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ABSTRACT

A

VARIABLE STORAGE

AT~

XANDRA LENIR

QN methods’ are well known to have a faster rate of
convergence than CG methods but they are impractical to
use for problems with iarge n because of their 0(n?) storage
requirements. New modified CG methods have recently been
develckped including the variable metrié CG method of
Buckley and the memoryless QN method of S‘lianno~ these
require a moderate amount of storage (0(n)) and JAin general
converge f‘zalster than the standard QG methq{ds. It is shown -
here that sometimes these methods are identical.' Also,
in this thesis a new method for solving problems of high
dimensionality is introduced which is a mixed CG and @'
method. Its derivation is based on Buckley s idea of
a variable,' storege re'quiremgﬁ'trand ‘on Shanno's idea of
uqaifying a standard CG direction into a QN like form.
Numerical ;':esults giver; here demenstrate that in ge eral
the aconvergeric?,of this algorithm /glproves in direct
relation to the amount ef storage used. This was not\ -
achieved by Buckley in his variable storage algorithm
and it is not .a\?éilable in Shanuo's meth'od..
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CHAPTER 1
INTRODUCTION

1.1' Background

A problem which arises in many practical sitﬁg.tions/ig

. to minimize or maximize a given objective function £(x), ~

where x is a real n-dimensional vector which may be subject

te~a number of constraints, The unconstrained case
fepresents a significan't class of practical problems,
firstly because many 'constrained~problerms can be eaéily

converted to and so]\.ved by the methods of unconstrained

“

optimization and secbndly because many optimization ¢pfoblems )

require the solution of unconstrained subproblems.
' We shall therefore be concerned with some methods
for solving the unconstrained problem -
. minimize £(x), x ¢ E° (1.1)
where f(jx) is é:ssumed to be at least twice continuously -

differentiable and where the function and the first"

¢ derivatives can bafevaluated at any, point x.

“Almost all methods developed to solve (1.l) are -
-
iterative, i.e. given an initial point x, they generate

a sequence of points x,, X,,.... until some st::opping

interested in are first theoretically developed to minimize

a convex quadratic function in a finite number of
’ <

iterations, Then they are extended to solve the geﬁeral

problem (1.1) using the fact that a twice continuously

criterion is satisfied. The iterative methods we shall be
[

"

L ,




A I

C

. differentiable function can be approximated by a quadratic

" near the minimum.

’

.y ’ »
There are two basic types of methods which just require

the evalxation of gradients, first are- the quas;L-Nev\rt:.on~
(QN) methods, also called variable metric\methods, whese '

development was initiated by Davidon [9] in 1959, Since

© then the theory and application of severhl variations

of these methods have been considéred by many authors. ‘We
shall be interested in a very important and widely used
class of such algorithms, the Broyden B-—ciass, introduced by
Broyden [3] in 1967, and especially in the BFGS met:hod

" which i{s a member of this c¢lass. The second type of method ’

uging gradients is the conjugate gradlent (CG) -method

‘developed by Fletcher and Reeves [12] in 1964. It is based

on work done by Hestenes and Stiefel [15] in 1952 for
solving linear systems. We shall algo be discussing some

modifications of the coﬁjugate gradient methods; namely

. Beale's algorithm and the preconditioned conjugate .grad.ier}*t
 (PCG) algorithm.

(
In application to a general function, each type ‘of

‘method has some advantages and disadvantages. Recently it

was shbgm by McComick and R:I.tter [18] that in general the
quasi-Néwton methods converge faster and require fewer A
fenctional evaluations than the conjugate gradient methods,
This agrees with computational experience with these
aigorithms. However QN methods require computation and

storage of an n x n matrix; hence compuE l storage of n?

{
. , X
0 he * -
. L4 . .
, o« " .
T e ’ - .
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locations. ILEf 'thg)fuhction to be minimized has a large |
number of variables, . this may be difficult or i;npossible
to obtain. Omsthe other hand, the cénjugarse gradient
methsds require very little storage 3. to 7n locations

depending on the method used, but their ’convergenc.e is

" generally siower .

For this reagon new methods for solving problems of

high dimensionality have been developed. Some use the fact

that for large n the Hessian of the function f is very

often sparse. Methods of this type were discussed for

" example in Jadatte [16]. We are interested in a different
approach and particularly we shall be concerned with the

*variable metric conjugate gradient method, the CGQN'

¢

algorithm, dewveloped by Buckley [7] and the memoryless
quasi-Newton method, the MQN algorithm, deweloped by

Shanno [26]. Both are combinations of the quasi-Newton and

_ conjugate gradient approaches and ‘their aim is to keep

tf‘.e, storage requirements reasonable while improving the

‘convergence of the conjugate gradient algorithm,

The purpose of this thesiz; is tlo introduce a nev;v
algorithm developed to solve the problem (1.1) and to
compare the theory and computational efficiency of this
method with the MQN, CGON and QN methods. The MON
algorithm which will be presented in Chapter 3 will be

derived ‘with a different approach than the one used in

Shanno's paper [26]. The derivation will be based on a new

observation about Beale's method to be discussed throughout

. N ) S ! )
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Chapter 2, ‘ Tﬁ.s a’pproach ‘provides a'more unified dewvelop~
I'4
ment of the MQN method. ]'.t will clarify a relationship

which exists between Beale ¢ method angd the CGQN algorithm
We will. show that for a special case the GGQI)I and the MQN
methods are ide’ntical, a point:‘"whiEh had not been previously

observed. - ) ‘
Numerital results in Shanno [26] and Buckley (7] show
that in general, the MQN algorithm is superior to the

CGQN algorithm when the same amount of storage is considered

* for both cases. However the idea introduced in the CGQN

algorithm of varying the storage requirements according

‘to the size of a problem andlthe c?xter storage avallable

to a particular User is' an‘'interes ing one, and in some
cases  improves the speed of convergerlce. For this reason
we shall discuss several possible modifications which could
:meroire the convergence of the CGQN method.’ The effect of
scaling wé.ll be demonstrated with numerical r‘esults in ~
Chapter 4. The numerical comparison with the MQN method
will indicate that the major drawback of the CGQN algorithm ;‘\

is its requirement of high accuracy in thé line searches.

Taking into account the major advarztages and dis-

‘ advanteges of the methods discussed above we have d(eveloped

a new algorithm for solving problems with a large number of
variables. This algorithm, to be introduced in Section 3.3

7

igs in some sense an extension of the MQN method motivated

' by the variable storage idea of the CGQN method and by

Theorem 3.1 due to Buc\kley [6].

.
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Finally, Chapter 4 contains ﬁumﬁié#l results.. for
different (strategi‘es in t:he“imp'len&xtation of :the"new\ ' /
variable (3ﬁo;age* quasi-Newton (VSQN) algorithm a; well as f
a numerical cgmparison between :‘he CGQN, MQN and QN
algorithms., It si'iows that with increased storage the VSQN

method generally outpexrforms the {ﬁQN method.

‘ Y
1.2 ﬁPrel'iminari’es

A standard notation encountered in many publications

will be used throughout this thesis. Unless otherwise

gpecified, capital leters denoten x n matrices and lower /

case letters denote column vectors. Other common symbols
are ex‘plained below: ‘ .
1. X, is the kth approximatioﬁ tg x*, a local minimum of
c E&x); - , ) ,
2, g, is the grad;.ent vector .of ‘E(Ck) at X, iee,
. g = 8(x) = VE(x);

30 Tp T8 N By s , C
4, @G 1isthe nxn Hes\sian Jné’triﬁ of £(x), where the

(i,i)th element of ¢ 1s

t

-

- 32f§x2 . sy o .
Gij ax xj ? i 1,2,...,11, j 1’2,."’n,

5. H_ is an n x n matrix that is the kth approxjena\tjon to
the inverse hessian ¢l !
6. ]l yll denotes an arbitrary norm of y;

7. q(x) is a quadratic function given by

J
q(x) = WxAx + b'x + ¢ {
where A 13 an x n positive definite matrix.

/
¥
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‘downhill, i.e. the condition ’

2 . * . - ! ' .
All algorithms which will be discuss&d are Lterative,
1.e. given an,initial {tarting point xo, tht—;y generate a-“

sequence of points xj, xz,.. .. that is intended to cénverge N

" to a local minimum of £(x). The point x is detdimined gy a

X, =.X

" '!',)‘kdk , , -

k=1 o * -
wherg dk is a direction of search determined according to
the particular method being ysed. ance we are d.ntereste'd‘

.iny in descent methods, d will always be required to be . .

4

‘, dk g1 <0 T - .
must hold. The scalar Ak>0 is chosen to minimize the one.
dimensional function ° . \ ’ -
. b)Y = £(x F A, f

and the process of determining the minimum point ot a given
line is called the line search, f Ak te an exact local
minimum of ¢(A) then &’ g
' = T =
670 =4, g =0
and the line search will be referred to as an ELS (Exact

A%

Line Search). . -

For the algorithms to be discussed later, there are -

certain, points with respect to the determination of A,

whi(.ch should be noted. The basic line search strategy is

given by Fletcher [11]. : : N
The search along the first direction dl usually begins

with A= 1, and detending» on the algorithm used, the qearch‘

along subsequent direncti‘.’ons &k' k = 2, 3,... beginse either

o

L
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with A = 1 '(the customary approach for QN methods) or _

. e P, .
Ak-l(dﬁfl By-2) (1.2)

. Iy Be-1 » >
where'lk_l is the final 2 obtainedg.n the previous

R =
, B

. iteration. Then the trﬁﬁ\} point x = xl'(_l + xdk and

, ~g%g(%\) hre computed. Ef at x, gTdk <0, the steﬁ

length} is.doubled and a new x 'is obtained. If

&

gTdk> the minimum is bracketted so the new A is

determined ‘;s max (A/10 + X, Ax 4+ i)_ where A is the o}
previousa_hbeat ﬁnaere‘s'tirmate of-th desired A (initially

) Z0) and A\* is the minimum of aqqt\x?adratic' fit (see e.g.

-

-~

. ?L.ue'nbé:'_g.er'l/lﬂ) to the, valﬁt?es A, Aand ¢'(A)., The

criteriqn for termination is again spéci,jfic to the
. al‘goritl’nﬁ %’eing used but it is tested‘ for every point )
comp,ut,ed during the lir;e ;earch, -In. tﬁe case of a CG ’
method, 1if the Uc'ondi'tionnfo_‘r t’éfminat‘:ing}is satisfied
witho;xt the quadratic interpolation having occﬁrred, the

-ipterpélation is still forced. This forced interpolation

¢ " ‘
gives the finite termination property when £ = q. The ' .

final A is i:ﬁen chosen between the original 4and inter:
polated A, whicHever pro.duces the lowest function value,
~ In the study of glgorithms it is important to ’study
the rate at which the se};uence {xk. 2 conv;rées to the
minimum. The terminology defining the ‘sp"e'e'd of

[o

‘cc,mvergence 1s given in.the following definition.

3
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‘Definition 1. Assume,that the_sequence ‘lxk} converges to

i

<.

x* and suppose that for some norm||-|l, there exist ealars

_a,P and K, 2 0 'such that : | . .

A R B EN RS LS

(i Ifp= l and me[O 1) then we sdy that the sequence
ja\ ixk converges linearly to x*, . .

1) 1f p = 2 then the sequence {xk converges

) \ Qquadratically S '
(L

~.

11) If 1 < p < 2 then ix }converges superilinearly,
’ - é . -’, 2 T i \
'Superlinear convergence is most commonly attained in

practice and it is usually considered sati(g,factory, linear
convergence in general is too slow"and therefore’
undesirable. Although quadrific convergence is preferable
it is difficult to obtaint m practlce and algorithms ‘
with this rate of covergence are rare.

{ A3
' y T

)
- N -
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. CHAPTER II 4
< | 'CG AND QN METHODS

In this chapter we will introduce "the basic )
minimizat:ion algorit&s under consideration and make a
.8eries of observations which will lead to the development -

of the specialized methods and the new algorithm presented

\h»Chapter 3. The basﬁz\algorithms to be discussed are

the conjugate gradient (CG), preconditioned conjugate

gradfent (PCG) and quasi-Newtdn (QN) {nethoda.' They are

© all iterative methads and are of the following form (not

the customary form for standard CG methods):

|
»

Given a starting point X the gradient g, and a
- matrix Q (usually Q, = I), then for k=1,2,...,
iterate with _

dk = :-Qk_lbgk_l ’ - (2.1la)

X, = xk-—L + )‘kdk . ( " (2.1b)

The choice of the mattix Q,_, is determined by the

specific’algorithm and will be discussed in the subsequent

sections 6f this chapter.

&
2.1 The Conj ugate Gradient and Beale Restart Methokﬁs 9.

GG metho@ were first used to solve the general
unconstrained minimization problefﬁ by Fletcher and Reeves\
[12] in 1964. They are frequently used, especially for
ptoblems with a large numbex of vﬁiables, since they .

require only.,a few vectors of length n to be stored.
¢

g
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In this section we define the concept of conjugate -

directi.ons and pregsent Beale's derivation [2] of the CG :
method. Then we introduqe' the CG algorithm forb an arbitrary
differentiable functio\;; and discuss the fundamental probiem: L\
of restarts.

Definition 2 Given a symmetric positive definite matrix A,

% the finite set of vectors dl’dz"' . ,dk is said to be

- conjugate if - L

~ ‘ T ‘ . = ' / : -
\ di'ﬁdj 0 for alli#j.r -

’ . It/is well known that such a set of vegtors is also linearly
independant (see e.g. Luenberger [171. The :Importahce £
conjugate vectors 1is g:}en by the Expa.n\ting Subspace Theorem:

Theorem 1 (EST) Let d , i 1,2,...,n a set of cOnjugate

. vectors in EY and let B, be the subspace of E" spanned by

‘; d1 dz,...,ek.

according to

Then for X, € E" the sequence {x } generated

k

X, "X 1 + A d
has the property that X minimizes the quadratic function ﬁ

on the linear variety x_ + B, provided all line searches
e .

are exact.

L -
- CON I,

el

]

. Proof See Luenbegger [17].

R SR

%
St

The EST implies that, since x, minimizes q over’
LRt B , the global minimm x* of q will ¥e found in at |

pd
ek
i
e
4
e
32

v
most n steps. This finite termination ptoperty’is an-

2

\ important’ consideration when constructing minimization

kS

A
£
7
4,
B
f.?l
l‘x"
Lt
3

-

/algoritl'nns. The method of conjugate gradients, ich we \

19
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the following way.

| : . 11
bs s \
shall now derive, is based on a successive construction of

~. Suppose for now that we know the matrix A defining

conjugate search diregtions‘

q. -Then.we.can construct a 'set of conjugate directions
. 1

d,,dy,...,d from am arbitrary set of linearly independ-
% ;
ent directions rl,r‘,...,rn by a Gram-Schmidt process in

-
4
\ ]
Let dl = ry. For i=2,3,...,n determine successively’
- P
- ¥

i-1 . .
4, =r, +.uj§l_cij 4, , S (2.2)

s

where the coefficients cij must be chosen so t2§t

- ,d"iA d =0, ical,...,i-l.(, C(2.3)
From (2.2) we get
a*ad =17 Ad + ifjlc d.Ad, . (2.4)
S0 T T R BT & Ty T .

By the.obvious inductive gssumpfion, substitution of (2.3):
into (2.4), yields

\ Y

rTAd :
1347 —%_j » Ry 120000101 (2.5
dyAdy ) ® '

are assumed to be linearly

c

Now dj'# 0, since rj

independent. Hence_d?Adj >0 and €y is well defined.

) - Suppose we want to minimize q without first evaluating
the Hessian A, but suppose that we can compute the gradient

) e 2
g. Since’x 5 X + Agdk and 8y Axk + b,

k k-1 &; o
Vi = B = By ™ Ay Ay ’ (2.6) .
\ .
Let the set {rl,rz,...,rn} be chosen as the's%;
{dl"gl"EZ’:""gn-i fwhe;e dl is an arbitrary downhill

j o

a

¥
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# “direction and g‘ i - 1‘2,.ﬂ;,n-l are determined successg~
i%ely.‘ It will be shown later (see (2.8) and (2.9)) that
all elements of the set chosen are linearly independent

Substituting now (2, 6) and Ty = =841 (1.22) into 2.5),

_-wé obtain ( ’ . o : :
T ‘ : '
(g, =8:77)  gI ' :
T e Sy

Applying the EST, we note that after j line searches along

conjugate directions we have.foﬁnd the minimm of q in

the hyperplane spanned by dl’dZ&""dj", Hence g4 must
be orthogonal to the hyperplane,-i.e.’
i ' '
1gj Lo, tat2g 0 @8

Also, sfnfe~the directions d%?/f/a 2,3,0..,] were
. conatructed as a linear combination of f;, i=1,2,...,j-1,
we see that '

2

g8y =0 , ls<i<j . (219)L
This orthogonality,relatf%ﬁ'makes ¢y = 0 for \\\ '

j= 2,3,v..,1=2, Finally (2.2) reduces to the following.

4
8 y .
" my (2.10a)
A ‘
STY gTy ' s
” Cerr T B Y ¥ L 4, + —%—k d , k> 2 (2.10b) -
’ d 17 d'y )
r k' k
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regular CG method the first -direction d, is not arbitrary,

but is taken aé‘-gb. ‘Then
" \ [§

1]

¢

"and the coeffiéi&nt A

 The regular CG algorithm then becomes:

Given x.\define d, = -g, and

, M
for k = 1,2,}.. iterate with
Xy = X N

) \
5 giyk
k - ST ’
dyyy
det1 = "8y B - §

-~

4

g}:gj =0 for 0 ¢i<j

(2.11)

(2.12b)

(2.12¢)

'ﬁThe formula (2.12b) is called the Hestenes and Stiefel

form' of &g. It can also be written as

T :
87y

By ® —w —— , the Polak-Ribidre form, or (2.13)
Bx-18x-1 ‘

CooT
oL BBy ‘

By = w——— -, the Fletcher-Reeves form. (2.14)

Br-15k-1 s :
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Note that if £ = q and line searches are exact, the three

formulae for g, are equivalent, since (2.12b) can then
be reduced to’(2.13) or (2.14). If £ # q then they are
not the same and give different algoiithms: In this
thesis we will be usig; the Hestenes and Stiefal form

of By because‘ggg main ‘interést will be in algorithms
! * B

‘‘‘‘‘

with inexact line searches and (2.12b) does nqt ;eﬁuire
'ELS. | n |
. - Now we will 'describe how the CG algorithm is
imﬁlemented‘to solve the problem (1.1) with general fi
First we_\ derive a stabilits; condition, i.e. a condition
,which will guarantee that the functional values decrease

on every interation by ensuring downhill directions.

The algorithm (2.12) generates downhill directions when
aﬁplied to an arbitrary function £, provided that the

line searches are exact, since

.
¥ »
’

,T T’ T . 2 e
1B 7 8B T B8 = -llg]l” < 0. (2.15)

In fact the ELS'requirement can be relazed since it 'is
clear from (2.15) that a downhill direction can be

\ . .
obtained whenever .

»

T T, .
B, (dy8,) < g8, K .

1 4
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In practice,this is usually replaced by slightly stxonger

condition .

~

T T :
(dygy) B < k) (Byg) v . (2.16) -
. ‘ ’ ) e X ’
where ky is some sgall constant, say 0,2, The condition
(2.16) 1is attainable in practice for any‘eontinueus function.
The reéﬁlar CG algorithm with any of the tﬁree

choices of B, has n-step quadratic convergence. However.

this is not the case if’ the starting search direction

]
. ) t
is not a steepest descent sgtep. , £

o

Theorem 2 (Crowyder and Wolfe [8]). Let f = q and apply
SRS VAN |

the CG algorithm but with d1‘+ -g,. Then convergence ig
linear. o ,§f

¥ . ‘ /
The significance of this theorem for the implementation

of the CG algorithm for « general f will become apparent

if we replace the)general function £, wﬂ}ch is

approximately quadratic in(some;neighborhqod N of the '
minimum (a eohsequence of Taqur's theorem), with a
hypothetical function %, which 13 still smooth but
precisely quadratic in N. ', ~ ) ’ ,

Now suppose we apply the CG algorithﬁ to f with the
starting point x, outside the quadratic region N. Then

. \
. it is clear that when N is entered, the first direction

in'N is not the steepest descent step and according to
the Theorem 2, convergence to the minimum will be only

linear. In practice we do not knew when the region N is

b
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entered. However, we do know that if the algorithm is

restarted in N with the direction of steepest descent,

convergence will occur in at most n steps. Therefore

Fletcher [12} suggested restarting the CG algorithm.after

each cycle of n steps with the steepest desant direction.

This- restarting procedure guarantees superlinear convergence

for general f (Crowder. and Wolfe (81).

Unfortunately combutational‘resultsd(?éwell (231)

‘ +
show that, at a restart, the discarded direction defined .

than the steepest desce&t step.

in (2.12¢) generally gives a better wvalue for f(xk+1)

Recall though, that we

can start withaﬁa«arbitrary downhill direction and still

guarantee finite convergence for £ = q, provided the

directions are defined as in (2.10). This is .the motiv-

ation for Beale's restart (BR) method and gives" the

following élgorithm. Suppose a restart 18 needed when -we

: ] ,
are at the point x  and that d, waJ downhill (initially

t = 1). Compute d.y;, as in a regylar CG step,

dt%l --g *+ Btdt ’

then for k = t+l, t+2,.

X "X + xkdk ,

% -

T T
Bka-g_lc—y—]-‘. S-E-k-—y.-s-

} .
. N IR
BT - . . ot

(2.17a)

. iterate with

¢

(2.17b)

. . 2.17¢)

AP
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1 T Bt B + 6,4, - (2.17d)

- ’ ' | d
; ' Uhfortunately,'a weakness of the BR method‘is that- the
deections generated according to (2.17d) are dawnhill
P ‘only when £ = q and with ELS since then

T ot T op v.. o
dyiB = -8B + B,dyE, + E dtgk -8,8,<0, k> . *
' (2.18)

TR e e

-

The term d:gk vanishes when ELS are used and dggk =0
'3 - whep‘f = q as well (see (2.8)). For a general function £
: even when all line searcﬁeé are exact the orthogonality -
% . relation dzgk 0 cannot be guaranteed, so the direction,
(2.17d) need not be downhill. We will show in the
ﬁerivation of Shanno's MQN method, ‘and for the new method

proposed in thapter 3, how the direction (2.17d) can be

N}

.

st

modified to overcome this problem.
A second undesirable feature of the BR algorithﬁ when
applied to a general £ is that the sequence of points

Xi4q +Xp4p0 -+ DAY converge to a point other than. the

ST e B v
AN

minimum x* of £. To see this consider the rank deficdent

“matrix

]

~ ‘
7 .

TR e
B
0
[
]
re
N
"

&3 * .
.
(SO,

1

%{g‘
=
B

' 'and note that (2.17a) and (2.17b) can be rearranged to give

ey ™ B, (2.19a)
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d. -"Ht,gk +8d , k>t . AL TN (2‘"192),

It can now be proved by inc{uction that, since d, +1 is in
the column space of f{t, de4; for k > t i’shalso in the: |
same space. Because the column space _of H,  is of dimension
n-1, it cannot be guaranteed that the minimgm x* of £ lies
in this space and so the points X 4i,X.49,--- ;nay converge -
to somé point with non-zero gradient. '
Toavoid these.drawbacks Powell [23] devised a

restart crite/rion for the BR method which is very success-
ful in practice.\ Since the gradients in Beale's method are

mutﬁﬁlly orthogonal when f = q and with ELS, Powell -suggests

restarting when
. o
T * .
———--———-—-»gl""'lgk > p ! !_1 . ,
T v ! B 0
By-18k-1 ’ (2.20)

a

where ¢ is some constant less than 1, typically 0.2. The

_condition (2.20) prevents the convergence to a point with

~ a non-zero gradient.

b N
Restarting is. also necessary when the direction

(2.17d) is not sufficiently downhill. Therefore Powell

—

recommends restarting Wwhenever

AN | > af gy 2 - 08 [g 1P k> e 221

Finally the BR algorithm should also be restartéd when the

o
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full cycle of n iterations without a restart is completed,
since t\her;' the same problems with linear convergence may
occur as in the case of the regular CG methc;d. ' 4
Computational results (Powell ([23]) show that
Beaig's method with Powell's restarting criteri\on is

su;'e'rior to the CG algorithm with Fletcher's restarting

technique. 1In Sectioﬁ. 3 we v&ill';‘e to the Bil method

and show how it can be further impitoved. : N
Tq conclude the discussi about .the CG and BR
algorithms we will verd.fy th*atrthey can be writt;en in .

the fo (2.1). This" :Ls not how they usually appear in

\, the literature because the other forms already given

indicate more clearly that the algorithms (2.12) and

’

(2.17) do not require stqragé of matrices. But for our

further discussion in Chapter 3 the form (2.1) is more

. ‘ . R M . .
suitable. Rearranging the formula (2.12c), we obtain 4
T s
d.y d, yx
d f-g+-—-kkg -I——-——kkg 22.2)
R kt1l ar k. a? k .
'k Wk ’
et
= ngk . ¢

"It is clear that the formula (2.17&) for thg Beale direction

can be rearranged in a similar fashion to

(2.1a) with {/defmed instead as

ve the form

ﬁi

(o]
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2.2 Preconditioned Conjugate Gradient Method

3}

The method which will now be described is a mod -

4

ification of the CG method. It is known as the precon-

ditioned cqgjugate/gfedient (PCG) method and first appeared

in a paper by

that x

elsson [1] in 1974. It was developed with

ppose a nonsingular transformation'T is given, such

= Tx. The PCG method is derived by first assuming

-an application of the regular CG algorithm in the new

\x-coordinetes and then transforming the resulting steps

back into the original x-coordinates. The standard CG

algorithm (2 12) in the new. space is

5
|

Given x ‘= Tx
[+] 0

, define d = --g° and

for k = 1,2,..., iterate with -

X, = X4 + kkdk ' N o <2m23a)
’ ! I3
. gkyk o . %

B, = =mm | ~ :

k T2 (2.23b)
_dkyk .

dk+10' -8, + Bjﬂke’ . - (2.23c)

where é = g(;) and"yﬂ = é; - ék 1° Now consider the trans-

formation of each step (2 23) into the x- coordinates. To-

do this new relationship between the gradients g and g is

v

required,

o

This can be easily derived and is gfven by

Vad

i

»
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The inner Pr?f‘ft’&i Kk becomesdéigk since
- (2.25)
T - To~T T
éo dkgk (Td ) (T J dTrlt g, = dkgk\.
< . ; &
This relationship implies that /the ELS are the same in
. o - . !
both codtdinate systems, i.e. if x,_; = Tx}{ , and if .
both use ELS then the same point is reached In either
coordiniates. Substituting (2.24) and (2.25) into (2. 23b%
and (2. 23c) we obtain ‘
b
ST - T =T fy -1,-T
, - gy, @)ty gty
I T meT = T .
) &y, @Il &y,
. o
od . omrld e leg v ddy et lrTg 44 d
ekl T 0 % kT OPRSRTTT g Kk
® 1/

‘Finally, lét H= E-IT-T, which implies that H'is a
symmetric p@sitive definite matrix. The PCG algorithm
can’ now be summarized

Given x, and a positive definite matzrix H, let

dy = -Hg, and for k = 1,2,... iterate with

x'=x_, +Ad S (2.26a)

Y

RPN

el
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~ g Hy .
B, = =—= ' - (2.26b)
d.y '
k' k '
//
d, =-Hg, + 8,4, . | (2.26c)

4
The formulae for B, in the Fletcher-Reeves or Polak-Ribiere

N N .
form can pe transformed in a similar way. Note that with

H =T we have the ordinary CG algorithm (2.12). Also

the formula for the direction (2.26c¢) éan be rearranged in

4

a way.similar to- that for the CG direction (2.22) and we

égain get - ’ .
C a .

,

'r .
dYH ~
2 - _'-k&_k..- , =-' .
det1 H at B T Q8 - (2.27)
kk

Note that the matrix Q, is diffe¥ent than- ﬁhevone given

in (2.22). Since the PCG algorithm is just the regular
- \ .

CG method in the X-coordinates, it has the finite

termination property. The directions generated according

to (2.26¢) with ELS are downhill since H is posipive

definite so

o

T T ~ p T
der18, = "8 g, + 8, dg = -gHg <0 .

And again, in practice-this is replaced by a slightly

stronger condition

\ |
o L ) 3
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B, (dg,) < 0.2 (51Hg,) - o (2.28)

Since CG methods are géherally used when 1imi'ted
storage is available, one tries to find a matrix H which
improves‘ the cfonvergclance of the CG method and requires
only a small amount of ad&itiqnal storagé. If a full .
matrix H can be stored then quasi-Newton methods should
generally be used, because it has been shown‘that they
are computationally superior to the CG methods (ﬁcCormick .
and Ritter [18], Shanmo and Phua [271). In the next
chapter wd will introducedya specific type of precondition-
ing matrix H based on a r%cursively calculated BFGS update

matrix.

4

To ’éee an example of the use of a preconditioner
without the requirement of storage of a full matrix H
‘¢onsider a quadralic func‘tio;x qQ(x) = % %¥Dx, where D |
is a diagonal positive definite ﬁxatrix. Applying the
regula:n: CG method (2.12) to this function, the miniinﬁm

is obtained in at most n iterations. But if the PCG -

‘ a‘lgofithm with the metric H = D~1 is.used, then the

minimum x* = 0 ig reached from any starting point x_in ‘\'\\

one 'ite{:ation, since for A =/f: \\

= n-1
|d1- -Hg D g, and

e —— o ——————— e " e e rbearmiand & e it im0 e

23

b




o
e

R R B o T

SERARTUE S oF

L]

ot R
TR

- ' . -1 B ‘
- E - - - == *

X =X + Adl X AD} g, = X, = X =x¥.
The ‘diagonsal elements of D~! can be computed without
computing second derivatives, since g, = on and .
therefore '

N ﬁ ‘ . . T
X x X .
{diag D" 1T uf 01 02 ~ _en . (2.29)

gol ’ goZ gon

Hefe, X4 and 8, are the ith elements of the vectors

° X, and g, respectively., This example also suggests a

J possible techm.que for scaling the- initial direction d

when minimizing a general function £.
As a further example of a PCG method we will now show
that the Beale rt;_start method is in fact a PGG mefh’od with
a special prefjonditloner H This is a new observation and
it will be imiportant in our derivat:.on of the MON and
the new algorithm in Chapter 3. Note that: Beale's directipn p
' (2,19b) ag%ees with a PC.G‘d_irection (2.26¢) with H = ﬁt
except for the term multiplying 4 . However, consider the

expression g H A when £ = q and with ELS:

. . T
- d y
T T [ t't ~
gHy =g |- y .
kt'k k|, dTy k .
“ . P - ;//
: T T
o (g, d.)(y.v,)
- T kel Medx” T
- T BT T 4T 8Tk (2,30
. Tt .
g

e

k2 7

it
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since by (2.8) g'd. = 0 for k » t. Substituting (2.30)-
"k t .

into (2.19b) we-can rewrite the Beale restart algorithm

‘e

“as ’ \ . ' -

dt+l = -H.g, A 1 (2.31a)
LN BB Tk . ~ - :
d ¥y

Thus, the Beale algorithm for fo-“q and ELS is equivalent
to'the PCG algorithm with the’ precémditioner ﬁt. However
the matrix I:It is not positive definite and it cannot be
guaranteed that the directions in (2.31) are downhill.
In Chapter 3 we willr show how this problem can be overcome.
Finally we will intrdduce "the preconditoned Beale
restart (PBR) algorithm since it will be used in Section
3.3 1;1 connection with the CGQN algorithm. The PBR
algorithm can be derived in exactly the same way as the
PCG algorithm and is given as follows: .

v Given a positive definite matrix H, a starting point

<

X, _, @nd an arbitrary downhi]!&. direction d,, compute

'S

X = xt_l + )‘t‘?t , | .

t
» <
STHY p .
dt+1= -Hg, + dT d , and then i
7
t
for k.= t+1, t+2, ..., iterate with

B b . e

A

-

Ay

PR

Ak
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the Broyden g-class. Quasi-Newton methods were develdped

,’\ B
' - IS ' 1l
26
xk{ :‘k-l + xkdk ,- ,{(2.323)‘
T : T
~ ngyk‘Q o ~ -ngYt L
X = N ’ Gk - - s . (2.32b)
de ¥y d.y,

?

dpgr = “Hg, + B dp + 68,4,

£

2.3 Quasi-Newton Methods

" The development of QN methods (also called variable-
metric meth‘ods) bega# in. 1959 with Davidon ‘[9‘] introducing
the ide‘as‘ of the DFP method, which were later cieveloped
into a viable algorithm by Fletcher and Powel‘l [13] in l96,3.l
Broyden [8] in 1967 geﬁeraliz‘ed the theory of the DFP
algorithm to a family of éllgorithms, now commonly called

from Newton methods which we shall first briefly introduce.

The\basic idea of the Newton method is to':approximate 0
a given function £ in each iteration by a quadratic v
function q. 'Assuming'thatzwe are at.) the point x, we
evaluate £ (xk) .- 8y and tbe Hessian Gk' The quadratic

function q, which coincides with these values of f(x) at

- \

X, is given by

q,(x) =% (x—xk)TG(x- ) ¥ (xrxk)Tgk + £(x,) -

The minimum x* of Q. satigfies qu = G(x-—xk) + gk =0
which implies that x* = ;ck - G-lgk. When minimizing a

~
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general function f the Newton method uses x* as a new

point for the next iteration. The iteration formula is °
L 2

then

[

B e n-l'
dy Gy 8 ’

X -)xknkdk ko= 0,1,2,... .

The value of Ay is gsometimes- taken as )‘k = 1 or it may bev
determined by a line search, depending on which variation

of the Newton method one uses.® However near the solution

-

A = 1 is always satisfactory.
The main advantage of Newton type methods is that if
. > ' he

they do converge, convergence is usually” quadratic. How-

ever, ey have .geveral serious drawbacks yhich often make 4_

: them impractical for general problems. ;First, the‘ method

often fails to converge to a solution from a poor initial
estimate. Second, the expli‘cit evaluation of second
.derivatives for general functions is often imi:ossi.ble or
at least ve:;y difficult and time consuming. The thizd
disadvantage i1s the necessity of solwving a set ofl linear
equations at each iteration.

Quasi-Newton methods were developed to overcome these
disadvantages while preserving a fast rate of convergence. ‘
The main idea underlying the varlable metric methods is to
build an approximation Hk to the inverse Hessian using

the information c\nlgtained during the descent process. The
] .

-~
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' , >
conditions imposed on Hy vary depending on the particular

* A algorithm., However the so-called quagi-Newton equation
! ' = - . ‘
_ Hkyk 8, , (2.3[3) )
L\ v
: where 8, = xi - xk"%’ is always required. to hold. Note
% that equation (2.33) is exactly satisfied if we apply the’
? Newton method to q, where the Hessian and its inverse are
% constant, We shall restrict our attention to the Broyden
4 . £
‘ _; family of algorit‘:h.ms, whe're Hk = Hk-l + Ck’ Ck being a
rank one or rank two correction-matrix. ,
\The algorithm is: . o
o Given x, and an initial approximation - ” =
; Ho to the inverse Hessian, define
d1 = -Hg,. Forks= 1,2,,,., iterate with
{ : X, = X, + )‘kdk . . - '(2.34a)
? X Ho v YTHk.-'l" Th T (2.34b) o
, R He=He o, ¥ a tptBave , 5 C
, - _ \ - o ;
; ) Gepr ™ By ¥ . @udy.
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" and the missing substripts here and elsewhere are k. The

gscalar B8 > 0 determines the update formula é&nd should not

: Joe 9onfﬁsed with B, used in the CG algorfthm. When 8 = O,
(2.34b) 1is called the DFP update ,Hl?. Throughout this

) thesis we shall be refejring to (2.34b) with g = 1. This

- is the BFGS update formyla which was independently developed

in papers by Broyden [4]\ Fletcher [1l1], Goldfarb [14] and

Shanno (251 in 1970. Ther now strong. computational

" and theoretical evi&énce that thisl is one of. the besi:
updates c;f the Broyden class (dee e.g. Shanno and Phua
[271) . The formula for the BFGS update is often written as

a

. - T T T
H =1 - £ 1\x T - IS} 4+ 88 (2.35)
. F sTy k-1 sT.y sTy

In this thesis we will often write H* = U(xk,H) me aning

H* is tha BFGS update of the positive definite matrix H

computed at X, - ~
We how state some important properties of the rank-2

“ ~ correction methods. The following theorem, which is £

; ‘ ‘ special case of Powell's theqQrem [24], states that; t}le

- algorithm (2. 34) preserves positive definiteness in the |,
updates generated.

Theorem 3 Let H, _, be a s}mmetric positivé definite

matrix, let 84 be any non-zero veptof‘é in the space spanned

by colums of H_, and let y, be any vector that satisfies

Y

-

the condition

g 1 iy o 5 e
e o AR B e S SR YO s - o e e
E) u . e Al v -
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1 -
A \

. :
sy > 0. _ . (2.36)

LY

Then, 1f “the vector w is non-zero and 8 2 0, the matrix

-

- . H, given by (2.34b) is positive definite.

T T

; ) Proof We consider the wvalue B = 0, i.e. the DFP update

7 ' \ ) -
; . HI? . It can be shown from the positive definiteness of
\ , H, , and from the Cauchy-Schwarz inequality that H: is

positive .definite {(see é.g. Luenberger [17]). In particular,

. for B = 0, HkD has n eigenvalues greater than zero. Note

A

that (2. 34b) can be written as

[N
T

.
Hk=Hk+Baww , (a > 0).

" The dependence of eigenvalues on the ‘parameter 8
(Wilkin/son [32]) is such that, if 8 > O, the eigenvalues
will right shifc. Specifican}'r if uy; < u,< ... <U are

Ty ordered eigenvalues of the matrix H:, and Vi< v2.<_ =V,
are eigenvalues of H, "and if 8 >0 and a > 0, i:hen Q

u s VS vye .. ._<_un.’_<_vn. Hence all the eigenvalues of

o

H, will be positive. ’QED.

Y

i

5 It is important to note that Theorem 3 does not require

any ELS or quadratic £. Any value of X, chosen so that
T .
Sy ¥y > 0 will guarantee positive definiteness in the

\ next update, and hence a downhill direction dk-;-l given by |

\
1

o ' (2. 34c). The condition (2.36) is in practice generally

) ' replaced by the slightly stronger line search criterion

P

o

[ S
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' ~
T T '
|dkgk i < X, ‘ dyg, o | , | . (2.37a)
2, o . :
where usually k;, = 0.9. In addition to (2.37a), the
condition .
. ] |
£(x,) - £(x, ;) <k, (s 8. ) _ (2.37b)

with k, = 0.0001 should hold to assure reasonable progress
to the minimum (Fletcher [11]). |

[

_As we mentioned previously, QN mefhods were developed
to pr;aserve the convergence pfoperties of the Newton
meth\c&e}. The Broyden updates are chosen so that the
directions are mutually conjugate when minimizing f = q
(Broyden [31). Then, by the EST, finite temmination is
guaranteed. This results in_guperlinear convergence when
the algorithm is applied to a general f (Stachurski [301).

A modification of Fhe Broyden family of methods was
recently developed by ‘Oren [19], Oxen and Luenberger (201
and Oren and Spedicato [21]. They introduced scaliny
into the Broyden updates in order to improve the stepwise

rate of convergence. These algorithms alter Broyden's 3

single parameter family to a double parameter family.

The matrix H, , is now updated by the formula | ‘ :

L

. \
H yy'H T -
H =\H__, - kel' kol pgaww |y + 28— . (2.38)

a

o —
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The scaling parameter Yy 1s chosen to make the sequence of
.points generated acc rding to. (2. 34) :anar:{ant when the
objective function £ multiplied by a cohstant, This
would be the case “if the Newton algorithm were applied;
if f = cf then g = cg and G = cG and the Newton iteration
yields

-~

“lg =y - clgtt - : k> 1.

CXppr X - G BT X K OBy T Xy ~ Ggy s

v

J

. Besides the invariancy condition, other conditions are

*

imposed on the éhoice of y. Oren and'Spedicat_:o (211
con,sidered the problemr of minimizing the-upper bound of

s the condition number of the matrix I-Ik 1Hk since 1t was

shown (e.g. Luenberger [17]1) that reduc:l\ng this condition

number- is important for decreasing the roundoff error.
4

They derived the relationship

h ]
b}

g = B{c = b . o | ' (2.39)

where ¢ = sTHk__ls and a,b and P are defined as before.
Bagsed on numerical\results, Shanno and Ph [28]
recommended using y whenp 8 = 1, esgecially- fof:oderate to

large gize“prbbiems. ‘When 8 = 1, (2.39) simplifies to

4"

v -2 ' (. 40)

and su{stitution of 8 =1 and’ (2 40) into (2. 38) gives
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- e — . o (2.41

Hk//’nk—l 5 +aww e i (2.41)

Vv <

/

n

VR S

The wdate (2.41) will be referred to aé the scaled BFGS
In the next chapter we will show how the idea of
updatc:es and Y scaling introduce_d here for QN met:hod_s

<an be applied to algorithms with limited storage
r\équirements.d » ' \ ‘
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CHAPTER III
COMBINED CG AND QN METHODS

* ... We now consider algorithms develqged to solve the:\ )
problem (1.1) with moder‘ate or large n which are in
general computationally sqpe:.:ior to th;a standard CG
methods and still req:lire Just 0(n) locations of stgrage. |
All method; to be discussed in this chapter are
modifications of the CG algorithm (2.12) inspired by some
ideas introduced for QN methods in Section 2,3, In~
partJicular, it will bé shown hoy the: BFGS update can be
succe‘s(sfuliy implemented into CG metho‘ds without any. nmaj of
increase in their storage requiremepts; S o~ |
First, in Section 3.1 we wi]:1 introduce the memory-
less quasi-Newton (MQN) method (Shanno {2@]) which uses
7n lo)c.at:ions‘.of storage. Then in Section 37 2, the mized
G and QN/(CGQN) method by Buckley [7] will be described.
'i'h:!.s method is designed tlo» use a variable amount of
storage, the minimum being 8n locations. Finally, in
Section 3.3 we will make’ some obse:f;vations' regarding the‘
relationsh:ip between the MQN and C(?QN methods, These
obgervations and a study of advantages and ’disadvanﬁages
of thel two methods willx lead us t‘o) development of a new
algorithm (VSQN) with variable storagé'reQuiremehts. This
method wit;h n .locations of storage is exactly the same

‘as the MQN method. But as Chaptér 4 will show, the
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‘

¢

¢
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;
!

computetional efficiency of this ‘method improves in direct
relation to the amount of storage available.

“> 3,1 The MQN Algorithm

In this section the MQN method given by Shanno [26]

. will be introduced. The derivation of the method will
be based on the observation in Chapter 2 that the Beale-
restart method is in fact a special f xm of a pre-
conditioned conjugate gradient method This approach,
which is different fiom the one given by Shanno, points
out a certain analogy to an algorithm given by Buckley
(7], This will be ,(dishcussed in subseqﬁent' sections of
this. chapter. | |

¥ Pirst we introduce Shanno's observation that

conjugate gradient methods are BFGS quasi-Newton methods

. where the appiloximation to the inverse Hessian is indeed

updated at every step, but always from the identity,matrix.

Shanno's work was motivateﬁl by a method proposed by

ferry {22], who noted that a CG direction car be rewritten

y . .
d ...,-._l.t__lg g, - . P(3.1)

“ag observed in Section 2,1, Perry sug“g:ested adding a
correction term to the matrix transforning - in ,(3.1}

and substituting 8™ Akdk,ﬁ thus obtaining
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" the search.directions are not necessarily downhill and

" this can cause the method to be numerically unstable.

)
) Lo
36
\ e 2 h

¢ y o T , .,

- k7 k k
dk+1 I- ) + k 8. . , (3.2)

k}:k kyk
= 'Pkgk .

o

He justified his choice of the correction term in (3.2)
by noting that the matrix I’k satisfies the equation o0

Piyk = Sk v . j
which is similar but not :.denticgl to the QN thuation | ‘ §
(2. 33), since P LS not symmetric., He also noted that
when ELS are done, i.e. s:gk 0, the direction (3&2) e
reduces to the standard ‘CG direction (3.1). Perry
tested his new method, without:exact line searches,
against the Fletcher-Réeves.an\hd Polak-Ribidre algorithms
and shbwéd some increase in computational efficiency for L

his choice of test fur;ctions. 3 (\ $ ot

However, sgince the matrix P, is not posir.iye definite,

Rt

To avoid this problem Shanno suggested adding to. Pk in

(3.2) the correction term - f .
{7 T
T8x
T
STk

o
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to obtain a symmetric matrix., Then he showed that if the
QN equation (2.33) is required to be satisfied, the 'm'atrix
must be medified further; it is givén by

8 T + T Ty 8 sT '
* -1 - kT ;L T\ . (3,3)
k oT i o7 ‘
\ Kk Wk / 3k
If ELS are done, s:';yk = 0 and the direction
\ | -
: »

: - _0%
et = %8 o

again reduces to ’. the standard €G direction 3. ‘_ Note
that Qf can be rewritten as

le

s, y° V.60 8,8,
N b B L - 5+ Lk w
" Vi TSk 54"

-

which is the BFGS update of the identity matrix. Thus,

Shanno points out that the conjugate gradient method e
is precia.ely the BFGS quasi-Newton method, where the

approximation to the inyerse Hessian is reset to the

iQdent:‘.t:y matrix at ev ry step. Also we wish to emphadise

 that the derivation oZ ti'xis result introdyces an important q
Sﬂea which will be used éhroughout this chapter. This'j.s |

the idea of modifyinf a rank deficient matrix defining a
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transformation of the steepest descent stgp into a positive -
defi@ite matrix, so that when ELS are“done,‘ he resulting
transformation is identical to the original one, ﬁased .
on these oPserVatiohs Shanno then develops the memoryless
QN method, which we now derive.

q Consider the Beale restart method with Powell's
restart technique introduced in Section 2.1, Powell [23]
showed that this method is more efficient than the Fletcher-
Reeves or Polak-Ribiere algorithms restarted every n steps.,
However, to~obtain a stable algorithm, line searches are

required to be fairly exact, which usually implies more

functional evaluations per iteration. This typifies CG

elgorithms and it is considered to be their major disadvant- .

age. So it is desirable to find some modifications of the
above method in‘ which the line search can be relaxed.

It was shown in Section 2.2 that assuming f=gq and
ELS, the BR method is equivalent to a preconditioned cG

method with matrix
H =(I - : ‘ (3.4)
» . y d

However the matrix H is not suitable as a préconditioner

gince it is singular hence not positive definite -so

.non-downhill directions may be generatied. So as a first

‘step leading to Shanno's algorithm, consider modifying

the matrix Ht using the sgme idea as when (3.1) was ~

(7

Lt
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changed into (3.3). Thus we obtain adpositive definite
matrix ' -

s yT 7ty .\ s sl .
t tt
» B o=1- —— + el e (3.5)
ytst styt Styt '

Now the PCG directions in (2.26), wiég ﬁt replaced by H,

£ R

are given by

d ., = g, (3.6a)
. T -
. Vil 8 ~

124"
Note that the PCG algorithm with the directions &3?6;s (
is identical to the original BR method if f = q and EL§, -

‘since then sigk- 0 for k 2 t,/ and
B T T T T
, ) 5,78 * yt(scgk) VeV stCstgk)
Htgk = gk - T + 1 +

. T T o
. . : Y:St 8¢V 435,
g 8 T
T 450 Y- R
gk T cgk -
VeS¢

Replacing H g, by ﬁ;gk in (3:6),”we get back the PCG
directions with the matrix ﬁc’ i.e. the original BR
directions.

Obgerve that the line search requirements for the
-PCG algorithm with H. are similar to thosé of CG algorithm;
hence they’sFill need to be quite accurate. So as a
second step leading to the MQN method,-note that the i

direction;(B.Gb).can be written in QN-like form as
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T
A d y H .
g e (- e , :
, 1™ LB dly &y He, - 3.7)
| 1Tk
, .

As before, the matrix Hl; can be modified with extra terms
to get a symmetric matyix satisfying the QN equation
(2.33); then instead of H_ we get o (
. rT T T T
H o= f - Sty ¥ H Y8 + 1+ AR (3.8)
- k t d ST . T N TR ] L]
' - - kyk Skyk S&k

Using the modified PCG method with the matrix H

¢ written in

the Qbi-liké form as in (3.7) but with I:Ik replaced by Hk, :

we have the following algorithm:

Given x_"and a downhill directdon d_, - let

dt:+'1= -Htgt ;. | (3.9a)
. -
thgm for k=t +1, t + 2,,..,_ iterate withw

. X =% .t Akdk, : ' (3.9b)

diyp = -H 8 » ) | (3.9¢) .

where H, _.and Hy are given by (3.5) and (3.8)
respectively. Restarts are done according to
Powell's criterion (2.20) .-
The 'maﬁ?:l‘.; H,  1s a BFGS updaﬁe of the positive definite
matrix H., the vectors 8 (k > t) are all - in the column

space of H since Ht has rank n, so_by Theorem 3, H [i:s'
’ L

positive definite provided the condition

T A>.t
sy > 00 K

. © (3.10)
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ig satisfied. Therefore the directions in (3.9a)land
(3.9¢c) are downhill wheﬂéver the line search ensures that
* (3.10) holds.
Assuming £ = q an&hEiS, the algorithm (3.95 reduces
to the BR method, because then sEgk = 0 which implies that

T T T, T
. ST He8y + H 8 (8,8,) VeBeYi | Sk (848y)
-H g, = -Hg + -\l +

T T T
Sl : Sk 24"
vTh ¢ ,
- k"S5 m m
Htgk t = Sy Hkgk, k>t , . (3.11)

which is the same as (3.7), hence equivalent to the BR
direction. Thus the algoritim (3.9) has the fiﬁice term-
Iination property, and it is thg\basic MQN method.

Now consider scaling. The QN methods build an approx-
imation to the inverse Hessian and as the search praceeds
they behave in a similar way to Newton metﬁods so A =1
cap often be used successfully. However this is not true

f the method given by (3.9) since the approximation to the

" inverse Hessian is at each iteration just an update of the

matrix H, whilh is updated from the identity matrix at éhe‘
restart point x;. ‘Thus the length of the direction generaéed
in (3.9) does not have any éelation to the true step size to
the optimum, Sﬁanno considered several scaling technizues
used in other methods including the Fletcher scaling [19]

and the y scaling discussed in Sectiomn 2,3, Fletcher

suggested scaling the CG direction by




B e L L

e

42.
- A 2¢£, £, ) . s e
-k k-1
- Qe Tq A1 - (3.12)
| B Cict1 o

which is used iniﬁractical CG methods with good resuitsr

Based on numericdl experiencé, Shanno ang Phua [28]

suggested that using y given by (2.40) at every sfep of

the BFGS algorithm is harmful for general nonlinear

functions, since it introduces both truncation and
~IN¥\“approximation errors in the estimate ‘of the inverse‘Hessian.
However they also found that using y at the initial step
was important, especially for large problems. It redu%es
the truncation erxor which.results‘from using the identity -
matrix as an initfal approximation to the inverse Hessian.

Motivated by these results; Shanno suggested scaling
the matrix Ht in the algorithm. (3.9), but not the matrix \
H . Using (2,41) with H _, replaced by I the scaled
‘matrix H,  is given by

T T T
, 8 ¥y ¥ Y8 + Ye¥p 8.8
T

H = (I~ T T
8¢ ) sty; S:Yt Se¥e

Shanno also tested the application of the Fletcher scaling

and found that in general such an approach is better than

(3.13). However in some cases (3.13) was far supé;ior.

Therefore he proposed using on%y the scaled'Ht at restart

steps, and at each non-restart step to scale according

to the Fletcher scaling. The computational rgsults {
~

LN
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_ demonstrated that this seems to be the best choice, Fhe~
mdjor reas;n for this being that, tbgether with Powell's
restart criterion, the proposed method has the ‘ability
to select automatically the preferable scal;ghv
*  The MQN algorithm is then the double update alg?rithm
(3.9) with H_ given by (3.13) where the direction (3.9c)
is scaled by (3.12). As to the implementatioﬁ of the MQN

‘method, we first note that no matrix needs to be stored

since (3.9c) can be written as

. d

T T T T
S8k - YeBeTe ) SkBr. ViH 8k 5,
w1 = “Hegt = By -\ + = T T T
324" N 4% S1 7k k7 k |
(3.14)
where the vectors H g,  and H y, are defined by
Ty T T T A
8.5 S:8 8.8 y.8
Hogy = 5 8 - =y, + (2 ko2 k)st (3.15)
- T TeTe 8.V YV T
. [ ]
and
T T T T
See SeB o [ 2 | TeTk .
By, =3 Y~ 17 Ve T T T £ o . (3.16)
Ye¥e YTt 8¢ Ve

T
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It follows that onlj 7 vectors are required to be storeds;

as for the BR method. From the formulas (3.14) - (3.16)
it is also evident ﬁﬁﬁt\all the cbmputations needed to

obtain d,., are of order n, which is again the same as

for the CG methods.

The line search c;iteri;n for the MQN algorithm is
given by (2.37) the same as for QN methods, since, again
only the condition (3.10) is requiFed to hold to guarantee
d;wnhill directions.

Shanno showed by numerical comparisons thaé.the MQN
method works better than the BR algorithm with 20we11's
restarts where the line search criterion is.much stricter.

We will see similar results in Chapter 4 when we compare

Shanno's algorithm with Buckley's method.

3.2 The CGQN Algorithm

This is a variable metric Cé method deVeioped;%f
Buckley [7] and it combines.the CG and QN methodg;&h an
attempt to preserve their main ad&antaggs,'i.é. the low
storage requirements of CG methods and the rapid con-
vergence of the QN methods, The CGQN algorithm is '
implemented to use a variable amount of storage dé;gﬁaing
on the availability of space, with a minimum requirement
of 8n locations. The idea of variable storage will be
used again in the next section where it will be shown
how it can be successfully applied to Sﬁanno's algorithm,

. Now wewill make a few observations which led Buckley

/

e

¢

<
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to develop his algorithm. Consider the PCG algorithm

(2.26) applied to a-gemeral £, It was indicated

previously that res:‘t.arting every n iterations with the
direction dt - -ch assures good ultimate convergence,
pr_ovidad the algq;:ithm is continued with the same matrix
Hgfrom oint on, So the matrix H can be changed
every n steps withogt effecting the convergence properties.
But ];uckley suggests that it might be desirable to- rg'start
and ¢hange the mgtrﬁc H quife frequently to suit the
observed behaviour of the objectiye functianv:\ He proposes
the QN updates as a natural choice for the matrix H, ’
notiﬁg that the usual storage requirement of n? lpgations
can be reduced, ﬂ

, The reason for this is thaf the QN updates cc;nsist
of a sequence of rankk 1 or rank 2 corrections to an T
initial matrix [whi);:h ig usually defined as the :f;det;tipy. -
Instead of storing the updated matrix, ome can just store
the vectors def;.t.ning 'tf:hése c;arrections.. Therefore if the
number of QN updates is limit:ed‘,- the st\o;age' needed to
'recorql’?he updated matrix can be much les§ than 0(n?)

ldcatgts/.\ 1 '
B \fi;afwe continue to make some more observations,
we outline briefly the proposed strategy for the CGQN
algorithm:

- Glven x, and a matrix H, (usually H, =1T), |

set L = 0 and 't = 0 and let
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dipr™ -Higt . L » (3.17a)
f
Then for k = t+1, t+2,..., iterate with ~ (3.17b)

(2.26a) - (2.26¢), the PCG algorithm using, ‘

the fixed matrix R’i; When a restart :Ls '

ind}cgted (the criterion for restarting will

be given later) go to the next steﬁ.

Reget t to the-current k, Update the matrix (3.17¢)

Hi by the BFGS formula to get the matrix

T . ‘T
- _ Vs bta ., _ v [
Bipp = By B+3(bzs E) ~

?

where a = yTHiy, b = IsTy, V= H.y and

. the missing subscripts are t,
Record the update H,, , by storing the two
vectors v and s. and the two scalars a b.% )
Replace ®i by i + 1 and repeat from (3.::).\/3

L 4

N;:.te_/" that the matrix H,,, 1s not explicitly computed and
that only (2n + 2) locations of storaée ate needed to
record th;-corfectibns to the matrix H,. Thus if the '
algorithm is started with H = I, the ﬁpdate Hm, -
m=0,1,2,..., requires m(2n + 2) locations of storage to -
be coﬁplei:ely recorded. ‘
We shall now consider an important feature particuiazj
to the CGQN algoritim, the iixter;nittentfrestartq ‘and
intermittent updating of the matrix H; as described in

(3.17),_ and what effect this has on the finite termination
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' property; We already know that if the PCG algorithm

0
(2.26) is applied to £ = q then the minimum x* is reached
in at most n iterations. Now suppose we apply the

" algorithm (3.17) to q with zestarts done intermittently.*
Then if restarts are alwayéi:

a consequence may be that the minimum point x* is never

foued. But itjgiey [%#\pfoved that this situation does
not occur, if H, is updated by the BFGS formula as in
(3.17¢). He.proved that for £ = q and ELS, the sequence
of points 3 SRR obtained by the PCG algorithm
with a preconditioner Ho and the sequence of points
X,»%X,,%,,... determined by the CGQN algorithm are
exactly the same, provided the starting:point is the same
in both cases. This is independent of how often the
matrix H; is changed, i.e. of the frequency of restarts,
We shall now etate this importfnt zesult with a simple:h'
proof than in [6]. To simplify the notation let ”

H* = U(xy,H), let dk+1 be the PCG direct@on (2.26), let
ak+1 be the CGQN direction and let S, be the vector space
spanned by Hogé,ﬂogl,m..,ﬂégk.

Theorem 4 (Buckley [6]). Suppose x; = x, ,

for 1 = 0,1,...,k, and assume

one before the nth iteration,
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Hv = Hyv, for all v_LSk_i . ‘ ' " (3.18) R
Then ) ‘ | |
aHl = dHl and T“ N . . (3.19) L]
H*v = Hyv, for all y L S,. '~ ° S22 0
- ) ~ f . ¢
' Proof First recall (section 2.1) that in the L; , S
— ) — . - » -
PCG algorithm, with £ = q and with ELS, - . e
¢ 8 & 5y ,agd / .20
-““‘\‘\\\ )//”’. | - ' - t
\gk__L‘Sk_i’, 80 ' : : ' - (3.22)
o ’ ]
T . . d "
skgk =0 , : “ ‘ (3.23)
Suppose no update is done at i;. Then H* = H and (3,20)-
. s immediate from (3.18) since if v L S, then -
4 : .
U vLSs, ) (S,., CS). Also (3.18) and (3.22) imply that
. . . ( ,
T <
Oy = HE T &y, b ¥
T ”/ ) !
- - y.H 8 ' ‘ . &
N Hg + -—%—9——1& 4, ' .
4Ty
=de .
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On the other hand, If we ppdate'ﬁ to H* at ik, we have’
o ’ o ' :
. ; ~ ak+1 = -H*g, ‘ ’T. | T
N <
with )
1 . T :r N
K H* -1 - sky: g (1 - y:sk + k k : ‘ 63‘241
' Wk s ) 5

App1y1§g (3.23) to (3.24), ve get from (3.18) -and (3.22),

as above, ]
P A
[ \\\\ a \q H* . C . ]
B WS it M
. .
ykagk N ! P4
Kk A
e " ’
b . .
T s -
) e YyBoBy d
i A"
"y ~
\
) G+
o ¢ N

¢
@
=

and (3 19) is proved
’ Now suppose v 38 Sk. Then vl Sy and sk" - 0 80 frgm
(3.;8) and (3.24) - Rt
7y v S .

v Hé*v = Hy « —— d
k
dryk
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T i _
~ ° kaov d h
= H v - T k
4%
T Hv (
QED.,

| Applyiné this theorem inductively then shows that the
algorithms generate 'identica]). points from start to
finish, ,
Bﬁcklgy [6] also noted that Theorem 4 is gpecific
to t:Jhe BFGS algorithm, If other updates from the B-class "
. are use‘d, then H*g, contains components along directions:
other than ékg and d’k. Inv this cése Theorem 4 does not,
apply and the finite termination propefty cannot be
guaranteed. ‘
Now consider the implementation of the CGQN algorithmj
' beginning with the restarting criterdon. If the CG
S algorithm is applied to f = q, the g;r:adients are mutually
orthogonal., The corresponding result for the PCG {

T , algorithm is that - '

g'ngj-,Ofori#j.,' v

* In the case of a general function f one can not expect_
this to hold, But a substantial deviation from zero,

especially near the tinimum where it shQuid be zero, could

l K] h ]

*
Pl

™




indicate that the preconditioning matrix is not simulating
' <
the ldécal behaviour of £ too well. So Buckley suggests

-

a restart when

T
By 1H,8 . , -
==Ll 1k), 0.2 o . (3.25)

T
gH;8y

which is similar to Powell's criterion (2.20).
i : The line search strategy used is the same as for
| ' ~the PCG algoriiy .26) except that the condition e/y >0

N must be included’to assure that the mat{:;ix H, is-positive
definite. Those Qonditions are more restrictive than the
. . ) /one{ “given for Shanno's rout:'Lne. In Chapter &4 we will
give some\ computational results to demonstrate how the
difference in line search strategies effect the per-
formance of the algorit;.hms. ' o -
. . ) We noted earlier that the CGQN method does not
require storing any matr:ix and that it is designed to t}ork

with a variable amo‘unt of storage. The amount of storage

. ot mn v w  ww n w

available to the routine must be specified by the user.

We have not yet mentioned what strategy to use when the
assigned storage limit is reached. Suppose that m updates
were recorded (recall that m(2n + 2) locations of storage
* - ‘ are then used) and the given limit is reached. Then there.

are several A}péssibilities. One can delete the vectors

which record some of the old updates. But computational -
' \ - " e




P

i S e T S

Facd

o SUY, L £ SR TR e A e e 2 a
M

- > ‘ ’ . 52/

results (Buckley [71) showed that this usually causes the
new update H ., to become non-positive definite and then

the stability of the algorithm is affected. The simplest
strategy of discarding all previous updates and starwtirig ~

with the identity again proved to be computationally most

efficient according to Buckley.

Buckley [7] showed that his method in general G
outperforms the Fletcher and Reeves CG algorithm and it ‘/
compares with the BR method with Powell's restart |
Efﬁg;ion,,. In the nexf gsection we will show how this-
method can be modified to improve the computational

efficiency.

3.3 The VSQN Algorithm .
We wi]\.\l first make some observations about the CGQN

and the MQN methods and show that although they were
derived in different manners, they are identical under

certain conditions. Then we shall review some advantages

- -

- and disadvantages of these method and discuss possible

modifications to avoid some of their drav.vbacks. Finally,
motivated by these ideas we develop a new algorithm which
could be interpreted as a variable storage 'e;xtension of

Shanno's MQN algorithm, .
We will riow show that the CdQN algorithm applied to

L ¥

4
a quadratic q with ELS generates the same directions as
the preconditioned Beale's method (2.32) ‘between two

consecutive restarts. Suppo‘se the CGQN algorithm is used.

I}

Let x, be the restart point and let H denote the matrix

[}

< v

i
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defined when a step is taken from the point x._,. Let

.

H* = U(x,,H) and assume there are no more restarts !
after the one at x,, so the CGQN directions dy;,dy4o.--

are the PCG directions (2.26c) with the precénditioner H¥.

Now, since s'igk = 0 for k 2 t, we see that

k)

. Ty
A o T | | .
78y < N8y - 7 » K2t . @21y .
. 8¢ . :
Also : \
‘ T T T -
~ e, 1 [or (7,8, )7, H8y G283
Kk Kk 7t
Ty .
Y ey o ¢ .
T ’ .
s dkyk

Substituting (3.27) and (3.28) into the foéﬁulas defining
the PCG directions in (2.26) we obtain

T .

* ytHgt d "’ L
dyy = -H*g, = Hg - 3T t s
Ve . ‘§“
and '
¥ = -Hko - ’
s Gy R gk'+'akdk
T T
+ T T st
Je kW k

s

o i
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which are in fact the PBR directions (2.32).

Now consider the CGQN method where only the correction
vectors for 1 update are qllowed to be stored throughout
the computation.’ Accordi@’mg to the strategy (3.17) -of the
CGQN method, the new matrix H* is then computed at each
restart point as the BFGS update of the identity matrix,
i.e. H* = Ht.' H_ defined by CS.S)W‘ Then H = I and the

method reduces to the BR method. Now consider the MON

method, but without the y scaling of H . We have shown

by (3.7) and (3.11) that it also reduces to BR method undex’

the same condition. Hence if £ = q and with ELS the CGQN
method with 1 update stored and the MQN method without

the Y scaling are identical. In fact they are equivalent
{

~even vhen f'# q but with ELS, since it was shown in (3.11)

that the MQN method reduces to the PCG method with the

preconditioner H .

The basic difference in implementing the two methods,

the MQN and the CGQN with 1 update, are the requirements

- for the line searches. Since the CGQN uses the PCG method,

the line searches need to be quite accurate to produce a
stable algorithm. Hence in general more functional
evaluations per iteration are required then if the M({N
algorithm is applied.

To relax the acc@‘acy requirement for the line
seaxcﬁes in the CGQN algorithm, consider app:].ying the same

technique used by .Shanno in modifying the PéG direction
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in the derivation of his algorithm. We v}ould then obtain .
‘the CGQN algorithm modified in the following way. At
the restart point x  compute the BFGS update H* of the
previous pre%onditioner H and the d;l.rection d,y=-H*g .
The direction dyy 1is modified by Shanno's strategy by

adding extra terms and is givenfbi
"1

depp = Mgy k>t

»
where ‘Hk = U(x,,H*) as in (3.8) with H* used instead of \
H.. The reduiremer}ts for the line searches are then the
same as for the MQI\’I algorithm, i.e. the condition sTy > O
is all tixat must be satisfied to obtain downhill directions. '
Note that the modified CGQN method reduces back to thg_CGQN‘
algorithm, (3.17) 4if ELS are assumed; hence the finite
termination property is not affe;:te%h

Now let us esamine in some detail the updating
strategy of the fCGQN method. Suppose the storage is. | Q/
available to record m updates and we have reached the |
point "xt,i. »1 <m, the ith restart point. According to
thef strdtegy- of the CGQN algérithm, the matrix :

Hy = U(x¢,y ,Hy.;) is computed and then one continues

with the PCG method (2.26) with the metric H; until the
next restart point x. ;4;. The matrix Hj is the ith

A

BFGS update and contains some information about the

-

behaviour of the function £ at the points xt”l,xt,z, vy -

X, y- One would expect that the convergence of the

- (

ohahibanan Anh S
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algorithm improves if more updates afe stored, 1.,e. O
with largex\' w, However the computational te’ﬁﬁ.%s show
that this is not usudlly true, uﬁless‘ m is close to n.
One possible reason for this behaviour is the follow-f
ing. Suppose that the quadratic region N of the ,
hypothetical function % is reached, a restgirt is indiqated
and the matrix Hy, i < m is computed in the usual way. |
Most of the informations contained in the matrj.x H, was
acc;umulated’at the previ\ous restart points outside N,
which are no longer relevant to the current behaviour

of the function £.  Thus the preconditiomer H g “Ux H

t,1’ 1-1)

might \not be mor; usyefuvl in speeding up the convergence
than the matrix. given by H, ==U(xt’i, D -
However if more of the recent information could be
contained in the matrix H i then H, should be a better
approximation to the inverse Hessian #n the quadratic

»
¥ et

region ‘than the matrix H i = (x I). " This suggests )

t,i’
revising -the updating strategy in the following way. When

a restart is indicated at some point x_, discard all

e
prev{é“us updates and compute the matrix H U (x't,I)L. Then
cont&,n\frmh\ e é‘teps of the BFGS QN algorithm, only
stori:ng the correXtion vectors defining the updates as
descril;ed for the CGQN method. ' When the storage limit for
m updates is reache‘:,l\r.\i. when the last update Ht 1

is recorded, switch to the“BCG method (2.26) with the
ﬁreconditioner Hepp-1 and con?fnue until the next .

restart point is reached.

!

L S
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The finite termination property is not affected
by this modification in the updating strategy. This can

be seen by considering the m QN iterations as m consecutive

restarts and applying Buckley's Theorem 4. This theorem
applies to any number of intermittent restarts interleaved
with PCG stepﬁ- hence it also applies in our casge.

Two possible modifications of the CGQN algorithm
have now been considered first the modification of the
PCG direction into the QN-like form and second, revising

the updating strategy by updating continuously until the

storage limit is reached. Combining tt_xese we obtain
a new algorithm which we wi'll refer to as a vafiﬁble
" storage QN (VSQN) 'algorithm. This algorithm can be viewe
as an extension of Shanmo's 2-update me;thod ‘to a mt_xltipl
update method

The VSQN algorithm with m updates is given

s follows.

Given x_ and the initial positive definite magtrix

s
1"

o = I‘, compute ’ v

d1 = -Hogo'

1 - x°+ )\ldlt . . \

For k= 1,2,..., m iterate with

X

H = 0= 0, L | o (B.é.Qa)
T = Ry, T ea

1™ xk-':)‘k+1dlc|-1' ) “ - (3.29¢)

For k = m+l, (m-ki-2,... replace (3.29a) with @‘

H, = Uz, H). - A (3.29d)

i
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" only the correction vectors as in the CGQN algorithm and

are gspecified by the user. Withm = 1, 1 update is stored -

5

V given in Section 2.3. Again, mo matrix is stored, but

Sn+m(2n+2), m=1,2,,.. locations ‘of storage required

58

When a restart is indicated, say at >
x,., reset t =1, H = [ and repeat from

3 ;298} .

¥

7.

‘Note that if m = 1, the algorithm above is identical to

Shanr{o 's MQN~ algorithm, : ,,
The implementation of the VSQN algorithm is much the

same as for the CGQN except of course for the line search

5

requirements which are the Qéme as for the QN methodaL

7

and we ‘have the MQN method. ' The effect on the comput;é/tional )
performance of the VSQN method when m ia' increased wd.'ll

be seen in Chap;:er 4, The restart c;:iterion for\the l\ij;ew
algorithm could be either ('3.25) as for the CGQN but v;ith

i =m, or (2.20), Powell's restart criterj.on, since by,
Buckley's 'fheorem 4 when f = q and wilth ELS they are \*«\
equivalent, In Chapter 4 we will give test results for

the VSQN method with'(3.25) and (2.20) and it will be

shown which one sﬁould be preferred in practice, In the

next chapter we will discuss some more details regarding

the implgmgntation of the VSQN routine,




CHAPTER IV

-

NUMERICAL RESULTS /,

&

In this chapter we' compare the performance of some
of the algorithms of interest when 'tﬁey are applied to
a variéty of standard test problems.

This comparison can.be done in several ways. We have
chosenl a commonly used approach which is to compare the
. total number of function and gradient evaluations |
necessary 370 reach the desired result. The reason for
t\:lg.s choite is that in practical applications the computer
time used \in evaluating the function is often the major v
‘ part of the total @chine time required to solve the .
problem. We will‘_however also compare the.total CPU
times. This is iprporgant‘ because our main obj ect_i've is to

comparé algorithms when applied to problems of moderate

to high dimengions, in which case the time used .for house-

keeping computations may not be hegligible. . | . ~
: & . N

4.1 Al ofit’ and.;’unctions Tested e
| In Section 4.2 we will givg.test results for the new
~VSQN algoritim &3‘.29) with different choices for the line
search and restart strategies.

In Section 4.3 we will cofnpare the VSQN algorithm with
the BFGS and the MQN routines, both documented by Shanno.
' The BFGS routine is an implemeptation“oﬁ the BFGS method
with initial y scaling as deseribed in Section 2.3, It

A

-

bbbt i = A = s
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requires n(n + 1)/2 lor./ations of storage and comPutations
"are of order n?.. The MQN routine is o}n implementation of
~Shanno's conjugate gradient algorithnjl vi)ith inexact line
searches (3.9), i.e. the memoryless QN method., It
requires 7n locations of storage and computations are of

—————

order n, The BFGS and the MQN routines are generally

N considered to be very successful implementations of the

QN and CG classes of algorithm. We also include some
 test resullts for the CGQ}J algorithm (3.17) documented
. by Buckley. . |

u\ll of the routines described above were linked to
a test\.\i)a'ckage TESTPACK developed by Buckley [5]. This
test package provides a means for a uniform testing
procedure for unconstrained minimization algorithms.
It contains a large number of standard test prdb'léz)ms/from
which we have selected the functions with the largest
dimensions. A1l the Tuns were made on a CDC-CYBER 170-800
computer. '

: The functions tested, with the initial point x, and
dimension n, are:
EXTROS: An extended Rosenbrock function [281.

. \ N (
[ n/z - 1 X N

, JOLENY (100‘(x21 LR @ mxy) )
i=1 ’ ’

for n even ;

-




TRIDIA:

NdNDIA: ’

=
x. = (-1.2, 1.0, 1,0,..., 1.0); . e
\

n= 10 and n = 20 , /

5 " _ “ .
A tridiagonal quadratic function (29].

)

n : — .
£ = ). (1D (2xx_ 0% n 22 -

1w? Y
o Q
x. = (=1.0, =1.0, ..., -1.0) ;. . \.
- . (" -

n =20 and n-30.. : : ‘ )
A nondiagonal wvariant of the Rosenbrock e
function .[29] .

n ' 2, .
£(x) = Zw (100 (xl-xi)2 + xi)2>, nx2;

i=2

\ A ) , .

x! = (-1.0, -1.0, ..., -L0) ; .

P

.ﬁv-20.and n =30.
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MANCIN: - The Mancino fu;xct:ion [28].

-

n ) .
£(x) = D f£2, where
. i=1

o

n ,.

Ny Zv“ (sinsiogcvij+cogslog vi-j)+14nxi+(i-n/2) 3,
{ml o~ . .
if3 .

and Vi ® (xj + i/j~)% 5

J - ‘ s
T . .

.:xo-(a fi(O),afz(O), ...,afn(OJ) R
. f | B
where a = -7n / (80n? + 36n - 18) ;

\

v .
n = 20
% —

CHAROS: A chained extersion of the Rosenbrock.function [{31].

: a ‘
2.2 2 ,
£ (x) -Z (4(11 (x, | - x) + (A - x| )),n 22,
 i=2 , . .
. where @, are constants defined in [31] ;

[

N
xo - (-1-0, "1.0, -o’>0\') -1'0> 3

N\

n-~10 ancpn-ZS., "*y

\ o ot be

»

g
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- nf4 4 . ’
£(x) = Z (("41-3*'10"41-2)2*5("41-1"‘41)2'

. 4
t (%4072 4 1) + 10(x, 4%, 4) ) P
Q .
x. = (3.0, -1.0, 0.0, 1.0, -1.0, ..., 1.0) ;

AN

n=60 and n.= 80 .

OREN : Oren's power function (28]. .
n N2 .

£(x) = Z 1 xi
¥

T ~e

=1

-

\; xt = (1.0, 1.0, ..., 1.0) ;
STy PN

', n=250 and ‘n= 75.

-

* .
r—
7 e

4.2 Numerical Results For the VSON Algorithm

Test results. for the VSQN algorithm (3.29) with

diﬁferqxt line search and restarting strategies wilL be

.given here. In all cases computation was terminated when

Hs“zﬁs 10 and the line search was terminated when (2 37)

/ : ¢

‘K‘.

)
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was satisfied. , ,

- We shall first 1;oint' out the main differences in
the line strategy (Section’l.’Z)nfor the BFGS and the ﬁQN
algorithm; In the BFGS routine the search starts with
A= .I on every step since a reasonable scaling of the
length of a direction is provided automatically (Section
2.3). | Also, the best results are obtained with only the
termination criterion (2.37) being satisfied; a quadratic
interpolatian is not required at every step. This %.wually ’
implies more N%:erations but fewer functional calls, i.e.
the ratio of.' the number of total functional evaluations
to the number of iterations (RATIO) is then significarItly_
less than 2. On the other hand the line search for ;:he
MQN method starts with A= 1 only on the first or the first
restart iteration, a;'xd the initial step length along tl;e
other difec}:ions is defined by (1.2). Shatno found that
the MQN method works better if the quadratic interpolation
is forced at every iteration. This results in general

in fewet itera;ions but more functiqnal evaluations; RATIO

in this case is usually more than 2. 0

We have tested the VéQN algorithm with different
combifations of 6’t:hle line search strategies described
above. The QN. strategy was modified by sett‘ihg the initial
step length 2= 1 only for all "QN" steps. Specifically",,‘
if n corrections defining the m BFGS updat \a/re allowed

to be stored, the search along each of dl,dz,. codig

/
N ‘ LI 1
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begins with A = 1 (recéll, at rest'arts, t = 1). For the

e

following "cgG" diréctions, dm+2’d’xh:i:3"“ the line search

begins with ) defined by (1.2). The quadratic inter-
polation was forced at every iteration right from dl‘
In Tables 1 and 2 (see appendix) we give an example of the
results obtained with this line search strategy for m = 2

f{- ‘ «
and m = 8 respectively. Note that the results did not

improve significantly with the increased number of updates

stored; and RATIO did not decrease, as would be expected.
Table 3 - 6*'give results when m - 2,4,6, and é,
respectively, and when the line ;earch was the same as above
but with the quadratic interi:olation force& only on the
.IC(?" step's, dm_!_z,dm+3,,.... The resﬁl\ts in Tables 3 - 6
indicate that the VSQN algorithm exhibits the expected
behaviour discuss‘%d in Section 3.3, i.e. increasing the
storage available St{bstanti'ally improves the performance
of the algorithm. 1\190 note that RATIO decreases as more,
QN updates are stored. . ' ‘
. We ﬁave also tgstegl’ the VSQN algorithm witﬁ different
restarting criteria, as described in Section 3.3. The
‘results in Tables 1 - 6 were obtained when the Powell
restart criterion (2.20) was ﬁsed. The test results.
obtained'with the restart condition (?.25) are given in
Tables 7 - 10, sgain with m = 2,4,6 aﬁg 8, respectively.
Comparison, for example, .of Table 3 and 7 where m = 2

, .
indicates that. the simpler restart criterion (R, 20) should

>




. P ,
be preferred in this case. Also comparing Table 4 - 6 and

8 - 10 shows that the algorithm with the Powell restart:
c;:iterion improves in a more uniform fashion with increased
storage. Sinee there 1is no signifioant benefit obtained
for the extra work required in computing (3.25), the
criterion (2.20) is more suitable in ‘general for the i
algorithm. ~ | -
Finally we would 1liké to note that tests were carried
out for the VSQN methd with m = 10,15, and 20. The
results were not much better than the ones gi‘;en for m = 8.
The total nu:tber of fuqlotionh evaluations for the same 13

problems tested fluctuated between 650 and 685. We have

not found any satisfactory explanagion'for this behaviour.

4, 3 Comgarison of the Algorithms

We now compare the BFGS, the MQN the CGQN and the
VSQN methods. In Table 11 a comparison of the number of
iterations (ITER) and functional evaluations (FEVAL) is-
made. Note that results for two versions of the CGQN
routine are given. 'First, CGQN is the alg:rithm described
in Section 3.2. 1In general it! outperforms the standard (
CG algorithm (see Buckley (71), although it is inferior
to f‘he MON method In Section 3.3.we have suggested
-some modifications to improve its performance. ‘To
demonstrate the effect of the Y scaling of the initial
approximation to the inverse Hessian, the results obtained

using the CGQNG (CGQN with y) are included. Both versions

used 8n locations of ‘storage, i.e. only 1 update was

°

.
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stored at a time. The entries for the‘number of functional
evaiyations in Table 11 clearly show that the MQN routipe
is sﬁperior to ei?hér version bETCGQN which uses exact ‘
searches. - .

A comparison of the entries in Table 11 shows Qpat}
by providing additional- storage,- the number of functibn41
evgluations can be substantially reduced. As expected
the BFGS alébrithm is still in many cases super#or, but
note that for many problems the difference is slight.

|
|
l
In Table 12 the total machine time required for sorY

-ing each problem (MSEC) and ‘the part of this time used

./
/

for evaluation of the function (FSEC) are documented.

We see that an increasé of storage for the VSQN method does
not lead to a major increase in time, since the increase\ \
in computational effort is oniy of order n. Of course,

if m were larger, the incregﬁghin run time would be
substantial. To deﬁ%nstrate this, we include Table 13

where results are giyen for the\VSQNJroutine with enough-

storage available so that a QN é%ep\is done at’ every

" iteration without restarting or switching to the modified

CG stegs. (This does not apply to thé runs made for the

two verions of the Oren function, where due to insufficient

\storage a few restarts were made. ) Thus the iteration and

functional evaluation counts in Table 13 are in general
comparable to the ones given for.the, BFGS routine, except
that the CPU times are larger for{the VSQN routine.

1
However, the object of the new alghrithm is to operate




with limited storage and therefore this situation is
not realist;ic.

' The run’times in Tablle 12 for the MQN and VSQN \Q
algorithm are superior to the tiines’given for BFGS, because
the computations in BFGS are of order n?. The difference *
in the CPU times is most épparent for the Powell function
with m = 80. However, if the function is very expensive
to evaluate,‘ even a few extra function evaluations .
significantly increase the total run time. This in fact
occurs for the Mancino function. Hence the BFGS method
is preferable. In summary, if storage™is limited the
VSQN method with several updates seems to be the best

alternative among the algorithms under discussion.
3

4.4 Conclusion

We have introduced an .algorithm to solve modera;:e
to large-scale wmeonstrained optimization problems. It
is' an extension of Shanno's 2 update BFGS quasi-Newton °
method as a multiple jupdate variable storage method such
as the .one introduced by Buckley. We have shown on a
variety of test proble\xils that this idea does indeed lead
to improved convergence over Sha.nno s method, even when
only a. few more vectors are stored throughout the

computations .

LN




. : o APPENDIX

‘TABLES

————— e ——— —— —— ————————

s ‘TABLE 1 ( 2 UPDATES, FORCEDQIONEVERYSTEP) !
TESFBEINGEXEQJTEDAT 10:52 A.M., MAY 18, 1981 ) !

STANDARD CONTROL PARAMEI'ERS !
TERMINATION NORM = 2 (EUCLIDEAN) !
TERMINATION TYPE = 1 (GRADIENT ) !

!

e

ACCURACY SPECIFIED .100E~04

PR# FN# - NAME DIM ITS FNCS GRDS FVALUE GVALUE MSECS FSECS ER RS

34 9 CHAROS25 25 47 95 95 .18E-11 .77E-10 .531 .156
21 1D POWELL60 60 34 69 69 .31E~10 .34E-11 .568 .091

31 8 EXTROS10 10 26 66 66 .52E-16 .81E-14 .156 .050.- 0 12
46 8 EXTROS20 20 26 66 66 .52E-16 .81lE-14 <260 .082 0 12
26 6 TRIDIA20 20°' 38 77 77 J51E-12 .90E-10 <342 .083 0 2 .
27 6 TRIDIA30 30 51 103 103 .22E-12 .24E~-10 .652 152 0 2
23 5 NONDIA20 20 24 58 58 .20E-18 .40E~-15 -195 .058 0 11
24 5 NONDIA30 30 23 .54 54 .92E-14 .79E-10 «255 .088 0 11
37 10 MANCIN20 20 6 13 13 .15E-17 .47E~12 17.902 17.864 0 1
33 9 (GHAROS10 10 32 65 65 .26E-11 .68E-10 .168 041 0 9
0
0
47 11 POWELL80 80 37 75 75 .52E-10 .22E-11 .784 .130 0 17
35 7 QREN50 50 42 85 85 .57E-08 '.34E-10 «593 113 0 20
40 7 CREN75 .75 40 81 81 .11E-07 .95E-10 -817 .154 0 19
ITERS FUNCS GRADS RATIO MSECS FSECS
© TOTALS . 426 907 907 2.13 23.223 19.062 N

NONE OF THE PRQBLEMS WERE FLAGGED WITH ERRORS.

" COMPUTATION DONE WITH THE BUCKLEY~LENIR EXTENSION OF SHANNO'S ROUTINE.
METH NTERMS NTEST, ATEST CTEST SCDIAG SCGAMA SCGAMF HTEST RO BETA
0 2 0 0 3 F F T F .20 | 1.00

et




——
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! TABLE 2 ( 8 UPDATES, FORCED QI ON EVERY STEP )
| S TEST BEING EXECUTED AT 11:02 A.M., MAY 18, 1981

70

STANDARD CONTROL PARAMETERS

1 )

! TERMINATION NORM = 2 (EUCLIDEAN)
! . TERMINATION TYPE = 1 (GRADIENT )
! %\ ACCURACY SPECIFIED .100E-04

- - — e ———

- - - - — . —— — Y — " . . T — - T T "

t

PR# FN4#¢ NAME DIM ITS FNCS GRDS FVALUE GVALUE

31 8 EXTROS10 10 27 69 69 .33E-13 .89E-1l
46 8 EXTROS20 20,27 69 69 .33E-13 .89E-1l
26 6 TRIDIA20 20 38 77 77 .98E~12 .86E-10
27 6 TRIDIA30 30 48 97 97 .19E-12 .30E-10
23 5 NONDIA20 20 25 57 57 .56E-19 .30E-15
24 5 NONDIA30 30 23 54 54 .93E-14 " .58E-10
37 10 MANCIN20 20 6 13 13 .89E-17 .28E-11
33 9 CHAROS10 10 39 79 79 .39E-12 .36E-10
34 9 CHAROS25 25 51 103 103 .35B-12 .17E-10
21 11 POWELL60 60 22 45 45 L12E-09 .67E-10
47 11 POWELL80 80 25 51 51 .13E-09 .44E-10 -
35 7 OREN50 50 44 89 89 .36E-08 .29E-10
40 7 OREN75 75 48 97 97 .89E-08 .68E-10

ITERS FUNCS GRADS RATIO
TOTALS 423 900 900 2.13

NONE OF THE PROBLEMS WERE FLAGGED WITH ERRORS.

MSECS
.238
.399
.483
.991
.298
.366

17.858

268

.843
3533
.831
. .949
1,560
MSECS

17.820

FSECS
.062
.096
072
.138
.058
.080

/ 2
&

LSOO 0OO00O0COoOOCOOoO 0o

.053
.175
.063
.089
.122
.185

FSECS

¢

W WA UL WWLNDWE D

25.617 19.013

°

-

OOMPUTATION DONE WITH THE BUCKLEY-LENIR EXTENSION OF SHANNO'S ROUTINE.
METH NTERMS NTEST ATEST CIEST SCDIAG SCGAMA SCGAMF HTEST

0o 8 0 0 3 F _ F T .

F

RO BETA
.20 1.00

t
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e TABLE 3 ( 2 UPDATES, POWELLREST CRITERION (2.20) ) !
! TEST BEING EXECUTED AT 11:07 A.M., MAY 18, 1981 -

! STANDARD CONTROL PARAMETERS ‘ !
1 ¥ERMINATION NORM = 2 (EUCLIDEAN) !
! - TERMINATION TYPE = 1 (GRADIENT ) !
! ACCURACY SPECIFIED .100E-04 !

;
- — -y it ——

PR# FN4 NAME DIM ITS FNCS GRDS FVALUE GVALUE MSECS FSECS ER RS
31 8 EXTROS10 10 35 51 51 .L73E-15 .46E-13 .152 .034
46 8 EXTROS20 20 35 51 51 .73E-15 .46E-13 .265 067
26, 6 TRIDIA20 20 45 81 81 .35E-12 .35E-10 .376 .082
27 6 TRIDIA30 30 52 90 90 .85E-12 .80E-10 «595 .131
23 5 NONDIA20 20 36 59 59 L.12E-15  .67E-13 .248 066
24 5 NONDIA30 30 36 61 61 .17E-18 - .23E-14 «349 .092
37 10 MANCIN20- 20 8 10 10 .23E-18 .74E-13 13.824 13.789
33 9 GJAROS10 10 59 77 77 .53E-11 .38E-10 «237 .065
34 9 CHAROS25 25 50 73 73 .38E-12 .32E-10 458 .123
21 11 POWELL60 60 56 81 81 .54E-10 -.12E-10 .866 /.109
47 11 POWELL80 80 71 99 99 .62E-08 .89E-10 1.386 .178
35 7 OREN50 50 34 37 37 .94E-08 .51E-10 .395 ° .053

[— =~ = B — I = P I — IR — - = - Y~ ]
r-9

40 7 ORENT75 75 39 43 43 .64E-08 .32E-10 ..661 .080 19
ITERS FUNCS GRADS RATIO ' MSECS FSECS
TOTALS : 556 813 813 1.46 19.809 14.869

NONE OF THE PROBLEMS WERE FLAGGED WITH ERRORS. .

QOMPUTATION DONE WITH THE BUCKLEY-LENIR EXTENSION OF SHANNO'S ROUTINE.
METH NTERMS NIEST ATEST CTEST SCDIAG SOGAMA SOGAMF HTEST RO . /BETA
0 2 0 0 0 F F T F .20 1.00

¢

N
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TABLE 4 ( 4 UPDATES, POWELL REST. CRITERION (2.20) )

TEST BEING EXECUTED AT 11:10 A.M., MAY 18, 1981

!
!
!
!
!
!

- —

PR# FN#
31
46
26
27
23
24
37
33
34

21
47
35
40 °

) P
NN HOVOUINIO O 00

TOTALS

TERMINATION NORM
TERMINATION TYPE

STANDARD CONTROL PARAMETERS
= 2 (EUCLIDEAN)
= 1 (GRADIENT )

ACCURACY SPECIFIED -100E-04
NAME DIM ITS FNCS GRDS FVALUE GVALUE
EXTROS10 10 34 47 47 .32E-13 .88E-11
EXTROS20 20 34 47 47 .32E~-13 .88E-11
TRIDIA20 20 40 69 69 .47E-12 .64E-10
TRIDIA30 30 51 86 86 .47E-12 .27E-10
NONDIA20 20 32 46 46 .26E-18 .22E~14
NONDIA30 30 29 39 39 ,80E-15 .10E-10
MANCIN20 20 6 8 8 .10E-15 .31E-10
CHAROS10 10 53 71 71 .61E-12 .45E-10
CHAROS25 25 64 76 , 76 .19E-11 .81E-10
POWELL60 60 43 55 55 ,17E-08 .13E-11
POWELL80 80 89 121 121 .42E-09 .13E-10
OREN50 50 36 40 40 .21E~08 .88E-11
OREN75 75 44 53 53 .26E-08 .14E-10
ITERS FUNCS GRADS. RATIO
555 758 758 1.37 ‘

S

NONE OF THE PROBLEMS WERE FLAGGED WITH ERRORS.

MSECS FSECS ER RS
.184 .033 0 8
.316 .060 0 8
.414 071 0 3
.706 131 0 6
241 045 0 8
.310 060 0 7

11.024 10.991 -0 2
.266 051 0 11
.601 .119 0 15 S
<782 073 0 10

2.127 .222 0 21
.521 .057 0 9
.937 .096 0 11

MSECS FSECS

18.429 12.009

COMPUTATION DONE WITH THE BUCKLEY-LENIR EXTENSION OF SHANNO'S ROUTINE.
METH NTERMS NIEST ATEST CIEST SCDIAG SCGAMA SCGAMF HTEST

0

4

v

e

0

0

F

C

T

F

RO BETA

.20

1.00

e ¥
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k 5 ( 6 UPDATES, POWELL REST. CRITERION (2.20) )
| TEST BEING EXECUTED AT 11:12 A.M., MAY 18, 1981

| o5 o vem g | om0

/

PR# FN#/ NAME DIM ~IJ'I‘S FNCS GRDS

31 8 EXTROS10 10 42 54 54
46 - 8 20 20 42 54 54
"26° 6 TRIDIA20 20 58 64 64
27 6 TRIDIA30, 30 64 78 78
23 5 NONDIA20 20 33 45 45
24 5 NONDIA30 30 31 43 43
37 10 MANCIN20 20 6 8 8
33 , 9 CHAROS10 10 41 55 55
34 9 (HAROS25 25 62 78 178
,21 11 POWELL6O 60 35 65 65
47 11 POWELL8O - 80 34 64 64
- 35 7 ORENS50 50 37 40 40
40 7 OREN75 75 47 50 50

' ITERS FUNCS GRADS

TOTALS 532 698 698

[ STANDARD OONTROL P
, TERMINATION NORM
/ TERMINATION TYPE
/ ACCURACY SPECIFIED

[ 1}

2 (EUCLIDEAN)
= 1 (GRADIENT )

NONE OF THE PROBLEMS WERE FLAGGED WITH ERRORS.

.100E-04 i

FVALUE GVALUE MSECS FSECS ER RS
.16E-16 .20E-13 .452 .078 0 7
.15E-11 .89E~10: .481 .067 0 10
.18E-11 .92E-10 .753 116 0 11
.54E-15 .40E-13 .282 .048. 0 6
+49E-17 ,.98E-14 .382 065 0 5
«41E~16 .13E-10 11.039 11.004 0
.73E~12 .38EZ10 .234 .048 0
.28E-11 .63E- .673 127 01
«56E~-07 .63:2%%1 762 .084 0
.78E-07 .96E-10 .961 115 0
.88E~08 .69E-10 .623 051 0
.26E-08 .88E-11 1.142 .095 0,
RATIO MSECS FSECS,

1.31 18.043,11.938

OCOMPUTATION DONE WITH THE BUCKLEY-LENIR EXTENSION OF SHANNO'S ROUTINE.
METH NTERMS NIEST ATEST CIEST SCDIAG SCGAMA SOGAMF HIEST RO

0 6 0 0 0

F . F

T

F .20

BETA
1.00

foa e wb e e s

LR R e e i
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TABLE 6 ( 8 UPDATES, POWELL REST. CRITERION (2.20) )

- -

TEST BEING EXECUTED AT 11:15 A.M., MAY 18, 1981

B B

. STANDARD CONTROL PARAMETERS
TERMINATION NORM

= 2 (EUCLIDEAN)

TERMINATION TYPE = 1 (GRADIENT )
ACCURACY. SPECIFIED .100E-04
PR# FN# NAME DIM ITS FNCS GRDS FVALUE GVALUE MSECS
31 8 EXTROS10 10 41 53 53 .23E-16 .39E-14 .298
46 8 EXTROS20 20 41 53 53 .23E-16 .39E-14 ..516"
26 6 TRIDIA20 20 53 63 63 .65E-12 .43E-10 .500
27 6 TRIDIA30 30 61 . 83 83 .18E~12 .38E-10 +948
23 5 NONDIA20 20 30 43 43 ,.87E-14 .56E-10 - .289
24 5 NONDIA30 30 32 42 42 .56E-17 .60E-13 .427
37 10 MANCIN20 20 6 8 8 .41E-16 .13E~10 11.011
33 9 CHAROS10 10 49 57 57 .55E-12 .62E-10 .298
. . 34 9 CHAROSZ25 25 .-52 63 63 L11E-11 .52E~10  .674
; 21 11 POWELL60 60 37 46 46 .19E-10 .66E-10 836
47 11 POWELL80 80 37 44 44+ .16E-07 .26E~10 1.093
35 7 ORENS50 50 43 47 47 .27E-08 .llE-10 .824
40 7 OREN75 75 48 55 55 JB85E-08 .75E-10 1.361
. ITERS FUNCS GRADS -RATIO MSECS
TOTALS 530 657 657 1.24 19.075
NONE OF THE PROBLEMS WERE FLAGGED WITH ERRORS. °

" OOMPUTATION DONE WITH THE BUCKLEY-LENIR EXTENSION OF SHANNO'S ROUTINE.

METH NTERMS NIEST ATEST CIEST SCDIAG SCGAMA SCGAMF HTEST
F . F

0

8 0

0

0

T F .

—— .

FSECS ER RS

1,040 ¢
.070
.063
.128
.043
.060
10.976
.042
0106
.065
.084
0058
.099
FSECS
11.834

&
>

RO  BETA
1.00

«20
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TABLE 7 ( 2 UPDATES, REST. CRITERION WITH H (3.25) ) )

TEST BEING EXECUTED AT 11:20 A.M., MAY 18, 1981

TERMINATION NORM
TERMINATION TYPE

STANDARD CONTROL PARAMETERS

nu

2 (EUCLIDEAN)
1 (GRADIENT )

- - —

E 5 ACCURACY SPECIFIED .100E-04

PR# FN¢ NAME DIM ITS FNCS GRDS FVALUE GVALUE MSECS FSECS ER RS
31 8 EXTROS10 10 34 55 55 L84E-~15 .81E-12 .191 .043 0 13
46 8 EXTROS20 20 34 55 55 .84E-15 .81E-12 .332 067 0 13
26 6 TRIDIA20 20 45 81 8r .35E-12 .35E-10 .441 .078 0 6
27 6 TRIDIA30 30 57 91 91 .54E-12 .36E-10 . 711 <137 0 13°
23 5 NONDIA20 20 35 50 50 .13E-13 .45E-10 .249 .051 0 16
24 5 NONDIA30 30 30 46 46 .17E-14 ,12E-11 .318 .069 0 13
37 10 MANCIN20 20 8 10 10 .23E-18 .74E-13 '13.746 13.705 0 4
33 9 C(HAROS10 10 42 61 61 .33E-12 .12E-10 .206 .044 0 15
*34 9 CHAROS25 .25 73 114 114 .34E-12 .35E-10 .819 190 0 18
21 11 POWELL60 60 109 150 150 .45E-07 .62E-10 1.909 .206 0 46
47 11 POWELL8O 80 106 158 158 .29E-08 .14E-11 2.492 .274 0 44
35 7 ORENS0 50 34 37 37 .94E-08 .51E-10 .444 .047 0 17
\ 40 7 ORENT75 75 39 43 43 .64E-08 .32E-10 .750 .081 0 19

ITERS FUNCS GRADS RATIO MSECS FSECS

TOTALS 646 951 951 1.47 22.608 14.992

NONE OF THE PROBLEMS WERE FLAGGED WITH ERRORS.

OOMPUTATION DONE WITH THE BUCKLEY-LENIR EXTENSION OF SHANNO'S RGJTINE..
METH NTERMS NTEST ATEST .CIEST SCDIAG SOGAMA SCGAMF HIEST.

0

2

0

0

F

F

T

T

RO BETA
1.00

.20

~r
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l TABLE 8 ( 4 UPDATES.OREST. CRITERION WITH H (3.25) ) !
' TEST BEING EXECUTED AT 11:23 A.M., MAY 18, 1981 1
STANDARD CONTROL PARAMETERS !
TERMINATION NORM = 2 (EUCLIDEAN) !
TERMINATION TYPE = 1 (GRADIENT ) }
ACCURACY SPECIFIED .100E-04. !
PR# FN# NAME DIM ITS FNCS GRDS FVALUE GVALUE MSECS- FSECS ER RS
31 8 EXTROS10 10 35 47 47 .64E-16 .15E-13 212 .036 0 8
46 8 EXTROS20 20 35 47 47 L64E-16 .15E-13 .366 ..064 0 8
26 6 TRIDIA20 20 42 63 63 .28E-11 .54E-10 .458 . .060 O 6
27 6 TRIDIA30 30 51 86 86 .47E-12 .27E-10 .853 134 0 6
23 5 NONDIA20 20 32 46 46 .26E-18 .22E-14 267 .047 0 8
24 5 NONDIA30 30 30 44 44 .13E-14 .90E-11 «359 076 0 7
37 10 MANCIN20 20 6 8 8 .10E-15 .31E-10 11.109 11.074 0 2
33 9 CHAROS10 10 40 68 68 .60E-12 .38E-10 .288 045 0 5
34 9 CGIARDS25 25 44 75 75 L10E-12 .61E-11 . 647 «132 0 5
21 11 POWELL60 60 63 78 78 .13E-10 .22E-11 1.199 110 0 16 .

47 11 POWELLS80O 8 78 107 107 $57E-Q9 .26E-10 2.011 .190 0 19
- 35 7 ORENS0 5 36 40 40 .2]1E-08 .88E-11 562 . .046, 0 9
40 7 OREN7S 75 \43 , 47 47 .26E-08 .52E-10 .975 .084 0 11

I FOUNCS GRADS RATIO. MSECS FSECS

TOTALS 535 756 756 1.41 12.098

¥
’

af

19.306

4

N(NEOF'IHEPROBLNSWERE‘FLAQGH)WI’iHERRDRS.

QOMPUTATION DONE WITH THE BUCKLEY-LENIR EXTENSION OF SHANNO'S ROUTINE.
METH NTERMS ATEST CIEST SCDIAG SOGAMA SCGAMF HTEST - RO
-0 4 0 0 0 F F T T .20 1.0 ‘

a
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(B TABLE 9 ( 6 UPDATES, REST. CRITERION WITH H (3.25) ) !
L TEST BEING EXBUUTED AT 11:26 A.M., MAY 18, 1981 ]
- STANDARD OONTROL PARAMETERS ‘ - Coy
! TERMINATION NORM = 2 (EUCLIDEAN) ' ! :
¥ TERMINATION TYPE ‘= 1 (GRADIENT ) !
o ACCURACY SPECIF 1ED .100E-04 1 '
- & ) ' )
PR# FN# . NAME DIM ITS FNCS.GRDS' EVALUE ~ GVALUE MSECS 'FSECS ER RS
31 8 EXTROSI0 10 37 50 50 .34E-14 .92E-12 .260 ..041 0 6
46 B8 EXTROS20 20 37 50 -50 .34E-14 .92E-12 .451° .068 .0 &
. 26 6 TRIDIA20 .20 48 64 64 .28E-12 .62E-10 .539 .066 0 6
J 27 6 TRIDIA30 3Q 51 79 . 79 [.49E-T2 .84E-10 .980 .113 0 4. .
\; 23 5 NONDIA20 20 33 45 45 (.54E-15 .40E-13 . ,307 .047 0 6 ,
Sk 24 - 5 NONDIA30 30 31 44 44 :10E-13 .57E-10 " .415 ~.066 0 5 : :
37 10 MANCIN20 20 6 8 8 .41E-16 - .13E-10 11.004 10.971 0.1 >
" 33 9 CHARDS10 10 57 72 72 .25E-12 .26E-10 .351- .054 0 9
34 9 CHAROS25 25 62 98 98 .95E~12 .66E-10 1.056 .156 0 5,
21 11 POWELL60 60 35 65 65 .56E-07 3E-10 : .816 .090 0 6
g 11 POWELLSO 80 34 64 64 .78E-07 .96E-10 1.036 .116 0 6
’.7 OREN50 50 37 ° 40 40 .88E-08 .69E-10 .670 .058 0 6
40 T OREN75 75 47 50 ,50 .26E-08 .88E-11 1.231 .095 0 8,
- ’ " ITERS FUNCS GRADS RATIO . MSECS ' FSECS
) TOTALS “515 729 729 1.42 19.116-:11.941
' ] . 13 . ‘
' ___ NONE OF THE PROBLEMS WERE FLAGGED WITH ERRORS. . )
; ’4 ' ) . }‘\/ . . . > B
! OCMPUTATION DONE WITH THE BUCKLEY-LENIR' EXTENSION OF SHANNO'S ROUTINE. 1.
\ ‘ _METH NTERMS NTIEST ATEST CTEST SCDIAG SCGAMA SCGAMF HIEST RO  BETA
i Q 6 0 0 0 F F T T .20 1.00 - ;
{ ’ \
. C_;) 3 .
) i .
y Y .-
L N .
2 , =
i . ’ ) 1
e ’ 5 v
: o ) v ’
. @ ‘ -
» . . s ‘(' . *
~ . ¥,
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! ‘ TABLE 10 ( 8 UPDATES, REST. CRITERION WITH H (3.25) ) !
! . TEST BEING EXECUTED AT 11:28 A.M., MAY 18, 1981 l
! STANDARD CONTROL PARAMETERS ! )
! TERMINATION NORM = 2 (EUCLIDEAN) i
! " TERMINATION TYPE = l (GRADIENT ) !
i Am.lRACY SPECIFIED * -100E~-04 !
PR# FN#. NAME DIM ITS FNCS GRDS FVALUE GVALUE MSECS FSECS ER RS
31 8 EXTROS10 ~ 10 38 52 52 .20E-13 .33E-10 «296 039 0 5
46 '8 EXTROS20 20 38 52 52 .20E-13 .33E-10 .508 = .076 0 5
26 6 TRIDIA20 ‘20 53 63 63 .65E-12 .43E-10 4541 /053 0 7,
27 6 TRIDIA30 30 45 75 75 .13E-12 ,.31E-10 1. 031 o111 0. 2
23 5 NONDIA20 20 29 40 40 .24E-14 .16E-]10 .3 046 0 4
24 5 NONDIA30 30 31 45 45 -,16E-13 ,.39E-10 461> 064 0 4
37 10 MANCIN20 20 6 8 8 .41E-16 .13E-10 10.995 10.955 0 1
33 9 GHAROS10 10 43 .62 62 .72E-12 .56E-10 .34 038 0 5
<34 9 GHAROS25 25 44 62 62 J61E~12 .63E-10" .717 1090 4
21' 11 POWELL60 60 35 47 47 .42E-08 .33E-10 .940 064 0 4
47 11 POWELLS0 80 32 44 44 T38E-07 .T3E-10 1.120 079 074
35 ' 7 OREN50 50 43 47 47 .27E-08 .11E-10 +880 062 0 6
o 7 OREN75 75, 48 55 55 ° .85E-08 .75E-10 .. 1.448 107 0 6
. ITERS FUNCS GRADS RAT}@ : MSECS FSECS '
- 485 652 652 1.34 19.641 11.803
m OF 'IHE PRDBLWS WERE FLAGGED WITH ERRQRS
(IMHJTATIQI DONE WITH THE W-IENIR " EXTENSION OF SHANI\D'S RDUTINE.,
ME'IHN'IERMSNI'ESTATESTCIESTSG)IAGSCBAMAS@AMFHI’EST RO BETA -
0 8 0 0 0 F F -1 ~T_4{.20 .1.00 .
,:‘.":'*‘i’i‘w,‘ .
) { DO ) ) ’
' [4
¥ v - R
V\ ¢ . "hl \ *
» - . & f ,
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' TAHE 11
TTER/FEVAL
| Y
PROBUM BFGS MW XN . COIG
- =2 =4 =6 s

=10 36/44 23/55  35/51  34/47 42/54 41/53 23/68 24/73
20 36,‘< 23/55 35/51 34/41 W/54 ' 41/53 23/68  24/T3
TRIDIA, . ¢ ,

=20 33/34  43/87 45/8L  40/69  58/64  53/63  53/9  45/83
=30 41/42  53/107 52/90 51/86 64/78 61/83 56/98 59/%8
NCNDIA “ . ’ \
=20 32/43  23/53 36/59 32/46 33/45 30/43  26/70  23/68
=30 /61 17/40  36/61  29/39  31/43  32/42  25/74  24/67
=20 778 6/13 810 68 68 &8  1/17 . 7/19
CHAROS

=10 37/39  B86/75 59/77  53/7L  41/55 49/57 49/98 °  37/79
=25 53/75_ 59/121 0/73  64/76 78 52/63 73/138  55/105
) mmz ‘ ’ -

60 .  41/kZ  28/59 56/8L  43/55 35/65 37/46 . 45/11L  49/122
w80 /38 B/ TN 897121 Bu/ek 3744 49120 38/99
OREN -

150 F/200 30/61  34/37  36/40  37/40  43/47  €8/142 ~ 25/58
=75 F/200 37/75 39/63  44/53  41/50°  48/55  78/159 . 31/75
TOTAL 783/832 411/870 556/8l3 555/758 532/688 530/657 577/1257 441/1019
RTIO 106 212 146 137 131 124 2.18 2.31
TOTAL  383/432 344/734 483/733 475/665. U4B/608 439/555 431/956 . -385/886
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TARLE 12 A
‘\  MSEC/FSEC
PROBIEM  BFGS MN VSQN
" me=2 =4 m=5 =8
=10 .312/.033  .136/.043 .167/.039 .193/.040 .271/.040 '.332/.044
=20 .974/.060 .237/.079 ( .280/.073 - .324/.066 .455/.072 -538/.074
_ TRIDIA . o
=20 .724/.037  .418/.090 .403/.099 .428/.068  .483/.073 - .504/.064
n=30 1.83/.064 .771/.170 .681/.150 .743/.127 .760/.102 .960/.126
NOND . '
120 - .702/.049  .192/.063 .268/.067 .253/.055 .306/.048  .307/.046
n=30 1.31/.063 .207/.065 » .378/.104 .313/.059 .390/.067 .467/.067
=20 _  11.4/11.3 18.9/18.8 14.6/14.5 11.5/11.5 11.3/11.3 11.4/11.3
CHAROS :
=10 .261/.029  .205/.056 .244/.058 .271/.047 .235/.039  .308/.043
=25 1.70/.107 .768/.227 .486/.125 .628/.13 .715/.134 ' .699/.110
=60 6.373/.060 .570/.088 ..915/.119 .807/.078 .811/.088  .867/.065
=80 9.882/.068 .8%4/.129 1.489/.192 2.204/.217 .989/.120 1.137/.08
m E!, R ' .
=50 22.6/.253  .453/.084  .415/.051 .541/.055 .642/.055 .864/.064
=75 - 51.3/.378 .867/.150 .697/.090 .963/.120 1.15/.09  1.43/.11
TOTAL 109.3/12.5 24,6/20.1 21.0/15.7 19.2/12.5 18.5/12.2 19.8/12.2
o |
TOTAL - -
WITHOUT ~ 35.4/11.8 23.3/19.8 19.9/15.6 17.7/12.4 16.7/12.1 .17.5/12.0
mm's ‘ .
FUNCTION
¥
\’
( w
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| TABLE 13 ( VSQN WITH QN STEP AT EVERY ITER.(EXCEPT FOR OREN F.) )
! TEST BEING EXECUTED AT 11:35 A.M., MAY 18, 1981

! STANDARD CONTROL PARAMETERS

! TERMINATION NORM = 2 (EUCLIDEAN)
! Cr TERMINATION TYPE = 1 (GRADIENT )
!

!
!

B 1 b P b e e b et b e e

N ACCURACY SPECIFIED «-100E-04 !
PR# FN4 NAME DIM ITS FNCS GRDS FVALUE GVALUE MSECS FSECS ER RS
31 8 EXTROS10 10 36 44 44 .37E-13 .46E-10 <762 .040 0
46 8 EXTROS20 20 36 44 44 .37E-13 .46E-10 1.284 .Q70 0
26 6 TRIDIA20 20 33 6 34 34 ,38E-13 .68E-1l «796 043 0 '
27 6 TRIDIA30 30 41 42 42 .46E-12 .72E-10 1.661 .065 0
23 5 NONDIA20 20 32 46 46 .30E-13 .22E-12 +784 .049 0
24 5 NONDIA30 30 31 41 41 .58E-13 ,16E-10  1.009 063 0
37 10 MANCINZ20 20 7 , 8 8 '.72E~18 .22E-12 11.096 11.052 O
33 9 CHAROS10 10 37 39 39 .51E-12 .35E-10 .624 .031 0
34 9 HAROS25 25 53 57 57 .11E-11 .67E-10 2.353 160 0
21 11 POWELL60 60 41 42 42 .76E-11 .28E-10 -2.970 060 0
47 11 POWELLS80 80 37 38 38 .45E-09 .30E-10 3.188 .065 0
35 7 ORENS0 50 143 144 144 (13E~07 .85E-10 13.393 .182: 0
40 7 OREN75 75 135 136 136 .11E-07 .89E-10 12.956 .249 0
” ITERS FUNCS GRADS RATIO MSECS = FSECS
TOTALS 662 715 715 1.08 , 52.876 122069

NONE OF THE PROBLEMS WERE FLAGGED WITH ERRORS.
COMPUTATION DONE WITH THE BUCKLEY-LENIR EXTENSION OF SHANNO'S ROUTINE.

METH NTERMS NTEST ATEST CIEST SCDIAG SCGAMA SCOGAMF HTEST RO . BETA
€. - 0 . 0 0 0 0 F F T E 20 1.00
. ) ;.‘ , . } . ‘

“ t . L‘é
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/——-——-"_‘
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