IR g

Acquisitions and

T O R ...

Bibliothéque nationale
du Canada

Direction des acquisitions el

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontano
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontano)

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise an
microfiimage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec luniversité
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éte
dactylographiées a I'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

VDM/C++ : A Design and Implementation
Framework

Youchen Lou

A Thesis
in
The Department
of
Computer Science

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science
Concordia University
Montréal, Québec, Canada

February 1994
© Youchen Lou, 1994

. W . National Library

of Canada

Acquisitions and

Bibliotheque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontaro
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Cttawa (Ontario)

Your fle Vote refdence

Our e Notee edtereove

I’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-90854-8

Canada

ABSTRACT

VDM/CH+4- A Design and Implementation
Framework

Youclen Lou

This thesis presents a framework for deriving C++ implementations from VDM
specifications. The transformation is completed in two steps; from VDM specification
Lo an object-oriented design and from this design to C++ classes. The object-oriented
intermediate model used in the development process is language independent and so
can be applied to any object-oriented language. Only partial automation is possible
in the transformation process. So, an interactive interface is built to support user
interaction and provide information available at all stages to assist an integrated
software development.

VDM /C+-+ has been implemented under UNIX system using Motif toolkit and
C++ programming language. The result shows that methodologies discussed in this
thesis are both feasible and practical. VDM/C++ provides an useful environment
supporting the development of software systems from specifications to implementa-
tion.

VDM/C++ framework introduced in this thesis can cooperate with the Mural
system, a knowledge-based support and tools which support the transformation from

a semi-formal description to a VDM specification.

il

Acknowledgments

I would like to thank my supervisor Professor V.S. Alagar for active discussions
and valuable suggestions on the subject of this thesis. This work would not have been
possible without his consistent guidance and encouragement. I thank Dr. Alagar for

the financial support given to me during my study at Concordia University.

1 am grateful to my husband Zhaogong for his hours of beneficial discussions and

his patience and moral support.

1 wish to express my thanks to all those people who have helped ne in the pro-

duction of this thesis.

iv

Contents

List of Figures viil

List of Tables ix

1 Introduction 1

2 Formal Approach to OOD and Scope of This Thesis 7
2.1 Object-oriented Design Paradigm

2.2 Choice of an Object-oriented Language 10

23 Related Work 14

2.4 The Scopeof This Thesis 16

3 Specification Language VDM - a Brief Outline 18

3.1 Variablesand Types 18

J.0.1 Powerset Types e 19

312 List Types . . o oo oo o o 21

313 Record Types 22

.14 Mapping Types 23

3.2 Operations and Invariants 24

3.3 Using VDM in System Development. 27

3.1 The Choiceof VDM 33

4 From Functional Specification to Object-Oriented Design 34

4.1 Methodology 34

LI Identifying Classes L 35

+.1.2 Identifying Attributes of Classes 36

...................

4.1.3 Deriving Member Functions AN

114 Deriving the Relationships among the Classes 34

4.2 System Architecture for GAP 0L o oL L 13

5 Methodology for Transforming OOD to C+4+ 48
51 Classes o L A8

5.2 Attributes and their Types L L 19

5.3 Member functions L L Lo Hl

54 Inheritance HT

6 User Interface Design 67
6.1 The Significant Aspects of Design Issues 67
6.2 Functionality of Windows, ..., 70
6.3 VDM Specification of User Interface Design 81
6.3.1 Global Variables 81

6.3.2 VDM State Spaceo o oo 82

6.33 Operations. L 85

6.4 Implementing the User Interface Design 96

7 Conclusion and Further Work 98
Bibliography 102
A Object-Oriented Model 106
A.1 Syntax of Object-Oriented Design 106
A2 Tokens e 107

B Library Management System 109
B.1 Requirements and Assumptions 109
B.2 VDM Specification 110
B.21 VDM StateSpace L. 110

vi

BB.2.2 Operations . .

B.3 Object-Oriented Design . . .0 o 00000 L.

B.4

(44 (asses

vii

List of Figures

L1 The VDM/C+4++ Environment

to

4.1 System Architectureofl GAP o

5.1 Equivalent Designs and Classes GO
6.1 On-linehelpmessage 69
6.2 Main Windowo 71
6.3 Transformation Window 72
64 Load Window 73
6.5 VDM State Window L g
6.6 Class Window [t
6.7 Member Function Window 76
6.8 A Typical Screen 80
6.9 Widgets in Member Function Window 96

7.1 System Architecture for the Integrated Development System 101

viii

List of Tables

2.1 Comparison of different languages 15
31 Built-intypesin VDM . . 00 0o o 19
3.2 Set Operations im VDM . .0 0 o0 oo oo 20
33 listoperationsin VDM0 . o oo o 22
34 Mapoperationsin VDMo oo 24
5.0 Typeprocessing oL L L e 49

ix

Chapter 1

Introduction

VDM/C++ environment presented in this thesis is an interactive knowledge assisted
environment supporting the development of software components from VDM specifi-
cations. Our goal is to develop a practical environment in which software productivity,
quality and reliability can all be ensured.

Developing and maintaining large software systems is notoriously difticult and
expensive. One source of difficulty is that such projects involve large amounts of
disparate knowledge about the application domain, the developing environment, the
software architecture, the technical personnel and the resources ete. A critical prob-
lem encountered in such situations is that a great deal of relevant knowledge is not
usually documented and remains accessible only through human experts. fo com-
pletely document all knowledge mentioned above is inadequate for three reasons. The
first is the acquisition and represcntation problem: the amount of such knowledge is
so large that capturing it is tedious and time-consuming. It is also unclear how to
organize or index the knowledge. The second is the access problemn: without adequate
indexing, the resulting information basc is simply too large to be very uselul (busy
people, including software developers, will not read large documents that are not im-
mediately relevant to their current task). Finally, there is the mainfenance problem:
the existing knowledge will change over time; as a result more detailed knowledge is re-
quired as the development of software system. A knowledge-base must be maintained
and ensured that it remains useful. We believe that by retaining human interaction in

the software development process, many of the problems encoustered in the complete

00 Design

VDM Specs Results C++ Classes C++ Programs

Knowledge

Base
Developer

Iigure 1.1: The VDM/C++ Environment

automation of software system may be avoided. Figure 1.1 shows how the develop-
ment process in VDM/C'++ can incorporate human interactioi. and knowledge-based
assistance.

Requirements for nontrivial programs can become very complex to state and un-
manageable to maintain. Their consistency and adequacy are difficult to determine
when stated informally. Formal methods based on mathematical techniques for de-
scribing system properties offer a possible solution. The use of formal methods is
aimed at controlling the enormous and ever-growing complexity in the development
of large software systems.

There are many potential advantages to use formal methods. They allow rigor
and precision including unambiguous communication, prediction, evaluation and bet-
ter understanding of and control over software products and the software development
process. Furthermore, the deveiopment of a formal foundation of software engineering
has the potential to provide criteria for evaluation, a means of comparison, informa-
tion about theoretical limits and capabilities, and a means of describing and studying

underlying rules and structures of software design. Not all of these potential benefits

have yet been realized. The most developed aspect of formal methods are formally-
defined specification language.

A formal specification is a language with explicitly and precisely defined syntax
and semantics. One virtue of formal specifications is their precision. Precision leaves
no room for ambiguity. The process of writing formal specifications can often reveal
contradictions. ambiguities and incompletencss in a problem requirement and errors
in a program’s design. Uncovering bugs carly can thus save the cost, compared with
uncovering them later during testing and debugging. Precision also implies that
we can formally argue the correctness of programs. We believe that using formal
specifications at the early stage in the software development process can be especially
beneficial. Another virtue of formal specifications is their amenability to machine
manipulation. With help from appropriate tools(e.g., theorem provers). we can handle
nontrivial specifications, and thus formally reason about specifications and programs
which are much lager than these if we had to rely only on pencil and paper.

There is still much to be done before formal methods will be widely used in
software development. We need good formal methods and also ways of interfacing
them to human abilities for easy use of formal methods. Furthermore, tools which
support the development of formal methods should be developed.

Alagar and Periyasamy (2] presented a methodology for deriving an object-oriented
design from model-based specifications. The transformations discussed can be formal-
ized and applied to any model-oriented specification to get a corresponding object-
oriented design. A tool called GAP is built by Gao [19] which applies the methodology
to VDM specification. The development of GAP shows that the methodology is both
feasible and practical. This thesis develops the further work based on GAP [19].

Object-oriented paradigm is a relatively new development in software engineering.
Compared to the traditional functional design, object-oriented design aims for more
robust software that can be easily reused, modified, maintained and extended. The
greatest strength of an object-oriented approach to development is that it offers a
mechanism that captures a model of the real world. This leads to improved main-

tainability and understandability of systems whose complexity exceeds the intellectual

capacity of a single developer or a team of developers.

However. the design process for the object-oriented paradigm remains ad hoc.
Scveral efforts have been made to improve the situation. Alabiso [3] introduced the
transformation of data flow analysis model to object-oriented design. Ward [37] ar-
gued that there is no conflict between structured design and object-oriented design
and illustrated how to integrate object-orientation with structured analysis and de-
sign. Beck and Cunningham [5] suggested the use of index cards to record initial class
designs. Wirfs-Brock, Wilkerson and Wiener [40] provided a coherent model for the
design process : responsibility-driven design, in which the index card, hierarchy graph
and collaboration graph are used. Rumbaugh, Blaha and Premerlani [34] discussed
the analysis, design and implementation, the entire development life cycle, using their
own graphical notation and methodology.

In the VDM/C++4 environment, an object-oriented design is derived from re-
quirements specification written in VDM. The derived design is language indepen-
dent which can in principle be implemented later using any object-oriented language.
At present, C+44 has been chosen as the target language for implementation. Con-
sequently, we create (44 classes and member functions from the object-oriented
design derived from the VDM specification of requirements. An interactive user in-
terface is provided to help the developer to comprehend all information available at
the requirement specification through implementation levels so that it is possible to
derive an implementation faithful to its specification. Such knowledge-based tools
may greatly simplify the development process and, above all, the maintainability of
the system. Thus, VDM/C++ is the means of achieving a desired end; it provides a
specific choice - from VDM through OOD to C++.

Henderson and Edwards [14] argued that it is possible to derive object-oriented
designs from both functional specification and object-oriented specification of require-
ments. However, we claim that the initial requirements will always be functional be-
cause users generally describe what the system is to perform; it is hard for the users
to describe what objects are involved in the system design and/or implementation

and how they are supposed to interact with each other. Moreover, the specifications

of requirements should not bias the design process. For example, formal description
in VDM uses mathematical notation to model system components and to describe the
functionalities of the system. These specifications naturally lead to function-oriented
design: sce for example Jones [23].

The significance of our approach lies in the development of an object-oriented
design from VDM specification. It builds a bridge between formal specifications (in
functional style) and object-oriented paradigm and enjoys the advantages of both
of them. The modelling methods built for a function-oriented approach can also
be used for deriving an object-oriented design. Furthermore, the major problem
for object-oriented design is that existing methods mentioned above are all informal
and consequently critical studies in the development process can not be formally
verified. In VDM /C++ environment, the verification of VI)M specification and the
transformation methodology assures the correctness of the design.

The organization of the thesis is as follows. Chapter 1 presents the motivation
and significance of the study. Chapter 2 introduces the object-oriented paradigm and
discusses the reason for choosing C++ as the implementation language. Some related
work is discussed and compared to VDM/C++. Chapter 3 is a brief introduction to
VDM specification. It is not a complete description of the VDM specification language
but explains the basic notations which are sufficient to understand the specifications
and transformation method included in this thesis. System development refinement
using VDM is also discussed. Chapter 4 introduces the methodology for deriving an
object-oriented design from VDM specification. It also briefly describes a tool in the
environment, GAP, which supports direct and automatic transformation from VDM
specification of software system into object-oriented design. Chapter 5 is a detailed
description of methodology for transforming object-oriented design to C++ header
file. Some implementation details are also provided. One example, the banking
system, is presented in Chapter 3, Chapter 4 and Chapter 5 to explain the reification
process in VDM, the corresponding designs, implementations and their relationships,
Chapter 6 illustrates the user interface for the system. Both design consideration

and implementation issues are discussed. A complete VDM specification for the nser

Dt

interface is also provided. And finally Chapter 7 concludes the study and suggests

further development directions.

Chapter 2

Formal Approach to OOD and
Scope of This Thesis

We present the object-oriented design(OOD) model in this chapter. This is neces-
sary because of the varying concepts and definitions of object-orientation adopted by
different practitioners and researchers. Also we describe how the concepts are used
and implemented in some popular programming languages, such as C++, Smalltalk,
Eiffel and Ada. The reason why we have chosen C4++4 in VDM/C++ environment
is stated. Finally, some work related to the integrating formal methods with object-

oriented paradigm is introduced and compared to our wo k.

2.1 Object-oriented Design Paradigm

Multiple views and definitions for object-orientation are being followed by different.
practitioners and researchers. We do not intend to argue with the validity of such
differing views and concepts; rather, we wish to concretize our notion of object-
orientation and use these concepts for the derivation of object-oriented design from
the specification. The object-oriented model defined below includes concepts that do
not differ much from those available in most popular object-oriented languages such
as C++, Eiffel and Smalltalk.

Due to space limitations, we do not give a complete model in this thesis; rather,
we provide a list of important concepts and our definitions for those concepts which

will be necessary in understanding the derivation process.

Object An object-oriented system consists of a collection of objects, which are the
representatives of the real-world entities. The entire system is developed to

represent these objects and their interactions.

Class Objects exhibiting similar properties are grouped together into a cluss. Stated
otherwise, a class is an abstract collection of objects and an object is a concrete

instantiation of that class.

Data member Each object is characterized by a set of variables called data mem-
bers. This is a C++ terminology; Eiffel uses the term attributes to denote the
structural components of an object. The state of an object is represented by
the collection of values associated with its data members. The type of a data
member may be a primitive type such as integer or real or it could be a class in
which case the data member is an object by itself. By this way, composite ob-
jects can be built from primitive objects. This process is known as aggregation

which will be defined shortly.

Member Function Each data member of an object can be changed only by a func-
tion associated with the object. Consequently, each object has a set of functions
called member functions defining the behavior of the object. In some object-
oriented languages such as C++, the strict condition of accessing the data
members only through member functions is not incorporated. Consequently,

data members can be accessed directly.

Exported features and Communication Since each data member of an object
can be accessed only through its own member functions, the state of an ob-
ject can be changed only when there is an invocation of one of its member
functions. This will happen only when some other object requests for such a
service. Such requests are called messages and consequently, the object-oriented
system provides effective message passing communication between the objects.
The interaction between the various objects provides the execution environment

of the system.

Each object will provide only a subset of its data members and member functions
to be accessible by other objects. These data members and member functions
form the interface of the object and are called ceported features of the object.
The interface member functions will access the other member functions which
may or may not be in the set of exported features. Thus, it is possible for
the object to change its internal behavior without changing its interface. This
technique, called information hiding. is one of the important principles of object -

orientation.

Inheritance Often. it is desirable to predefine relationships among objects so that
the interaction of objects between two different classes will be normalized. In-
heritance is one such possible relationship in which one class (and hence objects
of this class) is made as a specialization of another class (and consequently the
objects of the second class). For example, a class rectangle can be made as a
specialization of a class polygon. By inheriting from polygon, the class rectangle
acquires all the exported features of polygon and hence need not define them
again.

The definition of inheritance differs considerably with respect to several objeet -

oriented techniques and hence we concretely define it here: If class A inherits

class B, then

o The features (data members and member functions) of class A become a

superset of the features of the class B.

e Class A can add, delete (or restrict) or modify some of the features of
class B but, within A itsclf. This will not affect the behavior of B. Strictly

speaking, A must differ from B; otherwise, there is no need for such inher-

itance.

e Class A should not re-export the features already exported from class B;

otherwise confusions and inconsistencies might arise.

Aggregation Also called part-ofin our model, the aggregation relation is the means

9

of building composite classes (and hence composite objects instantiated from
these classes) from other classes. In our model, class B is part of class A if and

only if

e Class B is strictly a component of class A; i.c., there is a data member in
A whose type is B. This indicates a strict relationship between A and B
in which A cannot survive without B. Stated otherwise, every instance of

A relies on an instance of B.
o Classes A and B must be different; otherwise, there is no use of such part-of
relationship.

e (lass A cannot alter the behavior of the instance of class B inside A. This

is the major difference hetween inheritance and aggregation.

Polymorphism Polymorphism is the ability by which a method can be executed in

more than one way, depending on the arguments and the receiver.

2.2 Choice of an Object-oriented Language

In the previous section, we have introduced the essential concepts in object-orientation.

An object-oriented language should, at least, support the following[22]:

Encapsulated objects
The class and instance concepts
Inheritance between classes

Polymorphism

In this section, we discuss how and to what extent these concepts are supported

by different languages such as C++, Smalltalk, Eiffel and Ada etc. We will not

provide a detailed description of any specific language. Further readings about the

languages that we discussed here can be obtained for C++(26, 16]; Smalltalk[20, 28

10

29): Eiffel[31]: Ada[4. 6]. Peter Wegner {38] has made a generally accepted classitica-
tion of different programming languages in the object-based world. He states in thas
classification that Ada is object-based because it supports the object coneept, but
not the class concept. C++. Smalltalk. Eiffel. Simula[18] and Objective-C[9] are ex-
amples of object-oriented languages since they also support the class and inheritance

concept.

Object The most important concept that an object-oriented language must support
is the object concept. Thus the language must support the definition of a set of
operations for the object, namely the object’s interface, and an implementation
part for the object(which a user of the object should not know about). The

object implementation is thus encapsulated and hidden from the user.

An object is implemented internally as a number of variables which store infor-
mation and a number of operations which can be performed on those variables.
In Smalltalk. the only way to affect the internal variables is to perform an oper-
ation on the object. In C++ or Eiffel, it is possible to define whether the user
should be able to directly access these variables. Morcover, (44 provides the
mechanism called private, protected and public to allow more flexible access to
the data members. A private member can be accessed only by members of the
class. Members that occur in the protected section can be accessed by members
in the class and in its inherited classes, and a public member is accessible from

anywhere in the program.

Class and instances In object-oriented language, each object is described by a class
which is both a module for the source code and a type for the instances of
the class. The programming language Ada comes close to this approach with
the package concept, but the package in Ada is not a type. Inside a package,
however, types can be defined with associated operations. These types can in
turn be used to create objects, where the package’s interface may specify the

operations that can be performed on the object,

11

A class defines the operations that can be performed on an instance. It also de-
fines the variables of the instance. A variable associated with a specific instance
is often called an instance variable. These instance variables store the instance’s
state. The reason for calling them instance variables. and not just variables.
is due to the fact that some languages, such as Smalltalk and, in some senses,
4+, have other variables which are only associated with the class. These are
called class variables. Additionally, variables could also be local to a specific op-
eration. These are called temporary variables. Several programming languages
do not provide the programmer with the possibility to declare and use class
variables. This is the case in Eiffel, where the distinction between the class
and the instance is carefully made. The class is viewed as a description, or the
program text, while instances are viewed as executions of the program text.
Thus instances are the only thing that exists during run-time, and not classes.
In C++, the programmer hasn’t really the possibility to declare class variables,
but can declare an instance variable as ’static’, which gives all instances the

same value for this variable. In such a way, it can be used as a class variable.

Some object-oriented programming languages also view classes as objects, that
is as instances of another class. This is the case in Smalltalk, where each class is
an instance of a meta-class . An advantage with this is that it is possible to send
a message to a class and thus affect all its instances. Languages such as C++
and Eiffel have chosen not to consider classes as object. In this case, the class
is regarded as implementing a type, while the object is regarded as an instance
of this type. The class is static and is described in the program text, while
the instance is dynamic and exists only during execution. Thus, the distinction
between description and corresponding execution is made fundamental. The
advantage of this approach is that there is a clear distinction between class and

instance,

Normally, operations are only performed on instances, but some languages allow

operations to be performed directly on the class. Class operations are normally

12

used to operate on class variables or to create new instances. In Smalltalk, class
operations are comumnon. while in C++ and Eiffel, they have been avoided. How
ever. every programming language has operations for creating new instances,

This can be considered as a class operation as it operates on the class,

Inheritance Inheritance means that we can develop a new class merely by stating
how it differs from another, already existing class. The new class then inherits
the existing class. The main advantage with this approach is that the existing
class can be reused to a great extent. It is not only the classes which have been
designed for the current system that can be reused, but also those designed
earlier. Smalltalk, C++4 and Eiffel are all delivered with an extensive class
library, as such, the programming is based to a large extent on reusing these

classes.

The number of inheritance hierarchies in a system varies between different lan-
guages. In Smalltalk, there is only one inheritance hierarchy, and thus one root
class. Behavior, which is common to all system classes, is collected and stored
in a root class which is called Object in Smalltalk. In this way, the programmer
is forced to work with the inheritance hierarchy. In C4+4 and Eiffel, there can
exist several parallel inheritance hierarchies. One can thus create different hi-
erarchies for different structures in the system. It is therefore possible to create
new classes without using the existing one. The experienced programmer can

thus make use of the inheritance mechanism to a great extent.

Polymorphism Polymorphism as used in object-oriented paradigm means that the
client class which sends a message does not need to know the class of the re-
ceiving instance. The client class provides only a request for a specified event,
while the receiver knows how to perform this event. The polymorphism charac-
teristic sometimes makes it uncertain at the compiler time, to determine which
class an instance belongs to and thus to decide which operation to perform.
Dynamic binding by which the binding of a message and the actual operation is

delayed until the run-time is therefore a way of implementing the polymorphism

13

characteristic.

Smalltalk is often referred to as being a non-typed language. In Smalltalk,
polymorphism is normally not restricted through the use of an inheritance hi-
erarchy. as is often the case with strongly tvped langnages. In Smalltalk, the
referenced instance can be associated to any class in the system. In strongly
typed languages, such as C++, Fiffel and Simula, each reference to an instance
has a type that specifies the classes to which the reference can refer. But it
is unnecessary to specify exactly with which class the receiving instance is as-
sociated. Typically we only specify that the instance shall be associated with
class A or some of class A’s descendants. The operation can be defined in a
descendant and we thus cannot bind before execution. C++ implements limited
polymorphism: all classes within a hicrarchy can respond to the same message,
but classes outside the hierarchy cannot. In C++, this is compensated by al-
lowing multiple inheritance. We can simply create an abstract superclass that
defines the message we want to share and have other classes inherit from it. So,

there is no restriction to the use of polymorphism in C++.

Table 2.1 summarizes the different features of languages discussed in this section.

"The reasons for choosing C++ as the target implementation language in VDM /C++

environment are as follows:

e C++ supports all object-oriented concepts.
o ('+4 provides flexible way to use these concepts.

o (++ is one of the most popular object-oriented language in the marketplace.

2.3 Related Work

The approach discussed in the thesis is unique in itself. To our knowledge, no other

system exists with which this work can be compared. However, some work reported

in the literature shares similar concerns in the integration of formal methods in the

14

C++ I Smalltalk l Fitfel ﬁ\du]

Object ves yes YOS | ves
Define direct access | yes 1o ves
to internal variables
(lass yes yos yes 1o
Class variables static yes no
Class operation no yes no
Inheritance ves ves yes
Polymorphism yes Ves yes

Table 2.1: Comparison of different languages

software development process. All these approaches are concerned with formal spec-
ification and object-oriented design but differ among themselves, particularly, with
the level at which the formal methods are employed.

Fresco [39] is a Smalltalk-based interactive environment supporting the specifi-
cation. implementation and proofs. A basic unit in Fresco is called a capsule which
contains specification, proofs and code. System components are built by putting
several capsules together.

Larch/C++ [25] is an interface specification language which applies Larch speci-
fications to C++ programs. Hence the specifications are tied to C++ abstractions.
Modules that use common C++ constructs are specified using Larch. Thus, an at-
tempt is made in Larch/C++ to minimize the gap between specification and imple-
mentation.

VDM/Ada [33] examines VDM development with Ada as the target language.
The development is supported by a semi-automatic tool based on a “rule set” for the
process. The author argues that the translation should be introduced early in the
development process, leaving the user to fill in the gaps, that is the Ada function
body.

Minkowitz and Henderson [32] presented a formal definition of an object-oriented
environment using VDM. The principal concepts to be defined are inheritance and

message passing. The object-oriented architecture is derived from the Smalltalk ar-

chitecture, which is simpler and has the merit of having been given a concise formal
specification. VDM is a tool used to design applications environment, explore a space
of alternative environments and choose one that best suited to user’s needs. The final
architecture can then be exploited to design seemingly complex applications naturally.

Breu {7) provided a framework for the integrated design of object-oriented pro-
grams with algebraic specification techniques. The design method pursued relies
fundamentally on the structure of systems based an the notion of data types. In
the approach presented, data types are described at different levels of abstraction.
Problem oriented descriptions in terms of algebraic specification are combined with
machine executable descriptions in terms of typed object-oriented programs. Two
aspects play a crucial role for the integrated design environment. On the one hand,
the use of formal specification techniques provides a framework in which the correct-
ness of a program can be argued. On the other hand, a uniform structuring concept
for object-oriented programs and algebraic specifications is developed to provide an
integrated design environment. Two sample languages used are the algebraic specifi-
cation language OS and the kernel of a typed object-oriented programming language
oPr.

Similar to these approaches, VDM/C'++ also incorporates formal specification
and object-oriented design, the formal notation being VDM. However, the novelty in
VDM/C++ is that the object-oriented design is independent of any object-oriented

svstem or language.

2.4 The Scope of This Thesis

Alagar and Periyasamy[2] provide a methodology for transforming a model-based
specification into an object-oriented design. The methodology is independent to any
specitic model-based specifications. In the paper, VDM specification language has
been chosen, and a library management system is used to illustrate the transforma-
tion process. Gao [19] presents a tool GAP, which supports direct and automatic

transformation from VDM specification of software system into object-oriented de-

16

sign. GAP accepts as its input a simplified VDM specification and generates an
object-oriented design. The design produced is language independent. 1t can be
applied to any object-oriented language in the later stage.

The goal of this thesis is to build an interactive environment which supports the
development of software system from VDM specification to C++ implementation. To

be specific, our tasks are:
e to implement the VDM variable types in C4+ @ see Chapter 5 for details.

e to implement the built-in operators associated with the VDM variable types in

C++ : see Chapter 5 for details.

e to implement all object-oriented concepts in the design in C4++ environment ¢

see Chapter 5 for det .ils.

e to built tools supporting the automatic transformation from object-oriented

design to C++ classes : see Chapter 5 for details.

e to create a multi-window user interface supporting the user interaction @ see

Chapter 6 for details.
¢ to define the syntax for object-oriented design : see Appendix A for details.

e tointegrate GAP into VDM/C++ environment : see Chapter 1 and Chapter 4

for details.

Appendix B is a complete example for the development of the library management
system under VDM /C++. It includes a VDM specification, it’s corresponding object-
oriented design and the resulting C++ classes. The specification and design are taken

from [2] and revised to meet the syntax in VDM/C++ environment..

17

Chapter 3

Specification Language VDM - a
Brief Outline

Vienna Development Method (VDM)[13] is a model based approach in which the
description of a system is given as a series of models. It was developed in the 1970s
by the IBM Vienna Rescarch Laboratories. Each model comprises of two components
- structure and operations. The structure is given by a set of abstract data types. If
variables consistent with these data types are defined, then there exists a state space
whose instantancousness is given by the set of values associated with these state
variables. A VDM specification may also contain only abstract data types without
such global variables in which case the specification is said to be property-oriented.
Both property and model-oriented specification styles are useful in describing the
functionalities and behavior of software systems and reactive systems. Operations in

VDM describe the changes to the values of some variables defined in the state.

3.1 Variables and Types

A variable is part of the internal state of the system being modeled. Each variable has
a type which denotes a set of possible values. Table 3.1 lists all built-in types provided
by VDM. Except for the token type, all others are self explanatory. The token type
in VDM contains countably infinite number of distinct values, called tokens.

Enumerated types similar to those in Pascal are also provided.

Example : Colour = {RED, GREEN, YELLOW}

18

Z | Integer
N Natural number
Ny | Natural number excluding zero
R Real number
Q Rational number
B Boolean
char | Character
token | Token type

Table 3.1: Built-in types in VDM

Days = {SUNDAY,MONDAY,TUESDAY ,WEDNESDAY,
THURSDAY ,FRIDAY,SATURDAY'}
It is also possible to introduce “union” types in which the value of a variable may
be drawn from either of the two constituent types. The definition
T=T|T,
states that a variable of type T may assume the values cither from type Ty or T4,
NIL is a reserved keyword used to represent both the name and its value of a type,
specially used to represent undefined values.
A variable in VDM can be declared as
IDNUMBER : Idtype
NAME : String
VDM has the following conventions for its variables and types. A type name starts
with an upper case alphabetic followed by lower case alphanumerics. Constants of
scalar types and variables are in upper case. Instantiations of variables are represented
in lower case. A variable name with an apostrophe at the end is used on the left side

of an assignment statement to show that it is being updated.

3.1.1 Powerset Types

It is often useful to introduce into a specification a variable which takes as its value
a set of objects of some type. The type of such a variable would be a set of sets.

The suffix *-set’ appended to a type name creates the power set for that type. For

19

I Operator] Synopsis [Meaning J

card card S | cardinality of the set S
€ x €S | xis the member of set S
U S5, U85, | set union
N 51 NS, | set intersection

Sy — 9, | set difference

C S €S, | subset

C S1 C S; | proper subset

= 51 = 5; | set equality

51 # 5, | set inequality

U UsSs distributed union of the sets SS

N NSS distributed intersection of the sets SS
{is.j} {i....j} | subset of integers from i to j, both inclusive

Table 3.2: Set Operations in VDM

example, the powerset of type Colour given above is the set:
{ {RED,GREEN,YELLOW}, {RED, GREEN},
{RED, YELLOW}, {GREEN, YELLOW}, {RED},
{GREEN}, {YELLOW}, {} }
Thus, any variable which has the type Colour-set would take a value from the
powerset, that is, a set of colour or the empty set. Empty set is represented by {}.
VDM uses the same notation and operations for sets as in conventional mathe-
matics. Table 3.2 shows all set operators.
Let Sy = {A, B, C} and S, = {C, D, E}
card(S;) =3
A€ S is TRUE
SiuS;={A,B,C,D,E}
S5 NS, ={C}
S-S, = {A, B}
51 C S, is FALSE
51 = S, is FALSE

The distributed union is defined as follows:

20

U { {AB}. {B.C}.{C.D} } = {A.B.C.D)

3.1.2 List Types

It is often useful to introduce into a specification a variable which takes as its valne
an ordered collection of values. Lists (sometimes referred to as sequences or tuples)
provide a suitable data structuring facility in VM. The suflix “list’ when attached
to a type name creates the set of finite lists which can be created from the base type.
This is an infinite set. For the type Colour given above, Colour-list is as follows:
Colour-list = { <>.

<RED>,

<GREEN>,

<YELLOW>,

<RED, GREEN>,

<RED. YELLOW>,...

/*all other finite lists of Colour*/
}

Thus variables of type Colour-list would have a value either a list of items of colour
or the empty list. Empty list is represented by <>. All list operators available are
displayed in Table 3.3.

Let listy = <A,B,A D>, list, = <B,C> and listy = <D, E>

Let SS = < list), listy, listy >

len list; =4

listy || list; = <A,B,A,D,B,C>
conc SS = <A,B,A,D,B,C,D,E>
hd list, = A

tl list; = <B,A,D>

inds listy = {1,2,3,4}

elems list; = {A,B,D}

list;(1,3) = <A,B,C>

21

| Operator | Synopsis | Meaning]

len len S | length of the list S
I Sy I 5. | list concatenation
cone cone SS | distributed concatenation of the list of lists §S
hd hd S head of the list S
tl tlS tail of the list S
inds inds S | indices of the list S;

returned as a set of positive integers
elems clems S | set of elements comprising the sequence S
(i,...j) | S(i,...,j) | subsequence of S from i* element

to the j* element, both inclusive.

S, =5 | list equality

S1 # 5, | list inequality

e

Table 3.3: list operations in VDM

list; = listy is FALSE

3.1.3 Record Types

While sets and lists represent structures of same type of elements, composite types
from different subtypes can be represented by records. The general format of a record
definition is given in the follow example:
Person :: AGE : N}
SEX : {MALE, FEMALE}
MARRIED: B
The construct operation (denoted as “mk-") on record type is used to create an
instance of record type. Thus
mk-Person(30, MALE, FALSE)
will create a new person.
Individual fields of the record can be selected by the names of the fields themselves.
Thus
AGE(David) = 30,
SEX(David) = MALE and

o
~o

MARRIED(David) = FALSE

Records can also be tested for equality and inequality.

3.1.4 Mapping Types

Map is an abstraction for finite function. It provides a mapping from elements of one
set(known as domain) to those of another set(known as range). with the restriction
that no element of the domain is mapped to more than one element. Maps differ from
functions in that the domain of a map must be finite. The empty map is represented
as [).

The map operators are defined in Table 3.4 and the semantics for some of them
are explained in the following example:

Let My =[1-a,2—>b,3 >, My=[l— a, 3 — al,

M; =[a— 6,b > ¢c—] and My = [I— a, 4 — d]
dom M; = {1, 2, 3}
rng M; = {a, b, ¢}
M =[a> 1,b— 2, c— 3]

Notice that the inverse of a map M will not he a map if M is not bijective; for
example M;! is not a map

Two maps can be merged only if they have consistent maplets.

MiUM;=[1-2a2—b,3 - c,4— d]

While applying the overwrite operator, if a domain element appears in both the
original mappings, the range element in the second operand takes priority in the
resulting mapping.

MitM;=[1- 2,2 >b,3— a

Two maps can be composed only if the range of the first map is a subset of the

domain of the second map.
MioM;=[1-0,2 - ¢,3 — ¢]
{1}<aM; =1 - a
{1}aM, = (2 = b, 3]
Mip {b} =[2-b]

23

[Operator | Synopsis J Meaning

|

dom dom M | domain of the map M
rng rng M | range of the map M
M-! M Inverse of the map M
U My U M, | map union
t M, 1 M; | map overriding
) M, o M, | map composition
() M(a) | map application
< D 4 M | domain restriction
<4 D <9 M | domain subtraction
> M b R | range restriction
B M B R | range subtraction

Table 3.4: Map operations in VDM

Mip {b}=[1—-a, 3> (]
AI](])=€1, 1”2(3)=a, AI4(4)=(1

3.2 Operations and Invariants

Operations in VDM describe the behavior of entities described in the state space.
Each operation is described by means of pre- and post-conditions. The former asserts
the constraints that are to be satisfied before the operation is invoked while the
latter specifies the constraints to be met after the operation successfully terminates.
Lach operation also specifies the set of global variables aflected by that operation
(and hence the change in that portion of the state space) and the mode of change
(read/write) for each such global variable. In case of property-oriented specifications,
one could naturally expect only the pre- and post-conditions alone to be specified
without any reference to the global variables. In both cases, operations may have
parameters whose types are well defined in the structural part of the specification.
There are two types of invariants in VDM - type invariant and state invariant.
A type invariant, as the name implies. is associated with a type. Typically, a type

invariant is specified for all user defined composite types since the behavior of all

24

other types are well defined within the specification language. In a similar way, a
state invariant is associated with a state space. Being specified., a type invariant (state
invariant) asserts that every instance of that type(state) should respect the propertios
asserted by the invariant.

Operations and Invariants are usually specified in VDM using predicates. Complex
predicates can be constructed by means of the logical connectives and the universal
and existential quantifiers. We simply list the predicates operators here. luterested

readers can refer to [27] for further explanation.

~ not

A and

\ or

= is equivalent to(iff)

= implies

v for all...

3 there exist...

3! there exist exactly one...

In addition, for simplication purpose, predicates can be named using the let con-
struct. For example:
let p=(a +b)in
q=p*p+p+1
is the simplified form of q = (a+b)(a+b)+(a+b)+1.
To illustrate all concepts introduced in this chapter, we provide a sample VDM

specification taken from [8].

Example 3.1

This example specifies the requirements for a simple database system to be used by
a marriage bureau. The bureau wishes to record in the database the clients who wish
to be introduced to suitable partners, and those ex-clients who have been suitably

accommodated.

25

The VDM specification of the system is given below. The state of the system is
defined using two global variables. UNMARRIED represents the set of unmarried
people in the database, while MARRIED represents the set of successfully matched
clients. ‘T here are three operations in the specification. The REGISTER operation
is used when a new client is to be registered. The precondition states that the new
person must not be already registered as a member of either set of clients. The post-
condition defines the effect of the operation in terms of an update to the state, in
which the set of unmarried clients will be increased by unioning it with the singleton
set containing the new client. The MARRY operation is used when two clients are
successfully matched. The precondition states both partners must be members of the
set of unmarried clients. The postcondition defines the required state change to be
the addition of the couple to the married set and their removal from the unmarried
set of clients. A let clause is used to clarify the postcondition for the human reader.
The INIT operation is used to initialize the system. Its precondition is always TRUFE
so by convention it is omitted. The postcondition gives the effect of the operation as

initializing both sets of clients to be empty.

State:: UNMARRIED :Person-set
MARRIED :Person-set

Person= /*some suitable representation*/

REGISTER(P: Person)

ext UNMARRIED :wr Person-set /* wr represents read and write */
MARRIED : rd Person-set /* rd represents read only */

pre p ¢ unmarried A p ¢ married

post unmarried’ = unmarried U {p}

MARRY (M: Person, W: Person)
ext UNMARRIED :wr Person-set
MARRIED : wr Person-set

26

pre m € unmarried A w € unmarried
post let couple = {m. w} in
married’ = marricd U couple A

wnmarried’ = unmarricd — couple

tel

INIT()

ext UNMARRIED :wr Person-set
MARRIED : wr Person-set

post unmarried’ = {} A marricd’ = {}

It is clear that no individual person should be present in both the set of unmat-
ried clients and the set of married clients. This invariant condition is documented as

follows.

R & . .
inv-State = unmarried N married = { }

3.3 Using VDM in System Development

VDM methodology provides more than just a specification language. Besides formal
notatjons, it provides rules and procedures to be followed in the various stages of
system development. VDM encourages a layered top-down development of systems,
by supporting abstract data type at the uppermost levels of description. These ab-
stract data types capture the system concepts at the highest level in order to explain
the functionality of the system. Mathematical abstractions such as sets, lists and
finite mapping are used at this level and operations and functions are specified by
means of pre- and post- conditions. Development of the system towards design and
implementation is achieved by refining the abstract data structures through various
levels and adding more implementation detail at cach stage of refinement.

VDM describes three dimensions of refinement[15): date reification, which corre-

27

sponds to a choice of data representation; implementation, which corresponds to a
choice of algorithm; and operation decomposition, which corresponds to the imple-
mentation of operation by smaller ones or by program statements. We consider only
the “reification™ in this thesis. At each step of refinement, new operation specifica-
tions have to be formulated in terms of the reified data structures to correspond to
those at the more abstract level.

The use of “retrieve functions” which map the new data structure onto the old
abstract one at cach stage makes it possible to verify that the reified specifications
correctly model the effects of the abstract specification that they are intended to
represent. More specifically, to show that the new representation is sufficient and
consistent with respect to the previous specification, we are interested in adequacy:
everything representable at the abstract level must be representable at the concrete;
and in uniqucness: no concrete representation can have more than one abstract repre-
sentation. Obviously it is necessary at the final step that the code produced correctly

fulfills the least abstract specification.

Example 3.2

This example explains the reification process discussed in this section. The specifi-
cation is taken from [1] which specifies a banking system. In the system, all passbook
entries are kept in a folder, called a ledger. Each passbook consists of an account
number, an account type, the name of the customer and the balance. To simplify the

system, we assume that:

o No two customers have the same name.
¢ Account numbers are unique.

e There are several types of accounts maintained in the system; however, every

customer is restricted to hold only one type of account.

e Each type of account has a pre-defined minimum balance which the account

28

holder has to maintain.
There are four types of transactions provided for the customer:

e OPEN: to open a new account by depositing an amount greater than or equal

to the minimum balance, depending on the type of account to be opened.
o DEPOSIT: to deposit an amount into account already opened.
e WITHDRAW: to withdraw an amount from an existing account.

e CLOSE: to close an existing account and withdraw the balance amount.

The most abstract level VDM specification is listed helow. And here we only show

one operation for opening a new account.

State:

LEDGER: Ledger-leaves

Ledger-leaves = Accno — Passhook

Accno = N,

Passbook :: ACC-NUM : N,
ACC-TYPE : Typecode
ACC-NAME : Namestring
BALANCE : M

MIN-BALS : Mini-balance

Mini-balance = Typecode — Minimum

Minimum :: ACC-TYP : Typecode
BAL-MINI: M,

BANK-BALANCE : N,

TAKEN-OUT : N

PUT-IN : N

/* “Typecode™ and “Namestring” are to be defined at the lower lovel “/

29

OPEN(NEWNAME: Namestring: ACCOUNT: Typecode; AMOUNT: A})
/7 to open a new account of type “ACCOUNT” under the name “NEWNAME" by
depositing an amount “AMOUNT”*/
ext

LEDGER : wr Ledger-leaves

MIN-BALS : rd Mini-balances

BANK-BALANCE : wr N,

PUT-IN : wr N,
pre

/* NEWNAME should not exist in LEDGER before */

(VY ps € rng ledger)(newname # ACC-NAME(ps))

/* AMOUNT > minimum amount required to open an account of type “AC-
COUNT™™/

A account € dom min-bals

A let minrec = min-bals(account) in

amount > BAL-MINI(minrec)
tel

post

/* create a new account and add this into LEDGER */

let new-acno = get-new-acno() in

let new-passbook = mk_Passbook(new-acno,account,newname, amount) in
ledger' = ledger t [new-acno — new-passbook]
tel
A bank-balance’ = bank-balance + amount
A put-in’ = put-in + amount

tel

get-new-acno(): — N

30

To reiine the specification, the data type Ledger-leaves is reified. We use two
arrays to represent the abstract type map which is from Aeceno to Passbook. The

retrieval function is :

retr: (array[l..N] of Accno. array[1..N] of Passbook) — (Accno — Passbook)

retr(Ay. A2) £ []i] = Aui)/1 < i < N]
The following is the refined specification.

State::

LEDGER,: array [1..N] of Accno

LEDGER;: array [1..N] of Passhook

Accno = N

Passbook :: ACC-NUM : N
ACC-TYPE : Typecode
ACC-NAME : Namestring
BALANCE : N,

MIN-BALS : Mini-balance

Mini-balance = Typecode — Minimum

Minimum :: ACC-TYP : Typecode
BAL-MINI: M,

BANK-BALANCE: VN,

TAKEN-OUT : N,

PUT-IN : N

OPEN(NEWNAME: Namestring; ACCOUNT: Typecode; AMOUNT: Ny)
/* to open a new account of type “ACCOUNT” under the name “NEWNAME” by
depositing an amount “AMQUNT”*/

31

ext
LEDGER, : wr array [1..N] of Accno
LEDGER, : wr array [1..N] of Passhook
MIN-BALS : rd Mini-balances
BANK-BALANCE : wr N,
PUT-IN : wr N,
pre
/” NEWNAME should not exist in LEDGER before */
(Vps € rug(retr(ledgery, ledger,)))(newname # ACC-NAME(ps))
/* AMOUNT > minimum amount required to open an account of type “AC-
COUNT"*/
A account € dom min-bals
A let minrec = min-bals(account) in
amount > BAL-MINI(minrec)
tel
post
/* create a new account and add this into LEDGER */
let new-acno = get-new-acno() in
let new-passbook=mk_Passbook(new-acno,account,newname, amount) in
retr(ledger], ledgery) = retr(ledger,, ledger;)t[new-acno—new-passbook]
tel
tel A
bank-balance’ = bank-balance + amount A

put-in® = put-in + amount
get-new-acno(): — N,

Since the data type is reified, the pre- and postconditions are modified to match the
new data type. It is obvious that new representation is more specified and yet remains

consistent with respect to the old one. So we believe that these two specifications

32

are equivalent. that is, they specify the same system. We will bring this example to
Chapter 4 and Chapter 5 where two corresponding designs and implementations will

be presenterl.

3.4 The Choice of VDM

VDM specification has been evolving for the last several years. A standard for VDM
semantics is currently being defined by a joint committee of the International Stan-
dards Organization, 1SO SC22/WGI19-VDM, and the British Standards Institute
IST/5/50. A reference guild to the standard notation [13] which is the notation
used in this thesis has been published in advance of the standard.

VDM is a model-based technique which is close to the user’s way of conceiving
the problem. A variable type in the model is an abstraction of a physical object. We
can extract classes of objects from variable types. When an operation in VDM is
specified, we focus on only a portion of the state space affected by the operation. The
related step in object-oriented paradigm is to identify all functions affecting an object
in one class. These facts makes it possible to derive an object-oriented design from
VDM specification. As we will also see from the following chapters, VDM specifica-
tion provides not only notations to support data abstraction and system modelling,
but also clues to implementations. As we mentioned above, the development of a
system using VDM consists of a number of refinement steps from specification to im-
plementation. The transformation methodology from VDM to OOD presented in (2]
is suitable for all refinement stages. Some methodologies [12] on the transformation of
a semi-formal software description to a VDM specification is under the development.
Moreover, automatic proof checking systems exist to verify a VDM specification. The
Mural System [24] is one of them. We will give a more detailed introduction to the

Mural System in the last chapter.

33

Chapter 4

From Functional Specification to
Object-Oriented Design

This chapter briefly reviews the methodology for deriving an object-oriented design
from functional specification of requirements {2]. Also we present the system archi-

tecture for GAP which is a tool built to implement the methodology.

4.1 Methodology

In VDM specifications, a variable and its type are abstractions of the physical object.
The relationship between a variable and its type is the same as that of an object
and its class in object-oriented design. However in object-oriented design, a class is
more than merely an abstraction of physical object. The access to data of a class is
restricted to a specific set of functions known as member functions. Member functions
should be contained as part of a class declaration. At specification stage, when an
operation is specified, we focus on only a portion of state space affecting one or
more objects in the problem domain. The related step in object-oriented paradigm
is to identify all member functions affecting an object. To derive an object-oriented
design from a given VDM specification, the methodology tries to link classes, their
attributes and member functions in design with data types, variables and operations
in the specification. More specifically, there are four stages in this transformation.

These are:

34

e identifying the classes in the design.
e identifying the attributes within each class.
o deriving member functions for each class.

¢ deriving inheritance and part-of relationship between classes.

4.1.1 Identifying Classes

Since the state of the system in VDM is represented by a set of global variables, these
variables form the structural components (i.c., the objects) of the object-oriented
design. Hence, the first task is to transform the data types defined in the specification
into classes in the object-oriented design.

For the built-in types Z, N, R, B, char in VDM, we may assume that there ox-
ists associated built-in types in the object-oriented language chosen for implementa-
tion. Q, N} are considered to be primitive classes of the object-oriented environment.
Hence, for all these basic types separate classes in the object-oriented environment
need not be created. Every other data type in the state space that model an entity
can be mapped into a unique class in the design.

For each simple type, a unique class is created in the design. For cach composite
type in the specification, a new class is created in the design corresponding to the
composite type, and a unique class is created for each component type of this com-
posite type, making sure that redundant classes are not created and the component
type is not basic types. This way, the class corresponding to a composite type will
have data member whose type is another class, thus creating the part-of relationship

between classes.

Example 4.1

Consider a VDM state space specification, in which a composite type called “Cir-

cle” is defined as

Circle :: CENTRE : Point
RADIUS: R
PLANE-OF-CIRCLE : Plane

This VDM specification represents a 3-D circle by three components ~ centre,
radius and plane in which the circle lies.

In the design, there is a class corresponding to “Circle”; in addition, classes corre-
sponding to “Point” and “Plane” are also created. We do not create a corresponding
class for “R”, since it is considered to be a basic type. The syntax for classes is given
in Appendix A.

Having generated classes for all data types in the specification, a root class is
generated to include all other classes which corresponds to the state of the system in

the specification.

4.1.2 Identifying Attributes of Classes

Fach global variable in the specification becomes the attributes of the root class, thus
ensuring the consistency between the root class and the state of the system in the
specification. Each composite type in the specification is defined by a set of variables
called fields and their associated types. These variables become the attributes of the
class corresponding to the composite type. The process is repeated for every compos-

ite type in the specification.

Example 4.2

Consider the VDM specification fragment below.
LEDGER : Ledger-leaves
Ledger-leaves = Accno — Passbook
Accno = N,
Passbook :: ACC-NUM : N,
ACC-TYPE : Typecode

36

ACC-NAME : String
BALANCE : N,

The classes and the attributes within cach class obtained by the transformation
are :
class Bank-System (*Root Class*)
attributes
LEDGER :Ledger-leaves

class Ledger-leaves

attributes

class Passbook

attributes
ACC-NUM : M,
ACC-TYPE : Typecode
ACC-NAME : String
BALANCE : M

class Typecode

attributes

class String

attributes

LEDGER is a global variable which becomes one attribute of the root class. All
field variables in the composite type Passbook, ACC-NUM, ACC-TYPE, ACC-NAME
and BALANCE are transformed to the corresponding class Passbook. Attributes for
the class Ledger-leaves, Typecode and String are not dealt with in the gpecification

and are introduced in either detailed design or the implementation.

37

4.1.3 Deriving Member Functions

Since member functions of an object define the behavior of the object similar to
the way that operations in the specification define the behavior of the state space
entities, there exists a correspondence between the operations in the specification
and the member functions in the design. The process of deriving these member
functions of objects from VDM specifications is explained in [2]. A brief summary of

the derivation of member functions is given below:

An operation Op in the specification will be transformed into a member
function in a class C (and hence assigned as a member function of C) if one
or more of the variables accessed in this operation are already transformed
as attributes of C. The justification of this process comes from the fact
that the set of variables accessed in Op determines the portion of the state
space affected by Op. Consequently, their mapping into attributes of C
confirms that this portion of the state space corresponds to an isolated

object belonging to C.

Since the variables might have been transformed into several classes, the
same operation might be assigned as member functions of all these classes
with the same name and parameters. Renaming of these member func-
tions, if necessary, will be done later depending on the semantics of the

operation Op.

Example 4.3

Consider the following VDM operation in Appendix B.
ADD-BOOK(T: String; AU: String)
ext LIB-SYSTEM: wr Library
post
(Jen € CNtype)
((Vb € COLLFCTION(lib-system))

38

((CALLNUMBER(D) # cn) A

(let new-book = mk_Lib-books(t. au. cn, “inshel{™) in
COLLECTION(lib-system)’ = COLLECTION(lib-system)U {new-book)

tel)))

Since the operation ADD-BOOK accesses variables COLLECTION and CALL-
NUMBER which are transformed to attributes in class Libraryand Lib-books respec-
tively, we create one member function in each class corresponding to this operation.
Later the member function in class Lib-books may be renamed as “new-book™ which
returns a new call number. The information for this redefinition of function names is
available from the corresponding pre- or post-condition clause in operation. And the
redefinition can be completed through the user interaction.

The type invariants and state invariants of the VDM specification can be trans-
formed into invariants of classes in the design by a procedure which is similar to the
derivation procedure for member functions. Invariants are important in providing

semantic information to derive the relationships among the classes.

4.1.4 Deriving the Relationships among the Classes

The logical relationships between the pre- and post-conditions of an operation and
between the operations themselves give rise to the relationships between the objects.
The data type invariants and state space invariants in the specification will be helpful
in identifying such relationships. The method explained in [2] can be briefly stated as
“weakening the pre- and strengthening the post-” conditions. The class inheritance
relationship is determined by a thorough analysis of such logical relationships among

the stated pre- and postconditions in VDM specification.

Example 4.4

This example provides two object-oriented designs which are derived from speci-

fications in Example 3.2 using the methodology presented in this section.

39

OOD I{derived from the abstract VDM specification):

class banking-system]
attributes
LEDGER : Ledger-leaves;
MIN-BALS : Mini-balances;
BANK-BALANCE : Ny;
TAKEN-OUT : Ny;
PUT-IM : Ny;
operations
OPEN(NEWNAME: Namestring; ACCOUNT: Typecode; AMOUNT: N,)

class Ledger-leaves

attributes

class Passbook
attributes
ACC-NUM : Ny;
ACC-TYPE : Typecode;
ACC-NAME : Namestring;
BALANCE : Ny
operations
GET-ACC-NAME() : Namestring /* redefined from open */

class Typecode

attributes

class Namestring

attributes

40

class Mini-balances

attributes

class Minimum
attributes
ACC-TYP : Typecode:
BAL-MINT : N;
operations
GET-BAL-MINI() : .V} /* redefined from open */

OOD II(derived from the refined VDM specification):

class banking-system?

attributes
LEDGER, : array [1..N] of Accno;
LEDGER, : array [1..N] of Passhook;
MIN-BALS : Mini-balances;
BANK-BALANCE : MNy;
TAKEN-OUT : Np;
PUT-IN : Ny;

operations

OPEN(NEWNAME: Namestring; ACCOUNT: Typecode; AMOUNT: N;)

class Passbook

attributes
ACC-NUM : Nj;
ACC-TYPE : Typecode;
ACC-NAME : Namestring;
BALANCE : V;

operations

41

GET-ACC-NAME() : Namestring /* redefined from open */

class Typecode

attributes

class Namestring

attributes

class Mini-balances

attributes

class Minimum
attributes
ACC-TYP : Typecode;
BAL-MINI: Ny;
operations
GET-BAL-MINI() : Ny /* redefined from open */

The number of classes in these two design is different. The attributes and their
types in class banking-system! and bank-system? are quite different. It is difficult to
see that these two designs are equivalent by just checking them. But from the fact
that they are derived from two equivalent specifications and the correctness of the

transformation methodology we believe that these two designs are equivalent.

The design obtained using the methodology discussed in this section can be im-
proved further in later stages through user interaction. In particular, during the user

interaction:

¢ The names of member functions can be redefined so as to remain meaningful

in the contexts. The information for this redefinition is available from the

42

corresponding predicate clause in VDM operation.
¢ Redundant member functions within a class must be deleted from the class.

¢ One member function may he split to two or more to implement the correspond

ing VDM clause.

Some of the member functions within one class may be merged.

Some new member functions may be created to implement the existing member

function.

A detailed discussion about some of issues listed above will be given in the next

chapter.

4.2 System Architecture for GAP

GAP(19] is one of the system tools which was built to implement the transformation
method discussed in the previous section. GAP serves two purposes: first as a syntar
parserand partial semantics checker for the underlying VDM specification and second
as an automatic transformer to generate classes and their member functions in the
design. A complete description of GAP and its functionalities are given in [19]. The
GAP architecture is shown in Figure 4.1.

The syntax checker is composed of a scanner and a parser. The scanner reads the
input of VDM source specification and generates internal tokens to feed the parser.,
The parser checks the input of specification for syntactic correctness, recognizes the
variables, operators and key words. An important task of the parser is the generation
of the symbol table.

The transformer consists of the class generator and operation handler.

The class generator takes information from symbol table and generates classes.
Attributes within each class and relationships between classes are also created by the
class generator.

The operation handler can be divided further into three functional parts:

43

Input:
| VDM Specifications

Y

Scanner

‘b | MURAL

Syntax

Checker

Y

Class Generator

Clause

Separator

'

Member Function

Generator

&

Operation
Implementer

Operation

Handler

V Output:
Object-Oriented Design

Figure 4.1: System Architecture of GAP

44

Parser e e m - - I

Knowledge
Base

e the clause separator.
e the member function generator. and
e the operation implementor.

The clause separator splits the pre- and postconditions into clauses according to
the syntactic analysis. The men.ber function gencrator categorizes cach clause into
different classes according to the variables they affect and generates member functions
corresponding to each clause. It also reorganizes member functions generated so far
to eliminate some duplication. The operation implementor determines the primary
member functions for the VDM specified clauses. The primary member function is the
function which will perform the operation specified by the clause. The implementation
of all primary member functions for a VDM operation implys the implementation of
the operation.

The input to the system is a VDM specification file.

There are four output files generated for each VDM specification input.

e Listing file(with extension .Ist): The original source of input is listed with line
numbers. At the end of the file, there is a summary of errors. This file is uscful

for error correction.

e Symbol table file(with extension .tab): This file saves the symbol table huilt by

GAP for the underlying source input.

e Object-oriented design file(with extension .0od): The object-oriented design for

the underlying VDM specification.

e Member function file(with extension .mf): Each line in the file displays a mem-

ber function name in the design and its corresponding predicate clause in VDM.

The third file is the most important one which shows the class information in the

design. For each class, it provides :

e class name

e inheritance and part_of relationship
o attributes and their types
o suggested member funetions and their parameters

The syntax for the OOD file is shown in the Appendix A. Example 4.5 lists some
pieces taken from Appendix B to show the layout of QOD.

Example 4.5

class Lib-books

part_of Library

attributes
TITLE: String;
AUTHORS: String;
CALLNUMBER: CNtype;
BSTATUS: Book-status:

operations
INITIALIZE-BOOK()
NEW-BOOK() : CNtype

class Borrowers

part_of Library

attributes
IDNUMBER: IDtype
NAME: String
USTATUS: String

operations
INITIALIZE-USER()
NEW-USER() : IDtype

16

The last file reveals the possible relationship between the suggested member func-
tions and their corresponding predicate clauses in VDM. The information in the file
explains the semantics of each member function which will become important during
the implementation of member functions. Through the vser interaction which will he
discussed in Chapter 6, the developer can access both the object-oriented design file
and the member function file. Information in these two files is essential in the further

development of the underlying system.

47

Chapter 5

Methodology for Transforming
OOD to C++

Issues discussed in the previous chapters are language independent. To implement
the design, a specific language is needed. We chose C++, since it provides sufficient
features to implement object-oriented concepts such as abstract data type, inheritance,
polymorphism and dynamic binding. An implementation contains much more detail
than its corresponding design. and consequently may require information that is not
stated in the design document. This additional information can be obtained through
user interaction. In our discussions below, we indicate the particular points where

additional information may become necessary for the implementation.

5.1 Classes

There are two interpretations of the class concept in object-oriented paradigm(35).
As we have discussed in Chapter 2, a class in C++ is considered as a user defined
type. ldeally, a user-defined type should not differ from built-in types in the way it
is used, except in the way it is created. In VDM/C++ environment, we have built
general classes set, list and map. A detailed discussion about these classes will be
given in the next section. If a class in the design represents a set, list or map, it
is unnecessary to convert it to a C++ class. For example, consider the OQOD class
Loanmap which is a map from IDtype to Duemap in Library Management System in

Appendix B. Loanmap can be defined as typedef map<IDtype, Duemap> Loanmap

48

| OOD Attributes types | C++ data member types]

Z int
N unsigned int
R tloat
Char char
B boolean
Q Rational
set of type set<type>
list of type list<type>
map from dom to ran map<dom, ran>
N unchanged
class name unchanged
user defined type unchanged

Table 5.1: Type processing

in C++ which is an instantiation of the general class map. Every other class in the

design is mapped into a C++ class with the same name.

5.2 Attributes and their Types

All attributes in a class are transformed into private data members in the associated
C++ class. Some of them may become public during the implementation of member
functions through user interaction. Most of them will remain in the private part of
the class.

Table 5.1 shows how the types of attributes are processed.

The type boolean in OOD can be defined as an enumeration type in C++ as given
below:

typedef enum {false, true} boolean;
Actually, typedefis used to declare a boolean type as an equivalent type to integer

type in some C++ environment, and false is defined as zcro and true is defined as

one. C++ treats an enumeration type as an integer type. In the above enumeration

49

definition, false and true also be assumed the value zero and one respectively. The
only difference is that if a variable is declared as an enumeration type, it’s value can
not be any integer other than zero and one.

Rational should be a defined class in most ('+4 environment.

It is easy to note that the Record and Union types in VDM will not exist in
the design according to the transformation methodology introduced in the previous
chapter.

Another possible implementation of data types N and N, is that we create two
classes ClassN and ClassN1. The only difference between these two classes is that
objects of class ClassNI can not be assigned the value zero. Other features and
operations are identical. So, we can define ClassN1 as a derived class from base
class ClassN. The non-zero restriction can be ensured by initialization and member
function implementations. A member function can be created to check this invariant
condition.

Since set, list and map are defined as generic types in O0OD, the C++ template
is used to represent them. Thus, a set of integers can be defined as set<int> and
map<int, char> defines a map with its domain type integer and range type char. All
possible operations on these types are provided by their member function. Listing
5.1, 5.2, 5.3 given below, show C++ interfaces in VDM/C++ for set, list and map
types in VDM. The corresponding operations in VDM can be found in Tables 3.2,
3.3 and 3.4.

We remark that there must be a 1-1 correspondence between VDM operations
and the corresponding class interface member functions. The reason is that VDM
clauses will be used as the definition for the implementation of corresponding mem-
ber functions in C++4 in later stage. VDM operations for set, list and map appear
frequently in these clauses. If their corresponding member functions are available, the
implementation of member functions is greatly simplified. Some of the C++ library

classes may not have this 1-1 property and hence may be inadequate.

> Listing 5.1 < Interface of class template set

50

template<class type>
class snode {
type * obj;
snode* next;
public:
snode(type * o, snode *n) : obj(o), next(n) {};
friend class set<type>;
3

template<class type>

class set {
snode<type>* head;

public:
set() : head(0) {}//initialize the set to be empty
int card(); //return the cardinality
boolean mbship(type); //check the membership
set uni(set); //return the unio.. of two sets
set inters(set); //return the intersection of two sets
set diff(set); //return the difference of two sets
boolean subset(set); //check the subset relationship
boolean psubset(set); //check the proper subset relationship
boolean equal(set); //check the equality
boolean nequal(set);//check the inequality
set<int> isubset(int, int);

//subset of integers from the first to the second

s
> Listing 5.2 « Interface of class template list

template<class type>

51

class lnode {
type * obj;
lnode * next;
public:
lnode(type * o, lnode *n) : obj(o), next(n) {};
friend class list<type>;
}

template<class type>
class list {
private:

Inode<type> *head;

public:
list(): head(0) {} //initialize the list to be empty
int length(); //return the length of the list

list concat(list); //concatenate two lists

type* hd(); //return the head of the list

type*x tail(); //return the tail of the list

type* operator[](int);//return the element in the given position
set<int> inds(); //return the indices of the list

set<type> elems(); //return all elements in the list as a set

type* sublist(int, int);
//return the sublist from the first integer given to
//the second

boolean equal(list); //check the equality

boolean nequal(list);//check the inequality

};

(41}
[S%]

> Listing 5.3 < Interface of class template map

template<class domt, class rant>
class node {
domt * obj1;
rant * obj2;
node * next;
public:
node(domt* o1, rant* 02, node* n) : obj1(o1), obj2(02), next(n) {};
friend class map<domt, rant>;

};

template<class domt, class rant>
class map {
node<domt, rant>* head;
public:
map() : head(0) {} //initialize the map to be empty
set<domt> DomM();
//return a set of domain elements which are in the map
set<rant> RangeM() ;
//return a set of range elements which are in the map

map<rant,domt> ReverseM(); //reverse the map

map munion(map); //map union
map concat(map); //map overriding
map mcomposition(map); //map composition

rant* m(domt) ;
//return the range element for a given domain element
map RestrictBy(set<domt>);

//restrict the map by elements in the set

53

map RestrictTo(set<domt>);

//restrict the map to elements in the set
map RestrictBy(set<rang>);

//restrict the map by elements in the set
map RestrictTo(set<rang>);

//restrict the map to elements in the set

We use a link list to implement the data type set, list and map. The auxiliary
class node represents one element in the type. The implementation details are omitted
here.

For some data types in OOD, there is no detailed definition in VDM, these data

types can only be defined and implemented through user interaction.

5.3 Member functions

Llach member function in the object-oriented design is mapped to a unique member
function in the associated C++ class, with all its parameters transformed and their
types mapped according to the description in Section 5.2. The transformation process
can be automnated; however, user interaction will improve the detailed design. See
Examples 5.1, 5.2, 5.3 and 5.4.

As mentioned carlier, every member function in design is related to one or more
predicate clauses in VDM. The predicate clause is to be thought of as the specification

for the member function.

Example 5.1:

Consider a VDM clause
P=q+r
representing a relation between three points p, q and r. Let p, q and r be mapped

with type point into the data members of the class C in the design. In this case, the

54

clause p = q + r will be transformed into a member function Mf in class C. In order
to implement the member function in C++, the two operations *+" and *=" should

be included in the class Point. if they are not already defined in Point.

Example 5.2:

Consider an operation Return_book to return a borrowed book in a library envi-
ronment (see the example on library management system given in Appendix B). The
pre-condition for this operation might assert that every book returned must actually
belong to the library, loaned to a valid or authorized user of the library and the sta-
tus of the book in the database of the library should indicate that it is loancd, The

predicate clause for such pre-condition is given below:

(3'beCOLLECTION(lib-system))
((CALLNUMBER(b)=cn) A
(BSTATUS(b)="loaned_out™) A

(cn € dom LOANS(lib-system)(id)))

According to the OOD derivation process described in Chapter 4, callnumber and
bstatus are defined as data members of a class Lib_book (the type corresponds to
the book) and there is only one member function for this class. It is clear from the
pre-condition given above that there is a need to match the call number of the book
and its status which are stored as part of the book. Hence, the only member function
in the design must be split into two member functions in the implementation - one
to check whether the call number matches and the other to check the status match.

One possible C++ code is given below:

int same-call-number (int cn)

if (cn = this.callnumber) return 1 else return 0

int status-match-loaned (string stat)

if (stat = “loaned-out™) return 1 else return 0

Example 5.3

See the example in Appendix B where the operation ‘BORROW-BOOK’ in spec-
ification is mapped to one member function in class ‘Borrower’ to implement the
predicate ‘IDNUMBER(u) = id’. During the automatic transformation processes,
either from VDM to OOD or from OOD to C++, it is difficult to create meaning-
ful member function name. The name of the member function can be redefined as
‘Is-Member’ through the user interaction. We claim that the information for this

redefinition is available from the corresponding clause, that is IDNUMBER(u) = id’.

Example 5.4

Referring to the same example in Appendix B. The predicate IDNUMBER(u) =
id” appears in both operation ‘BORROW-BOOK’ and ‘RETURN-BOOK’. There is
a redundancy. All redundant member functions can be merged. Suppose that there
is another member function ‘Is-Not-Member in the class ‘Borrowers’. It is possible

to merge ‘Is-Member’ and ‘Is-Not-Member’ to become a single operation.

Member functions between object-oriented design and C++ are not necessarily
onc-to-one. During the implementation for one member function, we create some
new member functions, merge existing member functions and redefine member func-
tions according to the meaning of the corresponding clause. The implementation of a
member function depends on the semantics of the clause as given in the VDM speci-
fication. In the status matching operation shown in Example 5.2, instead of writing
one member function for every possible status of the book, one could write just two

functions - status-match and return-status which will check the validity of status and

56

return the current status respectively.

5.4 Inheritance

Inheritance relationship between classes can be achicved by the mechanism of ¢lass
derivation in C++4. We show the derivation of inheritance relationship and (‘4

coding through an example.

Example 5.5:

Consider the following VDM specification fragment:

COURSES : Courses-set

Courses i NAME: String
REGISTERED: Student-set

Student :: Grad | Undergrad

Grad 2 ID:N

NAME: String
TAKEN: Course-set
SUPERVISOR: String

Undergrad 2 ID: N
NAME: String
TAKEN: Course-set

A course contains the name of the course and the set of students registered for
the course. A student record contains the id number, name of the student and the
set of courses taken by this student. If the student is a graduate student(grad type),
then the supervisor’s name is also included in the graduate student’s record. The
type Course is left undefined at this stage.

Consider an operation for a student to withdraw from a course. Assume that the

undergraduate students cannot withdraw from a course and a graduate student can

57

do so only with the | ermission of the supervisor. Then the operation specification is
as follows:
WITHDRAW(s: Student; ¢ Courses)
ext COURSES: wr Courses -set
pre
¢ € courses A s € REGISTERED(c) A
s € Undergrad A s € Grad = permitted (s, SUPERVISOR(s))
post
courses' = (courses—{c}) U {mk_Courses (NAME(c), REGISTERED(c)—{s})}

Applying the OOD transformation procedures, we can derive the following object-

oriented design for this example:

class System
attributes

C'OURSES: set of Courses;
operations

WITHDRAW(s: Student; c¢: Course)

class Courses
attributes
NAME: String;
REGISTERED: set of Student;
operations

GET-REGISTERED(): se* of Student /* redefined from withdraw */

class Studeut
attributes
ID: N;

58

NAME: String:
TAKEN: set of Course:
operations

CHECK-TYPL (): B

class Undergrad

inherits Student

class Grad

inherits Student

attributes
SUPERVISOR: String;

/” redefined from *withdraw™ */

The C++ implementation of this design will be a straightforward task which in-

volves the syntactic changes from the OOD notation to that of C+44. Assuming the

class Stringis given and the mapping of N to unsigned int, we get the following ('++

implementation:

class System {
private:
set <Courses> courses;

public:

void withdraw(Student s, Courses c)

class Courses {

private:

String name:

sel< Student > registered,
public:

set <Student > get-registered();

class Student {
private:
unsigned int id;
String name;
sel < Course > taken:
public:

boole an check-type ();

class Undergrad: public Student {

}

class Girad: public Student {
private:

supervisor: String;

Notice that the class Undergrad inherits everything from Student but does not add,
delete or change any of the inherited features. Such an inheritance is of no use. How-
ever, we have included it here to show the transformation. In actual implementation,
the class Undergrad will be modified.

Having transformed into C++. the developer may redefine, split or merge some

of the member functions or add some more data members and/or functions. For

60

example. since all the data members are kept private in this example. it would be
appropriate to add a gef function and a sef function to read and write the data mem-

bers respectively. The refined version of the class Student is given below:

class Student {
private:
unsigned int id
String name
Set <Course> taken
public:
unsigned int get_id();
void set_id(unsigned int):

boolean Is_student () { return 1;}

The function Is_student is redefined from check_type and returns 1 for an under-
grad student. The same function will be once again redefined in Grad to return 0 in

order to distinguish between undergraduate students and graduate students.

Implementation Strategy: Since the derived class will inherit som.~ featwes from it -

base class and the client class may send message to its component class, we adopt. the

following strategies in the implementation of C++ classes:

e If there is an inheritance relationship between classes A and B, where A is a

base class and B is a derived class, we implement class A before class B.

e If class A is a component of class B, that is, there is a part_of relationship

between A and B. member functions in class A should be implemented first.

Only partial automation is possible in the transformation from object-oriented

design into C++ programs. At several points, user interaction is required. The user

61

interface is discussed in the next chapter.

Example 5.6

As the last example in this chapter, we present two C++ implementations corre-

sponding to the two designs shown in Example 4.4.

Implementation I (("++ classes derived from O0D 1):

class banking-system1 {
private:
map<Accno, Passhook> LEDGER;
map<Typecode, Minimum> MIN-BALS;
Ny BANK-BALANCE;
Ny TAKEN-OUT;
N PUT-IN;
public:
OPEN(Namestring NEWNAME. Typecode ACCOUNT, Ny AMOUNT)

class Passbook{
private:
Ny ACC-NUM;
Typecode ACC-TYPE;
Namestring ACC-NAME;
Ny BALANCE;
public:
Namestring GET_ACC_NAME();

class Typecode{

private:

}

class Namestring{

private:

}

class Minimum{
private:
Typecode ACC-TYP;
N; BAL-MINT;
public:
N1 GET_BAL_MINI()

Implementation IT (C++ classes derived from OOD I1):

class banking-system?2 {
private:
Accno LEDGER,[N];
Passbook LEDGER(N];
map<Typecoude, Minimum> MIN-BALS;
Ny BANK-BALANCE;
N, TAKEN-OUT;
N, PUT-IN;
public:
OPEN(Namestring NEWNAME, Typecode ACCOUNT, N; AMOUNT)

63

class Passbook{
private:
Ny ACC-NUNL
‘Typecode ACCTYPLG
Namestring ACC-NAME;
Ny BALANCE;
public:
Namestring GET-ACC-NAME();

class Typecode{
private:

}

class Namestring{
private:

}

class Minimum{
private:
Typecode ACC-TYP;
Ny BAL-MINI;
public:
Ny GET-BAL-MINI();

The data members and their types within classes banking-system! and banking-

system2 are different. These differences mandate different algorithms for the imple-
mentation of the member function OPEN. So the final implementations are quite

different. However, we believe that these two implementations are equivalent from

64

the fact that the original VDM specifications are equivalent(one is a refinement of
another) and the transformation methodologies produce equivalent designs and im-
plementations.

From Example 3.2, Example 1.1 and Example 5.6 we conclude the following;:

o Using methodologies presented in this thesis we can get a series of equivalent
OODs and C++ implementations from equivalent specifications. See Figure
5.1.

e The methodologies presented in this thesis not only provide a way to derive
OOD and then C4+ classes from VDM specification but also reveal equivalent

relationship among different object-oriented designs and implementations.
o The methodologies are suitable for different levels of VDM specification.

o If the methodologies are applied to higher level specification, the developer has

more choice for data structures and algorithms in the implementation stage.

VDM (0]0)) C++

e Methodology 1 Methodology 2
Specification 1 ———208Y L OQD | 008y £ C++ 1

Reification

\//

Specification 2—cthodology 1_

Reification

'}
D2 Melhodologyg. C'H' o)
V

N o

Specification ncthedology 1 o Methodology2 = 4 1y
Equivalent Designs Equivalent implementations

Methodology! : From VDM specification to OOD

Mecthodology2 : From OOD to C++ classes

Figure 5.1: Equivalent Designs and Classes

66

Chapter 6

User Interface Design

As mentioned in the previous chapters, human interaction is necessary at some points
in the development of soltware systems. A window-based interactive interface is built
to support user interaction between the developer and the systenm. The goal of wser
interface design is to provide the user an interactive interface through which the
developer can provide uselul knowledge to improve the design durving the transfor-
mation, grasp all necessary information, readjust the specification if necessary and

finally generate code for the member functions.

6.1 The Significant Aspects of Design Issues

The most fundamental principle in user interface design is that the interface must
be designed to suit the needs and abilities of the individual nsers of the system[36].
The users of our system are software developers with some familiarity with VM
specification, OOD and C++ programming. The important features in the design
of user interface in our application are : 1. Dilferent software components, such as
specification, design and code that are being developed, can be viewed individually or
simultancously; 2. Multiple windows support the specilic needs of the user; 3. Mul
tiple windows provide good system interaction. That is, switching from one window
to another does not. necessarily mean the complete loss of information generated on
the first window.

The user can visualize the following information throngh several windows:

67

o Anoverview of the software system (hierarchy graph) which is under the devel-

opment,

The relationship (inheritance and part_of) among the classes derived.

Member functions and their corresponding operation specification clauses.

VDM state space.

C++ programs.

A discussion of detailed design principles of user interface systems is outside the
scope of this thesis. Interested readers can refer to [30] for more information. The
design principles may often conflict with one another. For example, increasing ease
ol use might require sacrificing product compatibility across releases. Offering max-
inum user control may require sacrificing ease of learning. Simplicity may require
decrcasing power and case of use. Making these trade-off intelligently requires a thor-
ough understanding of the intended user population. Qur design efforts focused on

the following aspects :

Ease of Learning and Ease of Use Menu buttons and scrolled lists are two dia-
log styles mainly used within windows in the system. The major advantage of
these two dialog styles are case of learning and remembering and simplicity of
input. Well-designed menu buttons and scrolled lists make the system easy to
learn because they make both the semantics and syntar of the system explicit.
That is. they make clear both what can be done (semantics) and how to do
it (syntax). The learning burden is decreased and the need for manuals and
training programs is reduced. Moreover, since menu and scrolled lists interface
are potentially self-explanatory, little human memory is required. It is unneces-
sary to memorize and retain semantic or syntactic knowledge. For example, as
shown in Figure 6.2, the labels on the menu buttons of the main window explain
the functionalities of the system. The users can choose a specific function by

clicking the associated button without learning and remembering of any specific

68

HELPHWmdow

: ,Exqu I'

i !hf
f

2 :: H,.a &i“ﬁr !'5ﬁ’ oy

4 ? ;‘!M!i : lt‘i :;E"‘]:q Mo b
iy

.,
1
l;gamu xl-,,, itk i ’“,;, E} [
b . ‘" i "! i
i ,x|’tl‘;xxl"‘,"d ;

“ﬁ‘* i L:‘ll‘] *l } ﬂg ’
ik xwﬁ uﬂp Iaﬁ%ﬁ e a(h .u ok
emb 5 hf *"

i
i
H
}!u. » ,.n; aul by 1, m;l‘ !’“lj j‘ Y gwllmﬁqm‘l ‘f‘ i E'L' luﬂ‘

e 81 !
.},ix“ujﬂll ;‘ :

ilﬁgﬂ;“,;\ ﬂ‘mﬁ'ﬁ*ﬁh i lﬁi

s A

] i l)i*‘s“m,ixv -vmhx!s 1
P -;i! s niu 5'}1”,!‘.,1,?‘,,," e 4 e h, M “,! iﬁd ! i A I ’ b
lx iJm’ﬁ«EM‘-u .qlhhlh i Y B g . i i UF el i e

il y Y " " (I

1 r;hh!iha P.u‘fm‘w‘ix ; lﬁ%ﬁﬂmmhmhm‘lhgj mm i e O el bt ey]["” !‘ﬂl-llﬁlx’“'f il
wmwmmmummmwmmmxmnmmmmmmmmmxwwm iting i ifl i
el o e A L
P TR 1, Ay G B PR T B mnmumummmmmumnm o A e

Figure 6.1: On-line help message

semantics or syntax. Furthermore, there is a help button in some windows to
. . - . .

provide the on-line help message. The help message presents a detailed deserip-

tion of what functionalities the window has and how to use these functionalities.

Figure 6.1 shows the help message for the main window.

Consistency There are two kinds of consistency @ the consistency within the systemn
and the consistency across different systems. In our system, some conventions
are established for window design and are applied consistently on all windows.
For example, window titles, menu buttons and scrollbar ete. always appear in
the same location in the window. Colors are used in a consistent way, There is
a specific color for any specific window and error message is always displayed

in red. All message is consistent in grammatical style. For example, a noun

69

is used for each menu button. The editor window is exactly the same as the
Emacs window under X Window system to make our system to be consistent

with other systems.

Familiarity Concepts and terminology that the user is already familiar with are
incorporated into the interface, such as some menu button names, class, member
Junction cte. "The hierarchy graph displayed in the main window is also familiar
with most of the users. The graph is helpful for the developer to obtain an

overall understanding of the system modules which is under development.

Control All messages are positive, polite and concise to make the user feel a sense
of mastery and control over the system. Instead of saying “Invalid file name”,
we indicate “the file can not be found”. The former sound like reprimands from
the computer. The latter impart more a sense that the computer is a willing
slave with limited abilities. User prefer to fecl a sense of mastery and control

over any tool at their disposal, and computer is no exception.

Simplicity Some default values are set to simplify the system input. In transforma-
tion window, the current directory is the default value for directory. If the file
name is under the current directory, the user can simply indicate a file name

other than the whole path.

Protection There is always a notice for the user to confirm some dangerous actions,

such as exit of the system.

6.2 Functionality of Windows

The main window of the system is shown in Figure 6.2, Given a VDM Specifica-
tion, we can transforn it to object-oriented design and then to the C++ header file
through the transformation window. A specific OOD file can be loaded from the load
window to implement. As soon as a file is loaded, its hierarchy graph is displayed

in the main window. From the hierarchy graph, the developer can obtain an overall

70

S A tann\anidion
P N

%}'

g o
5 ¥

)

-3 WA S
SoadTs

iyt

r ey e -

N R BAYL

Figure 6.2: Main Window

understanding of the system. We implement the whole system by the impleenta
tion of individual member functions within each class. At this stage, the developer
has sufficient information to decide which class to implement curvently. A current
class and then a current member function can be set to implement, through the elass
and member function window respectively. The editor window can be used 1o edil
the code of current member function. The VDM state window is helpful for further
definition of data types in C4++ header file. The vser can open a specifie window
by using the menu buttons. Figure 6.3 to Figure 6.7 display all sub-windows in the

system,

71

.mw i o TR A
dq,o,ilhﬁ ﬂm, ,}u v il s

P w,hufd i‘!l
‘ “1 o} It 7, i L R
! w a‘) ;.::x!mm
(1l

g 1 Ln[_r
pl' L‘. b KILT: - 13 g

.. n,

B

% !)'(
qm,h mh[*g{:%.;:;ﬂs
Hﬁ i “‘.“!?*:‘QE%"“
,wféng,gr,ﬁ’
» b y

s("‘il‘l'

N‘(Il I F l i
1“‘!‘ i ru"lHI““ o “"b] Mwl‘»hx s
“l“ !| t ‘1 |"Lq”r‘ -k(‘lk W 'I""L\’hl x.i-n' I’(i, dhi L;"‘! :_'%(I'Lv i

It
iy i it 4 o i

i

ilz. .l]’!u::;ﬁ;ll;lxurﬁ!x,‘"l:l“ ikt ;i.]‘l;lg‘@
it 1] St)

it |ih .:pwmj:xk‘)f{u,‘ q‘l’{x '!| ﬁi‘iﬁf i ‘~

it ':nc:u ||'h‘. rim
’u
; x.'a,(.: W e |
1,‘|u|1x x’u,ﬂ{'m. (R u afly M i unp—u- n‘h;;d ' !hﬁm*;ﬂwy
‘ by 1 g W aiga B ‘!j‘
bl s it 1 G SR
i 1,,,.,..,.,r, S g e e g u_n " m ,mlm’r

o Bt e 4 L g SRR

g 'J!N
g] i r'wm i 'Epln o hrl!! AR

’s... xlx{u! nu.
};.‘ Ut ,i ,& B
|-).v H # : ke
‘: 7 Il" 1-“; e lg L 4 fieey
R L
mlh-m, ‘daim;; ,;,i‘nﬁg:- M“- v,),w‘pux. xmu ; i ; EL“' g}n,r ‘, it
u]lnlx A ‘ qﬁ ,é i
u iy E‘qj!l i 1 1 m
! .Munml(xl‘.m*uw.ﬁl,n AR &{h nw’,ﬂw u“!
s

W L‘;!lﬂl:(f fhh“m o 1 |m y" 8 vl .;, m‘un

.)l.] W M i
!""""‘ At ." - ‘mll) {i e L
; it Bt
‘. I,'i:'l!ml’uﬂ) 3 ‘mn N .IQ‘EI:;Lx‘[xA n‘xd
vy i
l; i ’q il i
T

i d

Djyidaeen .:. S TR, x-,., iy m,L 5 i
e ‘h!l"?l RARE ”l‘ L nj!,ﬂ’l
0 ...m{], Y IR, i \,yr Sl hh),

Sy
-

e
i
i
=

5
e

*‘ ,u,)qs!ég vdg‘j-" T ...x,l
i D, T

o ,ﬁ‘ KE
; .H,W"x”ﬂ: q‘ﬁ EF“ 1 E‘I"jﬂﬁ
fﬁ'nxi" ‘:,}mgwriquw !:fxx qxiﬂ;; g Bt
H dp’ﬂ xsq lx‘uxx[i)
A

!rr;ir""
4

FT *‘E”E; ﬁﬂrﬁ

eiﬁiﬁ']'ﬁ‘ﬁ
e 1;

b 1 LI T A Ry et n o

T i l'm,g ,,l,}'r
XN

#anm"«lnmmml -r*r.lum

LR R EE A i Tt 1] IS

i
e

.:,J s
o gttt ss——

T i ———

Figure 6.3: Transformation Window

A

;ﬁ-‘agiﬁgiz T A
e l,i
il

‘xx un,

’ il i ‘ll i
,a,pn;—« ,,smd

i
H’l}‘l‘-

5,.1 51..[

T lu[‘nu!‘x!h;l“‘!ﬁh !
g ”,xx,u’n‘l'!

cat
sty Wty it fo'o ot
a oy, 4
o g
.'|.| i
i ; Tt bty BT By
PTTY 4“ tnr .nu,x',n,um,.
LRI CR N
o ‘xn,lum]‘x
B i
AL Yy ,"‘,xi"""}
; (I;nxn;xn“n T
¢ RN [N
: 4o
' no By s
[u‘ o
e RO 4 "
.o i ,x” 1Ex,nl
2 , ‘,, ;‘*r H
it Hand) l‘x
B [o, ="‘ BN "’nL #

1
Tty

i1

mx -—-h' 2 bl
n’“” 1‘

-J i it n
q i

;xu. b Itx‘)u‘x it ;" ol p[{i‘!’!lz!x}h

b
vao i

L)

AL x(,,nl[h""'ﬂ

o Hend His bk vHXL
] xw‘n -u=mgn| T
bt 14 L W*j;hmmp il i
ﬂllyxipswli Qﬂ' it ;}'
Al
[E5E) l’h i

mn":i: mﬁﬁuwn

.h v Iijusdx}u ‘mLMH !lﬂf}ht::hﬁﬁ! ’.l‘l):u |
B —

A ﬂ’ ol gul“{ it ;m!,,'d M‘. i

,.1

i i
et

H w»nw ,'

i

e

S

h||1f lf’

Syl
,piq‘!iﬂy‘] i, |y h(ll-,.Imh [
xq g Bl n}xuu hot

L
L
.r&'ll‘s A

41 1L M"! gyt ey § ’l“li x-e

h x;xm 44.,‘, LT ,,1 i} xk |

addethiof L

““'('x i [i,(u.1| x ‘ ,,r
N g 4 B ;

il 1 o § i o,
i !; A
; f ui J
o !!"xp il by L g “; iy
L i)

i
p.,J

"
wh
:,h it} g dfih il

iy b
'('l P !“t’ﬁ‘}“;""f!!‘ e
i) ,i’i,"m,;f hE i : '

g s

i

_‘

; ! ' i
IJ'v ﬁ‘ i i g i
i ﬁ i m 1“‘LMm b

il

d iy
113; L "aﬁ" ’d"

2 Lu”;;‘:,ﬁl*in’

!H (o "“‘!w] TR 'IIHT‘"“H-L H il |ll”1“ h
J (‘"%‘l‘l}("‘ ;*-‘]‘:%L imviﬂli,nmn mﬂhniﬂﬁf' ” »IIH!W' Mdi i h“«ll”!'ﬂ d ‘l W’l

Wil l.gwq

Nr é;l ‘n' A

'. "?Li.‘.f

o

u '|’

:i il IIIIEI [L E} yi

il nl-'lm il
I

m !I

.

SeEE

i
w%\'». s !I“I hﬂl (ulhf..l

TSN I e 10 s 1

: T I n

|t'w f’ l“ j]w g ||l’1 !
||{. i |1||
T
1|,: vf
L, .|‘:51L:;'} i !ﬂ! 'ﬂ !!i!{!ﬁ |;:!§i| H! i foh%l
"lr;a'rn"f::;\es

}‘9"1

'w'u

i
1 (
LR ,J. ml—.

I

g
PURY T | Ak
: !

)
W!l

Flilpxhl' |

z i

i

iy
il D!
u]]I!II l ,

’Iryl M, |

E [|n[nu

]n-'l |r

fubst

iy i‘,x:’ i 'h‘«h‘ i n.,lfﬂmfl'hl‘(iil-'lu i J.|' '“I“hhhl “l”éb’i';h
i ST T AR ;a g fie vk Y), b “
G 100 s ”PI ekt ;,‘»“(,L‘fr': IE" Dk H:I!M'hm o |‘...|.H .ni‘f\,l:]'||quL..|ll [ul!.’x. Fuly
YR Ty ,.n.mm et st | L!‘g ..n,m"uu Wy ,.|.m. o unlwnmuu i1 l
oot ; g wrsy ey g, I e g LSRN 1ty .n |» '. i !q“p; 3
ry ‘I n" L’ b u,d ”'lu ”“}'i!?; ;{FE’ ltﬂ j , Hif il lﬂl 'xln 'i“i ‘1' % !| Ivfll " T
e, ;1‘ u R ﬂrﬁi”u’n“ bl n 11’ ‘l"llls'; ’*. 1‘ i
Yo - pat 'ul.‘_; ™ ul Sr‘nmu, o i el b ot ')l T 1
. s "y st e g EU |..u,|”: li}!ln'lx‘:h I b By f 1) Hw“‘ i v
BT P TTR NN 4 I AL 0 Y y i v Ly ,:,‘.,1".‘“".(! x., oo
[E LT *,‘"d,.-,lnn [! .hlhuu"“: Iy v
; X : T A e sttt

Figure 6.1:

Load Window

73

Lt L Lttt g o s st e 2 moce: = =5:perao B e TR T R T T i S

VDM &?;fe Wmdow

IR
(rHIuH l"y ’! s { '|,uu. n [erw fwm

Iy i P ! 1 gk H i 'ﬁ‘# i

{I ” [A (:h;m hmpldu |it \!ll g I[r,‘m 1& l;i"L i i b ’f' K i '”5‘ ""‘UX‘HIE;);

:mj:.;::.‘:‘.,%&: | "'» | "s!,m; ‘gvilhil'iél'i"'ﬂ Ffw .5”%“"‘""‘“‘ b i L .
i

B B *!ﬁf;'lﬁw i] L ~"xjf*““fm‘” Y ; rt“sﬂm

i

i

e

T ST ot
i
e

P

T

e

P! b

W 1 ’ i
talt '1,! I,., ”ﬁ i iy e "‘“P[fo st
L o | gty | 5 e Mw “ ,,}'12;,,{:. ‘*%‘ F!L’fd

i e COL R wik N e e
o "H I‘flrfuh H‘ﬁ EL . u' e Sl s ; I o : _ i hﬁmg; %ﬁlﬁ
‘J'l"""""“g'l! -u" il I!M"d“ o 'r’ “‘3 !" ol bl e ; : B Fina xi x!,

m, II .W‘ [L ,“a, ,ssmng] j .ﬁ;:n‘ e ,, ‘ ;w
l" I ;]!M[lf ' i]("! it ‘ '|!| g .] i 4 : * i
|l'xzt n-m | i l {% it ‘s ‘!EU\ u e :
o
l\‘ it
ﬂ}i#nﬁ

S T
ine' AN

dﬁx

i i Mt

—ri B HHEL D v BT gt et b

x‘"
”l;: ‘*;n
Ll i
]t‘l; Il iy d ‘H"“
4

i

i

T

‘E.‘@.{:‘ :

BT
.
ey

g
H

o
K

I g X’a(“nx“ ’n xlmnl r:hlxh’ld i AR

i) i il Al !h L . n e S e e R e 0 TR
tud |"!|«‘“Qd i It 1 I i ?"; i ';‘ ‘irl'ﬂ i JE,‘%L IMJ il h“l"i‘fx‘, X!Irh il i‘xl,l’l'u‘ i1 }m M g ¢ g, Bl lr. 3

i i i t i i i nfln i S
il » LBty " b - ’@V
b ,,4||: ;luw !p PN ,u,](” e e SR T T el] i Ifk‘i i Mﬂn
i i ! .I;:x”i!'ri‘tfi!*F”'Mfl.m‘h Db Lo Ay s ’f‘xa:“ o Ly %ﬁ% j;:,. :,w ;,@{é.,lguq.‘,;.;ﬁ ,;,,eg i ;’;E%E!,.,,m ?#31;

i

e o xv gl mxmnq‘ﬂl sk [dt g)'x)’l“ g, ¢ £ I,“x, fudhl Tam

i 1 1 g ' il
i |!ﬂ{|hx:lm”u b;l{ uu;m i !iu il {‘ il :Ill'ﬁ‘“!};;x,: (_“‘ lg}ﬁé{ it _ﬂ(m;l'ﬁ!(ﬂ,[,h,;lhx, ’!r‘ ,;;yﬂnﬁ;];xj ~“nix;u Hlt'x,;l ._;‘ LM"“ % LJ"'*““f‘ m‘ ‘d nx & l'lpx!
; ' m i o Al
H‘l 4 i I‘x s

i
i o) il
i ’“’ w“ ,! i ”&W«;") ;‘r S Pt By L o
|ul§m] : l’ L x. r[,. il q;‘l;_:!’g::,l ll ux)"bl.‘hpﬂ““h(‘;’uxmkﬁ m:xi::"'iﬁgl b mxm. ;!‘x !;:;1:‘:;:2!! ;;le:;};{”’ ,! ™ lxhu',: x’n x',iff‘.{;".y.ﬁlf' i
' i i " il qxl !.wau h:i,; sxn 3T itded e e ¥ oty e T o “"EM‘ I,,,N
|n xm,,u,., ,;1}.,5!,“,,,;:,1‘.:,,;;,“1 j;lﬁl T- xpm j nxi Hy ,u);_ qnnlmr lg, k,,,x v Jugu:xxmuuL L
| i I H i i m“ ., mﬂ ,‘;,9 n,; ,P:;xr ’ ‘ ’ u’”“r’h.ﬁﬂlx M xn! v"w] ml 1
“,i NI Y, .‘ M :‘ xl A [e i : i xkx ,x, (2“ ey i‘,i{‘ MW’(F,u!‘.! ,,,1,‘ }quﬂ "‘mi u,X, ‘*, ,,,,t,.,x qi“L‘ oy "’!‘ii&x’! !‘;u“n. i {., %.;
mln.|‘ il b 3 g o R G i i s ,1-_“”,“
l|l{p‘): }{m.i“ il 1.;{" b z,ﬁ ;’ 50 , M m; G Aﬁ‘iéa(Lg"‘ﬁ"L;ll q*‘;;z,;;:,xl ﬂ»unm n'aw.w;g 1 w;, i 1;‘{1:‘:1«*1"“‘5‘15
W !:;:;!il' A Y ; : i ﬁ%iw *é:%lé;gm; i f’:!} s 1";" g "“M‘ i o
90 114} uuum

apt bt (i) § ity i
y A i . i) 4 i i
!I' -,* i ,,1 o l, x I!f [{' ,fllﬂ"l " ':l, x(': .|,;'|I)“! fyi i l‘ i il l%;i’\l’l X.i];djh J;, ;“r;_;:’ m?q.j‘:‘x‘ ’ﬁ;:’ "'xg, A ;EiS J,‘:,,ng;;‘jx }.,.‘ il L. {1”,m,1Hlu u,- xlm“h!l,x :
n.nlm ,m lx u!lbt ':'“t‘ 'h-‘li];" 'iih’i’m%ﬁi;’if B 51 ke §1m§|.. i g.' X v g 00N “51 i ‘ﬁ?’ﬂ.F "‘Xfi“‘ ! 5 “ #,. 1!:,;‘;,”,‘(dp.y.g,,m” F
Il AR A i3 e 1 e H i i 4 wl;n,l i J:“(x ‘n.wx. iyl
{I i L, it 'M- o .ip, "‘1‘[1‘4’ e] ﬁ.? i !, [h-’U e Mx o ,u.(gaj'h,x JIJ‘]” 43 ,i] ik Hsd,'fh o ﬂ[” “‘hn L’T'L ,i;.fL

!, il “l 1»,] bl
||¢||) ; ’ o fi i il i 5
upl y ,1u I ...iLl. ;..i &1(i m b |;"ih§|"'hj I‘f'ii Lﬂ. W i T ;E,m b*m n R e ﬁ
i 1.[...|ui..,.,l« el v B, DA e e R Ln' A]&J‘ﬁmﬁ pebdlag i ey e e

i ,lmlh il s et bl b if 1 ulummdi it it LR e S0 Al dals ssdsdnar

mmmmammwmm mwwwmmmmmmnwunmmmmmmwmmmmmwmm i1 L PR L S Ly 4 B
G Iy g e o BIOLLNE P g IO B0 T IR E R 8 g] TS T g 7y i g ., st

R T B e ity AR i nl’ﬁ"”r ik i H Fm g mprmgn&mml e T ot Lo B ‘xﬂ‘dmhﬂﬁmm

e SR il.l i [e A AR S i o i i i ikttteaf kit b i st o IR

oyt

Wl b
B,

i

)
‘ i s: . B
\ e lm-,l-rh.,. u‘u"(‘"u‘xih{x T ‘x Tt lxi 3 {“ “x* r L”)!‘ 'Y‘ 1”}

"'!mli"i

AR

e
-2
i g

g

i oty bbrpptivghsteegd 7o B © i oo
4
e b

5

i

T

Figure 6.5: VDM State Window

-~1

R
E =]

e it
1 h“["l‘ i mlx"‘ ""
m
i !
K.‘ Ve hj Mnu br .f I!g

E,QGU 1:

] ' lih i i ‘1—"!{; if

lu

Wt ,n‘,‘,m),u,;,,“,“

nhf i

ik ?ﬂh m

& 'EE*E w

2 ».‘n i
”' n|x
|

‘ : !v; l 'H‘ i xll‘li M h
;k;‘r‘jkr‘ E‘"ﬂ‘; rll' m}' "i ui “l l;um' li:;:
} iy

.:.‘“.q!z Hihw i';lzliin;' “ l s 'l
] “!x"‘[‘{ I}: k‘ m!(w “]" ‘H”E‘ | l i
il : .:;’]! !
H l th Elﬁgf “Jﬁ?,ﬂ!’*
"'!i" F“ i

i)
iil‘f'h‘!
: i 1Y

i |h. M 8

i w |f
.!nli:luj % th.

wﬂxrﬂd, |J i ,s‘
i i} (!

me.h. i 11,,,
‘|

ot I‘
WL
Hl« ms‘;rm o
el i el
ik

s 2

;,nsxm*;r';rfsm‘ i
il

, h"jlimsi
i

' H‘ ‘N

i W;ﬂ-’,” i

o i
l,&};!{hif’i
o

l‘ i "E;:M,n if I
A il "ll""i l“f‘l"
L

i c'Iiu .Ilnh.mu B
llxlx‘dl”‘ :x[r ‘(P:)

s T AT T :szgl i
£ gty 11 i‘.i’”‘lix‘l, ’!‘iv”‘r?ml l‘i,;“' xn,un,xlx.[} I:I ”lL‘II ‘lﬁ ’ ‘ {Il |!1" {‘ ll
pent Olass ";‘ | ﬁfﬁi{ﬂ J{gn’ Mu |u j,ziﬂ;,i,"}]l ;af.

i
g N
i E i g e
o o e

: ’
h |I ||l|'|. |

i
i i "l!.(x 1H|
iy Ml' ‘Hs.

Pl *!rrnnmm.n;x

11;
I xH‘ L
SRR AN

I
Puby 1" i

P
P
o
3t

T
i z"hmld’m.f'

o 'Mﬂ*m g;luéfxa
l‘!&:
IH

|
] f!li;li’ 4,

g e

,u. T i

p
‘x‘d“'y]

L Bl LRI [y (it

Figure 6.6: Class Window

bt}
1

L mmaamerxems

Member Funcz‘fon Wmdow , . . R |

T A ke L o i ey i P S

b 1y ‘,“‘ it]», il : iy :‘?ml 11;' i 1‘11 i e ; i hm i i Ay

.;ll“ | ;’ilffm‘m”" ,|” Jl'“ ’]» ; F’ ,: 15]?“ M‘ Qy"!iu;' ":‘n:w,l:’jrtnfr;m:[r ‘“ i : »’ ¢ :'?}1 i “;‘: ,;2:% i . . ’&‘”ﬁ%ﬁ%i!ﬂg

: ,, !:’f‘.!"EI"‘“‘""mﬂ'}i } jw t ;.:“. H,m‘xllr;""f'l ﬂ“ i dah ‘ i !,« : : ' : ‘?Lc- Jﬁa;rl ; R gt
.| d '

SR
i it t 3 T “\ it L i a{" i
v"‘l il " 1 ""u‘|* ’l’{.‘b'lltﬂ‘ ' A s AT i‘;!‘ 4‘L [! 1“ %«n‘i?!#“*d'!‘" "!’f‘xﬂx“ g\f % ; i *%«5}‘"
PRI (in: i ' }IWI ¥ ‘f]‘:"l e i o ’uq, ,;1,.,, £xt'{'i.v:\§'x;; ' hx}lv. M’ i . i éf% %}‘ : ,J“r’ﬂx i '“‘gi""l ‘!‘J“m i liJ!x‘l ‘ﬁqﬁ' ﬂu]#{ﬁh!‘ e
Lk lm: 1l «|; ,":‘IA'![]] i) nlnx,“:x!! hl“ull-ulilJ Lxlq'y‘g;mlﬂ.' nlu! !l]lluiufx, o uix wmrﬁ! i :x:"“ in{’lﬂ[nrﬁ i ‘]!u;l] ,‘X1 ‘i ¥ .F Lt bRy 1&"}3*! ‘! %h a]'-.yg rm!!{u . mﬁumlﬂﬂﬂx,] X?Ek‘ hﬂgﬁjiw b ﬂ

i
ol g u,‘ it .' A iﬁ‘l il .n";'.:!«d?‘ it) Vi hr""“"‘%"?. e ﬂf’s!rq o ‘ﬂ“ "%mp'vi’%ﬂ bR qﬁ§ ‘F .55’51‘*1‘%’"‘}!‘ ""‘fi mm,
al bl :)Pu o p L up.lr i .”xpl IH"H““ 1‘];%”1 X I!?- l{%.\ HE el i W]& 5 45" nj ‘i i ' s{mn hk‘ h;' i 1&);1"!} §!
‘xﬂu Dl p,lm Ml |, “ B .ﬁ i xf{;, zﬁhlﬂ&,ﬂi ;x ‘]'u-H{ i i %ﬂ l,hﬁtyl-[“ﬂ! e '; 5x Ls'hﬁ.“

i ﬁ}ssr‘iu -:ﬁ
|.|“ ,,l I"x'(‘ Gt i ni!hL ,“" n !.lixln.ll.r"nh‘ i lq ""HTQ‘F‘U 11(;4, w iy
i hllml "(,m h-]l "'l(" ‘1‘!"[1‘ ,H it |qul:-'n J Lo (‘(|I|H il g T “"lx’["””"‘lh b "%“t"“l‘:x qxxz‘h.n A
H y | 1'1 |‘| |'.I| || it o 4 Pl I}'l‘u“ f‘h.,l ’»[-|| mi) 'X’r,(..,m,xlrili Y ‘ I “Mnh“ "I I- L
i ‘h, ! l ‘Eu

e it ‘
A -“[1,.:«" FiRy i ,.m-m.n,i.‘n;,pm«ix 11;!, ll,(i it ,ﬁ !«p’f; v
i, n‘ i mr S BRI o il i 1 it o8 el | o b i h!m o i
! |} ! i

L0 Uit o
L SR T R SR L

¥ il gl it 2 syl by I
"i'i-:qm“ .|», :,;*’:.9 0 9,5,3{,*;;"{9'!: ,iit‘l]!.,;’,,iilf’nf‘ f;r’m.#r ,,",‘,;1. i ,Im,,r" ﬁg;
e i i nifiihnih
hlf 'l
"

it ¥
3 ‘ I:'“h I{ u iy A vt i

tls it mn, it Bl I
3.| |«Mm:: o “ ' |’ i il f‘l ,’i-m llllll, || b #Mp{l’u |h i
i :ﬂi::ffi;. . 5 I W’f“.‘ ,'Fq.'dxff .
] tu [ity l '1 “h

Ill"lllp

it o

, w
1 AL g T AT |“, i ,'h‘,:
S A qlll mE Ihlh‘“ lu n! ‘] i ‘[l hl‘i:'}l ’ [‘,I,(i“iw'K“[i,‘{ii:;'l”i' \,imf[,m;glm;l;
| 'Ix i l k A ‘b bl Rl
I Bt J e |
t llm“‘ﬁ ii it 3" i x"‘mlﬁ‘{ug 'llifs!:uml‘s" Im‘;},' ! il “f:,!%l i i ;
. sl 'm i h: | I».hl Inh] i d‘z&, i ..;h,!,*mu.;l b y sl
A B, l, " -h 1, ‘!‘1" [t |I-|1, m[ml] I|I il I;v, ,l hnn nlq.'. il Kol i i Tﬂ.ﬂ[l i
&y e | ! | i hl u‘ qu b ’ B 2 ? it
] LT X --!.|{| il I.[(R st w‘ i ;1 a;i.*grz, i ,.»rw"a i ,,,,m' | h
;) : i L ! e
R) l"l I]H “vl ik iy ol (al r‘du)'ﬂ "xx"[}!r‘ i i s!l’L, it]!nl 1i‘t‘n’hx‘!lx‘ H 4 A I e . i Y
' ! ”ﬂmx Wi o AR ! i .(x!hjllmﬁy i lﬂl{ il bt T e g] e R ;L J it ’x"“n‘¥|x;‘)x e]’ #s
i i i ' " aiE : ”ln{ ' “]i]]"!,’hu{lxhI’r'“"“;’“ by "“xl ,H;_'x n u’i“; ﬂh.ﬂ-‘ﬂ"’lLH ,’rs.x m; i le i s o w11 fad zi ru Ty ,,§ ! R LTIl Lln i _ﬂkm, AR mx‘wq -
i X Coneas o gty by dw e .‘,;,1“”"1-‘ AR LR R §0 7 o q!, T n" - “r]x,l}x!n ey 5 x“[u.!‘u,_]"‘_i’i
' " v BT g s ,”](““\l]l]‘x‘x”)),ulx!xr.plx Ty e | iy g, o Bt il du | ,i.!qxx[.x [s u uq”l,q)‘H)xhx}’ (-'h,x v fhy, L ‘Il‘—‘ g i T R
vl oo e TN T bkt wnte Eoonpte gy Wt i a, !xuh xpn,mx 'muqsw’ -xu,E tantit Fug PR A i [AR EEin e Lo, gk l”u’ihlx 1 .,,._)-“r-,whp -y
ot L L e Y N T 1) l'l'ull]lh’lh"lxh i sl e e g G+ i ol g xv KIF‘hE‘llv‘h‘xl"' aipywt” 0 ‘“’xxH[x‘xl!“‘ly‘",“.“nl!)‘;l;“]””‘lﬂ.p ,r:wlx:s,l’r‘uw;lE iy i, i
par R g 0Ty S s e

‘l"
i
i

H il
ARt i l ‘1‘ Hyd 3!:;}"[& I ’lr
el e
F ,‘Hx :(m L!;;;:f:}.il z‘f,] ‘xf,i, h Sy ‘,1* uub ih i‘ﬁ’ ;‘"“"ﬁ‘?‘

i Lt d‘ , e

g [m

¥ a1
:,1'«4‘%:'»:,}'&ux‘rht.) !J* ’i it L R
J’mmm Iy 4 el *x, ?,*%‘1"\"! ey it

Lt b e e b s g

o . - e : i o, I ey D
L by bt it d e bk’ T e b B L, o0 0 Ixm‘y S | e e by ol ,nx Lt e ,l' ﬂmx‘x ‘u- by xr(“mm ankl ki -l‘““l ol x,l
Ny prefg it 3R Lt e f l i e e ‘iu) s, A TH;E! p A
0 L T P P e G e R i B e R S ! Bl o |"- (2, 'nH’N MU 1 ﬁt‘ ‘%!“‘ “F‘ : ihd S "" H ‘n]n"h;ﬂ‘l‘l
3 | bt bt CH I s Py ! el O el R R L Ly kit 4 ¢ ik § it ¢
- i . Tl ot O]l 1 o s Pt B o i e O LA iy
S T m.muz.m S e el B L0 S T b T fad g Th T o]t ;ywn*rr'mx.m L TR LA B T e mﬂm!,sgumvum _gw o oy
| K il i h] ity

LI gt g * Gl gl oy by ey uhr)'L DRRILEUIE AT v a TLLE AN N Ay PERAE SR TR N fart o, Lttt B b e o g F

Figure 6.7: Member Function Window

70

Transformation Window All file transformations, from VDM specitication to OO
and from OOD to ('+4 classes, are completed through this window. As shown
in Figure 6.3, the user can select a file name from the file list. The eurrent
directory is the default value for the directory. 1f the file is not under the cur
rent directory. both the directory and file name should be given. As soon as
the source file name is provided, an associated button may be clicked for the
transformation. If the source file doesn't exist, an crror message witl indicate
the error and the user can input another file or push the help hutton for the
on-line help message. The suflix for VDM, OOD and (*+4 files are .vdm, .ood

and .h respectively.

Load Window The Load Window displays all files under the enrrent divectory. The
user can choose a file from the list or provide another file name. As soon as
a file is loaded, its hicrarchy graph which reveals the relationship among, the
classes is displayed in the main window. ‘T'he current directory is also the defauli
directory. After the indication of file name, the Load button may be cliched to
load the file. If the file does not exist, an error message will indicate the error
and the user can input another file name or push the help button for on line
help. There is a scrollbar in the window which can be used 1o seroll the list of

file names on the sereer.

VDM State Window The State Window shows the corresponding VDM state in
the specification. The scrollbar in the window may be used to seroll the infor
mation on the screen. This window can only be opened after a specific OO0
file has been loaded. Otherwise, an error message will guide the nser 1o load

the OOD file first.

Class Window 'I'he ('lass Window lists all classes in the loaded OO file. One of
them can be chosen to be the current class to implement which is highlighted.
The first class in the list is the default current class. The serollbar can move
the class list forward or backward. H there is no QOD file loaded, the creation

of the class window will lead to an error message,

77

Member Function Window The Member Function Window displays all member
functions within the current class. The parameters of member functions and
their types are all displayed. The user can highlight a current member function
to implement. As soon as a current member function is sclected, the corre-
sponding VDM predicate clauses is displayed. If the current member function
is changed, the VDM clauses will be changed accordingly. The current member
function can be renamed or deleted through the rename or delete button in the

window. If this is done, all related parties will be informed.

Figure 6.8 is a typical screen during the development of the library management
system deseribed in Appendix B. Given a VDM specification iile(lib.vdm), we
first create the transformation window to transform the VDM file to OOD
flile(lib.ood), next the OOD file is transformed to C+4 header file (lib.h) by
indicating the source file name, and clicking the corresponding menu button.
Alter the transformation. the window may be closed to save the screen space.
The next step is to load the OOD file (lib.ood) for implementation through the
load window. As soon as the file is loaded, the user can open the class window
to get a list of all classes in the design and select a current class to implement.
In the example. Library is the current class chosen. To implement a class, we
implement all member functions within the class. The member function list
can be obtained by clicking the member function button in the main window.
From this window, the developer may select a current member function (ADD-
BOOK() in the example) to implement. Figure 6.8 shows all windows on the
screen at this stage. The development of the current member function can be

completed through the Editor window later.

As shown in Figure 6.8, the VDM clanses displayed actually define the meaning
ol current member function: that is, they provide the semantics of the member
function. The clauses in this example means that the member function A DD-
BOOK() should get a new call number for the book and then add the book to

the library colleetion. Through the Editor window. the developer can load a

file (lib.c) to implement the current member function according to the meaning,
of those clauses. The C4+4 code for member function ADD-BOOK() can be as

[ollows.
void ADD_BOOK(String TI'T. String AUT){
CNtype cn;

Lib_books *book:

cn = (*hook).NEW_BOOK(); /* get a new call nuwmber */
book = new Lib_books(TIT, AUT, cn, inshell); /* create a new hook */
collection.add(book); /* insert the book into library collection */

}

NEW_BOOK() is one member function in class Lib-books which returns a new

call number. And add inserts a new element to the set collection.

It is clear from this example that given a member function and it"s corresponding,
VDM clauses, the developer can implement the member funetion without much

difficulty.

Editor Window 'The developer implements all member functions through the i
tor Window. The ('++4 classes file which is obtained from QOD can he loaded
and all member functions in the classes can be implemented according, to the

information in the specification window.

As seen so far, it is possible for the developer to simultancously view the varions
phases of the software development such as the specification, design and code. The
ultimate goal of this user interface is 1o synchronize the activities in varions windows
so that the developer can instantancously monitor the changes in one window (say,

in the design) due to a change in the other window (say, in the specilication).

T

SNy

HAbn
RRIIRA

xcuneale

Tt T PN
P
waay o

“
v e W o
Wk, W s

Falk & gt

@ - .4?,‘:1.!{1'

W 3 s d
Vol PRy

Figure 6.8: A Typical Screen

6.3 VDM Specification of User Interface Design

In this section, we present a VDM specification for the user interface described in the
previous section. The concrete notation and terminology used in VDM has evolved
continuously and is expected to change further. All notations used here are introduced
from [1]. The notation X" in the post-condition denotes the value of globe variable
X after the operation; the value of the same variable before the operation is written

without the prime.

6.3.1 Global Variables

The user interface maintains all windows currently on the sereen; VDM, QOD and
C++ files: all classes within an QOD; the current class which is chosen to implement;
a map from member function to VDM specification clauses; and a map from OOD
file name to the corresponding hierarchy graph. The following global variables are
used to model the system. The functionalities of windows can he stated formally by

the description of all operations on these global variables.

CLASSES This variable represents all classes in an QO which is loaded cunently.
Every class consists of a class name which is unique, all member functions and
member variables in the class and the name of the current member fnetion.

CURRENT This variable describes the class in which member funetions are chosen

for implementation.

VDM This variable is the collection of all maps that associates with cach member

function in a OOD class to the VDM specification from which it was derived.

HIERARCHY This variable maps QOD file names to their corresponding hierarehy
graphs which reveal the inheritance and part-of relationship hetween elasses in

the design.

WINDOWS This variable records all windows on the sereen. Fach window is com

posed of a window name which is unique. the position on the sereen, the color

31

and all buttons within the window.

VDMSTATE 'This variable represents the corresponding VDM state space for the
loaded OOD.

VDMPFILE This variable denotes specification files. Each of them specifies a indi-

vidual system which may be developed under VDM/C++.

OODFILE This variable represents all OOD files which are converted from a VDM

file throngh the transformation window.

C+H++FILE 'This vartable records all C4++ header files which are obtained from a

OOD file through the transformation window.

The formal VDM state definition is given next.

6.3.2 VDM State Space

STATE ::
CLASSES : Cmap
Ciinap = String — Class

/'string is the name of class. every class has a unique name*/

CURRENT : String /* the current class */

(Class &

NANMI : String /*the name of the class*/

MI'S : String — Member_function

/Hlor cach member function in the class, there is a map from the member func-
tion name to itself*/

MN'S 2 Variable-set /* all member variables in the class */

CURRENT_ME : String

/*the current member function which is chosen for implementation*/

'-J
3]

Member_function ::
NAME : String /> member function name */
TYPE : Types /* the return type of member function ¥/

PARAMETER : Variable-set /*all parameters for the member funetion

Variable ::
NAME : String /*the name of the variable*/

TYPL : Types /“the type of the variable*/

VDM : String — String-list

/*mapping from name of member function to the corresponding VDM specification */

String = /*set of legal strings which may be defined in the later staget/

Types = /* set of all types which may be defined in the later staget /

HIERARCHY : String — Graphs-set

/* from OOD file name to the corresponding hicrarchy graph*/

Graphs ::
NODE : Rectangle /* one node in the hierarchy*/
LS : Line — Rectangle

. [" lines from the deseribed node to all it’s child nodes */

Line ::
Pl : Point.

P2 : Point

Rectangle ::
P1: Point /*the low left. corner*/

P2 : Point /*the upper right corner*/

53

NAME : String /* the string in rectangle */

WINDOWS : Winap /* all windows on the sereen */
Wmap = Wname — Window

/* mapping from the name of the window to the window*/

Window ::
NAME : Wname /*the né me of the window*/
POSITION : Position /*the position of window */
COLOR : Color /*the color of the window*/
BUTTON : Button-set /* all buttons within the window */

Wname = {main_w, transformation_w, load_w, state_w, classes_w, member_function_w,
editor_w, help_w}
[t the set of all window names */
Position
LLC : Point /*left low corner*®/

URC : Point /*right upper corner™/

Point. =
X tinteger /* x axis*/

Y tinteger /* v axist/

Color = /* set of all colors which may be defined in later stage */

Button = /* set of all buttons which may be defined in later stage */

VDMFILE : String-sct
OODFILE : String-set
C+~+FILE : String-set
VDMSTATE : String-list

6.3.3 Operations

This subsection presents the specification of all operations in VDM, Fach operation
implements a menu button or a specific function for a window desceribed in Section
6.2. The implementation of all operations deseribed here will fullill the Tunetionalities

of windows mentioned in Section 6.2.

CREATE_MAIN(POSI : Position; COL : Color)

/* create the main window on the screen ¥/

ext
WINDOWS : wr Wmap
pre
/*the main window should be created first ¥/
dom windows = ¢
post
/*the main window is created*/ .
let button={translormation,load,state,classes,member_funet ioneditorhelpquit} in
let w=1mk_Window(main_w,posi,col,bution) in
windows' = windows f[main_w — w]
tel
tel
err

dom windows 3 ® — windows' = windows

x
-t

]
CREATE_TRANSFORMATION(POSI : Position: ("'OL : Color)
[*create the transformation window ™/
ext
WINDOWS : wr Wmap
pre
/¥ the main window has been created ¥/
main_w € dom windows
post
/? the transformation window is created '/
let w=mk_Window(transformation _w,posi.col,
{vdm->o00d, ood->c++, Filter, Cancel}) in
windows' = windows jl{ransformation_w — w]
tel
err
= (main_w € dom windows) —
windows' = windows

VDM_TO_OOD(NAMIEL: String; NAME2 : String)
/™ transform a vdm file to ood file */
/¥ namel is the VDM file name and name2 is the OOD file name '/
ext
VDMFILE : rd String-set
OODFILE : wr String-set
WINDOWS : rd Wmap
pre
["the VDM file exists and the transformation window has heen ereated*/
(namel € vdmfile)A (transformation_w € dom windows)
post
[*the OOD file is created”/
oodfile’ = ocodfile U {name2}
err

—(namel € vdmfile) V —(transformalion_w € domwindows) —
oodfile’ = oodfile

%0

OOD_TO_C++(NAMEI: String; NAME2 : String)
/¢ transform a Q0D file to C4++ file */
/* namel is the Q0D file name and name2 is the C++ file name =/
ext
OODFILLE @ rd String-set
CH++FILE : wr String-set
WINDOWS : rd Wmap

pre
/*ithe OOD file exists and the transformation window has been created*/

(namel € oodfile)A (transformation_w € dom windows)
post

/tthe C4+4 file has been created™/

e+ +fild! = et+file U {name2}

=(name | € oodfilc) V —(lransformation_w € domwindows) —
e+ +fild! = c4+file

CREATE_LOAD(POSI : Position; COL : Color) F: String-set
/tereate the load window and display all ood files ™/
ext
WINDOWS : wr Wmap
OODFILE : rd String-set
pre
/" the main window has been created ™/
main_w € dom windows
post
/ tthe load window is created and all ood files is displayed™/
let w=mk_Window(load _w,posi,col,{Load,Filter,Cancel}) in
windows' = windows f[load_w — w]A
[= oodfile
tel

—(main_w € dom windows) —
(windows’ = windows) A (f = nil)

o
-1

CREATE_STATE(POST : Position; COL : Color)S : String-list
[*create the VDM state window and display VDM state space’/
ext
WINDOWS : wr Wmap
VDMSTATI @ rd String-list
pre
/* the main window has been created */
main_w € dom windows
post
/*the state window is created and the VDM state is displayed*/
let w=mk_Window(state_w,posi,col,{ }) in
windows' = windows f[stale_w — w]A
s = vdmstate
tel
err
~(main_w € dom windows) —
(windows' = windows) A (s = nil)

88

CRIEATE_CLASS(POSI : Position; COL @ Color)CLA : String-set
/“ereate the classes windew and display all classes in the system”/
ext
WINDOWS : wr Wmap
CLASSES :rd Cmap
pre
/' the main window has been created */
main_w € dom windows
post
/“the class window is created and all classes is displayed™/
let w=mk_Window(classes_w,posi,col,{OK. Apply. Cancel}) in
windows' = windows t[classes_w — w]A
cla = dom classes
tel
err
=(mae_w € dom windows) —
(windows' = windows) A (cla = nil)

SET_CUHRRENT_CLASS(NAMI @ String)

/' set the current class to implement*/

ext
(C"URRENT @ wr String,
CLASSES @ rd Cmap
pre
/*the class window has been created and the name is a class name in OOD*/
(name € dom classes) A(classes_w € dom windows)
post
/*the given class becomes the current class™/
currenl’ = name
orr

[}

S(name € dom classes) VA(elass_w € dom windows) —

current’ = currenl

39

CREATE_MEMBER_FUNCTION(POSI:Position; COL:Color)ME: NMember fundtion set
/ “create member function window and display all member funetions of current class '/
ext
WINDOWS : wr Wmap
("URRENT : rd Class
pre
/"the main window has been createdand the current class has been set'/
(main_w € dom windows) A (current #)
post
[*the member function window is created */
[*and all member functions in the current elass is displayed'/
let w=mk_Window(member_function _w.posi.col { Rename Delete Help. Caneel }) in
wendows' = windows 1 [member_function_w — w|A
mf = rng(MFS(classes(cuirent)))
tel
err
S(main_w € dom windows) V (current = nil) —
(windows' = windows) A (mf = nil)

90

SET_CURRENT_MEMBER_FUNCTION(N : String)VMS-5: String-list
/! set the current member function */
ext
CURRENT : rd String
C'LASSES @ wr Cmap
pre
/*nis a member function in current class, but not the current one */
(n € dom MEFS(classes(current))) A(n # CURRENT_MI(clusscs(currcnt)))
post
/*the current member function is set™/
let new-class = mk_class(NAME(classes(current)),
MI'S(classes(current)), MVS(classes(current)), n) in
classes’ = classes 1 [current — new-class] A
vdme-s = vdm(n)
tel
err
=(n € dom MFS(classes(current))) V (n = CURRENT_MTF(classes(current)))—

classes’ = classesA vdm-s = nil

91

RENAMIE(OLDNAMIS : String: NEWNAMI : String)

/* rename the current member function */

ext
CLASSES : wr String — (Ylass
CURRENT : rd String

pre

[Told name is the current member function in current class*/
[*and newname is not a member function name in current class*/
S(ncwname € dom MES(classes(current)) A
(oldname = CURRENT _MI'(classes(current)))
post
/*rename the member function in current elass and revise the class set accordingly!'/
let old_mif=MI'S(classes(current))(oldname) in
let new_mf=mk_Member function(newname, Y PE(old 2nf),
PARAMETER((old .nf)) in
let new_mfs=MIS(classes(current))t[newname—new _mf} in
let new-class = mk_Class(NAMIE(classes(eurrent)). new_mfs,
MVS(classes(current)). newname) in
classes’ = classes 1 [NAME(classes(current)) — new-class|
tel
tel
tel
tel
err
(newname € dom MIS(classes(current))) v
(oldname # CURRIENT _MI'(classes(current))) —

classes’ = classes

92

ext

pre

post

err

DELFE

/* delete the eurrent member function */

P _ME(NANIS : String)

CLASSES @ wr String — Class
CURRENT : rd String

/*the given name is the current member function name™*/
name = CURRENT_MI(classes(current))

/tdelete the member function from the current class”/
/tand revise the class set accordingly™/
let old_infs = MIS(classes(current)) in
let new_mis = {name} 4 old_mls in
let new_class = mk_Class(NAME(classes(current)). new_mfs,
MVS(classes(current)), nil) in
clusses’ = classes 1 [NAME(classes(current)) — new_class]
tel
tel
tel

name # CURRENT_MF(classes(current)) —

clusscs’ = classes

93

SHOW_HIERARCHY(NAMIE @ String)H = Graphs-set
/™ show the hierarchy for the loaded QOD */

ext
WINDOWS : rd Wimap
HIERARCHY : rd String — Graphs-set
pre
/*the main and load window are all created*/
(load_w € dom windows) A (main_w € dom windows)
post
[*the hierarchy graph is displayed'/
h = hicrarchy(name)
err

“(load_w € dom windows) V= (main_w ¢ dom windows) »
h=nil

CREATE_EDITOR(POSI:Position; COL:Color)
/¥ create the editor window '/
ext
WINDOWS : wr Wmap
pre
/* the main window has heen ereated */
main_w € dom windows
post
[*the editor window is created”/
let w=mk_Window(editor_w,posi,col,{ Bulfers, I'ile, Edit Help }) in
windows' = windowst [editor .w— w]
tel
err
~(main_w € dom windows) —
windows" = windows

94

CLOSFAN : Wname)
/" close a given window */
ext
WINDOWS : wr Wmap
pre
/* main window should be closed at last */
if n=main_w then (n € dom windows) A (card (dom windows)=1)
clse n € dom windows
post
/*the window is closed™/
windows' = {n} 4 windouws
err
=(n € dom windows) V(n = main_wA card (dom windows) # 1) —
windows' = windows

INITY()
/*initialize global variables*/
ext
WINDOWS : wr Wmap
CURRENT : wr String
OODFILE : wr String-set
C++FILE : wr String-set
post
windows' =[] A
current’ = nil A
oodfile’ = {} A
c++file' = {}

95

DialogShell

Pane
. Label Label
Form (class name) (text,list title) Rowcolumn
Button Button | | Button Button Scrolledtex| Scrolledlist
(rename) | [(delete) (help) (cancel) (vdm clauses) (member functions)

Figure 6.1: Widgets in Member Function Window

6.4 Implementing the User Interface Design

The VDM specifications presented in the previous section have been implemented

using Motif toolkit from the Open Software Foundation(OSIY). The Motil toolkit. is

developed using X as window system and X toolkit Intrinsics (also known as Xt) as

the platform for the application programmer’s interface. Motif provides a complete

set of widgets designed to implement applications. We use these motif widgets as

building blocks to construct individual windows described in Section 6.2. For example,

Figure 6.1 shows all widgets used to implement the member function window and the

relationship among these widgets. Some Xlib functions are used to draw the hierarchy

in the main window.

although it has not been proved formally. The reasons are as follows.

Example 6.1

96

e All operations in the specification are implemented.

o All pre- and postconditions have been checked manually.

We believe that the implementation is faithful with respect to the specification,

Consider the VDM operation SET-CURRENT-CLASS. The following procedure

is used to implement the operation.

void SetCurrentClass(w, data. chs)

Widget w;

XtPointer data:

XmSelectionBoxCallbackStruct ™chs;

{

char *value;

/* get the current class from CallbackStruct */

XmStringGetLtoR(cbs->value, XmSTRING_DEFAULT _.CHARSET, &value);
/* set the current class */

Current('lass = value;

}

The preconditions are ensured by the fact that the current class is selected from a
list in class window (the class window should exist at this time) and the class window
only lists those classes in the design (the new sclected class should be one of them).
The postcondition is ensured by the statement

CurrentClass = value;

The user interface can be easily extended to incorporate some other tools. Sup-
pose we want to include a new tool which transforms a semi-formal specification to
VDM specification. We can simply add a button in the transformation window to
support this new functionality. We only revise the procedure which deals with the
transformation window. All other parts remain unchanged. A detailed discussion

about such extensions to this thesis work is provided in the next chapter.

97

Chapter 7
Conclusion and Further Work

In this thesis we presented an interactive integrated software development environ
ment which supports the transformation from specifications to implementations. The
methodologies provided are both feasible and practical. VDM specification not only
provides formal language to support for data abstraction and system modeling, but
also provides clues to implementations. We discussed some strategies on how to ex-
ploit these information throughout the development process. The 1eification concept
in VDM reveals the equivalent relationship among designs and implementations,

VDM /C++ supports ubject-oriented design paradigms and provides C+4+ design
details, classes and their data member, member functions as well as relationships
among the classes. It is always a challenging problem for rescarchers to demon-
strate links between formal specifications and programming language implementa-
tions. VDM/C++ provides a partial solution to this problem. Besides, VDM /C++
also supports many features that traditional techniques do not provide, such as object-
orientedness and reusability. We have not given formal semantics for VDM/C+4+;
however, the experience gained in this work sets the stage for developing formal se-
mantics.

The user interface for the system supports human interaction to the development
process; such a human interaction is unavoidable for the transforination process ex-
plained in this thesis. Through the user interface, the developer provides his or her
own knowledge which is combined with the system’s knowledge to achieve higher

quality software production.

98

Both the object-oriented design and user interface discussed in this thesis are
language independent. They can be used to work with some other object-oriented
language such as Smalltalk. There ar~ some directions in which further work can be

done to improve the systen:

e Integrating VDM/C++ framework with Mural [24] system to ensure the cor-

rectness of specification.
e Providing a knowledge-based support to assist user interaction.

e Incorporating tools which support the transformation of a semi-formal software

description to a VDM specification to automate the formation of specification.

e kxtending the user interface to support new tools.

The Mural System [24] consists of two parts, a VDM support tool and a proof
assistant. Both components work together to provide support for the construction and
refinement of VDM specifications and for the proof of the associated proof obligation.
Besides, the Mural System interface provides a window-based environment to access
both VDM support tool and the proof assistant.

The proof assistant provides a way of creating and storing mathematical theories
hierarchically such that information stored in one theory can be inherited by other
theories. Each theory consists of a <signature, a set of arioms and a set of rules.
The signature records the declarations of the symbols which can be used to build
valid mathematical expressions in the theory, whilst the axioms record the ‘primitive’
properties of these symbols, that is those properties which are accepted as being true
without proof. All theory’s rules presem additional properties of the symbols which
require proof. These properties may be proved using axioms and other rules. The
reasoning power of Mural System can be ¢xtended either by adding new theories or
by adding new rules to existing theories.

The VDM support tool provides facilities for creating and storing specifications

and reifications between specifications in VDM. Related specifications and their as-

99

sociated reifications are grouped together as devdopments, which can be added. ac-
cessed, renamed and removed via the interface. In Mural System, a specification
or a reification in VDM support tool can be translated automatically into a theory
supporting reasoning about it in the proof assistant.

D’Almeida [12] presents a semi-formal description mechanism which contains char-
acteristics of both informal and formal method and a transformation system. The
semi-formal specification is described by a Modified Entity-Relationship(MER) model
and the Keyword-based Formatted Description(IKFD). The MER model, which is a
modification of the well-known Entity-Relationship approach to data modeling {11].
describes the different system entities and the relationship among them. The KFDs
describe functional requirements of the intended software system as textual descrip-
tions using keywords. The transformation system is composed of a set of rules which
transform the MER and KFDs into a formal VDM specification.

The output from transformation system can be the input to the VDM /C4+ envi-
ronment discussed in this thesis. A syntax checker, a semantics analyzer and a proof
assistant should be interfaced to ensure that only correct VDM specification are input
to VDM /C++ environment. The knowledge base in the system will be helpful at each
stage of software development. And the user interface discussed in Chapter 6 can be
extended to support human interaction in all phases. Figure 7.1 shows the system
architecture of the whole integrated development from stating informal requirements
to implementation.

Incorporated with all these suggested enhancement, VDM/C++ will provide an
environment supporting the development of software system from semi-formal speci-
fication, which is easy to learn and understand, all the way to implementation. The
quality and reliability of the final products can be assured only by the correctness
of all transformation methodologies and the correctness of VDM specification which
is in turn assured by the Mural System. All tools in the environment will help the
system developer in all phases of the software development life-cycle to diminish the

burden of such tasks and therefore increase the productivity of software development.,

100

common knowledge

VDM knowledge

il

Domain knowledge

VDM knowledge

C++ knowledge

il

VDM correct C++ C+
specs syntex checker VDM Classes Programs
transformation proof code
system assistant VDM/C++ generator
semantics
analyzer
MER KFD INTERACTIVE
INTERFACE

Figure 7.1: System Architecture for the Integrated Software Development

101

Bibliography

[1]

3]

4]

[5]

[6]
[7]

8]

[9]

V.S. Alagar, “Specification of Software Systems”, Lecture Noles, Department of

Computer Science, Concordia University, Montreal, Canada, 1991, Revised 1993,

V.S. Alagar and K. Periyasamy, “A Methodology for Deriving an Object-
Oriented Design from Functional Specifications”, Software Engincering Journal,

Vol 7, No 4, July 1992, pp. 247-263.

B. Alabiso, “Transformation of Data Flow Analysis Models to Object-Oriented

Design™, ACM SIGPLAN Notice, 23, 11, pp. 335-353, 1988.

J.G.P. Barnes, Programming in Ada, 4th Edition, International Computer Sci-

ence Series, 1994.

K. Beck and H. Cunningham, “A Laboratory for Teaching. Object-Oriented
Thinking”, In Proceedings of OOPSLA 1989, New Orleans, pp.1-6, 1989.

G. Booch, Software Engineering with Ada, 2nd ed. Benjamin/Cummings, 1987b.

R. Breu, “Algebraic Specification Techniques in Object Oriented Programming

Environment”, Lecture Notes in Compulter Science - 562, Springer-Verlag, 1991,

B.Cohen, W.T.Harwood and M.I.Jackson, “The Specification of Complex Sys-
tems”, Addison-Wesley Publishing Company, 1986.

B.J. Cox, Object Oriented Programming - An evolutionary Approach., Reading,
MA: Addison-Wesley, 1986.

102

[10] O.J. Dahl, “Object Orientation and Formal Techniques™, In VDM 90 VDM and
7 lFormal Methods in softwarc Devclopment, Bjoner, D., Hoare, C.A.R. and
Langmaack, . (Eds.), Springe r-Verlag. pp.1-11, 1990.

[11] B. C. Desai, An Introduction to Database System, West Publishing co. 1990.

[12] J. IAlmeida, “On the Transformation of a Semi-formal Software Description
to a VDM Specification”, Master’s thesis, Department of Computer Science,

Concordia University, Montreal, Canada, 1992.
[13] J. Dawes, The VDM-SL Rcference Guide, Pitman, 1991.

[14] B. Henderson and J.M. Edwards, “The object-oriented systems life-cycle”, Com-
munications of the ACM, Vol 33, No 9, Sep. 1990, pp. 142-159.

[15] J. Dick, “VDM Methodology Guide”, Bull System Products, 1992.
[16] B. Eckel, C'++ inside & out, McGraw-Hill, 1993.
[17] P.M. Ferguson, Motif Reference Manual, O'Reilly & Associates, Inc. 1993

[18] G. Eriksson and P. Holm, Programming in Simula, Lund(Sweden): KF-Sigma,
1981

[19] J.M. Gao, “GAP: a tool for transformation from VDM specification to object-
oriented design”, Master’s Thesis, Department of Computer Science, Concordia

University, Montreal, Canada, 1992.

[20] A. Goldberg and D. Robson, Smalltalk-80: The Language and its Implementa-
tion, Reading, MA: Addison-Wesley, 1983.

[21] D.Heller, Motif Programming Manual, O'Reilly & Associates, Inc. 1991

[22] 1. Jacobson, Object-Oriented Software Engineering, Addison-Wesley Publish

Company, 1992,

103

[23] C.B. Jones. Systematic software development using VDM, (Second Edition) Pren-
tice Hall, 1989.

[24] C.B. Jones. K.D. Jones. P.A. Lindsay. R. Moore, Mural: A Formal Development
Support System, Springer-Verlag. 1991.

[25] G.T. Leavens and Y. Cheon, “Preliminary Design of Larch/C+44",Proceedings

of the First International Workshop on Larch, 1992,

[26] S.B. Lippman, C++ Primer (Second Edition). Addison-Wesley Publishing Con-
pany, 1992,

[27] S. Lipschutz, Theory and Problcms of Set Theory and Related Topics, Schaum
Outline Series, McGraw-Hill, 1964.

[28] W.R. LaLonde and J.R. Pugh, Inside Smalltalk, vol 1. Englewood Cliffs, N.J:
Prentice Hall, 1990.

[29] W.R. LaLonde and J.R. Pugh, Inside Smalltalk, vol 1I. Englewood Clifls, NJ:
Prentice Hall, 1991a.

[30] D.J. Mayhew, Principles and Guidelines in Software User Intcrface Design,
Prentice Hall, 1990.

[31] B. Meyer, Object-Oricnted Softwarc Construction, Englewood Cliffs, NJ: Prentice
Hall, 1988.

[32] C. Minkowitz and P. Henderson, “A Formal Description of Object-Oriented Pro-
gramming using VDM”, Lecture Notes in Computer Science - 252, Springer-

Verlag, 1987.

[33] D. O'Neill, “VDM Development with Ada as the Target Language”, Leclure
Notes in Computer Science - 328, Springer-Verlag, 1991.

[34] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen, Ohjeel-
Oriented Modelling and Design, Prentice-Hall Inc., 1991.

104

[35] B. Stroustrap, The C++ Programming Language (Second Edition), Addison-
Wesley, 1991.

[36) 1. Thimblehy. User Interfacc Design, acm press, 1990.

[37] P.T. Ward, “How to Integrate Object-Orientation with Structured Analysis and
Design”, IEEE Software, pp. 74-82, 1989.

[38] P. Wegner, “Dimensions of Ohject-Based Language Design”, Proceeding of OOP-
SI.A°87, Orland Special Issue of SIGPLAN Notices, 22(12), pp.168-182.

[39] A. Wills, “Capsules and types in Fresco”, ECOOP 91: European Conference on
Object-Oriented Programming, Lecture Notes in Computer Science - 512, 1991,

pp. N9 -76.

[10] R. Wirfs-Brock, B. Wilkerson and L. Wiener, Design Object Oriented Software,
Prentice-Hall, 1990.

105

Appendix A
A.1 Syntax of Object-Oriented Design
Ood — Class_list
Class_list — Class Class_list | ¢
Class — class ID
Inheritance
Part_of
Attributes
Operations
Attributes — attributes Declaration_list | €
Inheritance — inherits ID Identifier_list redefines 1) Identifier list. | ¢
Part_of — part_of ID Identifier_list | ¢
Operations — operations Operation_list | €
Declarations_list — ID Identifier_list : Type; Declarations_list | ¢
Identifier_list — ,ID Identifier list | €

Type — Map | Set | Sequence | ID

Operation_list — Ope Operation_list | ¢

106

Ope — 1D(Declarations_list) Return

Return — @ Type | €

Map — map from Type to Type

Scet — set of Type

Scequence — sequence of Type

A.2 Tokens

1. Keywords

o class

e attributes
e inherits

e redefines
e opcrations
® map

e sct

® scquence
o from

e Lo

e of

e part_of

2. ldentifier

107

3. Punctuation

108

Appendix B

Library Management System

B.1 Requirements and Assumptions

1.

ot

6.

~3

A library management system deals with the two major entities users or bor-

rowers and books.

All books must have been entered in the database. A book can have multiple

copics; however, every copy has a unique call number.

It is assumed that every book acquired by the library is never lost, meaning

that it will be either in stack or loaned out.

All users must have been registered in order to use the facilities of the library.

Ivery user has a unique ID number.

. Users are classified into two categories, i.e. faculty users and student users. A

faculty user can borrow a book for a maximum of 30 days, and a student can

borrow a book for a maximum of 10 days.

A faculty borrower can borrow a maximum of 20 books, whereas the maximum

limit for a student user is 10.

Users can reserve books. If more than one user reserves the book, the user’s

requests are queued. All users have equal privileges in reserving a book.

. A book not returned on its due date is said to be ’overdue’.

. Il a user does not return a book within three days of its due date, the user

loses borrowing privileges. This is done by temporarily canceling the user’s
registration; however, the user is entitled to hold the ID number. After paying

the fine for overdue books and registration fees, the user is re-registered.

109

w

10. A user can renew a book if it is already loaned to that user and not requested

by any other user.

11. Whenever a book is returned. the user who has first requested this book is

informed of the return of the book and the book is placed in the stack.

B.2 VDM Specifications

B.2.1 VDM State Space

State ::

LIB-SYSTEM : Library
Library ::COLLECTION: Lib-books-sct
USERS: Borrowers-set
REG-USERS: Borrowers-sct
LOANS: Loanmap
RESERVED: Queue
Borrowers = Faculty | Student
Faculty +IDNUMBER: IDtype
NAME: String
USTATUS: {“faculty”}
Student +wIDNUMBER: IDtype
NAME: String
USTATUS: {“student”}
Lib-books +TITLE: String
AUTHORS: String
CALLNUMBER: CNtype
BSTATUS: {“inshelf”,”loaned-out”,"overdue” " longdue” }
IDtype =N

110

CNiype =N

Loanmap =Itype — Duemnap
Duemap = (Ntype — Borrow-date
Quene = ('Ntype = [Dtype-list
FINES-DUE : IDtype = CNtype-set

REG-FEES-DUE : IDtype-set

‘The library system consists of a COLLECTION of library books and a set of
USERS. The set of users also includes a subset called REG-USERS, who are entitled
to use the facilities of the library. The remaining users in the set USERS have already
registered with library, but their registrations are canceled because of ’longdue’ on
some books they borrowed. LOANS is a two-level map identifying the users who have
borrowed books from the library, the books that are loaned out and their respective
due dates. RESERVED is a map from books to the list of users identifying the books
that are reserved and the respective users for each reserved book. A book has a title,
a list of authors, a unique call number and a status. Each user belongs to either of
the categories Faculty or Studenl. Each user has a unique ID number and a name.
The map FINES-DUE identifies the set of users who have to pay fines for overdue and
longdue books and the set of books for which the users own the fine. REG-FEES-

DUE is a set identifying those users who have to pay the fees for re-registration.
B.2.2 Operations

1 Initialize the library system
INIT()

ext

LIB-SYSTEM: wr Library
FINES-DUE: wr IDtype — CNtype-set
REG-FEES-DUE: wr IDtype-set

post

111

(COLLECTION(lib-system)={}) A
(USERS(lib-system)={}) A
(REG-USERS(lib-system)={}) A
(LOANS(lib-system)= []) A
(RESERVED(lib-system)= []} A
(FINES-DUE = []) A
(REG-FEES-DUE = {})

2 Add a book to the library
ADD-BOOK(T: String; AU: String)
ext LIB-SYSTEM: wr Library
post
(3 en € CNtype)
(Vb € COLLECTION(lib-system))
((CALLNUMBER(D) # cn) A
(let new-lib-book = mk_Lib-books(t,au,cn,”inshelf”) in
COLLECTION(lib-system)’ = COLLECTION(lib-system) U {new-lib-book}
tel)))

3 Add a user to the library
ADD-USER(NEWNAME: String; CODE: String)
ext LIB-SYSTEM: wr Library
post
(3id € IDtype)
((V u € USERS(lib-system))
((IDNUMBER(u)# id) A
(code = “faculty”) @ (code = “student”) A

(let new-user = mk_Borrowers(id,newname,code) in
(USERS(lib-system)’=USERS(lib-system)U{new-user}) A
(REG-USERS(lib-system)’=REG-USERS(lib-system)U{new-user})

112

tel)))

4 Borrow a book from the library
BORROW-BOOK(ID: IDtype: CN: ("Ntype)
ext LIB-SYSTIEM: wr Library

pre
(3w € REG-USERS(lib-system))
((IDNUMBER(u) =id) A
(id € dom LOANS (lib-system) =
(USTATUS(u) = “faculty” =
card dom LOANS(lib-system)(id) < 20) A
(USTATUS(u) = “student” =
card dom LOANS(lib-system)(id) < 10) A
(3'b € COLLECTION(lib-system))
((CALLNUMBER(b)=cn) A (BSTATUS(b)="inshelf”) A
(~ (3 u, € USERS(lib-system))
(cn € dom LOANS(lib-system)(w)))) A
(cn € dom RESERVED(lib-system)
= hd RESERVED(lib-system)(cn)=id))
post
(3" € COLLECTION(lib-system))
((CALLNUMBER(b)=cn) A (BSTATUS(b)="loaned-out”) A
(3'u € REG-USERS(lib-system))((IDNUMBER(u)=id)A
LOANS(lib-system)(id)’=LOANS(lib-system)(id) {[cn—today] A
(cn € dom RESERVED(lib-system) = id ¢ elems RESERVED(lib-system)(cn))

5 Return a borrowed book to the library
RETURN-BOOK(ID: IDtype; CN: CNtype)
ext LIB-SYSTEM: wr Library

pre

113

(3'u € USERS(lib-system))
((IDNUMBER(u) = id) A
(3'6 € COLLECTION (lib-system))
((CALLNUMBER(b)=cn) A
(cn € dom LOANS(lib-system)(id)) A
(BSTATUS(b) = “loaned-out™)))
post
(3'u € USERS(lib-system))
((IDNUMBER(u) = id) A
(3'6 € COLLECTION((lib-system))
((CALLNUMBER(b)=cn) A
(LOANS(lib-system)(id)" = {cn} €@ LOANS(lib-system)(id) A
(BSTATUS(b) = “inshelf")))

6 Reserve a book in the library
RESERVE-BOOK(ID: IDtype; C'N: CNtype)
ext LIB-SYSTEM: wr Library
pre
(3'u € USERS(lib-system))
((IDNUMBER(u) =id) A
(3'6 € COLLECTION(lib-system))
((CALLNUMBER(b)=cn) A
((BSTATUS(b) = “loaned-out™) A (BSTATUS(b)="overdue”)Vv
(BSTATUS(b) = “longduc”))))

post
(3'u € REG-USERS(lib-system))
((IDNUMBER(u) = id) A
(3'6 € COLLECTION((lib-system))
((CALLNUMBER(b)=cn) A
(let idlist = RESERVED(lib-system)(cn) in

114

RESERVED(lib-system)’=RESERVED(lib-system)t[cn—idlist || <id>]
tel)))

7 Renew a book bortowed from the library
RENEW-BOOK(ID: IDtype; CN: CNtype)
ext LIB-SYSTEM: wr Library

pre
(3w € REG-USERS(lib-system))
(IDNUMBER(u) = id) A
(3'6 € COLLECTION(lib-system))
((CALLNUMBER(b)=cn) A ((BSTATUS(b) = “loaned-out”) A
(cn € dom LOANS(lib-system)(id))
A (cn ¢ dom RESERVED(lib-system))))
post
('« € REG-USERS(lib-system))
((IDNUMBER(u) = id) A
(3'b € COLLECTION(lib-system))
((CALLNUMBER(b)=cn) A
LOANS(lib-system)(id)’ = LOANS(lib-system)(id)}[cn—today])))

8 Set the status of a book as “overdue”
SET-OVERDUE(CN: CNtype)
ext
LIB-SYSTEM: wr Library
FINES-DUE: wr IDtype — CNtype-set

pre
(3'6 € COLLECTION(lib-system))
((CALLNUMBER(b)=cu) A ((BSTATUS(b) = “loaned-out”) A
(3'u € USERS(lib-system)
((cn € dom LOANS(lib-system)(IDNUMBER(u))) A

115

(let borrowdate = LOANS(lib-system)}{(IDNUMBER((u))(¢n) in
(u € Faculty = today = borrowdate + 31) @
(u € Student = today = borrowdate + 16)
tel)})
post
(3'6 € COLLECTION(lib-system))
((CALLNUMBER(b)=cn) A ((BSTATUS(b) = “overdue™) A
(3'w € USERS(lib-system)
((cn € dom LOANS(lib-system)(IDNUMBER(u))) A
let cnset = fines-due(IDNUMBER(u)) in
fines-due(IDNUMBER(u))’= fines-due(IDNUMBER (1)) U en

tel)))

9 Set the status of a book as “longdue”
SET-LONGDUE(CN: CNtype)
ext
LIB-SYSTEM: wr Library
REG-FEES-DUE: wr IDtype-set
pre
(3'6 € COLLECTION(lib-system))
((CALLNUMBER(b)=cn) A ((BSTATUS(b) = “overdue”) A
('« € USERS(lib-system)
((cn € dom LOANS(lib-system)(IDNUMBER(u))) A
(let borrowdate = LOANS(lib-system)(IDNUMBER(u))(cn) in
(u € Faculty = today = borrowdate + 34) @

(u € Student = today = borrowdate + 19)
tel)))
post
(3'6 € COLLECTION(lib-system))
((CALLNUMBER(b)=cn) A ((BSTATUS(b) = “longdue”) A

116

(3'u € USERS(lib-systemn)
((cn € dom LOANS(lib-system)(IDNUMBER(u))) A
(REG-USERS(lib-system)’ = REG-USERS(lib-system) - {u}) A
(reg-fees-due’ = reg-fees-due U {u})))

10 Pay the fine for all the books which are “overdue”
PAY-FINLE(ID: IDtype)
ext

LIB-SYSTEM: wr Library

FINES-DUE: wr IDtype — CNtype-set

pre
(3 v € REG-USERS(lib-system))
((IDNUMBER(u) = id) A (fines-due(id) # {}))
post
('« € REG-USERS(lib-system))
((IDNUMBER(u) = id) A
(let cnset = fines-due(id) in
(LOANS(lib-system)(id)’ = cnset @ LOANS(lib-system)(id) A
(Ven € cnset)
(3'b € COLLECTION(lib-system)
((CALLNUMBER(b)=cn) A
(BSTATUS(b)="overdue” = BSTATUS(b)’= “inshelf")
tel) A (fines-due(id)’ = {}))

11 Re-register a user after paying the fines and fees for re-registration
RE-REGISTER(ID: IDtype)
ext

LIB-SYSTEM: wr Library

REG-FEES-DUE: wr IDtype-set

FINES-DUE: wr IDtype — CNtype-set

117

pre
(I'u € USERS(lib-system))
((IDNUMBER(u) = id) A (u € reg-fees-due))
post
(u € USERS(lib-system))
((IDNUMBER(u) = id) A
(REG-USERS(lib-system)’=REG-USERS(lib-system) U {u}) A
(reg-fees-due’ = reg-fees-due - {u}) A
(fines-due(id)’ = {}) A
(let cnset = dom LOANS(lib-system)(id)) in
(LOANS(lib-system)(id)” = cnset € LOANS(lib-system)(id)) A
(Ven € cnset)
(3'6 € COLLECTION (lib-system))
((CALLNUMBER(b) =cn) A
((BSTATUS(b)="overdue")
A (BSTATUS(b)="longduc™) =
((BSTATUS(b) = “inshelf™)
tel))

B.3 Object-Oriented Design

Library books
class Lib_books
part_of Library

attributes

TITLE : String;
AUTHORS : String;
CALLNUMBER : CNtype;
BSTATUS : Book_status;

118

operations

GET_STATUS(): Book_status
NEW_BOOK() : CNtype
GET_CN(): CNtype

Users of the library

class borrowers

part_of Library

attributes
IDNUMBER : IDtype:
NAML; : String;
USTATUS : String;

operations

NEW_USER(NEWNAMLE : String) : IDtype
GET_IDNUMBER(): IDtype
CHECK_STATUS(): B

FFaculty members

class faculty
inherits borrowers redefines CHECK_STATUS

part_of Library

attributes
IDNUMBER : IDtype:
NAME : String:
USTATUS : String;

119

operations

NEW_USER(NEWNAME: String) : IDtype
GET_IDNUMBER(): IDtype
('HECK_STATUS(): B

Student
class student

inherits borrowers redefines CHECK_STATUS

part_of Library

attributes
IDNUMBER : IDtype;
NAME : String:
USTATUS : String;

operations

NEW_USER(NEWNAME: String) : IDtype
GET_IDNUMBER(): IDtype
CHECK_STATUS(): B

Library

class library

part_of Lib_Man_Sys

attributes

COLLECTION : set of Lib_books;
USERS, REG_USERS : set of borrowers;
LOAN : Loanmap;

120

RESERVED : Queue;

operations

INIT_LIBRARYY()

ADD_BOOK ('TIT: String; AUT : String)
ADD_USER (NEWNAME : String; CODE : String)
BORROW_BOOK(ID : IDtype; CN : CNtype)
RETURN_BOOK(ID : IDtype; CN : CNtype)
RESERVE_BOOK(ID : IDtype; CN : CNtype)
RENEW_BOOK(ID : IDtype; CN : CNtype)
SET_OVERDUE(CN : CNtype; ID : IDtype)
SET_LONGDUE(CN : CNtype; ID : IDtype)
PAY _FINE(ID : IDtype)

RE_REGISTER(ID : IDtype)

Library management system

class Lib_MNan_Sys

attributes

LIB_SYSTEM : library;

FINES_DUE : map from IDtype to set of CNtype;
REG_FEES_DUE : set of IDtype;

operations

INIT_LMS()

SET_LONGDUE(CN : CNtype; ID: IDtype)
SET_OVERDUE(CN : CNtype; ID: IDtype)
PAY_FINE(ID : IDtype)
RE_REGISTER(ID : 1IDtype)

Books loaned to users

class Loanmap

inherits Map redefines Is_Domain_Member, Update, Extract _Range_Element
part_of Library

attributes

operations

INITIALIZE_LOANS()

BOOKS_BORROWED_BY_USER(ID: IDtypc)

UPDATE_LOANS(ID: IDtype; CN: CNtype)

IS_.BOOK_LOANED_TO_USER(ID: IDtype; CN: CNtype)

Reservation lists

class Queue

inherits Map redefines Is_Domain_Member, Update
part_of Library

attributes

operations

INITIALIZE_RESERVE_QUEUE()
IS_LRESERVED(CN: CNtype)
FIRST_RESERVED(CN: CNtype): IDtype

ADD_TO_RESERVE(CN: CNtype; ID: IDtype)

Due dates of borrowed books

class Duemap

inherits Map redefines Update, Extract_Range_Element

122

part_of Loanmap

attributes

operations
UPDATE_BORROWED_BOOKS(ID: IDtype; CN: CNtype)
GET_BORROW_DATE(ID: IDtype; CN: CNtype)

B.4 C4+4 Classes

class Lib_books {
private:

String TITLE;

String AUTHORS;
CNtype CALLNUMBER,;
Book_status BSTATUS;

public:

Book_status GET_STATUS();
CNtype NEW_BOOK();
CNtype GET_CN();

}i

class borrowers {
private:

IDtype IDNUMBER;
String NAME;
String USTATUS;

public:

IDtype NEW_USER(String NEWNAME):
IDtype GET_IDNUMBER():

boolean CHECK_STATUS():

};

class faculty : public borrowers {
private:

IDtype IDNUMBER;

String NAME;

String USTATUS;

public:

IDtype NEW_USER(String NEWNAME);
IDtype GET_IDNUMBER();

boolean CHECK_STATUS();

b

class student : public borrowers {

private:
IDtype IDNUMBER;
String NAME;

String USTATUS;

public:

IDtype NEW_USER(String NEWNAME);
IDtype GET_IDNUMBER();

boolean CHECK_STATUS();

b

124

class library {

private:

set<Lib_books> COLLECTION;
set<horrowers> USERS, REG_USERS;
Loanmap LOAN;

Queue RESERVED;

public:

void INIT_LIBRARY();

void ADD_BOOK(String TIT, String AUT);
void ADD_USER(String NEWNAME, String CODE);
void BORROW_BOOK(IDtype ID, CNtype CN);
void RETURN_BOOK(IDtype ID, CNtype CN);
void RESERVE_BOOK((IDtype ID, CNtype CN);
void RENEW_BOOK(IDtype ID, CNtype CN);
void SET_OVERDUE(CNtype CN, IDtype ID);
void SET_LONGDUE(CNtype CN, IDtype ID);
void PAY_FINE(IDtype ID);

void RE_REGISTER(IDtype ID);

B

class Lib_Man_Sys {

private:

library LIB_SYSTEM;
map<IDtype,set<CNtype>> FINES_DUE;
set<IDtype> REG_FEES_DUE;

public:
void INIT_LMS();
void SET_LONGDUE(CNtype CN, IDtype ID);

125

void SET_OVERDUE(CNtype CN, IDtype 1D):
void PAY_FINE(IDtype ID);

void RE_LREGISTER(IDtype ID);

}:

126

