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ABSTRACT

Vehicle Structure Characterization
Using

Experimental Modal Testing Techniques

Gaétan Lebel

Vehicle Structure Characterization by estimating the modatl
parameters such as modal frequencies, modal dampings, and mode shapes
can be used to formulate a modal model in order to describe and
understand its structural dynamic behavior. It can be carried-out by
using an experimental testing method based upon modal analysis theory.
This method is called EMTT (Experimental Modal Testing Techniques). In
this thesis, EMTT are used to characterize small and large vehicle
structures. For this purpose, a detailed mathematical review which
includes EMTT assumptions, structural response representations, SDOF and
MDOF mathematical definitions, and FRF (Frequency Response Function)
display formats are presented. A discussion on various hardware
requirements for measurement, rules of thumb to measure meaningful data,
types of error encountered, data averaging methods, and response and

excitation systems is also presented.



iv

A step-by-step procedure is illustrated to characterize two cases
of vehicle structures studied, namely, a small and three large vehicle
structures. A Finite Element Analysis (FEA) was carried-out on the

small vehicle structure and the modal results were validated.

In summary, the thesis establishes the step-by-step procedure to
carry-out EMTT, on both small and large vehicle structures, using single
exciter method, and discusses the method of carrying out a comparative

evaluation of modal testing results with Finite Element Analysis.
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NOMENCLATURE

[hee following is a list of frequently used symbols and their

descriptions. Others are defined where used.
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72 Coherence Function
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CHAPTER 1

INTRODUCTION, LITERATURE SURVEY AND OBJECTIVES

1-1 Introduction

Structural analysis is an integral pdart of any design process
Designing of vehicles, mechanical structures, machine tools, spacecratt,
buildings require response calculations (static and dynamic) and natural
frequencies and mode shapes (modal parameters), which are obtained

through structural analysis.

Initially, it was carried-out by constructing either a lumped-mass

or distributed model of the system. The system properties, such as
mass, stiffness, and damping are first estimated, and then, the
equations of motion are formulated by applying Newton’s second law. The

n sets of differential equations of motion obtained (for a n
degree-of -freedom system) are then solved to obtain the response either
by numerical methods or by modal analysis approach (eigenvalues problem)

after modal parameter evaluation.

However, through the above approach, it was difficult to model
quickly and accurately complex systems. The development of the finite
element method has made it possible to model complex systems. In

industries where such approach is used more frequently, such as in



aerospace, the finite element analysis (FEA) and the intepretation of

resul ts have been well documented and accepted as a practice tool.

Although FEA is recognized as an acceptable tool for structural
design, the confidence in the results of the FEA is still sometimes
questionable because of several simplifications in the model and
uncertainties due to localized effects in the structure. Hence
confidence in the analytical results most often depends on the

experience of the analyst who builds the Finite Element Model (FEM).

However, the rapid development of Fast Fourier Transform (FFT)
analyzers has contributed to major advances in experimental modal
analysis (also known as modal testing) testing techniques which are
currently used in several industries to validate their FEM. The
validation of the FEM is carried-out by comparing the modal parameters
(natural frequency and mode shape) predicted by the analytical model
with the ones obtained by testing the system. Experimental modal
analysis can also estimate the modal damping of the system which can be

incorporated in the FEM for response calculations.

Although, the most common application of modal testing 1is to
validate analytical models, 1t can be used to understand fatigue
problems, to prevent failure in a system, to carry-out advanced

analysis, such as sensitivity analysis, etc.

In this thesis, the basics of experimental modal testing are

presented, step-by-step, to take full advantage of this testing



technique. Two case studies are presented to highlight the approach.

1-2 Literature Survey

Fundamentals and applications of vibration theory and modal testing

methods have been presented by Francis S. Tse, Ivan E. Morse, and
Rolland T. Hinkle [1] and D.J. Ewins [2]. Reference [2] presents an
overview of the testing method in a reasonably detailed coverage, the

following subjects: theoretical basis; mobility measurement techniques;
modal parameter extraction methods; derivation of mathematical models;
and some applications. K. 2averi [3] has also presented materials
related to modal testing: theory and experimental methods. Both single

and multiple exciter techniques are discussed.

Modal 3.0 SE Version 6.00 software [4] is a commercially avatlable
modal testing software comprising of three modules, namely Modal, SDM
and FRS. MODAL software processes measured data and estimates and
displays the modal parameters (modal frequencies, modal damping, and
animated mode shapes). "What if" investigations can be carried-out with
SDM (Structural Dynamics Modification) to determine the effects of
potential structural changes in the mass, stiffness, or damping in the
structure. It can also synthesize any element in the FRF matrix model
and determine the new modal properties of the structure by adding a
tuned mass-spring-damper vibration absorber. The last module, FRS

(Forced Response Simulation) can predict a structure's response to



specific input forcing functions.

A booklet by Ole Dossing [5] introduces the theoretical background
to modal analysis and structural dynamics. Emphasis has been placed on

the broadband testing technique using a dual-channel FFT analyzer.

The instruction manual by Briel & Kjaer (6] provides
casy-to-follow, step-by-step procedures for quickly learning the general
operation and use of the dual channel signal analyzer type 2032. This
manual has two guided tours which is directly related to modal testing:

frequency response function and modal parameter identification.

The modal testing chapter in the book by Inman [7] is totally
dedicated to topics associated with dynamic measurement and testing of

structures.

Another booklet by Ole Dossing (8] presents the theoretical and
practical backgrounds to experimental modal analysis. It is a

continuation to the first booklet [5].

The handbook by Mark Serridge and Torben R. Licht [9] presents
practical guide to making accurate vibration measurements with

piezoelectric accelerometers.

Ramsey [10] introduced and used the structural dynamics model for
presenting the basic mathematics related to modal analysis and the

representation of modal parameters in the Laplace domain. Also, he



described the basic theoretical concepts for calculating transfer

and Coherence functions using a digital analyzer.

The ANSYS dynamic seminar notes [11] presents theory and exercices
suited for quickly carrying out dynamic analysis, such as modal
analysis, harmonic analysis, random vibration analysis, just to name a

few, using ANSYS software.

The handbook by Jens Trampe Broch [12] describes measurement data

and techniques necessary to characterize vibration and shock.

The major errors encountered in the application of the impulse
technique due to measurement noise, shape and time duration of the
impulse signal, nonlinearities in structures, and signal processing are
presented by Halvorsen and Brown [13]. Effects of welghting functions
applied to force and response signals are presented along with zoom
transform. Equipments required, measurement set-up, load-cel |
calibration by "equalization", and measurement procedures are discussecd.
Frequency Response Functions (FRF) measured between the workplece and
the cutting tool of a milling machine with swept-sine and impulse
excitations are compared. Also FRFs measured on hydrodynamic grinder are

compared with stationary and rotating spindles.

The Briel & Kjaer catalogue [15] gives technical Iinformations

and specifications on their electronic instruments.

Three confidential reports [16], [17], and [18] present the



experimental modal testing results of three different Eurotunnel wagons.
The procedures used to carry-out the three body vibration surveys are
also given. General data, features, and physical characteristics of the
three wagons tourist cars, purchased by Gie Transmanche Construction and
operated by Eurotunnel, are presented in the pamphet produced by

Bombardier Inc. [(14].

Ramsey [19] discussed and characterized five different excitation
methods namely: Pure Random, Pseudo-Random, Periodic Random, Impact and
Swept Sine or Chirp. Also, he discussed the BSFA (Band Selectable
Fourier Analysis), the so-called "Zoom" transform versus the Baseband
Fourier Analysis (BFA). Results from a single-degree-of-freedom (SDOF)
system tested with each of the five excitation methods mentionned above
are compared wusing various analysis techniques (with-and-without

distorsion, BFA, and BSFA with Pure Random only).

A discussion on modal analysis methods based upon the measurement
and post-test processing of FRF in digital form is given by Richardson
{20]. In the first section of his paper, he reviewed the Laplace
transform of a physical system described by a set of simultaneous
second-order linear differential equations and illustrated the real part
of a typical transfer function plotted as a function of the s-variable.
Then he derived the transfer matrix in terms of structured modes of
vibration; i.e. in terms of modal damping, modal frequency and modal
vectors. Also, he showed that the complete modal model can be obtained
by measuring only one row or one column of the transfer matrix. In the

second section of his paper, he discussed methods of measuring transfer



functions using a two-channel Fast Fourier Transform (FFT) Analyzer with
sine wave, transient (hammer or shaker), and random excitations. In
addition, digital techniques for obtaining improved and meaningtul
measurements, including Hannirg windowing, exponential smoothing,
computation of Coherence function, computation of FRF in the presence of
noise, and increasing frequency resolution (BSFA versus BFA) are
discussed. Measurement requiremenis for single~ and multi-point
excitations are also presented. Modal parameter identification methods
are outlined in the last section of his paper for single
degree-of-freedom and multiple degrees-of-freedoom models. The methods
presented based upon single degree-of-freedom models are mode shape by
quadrature response, circle fitting, complex division, and by a
difference formula. When the overlap between modes is large,
multi-degree-of -freedom identification technique must be used. The
techniques presented in that case are least squares estimation, and

complex exponential algorithm.

New modal testing methods using multiple references and frequency
domain curve fitting algorithms are addressed by Shye, Vankarsen,
Richardson and Structural Measurement Systems Inc. [21]. Two cases are
studied in their paper. The first case studied is an automobile
body-in- white tested with two exciters acting in the vertical direction
attached to the structure, and with twenty triaxlal accelerometers
positionned on the structure to measure responses. Random-transient
waveforms were used to excite the structure. In other to verify the
accuracy of the method, the second case selected was a simple square

plate structure from which theoretical natural frequencies and mode



shapes can be calculated. The plate was tested in a "free-free"
condition with three accelerometers mounted normal to its surface, and
excjited by an impact hammer. The methods were extended to account for
the effects of "out-of-band" modes. The advantages offered by multiple

references are also highlighted.

Mechanical design problems, dynamic analysis techniques, combined
with experimental modal testing are discussed by Richardson, Ramsey and
Structural Measurement Systems Inc. [22]. The use of a structural
dynamic model to perform several analyses such as load analysis, dynamic
simulation, modal analysis, and structural modifications are given.
Normal mode and transfer function testing methods are presented and
compared. A flow-chart is given to show how modal testing and finite
element modeling can be combined to solve noise and vibration problems.
A sequence of typical steps to follow in case of noise and vibration
problems which occur in prototype designs or operational hardware are
presented. Dynamic analysis of an automobile drivetrain problenm,
operational improvement of a computer disc drive servo-control through
dynamic analysis, and structural failure analysis of military avionics

equipment are examples solved using modal testing techniques.

Structural Measurement Systems Inc. [23] introduced in their paper
the concepts of structural dynamics modification in relation with their
mcdule SDM discussed earlier. Modal truncation and measurement
implications are also discussed. Two examples are also presented in this
paper to illustrate the various capabilities of their SDM module. The

first example used is a simple two-degree-of- freedon, lumped parameter
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system which consists of two masses on rollers connected together by
linear springs and dampers. The second one is a cantilever beam, an

actual structure, that was tested using an impact testing method.

Ramsey, Structural Measurement Systems Inc., Firmin, and H. G.
Engineering Ltd. [24] discussed how FEA and modal testing techniques can
be used together to tackle noise and vibration problems. Combined
testing and SDM is compared to traditional method of "trial and error”
testing through flow-charts. This paper concludes with an example

combining analysis and test using SDM module and FESDEC FEA program

A cantilever beam structure is taken as an example by Herbert
Kientzy and Structural Measurement Systems Inc. [25] to illustrate the
four basic functional capabilities (hardware modification, resonance
specification, substructuring, and dynamic model syntheslis) of SDIM

system developed by Structural Measurement Systems Inc.

Richardson, Formenti, and Structural Measurement Systems Inc. [26]
centered their discussion on the reformulation of the solution equations
in terms of orthogonal polymonials, and generation of the polymonials
themselves using the analytical rational fraction form of the frequency
response function. An alternative formulation, to estimate the
characteristic polymonial from multiple measurements is also included.
Finally, common curve fitting problems are discussed such as measurement
noise, frequency resolution, and effects of resonances which lles

outside of the analysis band.



11

Jourdon, Brunelle, Hardy, and Lavigne [27] conducted experimental
modal analysis on power transmission line dampers and spacer dampers to
rstimate quantitatively their dynamic characteristics. Different
excitation methods such as impulse hammer excitation using different
hammer weights, broadband random and pseudo-random noise at various
levels, and constant peak velocity sinusoidal sweep excitation are
explored. Because of the non-linearity in those devices, the latest one
was selected with three different levels of excitations which correspond
to the typical range of aeolian vibration levels encountered on
Hydro-Quebec transmission lines. Experimental results are compared to
the ones acquired and processed by a Nicolet 6602 Structural Analysis
System. In addition, recommendations to improve the accuracy of the

technique are identified.

Global curve-fitting of frequency response measurements using
rational fraction polymonial method is addressed by Richardson, Formenti
and Structural Measurement Systems Inc. [28]. Global frequency and
damping and global mode shape steps are discussed. The method 1is
compared with the local curve-fitting (most commonly used today) through
a test case with heavy modal coupling (MDOF case) and additive random
noise. Also, are given advantages and disavantages of several
curve-fitting methods, such as Local- SDOF, Local-MDOF, Global, and

Poly-reference.

Snoeys, Sas, Heylen, and Van Der Auweraer [29] reviewed in their
paper, the current trends of various excitation techniques and parameter

estimation methods with special emphasis on the use and limitations of
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those. The parameter extraction methods are classified as time domain
or frequency domain methods. The second part of their paper, discusses
applications and use of modal parameters for optimal solution, through
flow-charts, in techniques such as structural moditication, fatigue, and

acoustic analysis.

Dobson [30] developed a new technique, called straight-line, tou
extracting modal properties from frequency response data. Linear
relationships are derived from the inverted standard form used in the
analysis of receptance data based upon an Argand diagram (1/receptance =
dynamic stiffness). The technique is tested using synthesized and
measured data from systems having "well-separated" and closely coupled
modes. Also, the Argand diagram approach is compared to this new

technique.

Boentgen, Behring, Allen, and Yeh [31] conducted modal testing on a
prototype trashrack panel to confirm the mode shapes and natural
frequencies predicted by the Finite Element Model (FEM), and also lo
verify that assumed damping values used in the FEM to compute the
dynamic stresses in the structure are conservative. The structure’s
dimensions are about 6 meters wide by 2 meters high by 2,5 meters depth,
and with a mass of about 38000 Kg. A series of tests was performed
using a roving impact excitation, and a hand-held impactor for different
structure configurations and test conditions. There is no indication in
this paper on the method used to select and extract the modal properties

from the frequency response measurements.
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Braccesi, and Carfagni [32] 1illustrated in their paper the
usefulness of experimental Structural Dynamic Modifications (SDM)
through several application examples simulating structural stiffness
modif ications. Experimental and theoretical results , 1including mode

shapes and frequencies, are compared for each case studied.

A method to correlate the results from both finite element and
modal test studies of a structure is presented by Sidhu and Ewins [33].
Basically, the method consists of comparing the spatial properties (mass
and stiffness matrices) obtained from the mathematical model with those
calculated using the reduced mass-normalised mode shape vectors and
eigenvalues from experimental tests. The discrepancy in those matrices
can be directly related to parts of the structure which are poorly
modelled. Two examples are studied to indicate the validity of this

method.

1-3 Scope of the Thesis

The objective of the present research work is to highlight rules of
thumb or heuristic knowledge to carry-out experimental modal analysis

(modal testing) on small and large vehicle structures.

The thesis 1is organized in six chapters presenting the basic
definitions, concepts, and practical aspects of experimental modal

analysis. Overall objective of the thesis and a detailed literature
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survey are presented in Chapter 1.

In Chapter 2, mathematical background information is ptesented to
understand the limitations and assumptions ot experimental modal

analysis.

In Chapter 3 mobility measurement techniques are discussed to

obtain meaningful results.

In Chapter 4, two cases studies (small and large vehidle
structures) are presented to illustrate the step-by-step procedures to

construct, with confidence, an experimental modal model.

In chapter 5, the modal analysis resulls of finite element analy<«i-
(FEA) of the small vehicle structure are compared to the ones obtained

from modal testing.

Finally, in Chapter 6, conclusions and hightlights of the present

work, and recommendations for future work are presented.
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CHAPTER 2

THE BASIC CONCEPTS OF EXPERIMENTAL MODAL ANALYSIS

2-1 General

In general, to carry-out free and forced vibration analyses of a
structure, an analytical model 1is created in terms of its mass,
stiffness and damping properties. The first analysis estimates the
structure’s modal properties (natural frequency, modal damping and modce
shape), and the second one ©predicts the frequency responsc
characteristics of the structure. In many cases, prior to the use of
those results, experimental validation of the theoretical model |is
desirable or mandatory. One can be tempted to measure in laboratory the
mass and stiffness distributions of the structure and compare them with
the ones used to construct the mathematical model. Thls approach is not
possible since we cannot measure directly those physical propertles on
the structure. There is a technique called experimental modal analysis,
also known as modal testing, which enables an engineer to valldate

dynamically their analytical mathematical models.

Experimental modal analysis is an experimental testing method based
upon modal analysis theory to identify within a frequency range of
interest, the inherent dynamic properties of a structure, in terms of
its modal parameters such as modal frequency (damped natural frequency),

modal damping, and mode shape.

16
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The method consists of exciting and measuring the response behavior
of the structure at various locations, and identifying and evaluating
all resonances, and mode shapes, from the measured data. Hence, the
theoretical model can be validated by comparing the results of the modal

analysis to the experimental ones.

The model can be further wvalidated through computer simulations
using the experimental modal data. Indeed, an experimental mathematical
model can be constructed using the modal parameters identified in the
laboratory. Structural Dynamics Modification (SDM) and Forced Response
Simulations (FRS) are computer analyses that can be studied using any of
the two mathematical models (experimental and analytical). SDM
evaluates the effects of changing the dynamic properties due to physical
modifications, such as adding or subtracting mass, stiffness, and
damping to the structure. FRS predicts the response to assumed input
excitations. Thus, high confidence in the theoretical model can be

achieved through those different levels of validation.

SDM can also estimate the combined behavior when two or more
structural components (substructures) are connected together as one
single structure. The substructures can be composed of a combination of
structural components for which the modal models have been
experimentally built and of tuned mass- spring-damper vibration
absorbers. They can be connected together at several points by any

combination of scalar springs, dampers, or rigid links.

In this chapter, basic definitions and concepts are presented to
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highlight the process and limitations of the modal testing method.
Athough tnese simple mathematical definitions can be found in several
books and technical papers, they are reviewed here in order to highlight
useful rules of thumb in experimental modal testing method and to be

able to apply them efficientliy.

2-2 Modal Testing Assumptions

Modal testing assumes that the structure under test can be
adequately modeled by a set of single degree-of-freedom (SDOF) model«
characterized by a set of linear second order differential equations.
This implies that the structural motions or the dynamic response will

always be proportional to the input excitations; i.e.

Rjw) = F(jw)

or
2(jw) = H(jw) *+ Flw) (2-1)
where
X(jw) = Response Vector in the Frequency Domain
H(jw) = Frequency Response Function (FRF) Matrix
F(jw) = Input Excitation Vector in the Frequency Domain
w = Angular Frequency

a

.
]
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Equation (2-1) to be linear requires that the properties of the
structure (H(jw)) obey the superposition, homogeneity, and reciprocity
definitions. Superposition implies that the measured FRF are
independent on the type of excitation waveform technique used to excite
the structure. Also, if the structure is excited simultaneously by
several exciters, the total response will be the sum of the individual
ones measured or calculated for each exciter acting separately.
Homogeneity demands that the measured FRF do not vary with the level of
excitation. Reciprocity holds for all linear systems, and is described
by Maxwell's Reciprocity Theorem [1]. The theorem states that the
structure exhibits symmetry; in other words, the FRF measured between
any two points is independent of which of them is used for excitation or

response; i.e.

Hij = Mjl (2-2)

where Hlj is the ratio of the response at point i in a particular
direction (e.g. along X-axis) due to an excitation at j acting along a

particular direction (e.g. along Y-axis); 1i.e.

= (2_3)

Modal testing also assumed that the structure is causal, stable and
time-invariant. A causal structure will not start to vibrate before it
is excited. The vibrations of a stable structure will die out when the
excitation is removed. Lastly, the dynamic properties (H(jw)) of a

time-invariant structure will remain constant during the test period.
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In addition, the modal properties should not wvary significantly
from one part of the structure to another, and only onc mode shape

should exist at each modal frequency.

2-3 Structural Response Representations

There are four different domains in which the response of
structure can be represented. Those are physical domain, time domain,

frequency domain, and modal domain, and are illustrated in Figure /-1

In the physical domain, the response of a vibrating structure i<
shown as a complex geometrical deflected pattern defined In terms of it-
physical coordinates. That physical pattern can also be represented a,
a sum of simpler, independent deflected patterns called mode shapes and
are defined in terms of modal coordinates (q’s). Each mode shape or
modal deflection is typical of the response of A

single-degree-of-freedom (SDOF) structure.

The response in the time domain is shown as a time history or a
time signal, x(t), and can be measured easily by an accelerometer or
motion sensor. This time history can also be defined as a sum of
decaying sinusoids, each described by a modal coordinate, qa,, and a

modal damping parameter, ol.

In the frequency domain, a Fast Fourier Transform (FFT) analyzer is
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usually used to compute the frequency spectrum, also called Frequency
Response Function (FRF) of a given time signal. A spectrum has
basically several resonance and anti-resonance peaks within a selected
frequency range, which can also be represented by a set of SDOF response
spectra. Each of the spectra is also described by a set of modal

parameters.

In the case of a modal domain, a lumped-parameter model iy
constructed from a set of SDOF models to obtain the overall response of

the model.

In summary, the dynamic response of a structure can be described by
an infinite set of SDOF models (i = 1,...w), where each of them is
defined by three modal parameters, namely, a modal frequency (wll), a

modal damping (01), and a mode shape vector ((¢)l).

2-4 Review of Laplace Transform and Graphical

Representation of Modal Parameters

In the cases of modal analysis and modal testing, it 1s wvery
important to understand the vibration characteristics of a SDOF system
and their relations from one domain to another since the Inherent
dynamic properties of a complex structure are defined as a linear

superposition of a set of SDOF modal parameters.




2-4-1 Mathematical Representation of a SDOF System

The generalized model for the SDOF system is shown in Fig. 2-2, and
consists of a point mass (m), supported by a massless linear spring (k)
and connected to a linear viscous dashpot {c). The mass can only move
along the x direction and will start to oscillate (vibrate) if an
external force (excitation) (f(t)) is applied on the mass along the same

direction.

The equation of motion is found by applying Newton's second law to
the free-body sketch in Fig. 2-3 (note: the gravity force cancels out

with the static deflection of the spring):

f(t) - kx(t) - cx(t) = mx(t) (2-4)

or
mx + cx+ kx = f(t) (2-5)
Equation (2-5) 1is a second-order non-homogeneous differential
equation. It can be shown that the general solution x(t) of that

equation is the sum of the complementary function (free-vibration
response, xc(t)) and the particular integral (forced vibration response,

xp(t)), that is,

x(t) = x (t) + x (t) (2-6)
c p



Figure 2-2: Generalyzed Analytical SDOF System

mg ‘ = mx{t) '

Figure 2-3: Free-Body Sketch of the Model shown in Flg. z-/
(dx = Static Deflection of the Spring, kés = mp)
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Defining the following physical quantities:

2 k _ ¢c _
o ——m— and c—z'@ (27)

where W, is the natural frequency of the system and ¢ is the damping
factor, and using them to rewrite Eq. (2-5) with f(t) set to zero, we

get,
%+ 200 x + w§ x =0 (2-8)

The solution of the homogeneous equation in Eq. (2-8) corresponds
to the complementary function xc(t), and for & < 1 (the underdamped

case) is of the form

xc(t) = exp(-Cwot) (Alcos wdt + A251n wdt) ‘ (2-9)

or

xc(t) = A exp(-Cwot) sin(wd + ) (2-10)

where Aland A2 are real constants to be evaluated by the initial

conditions, and A = Af + Az and ¢ = tan_l(Al/Az). The harmonic
motion described by Eq. (2-10) is shown in Fig. 2-4. This motion 1is
often referred to as the transient motion of the system. The damped

natural frequency, is defined as

wd,

w =w V1-2° (2-11)

d 0



x(t) \
Exponential Decay
AL, Ae” ot
R St -
\\/
f
‘k\\\\‘———“ “Oscillatory Prequency
woE V4-Cd

Figure 2-4: Transient Motion of the System shown in Fig 2~/
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The modal damping (¢) is defined as the product of the damping factor

(¢) and the natural frequency (wo).
c = w (2-12)

Hence, in the time domain, the free-vibration response of a SLIF
system is described by Eq. (2-10) and its modal parameters are defined

by Egqs. (2-11) and (2-12) with Eq. (2-7).

When a harmonic excitation (f(t)) is considered, the particular
integral or forced response (xp(t)) gives the steady-state response with
the complimentary function (xc(t)) becoming zero. For a given harmonic
excitation of constant amplitude (F) and frequency (w) of the general

form:

f(t) = F exp(jwt) (2-13)

the steady-state response will be in a similar form as

x(t) = xp(t) = X exp(jwt+¢) (2-14)

where X 1s the amplitude of the motion and ¢ is the phase angle of the

response relative to the excitation force.

The system can also be studied in the frequency domain or in the
Laplace domain. Figure 2-5 shows the relationship between time,

frequency and Laplace domains. The Laplace Transform £ of a time
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function g(t) is defined as:

L(g(t)) = G(s) (2-15)
wher e
[+e]
G(s) = I gl(t) exp(-st) dt (2-16)
0
and
s =0 + jw (2-17)
Hence, the Laplace transform converts a problem from the time
domain (real) into the s domain (complex). As we will see, this

conversion or transformation simplifies the mathematics when solving
ordinary differential equations (physical system). Another advantage is
that the parameters and the behavior of a damped linear system are

easier to visualize in the s-domain.

It can be shown that the Laplace transform of Eq. (2-5) is a simple

algebric equation, where s is called the Laplace operator and is:

(ms® + cs + k) X(s) = F(s) (2-18)

The compliance transfer function (H{s)) relates the d.splacement to the

force and is expressed mathematically as,

A(s) 1
H(s) = = 5 (2-19)
F(s) ms +cs + k
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The Fourier transform or the Frequency Response Function (FRF) 1is

obtained by substituting jw for s in Eq. (2-19):

A(jw) 1
H{jw) = = 3 (2-20)
Fjw) -mw + jwe + Kk

The roots of the polymonial denominator of Eq. (2-20) are the poles o

singularities of the system:

Jjw = -0 t jw (2-21)

or

p=-0c+ jwd and p = -0 - jwd (2-22)

where ¢ and wy are defined by Egs. (2-7), (2-11), and (2-12). The modal
parameters (¢ and wd) determine the character of the time response and

are shown on the s-plane in Fig. 2-6.

Equation (2-20) is a complex-valued function of frequency and can
be represented by its real (coincident or in-phase response) part and
its imaginary (quadrature or out-of-phase response) part or equivalently
by 1its magnitude and phase. The latter representation is shown in
Figs. 2-7 and 2-8. It is observed in Fig. 2-7 that the magnitude of the
resonance peak decreases as the damping in the system increases and in
Fig. 2-8 that the phase is always 90° at the resonance; li.e. when the

ratio of the excitation frequency (w) to the natural frequency (wo) is

equal to one:



31

s-PLANE
Pole location: s = ¢ + jw | Jjw (Imaginary)
Frequency Axis
' y w0,
%y
G = cos 3 | / N ‘
LB ‘o!
-c /f ¢ (Real)
Damping AXis
» =)
d
Conjugate Pole |
2 2 2 2,
Note: ol = Vo2 o2 =V W2 %+ w2 (1-67) = w

Figure 2-6: An s-Plane Representation for a SDOF System
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L= (2-23)
W
0

Equation (2-20) can always be written in a partial fraction form

as:

H(jw) = a_ 4 a (2-24)

(jw - p) (jo -p)

where a and a' are complex constants and * denotes the conjugate. It
can be shown that the value of the constants commonly called the

residues are given by:

a=R=-] and a=R=}j (2-25)
2mw 2mw
d
Therefore Eq. (2-23) becomes
R R
H(jw) = + (2-26)

(jw - p) (jw - p.)

Hence, the FRF (H(jw)) can be defined in terms of the pole location
(p) and the residue (R) - and their complex conjugates (p. and R’) where
p and R are defined in terms of spatial parameters. Due to the symmetry
of the FRF, Eq. (2-26), FFT (Fast Fourlier Transform) analyzers only
record the data for positive frequencies, 1i.e. along the positive Jjw
axis. In addition, in the vicinity of a positive frequency peak, the
majority of the FRF, for lightly damped systems, ls described by the

single pole formula:
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H(jw) = — B (2-27)

(jw - p)
and at the resonance peak (w = wd) the FRF is approximatly equal to the

ratio of the residue to the modal damping:
Hjw) = = (2-28)

The residue is sometimes called the pole-strength and dividing it by the

modal damping gives the response magnitude to unit force (Eq. (2-28).

It can be shown that the inverse Laplace transformation of the FRF

of a SDOF system is the impulse response and has the form:
h(t) = 2 |R| expl-o t) sin (w t) (2-29)

Equations (2-27) and (2-29) are illustrated in Fig. 2-9. The real
part of the pole location (¢) is the modal damping and, in the time
domain, it represents the rate at which a damped oscillation decays. In
the frequency domain, ¢ represents half the -3 dB bandwidth of the FRF
peak. The imaginary part of the pole location is the damped frequency
(wd) for a free decaying oscillation. It can be shown that the peak of

the FRF occurs at

= v (1 -28% (2-30)

W
peak

which indicates that the maxima does not occur neither at the undamped

natural frequency (wo) nor at the damped frequency (wd). However, for
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¢ = 0.1, Table 2-1 shows that the peak frequency given by Eq. (2-30) is
approzimatly equal to the damped frequency w, and the undamped frequency

(w ).
0

Using an FFT analyzer, both the pole location and residus can be
extracted from FRF measurements. The pole location is a quantitative
measure of the dynamic properties of the system and is defined by two
modal parameters (wd and o). The residue is a qualitative measure of
the system behavior and as we will see in Section 2-5-6, it is related

to the third modal parameter, the mode shape.

2-4-2 Frequency Response Function (FRF)

There are different forms of Frequency Response Function (FRF) used
to represent the behavior of mechanical systems. Those are summarized
in Table 2-2. When considering a harmonic excitation as defined by
Eq. (2-13), the velocity and acceleration are related to the

displacement by the following simple relationships:

x(t) = X exp(jwt+¢) (2-31)
x(t) = jw X exp(jut+d) = ju x(t) (2-32)
%(t) = -0°X expljut+d) = -w° x(t) (2-33)

Thus, the relationships for FRF will be:

!H(Jw)veloclty = jw H(jw) (2-34)
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Table 2-2: Different Forms of FRF for Mechanical Systems
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Response Parameter

Standard FRF

Inverse FRF

Velocity, k

Acceleration, X

Dynamic Flexibility

Mobility

Inertance
Accelerance

X X/F F/X
Displacement, X Receptance Dynamic Stiffness
Admitance
Compliance

Mechanical Impedance

Apparent Mass
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or
H(jw) = -w° H(jw) (2-35)
accelerance

These relationships show that the mobility and the accelerance ate

out-of-phase with the displacement by 90° and 180° respectively,
Although the amplitude and phase vary from one foim ot IFRF to

another, we will see that any of them can be used to extract the modal

parameters.

2-4-3 Display Formats for FRF

It is always useful to display the Frequency Response Function
(FRF) in a format which is best suited to the particular application 1n
hand. The most common type of display format is the modulus in terms of
receptance (ratio of displacement to force) and phase versus frequency
In this display format, resonances occur as peaks and the width of each
peak is proportional to its damping value. An example of this format
for a typical SDOF system is shown in Figure 2-10. The static
deflection is taken by the spring stiffness alone. At low frequencics,
the response is controlled by the spring (line of constant dynami
stiffness of zero slope) and in phase with the excitatlon. The inertial
force of the mass increases with w, and at the peak frequency (mp“k )
it cancels out with the spring term so that the response Is limited only
by the damping term. At that frequency, the response lags the

excitation by exactly 90°. When the response (x(t)) lags the excitatlion

by 180°, the system behaves like a simple mass and (x(t)) is in phasc
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with (f(t)). If logarithms of both modulus and frequency are
considered, the two plots are called the Bode plot. The Bode plot is
convenient when the data is spread over a wide range of values ot
modulus and frequencies. This display format first requites that the
modulus is transformed in a nondimensional quantity by dividing it by a
reference value and then expressed in decibels (dRB). The decibels,

expression is given by:

dB = 20 log | H(jw) | (2-36)

where
1/k
| HGw) | = (2-37)

(1 -r5%+ (2§r)2

A  typical Log-Log plot of an undamped SDOF system  with
corresponding plots for the mobility and inertance of the same systen
are shown in Figure 2-11. We see that mass and stiffness propettics
appear as straight lines in the three plots. [t can be shown that any
of the three plots can be used to estimate the modal properties of a
system. However, when it is desired to carry-out Structural Dynamic
Modification (SDM) analyses, the bode plot should be used to extract the

modal properties in order to keep the units consistent.

An other display format of the FRF is by plotting in the complex
plane, the coincident (real part) versus the quadrature (imaginary part)
of the FRF, the plot is nearly a circle arc with frequency Increasing
clockwise around the arc. This display format is called Nyquist plot or
Argand plot. For viscously-damped systems, the mobility has particular

FRF form of FRF that traces out an exact clircle in the Nyquist plane.
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Other FRF’'s such as receptance and inertance trace out a distorted
circle, and the degree of distortion will become negligible as the

damping decreases {Z]. From Eqs. (2-20) and (2-32) the mobility FRF is

Z(jw) Jw
Hn(jw) = = p (2-38)
F(jw) (k - mw”) + jwe
or
A(jw)
Hn(jw) = = Re[H(jw)] + Im[H(jw)] (2-39)
Fjw)
where
2
we
RelH (jw)] = - . (2-40)
" (k - w'm? + (we)?
wlk - w°m)
Im[HH(jw)] T (2 41)

(k - 0®m)® + (wc)?
and subscript M denotes mobility.

It can be shown that equations (2-40) and (2-41) form the following

relationship:

2 2 2
[ Re[MH(jw] - 2%— ] + [ Im[HH(jw) ] = [—EE ] (2-42)

Hence, Eq. (2-42) is the equation of a circle of radius 1/2¢ and with

its centre at (Re = 1/2c, Im = 0), as illustrated in Figure 2-12.
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In the case of lightly damped systems (& = 0.20), the second term
of Eq. (2-26) in the receptance FRF can be neglected in the vicinity ot

a modal resonance, so that

H{ jw) = R {2-43)

(jw - p)

The residue R is almost always real valued and can be identificed by
picking the quadrature response value (imaginary wvalue) of the FRF .t

the modal frequency. Egq. (2-43) can also be expressed as:

H( jw) = R (2-44)

2j(jw - p)
where R is a complex constant. Equation (2-44) can also be written in .

polar form

H( jw) = M (2-45)

2jljw - p)

where |R| is the modulus of the complex residue, and 8 is the phasc of
the complex residue. If we assume that R is real valued and one unit

magnitude, Eq. (2-45) gives:

‘ H(jw) = G(jw) = 1 (2-46)

2j(jw - p)
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and substituting Eq. (2-22) into (2-46) and rearranging gives:

G(jw) = RelG(jw)] + Im[G(jw)] (2-47)
where
(wd - w)
RelG(jw)] = 3 5 (2-48)
2[{lw - w)™ + 7]
d
and

-

Im[G(jw)] (2-49)

2[(wd - w)? + o°)

It can be shown that equations (2-48) and {2-49) form the following

relationship:

2 2 2

[Re[G(jw] ] + [ Im(G(ju) + 4%] = [Z%“] (2-50)

Hence, for this case, the receptance FRF of a SDOF system forms a
circle in the Nyquist plane whose center is displaced 1/4 ¢ down from
the real axis and with diameter 1/2 ¢ as shown in Figure 2-13. It can
be noted that this circle is similar to the one formed by the mobility
FRF but rotated clockwise about the origin by 90° and with a radius

augmented by a factor m, the mass of the systenm.

Now if we assume that R is an arbitrary complex residue, Eq. (2-45)

can be rewritten as

Hjw) = [|G(jw)| exp(j¢) X |R| exp(JjB) (2-51)



48

Origin

W= lw =0
—_— -
Re
N W

\ Increaving Freguenoy

/ | |
\\

Figure 2-13: Nyquist Plot for SDOF System with Viscous Damping
Receptance-FRF, (Fq.(2-50))



49

H(jw) = 6w [R| expljle+B)] (2-52)

or

H(jw) = |G(Jw)] |R] exp(jz) (2-53)

where ¥ = 3 and it represents the phase angle of H(jw) relative to the
transfer function G(jw) of real wunit residue as 1illustrated in
Figure 2-14. By comparing Eq. (2-53) with Eq. (2-46) we see that the
complex constant R = |R| exp(j¥) expands the diameter of the circle in
Figure 2-13 by |R| and rotates this circle counterclockwise about the

origin by an angle y as shown in Figure 2-15.

Another interesting plot is the Co-Quad plot. It is a plot of the
reul and imaginary parts of a FRF versus frequency. The "Co-" stands
for the "coincident" waveform and represents the portion of the response
which is in-phase with the input, and "Quad" stands for the "quadrature"
and represents the portion of the response which is 90°out—of—phase with
the input. Typical Co-Quad plots for a damped SDOF system are shown in

Figure 2-16 a, b, and c.

Finally, when plotting the log magnitude versus the phase angle of
a FRF we get the Nichols plot. This particular display format is not
commonly used for modal analysis but has been widely used to analyze
servo-mechanisms. A typical Nichols plot of a lightly damped SDOF

system is displayed in Figure 2-17.
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2-4-4 Hysteretic (Structural) Damping

The SDOF analysis presented so far is based upon viscous damping
model. However, when studying the behaviour of real structures, viscous
damping (c) is not representative and damping process used is hysteretic
damping (h). If we assume that the hysteretic damping force (F"n)ls in
phase with the relative velocity (condition for energy dissipation) but
proportional to the relative displacement across the damper, for simple

harmonic motion, FHD is given by

F = jhx = jykx = yki/w (2-54)
where y is a constant varying from 0 to 1.
It can be shown that the equivalent viscous damping 1is 4
frequency-dependent damping whose rate varies inversely with frequency,
i.e.
= — (2-55)

and often gives a Dbetter approximation of the damping process.

Substituting Eq. (2-54) into Eq. (2-20), the receptance FRF beconmes:

A(jw) 1

H(jw) = (2-56)

F(jw) - mw® + jh + k
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The modulus and phase of Eq. (2-56) are plotted against w/w0 for various
values of ¥ in Figs. 2~18 and 2-19 respectively. By comparing them with
Figs. 2-7 and 2-8 for viscous damping, we can see some minor
differences. For hysteretic damping the maxima occurs exactly at the
undamped natural frequency, W, and is independent of the damping h,
whereas for viscous damping it occurs at wpeak defined by Eq. (2-30).
At low frequencies the response depends on h since the stiffness is
complex and defined as k(1 + jh/k ) whereas for viscous damping it is
taken by the spring stiffness alone. Also the phase angle at low

frequency tends to tan”' (h/k) whereas it is zero for viscous damping.

Similarly for hysteretic damping it can be shown that the real and
imaginary of the receptance FRF (Eq. (2-56)) form the following

relationship:

2 2 2

[Re[lH(jw] ] + [ Im(H(jw) + %] = [2—}11—] (2-57)

Hence, it is the receptance FRF for hysterecally-damped SDOF system
that forms an exact circle in the Argand plane (radius (1/2h) and
centre (0 , - 1/2h)) as shown in Fig. 2-20 while for viscously-damped

system, it is the mobility which does so.

2-5 Multiple-Degree~of-Freedom (MDOF) Models

Previous sections have been limited to the SDOF model with a single
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mass, damper and spring elements as shown in Fig. 2-2. Fig. 2-1
illust:ates that real structures can be described as an infinite set of
SDOF models. This section presents this concept which form the basis
for applying experimental modal testing techniques to real structures -

MDOF systems.

2-5-1 Undamped Free Vibration - Eigenvalues & Eigenvectors

The equations of metion for a two degree-of-freedom system shown 1n
Fig. 2-21 can be obtained by applying Newton’s second law to each of the

masses. In matrix form, they are:

[M] {%} + [C] {x} + [K] {x} = {f} (2-58)
where
m1 0
[M] = = Mass Matrix, (2 x 2)
0 m
2
c1+ c, -c,
[C} = = Damping Matrix, (2 x 2)
-c c + ¢
2 2 3
k1+k2 -k
[K] = = Stiffness Matrix, (2 x 2)
-k k + k
2 2 3
xl f1 Time-Varying Displacements
{x} = « and {f} = £ = and Forces Vectors, (2 x 1)
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For the general n-degree-of-freedom system, [M], [C}, [K] and {x},

{x}, {x}, {f} will bz (n x n) matrices and (n x 1) vectors tespectively.

The natural frequencies (wi. i =1, ... n) ot this  general
n-degree-of -fredom system and the corresponding mode shape vectors,
((W)r, r=1, ... n).can be evaluated by considering the undamped

free-vibration; i.e.

[M] {x} + [K] {x} = {0) (2-59)

Assuming that the system 1is capable of vibrating at a single

frequency, w, a general solution is of the form

{x} = {X} exp(jwt) (2-60)
and
{x} = -2 {X} exp(jwt) = -1 {x} (2-61)
where
A= w° (2-62)
Eq. (2-59) leads to
[ [K] - a [M] ](X) exp(jwt) = {0} (2-63)

since exp(jwt) # 0, Eq. (2-63) can be expressed as:

[ (K] - A [M] ]{X) = {0} (2-64)



Premultiplying Eq. (2-64) by (M]™! and rearranging we obtain

[[M]"[KJ —m}]m = {0} (2-65)
where [1] = [M]''IM] is the identity matrix, and IMI"'[K] is called the
dynamic matrix. Equation (2-65) is a set of simultaneous algebric

equations in X and for non-trivial solution ({X} # {0}), the determinant

of the coefficients must be zero; i.e.
det[[Ml"[KJ - (1} ]= {0} (2-66)
Expanding Eq. (2-66) gives a polymonial in A of order n
A+ a, A +a_ A + ...+a=20 (2-67)

and is known as the characteristic equation. The n roots A‘of this
equation are called the eigenvalues of the system. The natural circular

frequencies are calculated from Eq. (2-62); i.e.
w' o= A (2-68)

By substituting back any one of these roots Ar into Eq. (2-65) we
get a corresponding set of relative values for (X}r; i.e. (W)r, the
so-called mode shape or modal vector corresponding to the natural
frequency w . The vector (W)ris also known as eigenvector of mode r.
Hence the modal properties of a MDOF system can be expressed in two

matrices (n x n) called the eigenmatrices as
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[ A ] . and [ ] ] (2-69)
diag.

where Al's form the diagonal elements of [ A ]“
diag.

2-5-2 Orthogonal Properties of Eigenvectors

It has been shown in the previous section that the solution ol
Eq. (2-64) yields the eigenmatrices. Thus a particular cigenvalue A
H

and 1ts corresponding eigenvector (¢} will satisfy Eq. (2-64); i.c.
r
(K] {¢} = a [M] {y} (2-70)
r r r

Premultiplying Eq. (2-70) by the transpose of another cigenvector

T .
(W)p, gives

T

<¢;: (KD (g} = qyd (M1 (p) (2-71)

Similarly, we can write the equation for the pth mode and premultiply il

by the transpose of the rth eigenvector (W):: i.e,
W KD ) =AM () (2-72)
r p P r p

Since [K] and [M] are symmetric matrices and are identical to their

transposes, we have
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<w>f (K] Ay} =y}

T -

(K] {y}

and

Wy M1 g = e M) (g
P r P
Subtracting Eq. (2-72) from Eq. (2-71) we obtain
0= (A-A) (Y} (M) W (2-73)
If Ap: Ar , Eq.(2-73) can only be satisfied if
{w} M) W =0 (2-74)
and from Eq. (2-72), it can be seen that
W K] ) =0 (2-75)
Equations (2-74) and (2-75) are the orthogonality properties of the

eigenvectors with respect to the system mass and stiffness matrices

respectively.

2-5-3 Generalized Mass and Generalized Stiffness

For the special cases where Ap= Ar in Eq. (2-73), Eqs. (2-74) and
(2-75) do not apply and it is clear that Eq. (2-74) is equal to a scalar

constant other than zero; e.g. Mr
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(W' Ml {g) =M r=1, ... n (2-76)
r ™ r
and from Eq. (2-72) it follows that
W) Kl (Y} =aM=wM=K r=1, .. n (2-77)
r r r r r

r r

The scalar constants Mr and K are called the generalized mass or modal
r

mass and generalized stiffness or modal stiffness respectively.

2-5-4 Normalization of Mode Shapes

Since a mode shape ((W)r) defines the relative displacement of cah

DOF, the ratio between any two elements (wlr wjr) has to be constant,
Hence, the mode shapes can be scaled or normalized (denoted {¢)l) using
any particular process. Among the several scaling processes, there arc
four which are most often used by eigenvalue extraction routines: The

mode shapes can be normalized such that:

1: The modal mass Mr in Eq. (2-76) is set to unity.
2: The largest element of the mecde shape Is set to unity.
3: A particular element of the mode shape is set to unity.

4: The length of the mode shape vector is set to unity.

The second method is convenient for plotting the mode shape but the
first one has the most relevance to modal testing since Eq. (2-77) will
yield directly the eigenvalues and thus the natural frequencies. A

modal vector scaled by the first method is called a weighted modal



65

vector ((&)rand as we will see later it is related to the residue of
that mode by its modal constant. This process is called
mass-normalization (Mr= 1). The mass-normalized eigenvector matrix or
weighted modal matrix is denoted [$] and have the particular property

that
(K] [$] = [A] (2-78)

(17 M1 18] = (1) and (3]

This matrix can also be obtained by dividing the natural modes ({w)r) by
the square root of their respective modal masses calculated in the

previous section; 1i.e.

(3, = ™ )12 (v, (i=1, ... n) (2-79)

2-5-5 Forced Vibration - Modal Coordinates

2~-5-5-1 Undamped System

The equations of motion for the two-degree-of-freedom system shown

in Fig. 2-21 without damping can be written in matrix form as

[M] {x} + [K] {x} = {f} (2-80)

where [M] and (K] are defined in Eq. (2-56). The equations were derived

based on the coordinates chosen at each mass point. For that selected

coordinates system, we see that both the mass ([M]) and stiffness ([K])
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matrices are symmetric but only [M] is diagonal; i.e. the off-diagonal
terms of [[K] are non-zero. The coupling is seen by that fact and it 1s
called elastic coupling or static coupling. If the chosen coordinate
system had been the extensions of each spring, [K]l would have been
diagonal and not [M]. In this case the coupling is call:d inettial
coupling or dynamic coupling. Thus, the equations of motion of a lumped
mass system will always be coupled independently of the physioal
coordinates system chosen to derive them and consequently  the

derivation of the system response is complicated.

Modal transformation is a mathematical device that converts the
problem from physical domain into the modal domain as illustrated in
Fig. 2-1. It decouples the equations of motion 1into a set  of
independent SDOF models and each of them can be solved as discussed 1n

Section 2-4.

The modal transformation is as follows

{x} = [¥] {q} (2-81)

or

q (2-82)

where [¥] is an eigenvector matrix or simply the modal matrix and {q} i-

the new coordinates system called principal coordinates, normai

coordinates or modal coordinates.
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Substituting the coordinate transformation, Eq. (2-81) 1into

Eq. (2-8D) yields
(M] [¥] {q} + (K] [¥) {q} = {f} (2-83)

Premultiplying Eq. (2-82) by the transpose of the modal matrix, [W]T, we

get
(1T M1 (9] (@ + 01T KD D9 {q) = (91T {f) (2-84)

From Section 2-5-3, Eq. (2-83) can be written in terms of diagonal modal

mass matrix [ M | and diagonal modal stiffness matrix [ K | as
[ M1 4qr+ [ K1 {q) = 1¥17 (£} = (I} (2-85)

where (T} is called the modal force vector. Equation (2-85) represents

n SDOF equations and the r*® one is

M q +K q =T (2-86)
or

.. 2 _ -
q *w q = Fr/ M (2-87)

Equation (2-86) is the equation of motion for SDOF systems without
damping as shown in Fig. 2-22. Hence, the solution (time responses) can
be obtained for each modal degree-of-freedon, q using Eqs. (2-6),
(2-10) and (2-14). The solution in terms of the original coordinates

(physical ones) can be obtained by transforming back; i.e. substituting
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i

Figure 2-22: Undamped SDOF System in the Modal Domain (Eq. (2-86))
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for g’s iIn Eq. (2-82).

We can see that if the weigthed modal matrix ([$]) had been used in

Fq. (2-83) instead of the modal matrix ({¥]), Eq. (2-85) would have been

fir+ wf q=T (2-88)

2-5-5-2 Residue and Eigenvector Relationship

Refering to Figure 2-9, the peak amplitude of the receptance-FRF
(Ju . Gw)| ), for a SDOF system, is related to the residue by

w=w
dr

iir

Equation (2-28). Since that residue is a local property, for MDOF

system, that relation will become

H (jw)l R B L (2-89)
ijr = w 0‘r
w dr
or
| IR, ).l
||rHUr(Jw)|| ey (2-90)
B dr r

where subscript r represents the rth mode, subscripts i and j represent

the response and excitation points respectively, and W is the r*"

damped frequency.

It can be shown that the rth residue subscripts i and j is

th th

proportional to the product of the i and jth elements of the r

eigenvector matrix, i.e.
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Yoy (2-91)
or
=€ oy (2-92)

and for a driving point, i.e. i=]j, Equation (2-92) will be

— 2 Y
IR, I =€ ¢, (2-94)

where € is a complex constant of proportionatity. 1t KN

sometimes called the modal constant and its value is derived below.
Recalling the definition of the rLh modal mass, that i1s
p— T -— .
M = {¢} [M] {y} (2-94)
r r r
For SDOF, the modal mass will be given by

M= (w}m n (w}lx1 = Ymy (2~95)

Equating Equation (2-25) with Equation (2-92), we have

R=— =cyy {2-96)

Hence,

€ = ———— (2-97)
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Therefore, for MDOF, the r " constant, £ will be given by

£ = - (2-98)

~

If the mass-normalized eigenvector matrix elements (@1 and ¢’) are
r 1
used instead of the eigenvector matrix elements (wl and W, )} in the
r ]
previous equations, the modal mass, ﬂr, will be unity and ¢ will be
t

defined as

1
€ = (2~99)

2jw

dr

Using Equations (2-90), (2-92), (2-93), and (2-99), the scaled mode

shapes, [$], can be estimated using the following procedures.

1) Measure at least one row or one column of the FRF mecasurement:,
matrix (minimum data requirement). You must have at least o

many DOF as the number of modes of interest.

2) Since, generally, inertance-FRF (A‘lr(jw)) measurements  arre

measured, Equation (2-89) can be written as:

R (jw)?
. ijr
Aljr(Jw) = (2-100)
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substituting Equations (2-92) and (2-99) in Equation (2-100) gives
c ¢ - ¢ ¢ - ¢
A (jw) VRNLRLL A Ly R I J _ir iy, (2-101)
ijr ‘r dr
W =W (op 2
dr r r
or
"RUr(w = wdr)” 2
"A “ x ) (2-102)
ijr c dr
w =0 r
dr

Equation (2-101) gives the basis for quadrature picking technique,
through which we can determine the mode shapes. Indeed, the
FRF appears to become purely imaginary at all modal frequencies, v
Its amplitude is proportional to the residue (Equation (2-102)), and its

sign Is positive if displacement is in phase with the excitation.

Alternatively, since most FFT analyzers come with built-in integrators,
receptance-FRF measurements can easily be obtained by integrating twice
the inertance-FRF measurements. In that case, Equation (2-90) can be

used instead of Equation (2-102).
3) Identify the modes of interest

4) Evaluate T for all the modes of interest using the half power

method (refer to Figure 2-9).

5) Calculate the residues, ”Rihjw = wdrHL for all modes using

the appropriate equation, i.e.
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If receptance-FRF measurements are used:

R

IR o ¥, G| (2-103)
o =

= W W= w
dr dr

If inertance-FRFmeasurements are used:
2 . .
= (~w ) o "A‘JF(JU)" (2-104)

6) Calculate the constants cr for all the modes of interest using

Equation (2-99).

7) Calculate $Jr for all the modes

. IR, (0=w 1}
$ = / Jr - dr (2-105)
jr -

8) Calculate the remaining eigenvector matrix elements alr

€
]
€
o
=

$ = (2-106)

However, formal curve fitting, discussed in Chapter 4, is preferred to
the above estimation procedure since it gives a better estimate of the
modal damping and thus more accurate mode shapes. Indeed, most curve

fitting methods are based on least squared me:thod.
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2-5-5-3 Damped System - Proportional Damping

All materials have internal damping which is commonlv referred to
as solid damping, hysteretic damping, or structural damping. However, a
particular structure may have other damping characteristics resulting
from a combination of several types of damping, such as hysteretic,

viscous, coulomb, aerodynamic, etc.

Most mechanical systems are inherently lightly damped [3] and

certain simplifying assumptions can be made.

If we assume that the damping type is viscous (i.e., the damping
force is proportional to the velocity), the equations of motion for

an n degree-of-freedom system can be written, in a matrix form, as

[M] {x} + [C] {x} + [K] {x} = {f} (2-107)

where [M], [Cl, [K] and {x}, {x}, {x}, {f} will be (n x n) matrices and

(n x 1) vectors respectively.
If we also assume that the damping matrix [C] is proportional, it
implies that the matrix [C] can be written as a linear combination of

the mass and stifness matrices, i.e.

(C] = « [M] + B [K] (2-108)
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Because of the assumption of proportionality, we can see
that the modal transformation, discussed in Section .2.5.5.1, will alwo
decouple the equations of motion (Eq. (2-89)) into a «wot of n

independent SDOF models and each of them can be solved as discussed in

Section 2-4.

Hence, in the modal domain, Eq (2-89) is expressed in terms of

diagonal modal mass matrix [ M ], diagonal modal damping matrix | ¢ |,

and diagonal modal stiffness matrix [ K ] as

[M]{a)+ [ C] {q}t + [ K] {q} =4I} (2-109)
where

[Cl=M"(Cl ¥l =a [M]+B8 K] (2-110)
and [¥] is the modal matrix evaluated for the free undamped casc The

P equalion of motion of Eq (2-91) is
M g +Cq+K q =TI (2-111)
or
q +(C/7M)g+wq =T /M (2-112)
r r r r r r
and using Eqs. (2-7) and (2-12), Eq (2-94) becomes
. . 2 _ -— _
q + 20rqr+ wq = Fr/ Mr (2-113)

For mass-normalization (ﬁr = 1) and Eq. (2-95) becomes

. . 2
= (2~
q_ + Zorqr+ wq r 2-114)
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Fquation (2-96) is illustrated in Figure 2-1.

Hyoteretic damping was discussed in Section 2~4-4 under one
depree-of-freedom system but it can be extended to multiple

degree-of -freedom system. The damping vector ((FHD}) will be given by

{F ) = jIHKx} = y[Kl{x} 0 (2-115)

and its equivalent viscous damping matrix will be given by

¥
c; = W o g (2-116)
w w
where [H] is the hysteretic damping matrix.
Comparing Eq. (2-80) with Eq. (2-98), we have

a=0and B = (2-117)

€=

Hence, the equations of motion can be uncoupled and solved as

discussed previously.

Considering the general case of proportional damping, i.e. the
damping in the system is of the form given by Eq. (2-90), it can be
shown that the r‘" eigenvalue and eigenvector, for a viscously damped

system, will be as follow:

Af =tV - pf ;P = a/(20) + (Bw )/2 (2-118)

r
and

(gyiamped o (yyundenped (2-119)
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In the case of Hysteritic damping, considering the general case ot

proportional damping, 1i.e.
[Hl = o [M] + B [K] (2-120)

the mode shapes for the damped system are again identical to those of

the undamped system and the eigenvalues take the complex form.

Aot (1 ) (2-121)
r r r
where
2 - — 2 o
w =K /M ; n =B+ o« (w ) (2-122)
r r r r r
Thus, both undamped and proportionally damped systems behave in .
similar manner. The various parts of both systems move either in phase
or 180° out of phase with each other. This mean that the modes have
well defined modal points or lines and appear as a standing wave, ...
all points on the system pass through their equilibrium position

simultaneously. The modes characterized by this property are classificd

as normal modes.
Normal modes should be expected in structures that have very light

(Cr < 0.2) or no damping, or when the damping is distributed in the

same way that the inertia and stiffness are (proportional damping).

2-5-5-4 Damped System - Non-Proportional Damping

When the damping is not proportional, the modal matrix obtalned
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from the undamped system will not diagonalize the damping matrix.
In this rase, the equations of motion can be solved simultaneously or

uncoupled by using the state space method.

Basically, the state space method converts the set of n second

order differential equations to an equivalent set of 2n first order.

The mode shapes of such systems are complex . They can be
considered as propagating waves with no stationary nodal points and
nodal lines as shown in Figure 2-23. These can be expected in systems
that have localized damping, such as structures with spot welds and

discrete isolators/dampers.

In order to carry-out experimental modal ‘testing on such
structures, multiple exciter techniques should be used.. The main
reason is that larger amount of vibration energy can be fed more
uniformly into the structure than with single excitation. In addition.
closely spaced modes are often encountered in these structures and this
technique will be able to isolate each principal mode. Hence, the modal
testing results based on one exciter position may not agree with those

based on another exciter position.

Since, Experimental modal testing based on multiple exciter

techniques is beyond the scope of this thesis, it is not presented here.



a)

b)
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(Standing wave) Node point

Complex Mode
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N

(Propagating wave)

Figure 2-23: Typical Mode Shapes (8]
a) Normal, b) Complex
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2-6 (Egrlclusion

In this chapter, basic definitions and concepts of experimental
modal analysis are presented. The modal testing assumptions are
discussed. The structural response of a single-span uniform beam with
end conditions hinged-hinged is shown in five different domains:
physical, mathematical, time, frequency and modal domains. A complete
review of a SDOF system is presented discussing the relations between
the mathematical domain and the modal domain for both viscous and
hysteretic damping. Multiple-degree—-of-freedom models are then

discussed in relation with the definitions and concepts.
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CHAPTER 3

MECHANICAL FRF MEASUREMENT TECHNIQUES

3-1 Genergl

-
-

-

In the previous chapter, mathematical dynamic models of SDOF and
MDOF were derived. Equations of motion were derived in terms of [M],
[C], and [K] and their solutions or responses (FRF) were described by a
set of three modal parameters. Experimental modal analysis is the
inverse of this; i.e. to extract the modal parameters from the measured

FRF and to identify the system matrices.

There are two types of vibration measurement for experimental
structural analysis, namely, signal and system analyses. Signal
analysis consists of measuring only one variable (usually a response
level) at one or several points on a system under operating conditions
to identify the source(s), in the case of noise or vibration (also
called trouble-shooting), or to monitor the response levels to prevent a

mechanical failure (also called mechanical monitoring).

In the case of system analysis, both input(s) and response(s) are

measured to determine the inherent dynamic properties (FRF), and to

82
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extract from them the experimental dynamic model, modal model, or modal
parameters. This experimental analysis is also known as modal testing.
[t can be carried-out by using either a single o1 multiple exciter
techniques. The mechanical frequency response tunction (FRF)
measurement techniques are often referred to as mobility measutement

techniques.

In this chapter, the different measurement technigques which are
currently used for experimental modal testing are discussned. Sinece the
important aspect of the experiment is to measure meaningtul data, to
the purpose of building the experimental modal model, rules of thumb are
highlighted to minimize the most common errors that can ociur 1n
measuring input and output signals and in computing frequency response

functions.

3-2 Measurement Hardware

Mobility measurement techniques require three basic hardwarc
components: a vibratory excitation mechanism; a transducer for measuring
the excitation and response of the system; and a dual-channel Fast

Fourier Transform (FFT) analyzer.
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The vibratory excitation mechanism provides a known or controlled
input to the structure. The response transducer system converts the
mechanical motion of the structure into an analog electrical signal.
The FFT analyzer converts both the output and input analog signals into
digital signals and computes from them various functions such as instant
spectrum, auto-spectrum, cross-spectrum, Frequency Response Function
(FRF), Coherence function, etc. This hardware requirement is

illustrated schematically in Figure 3-1.

3-3 Frequency Response Function (FRF) Estimation

Certainly, one of the most important and crucial phase of
experimental modal testing is acquiring meaningful Frequency Response
Function (FRF) measurements. The FRF is a complex function and is
defined as the ratio of the Fourier Transforms of the system output x(t)
to the system input f(t); i.e.

%(jw) G (jw)

FRF = H(jw) = (3-1)

F(jw) Gr(jw)
where
(++]

R(jw) = Gx(jw) = I x(t) exp(-jwt) dt, spectrum of the output signal
0
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[+ 0]
Fljw) = Gf(jw) = J f(t) exp(-jwt) dt, spectrum of the input signal
0

Although the FRF can be computed from Eq. (3-1)}, in practice, two
estimalors are used to estimate the true FRF. They are based upon the
calculation of the cross-spectrum between of the input and output

signals and their auto-spectra.

The first estimator is denoted Hl, and is derived by premultiplying
both the numerator and denominator of Eq. (3-1) by the complex conjugate

of the ir.ut Fourier transform F. to obtain:

G (jw) G (jw)
W, (o) = = = X . (3-2)
Gfr(Jw) |F(Jw)|
where
- .
er(jw) = F (jw) %X(jw), cross-spectrum
G, (Juw) = F-(jw) F(jw) = |F(jw)|2, input auto-spectrum

and where * indicates complex conjugate.

Similarly, the other estimator is obtained by premultiplying by the

complex conjuguate of the output Fourier transform, ﬁ':

6 (jw) [k [%(jw)|?
= = (3-3)

Nz(jw) = -
fo(Jw) fo(Jw) Gfx(Jw)
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where
Gxx(jw) = i.(jw) ¥(jw) = lﬁ(jw)lz. output auto-spectrum
fo(jw) = ﬁ'(jw) F(jw), cross-spectrum
Gfx(Jw) = fo(Jw)
Equations (3-2) and (3-3) are commonly used by modern FFT analyzet to

estimate the Frequency Response Function.

The usefulness of these two forms of FRF can be seen from the tacl
that the uncorreleted noise, if exit and is significant, can be removed
or reduced from the computating of the cross-spectrum through an

averaging process so that:

1. H1 gives the best estimate of the true FRF at low levels
(antiresonances) since all the uncorrelated noise at the output i

suppressed,
2. H2 gives the best estimate of the true FRF at high levels
(resonances peaks) since all the uncorrelated noise at the input i,

suppressed.

Hence, Miand HZ are the upper and lower bounds of the true

Frequency Response Function (FRF), i.e.

H = H = H (3-4)
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Figure 3-2 compares graphically H with Hl, and H with Hz .

From this and other reasons that will be discussed in the other
sections, MZ was selected as the FRF estimator for the cases studied and

presented in Chapter 4.

3-4 Coherence Function

The Coherence function is a measure of linearity between the input
and output signals and 1is defined as the ratio between the
cross-spectrum and the auto-spectra of the input and output signals. It
is calculated on a digital Fourier analyzer as:

< 2
” Ier(Jw)l H

wrx(Jw) = = (3-5)
G”(jw) Gxx(,jw) H

It is wused basically in conjunction with Frequency Response
Function (FRF) as a means of detecting a number of possible errors in
the measurements at any specific frequency.. The bounds for the

Coherence function are between 0 and 1, i.e.

0=q9° =1 (3-6)



a)

b)

|4

Figure 3-2: Typical Comparison between: a) M and HI, b) H and M?
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A value of 1 indicates no noise in the measurements and full linear
input/output relationship whereas a value of 0 indicates pure noise in

the measurement.

A typical Coherence function of a good FRF measurement shows a
value close to 1 (higher than 0,95) [5] at the resonance peaks and
values close to 0 at the antiresonances as shown in Figure 3-3.
Therefore, attention should be paid only in the resonance frequency

regions to accept or reject a measurement.

Coherence less than unity at the resonance peaks can be caused by

the following error sources:

® Noise at the output of the system (response to unmeasured
excitation forces)

® Aliasing error (discussed in Section 3-7)

®m Resolution bias error (discussed in Section 3-8)

m Noise at the input not passing through the system

® Non-linearities of the system (discussed in Section 3-13)

m Scatter of impact point/direction

3-5 Signal-To-Noise Ratio Function

As with the Coherence, signal to noise ratio function provides at
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Excellent Input/Output Relationship

1:

2: Anti-Resonance Zone where Noise in the Output Measurement is High

3: Non-Linear Behavior at Resonance

Figure 3-3: Typical FRF Measurement and its Corresponding Coherence

Function
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any one frequency an indication of the quality of the measurement by
computing the relative system noise. Also, this function is useful to
verify if a particular excitor is appropriate to test a given mechanical
structure. For example, the selection of an impact blow hammer or a
small shaker to test a large complex structure may not be appropriate

and this will be seen by a low signal to noise ratio.

This function is defined as the ratio between the coherent output
power, COP(jw), and the non-coherent output power, NCOP(jw). The
coherent output power expresses the power at the output due to the
input, whereas the non-coherent output power expresses the power at the

output due to system noise and are defined as:

|G, (Jw)|® )
COP(jw) = —X = 7., (Ju) 6_ (jw) (3-7)
G (jw) X o
£f
Sy . 20 = 2 . _
NCOP(jw) = Gxx(Jw) COP(jw) (1 wfx(Jw)) Gxx(Jw) (3-8)

Hence, the signal to noise ratio function, is given by:

COP ( jw) 72

S/N (ju) = = ’“2 (3-9)
NCOP(jo) 1 - 3%
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A rule of thumb to obtain reasonably good accuracy in the aclual
vibration measurements, the signal to noise ratio should be at least

40 dB.

3-6 Random and Bias Errors

Random errors are caused by noise which appear with ditterent
magnitude and phase at each observation. These errors can only be
minimized by averaging independently the estimator used to compute the
FRF measurement. Hence, the accuracy of a measurement showing small
values of Coherence and signal to noise ratio can be improved taking
more averages. Figure 3-4 shows the relationship between the normaiized
random error and the number of averages to compute for different wvalues
of Coherence. For example, for a Coherence 72 = 0,1 - approximately
2000 averages are required to get a normalized random error smaller than

5% (~ £ 0.45 dB).

On the contrary, bias errors are systematic errors which appear
with the same magnitude and phase at each observation. These errors can

only be minimized by using a different estimator.

The most common typical error sources encountered when making FRF

measurements can be classified into two classes of error (R = Randon
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Figure 3-4: Normalized Random Error Versus Number of Averages (6]
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error and B = Bias error) along with the best estimator ( Ml or H)) to
be used to minimize a particular error source, and also giving an idea
about when the Coherence function 72 can be utilized to detect them.

This is shown in Table 3-1.

3-7 Aliasing Error

Aliasing error is a bias error which occurs when imprope: sampling
time 1is used. The sampling time is denoted AT and is directly
proportional to the spectral resolution of an FFT analyzer. Ihe

spectral resolution is defined as:

Frequency Span
AF = (3-10)
Number of Spectral Lines (N} - 1

Thus, The record length, T, is the inverse of the spectral resolution

T =17/ AF (3-11)

Therefore, the sampling time will be the ratio between the record

length divided by the number of samples (n) used to convert the data

from analog to digital:



Table 3-1: Best Estimator (i}l1 or lHZ) Versus Classe of Errors

Est imator Detection
of error

Sources of Error by
estimator

Hl Hz 2

¥

Noise at the output
(response to unmeasured R B YES
excitation forces)

Noise at the input B R YES
Random
B/R B/R YES
Non-linear System Excitation
Deterministic
Exclitation B B NO
Scatter of impact point / direction R R YES
Random
B (B) YES
Leakage Exci tation
Deterministic B B NO

(impact)

B = Bias error (systematic)
R = Random error (minimized by averaging)
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(|

AT

(3-12)

jo]

For example, the digital to analog converter of the Bruel & Kjaer
Dual ( Channels A and B) FFT Analyzer - model 2032, digitizes the analoy
signals (input signals) into 2 x 2048 samples for each record measured
in the baseband mode, i.e. not in the =zoom mode. These digitiszed
signals are Fourier transformed with a spectral resolution of 801
lines/signal. Hence, by lixing the frequency span, the spectial
resolution, record length and sampling time are automatically compul ed
by the analyzer. In our example, if frequency span is set to 200 Hz, the
2032 computes the other parameters to: AF =250 mHz, T =4 s, and

AT = 1,95 ms.

The sampling theorem, or Shannon's sampling theorem [7], states to
avoid leakage, that the sampling time, AF, must be chosen such Lo
provide at least 2,5 samples per cycle of the highest frequency to be
calculated. In our example above, we can show that this analyzer used
2,56 samples per cycle at 200 Hz which is the minimum requirement of the

theoren.

However, most modern digital analyzers provide built-in antillasing
filters which cut-off frequency higher than about half the maximum
frequency of interest, also called the Nyquist frequency. Hence, as a
rule of thumb, the frequency span must be at least twice the maximum

frequency of interest. For example, if we are looking for singularities
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in the frequency bandwidth of 0 to 100 Hz, the frequency span should be

200 Hz with centre frequency set to baseband.

3-8 Resolution Bias Error

Resolution bias error occurs when the peak itself is narrower than
the resolution of the analyzer as shown in Figure 3-5. This effect is
also called leakage since the impulse response is longer than the record
length of the analyzer as shown in Figure 3-6. This error can be
detected by a Coherence less than unity. Band selectable Fourier
Analysis (BSFA) also called Zoom Transtorm, or simply Zooming is 2
technique to improve the measurement in a frequency region by using an
increased spectral resolution. This mode can be evoked in the 2032
analyzer by changing the centre frequency from baseband mode to zoom

mode and specifying a centre frequency.

Generally, to carry-out modal testing, a white noise spectrum is
used to excite all the modes of a structure within a frequency band of
interest. Since this type of spectrum can be measured without leakage
error, we can experimentally verify that Hz estimator reduces the error
dramatically. Figure 3-7 compares Mx and MZ estimates for two different
spectral resolutions. We can see that even for a 1low Coherence

(72= 0.48), N2 seems to cancel-out the error. This can be explained by



|

|

Resolution Bias Error (Be)

Q

Figure 3-5: Representation of the Resolution Bias Error
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Figure 3-6: Time Histories and their Corresponding FRF
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Figure 3-7: Example Comparing H and IH2 with Leakage for Two Different

Spectral Resolutiond [5]
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the fact that HZ is the ratio between two spectra both prone to leakage
errors and there ratio reduces the error. ml, by contrast is a ratio
between a spectrum with leakage and a spectrum without leakage and their

ratio does not reduce the error.

3-9 Discrete Fourier Transform Error

Digital Fourier analysis assumes that the signal is exactly
periodic in the record window. When this assumption is violated,
leakage occurs and energy leaks into adjacent frequency channels. This
effect can be reduced by multiplying each data record in the time domain
by a weighting function such as a Hanning window. Figure 3-8 shows

these concepts for a sinewave.

3-10 Overlapping Analysis

Overlap analysis is a common function of modern analyzer, and it
defines the degree of overlap between the time records as shown in
Figure 3-9. Hence, the number of statistically independent spectra
averaged can be set by this function. Table 3-2 shows the measuring

time of the 2032 analyzer for 100 averages with different degree of
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Table 3-2: Measuring Time for 100 Averages with Different Degrees of
Overlap and T = 2 sec. (i.e. Freq. Span = 400 Hz) (6]

Degree of Overlap Sampling Time Period
0% #A T = 200s :
e .
50% T+(#A-1)7 = 101 5
— -
75% TH+(#A=1) g - 515,
MAX 20s
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overlap and the record length T = 2 s. 0% overlap is also called

sequential averaging.

3-11 Averaging Methods

Averaging 1is a statistical method to reduce the variance when
analyzing random data and to recover coherent signal buried in
noise. The averaging methods currently available in a modern FFT

analyzer are: linear, exponential and peak averaging.

Linear averaging is defined as:

1 X
Y=[1-__]v + — (3-13)
n -1
n n
where
Yn = average after n ensembles
ﬂhl = previous average after n-1 ensembles
th
Xn = the n ensemble

This method calculates a linearly weighted average so that all ensembles
have the same influence on the average and the average 1is always
properly scaled. This is the most popular averaging method used by test

engineers.
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Exponential averaging is defined as:

1 X
Y=[1-—]Y + — (3-14)
n-1
where
N = total number of ensembles used to calculate the average, and

where the other parameters have the same meaning as gliven for linear

averaging.

This method calculates an exponentially weighted average so that the
newest ensemble has largest influence on the average and older ensembles
are gradually forgotten. Using this type of averaging method with a
transient type of excitation will provide weighting to the FRF

measurement so that only the fundamental frequency will remain.

In peak averaging, each spectral component from each ensemble s
compared with the corresponding peak "averaged" component and the

largest value is retained.

The number of total ensembles or averages to use depends on the
type of errors present in the measurement and the accuracy required. If
most errors in the measurement are bias errors, averaging cannot reduce
the errors. On the other hand, random errors can be minimized and In
this case Figure 3-4 gives the number of averages to be used to obtain
a desired normalized random error for a given Coherence. We must keep

in mind that increasing the number of averaging increases the length of
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the experiment. Hence, efforts should be made to find the error
sources, e.g. replace a bad electrical wiring, in order to record good
measurement using a small number of averages. A rule of thumb is to use
3 to 5 averages to verify that the measurement has constant value and

its Coherence is close to unity.

3-12 Frequency Bandwidth of Interest

In general, for a given FFT analyzer, selecting a high frequency
bandwidth reduces the time required to take the measurements due to
shorter record length. However, this increases the resolution bias
error due to low spectral resolution but decreases the aliasing error
due to more samples per cycle are calculated for the highest frequency

of interest.

When an experimental modal test specifies the frequency range of
interest to evaluate the major modes of vibration of a mechanical
structure, the frequency bandwidth must be selected so as to include at
least the specified frequencies of interest. If the lower frequency
range of the specification is greater than zero Hertz, preliminary
testing should be carried-out with the lower frequency bandwidth set at
0 Hz in order to verify that the highest rigid body mode of the test

system does not interfere with the lowest flexural mode of the structure
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(see Section 4-2-1-2). In addition, to reduce the allasing error, the
upper frequency bandwidth should be selected twice as the one specitied

in the test requirements as discussed earlier in Section 3-7.

When the purpose of a test experiment is to build a modal model to
simulate Structural Dynamic Modifications (SDM), the selection of the
frequency bandwidth should be large enough to include all the vibration
modes or singularities which contribute to the overall dynamics ot the
structure, otherwise large errors will incur. These errors are called
modal truncation errors. As an analogy, when simulating the dynamics ol
a mechanical system using Finite Element Analysis (FEA), appropriate
master Degrees-Of-Freedom (DOF) should be selected to have conflidence in
the results. A rule of thumb in FEA is to select the master DOF in such
a way to compute twice the number of modes of interest. In modal
testing of course, which modes does not cause “"significant" errors when

left out of the modal data set is a matter of engineering judgement.

3-13 Nonlinearities in Experimental Modal Testing

One of the most important assumption of experimental modal testing
is linearity which implies that the measured FRF (i.e., measured
properties of the structure) obey the superposition, homogeneity and

reciprocity definitions. I[f non-linear behavior 1is expected in a
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structure or is detected in the FRF measurements, modal testing can only
make a linear approximation. In this case, the best linear
approzimation can be obtained by using a random excitation waveform that
will remove the non-linearities through ensemble averaging. However, if
it is preferred to describe the non-linear behavior in the structure an
excitation waveform that permits maximum amplitude control should be
chosen (e.g. sinusoidal excitation), Hence, it 1is important to
understand the various types of non-linearities, and certainly, to

detect them in the measured FRF.

The most common types of non-linearities encountered in mechanical
systems are due to clearance between parts, non-linear damping, and
load-sensitive stiffness. Clearance between parts are frequently
encountered in geared systems and shafts mounted on bearings. The usual
approach to minimize these errors is to preload the system through a
soft spring to take up clearances so that the resonances associated with

the preload (rigid modes) lie below the frequency range of interest.

Non-linear damping are usually seen in mechanical systems
with joints or mounts, where the damping values are function of the
relative displacement at the joint. Hence, if the point of excitation
Is close to a joint, the relative motion at that location will be high,

and thus the apparent damping in the measured FRF will be high.
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The last common type of nonlinearity is encountered in mechanlical
systems where the spring rate (dk/dx) of elastic elements either
increases (so-called hardening type spring system) or decreases
(so-called softening type spring system) with vibration amplitude.
Figure 3-10 shows the characteristics for some symmetrical spring
arrangements. In the case of hardening type spring system, the
resonances are shifted toward the higher frequencies as the dynamic load
increases, whereas, in the case of softening spring type system, the
resonances are moved toward the lower frequenciles. Figure 3-11
illustrates how the resonance curves change for various levels of
excitation for both spring types and linear resonant systems.
Figures 3-12 and 3-13 show the instability regions and a measured FRF of
a typical hardening spring type resonant system respectively. Hence,
this non-linearity can be detected by comparing measured FRF for various

vibration amplitudes.

3-14 Response Transducer System

The response transducer system 1is one of the basic hardware
component required to carry-out vibration measurements. It is generally
composed of two distinct equipments, namely a measurement tranducer and
a signal conditioner/amplifier as shown in Figure 3-14 and are selected

in pairs. The measurement transducer measures the mechanical motion of
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Force, F(x) |

a) b)

c)

S

Displacement, x

Figure 3-10: Typical Force Versus Displacement Characteristics for Some
Symmetrical Spring Arrangements: a) Hardening Type Spring,
b) Linear Type Spring, c¢) Softening Type Spring
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Figure 3-12: Typical Resonance Curve for a Hardening Type Showing the
Region of Instability (Hatched Areas)
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the structure subjected to vibration in terms of displacement, velocity
or acceleration. The signal conditioner/amplifier conditions the output
signal generated from the measurement transducer into a measurable
signal. For example, a piezoelectric accelerometer is used to measure
acceleration and produces an electrical charge proportional to the
acceleration to which the transducer is subjected tu and the conditione:

provides a voltage output signal.

Displacement can be measured with LVDT (Linear Variable
Differential Transformers), and displacement proximity probes. Velocity
can be measured using an LVT (Linear Velocity Transducer}, microphones,
and laser velocity-transducer. Acceleration can only be measured using
accelerometers. It does not normally matter which quantity is actually
measured because these quantities are interrelated by simple
differentiation or integration. Accelerometers are small in size and
offer a wide useful frequency range compared to the displacement and
velocity transducers, and therefore are always used when carrying

vibration measurements.

3-14-1 Accelerometer Selection

The selection of a suitable accelerometor is principally based upon
its useful frequency range and its sensitivity. In general, one should

select the most sensitive unit that can operate within the frequency
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range of interest. However, higher the sensitivity is, the heavier and
larger is the transducer, and thus higher is the interference with the
structure (see Section 3-14-3, mass loading effects). A rule of thumb
is to use a light accelerometer when testing light structures. Other
factors should also be considered such as the transducer operational
environment and its sensitivity to environmental changes. 1In addition,
for accurate measurements, especially when testing a structure that is
vibrating simultaneously in several directions, the accelerometer
cross-axls or transverse sensitivity should be as small as possible,
i.e. less than 1-2 per cent of the main sensitivity [9]. A graphical
illustration of transverse sensitivity of a typical accelerometer is

shown in Figure 3-15.

3-14-2 Accelerometer mounting

There are various attachment methods for mounting an accelerometor
to the surface of a test structure. The most common methods are:
screwed stud, cement stud, wax, adhesive tape, and magnet. In general,
as the convenience of the method improves, the stiffness contact between
the accelerometer and the structure diminishes which reduces the useful
frequency range of the accelerometer as shown in Figure 3-16. However,
this rarely gives problems in experimental modal testing since the upper
frequency of interest is seldom beyond 100 Hz. Another attachment

method that 1is very convenient is to use "Fun-Tak", a registred
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Figure 3-16: Accelerometer Attachment Methods and their Corresponding
Frequency Response Limits
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trademark of Lepage’'s Limited. This adhesive 1is very similar to the
modelling wax and can be used repetitively and it adapts to the shape of
the structure so that the accelerometer can be mounted at almost any
points in any desired directions. The mounting is simple by placing a
piece of Fun-Tak on the structure and pressing on it the accelerometer.
Elastic rubber band can be used in conjunction with this material to
increase the stiffness contact and to hold the accelerometer firmly in
place. In addition, the connecting cable should be attached to the test
structure to avoid noise due to dynamic bending or compression and
tension of the cable as shown ‘typically in Figure 3-17. This
mechanically caused noises are sometimes called tribo-electric effects,
or simply microphonic noise. Fun-Tak can be conveniently used for this

purpose.

3-14-3 Accelerometer Location

The minimum of data to be measured on a structure to identify its

modal properties corresponds to the measurement of either one row or one

column of the FRF matrix [2]. In the case of measuring a row, all the
FRF curves share the same response points (i.e., the accelerometer
position 1is kept constant during the experiment). Conversely, when

measuring a column, all the FRF curves share the same excitation point.
Hence, if it is decided to measure a row of the FRF matrix, care should

be taken to avoid selecting a location at or close to a node of one or
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Figure 3-17: Correct Clamping of an Accelerometer Cable to Minimize
Cable Noise Due to Cable Whip
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more of the structure’s modes, otherwise the measurement of that or

those modes will not be identified.

In view of this, the accelerometer location should be selected from
the FEA results, if exit. If not, measurements should be taken at other
DOF's locations to check that all the modes are seen. In general, the

selection of an extremity point on the structure is a good choice.

However, mounting an accelerometer away from a node of a glven
vibration mode increases its mass loading effects which tends to lowel
the measured resonance frequencies. Figure 3-18 shows the mass loading
effect for a free-free beanm. Non contact transducers are more

appropriate on light structures to give minimum loading.

Also, we should keep in mind before selecting the accelerometer
location (or the excitation location)} that the measurement of either a
row or a column implies a driving point measurement, l.e. exciting the
structure and measuring the driving-point response at the same locatlon,
and in the same direction. This can be achlieved by using an impedance
head (an integrated force and response transducer), by placing the force
and response transducers in line but on opposite sides of the structure
(if permitted) or by measuring the excitation very close to the

accelerometer as illustrated in Figure 3-19.
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Impedance Head

Figure 3-19: Possible Driving-Point Response Mesurements [5]
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3-15 Excitation Waveforms

In this section, five types of excitation forms which can be used
for making FRF measurements are discussed. The five types are: (1) pure
random, (2) pseudo-random, (3) periodic random, (4) sinusoidal, and
(5) transient. Each one possesses a distinct set of characteristics and
identified and compared in Table 3-3. A common point between them is
that they all require, except for transient excitation waveform, a
well-designed fixture and an exciter system (i.e. a shaker and a signal

generator).

3-15-1 Pure Random

In statistical terms, a pure random signal has a Gaussian
probability distribution as shown in Figure 3-20. Each sample of data,
T seconds long, has random amplitude and phase at each frequency. This
is the single most attractive characteristic of a pure random signal for
FRF measurements. Indeed, the structure is subjected to a wide
vibration amplitude, and ensemble averaging randomizes any non-linear
effects, and extraneous noise in the measurement data. This excitation

method ylelds the best linear approximation in a mean-square sense.

Its auto-spectrum tends to be a flat spectrum as the number of

averaging increases as illustrated in Figure 3-21. Hence, the overall



TABLE 3-3: Characteristics Comparison Between Excitation
Waveforms [S5] and [19]

WAVEFORM Pure
CHARACTERISTICS Random
Analysis Speed slow
Leakage Error yes
Linear es
Approximation y

2
¥ — Detects es
Non-Linearities y

2
¥ - Detects es
Leakage Errors y
Force Level es
Easily Controlled y
Force Spectrum no
Easily Shaped
Peak-To-RMS

no

Energy Level

Requires an Exciter es
System and a Fixture’

Zoom Analysis yes

Crest Factor

S/N Ratio fair

Pseudo
Random

fast

no

no

no

no

yes

yes

yes

yes

yes

fair

Periodic Sinusoidal
Random

slow very slow
no no
yes no
yes no
yes no
yes yes
yes yes
yes yes
yes yes
yes yes
fair good
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Transtent

fastest

somet ime:s

somewhat

somewhat

somewhat

no

no

no

no

no

poor
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Amplitude, A(t)
)

Time, t

Random Signal

PlA(L)]
]

A(t)

Amplitude Probability Density

Figure 3-20: Random Signal and its Amplitude Probability Density
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force level and frequency range can be easily controlled as shown in
Figure 3-22. However, due to the impedance mismatch between the shaker
head and the structure, the averaged force spectrum measured on the
structure at the shaker attachment will be a quasi-flat spectrum as
shown in Figure 3-23. The shape of the force spectrum can ideally be
improved by using a some form of closed-loop force control system, but
practically, it is difficult. Fortunately, when carrying out modal

testing, this problem is not important.

The main drawback of this excitation method is that the
auto-spectrum contains leakage because the signal is not periodic within
the measurement window as discussed in Section 3-9. Hence, a weighting
function should be used to minimize the leakage, and the best window

function to use is a Hanning window [12].

3-15-2 Pseudo-Random

A pseudo-random signal is a periodic random signal of T seconds
which is repeated with every measurement of the analysis. This signal
can seen as a collection of sinusoids with the same amplitudes but
random phases. Thus, due to the periodic nature of the signal, the

spectrum is leakage-free.
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Figure 3-23: Quasi-Flat Spectrum
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However, ensemble averaging has no significant effect than reducing
the extraneous noise because the structure is excited with the same
spectrum (i.e. constant amplitude and phase at each frequency) for every

measured FRF measurement.

This technique is the fastest one for making statistically accurate
FRF measurements in the case when the measurement is relativelly free ot

extraneous noise and the system behaves linearly.

Since the structure is excited with a constant spectrum, it can be
easily shaped to account for the exciter system characteristics by using

a compressor.

In order to take advantage of this waveform, it is important to

make certain that the signal generator 1is synchronized with the

analyzer measurement window.

3-15~3 Periodic Random

e

This excitation signal takes the begt features of pure random (sece
Section 3-15-1) and pseudo-random (see section 3-15-2). Indeed, it is a
periodic signal and several uncorrelated ones are generated for ecach FRF
measurement taken. Figure 3-24 compares pure random, pseudo random, and

periodic random waveforms together. Using an FFT analyzer, the steps to
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take one measurement would be as follow:

1)
2)

3)

4)

S)

6)

7)

Generate the first pseudo-random signal (" A " signal);

Excite the structure with that " A " signal;

When the structure is vibrating in its steady-state condition
(i.e., most transient part of the response has died-out), take
the first ensemble average measurement (i.e. press start pushkey

on the FFT analyzer);

Remove the excitation signal (for safety and as usual ptocedur ¢
when changing the excitation signal);

Synthesize the second pseudo-random signal (" B " signal);
(this signal is not correlated to the first one);

At steady-state condition, take the second ensemble average
measurement (i.e. press proceed pushkey on the FFT analyzer ),

Repeat steps 4 to 6 for additional averaging.

However, the main drawback of this technique is that it takes much

longer time than the pseudo-random approach. Indeed, the time requiroed

to remove the excitation signal, to generate and excite the structure

with the new signal, and to allow the transient part to die-out hefore

taking a new ensemble averaging (steps 4, 5, and 6) can be very long,

especially when using an hydraulic shaker and carrying out several

ensemble averages.

3-15-4

Sinusoidal

Sinusoidal excitation is a classical method of exciting a
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structure. Stepped-sine, slow-sine (linear sweep) and fast-sine
(logarithmic sweep) are the most popular sinewave methods for measuring

FRF. Each of them have their own merits and drawbacks.

This waveform 1is not a very effective excitation method to

carry-out modal testing for the following reasons:

m Lowest excitation frequency is limited to several Hz
@ Analysis speed is very slow

m Less acurate results due to non-linearity, extraneous noise, and
leakage errors in the measurements

However, this method is the best of all to investigate structural
non-linearities at any specific frequency when the forcing frequency can
be controlled manually. Indeed, the excitation force can be controlled
accurately and large amounts of energy can be input to the structure at

almost any frequency.

Figure 3-25 illustrates the distorting effect on the FRF
measurements versus the sweep rate for a given structure. This can be
explained by the fact that steady-state response level cannot be
attained when the frequency is swept too fast. Therefore, optimum sweep
rate should be prescribed for a given structure when carrying out FRF
measurements. Fortunately, there is an I70 (International Organization
for Standardization) Standard that prescribes maximum linear and

logarithmic sweep rates to pass through a resonance and is given in
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Figure 3-25: FRF Measurement by Sine Sweep Test - Distortion Effect of

Sweep Rate [2]
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reference [2].

Chirp testing is a logarithmic swept-sine testing whereas the
duration of the swept-sinewave 1is generated in T seconds which
corresponds exactly to the analyzer’'s measuring window. Hence the
signal is periodic, and its spectrum is leakage free. However, this
method has the inability to average-out non-linear effects as the
pseudo-random excitation. Before using this excitation technique, one

should verify that the sweep rate does not violate the ISO Standard.

3-15-5 Transient

There are two forms of transient testing, namely, step relaxation
and impact testings. Both forms do not require a costly exciter system
(shaker and signal generator) and a well designed fixture to attach the
exciter to the structure as in the other excitation techniques discussed

above.

Step relaxation requires a bit more complicated system set-up than
the impact method but it is better adaptable to both too fragile or too
heavy structures. Indeed, a lot more energy can be input to the
structure without causing local damage. Basically, the structure is
preloaded to some acceptable force level through an inextensible,

lightweight cable and suddently the cable is severed. At that instant,
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both the transient input force and response are measured.

In the case of impact testing, the structure is excited through the
use of an impactor such as an impact hammer, or a sledge hammer. This
is the most popular and widely used excitation technique for carrylng
out modal testing and probably for the following add'..onal reasons:

This testing method is:

s Inexpensive compared to other methods.

@ Practical for preliminary investigations.

® Convenient for checking accuracy of the modal model.

m Efficient for verifying that the fixed DOF can measure (in the
case of a row measurement) or excite (in the case of a column FRF

measurement) all the modes of interest.

m Extremely fast for quick test set-up and only a few averages
are required.

® Portable and very suitable for field measurements.

There are, however, a number of errors and drawbacks to be
considered before using this testing technique. One major error occurs
due to the fact that the input force is not easily controlled because it
is difficult to maintain the position, orientation, and force level
between successive measurements. Hence, the measured FRF will not be a
true representation of a point measurement upon which the modal
technique is based, but a surface measurement. Also, if the range
between the overload and the trigger (underload) levels 1is set

relatively large in the FFT analyzer, non-linearities in the system can
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be excited and linear approximation cannot be made for non-linear
systems unless large number cf averages are taken. But by doing this,
we loose its main advantage, i.e. its speed. On the other hand, if this
range .s set relatively small, non-linearities cannot be excited, thus

linear approximation cannot be made for non-linear structures.

Multiple impacts (or hammer bounce) happens when the impactor is
too heavy or the experimentalist is not skilled. In this case, the
measured FRF will be erroneous as illustrated in Figures 3-26 and 3-27

and must be rejected.

The crest factor describes the "peakiness" of a signal and is
defined as the ratio between its peak value and its standard deviation
(RMS) as shown in Figure 3-28. Since, this technique has a high crest
factor, it may not be well-suited for certain types of structure. For
example, the sufficient energy required to measure a good FRF on a large
structure might be difficult to apply without damaging the structure

locally.

In order to use this technique efficiently, several concepts must

be understood before undertaking a complete test.

Figure 3-29 shows a typical impact force signal with its
corresponding spectrunm. The spectrum 1is continuous with maximum

amplitude at 0 Hz and decaying amplitude with increasing frequency. The
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Figure 3-29: Typical Impact Force Signal and its Corresponding Spectrum
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useful frequency range is limited at a frequency fc. also called the
cut-off frequency, at which point the spectrum magnitude has decayed by
10 to 20 dB maximum [{13]. There is a direct relation between the first
cut-off frequency, fc, and the duration of the pulse TC. Figure 3-30
shows a square, triangular and half-sine wave pulses of equal energy and
time duration along with their respective autospectrum. In the case of
a square type pulse, the first zero crossing occurs at a frequency

approximately equal to the inverse of the time duration, i.e.

= — (3-15)

c | square pulse

[+

For a more general pulse, like the half-sine wave, the relation is

approximately given as

¢ |general pulse

2

= — (3-16)
T
c

We can see from these relations that shorter the pulse length, the
higher is the frequency range. Hence, the useful frequency range of an
impactor depends on 1its configuration. Indeed, an impactor can be
configurated by selecting a tip and a head combination to rioduce the
desired shape and duration of the pulse signal to suit the measurcment
requirements. A rule of thumb is as follows: stiffer the tip and
lighter the impactor mass , the shorter will be the duration of the

pulse and thus higher will be the frequency limit of the impactor.



146

Amplitude

-10

Half-Sine Pplse / X N -

Square Pulse

Spectrum Level, dB
&
o
1

-40
50}
Triangular
60k Pulse
1 i
0 500 1000 1500 2000

Frequency, Hz

Figure 3-30: Frequency Spectra of Three Pulses of Equal Energy [13]
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Figure 3-31 illustrates these concepts.

In terms of signal processing, a good rule of thumb is to insure
that the sampling rate (AT) set in the FFT analyzer is at least twice
the time duration of the impulse. This would put the first t ot a

square pulse at the Nyquist folding frequency, and the first f of the

C

other pulse shapes above the Nyquist folding frequency [13}.

When using this technique to carry-out experimental modal testing,
it is recommended to use weighting windows to remove the noise in both
the force and response signals, respectively. By applying a rectangula:
transient window, the noise outside the window length is set to zero.
Hence, it is important to choose the length of the force window so that
the entire excitation signal is included. For the reasons discussed in
(13], the best form of window to select is with unity amplitude for the
duration of the impulse and a cosine taper, with a duration of 1/16 ol

the sampling time , from unity to zero as shown in Figure 3-32.

On the other hand, the noise in the response signal generally
occurs when the record length is shorter than the decay time. This is
typical when testing lightly damped structures. Indeed, the truncattion
in time signal will be seen in the measurement as leakage in frequency
(leakage error) as shown in Figure 3-33. The leakage error can
be reduced by weighting the response signal with an exponential window

as shown in Figure 3-33. Hence, leakage due to truncation is avoided,
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Figure 3-31: Effects of Different Impact Hammer Configurations [5]
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Figure 3-32: Cosine Taper Force Window [10]
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but the apparent damping would be too high in comparison to the existing
damping of the structure and thus estimated damping value would have to

be corrected as discussed in Chapter 4, at the end of Section 4-2-3.

In the case of heavily damped structures, the record length s
generally much longer than the decay time, and the measurement wliil be
contaminated by noise (bias error) as shown in Figure 3-33. This can
be detected by a poor signal-to-noise ratio. Hence, an exponatial
window would remove the noise from the signal. Since, the decay of the
response signal is much faster than the weighting function, there is no

need to correct the measured damping.

3-16 Conclusion

In this chapter, rules of thumb and practical aspects of mechanical
mobility measurement techniques are presented. Measurement hardware,
FRF estimators, quality of measured data, errors relating to signal
processing, non-linearities in structures, response transducer system,

and excitation waveforms are discussed in details.
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CHAPTER 4

EXPERIMENTAL MODAL TESTING: CASE STUDIES

4-1 General

In the previous two chapters, the theoretical aspecty of modal
testing and the procedures for obtaining FRF (Frequency Response
Function) measurements are discussed. Although a good knowledge of all
materials presented in the previous two chapters are a prerequisite to
understand the experimental modal testing method, a good and an
extensive hands-on experience is essential to properly carry-out the

modal testing.

In this chapter, step-by-step process involved in carrying out an
experimental modal testing, wusing a computer-aided modal analysis
software, 1is presented by illustrating two case studies: a small and

lightweight and three large vehicle structures.

Modal 3.0 SE software developed by Structural Measurement
Systems Inc. (SMS), is utilized as the computer-aided modal analysis
software to characterize the structures, to accept the FRF measurements

from the FFT analyzer, to process the measured data, to estimate the
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modal] parameters, and to display and animate the mode shapes.

The lightweight structure studied is a snowmobile frame as shown in
Figuie 4-1. The structure consists of welded s‘'eel tubes with straight
and curved geometry. Some areas are reinforced using thin steel plates.
The structure weight approximately 20 kg and its overall dimensions are

1,0 m long by 0,6 m wide by 0,4 m high.

The large vehicle structures studied are three rail-wagons with
some geometrical differences and are shown in Figures 4-2 to 4-4. All
three wagons are constructed with stainless steel beams covered with
corrugated stalnless steel skin. The tare weight of these wagons is
approximately 60 000 kg with a maximum payload capacity of 30 000 kg.
The overall dimensions of the wagons are: 26,0 m in length, 5,5 m in

height, 4,1 m in width.

4-2 Case I: Modal Testing of the Snowmobile Frame Structure

The objective of this test is to obtain a mathematical description
of its dynamic behavior using computer-aided modal analysis software.
The mathematical description consists of estimating its basic modal
parameters (modal frequency, modal damping, and mode shape) in the

frequency range of interest: 0 to 100 Hz.
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Figure 4-1: Pictorial View of the Snowmobile Frame Structure
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To carry-out this modal test, there are basically four steps
involved in the measurement and data analysis procedure and they are

examined in details in this section. These steps are :

For measurement

w Step 1 - Setting up the modal test.

® Step 2 - Making the measurements.

For data analysis

m Step 3 - Estimating the modal parameters by curve-titting.

m Step 4 - Documenting the test results.

4-2-1 Step 1 - Setting Up the Modal Test

Step 1 can be divided into eight phases and are discussed in

detail in Sections 4-2-1-1 to 4-2-1-8.

4-2-1-1 Choosing the Degrees of Freedom (DOF) and Laying Out

the Test Points onto the Structure

In theory, the motion of a free point can be described by
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three translations and three rotations for a total of six DOFs.
However, in practice rotational DOFs are difficult to measure due to the
absence of suitable rotational-transducers but translational DOFs are

usually sufficient to describe the motion of a point.

The selection of the test points and the directions that are
to be tested or measured depend heavily on the purpose of the
experiment. If a test simply consists of estimating the resonances of a
structure for validating an analytical model, or predicting the amount
of additional damping to be applied (e.g. by spraying) on the structure
so as to obtain the desired critical damping, only a few DOFs are
required. Also, when troubleshooting a vibration, noise or failure
problem, perhaps only a few measurements in the vicinity of the problem

arca is required.

On the other hand, if a complete mathematical description of
the vibrating behavior of the structure (modal model) is sought for a
qualitative validation of a Finite Element Model (FEM), then sufficient
test points must be used to describe all the mode shapes of the
structure within a frequency band of interest. For most practical
structures, a set of regularly distributed tLest points in one or two
directions is adequate. If a quantitative comparison of measured
(experimental) and predicted (analytical) mode shapes is desired, then
the structure should be discretized using the same coordinates used in

the theoretical model.
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When the experimental modal model is wused to cat ry-out
computer analysis for calculating response, and modification and
verification simulations, the minimum FRF measutements required is at
least one row or one column of the FRF matrix. A column FRF measur ement
is measured when the exciter is always exciting at the same point
(point p) and the responses are measured at all the other lest point:,

layed-out on the structure including the excitation point.

It was decided that 25 points are sufficient to describe the
motion of the snowmobile structure. These were clearly marked and
numbered on the structure using masking tape. Cartesian coordinate
system was used to measure the coordinates of all the test points The
origin of the coordinate system was located on an axisymetric point
(point # 2 in Figure 4-1) to facilitate the measurement of the
coordinates on the structure. The measured coordinates arc listed in
Table 4-1. Each line of this table identifies a point on the structure
by its point number and its coordinates on the X, Y and Z axes. COURD
1, COORD2 and COORD3 identify the point location on the X-axis, Y-axit
and Z-axis respectively. Once this was done, the structure was formed
in the software (CRT display) by connecting the points by straight 1linc
segments as in FEM where the nodes are connected by elements. Table 4-/
lists the display sequences and Figure 4-5 displays the schematic

three-dimensional model of the discretized structure.
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Iable 4-2: Connectivity of the Test Points (Snowmobile Frame)

[

IR OW OO &= )
. e .

s p

=
Nd- L
. 8

Fa
(o))

18.
19

- - e

0.

4

- - o
~ -~
oot o
Z3.
~d
2
5.
25.
5

o | o

28.
29.
30.
31

- -~

-~
s »

33.
4.

«xx DISPLAY SEQUENCE TA3LE

START POINT

1 1
[Radl aB BN TR Sl SO I O I 08 [\N] [ I |
NOW SO O@OA N0 WH DO W,

1 )
SN SN

P e

!
[3C 3 )
nw

-

[ B B N ]
[V B I o

.—J
(W]

x K<

END POINT

17

19



X
Origin (Point #2) ———~//

Y

Figure 4-5: Schematic 3-D Model of the Snowmobile Frame Structure
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The number of DOFs (test points, and directions) to measute on
the structure is a matter of engineering judgement. For the snowmobile
frame, simple mode shapes (longitudinal twist, vertical bending and
perhaps lateral bending) are expected in the frequency range ot intetest
(0 to 100 Hz). Therefore, these mode shapes can be adequately described
by two translations at each point. Hence, the total DOFg were limited
to fifty (25 points times 2 directions), measured in the vertical
direction (Y-axis) and lateral direction (Z-axis) at all the twenty five

points layed out on the structure.

4-2-1-2 Preparation of the Test Structure

The modal test results are directly influenced by the way in
which the test structure is prepared. A structure can be prepared in .
"free-free" condition or "grounded" condition. It is always preferable
to test a structure in a free-free condition due to the ftact that the
modal test results involve more degrees of freedom, and hence at a later
time, some of the DOFs ca be deleted to estimate the modal parametoer

for the "grounded" condition.

Truly free-free condition cannot be achieved but can be
approximated by mounting the structure with soft restraints. In this
case, the structure will exhibit rigid body modes which are dependent on

the mass/inertia property of the structure and the stiffness of the
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supports. Hence, the natural frequencies of the rigid body modes will
no longer be 0 Hz. Ewins [2], suggests that to minimize the influence
of the rigid body modes on the flexural ones, the highest rigid body
mode frequency is less than 10-20% of that for the lowest (fundamental)

flexural mode.

In the case of the snowmobile frame, the structure was hung
from the ceiling by soft elastic strings along its longitudinal axis as
shown in Figure 4-1.. It should be noted that this hanging direction is
perpendicular to the primary excitation direction, and thus it ensures

minimum interference on the flexural modes.

4-2-1-3 Choosing the Excitation Technique

Basically, there are two types of testing techniques which can
be performed to carry-out a modal test: hammmer testing and shaker
testing. The first of these is the simplest and fastest type for
obtaining good modal estimates and consists of attaching one response
transducer (usually an accelerometer) at one of the points layed-out on
the structure along a given direction and then impacting the structure
at all the test points and in all directions where the mode shape motion
is desired. Hence, one row of the FRF measurement matrix is measured
through this approach. It is also possible to measure one column

instead of one row of the FRF measurement matrix by exciting always at
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the same point and measuring the responses at all points along the
desired directions. This second method has no advantage and can only
introduce more errors into the modal data and certainly slow down the
experiment. However, there are certain types of structure for which

hammer testing is ill-suited and shaker testing has to be used.

Generally, shaker testing is preferred because the oxcitation
level and frequency content can be controlled more accurately and lhu,
obtaining better modal estimates. The shaker is normally attached
somewhere to the structure, with a load-cell inserted between the shaker
and the structure to measure the force input. An accelerometer is used
to measure the responses at all the points along the selccled
directions. Pseudo-random type waveform excitation is the most popula:
one utilized to drive a shaker since it can cover a wide frequency 1ange

and average-out leakage errors as discussed in Chapter 3.

A Briiel & Kjaer electrodynamic exciter body model 4801 with an
exciter head model 4812 as shown in Figure 4-6 was utilized to carry oul
the modal testing on the snowmobile structure. A Pseudo-random waveform
generated using a Brilel & Kjaer FFT analyzer model 2032 was used, with

power amplification to drive the shaker.
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Shaker Exciter Body
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Model 4812
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Figure 4-6: Bruél & Kjaer Electrodynamic Shaker with its Sine Performance
Chart [15]; Head Type 4812 and Exciter Body Type 4801
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4-2-1-4 Setting Up the FFT Analyzer

A dual channel FFT analyzer model 2032, manufactured by Briel
& Kjacr, was utilized to record the input and output signals and to
compute several functions such as the inertance-FRF, the Coherence
function, the auto-spectra, etc.. The analyzer was configurated as
shown in Table 4-3. The measurement mode was set to "Dual Spectrum
Averaging" for this case study. Figure 4-7 shows a simplified block
diagram for this measurement mode. The trigger mode was set to
"Generator" so that the trigger input 1is synchronous with the
pseudo-random noise sequence as discussed in chapter 3. The delay
between trigger and start of channel A was set to zero milli-second.
Linear averaging was set with ten averages per measurement (estimates
where satisfactorily smooth after 10 averages). The frequency span was
set to 200Hz with center frequency set to baseband, i.e. from O to 200
Hz, which corresponds to twice the frequency band of interest. The
weighting was set to ‘"rectangular" as recommanded when using
pseudo-random excitation. Channel A (input force) and channel B (output
acceleration) where set in engineering units to 2,25mV/N and 10,3
mV/m/sz. which correspond to the sensitivities of the force and response

transducers after conditionning.
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4-2-1-5 Calibration of the Forgg‘ggﬁgggsg Tr§9§ducer Combination

It is recommanded, before carrving-out any oxpetimental

testing, to calibrate the equipment or measurement devices which are

used to collect the data in order to verity theitr inteprity, and it
required, to measure calibrated data. The procedure 1 qtromly
recommended if the modal model will be used tor catrying out computes
analysis.

There are two types of calibration that can be conducted
before carrying out a modal test. The first type consists  of

calibrating the individual transducers (force and response tranducer:,)
to verify that their sensitivities are in the same range as tho.e
specified by the manufacturer(s), and also to verif% that they are
behaving linearly with amplitudes in the frequency band of interedl
without any phase shift. The most commonly used transducers for modal

testing are accelerometers and load-cells.

The second type consists of calibrating the force/tesponse
transducer combination, to detect any errors in Lhe cables, connectors,
conditioner and analyzer, to 1insure that all gains, polarity and
attenuator settings in the system are correct, and to verify that the
pair of transducers being used are matched in the frequency band of

interest.
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A piezo-electric accelerometer manufactured by PCB
Presotronie, model # 308B {SA= 10,3 mV/(m/sZ)} was used to measure the
penpon e, (avcelerations) along the Y- and Z-directions at the 25

elected measurement locations.

A FKistler force transducer model # 912 (SF= 2,25 mV/N} was

used to measure the input force signal at tho driven point.

An casiest way to calibrate the force/response transducer
combination was Lo measure the inertance-FRF using a known mass as shown

in Figures 4-8 and 4-9. From Newton’s second law:
Force = Mass x Acceleration (4-1)

and the inertance-FRF is defined as:

Acceleration (jw) _ 1
Force (jw) Mass

Inertance (jw) =

Thus, for any frequency, the amplitude of the inertance-FRF should be a
constant and equal to 1/Mass with a phase of O degrees. The amplitude
of the inverse measured inertance-FRF in Figure 4-10 is 2,32 kg, which
corresponds to the total mass (mass of the accelerometer + mass of the
calibration block) during the calibration-testing. The Coherence
function and the signal-to-noise ratio were also computed to check the

quality of the measurement and they are shown in Figures 4-11 and 4-12
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Figure 4-9: Pictorial View of the Force Tranducer-Accelerometer for
System Calibration
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Inversed Measured Inertance-FRF of System shown in
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Figure 4-11: Coherence Function of System shown in Figure 4-9
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3STORED MALN ! 59 318

Figure 4-12: Signal-To-Noise Ratio of the System shown in Figure 4-9
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respectively. The Coherence function shows a perfect value of 1 and
the signal-to-noise ratio shows an average value of 60 dB (>> 40dB).
Henee, the input and output signals are very coherent with low levels of

noise.

Similarly, if hammer testing would have been utilized instead
of shaker testing, the calibration of the force/response transducer
combination could be carried-out by measuring the inertance-FRF using a

pendulum system as shown in Figure 4-13.

The measured inertance-FRF can be made into a non-dimensional
form by multiplying it by the total mass utilized to calibrate the
force/response transducer combination. This was done in the FFT
analyzer by dividing the response sensitivity (CH.B) by 2,32 kg and is
shown in Figure 4-14. The non-dimensional function (the inverse of the
function shown in Figure 4-12) was stored on the computer hard disk for
compensating for all measured FRF’s at the data analysis stage. This
function is shown in Figure 4-1S5. This process is often refered as

equalization process.

4-2-1-6 Exciter and Load-Cell Positioning and Connection

The selection of the exciter location should be chosen so that

all the modes in the bandwidth of interest are stimulated. If the
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selected location (one of the discretized points) is close to a nodal
point, i.e. a node of a particular mode, the corresponding renonance
will probably be either difficult to identify or absent from the
measured.  Generally, the best location for an exciter is at a corner of

the structure where both the symmetric and asymmetric modes will exhibit

maximum motion.

When simple mode shapes are expected or modal information is
available from an analytical model (e.g. FEA) , several good locations
can be identified. In this case, the location that should be retained
(the optimal location) is the one where the exciter can be easily

attached to that point.

It is possible to verify experimentally that the chosen
location does not correspond to a nodal point of the structure for the
mode shapes of interest. The easiest way to verify it, is to use an
impact blow hammer and make a few driving point measurements (Htt) at
other DOFs, i.e. at other points and in different directions, and check
if all the resonances identified at those DOFs are see at the chosen

DOF .

Since simple mode shapes where expected in the frequency range
of interest for the snowmobile frame (from O to 100 Hz), the best
location for the exciter was found to be at point # 1 (refer to

Figure 4-5) along the Y-direction, i.e. at a corner of the frame. The
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Y-direction was chosen as the direction of excitation for two reasons:
Maximum motion was expected along that direction for all the expected
mode shapes and this direction was convenient ftor attachement element ot

shaker to the structure

The load-cell was stud-mounted onto the body frame (through a
threaded hole) to measure the input force as close as possible to the
structure. The exciter was placed directly on the floor with "Fun Tak"
between the floor and the exciter to hold it in place. A 30 ¢cm long,
slender push rod was bolted between the load-cell and the exciter head

as shown in Figure 4-16.

4-2-1-7 Mounting the Response Transducer (Accelerometer)

An accelerometer decribed in Section 4-2-1-5 was utilized 1o
measure the vibration at all DOFs. Since, the frequency range of
interest was low, "Fun Tak" with elastic rubber was used to hold the
accelerometer at the selected points on the structure. Figures 4-17 a
and b illustrate pictorially how the accelerometer was mounted for

H and H measurements, respectively.
12/-1Y -1y/~1y
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-s— Snowmobile Frame
Structure

Load-Cell
Conditioner

—— Load-Cell at Point #1
Along Y-Direction

30 cm Connecting Rod

Figure 4-16: Pictorial View of the Shaker and Load-Cell Positionning
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Connecting Rod

Load-Cell

Load~Cell Conditioner

Figure 4-17: Accelerometer Mounting for: a) H Measurement,
b) H 1z/-1y

-1ly/-1y
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4-2-1-8 Checking the Measurement Set-Up

Figures 4-18 a and b show the equipments used to carry-out the
modal test on the snowmobile frame structure. At this stage, it Iis
important to verify that the shaker does not change the system
signif icantly. In order to verify that, the structure was first excited
at -1Y using an impact blow hammer without the shaker attached. An
accelerometer was used to display on an oscilloscope the response at
-1Y. From this display, fundamental frequency of vibration was read
directly when most of the higher harmonics have died-down. Figure 4-19
shows a picture of the scope taken at that moment. We can see that the
fundamental frequency of the frame structure is =pproximately 41 Hz.
Using the modal test set-up, the inertance-FRF was computed for impact
hammer testing. The inertance-FRF was measured at the same DOFs using

now the shaker with a pseudo-random waveform.

In addition, before taking the complete FRF measurements, several
functions were computed for the driving point inertance-FRF measurement.
The following functions were observed for each of them. The
auto-spectrum of the input force signal shown in Figure 4-20 is a
satisfactorily flat force spectrum. The Coherence function and the
signal-to-noise ratio, shown in Figure 4.21 a and b are acceptable. The
Co-Quad display format of the inertance-FRF is shown in Figure 4-22. It
can be observed in the quadrature plot, the magnitude is zero except at

the modal frequencies which indicates that the modes would be normal.
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Figure 4-18 b: Impact Blow Hammer Used for Exploratory Testing



10 ms/cm —7

Output Signal from
Acceleromeler Power Unit

Figure 4-19: Output Signal from the Accelerometer When Most Higher
Harmonics Died Down - Frequency Around 41 Hz
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Note that the coincidant (in phase response) goes to =zero at the
quadrature peaks. Finally, the inertance-FRF shown in Figure 4-23 shows

anti-resonance peaks between resonances.

Another aspect in the measurement set-up is to verity whether the
frequency of the lowest flexural mode (41 Hz) is greater than 5 to 10
times of that for the highest rigid body mode. The highest rigid body
mode frequency was identified from Figures 4-22 or 4-23 to be
approximately 2 Hz. In order to verify this, the frame was excited o
that frequency using a sinusoidal waveform, and found to cause the frame
to vibrate in a vertical rigid bounce mode. Hence, the above condition

was met.

Finally, other FRF measurements were taken to compare the magnitude
of the inertance-FRF along the three axes, and to verify for the
reciprocity and symmetricity of the frame structure. For comparing the
magnitude, FRF measurements were taken along each axis for two different
excitation DOFs (-1Y and =-12). Figures 4-24 to 4-26 and 4-27 to 4-29
compare the magnitude along one direction with another for the two
different excitation DOFs respectively. From the results, it can be
concluded that Y is the dominant vibrational axis. The 2™ dominant

axis can be either Z- or X-axis and it depends on a particular mode.

For checking the reciprocity, four FRF measurements were taken at

the following DOFs: -1Y / -3Y, -3Y / -1Y, -1Y / -12, and -1Z / -1Y.
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Figures 4-30 and 4-31 compare the first two and the last two
measurements, respectively. We see that they are almost exactly the

same.

Finally, for checking the symmetricity, four FRF measurements were
also taken at the following DOFs: -3Y / -3Y, -1Y / -1Y, =232 / -1Y, and
=232 / -3Y. Figures 4-32 and 4-33 compare the first two and the last
two measurements respectively. We see that they are almost exactly the

same.

Hence it can be concluded that the snowmobile frame is almost a

symmetrical structure and satisfies the reciprocity theoren. Also, it

can be concluded that the main vibration axis is the Y-axis.

4-2-2 Step 2 - Making the Measurements

Fifty measurements were taken sequentially at each location In one
direction at a time, starting with the vertical direction (Y-axis), and

then in the lateral direction (Z2-axis).

A total of 10 samples per measurement location were taken to
compute the inertance-FRF's. The coherence function and the
signal-to-noise ratio were computed before accepting and storing a

measurement.
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All the measurements were divided by the previously stored
equalization function (Fig. 4.15S), for the reasons discussed in

Sect jon 4-2-1-5,

In order to easily spot potentially bad measurements and to
identify the major modes of wvibration, each data set, 1i.e. the
measurements measured along the Y-axis and the Z-axis, is plotted in a
waterfall window as shown in Figures 4-34 and 4-35. Basically, it is a
three-dimensional plot with frequency along the horizontal axis, the
amplitude along the vertical axis, and the measurements along the depth

axis. From these plots, we can observe the following:

m There are no indication of bad measurements in each data set
® Both data sets show six dominant peaks within O to 200Hz

® The 24Lh measurement in Figure 4-34 shows an additional peak
® The modal density is relatively small

m The FRF amplitude along the Y-axis is larger than along the Z-axis

The six dominant peaks values were quickly identified one at the
time. They are approximately in Hertz: 2, 41, 80, 108, 136 and 186.
The additional peak value in measurement #24 was identified to be around

31 Hz.

From Section 2-4-18, it is known that the first and second peaks

correspond to the highest rigid body and the fundamental flexural modes
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respectively. Hence, the two dominant modal frequencies of the

snowmobile frame are: 41 and 80 Hz.

It can be observed, from these plots, that there is only one mode
which exists at 41 Hz, whereas two or more modes seem to exist at the
other 4 modal frequencies. This was expected in our structure since il
has numerous joints. Hence, there are some closely spaced modes which

are often encountered in such complex structures.

Although we mentionned in Section 4-2 that the frequency range ot
interest was from 0 to 100 Hz, in a practical sense, this structur.
would never experience, in its working environment, a frequency beyond
60 Hz. Indeed, an engine in a snowmobile would practically never r1un

beyond 3600 RPM, i.e. 60 Hz.

The only reason why the frequency range of interest was selected to
be from O to 100 Hz is that it provides more peaks in the FRF signal <o
that it helps one to discuss on the various modal properties.
Otherwise, the frequency range of interest would have been selccted from

0 to S50 Hz with the FFT analyzer set to O to 100 Hz.

An interactive utility program of MODAL 3.0 SE software was used to
obtain animated deflection shapes of some of the previously located
peaks without going through a formal curve-fitting operation. This

utility program is a very useful and quick method to calculate the
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complex amplitude at a given frequency for each of the displayed

measurements.

From the waterfall plots constructed using the 50 FRF measurements,
the deflected mode shapes were obtained at 2, 31, 41 and 80 Hz. The
mode shape at 2 Hz shows the vertical rigid body mode. The 31 Hz shows
the vertical bending of point 24 only, i.e. the only point of the
structure that was moving was point 24 and it was moving along the Y
axis (bending in the Z-X plane). Finally, both the 41 and 80 Hz show a

longitudinal twist mode.

It should be noted, however, that the modal damping cannot be
obtained through this utility program and formal curve fitting has to be
carried-out. Also, the results of this investigation would not be

sufficient to do structural modifications.

4~2-3 Step 3 - Estimating the Modal Parameters by Curve-Fitting

Formal curve-fitting estimates first the pole locations and then
the residues at all measured DOF’'s for each of the estimated pole
location. Each pole location can be either estimated from any single
measurement (local curve-fitting) or from all the measurements (global
curve-fitting). This process represents the manipulation of a large

amount of data since for each FRF measurement the FFT analyzer gives us
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800 complex values. Therefore, manual techniques is not practical and

computer—-aided techniques are essential.

The Modal 3.0 SE software was utilized to estimate the modal
parameters of the snowmobile frame structure. The software has two
groups of curve-fitting methods available: Single Degree-of-Freedom
(SDOF) and Multiple Degrees-of Freedom (MDOF) methods. They are used
for systems with 1light and heavy modal coupling respectively.
Figure 4-36 shows a typical FRF measurement with both light and heavy

modal coupling.

The SDOF curve-fitting method is based on SDOF assumptions. There
are several SDOF fitting algorithms available in the software such as
circle fitting, polymonial, etc. The polymonial fitting algorithm is
preferred to any other ones because when comparing the original

measurement with the synthesized one, it often gives good results.

The overall SDOF curve-fitting procedure involves three steps.
The first step consists of curve-fitting all the modes of Interest to
calculate the residue using any single FRF measurement for each mode.
Usually, the driving FRF measurement along the dominant vibration axis
is the one used since this DOF is at the vibration source and
consequently this FRF will generally have lower modal density, 1i.e.
clearer peaks. Then one must define a cursor band around each modal

frequency. Each of them should be defined to compromise between
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COMBINING SDOF & MDOF METHODS

» use SDOF methods on LIGHTLY COUPLED modes
« use MDOF methods on HEAVILY COUPLED modes

SDOF MDOF
(hght coupling) (heavy coupling)
1, 2, and 3 4, 5, and 6

1 2 4 g

3 6

Figure 4-36: Typical FRF Measurement with Both Light and Heavy Modal
Coupling (4]
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including as many data points as possible, to maximize the statistical
estimation, and ensuring that the other modes will not become dominant
and the SDOF assumption becomes invalid. The second step consists of
estimating the remaining residues based on the estimated pole locations
and using the same curve-fitting algorithms and cursor bands. The last
step consist of sorting the entire sel of residues to obtain a mode

shape for each mode.

The overall MDOF curve-fitting procedure is similar to the SDOF
curve-fitting and involves all three steps. The only differences are
that the cursor band is defined to include two or more modal frequencics

and the curve fitting algorithms are based on MDOF assumptlons.

Figure 4-37 shows a typical FRF measurement having four modes. The
quality of modal results, from curve-fitting, depends strongly on the
user’'s skill and experience in making the right assumptions. If it is
assumed, for example, that the four modes behave like MDOF for the
system, i.e. curve-fitting the four modes using one single cursor band
with MDOF algorithms, the results will certainly have large errors in
the estimated modal parameters. A good assumption would be to define
and use, as shown in Figure 4-37, two cursor bands and a combination of

SDOF and MDOF algorithms.

The accuracy of the results depends also on the cursor bandwidth

used to fit the modes. To illustrate that, the driven FRF measurement
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at 41, and 108 Hz had been curve-fitted with different cursor bands.
SDOF algorithm was used to fit each mode. The modal results are shown
in Table 4-4. The table shows the estimated modal parameters, namely,
the modal frequency, damping factor, and modal residue (amplitude and
phase) for five different cursor bands. The first cursor band was
defined so as to have only one spectral line on each side of the peak
(minimum cursor band that an operator should try to use). Fach
subsequent ones was increased by one spectral line on each side of the
peak. It can be seen that the modal results change as the cursor band
increases and then they become stable. Hence, this simple example shows
the importance of defining an adequate cursor band to curve- fit a modc.
As a rule of thumb, a negative damping factor should be rejected, and

the investigation should be carried-out with increased cursor band.

In addition, curve-fitting can be done in a "local" or "global"
sense. The most popular one falls into the category of local fitting.
That is, each pole location can be estimated from anyone measurements.
Once the pole locations are estimated, they are used to estimate the
residue from all the measurements, that is at all DOFs. On the other
hand, global curve-fitting evaluates the global parameters (pole
locations) based on all measurements using the least square method. It
generaly estimates the pole locations more accurately. Also, since the
residue is often tighly coupled to damping, the estimation of residue
will also be generaly more accurate. The steps involved in using global

curve-fitting in SMS software are given here because they are not




Table 4-4: Modal Results Using Different Cursor Bands

Measurement Number:
D.O.F.’s: -1Y /7 -1Y

Spectral Resolution: 0,25 Hz

Cursor Band (Hz) 0,50
41,3 Hz Mode

Freq. (Hz) 40,50
Damp. (%) -108, 05u
Amp. (MPS2/N)-SEC 0,12
Phase (Deg.) 127,66

108,3 Hz Mode

Freq.
Damp.
Amp.

(Hz)
(%)
(MPS2/N)-SEC

Phase (Deg.)

LE R

: Overflow Error

1

e
L2
LR 2 ]
L2 ]

1,00

40,49
0,16
76,73
4,14

107,28
0,93
468,25
95,14

1,50

40,49
0,16
76,52
3,24

108,00
0,47
74,57
336,09

2,00

40,49
0,16
76,13
2,88

107,96
0,48
79,43
345,60
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2,50

40,49
0,16
73,24
2,64

107,91
0,44
72,12
353,83
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explicitly explained in the SMS manuals. Referring back to Figure 4-37,

the steps for global curve-fitting the four modes would be as follow:

Set the cursor band around the first peak (as discussed above),

Give the mode range: 1 to 1,

Give the measurement record range: 1 to n (n = Number of FRI
measurements),

Estimate the first pole location based on the n FRF measurements,
Estimate the residue at all DOFs for that mode only,

Set the cursor to encompass the other three peaks,

Give the mode range: 2 to 4,
Give the measurement record range: 1 to n,
Estimate the three pole locations based on n FRF measurements,

Estimate the residue at all DOFs for the three modes.

Hence, the estimation modal parameters can be carried-out in two steps.

Sometimes, it is very difficult to locate the frequency of a
particular mode. This is especially true in the case where the modal
density is high and the random noise is significant. In that case, an
alternative method to the waterfall one is to plot a FRF measurement
(receptance or inertance FRF) in four different display formats and then
verify that a specific condition is satisfied simultaneously in each
of them to recognize a mode. The specific conditions are: a peak In

the Log magnitude format display and a phase close to %90 degrees (or a



phase shift) in the Phase format display; a positive or negative
amplitude in the Imaginary format display and a magnitude of zero in the
Real format display. Note that the last two conditions will be reversed
when using the mobility-FRF's. Figures 4-38 to 4-41 show two
inertance-FRF measurements (at DOFs 232 / -3Y and ~-23Y / -3Y), plotted

in those four display formats.

An extension of this method would be to plot all the FRF
measurements on the same sheet using anyone of the four display formats.
The fifty measured inertance-FRFs of the snowmobile frame was plotted on
the same sheet in the Imaginary format display. This 1is shown in
Figure 4-42. Hence, this last plot clearly highlights the major modes

of vibration along with the local ones.

Another powerful method to help locating the frequency of a
particular mode consists of computing a composite spectrum using all
the FRF measurements that will accentuate the modal peaks. SMS software

provides the following computation methods:

1) Squaring and summing the Imaginary portion of the measurement
2) Squaring and summing the Real portion of the measurement

3) Squaring and summing the Imaginary and Real portion of the
measurement

4) Summing the square root of the sum of the Imaginary and Real
portion squared
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Figure 4-38: Phase and Log-Mag. Display Formats of the Inertance-FRF
Measurement Measured at 23Z2/-3Y
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Figure 4-39: Imaginary and Real Display Formats of the Inertance-FRF

Measurement Measured at 232/-3Y
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Figure 4-40: Phase and Log-Mag. Display Formats of the Inertance-FRF
Measurement Measured at -23Y/-3Y
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Figure 4-41: Imaginary and Real Display Formats of the Inertance-FRF
Measurement Measured at -23Y/-3Y
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Figure 4-42: Plot of the Fifty FRF Measurements in the Imaginary
Display Format
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The first and the fourth computation methods were used for all the

measurecment data and are shown in Figure 4-43 and 4-44.

Hence for the snowmobile frame in the frequency range of interest

(0 to 100 Hz), the following conclusions can be drawn:

s The rigid modes are clearly identified

m There is one local rode and its frequency is 31 Hz

s There are three major flexural modes (or modal peaks)

m Their frequencies are 41, 77, AND 79 Hz

s The fundamental frequency is 41 Hz

a The frequency of the highest rigid body mode (2 Hz) satisfies

the condition: fundamental flexural frequency > 10 times the
highest rigid body frequency

Figures 4-45 and 4-46 compare the synthesized FRF at DOFs -1Y / -1Y
obtained from global and local curve-fitting respectively with the
measured measurement. Also, Figure 4-47 compares these two synthesized
curves and finally Table 4-5 shows the extracted modal values obtained
by the two curve-fitting methods. We see that both methods give very
similar and accurate frequency estimates. But it seems that the local
curve-fitting fits better the amplitude of the second mode (80 Hz one)
than the global method. It seems also that the local curve-fitting
method closely fits the anti-resonance between mode one and mode two in
comparaison with the global curve-fitting method. However, SMS states

that " if damping is in large error, the residue estimate will also be
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Figure 4-43: Computed Composite Spectrum Using the First Computation

Method
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Figure 4-44: Computed Composite Spectrum Using the Fourth Computation
Method
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Figure 4-45: Comparison of Measurement at -1Y/-1Y and its Synthesized
One Based on Local Curve-Fitting Method
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Figure 4-46: Comparison of Measurement at -1Y/-1Y and its Synthesized
One Based on Global Curve-Fitting Method
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Figure 4-47: Comparison of Synthesized FRF Based on Local and Global
Curve-Fitting Methods
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in large error even though the curve-fitting function closely matches

the measurement data.

4-2-4 Documenting the Test Results

Two formal curve-fittings were carried-out, tirst using the FRF
data measured along the Y-axis only (25 measurements) and then using all
the FRF data, i.e. both the ones measured along the Y-and Z-axes (50

measurements in total).

For both results, local curve-fitting was used. Also both SDOIF and

MDOF methods with polynomial curve-fitting algorithm were used.

Table 4-6 shows the cursor bands and fit methods used to estimate
the pole locations and then the residues at each measured points. PRI
measurements measured at DOFs 24 Y / -1Y, -1Y / -1Y, and -3Y / -1Y were
used to estimate the pole locations for modes 1, 2, and 3 to 5

respectively.

Table 4-7 shows the estimated frequency and damping values for the

five modes.

The residues were sorted to obtain a mode shape for each mode. The
unit modal masses and normal modes options of the sorting command were

utilized.
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The corresponding mode shapes for using Y only and both Y and 7 FRF
data are shown in Figures 4-48 to 4-52 and Figures 4-53 to 4-57
respectively along with their values in Tables 4-8 to 4-12 and
Tables 4-13 to 4-17. We see that the mode shapes obtained trom the Y
FRF data are almost identical to the ones obtain from using both Y and /

FRF data, except for modes 3 and 4.

Mode 1 shows a local mode where basically only the rear panel is
bending. Mode 2 shows almost a pure longitudinal twist. Modes 3 and 4
are symmetrical bending modes of the lower end section where t he
symmetrical points are 6 and 12 (see Figures 4-55 and 4-56). The [ifth

mode shows a combination of the first, third, and fourth modes.

Instead of a shaker excitation, if impact hammer techniques would
have been used, simiiar results can be expected. However, the estimated
modal damping would have to be corrected if a weighting function is used
to reduce the noise on the response signal as discussed in Chapter 3.
To illustrate this, a measurement was taken at DOFs -1Y/-1Y using an
impact blow hammer. Both the input and output signals with the defined
weighted functions (transient and exponential weighting functions)
are shown in Figure 4-58. The computed FRF along with the Coherence

function are shown Figures 4-59a and 4-59b, respectively.

The pole location around the 41 Hz modal peak was estimated using

that measurement using the SMS software as discussed above. The modal
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Figures 4-48 to 4-52

Mode Shapes Based on Y-FRF Data Only
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Figures 4-53 to 4-57

Mode Shapes Based on Y- and Z-FRF Data
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Table 4-%8: Mode Shape Values - Mode #1 (Based on Y-FRF Data Only)
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Table 4-~9: Mode Shape Values - Mode #2 (Based on Y-{REF Data Unly)
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Table 4-10: Mode Shape Values - Mode #3
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(Based on Y-FRF Data Only)
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Table 4-11: Mode Shape Values - Mode #4 (Based on Y-T'RF Data Unly)
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Table 4-12: Mode Shape Values - Mode #5 (Based on Y-FRF Data Only)
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frequency and modal damping were estimated to 41,84 Hz and 0,503%
respectively. Previously, the modal damping was founded to be 0, 158%

for that mode (see Table 4-5). The calculations to correct the

estimated damping are as follow [6]:

Defining the following terms,

T, = Width of the exponential window (second), i.e. the time required
for the amplitude to decay by a factor of e = 2,72 or 8,7 dB.

c = 1/T (rad. /sec)

o = Estimated modal damping (sec™h)

w = Estimated modal frequency (rad./sec)
f = Estimated modal frequency (Hertz)

¢ = Estimated damping factor

¢ = Corrected modal damping (sec )
We know that,

c = w, = CH (2nfu) (4-2)

From [6], we have,

c. =0 -0 (4-3)
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For the example, we have

T =1 sec ; CH = 0,503% ; fH = 41,84 Hertz

The corrected damping value can be calculated as follow

c =0 -c¢ =& (2rnf ) - 1/t = 0,00503 (83,68n) - 1 = 0,322 1ad/s00
K w M M w

or

. =¢ /w =90 / (2rnf ) = 0,322 / (83,68n) = 0,123%
K M K M

4-3 Case II: Modal Testing of Large Vehicle Structures

In case II, experimental modal testing was conducted on the three
vehicle structures (rail wagons) shown in Figures 4-2 to 4-4 to cvaluate

their major modes of vibration.

The objective of each test was to determine the modal parametlers

(modal frequency, modal damping, and mode shape) in the frequency range

of S to 25 Hz.

Txploratory vibration testing was carried-out on the first
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structure using 1impact hammer, sledge hammer, and shaker excitation
techniques. It was found that both hammer techniques were ill-suited
for carrying out the testing. In the case of the impact hammer
technique, the input vibration energy was not sufficient enough to get a
good signal-to-noise-ratio (at least 20dB) even close to the impacted
point. On the other hand, although it is possible to generate high
input vibration energy using sledge hammer technique, the local stress
levels and deflections were found to be high and also the
signal-to-noise-ratio at extreme points of the vehicle structure were
small and unacceptable (i.e. far away from the exrited point). Also,
sledge hammer technique is not recommanded for such large structures,
since it is a heavy piece of equipment to be carried around to excite
all points, and also it is not safe to use when impacting points which

had to be reached using a ladder.

An electrodynamic shaker used in the modal testing of the

snowmobile frame structure was utilized for the first phase of the

testing on one vehicle structure.

The following observations and conclusions were drawn:

1) The lateral excitation with the shaker gave higher signal-to- noise

ratio compared to the vertical excitation.



262

2) The location at mid-span of the structure in the middle of a window
opening (point #43 in Figure 4-60) was found to excite all three
directions with high output (acceleration) signals at the extreme
points of the structure in the frequency band of interest. Hence,

this location was selected as the driving point for the exciter.

3) The ambient noise at the test site during the normal operation of the
plant was found to be too high and interfered on with the vibration
response signal. It was decided that in order to get good (high)
signal-to-noise ratio, the testing was carried-out when the plant was

shut-down.

Prior to actual testing, the modal geometry was prepared in the SMS
database using the engineering drawings. The structure was discretized
into 70 points and the response signals were planned to be measured
along X-, Y-, and Z-axes for all the points, for a total of 210 FRF

measurements.

From the initial phase of the testing, two more observations were
made. The first one was that the quadrature of the inertance-FRF, along
the longitudinal axis (X- direction) on the vehicle structure, was found
to be relatively small in comparison with the other two axes, i.e. Y-
and 2- directions. The second one was that the time for one FRF
measurement, using 3 averages/measurement, was approximately 10 minutes.
Based on those observations, the modal geometry «f the vehicle structure
was reduced from 70 to 43 test points and the measurements were recorded

along the Y-and Z-axes for a total of 86 measurements. A schematic






three-dimensional model of the vehicle structure is illustrated in

Figure 4-61, which includes measurement points and shaker location.

It is important that an equalization process be carried-out not
only to compensate the FRF measurements at the analysis stage, tor the
load-cell calibration and the motion transducer response crrors, but to
verify that the force transducer-accelerometer system is behaving
correctly. Note that it is important for that verification to use the

same electrical wires as in the case of the actual testing.

In addition, it is recommended to monitor the measured signals on
an oscilloscope and to compute the coherence functions and
signal-to-noise ratios to verify for the acceptable quality of the input

and output signals prior to storing the FRF functions.

For each vehicle structure, pseudo-random Iinput (0-50 Hz with
random phase was used as the excitation source. A pie~ ,-electrirc
accelerometer and a force transducer were used to measure accelerations
along Z-, and Y-directions at the selected measurement points and forces

at the actuator attachment point respectively.

The techniques to identify the modal peaks, discussed earllier, were

used.

4]
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Although the frequency range of interest was from S to 25 Hz, the
measurements were taken in the bandwidth from O to 50 Hz. The reasons
for this were to identify the vehicle rigid body modes and any elastic
modes in the low frequency range 0 to 5 Kz, Secondly, to recognize any

dominant modes in the 25 to 50 Hz region.

The second vehicle structure was discretized into 37 points for
measurements in both vertical and lateral directions. The schematic
three-dimensional models are illustrated in Figures 4-61 and 4-62 which
include measurement points (points 1 to 37) and shaker location
(point 37). An electro-hydraulic shaker system made by Ling Electronic
Inc. was used to excite the car body. It was first excited vertically
by locating the actuator at the mid span of the vehicle structure on its
logitudinal beam, i.e. at point 37 acting along Z-axis as shown in
Figure 4-61, and 74 FRF measurements were taken. Then, the vehicle
structure was excited laterally by hanging the actuator through a crane
and attaching it at the mid-span of the car body in the middle of the
window opening, i.e. at point 37 acting along Y-axis as shown in

Figure 4-62.

In the case of the vertical excitation testing, the
servo-controller of the electro-hydraulic actuator was set for a

force-feedback so that the actuator maintains a constant force.
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In the case of the lateral excitation testing, the servo-controller
was set with the displacement feedback so that the actuator was

vibrating at its mid-position.

It was found that the signal-to-noise ratio for lateral excitation
testing was much higher than the ones for vertical excitation testing.
It was also found that the modal density of the FRF measurements for the
lateral excitation testing was lower than for the vertical excitation

testing.

Also, the modal density of the FRF measurements obtained by using
an electro-hydraulic shaker was much smaller than the ones obtained
using an electro-dynamic shaker. Hence, the modal peaks were

identified quickly using the waterfall method discussed earlier.

Both FRF-measurement sets (from vertical and lateral excitation
testings) were processed and the estimated modal parameters were found

to be identical.

Finally, the third vehicle structure was discretized into 42 points
and is 1illustrated schematically in Figure 4-63, which includes
measurement points (points 1 to 42) and shaker driving point location
(point 1). The electro-hydraulic shaker was used to excite the
structure. It was decided to excite it vertically at the left corner of

the end section, i.e. at point 1 (Figure 4-63) acting along Z2-axis, and
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84 FRF measurements (along Y- and Z-axes) were taken.

bor  the three vehicle structures, the modal parameters were
cstimated in four steps for each mode using the global curve-fitting
method. Firsly, the modal peaks were identified as discussed in the

previous sections,

In the second step, the modal frequency, modal damping, and residue
were estimated by curve-fitting a single measurement. A
Single-Degree-of -Freedom (SDOF) method with polymonial curve-fitting

algorithm was used.

In the third step, the remaining measurements for that mode were
autofitted to estimate the residues at all the other discretized

locations. Finally, the residues were sorted to obtain the mode shapes.

All three vehicle structures were mounted on shop-dolly with
dappropriate suspensions and simulated payload using lead weights. For
the three vehicle structures, the highest rigid body mode-frequency was
around 5 Hz. Rolling, bouncing with small roll, and pitching were found
to be the rigid body modes for the first, second, and third vehicle
structures, respectively. The lowest flexural mode frequency for each

vehicle structure was found to be around 8 Hz.
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Finally, around 10 flexural modes were found for each vehicle
structure. As it 1is normally expected, all modes were simple modes,
such as longitudinal twist, first and second vertical bending, fiirst and
second lateral bending, and a combination of two modes, e.g. firnst

vertical bending with small longitudinal twist.

4-4 CONCLUSION

In this chapter, the process involved in catrying-out experimental
modal testing, wusing computer-aided modal analysis software, ig
discussed in detail. A small vehicle structure was used, as an example,
to illustrate the testing procedures, including the measurement and data

analysis phases.

The procedures for setting-up the modal testing and making the
measurements on the small structure were presented. Then, the modal
parameter estimating techniques and the modal results, obtained from the

testing of that structure, were also presented.

Finally, heuristic procedures for carry-out modal testing on large

vehicle structures were discussed.
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CHAPTER 5

MODAL ANALYSIS OF A SNOWMOBILE FRAME STRUCTURE

USING

FINITE ELEMENT ANALYSIS (FEA)

5-1 General

Modal testing is an experimental testing technique used to identity
the major modes of vibration of a test structure within a selectod

frequency bandwidth. The modal model or frequency domain model can be

formulated by measuring the minimum set of data required, i.c. at lcaot
one row or column of the FRF (Frequency Response Function) measurcment:,
matrix. This model is given in terms of the modal parameters, which

are: modal frequency, modal damping and mode shape.

The modal model can be used to carry-out two types of computer
analyses. The first type is called structural dynamics moditication
analysis, and consists of studying the changes in the modal properties
(parameters) of a test structure due one or several modifications in its
mass, stiffness, and damping. This analysis is very useful to solve 4
noise or vibration problem since the resonance(s) causing the mechanical
amplification of the normal operational forces can be shifted by adding

or removing mass, stiffness or damping at strategic locations on the

273
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structure, Alternatively, a tuned vibration absorber (i.e.,
spring-mass-damper viorators) can be attached to the structure and fine
tuned o to pget an acceptable structural response. In addition, this
analysis 1s very practical to simulate the test structure in its
operational environment (e.g. to add its payload, to connect it to

ground or to another structure}.

Sinusoidal forced response simulation is the second type of
analysis that can be performed using the modal model. Basically, the
vibration response of the structure is predicted due to a sinusoidal
excitation force acting at one DOF. When the structure is sub jected to
more than one sinusoidal excitation force acting all at the same
frequency, the total respons: will be the sum of the individual
responses. For example, a rotating unbalance can be simulated as two
orthogonal sinusoidal excitation forces both acting at the rotating
frequency, but 90°out of phase. In the case when the excitation
frequencies are different, true vibration response is only feasible for

linear system using modal superposition.

However, when designing or optimizing a structure, static and/or
dynamic stress analyses are needed, and the modal model cannot be used
to carry-out these since they are derivatives of displacements. An
analy tical model has to be developed and Finite Element Technique is a
well accepted method to model a structure and to calculate structural

dynamic response. Finite Element Analysis (FEA)} requires the creation
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of a Finite Flement Model (FEM). This model is a mathematical
idealization of the structure and is described by nodes, colements, and

boundary conditions.

In this chapter, the modelling of a lightweight stiucture {the
snowmobile frame structure) presented in the previous chapter e
discussed using FEA. The ANSYS-PC/LINEAR, revision 4.4, was used to
model the structure and to carry-out the modal analysis. Ihe result.,
from this analysis are compared to the ones obtained from modal testing

and conclusions are drawn.

5-2 The ANSYS-PC/LINEAR Finite Element Software

The ANSYS-PC/LINEAR program is a finite element sofwarc that run,
on 80286 or higher microprocessor-based computers in DOS (Disk Operating
System) environment. It is a general purpose finite element code for
solving many practical engineering problems (e.g., a structural enginecer
may have to study the vibration response of a bridge due Lo moving
loads, whereas an electrical engineer may have to study the magnet jo

potentials of an electric motor).

There are six different structural analysis types in ANSYS program:

Static Analysis, Modal Analysis, Transient Dynamic Analysis, Harmontic
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Response Analysis, Response Spectrum Analysis, and Random Vibration

Analysis.  They are all governed by special cases of the same general
equilibrrum equation:
[MI{u} + [Cl{u} + [K]{u} = {F(t)} (5-1)
where
{M] = Structure mass matrix (known)

—

@]

—
1]

Structure damping matrix (known)

(K1l Structure stiffness matrix (known)

{F(t)} = Time dependent forcing function vector (known)

{u} = Nodal displacement vector (unknown)
{u} = Nodal velocity vector (unknown)
{u} = Nodal acceleration vector (unknown)

5-2-1 General Finite Element Concepts

Similar to modal testing, the structure is discretized into a
number of points called nodes. These nodes should be defined, at least
at locations, to accomodate the element types (e.g. 2-D line element,
2-D surface element, 3-D solid element, etc.) selected to model

adequately each major structural component of the structure and also at
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locations where boundary conditions are applied such as displacement
constraints, applied forces, pressures, temperatuies, bedy  torces
(gravity), etc.. Additional nodes should also be detined at location:
where stress values need to be calculated in a tair amount ot detail and

also at areas where there are discontinuities in the structuile,

There are 22 different element types available  in the
ANSYS-PC/LINEAR, revision 4.4 and are summarized in Figures S-1 and &
The selection of an element type to model a particular structural membe
of a structure is based on its mathematical capabilities (“hape
functions, loading options, etc.), and on its assumplions and
restrictions For example, 2-D truss element type is an uniaxial
tension-compression element defined by two nodes with two DOFs at cach
node and would be appropriate to model a 2-D pin-jointed structure pul
would not be adequate to model a cantilever beam since bending is not

considered in the solution of this element type.

The solution of the FEM is then carried-out firstly by construct ing
the element matrices {M:], [C:]. and [KT] for each individual element
“i" of the model. Secondly, each of them are assembled into the Zloba
matrices [M], [C], and [K]. This is straightforward since the element,
are mathematically connected to each other by their nodes. Then, the
resulting global set of simultaneous equations (Equation (5.1)) are
solved for the unknowns (displacement DOFs). ANSYS uses the frontal

(also called the wavefront) equation method to perform the assembly and
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to obtain the solution simultaneously. Additional solution data such as
structural stresses are calculated from the derivatives of the shape
function. Indeed, strains are obtained from the first derivative of the

displacements and stresses from the stress-strain relationships.

The construction of the individual element matrices are derived
differently. [K:], is derived by using its element shape function and
the energy principles. 1In the case of a consistent element mass matrix,
[MT] is also obtained by using the element shape function in its
computation. When concentrated masses are used to replace the element
mass (located at the element nodes), a lumped element mass matrix is
obtained. In this case, [Mf] is a diagonal matrix (off-diagonal terms
are zero) and the sum of the nodal masses equals the total element mass.
A reduced element mass matrix will be a lumped one with no rotational
DOF. Most ANSYS element types are defaulted to consistent mass matrix

which, in general, is recommended, except in two cases [11]:

s When the structural component is small in one (or two)
dimension(s) compared to the other dimension(s) - e.g., slender

beams, very thin shells.

® For wave propagation problems.

In ANSYS, the element damping matrix, [CT], can be specified as a
combination of inertial damping, structural damping and discrete

damping:
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[CT] = Inertial damping + Structural damping + Discrete damping (5-2)

Generally, friction and hysteretic dampings are the types ot
damping encountered in structures rather than viscous damping, and are
usually approximated by a linear combination of the element mass matrix

and of the element stiffness matrix respectively as follow:

[C] = M1 + BIK] (5-3)
where o and B are known as Rayleigh damping constants. These constant«
can be related to the modal damping ratio, Cl, which are often known o1

estimated using experimental modal analysis [11]:

(5-4)

where W, is the circular modal frequency of i*" mode in radian pet

second.

The inertial (or mass) damping is a special case of Equation (5-4)

where B=0 so that

¢ = —E- (5-5)

or

o = Zwlcl (5-6)
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A body immersed in oil would be an example of extreme case of inertial

damping.

However, in most practical problems, rigid body damping can be

ignored, a=0, so that

Buw,
ci = —‘2— (5-7)
or
ZCl
B = m (5-8)

where B represents stiffness (or structural) damping.

Equations 5-4, 5-5, and 5-7 are plotted in Figure 5-3. It can be
seen that at low frequencies, a-damping, damped more than B-damping, and
at high frequencies, o-damping damped less than B-damping. Also, the
sum of the two damping functions is nearly constant over the frequency
range where they intersect. Therefore, given a damping ratio, ¢, and a
frequency range (f1 to fz)’ the following two equations can be solved

simultaneously for « and B.

o an1
a an2
¢ = + (5-10)
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5-2-2 Understanding Static and Modal Structural Analysis Types

Static analysis is, in general, the first type of analysis which is
carried-out when studying or designing a structure. The purpose of that
analysis is to evaluate the displacements, stresses, and reactionforces
of the structure under applied static loads (applied loads do not vary

with time). In this case, Equation (5-1) reduces to:

[K1{u} = (F} (5-11)

Modal analysis, also called mode-frequency analysis, is used to
evaluate the modal frequencies and mode shapes of a structure. In this
analysis type, free, undamped vibrations are assumed, i.e., {F(t)} = {0}

and [C] = [0]. Hence the basic equations to solve are:

Ml {u} + [K]{u} = {0} (5-12)

For a linear system, free vibrations will be harmonic of the form
{u} = {U}cos(wt) and Equation 5-12 will reduce to the classical

eigenvalue problem:

(K] - A[M]){u} = {0} (5-13)

For non-trivial solutions, the determinant of ([K] - A[M]) must be zero.

The solutions are the eigenvalues, Ai. and the corresponding
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eigenvectors, (U)l. They represent the natural frequencies ot the

system (wl= ' A‘ ) and the corresponding mode shapes respectively.

5-3 Modal Analysis of the Snowmobile Frame Structure Using FEA

The snowmobile frame structure is mostly made of steel pipes ot
different diameters and wall thichnesses, welded together. Some arcas

are reinforced with thin steel plates.

The modeling of this structure was particularly difficult becauae
of its complex geometry, and due to the fact that the mass of the
structural components itself represents about only 50% of the tota! masos
of the frame. The other 50% of the mass comes from of the welded
Jjoints, local components, etc, for which their approximations and
assumptions are not straightforward. Also the modeling of these small
components could easily increase the FEM size such that it becomes
unmanageable. However, since those components are local stiffners and
have very small effect on the modal properties, they were not modelled

in ANSYS.

A three-dimensional FEM was constructed with ANSYS/PC/LLINEAR,
revision 4,4.. The structure was discretized into 27 nodes, of which 25

nodes have the same coordinates and numbering of the points layed-out on
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the structure for the experimental modal analysis test and 2 extra nodes
on members. Elastic straight pipe (STIF16) and 4-node quadrilateral
shell (STIF63) element types were used to model the steel pipes and the
steel plates respectively. The FEM developed consists of 41 elements,
of which 22 elements were used to model the steel pipes and 19 elementc
to model the steel plates. Figures 5-4 and 5-5 show the FEM of the

f rame.

ANSYS/PC/LINEAR was used to carry-out modal analysis under
free-free boundary conditions. The FEM was reduced from 162 DOFs (27
nodes times 6 DOFs per node) to 81 DOFs based on Guyan reduction method
by specifying three translations on all the nodes as master DOFs shown
in Figure 5-6. Three natural frequencies were calculated in the
frequency range of 0O to 100 Hz. Their mode shapes are shown in

Figures 5-7 to 5-10.

5-4 Comparison between Experimental and Analytical Modal Results

The natural frequencies and mode shapes of the snowmobile frame
structure, obtained through FEA, are compared to those identified during

modal testing.

The first deflection mode corresponding to 30,7 Hz (experimental)
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and 30,3 Hz (analytical) are illustrated in Figure 5-7 and Table 4-7
respectively. We can observe that both of them exhibit similar local

mode, i.e. bending of the rear panel.

For the second one corresponding to 40,5 Hz (experimental) and 44,7
Hz (analytical), we see that both of them exhibit a longitudinal twist
and it corresponds to the fundamental mode of the structure. Those are

shown in Figures 4-54 and 5-8, respectively.

Finally, the fifth and the third deflection modes corresponding to
81.2 Hz (experimental) and 75,5 Hz (analytical) are presented in
Figures 4-57 and 5-9 respectively. Both of them exhibit bending of the

side steel pipes.

In addition to the mode shapes and modal frequency, the center of
gravity (centroid of mass) and the total mass of the frame structure
obtained from FEA is also compared to those found through experiment.
The center of gravity is observed to be within 104 as shown in
Table 5-1. But, the total mass estimated by the FEA is approximatly 50%
of the actual mass. This was expected since local stiffers where not

modelled in ANSYS.

Hence, this close agreement, between the analytical and
experimental modal analysis results as well as the centroid of mass

provide a high level of dynamic validation to the FE model. Indeed,
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Table 5-1: Comparison of Analytical and Experimental Centroid of

Mass and Total Mass

Centroid of Mass (cm)

X Y Z
Analytical 65,0 -10,1 0,1
Experimental 70,0 -10,0 0,0
Error (%) 7,0 1,0 ?

-
Total Mass (kg)

11,0

19,3

43,0
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this analytical model can be used with confidence to carry-out dynamic

analysis to calculate dynamic strains and stresses in time or frequency

domains

5-5 Conclusion

In this chapter, analytical modal analysis is carried-out on the
snowmobile frame structure using FEM/FEA techniques. First, the needs
of an analytical model and the general concepts of finite element
methods are presented including the procedures to define the damping in
the FEM. Finally, experimental and analytical results are compared to

validate the FEM model.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

6-1 General

Experimental modal analysis is a powerful testing method which can
be used to validate an analytical model, such as a finite element model
{FEM) . The validation consists of comparing the experimental modal
results (modal frequency, modal damping and mode shape) with the ones
predicted by the analytical model. Once the confidence in the FEM has
been reached, the modal damping of the structure, estimated through
modal testing, can be incorporated into the FEM to carry-out structural

response analysis.

Another interesting point about this testing method is that the
measured data provides another complete model (experimental modal model)

which can be used to study the effects of modifiying the structure.

In this thesis, theoretical basis, measurement and data analysis
methods are provided in order to understand properly the implications
and limitations of experimental modal analysis (modal testing) using
single excitation technique. Rules of thumb or heuristic knowledge are
highlighted to carry-out modal testing on small and large vehicle

structures and to construct, with confidence, an experimental modal

298
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model (mathematical model based on test data).

The limitations and assumptions involved in modal testing are
presented as well as mathematical definitions upon which the technique
is found. Such mathematical background information is important for the
practical aspects of the measurement process to be utilized in the

testing method.

Discussions are provided on the advantages and disadvantages of
different measurement techniques which are currently used for modal
testing. Also, rules of thumb are given to minimize the different
errors relating to signal processing, such as random and bias errors,

aliasing errors, just to name a few.

A small vehicle (snowmobile frame) structure is used as an example
to illustrate the step-by-step procedures of modal testing using
computed-aided techniques. Different methods are }:-esented to help
analyze the measured data and the experimental modal results, namely,
the modal frequency, modal damping, and mode shapes. In addition,
heuristic knowledge is provided to carry-out modal testing on large

vehicle structures.

Finally, an analytical model of the snowmobile vehicle structure,
was constructed using ANSYS-PC Linear software. The general concepts of
FEM are discussed. Using the FEA software, analytical model analysis

was carried-out.



300

6-2 Conclusions and Highlights of the Present Work

It can be concluded that the main steps to carry-out modal testing,
using single exciter methods and a computer-aided modal analysis

software, can be specified as follows:

1) Set-Up the Test Experiment
@ Choose the excitation technique
m Mark-out test points on the structure
@ Mount the structure
m Set-up the force and response transducers
® Set-up the FFT analyzer
@ Calibrate the force/response tranducer combination

m Make trial measurements

2) Build the Geometrical Model

m Measure the coordinates of the points layed-out on the
structure

w Define the model into the computer system

3) Take measurements
m Measure and compute a frequency response function at each DOF

m Transfer the FRF measurements into the computer hard-disk

4) Estimate Modal Parameters
Identify the modal frequency

Curve-fit the measurements to extract the modal



301

S) Sort the Modal Data

m Generate and animate each mode shape

These points are discussed in detail in the present work. However, the

rules of thumb can be summarized as follows:

® Translational DOF’s are usually sufficient to describe the motion
of a vehicle structure (p. 160);

®m [f the test consists only of estimating the modal frequencies and
modal dampings of the vehicle structure, then only a few DO’ 4
are required (p. 160);

m If the test consists of obtaining a modal model, then sufficient
test points must be used to describe all the mode shapes of the
vehicle structure within a frequency band of interest
(p. 160) - If available, wuse same coordinates wused in the
theoretical model;

® At least one row or one column of the FRF matrix is required to
carry—-out SDM (structural dynamic modification) (p. 161);

m Use masking tape to mark and number the test points onto the
structure (p. 160);

m Usually, two measurement directions are sufficient to describe
simple mode shapes (p. 165);

m It is preferable to prepare the vehicle structure in a
“free-free" condition by mounting it with softy restraints
(p. 165);

m Hanging direction should be perpendicular to the primary

excitation direction (p. 166);



Check influence of rigid modes on the flexural -

rule of thumb (p. 166);

Shaker testing techniques with pseudo-random wav
preferable to hammer testing techniques (p. 167);

Use an impact blow hammer or a sledge hammer to identify the
fundamental frequency and then to verify that the shaker
inf luence is small (p. 187);

Always conduct a calibration of the force/response transducer
combination before actual testing (p. 172);

Locate exciter at a corner of the vehicle structure so that both
symmetric and asymmetric modes can be excited (p. 183);

“"Fun Tak" product works well to hold the accelerometer at the
selected points on the vehicle structure (p. 183});
® Select the frequency bandwidth of interest from 0 Hz to twice
the one specified in the test requirements (p. 109};

Compute auto-spectrum, Coherence function, and signal-to-noise
ratio to make conclusions (p. 187);

Symmetricity and reciprocity verifications are not needed unless
one wants to assess those assumptions (p. 201);

Use 3 to 5 averages to verify that the measurement has constant
value and its Coherence function is close to unity (p. 108);
Always use an oscilloscope to monitor both the input and output
electrical signals (p. 187);

Use waterfall window to identify bad measurements (p. 207);

Use the approach discussed in Section 4-~-2-3 to identify the

modal frequencies and to estimate the modal parameters (p. 211).
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Also, the FEM of the snowmobile frame structure is validated by
comparing the finite element analysis (FEA) results from modal analysis
to the ones obtained from carrying out experimental modal testing on a

prototype.

6-3 Recommendations for Future Work

Modal validations of the finite element model was carried-out
through experimental modal testing. However, prior to its use, higher
confidence in the analytical model should be achieved through statie

validations using strain gages.

Structural Dynamic Modifications (SDM) should be used to
investigate the effects on the modal properties by adding sccondary
structures to the main snowmobile frame structure, such as the motor,
skies, rear section, etc. This investigation can be studied using both
models (analytical and experimental) and the resultant modal properties

from each of them can also be compared.

It would be also interesting to make the actual modifications on
the structure and to carry-out again modal testing, and then to compare

the modal results with the ones obtained from SDM analysis.

Finally, modal testing using multiple excitation techniques shall
be experimented to establish the step-by-step procedure and rules of

thumb.
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