x4 s62 2x1 s63 2x2

'M‘

Figure 5.10 Near optimum size of Tamil symbols.

171

experiments.

The nearly optimum dot matrix size OS for the Tamil symbols was computed
to be 11x14. The character size is larger than the symbol size since certain
characters like & (K), 4 (PU), 8 (T HU), & (TH), etc., are obtained by appending
symbols like *, , , ¥, A at the top, bottom and sides. From the symbol size, the

character size has been computed as 15x18.

5.5.3 Analysis of Characters

Apart from the intrafeatures of symbols which appear separately, the following
intersymbol (dependency) features must also be considered in determining the size.
it was mentioned earlier that symbols are to be appended to generate certain
characters. For example, the symbol 9V is appended to the symbol & (KA) to obtain
the character & (KI); the symbol ¥ is appended to & (MU) to get the character
({4 (MG). It should be noted that the smallest distinguishable size of the symbol 9
as a separate entity need not necessarily make the character € distinguishable
when appended with the symbol & (KA). It may be necessary to consider a larger
size for the symbol 1 than the smallest size to make the appended character
distinguishable. Thus, the nearly optimal size of symbols suchas 1, v , etc, are
influenced by the symbols to which they get appended. Another dependency feature

to be taken into consideration is the degree of confusion between the most similar

172

symbols. For example, symbols such as & and & , etc. This dependency is not

taken into consideration in the size determination.

5.6 Discussion

The interactive method is best suited for the determination of the dot matrix size
of the characters or symbols. The actual font design needs to be done after
determining the size. In this respect the thinned and scaled characters from the
automatic method could be used as the final pattern whereas the method involving
manual coding is difficult and time consuming. The automatic method will give better
results compared to the manual method because the characters taken for analysis are
the printed characters. The automatic method is convenient and faster compared to

the manual method.

The knowledge base which has the structure of the symbols enables the
specialized thinning algorithm produce a better skeleton compared to existing
generalized thinning algorithms which do not have any knowledge about the pattern
being thinned. To thin the characters of other Indian languages, it is only necessary

to create the corresporiding knowledge base.

6. DETERMINATION OF SYMBOL SET

6.1 Introduction

Given a dot matrix of m rows and n columns, it is possible to design dot matrix
characters of different fonts. Many 'typeface’ fonts are available at present. Character
styles make a great difference in legibility, particularly for Indian characters due to their
complex graphemes. Also, a font design needs to be evaluated for its effectiveness
and ergonomic properties before production or manufacturing. Therefore, various
fonts, when made available, need to be evaluated to identify the most suitable
character set. An iterative methed of determining the most distinct set of dot matrix
symbols for output systems such as printers, displays, etc., is described in this
chapter. Shiau and Suen [1980] have studied various types of English fonts that are

in commercial use.

Let S be the set of symbols of a language. There are a number of fonts, called
models, in each symbol to be evaluated with respect to other symbols. The principle
of font evaluation is based on the distances and information content of models. Seven
different quantitative measurements are made for each model of a symbol with respect
to models of other symbols or the entire corpus. These measurements were obtained

from the average values of the following functions:

174

. identity

. hamming distance

. normalized identity

. self-information content

. entropy

. nearest neighbor distance.

Depending on the outcome ot these measurements, the desirability of a model
is declared. The method of evaluation is an iterative process of eliminating the least
desirable models from the corpus until we obtain the most distinct set of models. The
measurements and evaluation procedure are explained below. To test the method,
the author has hand designed three different fonts for a set of Tamil symbols. They
are shown in Figure 6.1. For ill'stration, the three fonts for two Tamil symbols &

(KA) and L (TA) are used. The results of the evaluation of these fonts are reported.

Let D(if)myn be the dot matrix of /" model of ™ symbol in the corpus, S. D(ij)
consists of dots and blanks. Let,

M() = [m(id,,] 1spsm, 1sqsn

1, ¥ D),y b8 & dot
otherwise

Mif)pq = b,
s() = {M() | 1sjsc}
$={s) | 1sisc,}

(XY LY XY

eve
-

Gsvstanes

Sevqevre
v

ssvess O

.
[
L]
.
[]
*
[
[
.
[
L}
[
.

.e

sl117

s113

s19

s15

sl1

e vsronan

Sestevesrs

cese0a,

s09®eatsgenve,

-
IR XYY

L)

'l >
. L
wsese g0

Watoo, e
*tsenee,

89 cgr00s v

.
.
-

.

[R3]

[
.
.
.
.
L]
.

e
LR]

175

[~}
i
i
%]
tegss® s .
. .

- - X]
< .aaoo-n.-:o. ..
[o] ? egpe
m (AR NETE NN Y NY

[XN ENNTY Y
.
o M
4
i :
m-h':
L4
40 00s 2ns v
L] P 0t a0y
L -
. L] -
t0esesvege .
. - L] -
- r . [
) e 32
0 : N
et .
. .
N . 3
H :.l.‘.l...
172 . . -
. . Ld
aonee .
. .
- -
oss s

s115

sil1

sl7

si3

.
eveavac oo

XL ENYY]

aPer e,y
. .

.6
e o
. . o
roevaoe

(AN P Y XN

[.
[LTE XTI T X

O
i
(o]
(7]
od
i
L]
(7]
[0}
—
(7]

.

*

P

o v

M

.

.

.

L]

Figure 6.1 Font set 1 for Tamil symbols.

176

-("‘pwioo) sjoqus jwel Joj | 18s Wod L9 ainbi4

N
N
—t

(72}

6ETS 8ELs peETS 0E1s 9¢1s

LETS gels 621s - TA RS mNam
P Y, W' oouo..oo . »e u- .nu. ..-
] m ¢ %ot .oo uoou m u..n .-..u...:-u -..
mo W “n “n “-.on m -o.c... S oo m m -m om e Ou

9€1s ¢E1s AR 1748 021s

SETS 1e1s Lzis €21s 611S
i

"(‘pIu0o) sjoquiAs flwe) Joj | 18S 04 L'Q ainbi4
LP1S eVis

Gq1S 1§1s

-oo'c.o.c.oo ..o-::a... .
m ".-uoou -m “c m .o- -m .m QQoWo'-M
tG1S 04ts ov1s oyis
--:-aooonco no-.o-oo..oap-.-o. u‘..oo.-.oo-ono.oo“ 40.-.0.-0.0
svetecrsecer’ : . . . grezevetetiasteceieey . ‘.
R SR P, e, e Pogemeeee,
AN ORI IR I I A “bemgnd
~ m uoocuooom oo.-m..:m ." m .-o-cuuoo:o.-.o-”-:o.. :-m.-.o- .n
~
LS1S gals 6b1s SH1s vis
onocoo-oo-:.on m- u m -qnu .m mc-ocouc--.u .uo oom N
YT * u-.-.u w .m m .u Y .
961s ¢S1s gvis 1S ovis
I vl
ma-mcom:vo:u ..:.m.o-.u .m n- M ...-““ n:-”- Poae! .m

L s e e ik
e . . . < EEH -

e M RS T SIANA ek et 8 ¢ . -

G d iy S

178

= ttespeso amoooy
. e il

e S X0 25 T T Y ST X

e o

5217
s218

|

i

|

1
s213
5216

s210
5212

SUMANS gatail
LA Sarein i

KU TTY K

J R e eisrudsioanid

s24

522
s23

Figure 6.1 Font set 2 for Tamil symbols.

179

prsmasamas

- g-_..._-.—-—""‘”’ o

= == A

E = N

Fx = 3 - [73]
T ————

. .,‘D..'.z

MH,.

0 sy P
& TR =
N e
o e e » 3
B T e 3 == (“3
é 7,
. i e e P2 Pt g —er e
o T
— o ™ <t
o™ ™ ™)
N N (V] N
[7,]] e " w (7]
=———ven=
e
~ o e o
N (V] —- — o
N o == et N
7] = N ——is >
—— T T pupey B g powmngmn 4 it
s oot ayats prprerere e et
: et
o < - ©
N N N
N [4V] N
v ;) v
T e
=R IIEARS R
e et D et R
e b s et I ER I e =
Ty ST
= = =4 T o —Is—— o N
SEe——ee s ~ SE——wme ey) Seeemmee e o PN
N : - —m. T Pt 8 7 i, malll o\ | ol
N YR TeR e 0 T ™= » Yo
e e e o s
S AR T
WS e e b e P e "

Figure 6.1 Font set 2 for Tamil symbols (contd.).

180

. ~
n
N
wn
RUELE XX LD
®
(X
Y ®
§ e ©
: !.%.
poae— NNLIRRNREE
Frtmewe st e, M = t . tg
- T WD o1 e em———s gol. W Vo) wn ®-u
e————w———y] Ie——ee———e o v e N
IRt RaaY———u: (3 TW———F—%Tw O n . Vv
e IMTTOIW T ».
b T e »
— - '
CAREARARTI T i3 Joand .
= ~
fraam = 2 TR L Y e conmed
—
()
3 S g
n L4 n

b T :
EREE B
26 ~"10 " g ‘g -w
TRy wEwe YT

issesane nea__

Figure 6.1 Font set 2 for Tamil symbols (contd.).

w (e}
3 < gl
o~ et N
) e T W [72]
ST TR
.- o -
c cavea® s .o
- o ™M
c = s
< g g o« agqa- :- o
% - w e e 7]

181

"SjoquiAs jiwe) Joj g jes o4 -9 aunbiq

2IEs gES bes
i il m m_ K Ay
i il ﬁ I ;‘
T B LR ETHY ,J.n.ﬁ mm | R%:Ez_um qm___ _ mm o
SIES 1Ies /65 :m
EQ,HMm - H vﬁmm “ _. :::; cﬁmm [TTTTIEEY :J:WWW: . Nmm
| __am%_ I it
o _m__:::_:__: =: | _ ﬂ
_nﬁmm EIES 6ES _r.:_::
Ju
HBE e I !
il mm g | ; i ._mm
(il it R _
il SR RO

I o e

“

6ELS

_____Ew
il

LEES

—_—

*

182

mnunnn

oo
o T
— N,

9eEs

i

|

GEES

——— MR

8EES

w

H

|

-

‘("PIuc2) sjoquifs pwey 4o} € 18s o4 |°9 anbiy

pees

i

i

| e

Oees

s

£Ees 62€s
» M
=§ il
! . + | m
| =- .::_t :.1::
2EES 82¢s
il | |
| *_ ﬂ. . ?_ :
| h =.;L=;=
[EES 12€S
¥ =_==_=__==_j
1
:_.; HAUlilEL

92¢s

oo
poe———

ittt

..

"("pPI0o) sjoquiks e} 10 g 18s o4 |-g ainb4

T i i B
ﬁg ‘. gm mm w
A R
i e T
| Hi il mpm itk sm “.___;._%Mm_
o 96€s i Nmﬂm ilf fif __we_m_mr ___ ,. i il
| t ! AU TIm ﬂ_
=f .? W m
AR 1A :" .". MBI _

$'() = S-{s(}

a-= g G
I=1

a8 = a-c
where ¢; and c, are the cardinalities of s(i) and S respectively. Also, a is the number
of models in the corpus and a’ is the count of all symboils in the corpus except the

models of the symbol s(i).

6.2 Notations and Definitions
The following notations and definitions are used in explaining the functions and

the measurements.

Notation 6.1: k-function
It refers to any one of the functions listed earlier. The letter 'k’ will be replaced
by a symbol representing that function. For example, a-function stands for the identity

function.

Notation 6.2: A-function
The A-function, denoted as Ak(x), gives the average or magnified average of the

k-function.

185

Notation 6.3: U-function
The U-function, denoted as Uk(m), gives the least desirable model M(iu)e s(i)

when a given condition 'CU’ is satisfied for the measurement of the k-function.

Definition 6.1: MIN-function
For a set of values, X, the MIN-function, MIN(X) is defined as,

MINX) =y | yeXAV zeX, y<z

Definition 6.2: E-function

Given an array, u of models, the E-function is defined as follows:

Et,m,n) = 6 raruise

where M(ie)e s(i) and M(ie) occurs n times in u, m is the size of u and m/2<n<m.
6.3 Functions and Measurements

6.3.1 Identity Function
The identity function, a(), is a measure of ‘common dots (area)’ shared

between two models. It is defined as follows:

k) = £ £ mif),oh mikr),q

186

The larger value of a () indicates a larger degree of similarity between two models.

The average identity function, Aa () of M(jj) is computed as

. 1 1S skl
Aa(ijkr) = — X X a(ijkr) where k»i
a k1 m

A larger value of Ax (jf) indicates that the average common area shared by M(jj)
with all the models of s(f) is greater and hence less distinguishable. The U-function
which yields the least desirable model, M(iu)e (i) is given by

Ua() = M(iu) | Ax(ilsAe(it), ¥ M(ies(i) and M(j)»M(u)

The first row in Table 6.1 gives the values of Ax for the three models of the

symbol (<A). The least desirable model is KA(1) since it has the highest Ax value.

6.3.2 Hamming Distance Function

The Hamming distance function g (i,kr) is given by the equation

m n

BUikr) = T T mli)yq & mikryq

The Hamming distance is the complement of identity function. The smalier the value
of B (ij,kr), the lesser the dissimilarity between the models M(j) and M(kr) and hence

less desirable.

187

Table 6.1. Seven measurements for KA

Ak
Ax
A8
Ay
Al
Ay
A%
Ap

188

The average Hamming distance measurement A8 () of M(j) is calculated as

kr

181 k)l
AB(ij) =% I L pUikr) whers kel

The least dissimilar mode! M(iu)e () is given by the U-function as

U (i) = M(u) | As(iN2A8(u), ¥ M(ies() and M({)»M(u)

The second row of Table 6.1 gives the values of A3 for the three models of the
symboi & (KA). The least desirable model is KA(2) since it has the least dissimilarity

among the three models.

6.3.3 Normalized Identity Functions

The identity function, a() does not take into account the various degrees of
misalignment and stroke width variation of the models. Two normalized functions, y
and { are defined to take these variations into account. Let,

X5 = £ Emli)yg
p=1 ¢=1

PP /1.0
YK = Tl kN2

_ _2.a(ljkr)
x(ij) + x(kr)

189

An 'a’ times magnified average function Ay (jj) is computed as

IS lck)
Av(ii)=1£l P> ,{: y(ilkr) a
IS 18k)|
=X X vy(ijkr)

k=1 r=1

The function, { (ij,kr) and the corresponding magnified average function AZ (i)

are as follows:

(k) = (LK) e
VX XK1}

_ _a(ijkr)?
X(ij). x(kr)

R BRI
Al(ij) = 3 kE {(ij,kr) a

-h
-
-b

IS} 1s(K)]
= X X L(ijkr)

ka1 rs=1

_ S0 gy ke
k-1 r~1 X(ij) . x(kr)

The larger value of Ay (i) and A{ (i), indicates that the normalized common dots

shared by the model M(ij)e (/) and all the models in the corpus are larger an” hence

S

190

less desirable.

The U-functions for the Ay and Al measurements are given by the following
equations:
Wy () = M(u) | Ay (INsAy (iu)
UL = M(iu) | AT(NAL (iu)
V M(ij)e s(i) and M(ij)»M(iu) where M(iu)es(j).

The third and fourth rows of Table 6.1 give the Ay and A{ values for the three
models of & (KA). The least desirable model is KA(2) since it has the largest Ay and

A (normalized common area) among the three models.

6.3.4 éelt-lnformation and Entropy
The self-information of an element d,,, of the dot matrix, D is given by
‘l’(dpq) = "092qu
where P, is the probability of the pq™ element being a 'dot’ for all the models under

consideration. The probability is computed as follows:

Ppq) = 229)

where 18] o))

]
Q) = £ X miif)

I=1

191

and

m n
b=X ¥ ypq)
p=1 qg=1

The self-information, v (/) of a model M(ij)es(i) is given by

m n
¥ (ij) - 3_31 q% ¥ (dpg) M(ij),,

The eniropy is the mean of the self-information content of 2 model. For the

model M(if), it is defined as

m n
E(il) = PE1 qEI qu ‘I’(dpq) m(l/)pq

Since P, may be zero, & (})] could be indeterminate and so when Poq = 0,&()
= 0. The self-information of an element increases as its uncertainty grows. Therefore,
the entropy may be regarded as a measure of uncertainty. The entropy vanishes iff
there is complete certainty. Thus, the smaller the value of ¢ () or £ (), the better the
model is. The A-functions for ¢ () and £ () are given below:
Av(i) = @)
AE() = &)

The corresponding U-functions are as follows:
U () = M(u) | Ag(if)<At(iu)
UE() = Mlu) | AE(D<AE (iu)

192

¥ M(if)es(?) and M{if)»M(u).
The least desirable model among the three & (KA), from Table 6.1, is KA(1),

since it has the highest Ay () and Ag () values.

6.3.5 Nearest-neighbor Distance
The ’nearest cell distance’, o(jj.kr)y, of cell d;, corresponding to M(j) with

respect to the model M(kr) is defined as follows:

Mi -pY+(t-
o{l}, kr)pq - {O. A’I"rglli):-((! PR

such that m(kr),=0 and m(jj),*O, for 1ss<m, 1<t<n.
A larger value of o (jj,kr) indicates a larger 'distance’ between cell m(if),, and the

'nearest cell occupied by the model M(kr). For any pair of models M(j) and M(kr),

nearest-neighbor distance, ¢(jj,kr) is defined as follows:

_ —1_ m n . . 1 m n
dlkry = <o ,,);1 ;‘:‘.1 yolh kr)y,) PI_21 }3 Volkni)pg

In general, it is true that ¢ (ij,kr)*e (kr,j). A larger value of¢ (ij kr) indicates that
the pair M(jj) and M(kr) is more distinct. The A-unction and U-function are:
Up (i) = M(iu) | Ae(i2As (iu)
v M(ijes() and M(if)»M(iu)

193

1 18l .
Ad(lf) = — ¥ (i kr) where k«i
a’ k1 re1

-

Thus, the model having the smallest value of Ap () is the least desirable. For
instance, the values in the last row of Table 6.1 indicate that KA(2) is the least

desirable model among & (KA).

6.4 Elimination Algorithm

The elimination process is iterative. In each stage of the iteration, all seven
measurements were computed and compared among different models of the same
symbol. Those models rated as "undesirable” were successively eliminated by 100%,
87.5%, 75% and 62.5% elimination rules (Shiau and Suen [1980]). The elimination
algorithm is given below. When the elimination algorithm as applied to the six models
of & (KA) and L (TA), the models KA(2) and TA(1) were eliminated in one iteration,
KA(1) in the next iteration and TA(3) in the final iteration. The most distinct models

obtained after successive elimination are KA(3) and TA(2) (refer Table 6.2).

Algorithm 6.1: Elimination Algorithm

procedure elimination_algorithm;
begin

no_of_measurements := 7;

m, n := no_of measurements;

194

Table 6.2. Results of Elimination of KA and TA

ARk Rded ik s dek ke ddk A hhkhkkdddkkhhkkdkhhkkkkRkhihkiddhhiiiki ki

o e de e v e 7 e s e e 7k T T Tk k ok T e e ok e e gk e o o e e e i e e e Ak o e e e e e vk e g A de e e e ok ok ko

lteration #1 100.0 percent Elimination Rule

Eliminated Models: none

iteration #2 87.5 percent Elimination Rule

The Measurements are as Follows:

Ak KA(1) KA(2) KA(3)‘|T TA(1) TA(2) TA(3)
Ax 9.33 8.33 4.33 6.33 7.00 8.67
A8 49.00 44.00 §3.00 48.00 44.67 53.33
Ay 1.66 1.74 1.10 2.23 223 205
Al 0.63 0.67 0.30 1.48 1.43 1.1
Ay 28286 | 220.87 | 251.99 | 128.14 | 11458 | 201.67
A% 3.30 3.00 249 2.34 2.23 2.84
Ap || 4.42 3.72 4.40 4.38 4.51 3.71

**

Eliminated Models: KA(2) TA(1)

**

195

Table 6.2. Results of Elimination of KA and TA (contd.)

iteration #3 87.5 percent Elimination Rule

The Measurements are as Follows:

P v e ok v ok e vk g v s ok e gk Sk e A e ek o e sk o ok e ok ok ke ok e o ok ok ok ok ok ok ek e

Eliminated Models: KA(1)

e e e e e o e g e ek e S T o e gk e ok ol e e e ok vk ok ke e o o ok ok o vk ok o ok ok o e A

196

Table 6.2. Results of Elimination of KA and TA (contd.)

iteration #4 87.5 percent Elimination Rule

Eliminated Models: none

e e e e 7 e T v T e v 7 o A e 7 v T d v 3 e v e e 7k 2k e sk e e 3k ok e e e e e e o e e S 3k o e e vl e o e ok e e o e ek ok

Iteration #5 75.0 percent Elimination Rule

The Measurements are as Follows:

TA(3)

5.00
59.00
0.76
0.42
187.47
3.36

9.73

KAAKKARRAKRARAAAARRRARTRARARKRAAREARARARRRAAARRN A ARANAARA A AAANkk

Eliminated Models: TA(3)

ARIARARRKRRRRARARAKARRRRRKXARRAAARKARARARRRAARRRA R RRARAAA X dhkkhhk

Optimal Modsic are: KA(3) TA(2)

ARRRKAFRAAXRAAARARARAAARAAARARRANAAAAAXRRAARAARARRAAAARR A A hhkhdd

197

corpus := {M(l}) | M(ij)es(i), 1=j<|s()|, 1=k[S|}
fmmod2=0
then
limt:=mdiv2-1
else
limit := m div 2;
for O to limit do

begin
itV s(i)eS, |s(i)]| =1
then
exit;
e list:= {e};
eliminate_models;
n:=n-1
end

end elimination_ algorithm;

procedure eliminate_models;
begin
for ever do
begin
V s(i)eS and |s(i)| >1
begin
for k := 1to no_of measurements do
begin
Vv M(ij)es(i) do
begin
compute k(ij,rs);
compute Ak(ij);
end;
u(k) := Uk(i);
end;
HE(L,"M)+» 0
then
e _list := e _listu {E(u,n,m)};
end;
ife list = {o}
then
exit
else
corpus := corpus - e_list;
end;
end eliminate_models;

198

Theorem 6.1: The elimination algorithm has a time complexity of O(mn (k+1)(2a-k))

where k is the number of distinct symbols in the corpus.

Proof: Inthe worst case, let us assume, the algorithm eliminates one model at a time.
To compute a k-function, the summation operation is executed mn times. At each
iteration, the summation for Ak-function is executed as many times as there are
number of models in the corpus. Since at each iteration one model is eliminated, it
will reduce by one for every iteration starting from a until k. There are seven
Akfunctions to compute at each iteration. Therefore, the number of times the
operations in a k-function will be executed is:

= 7mn{a+ (a-1)+(@-2) ... (a-k)}

= 7mn{a(k+1) - i‘ﬂ;ill}

=%mn(k+1)(28-k)

Ignoring the constant terms gives a time complexity of O(mn(k + 1)(2a-k)).
Theorem 6.2: The elimination algorithm has a space complexity of O(amn).

Proof: The space required to store a model is of the order of mn. There are a

199

models in the corpus. Therefore, the total space required for a model is of the order
of amn. Also the space required to store the Ak and Uk functions is of the order of
7.a for each. This space is considerably smaller than the space required for the

model and hence, let us ignore it. Therefore, the space complexity is O(amn).

The symbols in Figure 6.1 have been evaluated using the above method. Figure 6.2
shows the most distinct set of dot matrix symbols produced by the elimination

algorithm.

6.5 Conclusion

Dot matrix character styles need to be evaluated for its effectiveness, legibility
and ergonomic properties. In this chapter an iterative method of determining the most
distinct character set, among various dot matrix character types, is described. The
method is based on the distances and information content of the dot matrix
characters. The examination of the seven quantitative measurements revealed that
the 'desirability’ of models indicated by any two measurements was not always
identical. The method described is not limited to Tamil characters. It could be used

to evaluate dot matrix characters of any language.

200

m
s31 s25 s19 s113 s117 s32 s16

s110 s114 s118 s33 s37 s211 si15
s14 s38 s312 s116 s119 s123 si27
s331 235 $120 s124 s128 s132 s136
s121 s125 s129 s133 s337 s322 s126
s130 s134 s138 s339 s240 s144 s348
s152 s356 s241 s145 s149 s153 s357

s342 s146 s350 s154 s343 s347 s151

s155

Figure 6.2 Distinct set of Tamil symbols.

7. MULTILINGUAL KEYBOARD DESIGN
AND CHARACTER GENERATION

7.1 Multilingual Keyboard Design
For most applications data entry is, and will be for the foreseeable future,
through a keyboard. This is the most successful, reliable and cost effective way of
entering information at this time. However, existing mechanical typewriters, peculiar
to each of the Indian languages, cannot be converted into man-computer
communication terminals which meet our design gcals. The design of a multilingual
keyboard suitable for entering text in one or more languages is described.
Let,
K : Number of key-positions in a keyboard
N; : Number of characters in language i
T : Total number of languages to be supported

¥ : Number of language independent characters such as %, *, etc.

During keyboard design, we may encounter the following cases:
Case 1: (¥ +N)< K for anyi, 1<kT
Case 2. (¥+N,) > Kfor any i, 1skT

Case 3: (¥ +M)< K where M=N,+ ... +N,

202

In Case 1, a sufficient number of key-positions are available on the keyboard
so that one character in a language can be assigned to one key-position. Such is the

case with the existing English keyboards.

However, in Case 2, a language has more characters than key-positions. In
this case, it is not possible to assign one character to one key-position. Such is the
case with Indian languages, Chinese and many other languages of the world. In order
to design a keyboard to support these languages it is necessary to use the principle

of symbolization described in Chapter 1.

In Case 3, the union of the characters of two or more languages are assigned
to the K key-positions. This is possible if the set of languages have a small number
of characters or the union of the symbols of the set of languages are less than or

equal to K.

7.1.1 Symbolization
in symbolization, we analyze the graphemes of the characters set as well as the
linguistic characteristics of the language. By graphemes, we mean the shape of the

characters. Symbolization gives us a set of symbols of the language under analysis.

Let,

203

c, bethe " character in the /" language
s, be ihe set of symbols obtained through symbolization for the i"

language

An important characteristic of the symbols of a language is that there exists a

mapping

construct,
fl . Cij """"""""" > sl fOl' 1SISN‘, and 1SlT

Let, {S;y, Siz» -« +Siy} De the set of symbals constituting ¢;. Given the sequence
of symbcls {s;,, S ... ,Sip}, the construct; will identify it as ¢ ; as well as generate it

for display or printing.

The following are the constraints on the symbolization:
1. ®+s)<K

construct,
2. Gy --mmmmmmeemeee- > s, should exist for 1<j<N,

3. s, should be optimal in terms of computing time, storage requirement
and complexity.

Definition 7.1: g-symbols

If the members of s, correspond to (partial) graphemes of the characters of a

language, then they are called g-symbols.

Definition 7.2: p-symbols
If the members of s, are based on the phonetic characteristics of a language,

then they are called p-symbols.

g-symbois are used in the existing keyboards. The characters of Tamil and
Malayalam languages were analyzed to obtain the g-symbols. Figures 7.1 and 7.2
give the sets of g-symbols devised for the Tamil and Malayalam characters

respectively.

The analysis of the characters of ten differert indian languages has resulted in
a set of new symbols called p-symbols, based on the phonetic characteristics of
Indian languages. Figures 7.3a and 7.3b show the p-symbols of Tamil and Malayalam
characters respectively. Only the transliteration into Roman script (according to the
Library of Congress Cataloging Bulletin) is shown in the figures for readability. Notice
that the number of key-positions required to design the p-symbol keyboard for Tamil
or Malayalam is less than the 52 g-symbol! key-positions needed for the English
language. Also observe that there are a number of p-symbols common between

Tamil and Malayalam.

It has also been found that the cardinality of the union of the p-symbols of the

205

GMFEELCOUTSnH UL W
TG OT M S S [T
T TR XTI
@&@m@@@@@'y@@
mme & o 7°0¢ m

nvog 28 & 2w T 0l

Figure 7.1 Set of g-symbols for Tamil characters.

206

Al 6B a2l 2P £ MW 6

G

@ o e B g 5 m

®

ab

Figure 7.2 Set of g-symbols for Malayalam characters.

207

A1l U U E

>

E Al O
AU AKH SHRIJ S8 $ H K

N CNTNTNTPM

< X O

R LV ZL RN

(@) Set of p-symbols for Tamil characters.

A 1T UURRTELE

>

Al O O AU AM AK
KH G GH N C CH J JH N

R N

e

PH B BHM Y R L V ¢

E
K
T THD DHN T TH D DH N
P
SSHLZR
" (b) Set of p-symbols for Malayalam characters.

Figure 7.3 Set of p-symbols of Tamil and Malayalam.

S emuy W . Thoaa v

208

ten Indian languages is not a large number like in Case (3) above. Because of the
common phonetic characteristics of the Indian languages, there are several common
p-symbols between these languages. This makes it possible to design a keyboard
containing all the p-symbols of the ten languages. Figure 7.4 gives a set of p-symbols

covering the character sets of ten Indian languages.

7.1.2 Assignment of Symbols

The next important step is the assignments of the symbols of s, to the
key-positions. That is, finding the mapping: f, : 5, ---> K. We could use the n-gram
frequencies of the symbols, the characiers and frequently occurring words in the
language to arrive at f,. These frequencies may vuary from one language to another.
The frequency could be approximated as the average over all languages. A simple
expression for estimating the frequency of a p-symbol is giver: below.

Lst,

B, :the character frequency of i" character in k" language where t<iN,

and 1<k<T

P : the set of p-symbols

|P| : cardinality of P

s, :/"symbolin P

w, :the frequency of /* symbol in k™ language

209

AA 11T UURRBLLEL

-

A o W - A e
E E E E A ALO O O O

AU AU AM AK AKH SHRI

A A
K KH GH C C CH J

~

G N
oi N T TH D

Z o

R DH RH N T

T THD DH N P PH B BH M

L]

Y YRLWVLLRBN

. LX)

S S S H K F zZ R RHAQ

Figure 7.4 Set of p-symbols of ten Indian languages.

210

0 : the average frequency of]"’ symbol over T languages

Then,

where m, is the number of times tha s,; occurs in the character C;.

As an illustration consider the Tamil characters. The frequencies of these

characters obtained from a sample of approximately 24,000 characters taken from

modern prose are given in Table 7.1. For example, the frequency of the p-symbol U
is obtained by summing the values in column 5 and that of the p-symbol C is obtained

by summing the values in row 4.

The above expression for ; is based on the assumption that the probability of
occurrence of a text of a particular language is the same as that of the other. But this
may not be true. Depending on the region where the terminal is used, the probability
will differ. For example, a terminal in Tamil Nadu is likely to handie more Tamil text
than text of any other language. Taking this into account, the expression could be

modified as:

ZDVIMNLS<FrI<L<K2 92 A2Z2-H21002X

u ol 7 J /5 SN
pu

P
w

211

Table 7.1 Frequencies of Tamil Characters.

A A1l T UTUTETE A O O AU AK SHRI
478 133 386 010 154 016 345 041 017 100 012 001 001 010
1053 217 290 016 400 071 009 043 090 126 038 001 742
003 000 000 000 00O 000 GO0 000 000 000 000 000 233
198 035 209 017 055 005 083 022 026 053 012 002 150
012 003 000 000 000 000 000 000 002 000 000 000 019
286 076 252 005 304 002 003 028 145 002 000 000 326
097 009 047 002 003 000 000 000 009 000 000 000 252
659 204 428 012 573 014 057 047 109 031 035 000 624
107 114 064 040 003 019 012 012 003 000 017 000 419
493 141 188 012 112 010 107 038 019 064 105 000 433
248 165 069 012 019 010 007 024 081 007 007 002 850
426 031 164 000 121 003 009 043 067 000 019 000 107
326 107 209 019 479 001 004 010 045 003 009 000 556
217 091 105 001 084 003 008 038 131 000 008 000 548
610 143 259 025 092 003 043 110 032 000 001 000 043
055 002 054 000 053 000 000 000 025 000 000 000 071
095 029 110 006 074 007 001 003 115 001 006 000 393
203 075 137 001 255 000 001 014 073 004 005 000 280
258 100 103 001 065 004 000 016 081 002 012 000 850
034 004 001 002 000 000 0OC 007 003 000 000 000 006
020 001 003 000 000 000 000 000 000 00O 000 000 014
002 000 002 000 000 000 000 000 000 000 000 000 046
011 001 001 000 000 000 000 000 000 000 000 000 000
000 002 000 000 000 000 000 000 000 000 000 000 000

-

212

r
= Xp @

©y= ZPk Oy

where p, is the probability of occurrence of text of language k. But this will result in |

non-uniformity of keyboard layout from region to region, and is not desirable from the

point of view of manufacturing, portability, etc.

7.1.3 g-symbol and p-symbol Keyboards

Figures 7.5 and 7.6 give g-symbol keyboards for Tamil, and English
respectively. The p-symbol keyboards for Tamil and Malayalam are shown in Figures
7.7 and 7.8. The keyboards shown in Figures 7.7 and 7.8 are based on the set of p-
symbols shown in Figure 7.3. In these keyboards, some key positions will remain
unused since there are more key positions than the p-symbols in each language.
The Tamil g-symbol keyboard is based on the modern (newer or modified) character
set. Hence, itis not possible to type some of the characters in the older scheme such
as O (RA), @ (NA), 9 (NA), Jrer (NAI), &1 (NAI), & (LA1), and &~ (LAI) using
this keyboard.

The symbols have been assigned to the key positions according to their
frequencies such that the highest load is assigned to the middie finger, then to ring
finger, index finger and the least to the small finger. It is assumed that middle finger

is the strongest and the small finger is the weakest. It is also assumed that the right

ey Joj preoghay joquihs-6 enBuynngy G/ ainbi4

213

Zy

7219 WV 30Vds @ .54% 141
/ . ¢ ~ (T-1) 1 H 0 ~) m
© ¢ < > YNS Y\or @ 9Q % a% % .WQ o
A - .. ~)
‘ £ a) ° % o L u P 207
/" : - h.w Lk) i L] m .—hﬂ 7 @ n & 131HS
N\ q 3 & JA ua woith & St £ 4 v oy b—
@. mgugwwﬂ %Pﬂ G- P.aa A RAL .@al
. /
b w i~ & = -~ o 6 8 L] S v mﬁ z] \
ﬁom by @9« + U\ — (:vm * %Q <¢ DA [a#) i ~

[

‘usiibu3z 104 preoghay joquiks-5 [enbulmny 92 ainbi4

Ny

“®ye
43S

1T

-

’

083

liwey 10} preoqhey joquiks-d enbupminn 2 amnbi4

215

A31o 4y 30Vds 1Y 24D
/ . ¢ w A Z N M N 4 iv
o ¢ < > <
- it

’ : S L d x v n o) Q d] n g %207
" . $n J8MS a H ny HAY 4 31HS

AR LERERIERER BRI a3 S HER IS b—

{ { 3 —

)
= ~ o b < L 9 S v <€ 4 1 \
+ -_ () ¥ 2 Y\ v 4 # #* ® i ~
I
ud ¥ o b3 8y Ly 24 Sy vy £ Z3 13 0s3

.

“wejeAeey ioj pieoghay joquiAs-d enBuminy g2 ainbiq

1V YLD
A A
e k] HY <
o N [wY ni e
H a HL ua AN
a n 3 2 -
HY HL kL) —
/
4 < T L} ~
& # ® i ~

€2 3 139 os3

217

hand fingers are stronger than the corresponding left hand fingers. Symbols were
distributed first to the row where the fingers are normally kept, then to the row below
and then to the row above with the assumption that it is easier to move the fingers

down than up.

The g and p-symbol frequencies for Tamil have been computed from the
character frequencies shown in Table 7.1. The p-symbol frequencies for Malayalam
have been computed by collecting the characters from modern Malayalam text books.
They are listed in Figure 7.9. These frequencies have been used in assigning the

symbols to key positions.

In the Tamil g-symbol keyboard, in order to easily remember the symbols on
the keys, related symbols (for example, 67 (E) and o (E),m(l_\!A) and PP(NU), etc.)
have been assigned to the lower and upper positions of the same key as much as
possible. This has affected the placement of some of the higher frequency symbols
such as & (TU), B(RU), 8 (KU), ® (TU) and 2 (RU) which may result in some loss
of efficiency. However, the advantages of easy to remember and (hence) fast learning

should more than offset the decrease in efficiency.

In a similar manner, a keyboard can be designed for the p-symbols shown in
Figure 7.4 (Krishnamoorthy [1981]). It could be used to enter texts of ten different

Indian languages without changing the key-top display. Inthis keyboard some of the

218

Symbol Frequency Symbol Frequency
A 1061 T 179
A 324 TH 11
1 406 D 11
| 41 DH 4
U 383 N 103
U 61 T 381
R 17 TH 20
R 0 D 30
L 0 DH 17
E 106 N 411
E 47 : P 198
Al 14 PH 9
0o 50 B 19
O 59 BH 31
AU 12 M 203
AM 267 Y 159
AK 0 R 176
K 364 L 142

12 \"/ 180
s’ 44
S
S
H
L
4
R

Figure 7.9 Frequencies of Malayalam p-symbols.

219

key positions will remain unused for a particular language. An optimal placement of
the symbols for this keyboard will be very difficult since what is optimal for one
language may not be optimal for another language because the frequencies of the
same symbol are likely to differ between languages; in addition, the p-symbol

frequencies for ten different languages are not available.

Notice that there is a separate key-position for Janguage selection code
specification. Whenever text of a different language has to be entered, type language
selection code key followed by the language number and then type the text of that
language. To type English text, type the language selection key followed by the

language code for English and then the English text like in conventional keyboard.

Since the same keyboard unit is used to enter muitilingual text, it is necessary
to display on the key-top the appropriate symbols of the language it currently handles.
Methods such as template replacement and display panel could be used for this
purpose. The former method is practical and cost effective whereas keyboards with
display panel are not yet available in the market because of the need for new chips

and economical considerations.

The English language keyboards in use today are not well designed for the
operator’s convenience and attempts are being made to produce better keyboard

designs (Montgomery [1982]). The keyboard suggested by Montgomery for example,

220

would allow an operator to type the most common English words with wiping motions.
The laycut for the Indian language keyboards do not take into account the principles
discussed in Montgomery. Mechanical typewriters based on g-symbol keyboards are
available for Indian languages. Computer terminals based on p-symbol keyboards are
being built and sold for a limited number of Indian languages inIndia. These terminals

handle English in addition to Indian languages.

A unilingual keyboard based on the phonetic properties of Hindi and Telugu
languages was proposed by Narasimham, Prasada and Rajaraman [1971], and
Laturkar and Sinha [1978]. Their proposals differ from the approach outlined in this
thesis in the following ways.

. In their input, it is necessary for the keyboard operator to indicate
explicitly which of the elements of the p-symbol sets are to be grouped
to form composite characters.

. The keys are laid in a non-standard "V" shape.

. There are 62 keys in a single shift, which makes touch typing difficult.

. There are diacritical marks on the keyboard which implies that their

design is based cn a combination of g-symbols and p-symbols.

The g-symbol keyboard proposed in this thesis closely resembles the existing
mechanical typewriter keyboard for Tamil. Hence, the existing typists could easily use

this keyboard without extensive training. However, it has the following differences.

-

221

The character Z8XNU) is obtained by one key stroke wherzas mechanical typewriters
need two key strokes. The character am (HA) is provided as a separate character
whereas in mechanical keyboard it is obtained by concatenating the two characters
2. (U) and ? (RA). Similarly, the characters &wg (SHA), e (SA) are provided as
~eparate characters. In the mechanical keyboard, they are obtained by using the
characters &n- (KUU), 2— (U) and the symbol g . Such usage in the electronic
keyboard will be confusing while generating characters. The character @2 (GNU) is
provided, thus getting the complete Tamil character set. This character is not present
in the mechanical typewriter. It is also not used by the printers. Unlike mechanical
keyboard, there is no dead key in the proposed keyboard. With the proposed
keyboard certain characters like &) (KI) can be typed in the natural order of writing
like & followed by 9 whereasit is typed in the mechanical keyboard as 1 folowed

by & using the dead key containing the symbol 1 .

The p-symbol keyboard proposed in this thesis has the advantage that it could
be configured to be language specific or for a set of languages. We can collate the
text in alphabetical order for any language. The proposed keyboard can also be used
to enter non-Indian texts such as English, French, German, Sinhalese and other
European and non-Roman languages. The keyboards proposed in this thesis have
the advantage that we could have g-symbols on the keyboard and use p-code for
internal representation as shown in Chapter 8. The p-code gives the text in collating

sequence on sorting, also, with p-code we could easily transiiterate texts from one

Indian language to another.

There is still room for improvements in the design of the proposed keyboards.
The number of keys could be reduced by associating the special symbols such as +
- * 9% & ' " etc., only with the English version of the keyboard. However, this will
require language change for special characters and a little bit extra typing. In the
placemeit of symbols only 1-gram frequency has been taken into consideration. The
placement of symbols, in particular for p-symbols, on the keys could be further refined
by considering word frequencies and n-gram frequencies. Character frequencies have
yet to be obtained for several Indian languages and used successfully in the keyboard

design.

7.1.4 Comparison of g-symbol and p-symbol Keyboards

. In the g-symbol keyboard there will be immediate feedback (echo) for
each key depression whereas in a p-symbol keyboard, the character will
appear only after typing the complete p-symbols of a character.

. A key-top symbol display is needed for the g-symbol keyboard, whereas
it may be eliminated with the p-symbol keyboards using the union of
p-symbols of Indian languages like in Figure 7.9.

. With the p-symbol keyboard, the operator has to learn, in addition to the
graphemes, the p-symbols and the structure of the script.

. The keyboards can be compared on the basis of the average number

223

of key depressions required per character. This could be computed by

using the following expression:

where p, is the probability of occurrence of character /, d, is the number
of key depressions required for character /. d, will be different for
g-symbol and p-symbol keyboards. Using the character frequency in
Table 7.1, the average number of key depressions required using the
g-symbol keyboard was found to be 1.56, and that for p-symbol
keyboard 1.63. This shows that both keyboards are almost equally
efficient.

. Internal machine coding (refer Chapter 8) based on the p-symbol gives
the text in collating sequence on sorting, whereas g-symbol based

coding may not.

7.2 Multilingual Text Generation System

A maijor task in the design of a multilingual output device is the development
of a scheme for displaying, printing or plotting the multilingual texts that have
graphically different scripts. The text entered from the keyboard must be echoed. As
well as, output from the computer needs to be either printed or displayed in the

selected language. To display (or print) the information entered, the key code must

224

be interpreted to generate the required characters. To display (print) the information
from the computer, the internal code must be decoded. The following definitions are

used in this section.

Definition 7.3: Context Dependent Language
A language, from text generation point of view, is said to be context dependent,
if any character the language takes different graphemes depending on the preceding

or succeeding character.

Definition 7.4: Context Dependent Text Generator
The text generator for a context dependent language is called a context

dependent text generator.

7.2.1 Issues in Text Generation

Before going into the techniques of generation, we must note important
differences between generating characters in Indian languages and in English. Onthe
English keyboard, each symbol on the key is a complete character (alphabet, digit or
special characters). Hence, the character could be displayed without the need to
keep track of the preceding or succeeding characters keyed in. The generation of
English characters is trivial with the present technology due to its small number of

simple characters.

!
d
‘?
;
]

T

225

Such is not the case for Indian characters, Chinese characters, etc. There are
many characters in each Indian language ranging from 247 in Tamil to over 2000 in
Telugu. The characters are larger in size than English and are more complex in
shape. The characters also vary in both height and width. The symbols in a
character do not always appear side by side without touching as in English. Some
symbols appear one below the other, with or without touching. In some cases the
same g-symbol touches other symbols at different places; the physical distance
necessary to move back to append a g-symbol, in certain cases, depends on the
preceding g-symbol. Above all character generation is context dependent in certain

languages like Malayalam.

7.2.2 Unified Approach

The output device of a multilingual terminal need not be restricted to one type.
in other words many types of output devices such as dot matrix printer, display
device, plotter, etc., could be used. Therefore, a multilingual text generator should be
as device independent as possible in order to be portable between different types of
devices. The analysis of the scripts of major world languages, has revealed that it is
possible to develop a unified approach for multilingual text generation as a hierarchical
system of software on a microcomputer that could perform (a) switching between
scripts, (b) parsing the code for the input text, (c) character generation including

context dependencies, (d) intercharacter spacing and (e) interline spacing. The text

226

generator could consist of (1) a set of device dependent primitives, (2) symbol

generator, (3) character generator, (4) text generator and (5) input decoder.

For Indian languages, a unified multilingual text generator based on the
p-symbol coding could be constructed. The p-symbols of an Indian language can be
grouped as follows:

1. set of vowels, V = {v,, v,, ... V,}

2. set of consonants, C = {c,, C, ... ,Cp}

8. set of special symbols, S = {s, p, ... Sq}

4. set of p-symbols, P=Vu Cu S
A vowel, v can combine with one or more consonants and make a composite
character. Such a consonant-vowel sequence for a character could be represented
as

K=c,C,..CV
It is possible that in certain languages like Tamil a member of P can appear as a
separate character also. Only one vowel need to be present in any given composite

character.

A state machine could be constructed to generate texts of a language from

p-symbol code of that language.

Theorem 7.1: Given that the longest sequence of consonant-vowel for a character

227

in a language be c,c,...c,v. It is possible to build state machine with k+ 7 states to
generate text from a string of p-symbols of that language assuming that each state
can sec the input string and each state is capable of declaring the sequence up to the

current symbol as valid or invalid character sequence.

Proof: Let s, be the starting state. For any input p-symbol which is not a
consonant-vowe!l sequence, stay in s, and output the p-symbol as valid or invalid
character. For a consonant-vowel sequence of the form c,c,...c,v, on ¢, move from
state s, to state s,, on ¢, move from state s, to state s,, and so on. The transition
from c, to ¢, needs k states. On encountering v, declare the sequence as valid,
generate the character and change state from s, to s,. If the gencrator is context
dependent then look before/ahead and then generate the character. At any state, if
the sequence encountered so far is invalid, declare the sequence as invalid and
change state to one of the previous states; before state transition one or more
p-symbols can be discarded as invalid or generated as independent character. After
transition, continue decoding from that state with the remaining input string. Thus, we

could build a state machine with k+ 7 states.

In Indian languages, the p-symbols are consonants, vowels and special
characters. The composite characters are formed by combining one or more
consonants with a vowel. In Tamil one consonant can combine with one vowel and

form a composite character with a form cv. In Malayalam, one or two consonants can

combine with a vowel to make a composite character; it is of the form ccv. The state

machines developed for Tamil and Malayalam are given in Figures 7.10 and 7.11

respectively.

7.2.3 Techniques For Graphemes Generation

For display purposes, the graphemes of the characters may be generated, by
one of three methods: (1) linguistic, (2) line segment and (3) dot matrix.
(Krishnamoorthy, et al [1980]). These three methods are briefly described in the

following paragraphs.

Linguistic Method: This approach is well suited to a language with a large number
of characters. It uses a set of picture primitives like straight lines, curves and loops,
from which any character of the language could be generated. Primitives could be
linked to form intermediate picture patterns, which could be linked with primitives

and/or intermediate picture patterns, until a complete character is formed.

Each primitive could be associated with a set of attributes such as length and
thickness. They and intermediate picture patterns would have in them distinguished
points called vertices, identified by ordinals 1, 2, 3, etc., at which the primitive or
intermediate patterns can be linked to form intermediate picture patterns. The vertex

set of an intermediate pattern is a specific subset of the union of the vertex sets of its

kel

Atk i e AR a3

229

input
m
state v ci c2 k

s1 s1/v s2 - s1/k
s2 s1/clv - s1/c1 s1/c1,k

s1 : Initial state

- ¢ Invalid input for that state

v : Vowel

ct, c2 : Consonant

k : Special Character

Figure 7.10 State machine for generating Tamil characters.

230

state v ci c2 c3 k
s1 si/v s2 - - s1/k
s2 s1/clv - s3 - s1/clk
s3 s1/cic2y - - s2/c s1/c1,c2,k
s : Initial state
- : Invalid input for that state
c : output whatever consonant input so far
v : Vowel
c1,c2,¢c3 : Consonant
k : Special Character

Figure 7.11 State machine for generating Malayalam characters.

231

components.

By repeatedly applying rewriting rules, which specify the method of linking the
patterns to obtain intermediate patterns, we can generate any character of the
language. Just as a generative grammar can generate the sentences of the language,
a generative grammar for handprinted English characters has been devised by
Narasimhan [1969]. However, if this grammar mode! were directly applied to Indian
characters, the set of rewriting rules would be very large since phrase names for all
characters of the language have to be given, and because of the complexity of the
characters, the number of intermediate prases would be large. Further, such a
straightforward model would not take into account the similarities in the structural
derivations (Krishnamoorthy and Issac [1978]) of composite characters. The grammar
model of Narasimhan and Reddy has been modified to overcome the above
drawbacks and simulated using a Tektronics display as the output medium

(Krishnamoorthy [1981]).

Line Segment Method: In this method, each symbol is represented as a set of line
segments. The relative coordinates of the segments are stored in a table. By
displaying the line segments of a symbol one after another, the symbol gets displayed.
The difference between linguistic method and line segment method is that in the later
there is no grammar involved. The line segment method is simple and straightforward

as compared to the linguistic method, but requires more memory. In line segment

232

method diagonal lines look continuous whereas in dot matrix method the strokes are
discontinuous and they look more spotted. Small dot matrix characters look much

more clearer than characters made up of line segments.

Dot matrix Method: This method differs from the previous two methods in the sense
that each symbol is represented by a matrix of dots instead of line segments. Dot
matrix type displays and printers are widely used for Roman characters. In these
devices a fixed size of 9x7, dot matrix for each Roman character is assumed.
However, a much larger size is needed for Indian and Chinese languages. The dot
matrix printers could be either column printers or line matrix printer. In the former
case, a symbol is printed column by column whereas in the later case one line is
printed row by row. Figure 7.12 and 7.13 give samples of Tamil and Malayalam texts

generated using the state machines and the dot matrix method described above.

7.2.4 Storage Optimization

One of the challenges of the linguistic method is the selection of primitives.
There are two extreme cases possible in the selection of picture primitives for
generating a class of pictures, namely (1) select a maximum number of primitives and
(2) select a minimum number of primitives. In the first case, a large amount of storage
would be required to store all primitives. However, the number of rewriting rules

would be small and the computation time for interconnecting the primitives to generate

R T e T A T s

233

wrlr) sfissg vraogub Upbsg
wrrasyg® wrgudr arpslsral Cslig
Cefiomy vgherdr Oerdunudrafls SlgiCam(h
CoumoLE (mby Oualremn) dlopbsg
U HemL ol ulajedr DuriusGe
OurdusCour Qurrbisd (urdisCeour Qurrlisd

Figure 7.12 Sample Tamil text.

234

o 0m s] ©Ia)Y ajEMENT
oaiR” MIBIWMM b ele
CnIdy 180 @00 aNmIW o

Figure 7.13 Sample Malayalam text.

235

the picture elements would be small. In the second case, the storage required for
primitives would be smaller, but the number of rewriting rules would be large. Also
the computation time for interconnection of picture primitives would be high. The
primitives should be selected such that an acceptable compromise is achieved
between the storage and computation requirements. In the case where the set of
primitives is the same as the g-symbol set to be generated, the syntactic picture
generation reduces to triviality for symbol generation but not character generation.
Unfortunately no formal msthods are available to select the set of primitives for a
specified class of pictures. Scripts must be carefully studied and then decomposed
into components. The decomposition is to be done in such a way that the

components are few in number and that they occur in many characters.

Storage could be minimized in the case of dot matrix method also by
minimizing the storage required for the dot matrices of the symbols. For example,
consider the dot matrices for the symbols NNA and NA as shown in Figure 7.14.
There are ten dots in each column. These dot matrices could be represented by a
string of (octal) integers as given below, where each integer represents a vertical
column and is obtained by treating the dots in each column as a binary number of
size 10 binary digits.

NNA = <0376, 0411, 1011, 1006, 1000, 100C, 1376, 1401, 1401, 1376,

1000, 1000, 1376, 1401, 1401, 1376, 1000, 1000, 1777, 1000,
1000, 1000>

236

oooooooooooooo ® s 0000

.
. [. - . .
.
. . . - .
. - . . » .
- . . - . .
.
. . - .

.

(a) Dot matrix of ewvwr (NNA).

(b) Dot matrix

2]
La]

sUT (NA) .

Figure 7.14 Dot matrices for ewt (NNA) and setr (NA).

237

NA <0376, 0411, 1011, 1006, 1000, 1000, 1376, 1401, 1401, 1376,

1000, 1000, 1777, 1000, 1000, 1000>
Coding is done column by column, from left to right, considering the bottom-most dot

as the least significant digit.

Comparison of the two strings reveals that there is a common substring which
corresponds to the common graphic pattern between NNA and NA. Suppose,
¥, = <0376, 0411, 1011, 1006, 1000, 1000, 1376, 1401, 1401, 1376, 1000,

1000>

¥, <1376, 1401, 1401, 1376, 1000, 1000, 1777, 1000, 1000, 1000>
¥, = <1777, 1000, 1000, 1000>
now, NNA and NA could be written by the production rules:
0, =Y, + ¥,
W, =¥, + ¥,

where + is used as the linear concatenation operator. ¥,, ¥, and ¥, are the picture

primitives in the linguistic method; « , and v, are the production rules.

We could generalize this method for a class of m symbols. Suppose ¢, denotes
the sequence of integers corresponding to the symboli. We define the following sets:

¢ = {0,0, B}

P = {¥, ¥, .. ¥,}

= {0, 0, .. 0}

238

The set ¥ is constructed such that every ¢ ; is a subsequence of integers contained
in at least one ¢,; and every ¢, can be constructed as a linear concatenation of one

or more ¥ s. Let w, denote the production rule for ¢, and a, denote the storage

required for the itemx. Then,

a(®) = Tu(d)
k1

«(?) = ia(qr)
(3]

a(Q) = ga(m)

a(®) is unoptimized storage requirement for the set of symbols &. If a(®) >
@ (¥)+a(n)), we have reduced the storage requirement by an amounta (¥)+a (). The

objective is to optimize the storage requirement by minimizing a (¥)+a {@).

Theorem 7.2: The optimization of the storage requirement for the set of dot matrices

of the symbols, ¢ is np-complete.

Proof: The theorem will be proved by showing that this optimization problem is the
same as the external macro data compression problem discussed in Garey and
Johnson [1979] which is an np-complete problem. Designate the set ¥ as the set of
dictionary strings and the set of production rules o as the compressed strings.

Replace each occurrences of ¥, in w, by a pointer to ¢ . Represent the concatenation
jine; i nep

239

operator as a null entry e such that a(e)=0. Thus, each compressed string will
contain a string of integers and a set of pointers to members of . Given the
dictionary strings, the compressed string and a mechanism to identify pointers, we can
construct the dot matrix of a symbol from the compressed string, by repeatedly
replacing pointers in the compressed string by their corresponding dictionary string.
Now, the original storage optimization problem is equivalent to optimizing the storage
requirement for the dictionary and compressed strings. This is an external macro data
compression problem which is an np-complete problem (Gary and Johnson [1979)).

Thus, dot matrix storage optimization problem is np-complete.

Storage Reduction: Since optimization is np-complete, we could only try to reduce
the storage requirement as much as possible by using data compression techniques
(Storer [1988], Held [1983]). In the above example for NNA and NA, assuming one
word of memory for each integer as well as for a pointer, the uncompressed version
requires 38 words of memory to represent both NNA and NA whereas the
compressed version requires only 26 words which is more than 30% reduction in
memory requirement. Notice that storage for ¥ , and ¥ , could be further minimized by

treating <1777, 1000, 1000, 1000> as another common string.

" There is a tendency to think that memory is cheap, hence we should not worry
about storage optimization for the dot matrices. However, one should remember that

a terminal supports not just one but n text generators; hence the overall saving will be

240

ntimes. It should be realized that the terminal market is very competitive. A ten dollar

saving in components results in almost a fifty dollar saving in the overall product cost.

Hence, storage minimization problem should be given serious consideration.

7.3 Technical Problems

The following are the important technical problems encountered in designing

a multilingual terminal:

Changing symbol display on keyboard with change in language.
Symbolization and construct are difficult to obtain for languages like
Chinese.

Symbolization and construct development is manual.

No technique/method exists to verify optimality of symbol set.

Coding of symbols should give lexical ordering of the text of a language
on sorting. It is difficult for the g-symbol set for indian languages.
Assignment of symbols to key-positions needs frequency distribution.
If a common set of symbols is used to represent more than one
language, an allocation may result in optimum distribution for one

language and not for others.

o T TRRTETETTET e TR T e e T TV RE

8. MULTILINGUAL COMMUNICATION SYSTEM

8.1 Iintroduction

The various aspects in multilingual document interchange are shown in Figure

8.1. They are:

1.

© N

N o o »

accepting document

entering into Computing and Communication Systems (CCSs)
storing in the database, if needed, before transmission
transmitting according to a known protocol

receiving

storing in the database, if needed, before delivery

delivering

Suitable multilingual 1/0 devices described in the previous chapters are assumed to

be available for entering text into CCSs. Also, multilingual programming tools

explained later must be available for developing multlingual CCSs. Various

communication aspects are described in the following sections.

The aim of this chapter is to address the basic issues such as document

structure, character coding, etc., which are common to all data communication

protocols. It is not intended to revise every communication protocol in use today.

However, as anillustration, a possible way to enhance the NFS (Network File System)

242

% B

Store

NET

Store

Host

1%

Store

Retrieve

..%.,3

Deliver

Figure 8.1 Elements of multiingual data communication system.

243

protocol is shown later. Similarly other specific protocols could be modified.

8.2 Multilingual Document Structure

In the case of unilingual document, the text in the document belongs to one
particular language, say English. If the language used in a CCS is always the same,
the language information could be omitted like in the existing systems. However, a
multilingual document (file) contains texts of one or more languages as illustrated in
the previous chapters. In this case it is essential to indicate the linguistic information

explicitly in the document.

Therefore, according to our unified document structure, every document, either
unilingual or multilingual is made of two components
<document> := <a> <texts>
where a is the set of attributes of the texts component. The attributes component is
further subdivided as follows:
<a>i= <a,> <a,> .. <a>.. <a,>

wherea, is a set of attributes of texts belonging to the language / in a given document.

Let,
<> :.= <m,> <‘°2> <m,> <mm>

where @ is the Universal set of document attributes such as bold, italic, underline,

superscript, subscript, etc., and the set of language specific attributes. The

244

relationship @, < a is true. According to this scheme non-language documents such
as graphics can be easily handled by treating graphics as a language. The Braille
script used by the blind people can also be stored and transmitted as long as suitable

I/O devices are available with the CCSs.

8.3 Language, Character Set and Coding

A given text is associated with a language and the character set of that
language. In order to code a text, it is essential to code the character set. For
multilingual texts, it is essential to code the language also. In the following
paragraphs, the evolution of the existing character set and its coding are reviewed.

A new universal multilingual coding scheme is described.

8.3.1 Evolution of Character Set

Telex is one of the earliest computer communication systems developed for
international information interchange. The telex character set contains the uppercase
letters A to Z of the English language and other control and special characters such
as - *, etc. Computers at this age had 6 bits per byte to accommodate the

uppercase letters A to Z.

The technological advances, the decreasing cost and wide spread applications

of CCSs among the public and office environments in non-numeric computation
resulted in the necessity to handle the lowercase letters a to z of the English language.
Computing systems increased the byte size from 6 to 8 bits to handle the letters a to
z. The data communication systems were forced to handle the lowercase letters too.
Hence, CCITT improved the communication system from telex to teletex and
enhanced the character set as GO character set to handle the lowercase letters a to

z as shown in Figure 8.2 [CCITT Recommendation S63].

Many European languages, in addition to the English alphabet, use diacritical
marks in their character sets as shown in Chapter 1 (Gilyarevsky [1970]). The
pressure and need from these nations made the CCITT and the computer
manufacturers to further enhance the character set as G2 character set to include the

diacritical marks as shown in Figure 8.3 [CCITT Recommendation S63).

Notice that these character set enhancements are not necessitated by

technological needs; it is purely linguistic implications on CCSs.

8.3.2 Future Character Set
| The existing computer and communication character set is limited to Latin script
languages. It dess not handle languages using Indo-Asian, Arabic and Cryllic scripts

shown earlier. The majority of the population of the world use Indo-Asian and Cryllic

246

Figure 8.2 CCITT GO character set.

247

Diacritical marks

)

L

61

Ol

b

i

>>

4 “"
/2

(14

<<

10

11

12— |Y,

13

195

Figure 8.3 CCITT G2 character set.

248

scripts. The nations using these scripts are using more and more computers and
communication systems for information handling and interchange. They want the
world CCSs to handle their languages in addition to Latin script languages. The
current techniques used by the computer manufacturers, the CCITT, and other
standards making organizations to enhance the character set s not suitable to handle
varying number of multiple languages of the world. Therefore, it is essential to
enhance the character set and adopt a new character coding scheme like the one

proposed below.

8.3.3 Language Coding
In the existing unilingual CCSs, the language is implied and rot explicitly

specified. That is,

data := text
However, in a muitiingual text representation, it is necessary to explicitly specify the
language code. As shown in the earlier chapter, we represent any textual data as

data:= <lJid> <text>

lid := <le>n
where lid is the language identifier and text is a set of characters represented by /id.
In this scheme the text belonging to a language is preceded by its language code.
Thus, it is possible to represent, store and retrieve multilingual text as a sequence of

bytes of information.

249

The language code /c can be constructed as an ESC (escape) sequence or by
a unique 8 bit code. Since ESC sequences are being used for other purposes by
existing hardware and software, it has been decided to use a unique 8 bit code for
</c>. In both cases, globally unique number, n, representing a language is needed
to follow the </c>. For example, assign O to English, 1 for French, 2 for Tamil, etc.
To make the least changes to the existing CCSs, English can be treated as the defauit
language. International bodies such as CCITT can easily accomplish the task of

assigning global number, n to each language in the world.

8.3.4 Character Coding
In 7-bits and 8-bits per byte, there are 128 and 256 character codes
respectively. If one distinct code is usec for </c>, then the remaining codes could

be used for the letters, numerals and special characters of each language.

As an illustration, the coding of the Indian languages Tamil and Malayalam is
shown in Figures 84 and 85 respectively. It is based on the p-symbols of the
languages given in the earlier chapters. Let us call such a p-symbol based codings
as p-codes. ltis possible to device character codes based on g-symbols also; let us
call such codings as g-codes. For Indian languages, the p-codes have the advantage
of giving the text, on sorting, in collating suquence; however, the g-codes may not

work for all Indian languages. The character code for Latin script languages will be

250

1<

12

(1]

Al

10

AU

SHRI
K

>
?

%

Figure 8.4 7-Bit p-code for Tamil.

251

PH

BH

Al

AU

| o

Figure 8.5 7-Bit p-code for Malayalam.

252

the same as the existing ASCII code except for <lc>. As one can see, adding or
deleting a new language is trivial in this scheme. It is a Universal Coding Scheme for
computer and communication systems of today and tomorrow. This new character
set coding scheme accommodates any variable number of languages without
increasing the number of bits per byte (iike going from 6-bits per byte to 8-bits per
byte to accommodate lowercase letters of English) or using 16 bits per character for
Chinese. In India, a coding scheme called ISCIi (Indian Script Code for Information
Interchange) like ASCII code has been developed (Nag [1989]). it conforms to the

ISO 8-bit recommendations according to which ASCII remains in the bottom 7-bit

region, while the Indian script characters are accommodated in the top 96 codes. It

is similar to the p-code outiined in this thesis. However, ISCIl code is valid only for a

set of Indian languages and English. It is not general enough to handle other
languages in the world like the p-code described in this thesis. Moreover, an ISClI

code does not have provision to specify language code.

Graphics characters and Braille script could be easily accommodated by

treating them as separate languages and assigning language codes for them.

8.4 Protocol Changes
Major well known data communication protocols are similar to the seven layer

Open System Interconnect (OS!) model as shown in Figure 8.6 (T anenbaum [1981]).

g1020}0.4d Jofew jo siohe] 9'g aunbyy

NJOM)ON uojpesodiod uswdinbz jeybia: 13INO3A

94NIOS|YDLY JIOMION WlSAS : VNS
Nom}aN Aoueby 190]0id yoieasay paoueApY i 1aNVIHY
uojezjuebiQ spiepuels (euojleulsluy : oSl
Teotrsiuydg Teorsiud TeoTsiuya TeoTrsiAud T
TOI3UOD YUTT e3eg | T[OIJUOD NUTT e3eq MUTT e3eq | 2
mw dHI~dHNI
™
3aodsueay, YIOMION €

Toajuod yjed dHWI °3sop
03 a9asanos
SPOTAIDS AHAOMJON U,.HOQWGMH.H. -4

Toajzuoo 3SOY=~3SOH
uoTsstTusueay
(@uonN) (suoN) UOTSS9S S
Toxjuod MOT3F e3ed

S9OTAIIS AUN |dLd ‘3I=w(al uotT3eluasS’aAd 9
uoTjeot ddy

I9sn pujg a9sM uot3jeortddy | £

LIANOIA NS LINVIIVY OS1 aalke]

254

OS! is gaining grounds to become the standard international protocol for data
communication. Out of the seven layers, language has profound influence on the
presentation and application layers. in order for a document to be received and
handled by a destination host, it should have the capability to handle the attributes of
the document to be transmitted. Therefore, it is essential that before transmitting a
document, the end-to-end protocol should exchange the capability list containing the
attributes of that document. This exchange could be performed as part of establishing
the session between hosts or by other suitable means. Currently, provisions exist in
certain protocols such as telnet to exchange ‘options’ between hosts. This feature

could be generalized to exchange options and attributes.

There are two possible cases to be considered in exchanging the capability list
for document transfer:

1. for storage

2. for display/printing
In the first case, a document may be transferred from one system (host) to another
for temporary or permanent storage. For example, a large host may be used as a
network file server by smaller systems like personal computers and workstations. In
this case, the document will not be used for display/printing purposes at the host.
Henée, even if the host does not have the capabilty to handle the document
attributes, the document can be transferred to the host, stored and retrieved. In this

case, it is not necessary to exchange the capability list; the document is treated like

255

a kinary file.

In the second case, since the receiving host will be using the document for
display/printing, it is essential to exchange the capability list between the sending and
receiving hosts. If the receiving host does not have the ability to handle the attributes

of the document, it may not be able to display/print it properly.

In either case, the network switching elements called IMPs (Interface Message
Processors in ARPANET terminology) need not have the capability to handle the
document attributes since they only storé the document temporarily in their databases,
if necessary; also the content of the document is used as data in the packets being
transferred by the network. The network never analyses the data in a packet; it is

treated as either a bit or byte stream.

8.4.1 NFS Protocol Enhancement

NFS (Network File System) allows a user to extend the local host file system
to a remote file system transparently by mounting the remote file system onto a local
directory. Once mounted, remote files in the remote host can be accessed as if they
were files on the local disk. Whenever a remote file is accessed, the NFS protocol is
used to access the remote file. As an illustration consider that a user wants to edit

a remote file 1f mounted over the directory */remote" using a terminal. Let us say a

256

user types

edit /remote/rf

on the terminal.

In this case, the terminal used to edit the file has capabilities to handle certain

attributes. Let,

C = {c,, Cp ... ,Cp}
be the capabilities of the terminal, where ¢, is an attribute that the terminal is capable
of handling. Let,

F={f,fy.. [}
be the attributes of the file rf. If C<F, the terminal will not be able to display all the
characters in the file properly. Under this circumstance, the user should be notified
about this fact and given a chance to either continue or terminate editing. This way
unnecessary reading of the file could be avoided, thus reducing network traffic, the
local resources and the user time. It also facilitates the user to know the type of file

being edited and the possible effect of it.

Currently, no provision exists in the NFS protocol to get just the attributes of
a file. NFS protocol could be enhanced by adding a new procedure to the list of
existing NFS procedures to get the attributes of a file. Model include file, the server
module and the client module needed are given in Figures 8.7 to 8.9 respectively.

NESPROG is the NFS program number as it exists today, NFSVERS is the version

B L

Laa 2o oriad

257

/*
* multi.h

*/

#define NFSPROG ((ulong)100003)

#define NFSVERS ((ulong)2)

#define NFSPROC_GET_ATTRIBUTES ((ulong)100)
extern char **cint nfsproc get_attributes();

extern char **svc_nfsproc_get_attributes();

Figure 8.7 NFS client and server include file.

258

/*
* multi_svc.c

*/

#include <stdin.h>

#include <string.h>

#include <rpc/rpc.h>

#define xdr_uint xdr_u_int
#define xdr ushort xdr u_short
#define xdr_ _ulong xdr_| u Iong
#define xdr_| “uchar xdr u_ | char
#include "multi.h"

static void multprog();
main()

{
SVCXPRT *transp;

pmap_unset(MULTPROG, MULTVERS);

transp = svcudp_create(RPC_ANYSOCK);

if (fransp == NULL) {
fprintf(stderr, "cannot create udp service.\n");
exit(1);

:
§
k
F
§
:

}
if (Isvc_register(transp, MULTPROG, MULTVERS,
muitprog, IPPROTO_UDP)) {
fprintf(stderr,
"unable to register (MULTPROG, MULTVERS, udp).\n");
exit(1);
}

sve_run();
fprintf(stderr, "svc_run returned\n");
exit(1);

Figure 8.8 NFS server module.

259

static void

multprog(rgstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;

ck.ar *argument;

char *result;

bool_t (*xdr_argument)(), (*xdr_resuit)();
char *(*local)();

switch (rgstp->rq_proc) {

case NULLPROC:
svc_sendreply(transp, xdr_void, NULL);
return;

case NFSPROC_GET_ATTRIBUTES:
xdr argument = xdr _wrapstring;
xdr | _result = xdr_wrapstring;
local = (char *(*)()) nfsproc _get_attributes_2;
break;

default:
svecerr_noproc(transp);
return;

}

memset(&argument, '\0', sizeof(argument));

if (Isvc_getargs(transp, xdr_argument, &argument)) {
svcerr_decode(transp);
return;

}

result = (*local)(&argument, rgstp);

if (result 1= NULL &&
Isvc_sendraply(transp, xdr_result, result)) {
svcerr_systemerr(transp);

}

if (Isvc_freeargs(transp, xdr_argument, &argument)) {
forir tf(stderr, "unable to free arguments\n");
exit(1);

Figure 8.8 NFS server module (contd.)

260

char **svc_nfsproc_get _attributes(argp, rqstp)
char **argp;
struct svc_req *rqstp;

static char buffer[];

verify_authentication;
if(open_file(argp) == SUCCESSFUL) {
read_attributes(buffer);
return(&buffer[0]); ‘
} ;
else
return(NULL);

Figure 8.8 NFS server module (contd.)

261

/*
* muli_cint.c

*/

#include <rpc/rpc.h>

#define xdr_uint xdr_u_int
#define xdr ushort xdr u_short
#define xdr_ulong xdr U Tong
#define xdr_uchar xdr u char
#include <sys/fs/nfs/time.h>
#include "multi.h"

static struct timeval TIMEOUT = { 25,0 };

multi_edit(remotefile)
char *remotefi le;
{

char *remotehost;
CLIENT *cint;
char *cap, *fattr;

cap = get_terminal_capabilites();
remotehost = get_remotehost();
cint = cintudp_create(remotehost);
fattr = *cint_nfsproc_get_attributes(&remotefile, cint);
if(cap = fattr)
edit(remotefile);
else
display(cap, attr);

Figure 8.9 NFS client module.

262

char **
cint_nfsproc_get_attributes(argp, clint)
char **argp;
CLIENT *cint;

static char *res;

memset(&res, '\0', sizeof(res));
if (cint_call(cint, NFSPROC_GET_ATTRIBUTES, xdr_wrapstring,

argp, xdr_wrapstring, &res, , TIMEOUT) |= RPC _SUCCESS) {
return (NULL);

}

return (&res);

Figure 8.9 NFS client module (contd.).

263

number and NFSPROC_GET_ATTRIBUTES is the new server procedure number that
will send the attributes of a given file to the client. The client invokes the procedure
using the RPC (Remote Procedure Call) procedure cint call as shown in the
cint_nfsproc_get attributes procedure. When the RPC request is received by the NFS
server on the remote host, it executes the service procedure muitprog which in turn
calls the svc_nfsproc_get _attributes procedure to read the attributes of the given file.
The RPC procedure svc_sendrepiy sends the result (attributes, if file exist) to the

client.

The client side editor program will compare the capabilities of the terminal and
the attributes of the file. If the set of terminal capabilities is a super set of the set of
file attributes, it will edit the file, else it will inform the user that the terminal is not

capable of handling all the attributes of the file.

8.5 Mulitilingual Programming Interface

For developing multilingual CCSs, it is essential to provide programming
language interfaces capable of handling multilingual texts. Work has been done to
develop programming languages in other than English (Proc. LICBIS [1978)).
However, these developments are individualistic in nature. In other words, they
cannot handle multiple languages. Moreover, developing individual language

processors such as compilers, etc., one for each language is expensive and time

consuming.

A new scheme has been developed to specify multilingual texts in the existing
English based programming languages using the coding scheme outlined earlier. In
this scheme, the non-English texts are specified as string constants. The language
code for the text is specified as part of the string using the language code described
earlier. A sample computer print out of a PL/1 program written in English with Tamil
strings is shown in Figure 8.10. The advantage of this method is that programming
can be done using any existing English based programming ianguage which has the
capability to handle character strings. As long as the compiler treats a character
string as a 7 or 8-bit code without looking into the linguistic aspect, the non-English
texts could be specified as strings constant (by enclosing them in quotes, for
example). This method, practically, needs no change in the existing compilers. It only

needs the multiingual 1/O devices described in the previous chapters.

265

‘weiboud L/7d enbuiniy 01°g 84nbi4

fanz
fdolts
‘o oom Bwws yrmnyg Gupsis dlug I03)) 1103 1Nd :anNnod
faois
fo)oom r@ ymng Bugsis dug 107) 11d3 1nd :dNNO4-10N
fan3
‘GNNDA 0109 N3HL (0T UG /I TEWIDIN = MSIWIN 41
fo1 oL 1 = 1 0a
fDa) ais)sanbN) 1103 1339

f(02)4310D8PHD (ONS3aWBN Fub03d

/% 003 Q)uf 107, IMUN UABL NIAIS IHL HO4 WBHI08d HONb3AS */

/* WDH30ud 1/7d ABNANIULINK I IIWDS %/

SINIMWISNOILLO 3YNA330ud

9. CONCLUSION AND FUTURE RESEARCH

9.1 Conclusion

The impact of Natural languages on Computing and Communication Systems
(CCSs) have been pointed out. The need and the lack of a unified solution to handle
and interchange information in any (variable) number of scripts and languages have
been pointed out. In this research, a unified approach based on the symbolization

and multiingual text representation schemes is proposed to fill this gap. This

approach has the advantage of universality to handle major world languages and the

flexibility to accommodate and omit languages with ease.

This research makes contributions to several areas of computer science. The
design of a universal multilingual information interchange system with character reader
and terminal has been described in detail. Simple line like primitives have been
used as features for character recognition. The feature extractor can handle variations
in size and shape of the characters. However, it is not efficient to extract curved
primitives since it is sensitive to distortions. Errors in the DAG affect the recognition
result. The classifier assumes that the characters are isolated and hence
segmentation has been performed manually wherever needed. Testing the recognizer

with Tamil and Malayalam characters gave good results.

Stage Il of the two stage classifier developed for this research is language

267

dependent and Stage | is pattern dependent. The pnttern in the knowledge base and
the CRT must be changed for different languages. Howeva- *he structural feature
extraction method is very general and it could also be u «er languages and

applications other than character recognition.

The muitiingual terminal design approach developed is systematic. The
computer-gided interactive method proposed is well suited for the determination of the
dot matrix size of the characters or symbols. 'The optimality criteria based on the
smallest and legible size depends on the individual as well as the equipment used.
Hence, the nearly optimal sizes computed were to certain extent subjective. liis likely
that they may vary slightly under other conditions. The new specialized knowledge
based thinning method developed for automatic dot matrix character fonts reduces
time and labor. This method could also be used to obtain the dot matrix of any

pattern.

The iterative method of determining the most distinct character set based on
their distances and information content provides a scientific method to evaluate
different dot matrix character styles for their effectiveness, legibility and ergonomic
properties. Even though Tamil symbols were used for evaluation, the method is not
limited to Tamil characters. It could be used to evaluate dot matrix characters of other
languages as well as other binary patterns. The undesirable models were eliminated

iteratively using the majority elimination rules because the examination of the seven

4

268

quantitative measurements revealed that the desirability of models indicated by any

two measurements was not always identical.

Of the two symbol based keyboard designs, the g-symbol keyboards are more
suitable for human interface compared to p-symbol keyboards since they resemble
the existing keyboards displaying the graphemes of the characters. However, with the
current technology, changing the display of g-symbols with the change of language
is not simple. The p-symbols are better suited for internal representation than the g-
symbols because they can collate properly on sorting. It is possible to convert valid
sequences from one to the other since the character representation is unique in both
cases. Hence, it is possible to use g-symbols for human interface and p-symbols for
internal representation. The collection of characters to obtain p-symbol frequencies
for Malayalam is moderate. Collection of more characters from non-text books may
result in changes in frequencies of some of the symbols and better placement of the
symbols. As one can see the algorithms for generating Tamil and Malayalam
characters (in general Indian language characters) were more complicated than
English. In certain casss, like Malayalam, the generator is context dependent. The
multilingual terminal has the flexibility to handle different languages. it can be used not

only for Indian languages but also for other languages.

The proposed changes in data communication such as document structure,

coding scheme and appropriate protocol changes are simple but basic. Character

269

sets can be added and deleted easily. Braille script for the blind and even non-natural
language character sets like graphics characters can be added. Practically, it can
accommodate all the major languages of the world with the existing 8 bit code with
each character set having 255 ccde combinations. Since the proposed changes have
global impact, international standards committees must take cooperative efforts to

make uniform changes.

When the proposed system becomes a large scale commercial reality, it will
bring unification among systems and help the world community; in particular, nations
like India with fifteen different languages and ten different complex scripts will benefit
the most. The system can be used for various applications such as multilingual telex,
producing computerized reservation lists, utility biling, telephone directories,
wordprocessing, teaching scripts, etc., in regional languages which directly affect the
society. The experience from this research indicated that research like this needs

proficiency in the language under consideration.

Nowadays CCS developers are paying more attention to international
applicability of their products with respect to linguistic content such as ability to
produce messages to the users in their native languages. Upcoming and future
releases of the most popular and widely used operating system UNIX, will have
provision to accommodate character sets which use 16 bits per character such as

Japanese and Chinese. It clearly shows the direction and the importance of CCSs to

270

be capable of handling multiple languages.

The future CCSs will be and must be multilingual in nature to be applicable and
tradable in any part of the globe. The number of languages supported by individual
CCS will depend on the place and the application; it will be, in most cases, a

configurable parameter and the character set will be downloadable.

It is our contention that only multilingual CCSs, like the one proposed in this
research, will be flexible, universally applicable, cost effective and globally tradable in
the future; only such CCSs will cross the linguistic boundaries of the nations and
bring harmony and more interaction among the information processing communities

and the societies in the world.

9.2 Future Research
Several areas of computer science have been covered in this thesis. There is
room for improvement in almost every area. The research reported here can be

extended further in several directions:

(a) The algorithms and methodologies developed for a multilingual character
reader can be realized in a special purpose parallel hardware-firmware architacture.

Applicability of such architectures in pattern recognition is reviewed in (Krishnamoorthy

271

[1987], Siddiqui [1985]).

(b) Automatic character segmentation could be incorporated.

(c) Alternate feature extraction methodologies such as thy one reported in
Chapter 5 could be investigated to eliminate some of the deficiencies in extracting

features from thinned patterns.

(d) More features such as loop, etc., and additional classification stages using

statistical methods could be added to the classifier to improve the recognition rate.

(e) The muiltilingual terminal can be constructed in hardware using the

algorithms developed in the research.
(f) Efforts must be devoted to coordinate with the standards organizations to
incorporate the scheme proposed in this research into the standard communication

protocols.

(g) Existing communication protocols and document structures have tc be

enhanced to incorporate the proposed scheme.

(h) Several more world languages and scripts, in particular African languages,

272

must be examined for symbclization, character generation and for any special needs

and peculiarities.

AHME-86

AKAM-83

ALA-77

ALl-77a

ALI-77b

ALWA-89a

ALWA-89b

AMIN-84

AMIN-86

AMIN-88

REFERENCES

Ahmed, P., (1986), Computer Recognition of Totally Unconstrained
Handwritten ZIP Codes, Ph.D. Dissertation, Dept. of Computer Science,
Concordia University, Montreal, Canada.

Akamatsu, S., Kawatani, T., (1983), "Hierarchical classification of
handprinted Kaniji by using density feature and configuration feature",
Proc. of 1983 Internat. Conf. on Text Processing with a Large Character
Set, Chinese Language Computer Society (USA), pp. 175-180.

ALA-LC Romanization Tables (1977), Library of Congress Cataloging
Service, Bulletins, pp. 118-120.

Ali, F. and Pavlidis, T., (1977), "Computer recognition of handwritten
numerals by polygonal approximations’, IEEE Trans. Syst. Man
Cybernet., Vol. SMC-7, pp. 537-541.

Ali, F. and Paviidis, T., (1977), “Description and recognition of
handwritten numerals', Proc. Workshop Picture Data Processing and
Management, pp. 26-32.

Alwar, N., Raman, S., Shanthi, A., Venkataraman, R., Venkata
Subramaniam, (1989), "A multipurpose muitilingual package for Indian
languages", Proc. of the Regional Workshop on Computer Processing
of Asian Languages (CPAL), Sept. 26-28, Bangkok, Thailand, pp. 18-26.

Alwar, N. and Raman, S., (1989), "A natural language generator for
Hindi", Proc. of the Regional Workshop on Computer Processing of
Asian Languages (CPAL), Sept. 26-28, Bangkok, Thailand, pp. 102-108.

Amin, A., Masini, G., and Haton, J. P., (1984), "Recognition of
handwritten Arabic words and sentences’, Proc. 7th Int. J. Conf. on
Pattern Recognition, Montreal, Canada, pp. 1055-1057.

Amin, A. and Masini, G., (1986), "Machine recognition of multifont printed
Arabic texts”, Proc. 8th Inter. Conf. on Pattern Recognition, Paris,
France, pp. 392-395.

Amin, A., (1988), "OCR of Arabic texts’, Lecture Notes in Computer

ANDE-69

ARAK-83

BALA-90

BANN-88

BANS-88

BARR-86

BECK-83

BERT-79

BERT-82

BOZI-84

274

Science, G. Goos and J. Hartmanis (Ed.), Springer-Verlag, New York,
pp. 616-625.

Anderson, P. L., (1969), "Optical character recognition-a survey',
Datamation, pp. 43-48.

Arakawa, H., (1983), "On-line recognition of handwritten characters,
alphanumerics, Hiragana, Katakana, Kaniji*, Pattern Recognition, Vol. 16,
No. 1, pp. 8-22.

Balasubramanian, K., (1990), "Microprocessor based muiltiligual
character display", IEEE Trans. Consumer Electronics, Vol. 36, No. 4,
pp. 933-938.

Banno, K., Kawamata, T., Kobayashi, K., and Nambu, H., (1988), "Text
recognition system for Japanese documents’, Proc. of Sth Internat.
Coni. on Pattern Recognition, Ergife Palace Hotel, Rome, Italy, Nov.
14-17, pp. 176-180.

Bansal, V. S,, and Metha, S., S., (1988), "Computer based recognition
of hand-written Devanagari Characters using possibility theory", Proc. of
Comiputer Society of India, pp. 706.2.

Barr, P. C. and Krishnamoorthy, S. G., (1986), "Architecture of a fiber
optics based distributed information network FORTIS: local area
network”, Proc. Fall Joint Computer Conference, Informat, Dallas, pp.
390-399.

Becker, J.D., (1983), "User friendly design for Japanese typing”, Proc.
of 1983 Internat. Conf. on Text Processing with a Large Character Set,
Chinese Language Computer Society (USA), pp. 231-234.

Berthod, M., and Maroy, J. P., (1979), "Learning in syntactic recognition
of symbols drawn on a graphic tablet', Computer Grahics and Image
Processing, Vol. 9, No. 2, pp. 166-182.

Berthod, M., (1982), "On-line recognition of cursive writing", Computer
Analysis and Perception: Vol. 1, Visual Signals, (C. Y. Suen, and R. De
Mori, eds.), pp.55-81, CRC Press, Boca Raton, Florida.

Bozinovic, R., and Srihari, S. N., (1984), "Knowledge based cursive script
interpretation”, Proc. Internat. Conf. Pattern Recognition, pp. 774-776.

BOZI-89

CCIT-81

CHAN-88

CHEN-86

CHEN-87a

CHEN-87b

CHOM-56

C!AR-88

DATT-80

DESS-80

DING-88

275

Bozinovic, R., and Srihari, S. N., (1990), "Off-line cursive script word

recognition", IEEE Trans. Pat. Analysis and Machine Intelligence, pp. 68-
83.

CCITT Recommendation S63.

Chang, P. Sang-Lei, H., and Muller, V., (1988), "Recognition of
handprinted Chinese characters by stroke order codes’, Proc. of
Internat. Conf. on Computer Processing of Chinese and Oriental
Languages, Aug. 29 - Sept. 1, Toronto, Canada, pp. 54-57.

Cheng, F. H., and Hsu, W. H., (1986), "Three stroke extraction methods
for recognitich of handwritten Chinese characiers", Proc. of Internat.
Conference on Chinese Computing, pp. 191-135.

Cheng, K. Y. and Yu, F. K. (1987), "On disambiguous phonetic input",
Int. Conf. on Chinese and Oriental Language Computing, Chicago, pp.
2-8.

Cheng, F. H. and Hsu, W. H., (1987), "Radical extraction by background
thinning method for handwritten Chinese characters®, Int. Conf. on
Chinese and Oriental Language Computing, Chicago, pp. 175-182.

Chomsky, Noam, (1956), "Three models for the description of language®,
PGIT, Vol. 2, No. 3, pp.113-124.

Ciardiello, G., Scafuro, G., Degrandi, M. T., Spada, M. R., and Roccotelli,
M. P., (1988), "An experimental system for office document handling and
text recognition”, Proc. of Sth Internat. Conf. on Pattern Recognition,
Ergife Palace Hotel, Rome, ltaly, Nov. 14-17, pp. 738-743.

Dattatreya, G. R. and Sarma, V. V. S., (1980), "The decision tree design
for pattern recognition including feature measurement cost", Proc. 5th
int. Conf. Pattern Recognition, pp. 1212-1214,

Dessimoz, J. D. (1980), Specialized Edge-Trackers for Contour
Extraction and Line Thinning, Signal Processing, Vol. 2, pp. 148.

Ding, X., Wy, Y., and Zhu, X., (1988), "Recognition of multi-font printed
Chinese characters by structure analysis of strokes", Proc. of Internat.
Conf. on Computer Processing of Chinese and Oriental Languages,
Aug. 29 - Sept. 1, Toronto, Canada, pp. 123-125.

DONG-86

DONG-88a

DONG-88b

DOWN-88

DUEE-80

ETHI-88

FARI-83

FU-74

FU-82

FU-83

276

Dong, C. Y., Wang, J. K, Wan, J. C., and Hy, Q. S., (1986), "A study of
the coding of Chinese characters®, Proc. of Internat. Conference on
Chinese Computing, pp. 405-406.

Dong, H., Wu, Y., and Ding, X., (1988), "An ARG representation for
Chinese characters and a radical extraction based on the
representation”, Proc. of Sth Internat. Conf. on Pattern Recognition,
Ergife Palace Hotel, Rome, Italy, Nov. 14-17, pp. 920-922.

Dong, H., Wy, Y., and Ding, X., (1988), "A multifont Chinese character
recognition method based on the attributed relational graph (ARG)
representation”, Proc. of Internat. Conf. on Computer Processing of
Chinese and Oriental Languages, Aug. 29 - Sept. 1, Toronto, Canada,
pp. 156-160.

Downton, A. C., Kabir, E., and Guillevic, D., (1988), "Syntactic and
contextual post-processing of handwritten addresses for optical
character recognition', Proc. of Sth Internat. Conf. on Pattern
Recognition, Ergife Palace Hotel, Rome, Italy, Nov. 14-17, pPp.
1072-1076.

Dueer, B., Haettich, W., Tropf, H. and Winkler, G., (1980), "A
combination of statistical and syntactical pattern recognition applied to
classification of unconstrained handwritten numerals®, Pattern
Recognition, Vol. 12, pp. 189-199.

Ethiaraj, G., and Ethiyajeevakaruna, S. W., (1988), "Computer-based
Publishing in Tamil", Proc. of 23rd Annual Convention of the Computer
Society of India, Jan. 6-9, Madras, India.

Faris, B. and Behrouz, P., (1983), "Approximation of multipath planar
shapes in pattern recognition", Int. Journal of Computer and Information
Sci., Vol. 12, No. 2, pp. 99-110.

Fu, K. S., (1974), Syntactic Methods in Pattern Recognition, Academic
Press, New York and London.

Fu, K. 8., (1982), Syntactic Pattern Recognition and Applications,
Prentice-Hall, Englewood Cliffs, NJ.

Fu, K. S., (1983), "A step towards unification of syntactic and statistical
pattern recognition”, IEEE Trans. Pattern Anal. Mach. Intell, Vol.
PAMI-5, pp. 200-205.

GARE-79

GHOS-84

GILY-70

GONG-88

GONA-78

GOOsS-88

GUTK-87

HAGI-83

HELD-83

HILD-69

HOLD-88

HOLT-74

277

Garey M. R. and Johnson, D. S., Computers and Interactability: A Guide
to the Theory of NP-Completeness, W. H. Freeman and Company, San
Francisco.

Ghosh, P. K., (1984), "Basic design issues in a mutltiingual type font
design and typesetting workstation®, IETE Vol. 30, No. 6.

Gilyarevsky, R. S. and Grivnin, V. S. (1970), "Languages Identification
Guide", "Nauka" Publishing House, Central Department of Oriental
Literature, Moscow.

Gong, W. -X., and Bertrand, G., (1988), "A fast skeletonization algorithm
using derived grids', Proc. of Sth Internat. Conf. on Pattern Recognition,
Ergife Palace Hotel, Rome, Italy, Nov. 14-17, pp. 776-778.

Gonzalez, R. C. and Thomason, M. G., (1978), Syntactic Pattern
Recognition: An Introduction, Addison-Wesley, Reading, Mass. USA.

Goos, G., and Hartmanis, J., (1988), Lecture Notes in Computer
Science: Pattern Recognition, Springer-Verlag, New York.

Gutknwecht, C., and Gerlinger, F., (1987), "An approach to multilingual
texts", Research in Word Processing Newsletter, South Dakota School
of Mines and Technology, Vol. 5, No. 8, pp. 3-20.

Hagita, N., Naito, S., Masuda, 1., (1983), *Handprinted Kanji characters
recognition based on pattern matching method", Proc. of 1983 Internat.
Conf. on Text Processing with a Large Character Set, Chinese Language
Computer Society (USA), pp. 169-174.

Held, G., (1983), Data Compression: Techniques and Applications:
Hardware and Software Considerations, Wiley, New York.

Hilditch, C. J. (1969), “Linear Skeletons from Square Cupboards,
Machine Intelligence’, Vol. 4, edited by B. Melizer and D. Michie,
American Elsevier, New York, pp. 403-420.

Holder, S., and Dengler, J., (1988), *Font - and size invariant character
recognition with grey value image features", Proc. of Sth Internat. Cont.
on Pattern Recognition, Ergife Palace Hotel, Rome, ltaly, Nov. 14-17, pp.
252-254.

Holt, A. W., (1974), “Algorithm for a low-cost hand print reader", Comput.

I
;
r
¥
*
k
E

HSIE-S0

HSU-85

HU-82

HUAN-86

HULL-88

HUNG-87

ISO-82

IZAK-83

JIAN-88

278

Design, pp. 85-89.

Hsieh, A. J., i{ung, S. J., Shiay, S. L., Kao, M. C., and Chen, J. W.,
(1990), "An experimental system for stroke-number free on-line Chinese
character recognition”, Frontiers in Handwriting recognition, C. Y. Suen
(Ed.), Centre for Pattern Recognition & Machine Intelligence, Concordia
University, Montreal, Canada, pp. 73-86.

Hsu, W. H., and Cheng, F. H., (1985), “Recognition of handwritten
Chinese characters by stroke structure analysis method", Proc. of 1985
Internat. Conference on Chinese Computing, San Francisco, Feb. 26-28,
pp. H-3.

Hu, C. H,, Lin, P, Ling, H. Y. and Wu, F. F., (1982), "A handwritten
numeral recognition machine for automatic mail-sorting", Signal Process.
Theor. Applic., pp. 195-198.

Huang, J. S. and Chuang, K., (1986), "Heuristic approach to handwritten
numeral recognition”, Pattern Recognition, Vol. 19, No. 1, pp. 15-20.

Hull, J. J., Srihari, S. N., Cohen, E., Kuan, L., Cullen, P., and Palumbo,
P., (1988), "A blackboard-based approach to handwritten ZIP code
recognition”. Proc. of Sth Internat. Conf. on Pattern Recognition, Ergife
Palace Hotel, Rome, Italy, Nov. 14-17, pp. 111-113.

Hung, W. W, (1987), "Chinese characters encoded in stroke
sequences”, Int. Conf. on Chinese and Oriental Language Computing,
Chicago, pp. 130-133.

ISO/TC97/SC18/WG3 N84, ECMA/TC29/82/54 : Office document
interchange formats, Second Working draft for an ECMA standard
('82-10).

Izaki, Y., Nakanishi, M., Kabuyama, Y., Hai, T., (1983), "Postprocessing
of handwritten Kanji character recognition", Proc. of 1983 Internat. Conf.
on Text Processing with a Large Character Set, Chinese Language
Computer Society (USA), pp. 197-202.

Jian-long, T., and Wenhao, S., (1988), "An approach to stroke extraction
and radical classification of handwritten Chinese characters", Proc. of
Internat. Conf. on Computer Processing of Chinese and Oriental
Languages, Aug. 29 - Sept. 1, Toronto, Canada, pp. 104-107.

JOSH-88

KANA-72

KRIS-78a

KRIS-78b

KRIS-80a

KRIS-80b

KRIS-80c

KRIS-81

KRIS-83

KRIS-86

279

Joshi, W. S., (1988), "Text processing in Devanagari", Proc. of 23rd
Annual Convention of the Computer Society of India, Jan. 6-9, Madras,
India.

Kanal, L. N. and Charndrasekaran, B., (1972), "On linguistic, statistical
and mixed models for pattern recognition®, Frontiers of Pattern
Recognition, S. Watanabe (ed.), Academic Press, New York, p.163.

Krishnamoorthy, S. G. and Isaac, J. R., (1978), “Input-output device
based multilingual information handling system", in Proc. of Symposium
of Linguistic Implications of Computer Based Information Handling
Systems, Electronic Commission, Mew Delhi, India.

Krishanmoorthy, S. G., (1978), "Use of Malayalam in computers®, Proc.
of Symposium on Linguistic Implications of Computer Based Infcrmation
Systems, Electronics Commission, New Delhi, India.

Krishnamoorthy, S. G. and Isaac, J. R., (1980), "Microprocessor-based
Multiingual information handling system : Acquisiton and
representation”, Computer Society of india, Annual Convention, Bombay.

Krishnamoorthy, S. G., Isaac, J. R. and Bhavsar, V. C. (1980), ‘A
Microprocessor Based Multiingual Terminal for Computerized
Information Handling System", Journal of Computers and Humanities,
Vol. 14, pp. 91-104.

Krishnamoorthy, S. G., (1980), "A microprocessor based multilingual
telex system with phonetically coded keyboarding", Proc. Pacific
Telecommunications Conference, Honolulu, Hawaii, pp. 1C-19-1C-31.

Krishnamoorthy, S. G. (1981), "A Processor-Based Multilingual Text
Handling System and Its Applications”, M. Comp. Sci. Thesis, Dept. of
Computer Science, Concordia University, Montreal, Canada.

Krishnamoorthy, S. G., Ahmed, P. and Suen, C. Y., (1983),
"Computer-aided determination of nearly optimal dot-matrix size for

display of Indian characters", Proc. Society for Information Display, Vol.
24, No. 3, pp. 271-779.

Krishnamoorthy, S. G., Suen, C. Y. and Mutalik, P. (1986), “Computer
Aided Determination of Optimal Dot Matrix Character Set For The Design
of Display and Printing Devices for Indian Characters®, Fifth Annual
Internat. Phoenix Conference on Computers and Communications,

KRIS-87a

KRIS-87b

KRIS-88

KRZY-80

KUNG-83

KURA-88

KUSH-82

KUSH-83a

KUSH-83b

KUSH-85

280

Scottsdale, Arizona, pp. 554-559.

Krishnamoorthy, S. G., Suen, C. Y. and Jesuraj, R., (1987), "Linguistic
implications of data base systems®, Proc. Inter. National Conf. on
Chinese and Oriental Language Computing, llinois Institute of
Technology, Chicago, U.S.A.

Krishnamoorthy, S. G., (1987), "Parallel and specialized architectures for
image processing®, Technical Report, Concordia University, Montreal.

Krishnamoorthy, S. G. and Suen, C. Y., *Universal multiingual
information interchange system®, RIAO 88, M..T., Cambridge, pp.
781-809.

Krzyzak, A., Dai, W., and Suen, C. Y., (1990), "Unconstrained
handwritten character classification using modified backpropagation
model", Frontiers in Handwriting recognition, C. Y. Suen (Ed.), Centre for
Pattern Recognition & Machine Inteligence, Concordia University,
Montreal, Canada, pp 155-166.

Kung, L. Y., Ho, Y. K,, Chou, C. L., (1983), "Chinese keyboard design
using modified four-corner index and phonetic encoding method”, Proc.
of 1983 Internat. Conf. on Text Processing with a Large Character Set,
Chinese Language Computer Society (USA), pp. 224-227.

Kurakake, S., (1988), "Predictive category learning for handwritten Kanji
characters”, Proc. of Internat. Conf. on Ccmputer Processing of Chinese
and Oriental Languages, Aug. 29 - Sept. 1, Toronto, Canada, pp. 90-95.

Kushnir, M., Guo, B. L. and Matsumoto, K., (1982), "Recognition of
handwritten Hebrew characters by the double inclusive matching
method", IECE Japan, J65-D, pp. 1011-1017.

Kushnir, M., Abe, K. and Matsumoto, K., (1983), ".4n application of
Hough transform to the recognition of printed Hebrew characters",
Pattern Recognition, Vol. 16, pp. 183-191.

Kushnir, M., (1983), Machine Recognition of Hebrew characters, Ph.D
dissertation, Shizuoka Univ.

kushnir, M., Abe, K. and Matsumoto, K., (1985), "Recognition of
handprinted Hebrew characters using features sel" > - in the Hough
transform space", Pattern Recognition, Vol. 18, Nr pp. 103-114,

LAI-81

LAM-88

LAM-90

LATU-78

LECU-90

LEGA-90

LEOW-86

LEOW-88

LEVE-88

281

Lai, M. T. Y. and Suen, C. Y., (1981), "Automatic recognition of
characters by Fourier descriptors and boundary line encodings®, Pattern
Recognition, Vol. 14, No. 1-6, pp. 383-393.

Lam, L., and Suen, C. Y., (1988), "Structural classification and relaxation
matching of totally unconstrained handwritten zip-code numbers.",
Pattern Recognition, Vol. 21, pp. 19-31.

Lam, L., and Suen, C. Y., (1990), "A dynamic shape preserving thinning
algorithm®, Tech. Report, CENPARMI, Concordia University, Montreal,
Canada.

Laturkar, K. P. and Sinha, R. M. K. (1978), "Devanagari script
composition from phonetically coded symbol strings®, Proc. Symp.
Linguistic Implications of Computer Based Information Systems,
Electronic Commission, New Delhi, India.

Le Cun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E.,
Hubbard, W., Jackel, L. D., and Baird, H. S., (1990), "Constrained neural
network for unconstrained handwritten digit recognition®, Frontiers in
Handwriting recognition, C. Y. Suen (Ed.), Centre for Pattern
Recognition & Machine Intelligence, Concordia University, Montreal,
Canada, pp. 145-154.

Legault, R., Suen, C. Y., and Nadal, C., (1990), "Classification of
confusing handwritten numerals by human subjects”, Frontiers in
Handwriting recognition, C. Y. Suen (Ed.), Centre for Pattern
Recognition & Machine Intelligence, Concordia University, Montreal,
Canada, pp. 181-194.

Leow, W. K., (1986), "Syntactic approach to Chinese character
recognition", Proc. of Internat. Conference on Chinese Computing, pp.
124-130.

Leow, W. K,, Hsu, L. S., and Lua, K. T. (1988), "Recognition of
handprinted Chinese characters with a heuristic parser®, Proc. of
Internat. Conf. on Computer Processing of Chinese and Oriental
Languages, Aug. 29 - Sept. 1, Toronto, Canada, pp. 23-27.

Leveridge, P. C., and Leedham, C. G., (1988), "Experiments with an
n-tuple recognizer for fast “first try" recognition of unconstrained
handwritten symbols’, Proc. of Sth Internat. Conf. on Pattern
Recognition, Ergife Palace Hotel, Rome, italy, Nov. 14-17, pp. 905-807.

LIFC-75

LIU-88

LOH-88

LINQ-88

LU-90

MANT-86

MATH-87

MCLA-68

MINN-66

MONT-82

MORA-89

282

Lifco Tamil-Tamil-English Dictionary (1975), The Little Flower Company,
Madras, India.

Liu, Y. J.,, and Tai, J. W., (1988), “A structural approach to on-line
Chinese character recognition", Proc. of Sth Internat. Conf. on Pattern
Recognition, Ergife Palace Hotel, Rome, Italy, Nov. 14-17, pp. 808-810.

Loh, S, Chan, C., and Chan, S., (1988), "On-line recognition of
handwritten Chinese characters", Proc. of Sth Internat. Cont. on Pattern
Recognition, Ergife Palace Hotel, Rome, Italy, Nov.14-17, pp. 808-810.

Linquan, W., (1988), "Recognition of handprinted Chinese characters by
outline direction and background density*, Proc. of Internat. Conf. on
Computer Processing of Chinese and Oriental Languages, Aug. 29 -
Sept. 1, Toronto, Canada, pp. 39-43.

Lu, S. W, and Suen, C. Y., (1990), "Hierarchical attributed graph
representation and recognition of handwritten Chinese character
recognition”, Frontiers in Handwriting recognition, C. Y. Suen (Ed.),
Centre for Pattern Recognition & Machine Intelligence, Concordia
University, Montreal, Canada, pp. 87-100.

Mantas, J., (1986), "An overview of character recognition
methodologies”, Pattern Recognition, Vol. 19, No. 6, pp. 425-430.

Mathur, A., and Fowler, F., (1987), "Design of a dynamically
reconfigurable keyboard", Proc. 1987 Inter. Conf. on Chinese and
Oriental Language Computing, Chicago, June 15-17, pp. 20-23.

McLaughlin, R. A. and Raviv, J., (1968), "Nth-order autocorrelations in
pattern recognition”, Inform. Contr., Vol. 12, pp. 121-142.

Minneman, M. J., (1966), “Handwritten character recognition employing
topology, cross correlation and decision theory", IEEE Trans. Syst. Sci.
Cybern., Vol. 2, pp. 89-96.

Montgomery, E. B. (1982), "Bringing manual input into the 20th century:
new keyboard concept’, IEEE Computer, 15(3), pp. 11-18.

Morasso, P., (1989), “Neural models of cursive script handwriting”,
International Joint Conf. on Neural Networks, Washington, D.C., June.

MURA-88

MUTH-89

NADA-80

NAG-89

NAGY-88

NARA-64

NARA-66

NARA-69

NARA-71a

NARA-71b

NISH-88

Murase, H., (1988), "Online recognition of free-format Japanese
handwritings", Proc. of Sth internat. Conf. on Pattern Recognition, Ergife
Palace Hotel, Rome, ltaly, Nov. 14-17, pp. 1143-1147.

Muthuvel, C., and Alwar, N., (1989), "A font generator for indian
languages", Proc. of the Regional Workshop on Computer Processing
of Asian Languages (CPAL), Sept. 26-28, Bangkok, Thailand, pp.
154-159.

Nadal, C., Legault, R., and Suen, C. Y., (1990), "Complementary
algorithms for the recognition of totally unconstrained handwritten
numerals”, Proc. 10th International Conf. on Pattern Recognition.

Nag, B., (1989), "Information technology for Indian scripts: Problems and
prospects”, Proc. of the Regional Workshop on Computer Processing
of Asian Languages (CPAL), Sept. 26-28, Bangkok, Thailand.

Nagy, G., (1988), "Chinese character recognition: A twenty-five year
retrospective", Proc. of 9th Internat. Conf. on Pattern Recognition, Ergife
Palace Hotel, Rome, Italy, Nov. 14-17, pp. 163-167.

Narasimhan, R., (1964), "Labelling schemata and syntactic description
of pictures", Information and Control, Vol. 7, p. 151.

Narasimhan, R., (1966), "Syntax directed interpretation of classes of
pictures', Comm. of ACM, Vol. 9, p. 166.

Narasimhan, R., (1969), "On the description, generation and recognition
of classes of pictures”, Automatic Interpretation and Classification of
Images (Ed. A. Grasselli), Academic Press, New York, pp. 1-42.

Narasimhan, R. and Reddy, V. S. N., (1971), "A syntax-aided recognition
scheme for handprinted English letters®, Pattern Recognition, Vol. 3, p.
345.

Narasimham, P. V. H. M. L., Prasada, B. and Rajaraman, V. (1971),
"Code based keyboard for Indian languages®, Journal of the Computer
Society of India, 2(2), 33-37.

Nishino, F., Takao, T., (1988), "Post processing for Japanese document
readers", Proc. of Internat. Conf. on Computer Processing of Chinesa
and Oriental Languages, Aug. 29 - Sept. 1, Toronto, Canada, pp.
166-169.

OGAW-82

OTT-74

PAL-81

PAL-83

PARH-81

PING-88

RADH-83

RAJA-77

ROMA-73
ROSE-81

SABO-90

284
X

Ogawa, H. and Taniguchi, K., (1982), "Thinning and stroke segmentation
for handwritten Chinese character recognition*®, Pattern Recognition, Vol.
15, No. 4, pp. 299-308.

Ott, R, (1974), "On feature selection by means of principle axis
transform and nonlinear classification®, Proc. 2nd int. Joint Conf. Pattern
Recognition, pp. 220-222.

Pal, S. K. and King, R. A., (1981), "Image enhancement using smoothing
with fuzzy sets”, IEEE Trans. on Systems, Man, Cybern., Vol. SMC-11,
No. 7, pp. 494-501.

Pal, 8. K, King, R. A. and Hashim, A. A, (1983), "Automatic gray level
thresholding through index of fuzziness and entropy”, Pattern
Recognition Letters, Vol. 1, pp. 141-146.

Parhami, B. and Taraghi, M., (1881), "Automatic recognition of printed
Farsi text", Pattern Recognition, Vol. 14, No. 1-6, pp. 395-403.

Ping, C. K., and Cheung, Y. S., (1988), "Fuzzy-attribute graph and its
application to Chinese character recognition”, Proc. of internat. Conf. on
Computer Processing of Chinese and Oriental Languages, Aug. 29 -
Sept. 1, Toronto, Canada, pp. 136-140.

Radhakrishnan, T., Atwood, J. W. and Krishnamoorthy, S. G. (1983), "A
multi-ingual input/output device for Indian scripts”, Journal of Man
Studies, Vol. 19, pp. 137-146.

Rajasedaran, S. N. S. and Deekshatuly, B. L., (1977), "Recognition of
printed Telugu characters", Computer Graphics and Image Processing,
Vol. 6, p. 335.

Romanization Tables (1973), Library of Congress Cataloging Bulletin.

Rosenfeld, A. and Smith, R. C., (1981), "Thresholding using relaxation”,
IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. PAMI-3,
No. 5, pp. 598-606.

Sabourin, R., and Plamondon, R., (1990), "Progress in the field of
automatic handwritten written signature verification systems using gray-
level images”, Frontiers in Handwriting recognition, C. Y. Suen (Ed.),
Centre for Pattern Recognition & Machine Inteligence, Concordia

SCHA-82

SCHU-82

SELV-88

SETH-77

SHIA-80

SHRI-85

SHRI-86

SHYU-88

SID-80

SIDD-85

285

University, Montreal, Canada, pp. 1-12.

Schantz, H. F., (1982), "The history of OCR optical character
recognition”, Recognition Technologies Users Association (RTUA), USA.

Schurmann, J., (1982), "Reading machines”, Proc. 6th Int. J. Conf. on
Pattern Recognitior, Munich, pp. 1031-1044.

Selvarajagopal, E., and Ethiyajeevakaruna, S. W, (1988),
"Implementation of Indian languages on computers: A case study of
Tamil", Proc. of 23rd Annual Convention of the Computer Society of
india, Jan. 6-9, Madras, India.

Sethi, I. K. and Chatterjee, B., (1877), "Machine recognition of
constrained handprinted Devanagari*, Pattern Recognition, Vol. 9, p. 69.

Shiau, C., and Suen, C. Y., (1980), "An iterative technique of selecting
an optimal 5x7 matrix character set for display in computer output
systems", Proc. of the Society for Information Display, Vol. 21, No. 1, pp.
9-15.

Shridhar, M. and Badreldin, A., (1985), "A high accuracy syntactic
recognition algorithm for handwritten numerals®, IEEE Trans. Syst. Man
Cybernet., Vol. SMC-15, pp. 152-158.

Shridhar, M. and Badreidin, A., 'Recognition of isolated and simply
connected handwritten numerals', Pattern Recognition, Vol. 19, No. 1,
pp. 1-12.

Shyu, I, Jeng, S. C., Huang, Y. S, Lin, W. W, Ty, L. T., and Chen, Y.
H., (1988), *Design of a decision tree and its application to large-set
printed Chinese character recognition”, Proc. of Internat. Cont. on
Computer Processing of Chinese and Oriental Languages, Aug. 29 -
Sept. 1, Toronto, Canada, pp. 126-130.

(1980) Special Issue devoted to research on display of matrix
characters, Proceeding of the Society for Information Display, Vol. 21,
No. 1.

Siddiqui, K. J. and Ahmed, P., (1985), "Special architecture for optical
character recognition and image processing", Technical Report Cat. No.
HF5001C6+ 1984, No. 46, Concordia University, Montreal.

t
{
b
3
;
:
§
b
‘1
3
:
!
i
%
4
:
*2
3
!

E NIRRT

SIMO-20

SINH-73

SINH-84

SIRO-78

SOM-77

SONG-86

STEF-71

STOR-88

STRI-89

STRI-90

SUEN-77

286

Simon, J. C., and Baret, O., (1990), "Handwriting recognition as an
application of regularities and singularities in line pictures", Frontiers in
Handwriting recogniton, C. Y. Suen (Ed.), Centre for Pattern
Recognition & Machine Intelligence, Concordia University, Montreal,
Canada, pp. 23-38.

Sinha, R. M. K,, (1973), A Syntactic Pattern Analysis System and iis
Application to Devanagari Script Recognition, Ph.D. Thesis, Dept. of
Electrical Engg., Indian Institute of Technology, Kanpur, India.

Sinha, R. M. K., (1984), "A knowledge-based script reader", Proc. 7th Int.
J. Conf. on Paitern Recognition, Montreal, pp. 763-765.

Gift Siromoney, Chandrasekaran, R. and Chandrasekaran, M., (1978),
"Recognition of printed Tamil characters", Pattern Recognition, Vol. 10,
p. 243-248.

Som, A. and Nath, A. K., (1977), "On some methods of sequential
pattern recognition’, ISI Symposium on Digital techniques and Pattern
Recognition, Calcutta.

Song, H. Y., and Suen, C. Y., (1986), "A survey of Chinese character
generators with a proposed new method", Proc. of internat. Conference
on Chinese Computing, pp. 421-428.

Stefunelli. R. and Rosenfeld, A. (1971), "Some parallel thinning
algorithms for digital pictures", Journal of ACM, Vol. 18, No. 2, pp.
255-264.

Storer, J. A., (1988), Data Compression: Methods and Theory,
Computer Science Press, Rockville, MD, USA.

Stringa, L., (1989), "Efficient classification of totally unconstrained
handwritten numerals with a trainable multilayer network", Pattern
Recognition Letters, Vol. 10, pp. 273-280.

Stringa, L., (1980), "A structural approash to automatic primitive
extraction in hand-printed character recognition", Frontiers in
Handwriting recognition, C. Y. Suen (Ed.), Centre for Pattern
Recognition & Machine intelligence, Concordia University, Montreal,
Canada, pp. 65-72.

Suen, C. Y. and Shilman, R. J., (1977), "Low error rate optical character
recogrition of unconstrained handprinted letters based on a mode! of

SUEN-78

SUEN-80a

SUEN-80b

SUEN-82a

SUEN-82b

SUEN-83

SUEN-86a

SUEN-86b

SUEN-90a

SUEN-90b

287

human perception®, IEEE Trans. Syst, Man, Cybern., Vol. 7, pp.
491-495.

Suen, C. Y., (1978), "Advances in optical character recognition system’,
Canadian Computer Conference, Edmonton, Canada, pp. 263-268.

Suen, C.Y., Berthod, M. and Mori, S., (1980), "Automatic recognition of
handprinted characters - the state of the art', Proc. IEEE, Vol. 68, No.
4, pp. 469-487.

Suen, C. Y., (1980), "Feature extraction in automatic recognition of
handprinted characters’, Signal Processing: Theories and Applications,
M. Kunt and F. DeCoulon (editors), North-Holland Publishing Co., pp.
491-501.

Suen, C. Y., (1982), "Distinctive features in automatic recognition of
handprinted characters’, Signal Processing, Vol. 4, pp. 193-207.

Suen, C. Y., (1982), ‘The role of multi-directional loci and clustering in
reliable recognition of characters®, Proc. 6th Int. J. Conf. on Pattern
Recognition, Munich, pp. 1020-1022.

Suen, C. Y., (1983), "Computer recognition of Kanji characters®, Proc.
intl. Conf. on Text Processing with a Large Character Set, pp. 429-435.

Suen, C. Y. (1986), "Character recognition by computer and
applications", Handbook of Pattern Recognition and Image Processing,
Academic Press. pp. 569-585.

Suen, C. Y., Tang, Y. Y., and Wang, Q. R., (1989), "Feature extraction
in the recognition of Chinese characters printed in different fonts", Proc.
of Internat. Conference on Chinese Computing, pp. 136-146.

Suen, C. Y., (1990), Frontiers in Handwriting Recognition, Centre for
Pattern Recognition & Machine Intelligence, Concordia University,
Montreal, Canada.

Suen, C. Y., Nadal, C., Mai, T. A,, Lagault, R., and Lam, L., (1990),
"Recognition of totally unconstrained handwritten numerals based onthe
concept of multiple experts”, Frontiers in Handwriting recognition, C. Y.
Suen (Ed.), Centre for Pattern Recognition & Machine intelligence,
Concordia University, Montreal, Canada, pp. 131-144.

SUzZU-80

TAKA-88

TAM|
TANE-81

TANG-88

TAPP-88

TAPP-80a

TAPP-80b

TARA-78

TOU-74

TSAI-80

288

Suzuki, T., and Mori, S., (1990), "A thinning method based on cell
structure®, Frontiers in Handwriting recognition, C. Y. Suen (Ed.), Centre
for Pattern Recognition & Machine Intelligence, Concordia University,
Montreal, Canada, pp. 39-52.

Takahashi, K, Amanuma, H., Adachi, Y., and Iwasa, M., (1988),
“Reduction transform for application to pattern recognition", Proc. of
Internat. Conf. on Computer Processing of Chinese and Oriental
Languages, Aug. 29 - Sept. 1, Toronto, Canada, pp. 44-48.

Tamil Nadu Government, income Tax Department, Land Owners Record.
Tanenbaum, A. S. (1981), Computer Networks, Prentice-Hall, Inc.

Tang, Y. Y, Cheng, H. D.,, and Suen, C. Y., (1988),
"Size-rotation-invariant character recognition", Proc. of Internat. Conf. on
Computer Processing of Chinese and Oriental Languages, Aug. 29 -
Sept. 1, Toronto, Canada, pp. 161-165.

Tappert, C. C., Suen, C. Y., and Wakahara, T., (1988), "On-line
handwriting recognition - a survey", Proc. of Sth Internat. Conf. on
Pattern Recognition, Ergife Palace Hotel, Rome, Italy, Nov. 14-17, pp.
1123-1132.

Tappert, C. C,, Suen, C. Y., and Wakahara, T., (1990), 'The state of the
art in on-line handwriting recognition”, IEEE Trans. Pattern Analysis and
Machine Intelligence, Vol. 12, No. 8, pp.787-808.

Tappert, C. C., (1990), "Rationale for adaptive online handwriting
recognition”, Frontiers in Handwriting recognition, C. Y. Suen (Ed.),
Centre for Pattern Recognition & Machine Intelligence, Concordia
University, Montrea!, Canada, pp. 13-22.

Taraghi, M., (1978), Automatic Recognition of Printed Farsi Texts, M.S.
Thesis in Computer Science, Arya-Mehr Univ. of Technology, Tehran, (in
Farsi).

Tou, J. T. and Gonzalez, R. C., (1974), Pattern Recognition Principles,
Addison-Wesley Pub. Co., Reading, Mass., USA.

Tsai, W. and Fu, K. S., (1980), “"Attributed grammar - A tool for
combining syntactic and statistical approaches to pattern recognition”,
IEEE Trans. on Systems, Man Cybern., Vol. SMC-10, No. 12, pp. 873-885.

TSUK-88

TUCK-74

UEDA-83

VERW-88

ViDY-89a

VIDY-89b

WAKA-88

WANG-84

WANG-85

WANG-88a

Tsukumo, J., and Tanaka, H., (1988), "Classification of handprinted
Chinese characters using non-linear normalization and correlation
methods', Proc. of Sth Internat. Conf. on Pattern Recognition, Ergife
Palace Hotel, Rome, Italy, Nov. 14-17, pp. 168-171.

Tucker, N. D. and Evans, F. C., "A two-step strategy for character
recognition using geometrical moments’, Proc. 2nd Int. Joint Conf.
Pattern Recognition, pp. 223-225.

Ueda, S., Okunaka, J., Ujie, M., Hattori, K., (1983), "Japanese text
standardization for teletex communication", Proc. of 1983 internat. Conf.
on Text Processing with a Large Character Set, Chinese Language
Computer Society (USA), pp. 275-280.

Verwer, B. J. H,, (1988), "Hilditch skeleton’, Proc. of 9th Internat. Conf.
on Pattern Recognition, Ergife Palace Hotel, Rome, ltaly, Nov. 14-17, pp.
137-142.

Vidya Sagar, A., and Muralidhar, G., (1989), "CFONTS - A font design
system’, Proc. of the Regional Workshop on Computer Processing of
Asian Languages (CPAL), Sept. 26-28, Bangkok, Thailand, pp. 137-146.

Vidya Sagar, A., and Sanjeev Chadda, (1989), "Composite characters
formation in Indian scripts with a small set of working patterns -- A
postscript implementation®, Proc. of the Regional Workshop on
Computer Processing of Asian Languages (CPAL), Sept. 26-28,
Bangkok, Thailand, pp. 160-167.

Wakahara, T., (1988), "On-line cursive script recognition using local
affine transformation”, Proc. of 9th fnternat. Conf. on Pattern
Recognition, Ergife Palace Hotel, Rome, ltaly, Nov. 14-17, pp.
1133-1137.

Wang, Q. R. and Suen, C. Y., (1984), "Analysis and design of a decision
tree based on entropy reduction and its application to large character
set recognition", [EEE Trans. Pattern Anal. Mach. Intell., Vol. PAMI-6, pp.
406-417.

Wang, P. S. P., (1985), "A new character recognition scheme with lower
ambiguity ar.d higher recognizability," Pattern Recognition Letters, Vol.
3, pp. 431-436.

Wang, Z. -X, and Faure, C., (1988), "Structural analysis of handwritter

WANG-88b

WANG-89

WESZ-78

WHIT-83

XIA-88

XIA-80

Xiu-g8

YAMA-88

YOSH-88

YUHA-87

mathematical expressions’, Proc. of 9th Internat. Conf. on Pattern
Recognition, Ergife Palace Hotel, Rome, Italy, Nov. 14-17, pp. 32-34.

Wang, K, Tang, Y. Y., and Suen, C. Y., (1988), "Multi-layer projections
for the classification of similar Chinese characters', Proc. of 9th internat.
Conf. on Pattern Recognition, Ergife Palace Hotel, Rome, ltaly, Nov. 14-
17, pp. 842-844.

Wwang, P. S. P., and Zhang, Y. Y., (1989), "A fast and flexible thinning
algorithm," IEEE Trans. Compuit., Vol. 38, No. 5, pp. 741-745.

Weszka, J. S., (1978), "A survey of thresholding selection techniques"”,
Computer Graphics and Image Processing, Vol. 7, pp. 259-268.

White, J. M. and Rohrer, G. D., (1983), "Image thresholding for optical
character recognition and other applications requiring character image
extraction”, IBM Journal of Research and Development, Vol. 27, No. 4,
pp. 400-410.

Xia, Y., (1988), "Minimizing the computing complexity of interactive
sequential thinning algorithm", Proc. of Sth Internat. Conf. on Pattern
Recognition, Ergife Palace Hotel, Rome, Italy, Nov. 14-17, pp. 721-723.

Xia, Y., and Sun, C., (1990), "Recognizing restricted handwritten Chinese
characters by structural similarity method’, Pattern Recognition Letters,
Vol. 11, No. 11, pp. 67-73.

Xiu-Guang, Z., and Jia-Ruo, W., (1988), "Hyper-semigroup algebraic
structure and its application to Chinese character recognition®, Proc. of
internat. Conf. on Computer Processing of Chinese and Oriental
Languages, Aug. 29 - Sept. 1, Toronto, Canada, pp. 170-176.

Yamada, H., Yamamota, K., and Saito, T., (1988), "A nonlinear
normalization method for handprinted Kanji character recognition: Line
density equalization’, Proc. of Sth Internat. Conf. on Pattern Recognition,
Ergife Palace Hotel, Rome, Italy, Nov. 14-17, pp. 172-175.

Yoshimura, 1., and Yoshimura, M., (1988), "Writer identification based on
the ARC pattern transformation”, Proc. of Sth Internat. Conf. on Pattern
Recognition, Ergife Palace Hotel, Rome, Italy, Nov. 14-17, pp. 35-37.

Yuhang, M., (1987), "Direct radical-consonant coding of Chinese
characters’, Int. Conf. on Chingse and Oriental Language Computing,

ZENG-88

ZHAN-80

ZHAN-84

ZHAN-88a

ZHAN-88b

ZHAN-88c

Chicago, pp. 239-244.

Zeng, J., Inoue, T, Sanada, H., and Tezuka, Y., (1988), "A data
structure suitable for representing the calligraphic rules for Chinese
character evaluation”, Proc. of 9th Internat. Conf. on Pattern Recognition,
Ergife Palace Hotel, Rome, italy, Nov. 14-17, pp. 181-183.

Zhang, S., (1980), "The regular expressions inference for syntactic
recognition of handwritten numerals’, Proc. 5th Int. Conf. on Pattern
Recognition, pp. 1004-1006.

Zhang, T. Y., and Suen, C. Y., (1984), "A fast parallel algorithm for
thinning digital patterns", Comm. ACM, Vol. 27, No. 3, pp. 236-239.

Zhang, Z., He, M., and Ge, C., (1988), "A research on printed Chinese
character recognition based on stroke features with optical/digital hybrid
realization’, Proc. of Sth Internat. Conf. on Pattern Recognition, Ergife
Palace Hotel, Rome, italy, Nov. 14-17, pp. 573-575.

Zhang, Y. Y., and Wang, P. S. P., (1988), "A maximum algorithm for
thinning digital patterns’, Proc. of Sth Internat. Conf. on Pattern
Recognition, Ergife Palace Hotel, Rome, ltaly, Nov. 14-17, pp. 942-944.

Zhang, Y. Y., and Wang, P. S. P., (1988), "A modified paralle! thinning
algorithm", Proc. of 9th internat. Conf. on Pattern Recognition, Ergife
Palace Hotel, Rome, Italy, Nov. 14-17, pp. 1023-1025.

