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ABSTRACT

Verification of Test Cases for Protocol Conformance Testing

Kshirasagar Naik, Ph. D.,

Concordia University

This thesis is concerned with verifying the comrectness of human designed test
cases for determining the conformance of a protocol implementation with its formal
specification. Correctness of a test case, like any other software systems, is established
by verifying the safety and liveness properties of the test case against the model of

a test verification system.

A test verification system is derived from the architectural basis of the test case by
representing the Lower Tester as an extended finite state machine (EFSM), substituting
the implementation under test by the EFSM model of the corresponding protocol
specification, representing the Upper Tester as an EFSM model derived either from
the test case or from the test management protocol depending on the test architecture,
modeling the input/output service specification of the underlying service provider
as an EFSM, and representing each interaction point between two EFSMs in the
test architecture by two FIFO channels. Algorithms are presented to derive EFSMs
from the Estelle specifications of protocols and Tree and Tabular Combined Notation

(TTCN) descriptions of test cases.

The model of a test verification system represents the global state space of the
verification system with a set of atomic predicates associated with each global state,
such that a global state’s atomic predicates evaluate to true in that state. An algorithm,
based on the well known reachability analysis technique, is presented to derive the

global state space of a test verification system.

Four types of test case safety properties are defined: transmission safety, reception
safety, synchronization safety, and verdict safety. The first two types of safety

properties are common to all communication systems and the latter two are specific

ili




to protocol test systems. The liveness property of a test case is based on the idea
that the test case behavior leading to a Pass test verdict fulfills the test purpose. We
have proposed a set of notations to represent the safety and liveness properties as

formulas in branching time temporal logic.

Test case properties are verified on the model of a test verification system by using
a model checking algorithm. A methodology is also discussed to verify multiplexing

test cases used in a multi-party test environment.

The verification methodology is applied to three test cases: one Remote Single-
layer (RS) architecture based test case for an Association Control Service Element
(ACSE) protocol, one Coordinated Single-layer (CS) architecture based single connec-
tion test case for a Class 2 transport protocol, and a CS architecture based multiplexing

test case for the same Class 2 transport protocol.
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CHAPTER 1

INTRODUCTION

The role of computer networks in interconnecting a set of geographically dis-
tributed computer systems for collecting, processing, and exchanging information has
been vital to the technological and administrative developments in the present day
society. Communication protocols are key to the operation of a network of com-
puter systems. Therefore, there is significant ongoing research and development in
methodologies for specification, verification, and conformance testing of data com-

munication protocols.

The International Organization for Standardization (ISO) and the International
Consultative Committee for Telephones and Telegraph (CCITT) are the two world
bodies working towards the standardization of protocol specifications, data type defini-
tions for information exchange, and test case specifications using Formal Description
Techniques (FDT). Examples of standardized formal description techniques are LO-
TOS [IS8807], Estelle [1S9074], and SDL [Z100] for specifying protocofs, Abstract
Syntax Notation One (ASN.1) [IS8824] for specifying the format of data exchanged
between two computing entities, and the Tree and Tabular Combined Notation (TTCN)

[ISO 9646] for test case specifications.

1.1 Protocol Engineering Life-cycle

The four steps in the protocol development process, called the Protocol Engi-
neering Life-cycle, are design of a protocol specification, validation and verification
of the specification, generation of an implementation from the specification, and con-

formance testing of the implementation [NASA 92a].

Producing a formal specification of a protocol is a human design process and

it largely involves intuition. Since a human design process is error-prone, the




resulting protocol specification needs to be validated and verified. On one hand,
protocol validation refers to the detection of some well known types of errors in
the specification, such as unspecified reception errors, blocking receptions errors,
deadlock errors, livelock errors, and synchronization errors [ZAFI 80]. On the other
hand, protocol verification refers to whether the protocol specification meets the

required service specifications [SAB 88].

The first automated protocol validation technique is duologue-matrix analysis
[ZAFI 78, WEZA 78]. A duologue matrix is a notation to represent interaction
sequences between two interacting graphs. This technique addresses the validation
of a protocol between a pair of asynchronous processes by defining a number of
fundamental rules of protocol behavior, which are incorporated in a validation function
that can be applied to an interaction sequence to determine whether the sequence
contains errors. By applying the validation function to all possible interaction
sequences defined by a protocol, design errors in the protocol can be detected. The
limitations of the duologue-matrix analysis technique are that the interacting processes
must return together to their initial states after a finite number of interaction steps

and that the theory only addresses two-process protocols.

The most widely studied protocol validation technique is reachability analysis
[WEST 78], which consists of two steps. In the first step, a global state space
is generated from the multiprocess finite state description of a protocol using a state
perturbation technique. In the second step, the global state space is analyzed to detect
the presence of some well-defined errors such as receptien errors, deadlock errors,
livelock errors, and channel overflow errors. Some other state space exploration
methods controlling the size of the global state space can be found in [GOYU 84,
VUHU 87, GOHA 85, LU 86, HOLZ 87, WEST 87, ZHBO 87]. A state space
exploration technique for protocol validation is particularly attractive because it very

easily lends itself to complete automation requiring only a formal definition of a




protocol in state diagram notation.

Over the last decade, a number of protocol verification techniques have been
reported in the literature. For protocols specified in programming languages, program
verification techniques are used. One can check that a protocol provides a desired
service specified using first-order logic or a first-order version of temporal logic.
However, program verification usually requires some insightful proofs that are hard
to automate [HAOW 83). Protocol verification using symbolic execution [BRJO 78]
is a technique combining program verification and reachability analysis. It has the
advantage that a protocol is interpreted by the verifier in essentially the same way as
in reality. Therefore, it is possible to verify protocol behavior affected by the actual

contents of messages rather than merely by its arrival.

In [SAB 88] an algorithmic procedure has been presented to verify whether a
protocol provides a desired service. In this methodology, a protocol is described
as a collection of synchronously interacting processes similar to the Communicating
Sequential Processes (CSP) language [HOAR 78]. The safety behavior of a protocol
is described using Finite State Machines (FSM), whereas the liveness behavior
is described using propositional temporal logic. For checking the safety part of
the specification, the FSM descriptions of all the processes are composed using
a reachability procedure [ZAFI 83] and for the liveness property, the verification
methodology checks whether the protocol gets into a set of states in which it will

not provide the intended service.

A model checking approach based on branching time temporal logic is another
technique used in protocol verification [FRV 86, CES 86]. In a later part of this

chapter, we present an outline of the model checking approach.

For any practical use of a protocol specification, an executable implementation
must be generated from the specification. Like the production of a protocol specifi-

cation, generation of an implementation from a specification is also a human design



process and is error-prone. A practical way of determining whether an implementation
behaves as stated in its specification in representative instances of communications,
that is, whether the implementation conforms with its specification, is to test the
implementation with a set of test cases. The process of testing an implementation
to determine its conformance with the specification is known as conformance ftesting
[1SO 9646). From a software engineering view point, conformance testing generates

confidence in the implementation.

1.2 Conformance Testing and Test Case Verification

1.2.1 Conformance Testing

The process of conformance testing starts with the test design phase in which an
abstract test suite is developed. A test suite is a collection of test cases, such that
each test case is used to test one protocol feature, There are two main approaches

to developing a test suite:

s human design of test suites,

» semi-automatic design of test suites based on formal protocol specifications.

Conventionally, a test suite is designed by a test designer or a team of designers
having expertise in the protocol standard as well as in the conformance testing
framework and methodology [ISO 9646]. Such a design is a complicated and an
erTor-prone process. Since software testing is a practical way of building confidence
in software systems, a lot of research is being carried out on automatic test generation
techniques. However, software testing in general and protocol testing in particular
have not yet reached a state where a readily usable test suite can be automatically
generated from a specification. Presently, therefore, test suites are manually designed
[NCC 88, PTT 90] and many techniques on automatic test generation are being
explored [UYDA 86, SILE 89, DSU 90].




The behavior of a protocol providing a set of communication functions is marked
by sequences of events appearing at its service access points and composed of input
events to the protocol and the responses of the protocol in the form of output events.
From the conformance point of view, the purpose of a test case is to check whether
the implementation satisfies the specification requirements with respect to a protocol
function. A tesi case does this checking by applying sequences of input events,
allowed by the specification, to the implementation and comparing the responses
from the implementation with the expected events stated in the protocol specification.
At the end of the testing process, a test case assigns a test verdict indicating whether
the implementation passes or fails the test, or behaves in an inconclusive manner. If
the observed behavior of the implementation is allowed by the protocol specification
and the test purpose is satisfied, then the test case assigns a Pass verdict to the
implementation. If the behavior of the implementation is not allowed by the protocol
specification, then the test case assigns a Fail verdict. However, if the behavior of
the implementation is allowed by the specification, but the purpose of testing is not

satisfied, then the test case assigns an Inconclusive verdict.

1.2.2 Test Case Verification

Large size, nondeterministic events, combination of a large number of parameters,
and communications among the modules of a protocol specification make the behavior
of a communication protocol very complex and difficult to comprehend. Thus,
manually designing a set of test cases to test an implementation of the specification
becomes a nontrivial task. Those human designed test cases may contain several
design errors. If erroneous test cases are used to test an implementation, the
result of the testing process cannot be relied upon to decide the conformance of
an implementation with its specification. Thus, it is essential to have a methodology

to verify the correctness of test cases against the corresponding protocol specification.



The following are the issues contributing to the difficulties in verifying test cases:
First, in general, test cases and protocols are specified in different formal description
techniques, which use different notations to define data types and different behavioral
semantics of their operations. For example, according to ISO’s standardization
framework, test cases are specified in TTCN, whereas a protocol can be specified

in LOTOS, Estelle, or SDL.

Second, there are architectural differences between a protocol specification and
the test cases. For example, because of the layered nature of OSI protocols, a
protocol specification is written in such a way that it interacts with its user and
service provider through two well-defined service access points, whereas depending
on the test architecture [ISO 9646], a test case can interact with an implementation
using only one service access point or two service access points one of which may

be away from the implementation.

Third, the correctness of a Pass test verdict is directly coupled with the test

purpose being satisfied.

Fourth, the correctness of a test behavior depends not only on the protocol
specification, but also on the Test Management Protocol in some test architectures
and on the service provider used as a communication medium between a test entity

and the implementation under test.

Fifth, testing the multiple connection capability of an implementation involves
parallelism in a test case, which adds an extra dimension to the test case verification

problem.

Therefore, verifying a test case by comparing the behavior of the test case with

that of a protocol specification is not a straightforward task.

1.3 Previous Work on Test Case Verification

The idea of test case verification is relatively new and there is very little published




e

work on this topic. In the following, we summarize some early approaches to test

case verification.

In the first approach [NASA 90b], first both the LOTOS specification of a
protocol and the TTCN specification of a test case are translated into a common
semantic model, an Extended Finite State Machine (EFSM), with first-in first-out
(FIFQ) queues modeling the communication mechaniem between the test case and
the protocol specification. Next, an interleaved symbolic execution mechanism is
used to compare the behavior of the test case EFSM with the protocol specification
EFSM. A limitation of this approach is that only some static aspects of a test case
can be compared with the behavior of a protocol specification and dynamic aspects

due to timeouts cannot be verified.

In the second approach [DUBO 90], the verification process consists of two
steps. First, a TTCN test case is translated into a LOTOS specification to eliminate
the language differences. Second, a Test and Trace Analysis (TETRA) tool, based on
a LOTOS interpreter [LOGR 88], takes the LOTOS specification of the test case and
that of the protocol specification as inputs and computes their parallel composition
by tracing the executable paths in the two specifications. The concerns expressed
about the tool are its large space and long verification time requirements. Moreover,
this technique does not address the architectural difference between a test case and

a protocol specification.

1.4 Model Checking

In the traditional approach to verification of concurrent systems, the proof that a
concurrent system meets its specification is constructed by hand using various axioms
and inference rules in a deductive system [HAIL 82, OWLA 82]. Theorem provers
are not of much help in verifying concurrent systems, because the task of proof

construction is in general quite tedious.



It is argued that proof construction is unnecessary in the case of finite state
concurrent systems [CES 86], and can be replaced by a model checking approach
which mechanically determines if a system satisfies a property expressed in branching
time temporal logic. Therefore, from an automation point of view, the model checking
approach to system verification has gained diverse interests in the last decade [FRV
86, CES 86].

The basic approach to verifying whether a concurrent system satisfies a property

by using the model checking concept contains the following three steps.

e The concurrent system is expressed as a finite state machine and a set of
propositions evaluating to true is attached to each state. Such a finite state
machine with a set of propositions attached to each state is called a model of
the concurrent system.

o The properties to be verified on the concurrent system are expressed as formulas
in branching time temporal logic.

e Analgorithm, called a model checker, is used to verify whether the model satisfies

the properties expressed as temporal formulas.
There are two kinds of properties one usually wants a concurrent system to satisfy:

e Safety properties, which state that something bad never happens—that is, the
system never enters an unacceptable state.
e Liveness properties, which state that something good eventually does hap-

pen—that is, the system eventually enters a desirable state.

Some well known examples of safety prsperties of concurrent systems are partial
correctness, absence of deadlock, and mutual exclusion. A liveness property that
has received a lot of formal treatment is program termination. However, program
termination is not a good thing to happen to every computing system. For example,
an operating system should never terminate (crash). For such systems, other kinds

of liveness properties are important, for example:




¢ Each request for service will eventually be answered.
o A message will eventually reach its destination.

e A process will eventually enter its critical section.

The nature of safety and liveness properties of a system depends on the nature of the
computing system. Therefore, to verify the correctness of test cases one must define

safety and liveness properties applicable to test systems.

1.5 Original Contributions of this Thesis

The contribution of this thesis is to develop a methodology to verify human
designed test cases used to check the conformance of a protocol implementation with
its formal specification. In the following, we outline a set of individual contributions

which, when combined together, give rise to a test verification methodology.

In order to be able to compare the behavior of a test case with that of a
protocol specification, the first barrier is due to the use of different languages in
specifying protocols and test cases. Therefore, to eliminate their syntactic and
semantic differences, a common representation notation, called an Extended Finite
State Machine (EFSM), is defined and algorithms are presented to translate protocols

specified in Estelle and test cases specified in TTCN into EFSMs.

The notion of control and observation is crucial to black-box testing. Since every
test case is based on some test architecture, which defines the control and observation
capability of a test case, it is important to take the architectural basis of a test case
into account while verifying the test case. Therefore, we define the notion of a Test
Verification System to account for the interconnection structure among the entities of
a test architecture through service provider, points of control and observations, and

other interaction points.



For a test verification system, we define a verification model representing the

global behavior of the verification system and present an algorithm, based on reach-

ability analysis, to generate a global state space from a test verification system.

To form a basis for verifying the correctness of a4 test case, we identify four
classes of test case safety properties and one liveness property, and express them as
formulas in branching time temporal logic. The four classes of safety properties are
transmission safety, reception safety, synchronization safety, and verdict safety. The
safety properties are designed to reflect some general characteristics of event-based

communications and some particular characteristics of protocol testing.

The liveness property is designed to establish a relation between the test purpose
and the Pass verdict. Presently, a test purpose is expressed in a natural language,
which makes it difficult to verify whether the test case satisfies the test purpose.
Therefore, we propose a notation in temporal logic to express what we call basic
test purposes, which can be combined to construct larger test purposes. The liveness
property is designed to verify that a test case behavior satisfying the test purpose

ends in a Pass verdict.

We present a model checking algorithm to verify the test case properties on the

model derived from the test verification system.

Our test verification methodology is applicable to all the ISO/CCITT test case
and protocol specification languages such as TTCN, LOTOS, Estelle, and SDL and

to all test architectures.

1.6 Organization of the Thesis

A pictorial description of the model checking methodology used to verify test
cases is shown in Fig. 1.1. The thesis is organized according to the modular structure

of the verification methodology.
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Figure 1.1 An Outline of Test Case Verification by Model Checking.

Chapter 2 contains four sections. In the first part, we define an Extended Finite
State Machine (EFSM), which serves as a common representation notation for all
the operational entities, such as the test case entities, the protocol specification, the
Test Management Protocol, and the service provider, in a test verification system.
In the second part, the syntax and semantics of Estelle constructs and an algorithm
to translate an Estelle specification to an EFSM are presented. In the third part, we
present a detailed description of the TTCN test specification language and an algorithm
to translate a TTCN test case to an EFSM. In the fourth part, a notation called Input-

Output Diagram (IOD) is defined to represent the Abstract Service Primitives (ASP)
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and Protocol Data Units (PDU) exchanged among the EFSMs in a test verification
system. The IOD representations of ASPs and PDUs are used to refer to the values

of the fields contained in them while evaluating a boolean condition involving those

fields.

Chapter 3 contains three sections. In the first part, we discuss various test
architectures used in conformance testing. In the second part, we define the notion
of a test verification system and derive a test verification system from each of the
test architectures. In the third part, we present an algorithm to generate a state
space representing the glnbal behavior of a test verification system and present a

methodology to attach a set of propositions with each global state.

Chapter 4 is devoted to model checking and consists of four parts. In the first part,
we present the branching time temporal logic formalisn.. In the second part, the safety
and liveness properties of a test case are expressed as branching time temporal logic
formulas. In the third part, we model basic test purposes as temporal formulas and
present a rule to compose basic test purposes into larger test purposes and express the
liveness property as a temporal formula. A model checking algorithm, to verify test
case properties on the model generated from a test verification system, is presented

in the fourth part of Chapter 4.

In Chapter 5, we illustrate the verification of a test case based on the Remote
Single-layer test architecture. The first three sections describe an Association Control
Service Element (ACSE) protocol, a test case, and a service provider. A global state
space is generated in the fourth section. Properties of the test case are verified in the

fifth section. Generatior. of an Upper Tester is discussed in the last section.

Chapter 6 contains three sections. In the first part, a Class 2 Transport Protocol, a
service provider of a transport protocol entity, and a Test Management Protocol used
in testing a Class 2 Transport Protocol implementa‘ion are presented. In the second

part, an example of verifying a test case, designed to test a Class 2 Transport Protocol

12
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implementation in the Coordinated Single-layer test architecture, is presented.

In Chapter 7, a methodology to verify multiple connection test cases is outlined.
This chapter contains three parts. In the first part, a parallel test architecture is
discussed. In the second part, verification of a multiple connection test case is
formalized using the verification technique for a single connection test case. An
example of the verification of a multiple connection test case is presented in the third
part.

In Chapter 8, contributions of the research described in this thesis are summarized.

In addition, possible extensions of the verification methodology are discussed.
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CHAPTER 2
EXTENDED FINITE STATE MACHINE MODELS

The use of Formal Description Techniques (FDTs) in the specification of commu-
nication protocols has received much attention, since such techniques allow a more
systematic approach for protocol verification, validation, implementation, and testing
compared to the traditional use of natural languages in protocol specifications. The
three FDTs presently considered in this area are Estelle [1S9074], LOTOS [IS8807],
and SDL {Z100]. The Tree and Tabular Combined Notation (TTCN) [ISO 9646] is
the I1SO’s language for specifying a test suite for testing an implementation’s con-

formance with its specification.

Estelle is based on a finite state machine model, which is extended by Pascal data
types, expressions, and statements. The Estelle specification of a protocol may consist
of a large nur..ber of interconnected finite state machine modules, which communicate

among themselves through FIFO channels.

LOTOS, a process algebraic specification language, is a combination of Milner’s
Calculus of Communicating Systems (CCS) [MILN 80] formalism for behavior
description and Abstract Data Types (ADTs) [EHMA 85] for data description. A
set of composition rules is used to derive larger specifications from the primitive

notions of events and processes.

SDL, like Estelle, is also based on an extended finite state machine model. It is
largely oriented towards a graphical representation. Abstract data types are used to

define data in an SDL specification.
In the TTCN test specification language, constrained events and subtrees con-
stitute the building blocks in the design of the behavior part of a test case. Data

in a test case are described using both a tabular notation and the Abstract Syntax
Notation 1 (ASN.1) [IS88Z-i].

14
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For verifying a TTCN test case against a protocol specified in one of the FDTs,
it is essential to remove the syntactic and semantic barriers between the test case
and the protocol specification. Therefore, in this chapter we define an Extended
Finite State Machine (EFSM), a common notation for representing test cases and
protocol specifications and present systematic procedures to translate them to the
common notation. In this thesis, the scope of test case verification is limited to the
Estelle specification language. In Section 2.1, we define an EFSM. A brief overview
of Estelle features and rules to translate an Estelle specification to an EFSM are
presented in Section 2.2, In Section 2.3, we discuss the TTCN specification language
and present an algorithm to translate a TT'CN test case to an EFSM. In Section 2.4,

we define 1/O diagrams, which provide a notation for information exchange among

the EFSMs.

2.1 Extended Finite State Machkine (EFSM)

We define a communicating EFSM to be a 9-tuple,
F =<S5,S1,V,R, 8it, Z, ho, C1,Co>,

where S is a finite set of states, S; = {(s,z)|s € S and z is a tag value} is a tagged
set of states, V = {vl, v2,..., vn} is a finite set of data variables of types {t1,12,..., tn},
respectively, R is a finite set of transitions to be defined in the following, s,n € S
is the initial state, Z C S is a set of final states, hg is a set of assignment functions
initializing some variables in V, Cy is a set of input FIFO channels, and Cp is a
set of output FIFO channels.

The set V' is expressed as VU V,, where V; contains the variables locally used in
the EFSM and V; contains the variabies used for communication with other EFSMs.
The variables in V; are of the conventional types such as integer, boolean, octetstring,
etc., whereas the variables in V; are of types {IOD,, IOD,, ..., IOD,,}, where each
Input/Output Diagram (I0D) type is defined to hold a structured value to be sent to
or received from another EFSM. The 10D types are defined in detail in Section 2.4.
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A transition in an EFSM is a 6-tuple, r = <s, </, a, e, h,n>, where s is the from

state and s' is the 1o state of the transition, a is the action or event clause causing
the transition to fire, e is the enabling predicate that must evaluate to true for the
transition to fire, & is a set of value assignments to a subset of V, and n is the priority

number of the transition in a set of choice transitions with the same from state.

An event in a transition can be one from the set {input, output, internal}, where
the input and output events are known as external events and occur at some well
defined interaction points through which two EFSMs communicate. An extemal
event is characterized by three parameters: interaction point, direction (“?’ denotes

(l'”
.

an input and denotes an output), and the value (message) passed in the event.
No channel or direction is associated with an internal event. For example, the event

L!msg means a message msg is output to an interaction point L.

2.2 EFSM Model of an Estelle Specification

This section contains two parts. In the first part, we introduce the Estelle
specification language and in the second part, we give rules to translate an Estelle

specification to an “FSM.

2.2.1 Estelle Specification

Estelle [BUDE 87] is based on a finite state machine extended with Pascal data
types and statements to describe actions. A number of notions generally applicable
to distributed systems such as module, task, process, synchronous/asynchronous
communication, interaction point, channel, nondeterminism, parallelism, etc. are
found in Estelle. In the following, we explain each of them.

(A) Tasks: A distributed system specified in Estelle is viewed as a collection of
communicating components called module instances or tasks. Each task has a number
of input/output access points called interaction points, which are classified into two

kinds: external and internal. For example, referring to Fig. 2.1, the distributed
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system A consists of two concurrent tasks B and C. Task B is further refined into
three concurrent tasks {D, E, F} and task C is refined into tasks {G, H}. The

interaction points {1, 2,..., 13} are external, while points {14, 15, 16} are internal.

A
B 3 C 11

D $ G ¥

E 15 16
Sle

F 5 H
8 13
2 10

Figure 2.1 A modular specification in Estelle.

The behavior of a task is described in terms of a nondeterministic communicating
extended finite state transition system. A task is active if its specification includes at
least one transition; otherwise it is inactive. A task may have one of the following
class attributes: systemprocess, systemactivity, process and activity. The tasks with
systemprocess or systemactivity attributes are called system tasks. The class attributes
of a collection of tasks represented in a structured manner in a specification determine

the nature of parallelism in the specification as will be explained in the following.

(B) Structuring of Tasks: In a multitasking Estelle specification of a distributed
system, two kinds of structuring principles are used: hierarchical structure and com-
munication structure. The specification refinement principle in software engineering
gives rise to a hierarchical structure of tasks as illustrated in Fig. 2.2, where the
parent/child relationship is represented by edges and the root of the tree is the main

task representing the specified system.
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Figure 2.2 A hierarchical task structure.

Five attributing principles are observed within a hierarchy of tasks. (i) Every
active task must be attributed. (ii) System tasks cannot be nested within an attributed
task. (iii) Tasks with process or activity attributes must be nested within a system
task. (iv) Tasks with process or systemprocess attributes may be substructured only
into tasks attributed either process or activity. (v) Tasks with activity or systemactivity

may be substructured only into tasks attributed activity.

The interconnection of interaction points for communication among the tasks in
a specification gives rise to a communication structure within a specification. The
elements of this structure are represented graphically, as shown in Fig. 2.1, by line
segments binding the tasks’ interaction points. There are two kinds of bindings of
interaction points: attached and connected. When an external interaction point of a
task is bound to an external interaction point of its parent task, these two interaction
points are said to be attached. Two bound interaction points are said to be connected
if both are external interaction points of two sibling tasks, or one is an internal
interaction point of a task and the other is an external interaction point of one of its
children tasks, or both are internal interaction points of the same task. Three rules
are observed while establishing a communication link between two tasks. (i) An
interaction point may be connected to at most one interaction point and it cannot be
connected to itself. (ii) An external interaction point of a task may be attached to
at most one external interaction point of its parent task and to at most one external

interaction point of its children tasks. (iii) An external interaction point of a task
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attached to an external interaction point of its parent task cannot be simultaneously

connected.

(C) Communication: In Estelle, there are two kinds of intertask communication
mechanisms: (i) message exchange and (ii) restricted sharing of variables. Tasks may
exchange messages, called interactions. A task can send an interaction to another
task through a previously established communication link between two interaction
points of the tasks. An interaction received by a task at its interaction point is
appended to an unbounded FIFO queue associated with this interaction point. The
FIFO queue may either exclusively belong to this single interaction point or be shared
with other interaction points of a task. A FIFO queue is called an individual queue
if it exclusively belongs to a single interaction point and is called a common queue
if it is shared with other interaction points of a task. Certain variables, declared as
exported by the children tasks, can be shared between a task and its parent task.
The simultaneous access to those variables by both a parent and a child is excluded

because the execution of the parent’s actions always has priority.

(D) Parallelism: Two kinds of paralielism between tasks can be expressed in
Estelle: (i) asynchronous parallelism and (ii) synchronous parallelism. Parallelism
and nondeterminism in Estelle are described using the nction of computation steps.
A computation step begins by a selection of a set of transitions among those ready-
to-fire by the subsystem’s tasks with at most one transition per task, Then, the
selected transitions are executed in parallel and, when all of them have completed,
the next computation step begins. In that sense, the relative speed of tasks within a
subsystem can be synchronized and the resulting parallelism is synchronous. If the
selected set consists of exactly one transition for every computation step, then we have
purely deterministic behavior within a subsystem. However, the selection of a set
of transitions for synchronous or nondeterministic execution within one computation

step of 4 subsystem depends on the parent/children priority principle and on the
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way the subsystem’s tasks are attributed. If a systemprocess is substructured into

only processes, then all ready-to-fire transitions, with at most one transition per task,
that are not in the ancestor/dependent conflict are selected, whereas in a task with
systemactivity attribute, only one of them is selected. The intermediate selections,
between the above two extremes are possible due to the fact that a systemprocess

task may be substructured in both processes and activities.

(E) Channels and Interaction Points: In an Estelle specification, channels arc
abstract objects whose definitions specify sets of interactions. A particular interaction
point has a precisely defined set of interactions that can be respectively sent and
received through this point. For example, the following is a channel definition:

channel CHANNEL_ID (ROLE1, ROLE2),

by ROLEL!:

ml; ...; mN;
by ROLE2:

nl; ..; nK

where ml, ..., mN, nl, ..., nK are interaction declarations. Each interaction dec-
laration consists of a name and possibly some typed parameters such as “RE-
QUEST(x: integer; y: boolean)”. Now, an interaction point pl may be declared
as “pl: CHANNEL_ID(ROLEI!)” and another interaction point p2 as “p2: CHAN-
NEL_ID(ROLE2).” Two interaction points both referring to the same channel and
different role identifiers play opposite roles, whereas if they refer to the same channel
and the same role identifier, then they are said to play the same roles. Two interaction
points that are connected must play opposite roles since the exchange of interactions
takes place between them. Two interaction points that are attached must play the
same role since the aim of attaching them is to replace one of them by the other,
Finally, to specify whether the interaction point pl does or does not share its queue

with other interaction points, Estelle allows to specify “pl: CHANNEL_ID(ROLE1)
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common queue” or “pl: CHANNEL_ID(ROLE1) individual queue.”

(F) Modules: A module is specified by a pair of header and body definitions as
shown below. A is the name of the header with systemprocess attribute and n is a
formal parameter. It may be noted that a common queue is shared by the interaction
points pl and p2.

module A systemprocess (n: integer);
ip p: T(S) individual queue;
ip pl: U(S) common queue;
ip p2: W(K) common queue;
export X, Y: integer; Z: boolean

end

At least one module body definition is declared for each module header definition.
For example, in the following body definition, B is associated with header A.
body B for A; “body definition” end

A body definition is composed of three parts: declaration, initialization, and transition.

(i) Declaration Part: The declaration part of a body definition contains the usual
Pascal declarations and declaration of objects specific to Estelle such as channels,
modules, module variables, states and state-sets, and internal interaction points.
A body definition may contain declarations of other modules giving rise to a tree
structure. The definition “modvar X, Y, Z: A1” means that X, Y, and Z are variables
of the module type specified by the module header A1. The internal behavior of each
module is defined in terms of a state automaton whose control states are defined by
enumeration of their names such as “state: IDLE, WAIT, OPEN, CLOSED.” The
state variable may assume only the values enumerated by the definition of the above

form,

(i) Initialization Part: The initialization part of a module body, indicated by the

keyword initialize, specifies the values of some variables of the module with which
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every newly created instance of this module begins its execution. Local variables
and the control variable state may have their values assigned. Also, some module
variables may be initialized which means that the module’s children tasks can be
created. To initialize Pascal variables, Pascal statements are used and to initialize
the state variable to a control state, for example IDLE, “state to IDLE” is used.
The following initialization part of a module (A, B) creates three module instances
referenced by the module variables X, Y, and Z, respectively.
initialize

begin

init X with B1;

init Y with B2;

init Z with B1;

connect X.pl to Y.p2;

connect Y.pl to Z.p2;

attach p to X.p’;

end
The concrete hierarchy of tasks of Fig. 2.3 corresponds to the hierarchical structure
of the above module definitions. The initialization also establishes links between

appropriate interaction points of the three newly created tasks.

P
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1

Figure 2.3 A hierarchy of tasks created after an initialize statement.
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(i) Transition Part: The transition part of a module describes its behavior.
Each transition begins with the keyword trans. A simple transition is characterized
by the fact that there is exactly one begin ... end block associated with each keyword
trans. A nested transition is a shorthand notation for a collection of sunple transitions.
Each simple transition declaration is composed of two parts: transition condition and
transition action. The transition condition is composed of one or more clauses of

the following kinds:

i. from-clause (from Al,..., An, where Ai is a control state or state-set identifier);
ii. when-clause (when p.m, where p is an interaction point and m is an interaction);
iii. provided-clause (provided B, where B is a boolean expression);

iv. priority-clause (priority n, where n is a non-negative constant);

v. delay-clause (delay(E!, E2), where E!l and E2 are non-negative integer expres-

sions representing the lower and upper limits of the delay, respectively).

The when-clause and the delay-clause are mutually exclusive in a transition definition.
Transitions with a when-clause in their conditions are called input transitions and those
without a when-clause are called spontaneous transitions. A transition is said to be
enabled in a task state if the “from”, “when”, and “provided” clauses, if present
in the transition condition, are satisfied in the state. A transition is said to be

firable/executable if:

i. itis enabled in the state, and if it is a delay transition, with delay clause “delay(El,
E2)”, then it must have remained enabled for at least EJ time units, and
ii. it has the highest priority among transitions satisfying the previous requirement,

where higher priority corresponds to smaller non-negative integer.

The transition action is composed of (i) a to-clause (to A, where A is a control state
identifier) and (ii) a begin ... end block containing a sequence of extended Pascal

statements. The to-clause specifies the next control state, which will be attained by
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a task once the transition is fired. If the to-clause is omitted, then the next state is

the same as the current state.

The Pascal extensions consist of additional statements that make it pos-ible
to create and destroy module instances, to create and destroy bindings between
interaction points, and to send interactions. The create statements include init,
connect, and detach. These have already been explained. The statements for the
destroy operations are (i) release X, (ii) disconnect p, (iii) disconnect X, and (iv) detach
p. The “release X” statement destroys the task referenced by the module variable X
and all its descendant tasks, the “disconnect p” statement disconnects the interaction
point p from the interaction point to which it was connected, the “disconnect X"
disconnects all the interaction points of the children task referenced by X, and the
“detach p” statement detaches the interaction point p from the interaction point it was
attached to. The ability of a task to execute these statements within a transition gives
the possibility to dynamically change the hierarchical tree structure of tasks as well

as the communication links between them.

There is also a special statement oufput, which allows a task to send an interaction
via a specified interaction point. For example, the statement “output pl.m” sends the
interaction m via the interaction point pI. If p] and p2 are the two end-points of a
communication link, then the “output pI.m” statement leads to appending interaction

m in the queue associated with the interaction point p2.

Any-clause: A transition in which an any-clause occurs is a shorthand for a set
of transidons without any-clauses. The syntax of an any-clause is shown below:
any-clause := any domain-list do, where
domain-list:= ID-LIST: ORDINAL-TYPE,.., ID-LIST: ORDINAL-TYPE.

Each of these transition declarations contains an expanded transition resulting from
the original expanded transition by replacing each applied occurrence of each ID in

the ID-LIST of the any-clause. There shall be one simple, expanded transition for
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each vector of values of ORDINAL-TYPE(s) contained in the any-clause. The length

of each of these vectors is given by the number of identifiers in the ID-LIST of the

domain-list of the any-clause.

(G) Specification Module: All modules in an Estelle specification are embodied
in a unique module called specification which is defined as follows:
specification SPEC-NAME [system-class]
[default-option]
[time-option]
“body-definition™
end.
where the parts in square brackets are optional. The system-class attribute is either
Systemprocess or systemactivity, and the default-option is either individual queue or
common queue. The time-option defines the unit of time, millisecond, second, etc.

to be used in a delay-clause.

(H) Global Situations: The semeontics of Estelle is operational, that is, a next-
state relation is defined over the set of the system global states which are called
global situations. The next-state relation, also called the next-situation relation,
specifies all possible situations that may be directly derived from a given situation.
The overall behavior of an Estelle specification is characterized by the set of all
sequences of global situations which can be generated from an initial situation of the
specification. Each global situation of an Estelle transition system is composed of

current information on:

i. the hierarchical structure of tasks within the specified system SP, the communi-
cation structure of tasks denoted by the bindings established between their inter-
action points, and the local state of each task. All this information is included in
a global instantaneous description of SP denoted by gid(SP).

ii. the transitions that are in parallel execution within each subsystem; the set of
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these transitions for ith subsystem is denoted by Ai (i = 1,..., n, where n is the

number of subsystems).

Each global situation is denoted by: sit = (gid(SP); Al,..., Ai,..., An). The global
situation is said to be initial if the gid(SP) is initial and all sets Ai are empty.
The gid(SP) is initial if it results from the initialization part of a specification SP.
The next-situation relation defines the successive situations of an arbitrary current
situation: (gid(SP); Al,..., Ai,..., An). It is defined in the following manner. For

every i =1, 2,..,, n,

i. if, in the current situation, Ai is empty, then (gid(SP); Al...., AS(gid(SP)li),...,
An) is a next situation, where AS(gid(SP)/i) is the set of transitions selected for
execution by the ith subsystem.

ii. if, in the current situation, Ai is nonempty, then for each transition ¢ of Aij,
(¢ gid(SP)); Al,..., Ai — {t},..., An) is a next situation, that is, the new gid(SP)

resuits from execution of ¢ and t is removed from the set Ai.

The above two steps applied to the initial global situation define all possible sequences
of global situations in the specification, The execution of a transition ¢ of a task may
cause a change in the task’s local state. In particular, it may create a new child task
and/or a new communication link. The transition may also output, that is, it may send
an interaction which is put into the FIFO queue of another task. All these changes
are expressed by t(gid(SP)). The selection of transitions to be executed within one
computation step, by an ith subsystem, that is, the choice of the set AS(gid(SP)/i) is
guided by the following: (i) the principle of parent/children priority, and (ii) the tasks’

attributes. The rule applied to a wask within a subsystem can be formulated as follows:

¢ if the task has a ready-to-fire transition, then this one will be selected,
o otherwise, depending on whether the task is attributed process (systemprocess) or
activity (systemactivity), respectively, all or one chosen nondeterministically of

these ready-to-fire transitions offered by its children tacks will be selected.
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2.2.2 Translation of an Estelle Specification to an EFSM

In the EFSM construction process, the notation var(set of expressions) means the
set of variables used in the “set of expressions”, and the function Final(r,s) returns

a transition r’ which is identical to r except that the “t0” state of r’ is set to s.
Algorithm 2.1: The EFSM construction algorithm is divided into two phases.

(A) First Phase: In the first phase, we derive an EFSM from the begin...end block

in an Estelle transition using the following three steps.

a. Process the functions.

b. Derive an EFSM for each procedure, function, and the main “begin ... end”
block in the transition.

c. Resolve the procedure/function call references in the EFSMs derived in step b to

obtain an EFSM for an Estelle transition.

(B) Second Phase: The second phase of the algorithm consists of the following

three steps:

a. Update the EFSM obtained from the begin...end block of a transition to incorpo-
rate the Estelle transition-specific information such as from, to, when, and pro-
vided. We call such an updated EFSM a transition-EFSM, because it represents
the EFSM for a complete Estelle transition. The collection of all the transition-
EFSMs corresponding to the transitions in a module is called a module-EFSM.

b. Create a substructure by processing an init statement.

c. Combine the module-EFSMs for all the sub-modules in an Estelle specification

to obtain an EFSM for the entire specification.

In the following, we explain each of the above steps in detail.

(A) First Phase:
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a. Function Processing

In an Estelle specification, a function can be used in two ways:

i. as an expression on the righthand side of a simple assignment statement, such
as y = F-name(Plist), where F-name is a function name and Plist is a list of
parameters that does not contain another function.

ii. as a parameter in a procedure/function call, like P-name(F-name(Plistl ), Plist2),

where P-name is a procedure name.

Processing a function means transforming a function reference of the second type
to the first type by introducing a new variable. For example, the statement P-name(F-
name(Plist]), Plist2) is rewritten as a sequence of two statements, where newl! is a
new variable:
newl = F-name(Plistl);

P-name(newl, Plist2).

b. Deriving an EFSM from a transition

The following algorithmic steps are used to systematicaily derive an EFSM from
a function, a procedure, and the main begin ... end block in an Estelle transition.
Each step of the algorithm is based on an Estelle construct that can be identified in

the syntax analysis phase of an Estelle compiler.

1. compound-statement = “begin” statement-sequence ‘“end”

The EFSM for this compound statement is the EFSM obtained from the

“statement-sequence.”

2. statement-sequence = statementl; statement-sequence2

Let
F] =< SlsSII'V]s Rl»s]azlshlyolls COI > and
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F, = < 8,51,V2, R, 82,22, hy,Cr2,Cop > be the EFSMs for statementl and
statement-sequence2, respectively. Then choose
F=<55,V,R,s,2,h,C;,Co >, where

S=(5U8)-2,

St = SulUSp, V=Vuh,

R =((R1URz) — {ris}) U {rys}, such that (r;; € Ry) A(To(ry5) € Z1) A

(roy = Final(ryy, s2)),

s =381, Z = Z3, h = hyoh,.

3. Assignment statement

(a) label: X = Expression { no function call }

Choose F = < S,5t,V,R,s,Z,h,Cy,Cp > such that

S = {s1,s2}, where s; and s; are two new states,

St = {< s1,L : label >},V = var(Ezpression),

R = {< s1,82,%,[T],[X = Ezpression],1 >}, where T stands for “wue” and
i denotes an internal event,

s=3s, Z={s2}, h= e

(b) label: X = Fname(Plist) { function call }
Choose F = < S,5,V,R,s,Z,h,C1,Co > such that

S = {s1,82},

St = {< s1, F : Fname(Plist) : label >},V = var(Plist),

R = {< 37,52, +F,[T),{l,1 >}, where the +F event denotes that the transition
is to be replaced by an EFSM corresponding to the declaration of the function

Fname found as a tag of the from state of the transition,

s =391, 2 ={s2}, h= e
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4. Procedure call

label: Pname(Plist) { procedure call }

Choose F = < S,5,V,R,s,2Z,h,C;,Co > such that

S = {s;,s2}, where s; and s, are two new states,

St = {< 81, P : Pname(Plist) : label >},V = var(Plist),

R = {< s1,82,+P,[T),[},1 >}, where +P denotes that the transition is to be
replaced by an EFSM corresponding to the declaration of the procedure Pname
found as a tag of the from state of the transition,

8=81,Z={82},h= €.

5. while-statement = “while” boolexpression “do” statement

Let
Fy = < 5, 51,W1, R1, 81,21, h1,C11,Co1 > be the EFSM for the statement part.
Choose
F=<S55,V,R,s,Z,h,C;,Co > as the new EFSM, where

S = 531U {s,sz}, where s and s, are two new states,
St = Su,

V = V) Uvar(boolezpression),

R = Ry URy U {r1,r},

Ry = {< 37,5,1,T,[,1 > |s; € Z;},

L AG VTR T

s

r = < §,81,1, [boolexpression],[],1 >, :
r; = < s,8,1, [not(boolexpression)),[],1 >, :

Z = {82}, h = h].
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6. repeat-statement = “repeat” statement-sequence “until> boolexpression

Let
R = < 5,5,W,Ry,81,21,h1,C11,Co1 > be the EFSM for the statement-
sequence part. Choose

F=<S585,V,R,5,Z,h,C;,Co > as the new EFSM, where

S = 51U {s2}, where s is a new state,

S = Sn,

V = Vj U var(boolezpression),

R = RiUR;UR,

Rj = {< sj5,82,i,[boolexpression),{},1 > |s; € Z1},

Ry = {< s4,51,1,[not(boolexpression)],[,1 > |sy € Z1},
s = si,

Z = {52},’1 = h].

7. if-statement = “if’ boolexpression “then” statemenl “else” statement2

Let Fy = < 8y, 511, V1, Ry, 81, 21,1, C11,Coy > and
F, = < 83, 513,Vo,Ry,82,23,ha,C12,Coz > be the EFSMs for statementl and
statement2, respectively. Choose

F=<8,5,V,Rs,2,h,C1,Co > as the new EFSM, where

S = 51U S2U {s}, where s is a new state,
St = S U S,

V = V1 U Vo U var(boolezpression),

R = Ry U Ry U {r, 72},

ry =< s,81,t,[boolezpression},|],1 >,

ry =< 8, 83,1, [not(boolezpression)},{],1 >,

Z = 21U 2Z2,h = hy Uh,.

31



8. for-statement = “for” controlvar “:=” initval (“to”|“downto”)

finalval “do” statement

Let Fy = < 8, 84, V1, R1, 81,21, h1,C11,Co1 > be the EFSM for the statement
part. Choose F = < S, S,V,R,s,Z,h,C;,Co > as the new EFSM, where

S = 81U {s1,s2}, where s; and s are two new states,

St = Su,

V = V; U {controlvar} U var(initval) U var(finalval),
R=RU{r}URsUR,,

r = < s,8,1 T, [controlvar = initval],1 >,

Ry = {< s5,82,1, [not(controlvar < finalval),[},1 > |sy € Z1},
Ry = {< sf,81,1,[controlvar < finalval),[},1 > |sy € Z1},

2 = {s2}, h = h1.

9. case-statement =

“case” caseindex ‘“‘of*’

case constantlistl: statement-1

case constantlistn; statement-n

“end”

Let Fy = < 51,51, V1, R1, 81,21, h1,C1y, Coy > thru
F, = < Sn, Stn, Vay Rny Sny Zny hny Crn, Con > be the EFSMs for statement-1 thru
statement-n, respectively. Choose

F=<8§,5,V,R,s,2Z,h,C;,Co > as the new EFSM, where

S =5 U..US, U{s}, where 5 is a new state,
St = Sn U ..U S,
V = V) U..UW, U{caseinder},
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10.

11.

12.

R=RiU..URyU {ry,...,r},

1 = < s,81,4,[p1),[),1 >, where p; is (caseindex = CCL11)V ..V
(caseindez = CCL1m)such that caseconstantlistl = {CCL11,...,CCLIm},
Tn = < 88,4 (pa)y[,1 >, where p, is (caseinder = CCLnl)V ..V
(caseindex = CCLnn) such that caseconstantlistn = {CCLnl,...,CCLnn},
Z2=2,U..UZ,, h=hU..Uh,, C;=CnU..UC,,Co = Co1U...UCpy-

output-statement = output channel.expression

Choose F' = < §,8¢,V,R,s,Z,h,C1,Co > such that

S = {s1,s2}, where s; and s are two new states,
V = var(ezpression),

S = {}7

R = {< s1, 83, channellezpression,[T),[],1 >},
s=3s1, Z ={s2}, h = e

Procedure call
Py(vall, ..., valn)
Choose F = < S,S8,,V,R,s,Z,h,C;,Cp > such that

S = {s1,s2}, where sy and s; are two new states,
Sy = {< s1,P : +Py(vall,...,valn) >},

V = var(vall,...,,valn),

R = {< s3,82,+Py,[T],[l,1 >},

s=3s8, 2 ={s2}, h = e

Function call
newl = Fy(vall, ..., valn)
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Choose F = < §,S,V,R,s, Z,h,Cr,Cp > such that

S = {s1,32}, where sy and s, are two new states,

S = {< 81, F : +Fy(vdll,...,valn) >},

V = var(vall,..,valn),

R = {< 31, 82,+Fy,[T),[newl = Fy(vall,...,valn)],1 >},

s =31, Z = {s2,h = e

c. Resolving procedure/function calls

1. Resolving procedure calls

Let Px be a procedure/function/begin...end block containing a call to the pro-
cedure Py and let F} and F, be the EFSMs corresponding to Px and Py, re-
spectively, such that i} = < S, 51, W, Ry,$1,21, 71,01, Co1 > and Fy = <
Sy Stys Vs RyySyy 2y by, C1y,Coy > Let 7, = < j,¢,+Py,T,{},1 > be the
transition representing the procedure call in Px and the extension of the state j be
< j,P : +Py(Viist) >, where Viist = {vall, .., valn}, and let the first transi-
tion in Fy be given by ry = < sy, s14,+Py, T,[],1 > with the extension of s, as
< sy, P : +Py(Plist) >, where Plist = {pml, .., pmn}. To take care of the value
assignments to formal parameters in the execution of a procedure call, we modify F,
to get F, = < S, Sp, Vo, Ra,82,22, hy,Cr2,Co2 >, where

S3 = 5y,

S = Sy - {< sy, P : +Py(Plist) >},

V = wvar(vall,...,valn),

Ry = Ry-{ry}U{n},

r = < 881y, 4, [T) [pml = vall,...,pmn = valn],1 >,

82 = Sy, 2y = Zy, hy = e

Next, we replace the transition r, in F; by the EFSM F,.
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2. Resolving function calls

Let Fx be a procedure/function/begin...end block containing a call to the func-
tion Fy and let Fy and Fy be the EFSMs corresponding to Fx and Fy, re-
spectively, such that Iy = < 5,5y, Vi, Ry,81,2Z1,h,Cn,Co1 > and Fy, =
< Sy, Sty,Vy, Ry, 54,2y, by, C1y,Coy > Lletry; = < j,¢',+Fy, T, [newl =
Fy(Vlist)],1 > be the transition representing the procedure call in Fx and the ex-
tension of the state j be < j, F' : +F'y(Vlist) >, where Vlist = {vall, ..., valn}, and
let the first transition in Fy be given by ry = < sy, 814, +Fy, T, [},1 > with the
extension of sy as < sy, F : +Fy(Plist) >, where Plist = {pml1, ..., pmn}. To take
care of the value assignments to formal parameters in the execution of a function call,

we modify Fy to get Fy = < S3, 8, V2, Ra, 83,2, ke, Cp,Co2 >, where

S2 = SyU{ss}

Sp = Sy ~{< sy, F : +Fy(Plist) >},

V = wvar(vall, ...,valn),

Ry = Ry —{ry} U{n} U Ry,

= < 8y,81y,1%, [T),[pm1 = vall,...,pmn = valn},1 >,
Ry = {< s,3¢,%,[T),[newl = Fy],1 > |s € Z,},

82 = Sy, Zz = {s_f}, h2 = €

Next, we replace the transition r in F; by the EFSM F.

B. Phase 2

a. Obtaining a transition-EFSM

The structure of a transition is as follows:
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trans

priority constant_value
from s,

to 5y

provided predicate
when ip_id.event

begin
{transition_block }

end

Let the EFSM representing the begin...end block in a transition be represented
by F, = < Sy,Suy, Vy, Rys 8y, Zy, by, C1y,Coy >. We update Fy to incorporate
the from, to, provided and when semantics and obtain a new EFSM F; = <

S2,S12, Va, Ra, 82,22, hy,Cr2, Co2 >, where

Sz = Sy U {s2,s7}, where sz and sy are two new states,
Sy = Sy,

Va = V, U var(predicate) U var(event),

Ry = Ry U {r1} U Ry,

Ty = < 83,8y, ip-tdTevent, [predicate],(},1 >,

Ry = {< 8,57,i,T,[newl = Fy],1 > |s € Zy},

Zy = {sg}, ha = hy.

In the absence of a when clause, transition r; represents an internal transition
in the EFSM and is represented as < sy, sy,, [predicate], [},1 >. Similarly, if a
transition block does not contain a when clause, but contains a delay clause, then

T = < s8p,8y,1,[predicate], [}, 1 >.
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b. Creatiocn of a Substructure

The initialization part of an Estelle module contains a sequence of init, connect,
and arrach statements in a begin ... end block. Since the init statements create task
instances of modules and the connect and attach statements define an interconnectior
structure among those newly created tasks, the initialization part of a module, in prin-
ciple, creates an interconnected substructure of modules. In the following, we state
the step of the EFSM construction algorithm corresponding to an init statement. An
init statement is of the following form:

“init” module-variable “with” body-identifier [(parameter-list)].
Let F; = < 81,54, W, Ry, 81,21,h1,C11,Co1 > be an instance of the EFSM
representing a module identified by the body-identifier. Choose F = <

S,5.V,R,s,2,h,C1n1,Co1 > as the new EFSM, where

S = 51 U {s;}, where sy is a new state,

St = Stl,
V =W,
R = Ry U {r},

1 = < s,s,,4,T,[p1 = aiy..,pn = ap),1 >, where {p1,...,ps} are the
formal parameters of the module denoted by the body-identifier and {ay,...,an}
constitute the parameter-list,

Z =2, h=h.

¢. Combining Module-EFSMs

Modules in an Estelle specification communicate by generating interactions in
output statements of their begin...end blocks. It is assumed that in the referred
modules, transitions are defined corresponding to the internal interactions. Such a
transition type is called an internal transition type. Also, we assume rendezvous

type communication, where the first module ready to execute the interaction must
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wait for the second module to be ready. To obtain single-module specifications,
internal transition types should be eliminated. This elimination can be done by body
replacements of the internal transition types in all other transitions containing an
output statement referring to the internal interaction. Symbolic replacements for
parameter values of the input interaction are also done. Because of the atomicity
property of Estelle transitions, module combining is done using the following five

steps.

1. Modify each transition-EFSM containing transitions corresponding to statements
that make outputs to internal channels.
2. Execute the following three steps iteratively.

3. If a transition contains:

a. an init mod-var with body-identifier, then create a new instance task of the
module identified by the body-identifier.

b. a release/terminate X, then delete the task instance identified by X.

c. attach/detach/connect/disconnect statements, then update the communica-

tion structure among the tasks in the specification.

4. Eliminate intermodule interactions in the internal transition-EFSM.
S. Eliminate intermodule interactions in the transitions representing WHEN clauses

in transition-EFSMs.

Here we explain step-1. Let r0(s1, s2) and r1(s2, s3) be transitions in a transition
EFSM such that r0 contains an output statement in a transition-EFSM and r2(s4,
s5) be another transition such that s5 is a final state in the transition-EFSM. Then
we introduce another state s6, update transition 12(s4, s5) as 12(s4, s6), introduce a
transition ri(s6, s5) corresponding to the transition r1(s6, s5), delete r1(s2, s3), and
adjust transition r0(s1, s2) to be r0(s1, s3).

A static method for combining modules is presented in [SABO 86]. However, the

behavior of a distributed system, in general, can be dynamic, that is, tasks and their
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communication links can be created and destroyed dynamically. The dynamic module
combination technique outlined in the above stated five steps uses the static module
merging technique [SABO 86] between two instants within which the behavior of the

specification is static as explained below.

The behavior of a specification becomes dynamic if a transition containing
init/release/connect/attach/disconnect/detach is executed. We denote such a transition
as a dynamic transition. Between the execution of two successive dynamic transitions,
the behavior of a specification is static. Therefore, from a dynamic analysis point of
view, we can use the static module merging technique, stated in steps 4 and 5 above,

in combination with step 3 to dynamically configure the structure of a specification.

Because of the Estelle constructs such as init, release, connect, attach, disconnect,
and detach statements, the interconnection structure of tasks in a specification is
dynamically updated while merging the modules. In the module merging technique,
each transition in the currently available tasks is scanned to see whether it makes
an output or it receives an input or it changes the task structure through one of the
operations belonging to the set {init, release, connect, attach, disconnect, detach}.
For example, while merging the modules, let there be three tasks as shown in Fig.
2.4, where tasks X, Y, and Z have module bodies A, B, and C, respectively. Four
transitions, which dynamically update the task structure of the specification, are shown
in task Z. The transition <init Z1 with C1> creates a task Z1 with a body Cl1, the
transition <init Z2 with C2> creates a task Z2 with a body C2, the transition <attach
Z.p2 with Z1.p4> establishes a link between the interaction point p2 of task Z with
the interaction point p4 of task Z1, and the transition <attach Z.p3 with Z2.p5>
establishes a link between the interaction point p3 of task Z with the interaction point
p5 of task Z2. The task structure after the interpretation of the four transitions in

task Z is shown in Fig. 2.5.

39



o @

Y z
\®\irlit Z1 with C1

(2)_init Z2 with C2

attach Zp2 with Z1.p4™(4)
attach Z.p3 with Z2.p5 G)

Figure 2.4 Task structure before the init statements.
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Figure 2.5 Task structure after the attach statements,

An advantage of keeping the dynamic constructs {init, release, connect, attach,
disconnect, detach} as transitions in a transition-EFSM is that transitions in the tasks
referred to in the dynamic constructs need not be interpreted, while merging the

modules, before the tasks are actually required to be created and after the tasks are
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terminated. That is, while merging modules at any instance of time, transitions of
only those tasks which are active at that time are considered. Otherwise, if tasks
are statically created by referring to the dynamic constructs, then transitions of some
of the tasks are considered for module merging even though those transitions are
not supposed to be active and transitions of some tasks are considered which are
expected to be terminated. Therefore, we keep the dynamic constructs as transitions

in transition-EFSMs and interpret them while merging the modules.

2.3 EFSM Model of a TTCN Test Case

This Section contains two parts. In the first part, we describe the test specification
language TTCN. In the second part, we describe a systematic methodology to translate
a TTCN test case to an EFSM [NASA 90a].

2.3.1 TTCN Specification

TTCN [1SO 9646] is a semiformal notation for use in the specification of OSI test
suites. A good tutorial on TTCN can be found in [SAWI 92]. A TTCN specification
contains four parts: overview, declarations, constraints, and dynamic behavior. In

the following, we explain each part of a TTCN test case.

2.3.1.1 Overview

The overview section gives a broad and informal description of the test suite.
Information is included in the overview on the name of the test suite, references to
the Protocol Implementation Conformance Statement (PICS) and Protocol Implemen-
tation eXtra Information for Testing (PIXIT) proformas, indication of the test method
to which the test suite applies, how the PICS and PIXIT are used in test case selection

and parameterization, and the structural organization of the test cases in the suite.

41



2.3.1.2 Declarations

The purpose of the declaration section is to describe the set of test events and all
components used in the test suite. There are two kinds of events: Abstract Service
Primitives (ASPs), which occur at the Points of Control and Observations (PCOs)
used by the Lower and Upper Testers, and timer events. Other test suite components
are test suite parameters, global constants, test suite variables, test case variables,
PCOs, ASP parameters, and data types including the Protocol Data Units (PDUs)

and their parameters.

2.3.1.3 Constraints

In TTCN, a constraint is defined by specifying a value for each PDU field and each
ASP parameter. Each field entry in the field name column in a constraint declaration
table should have been declared in the relevant ASP/PDU declaration; values assigned
to each field shall be of the type specified in the ASP/PDU declaration. In the case
of ASPs/PDUs that are sent, an explicit value shall be used. In the case of received
ASPs/PDUs, the value may be an explicit value, a range of values, or a list of values.
In the case of numeric and enumerated types, a relational operator may be used.
Test suite and global constants that have been declared in the declarations part of the
test suite may be included in the constraints part. In the following, we discuss the

interpretations and various aspects of constraints.

(A) Interpretation of Constraints: The following rules are observed with respect

to directions of the ASPs/PDUs:

(a) send ASPs/PDUs: the values specified in a constraint are sent in the ASP/PDU
that is encoded according to this constraint;
(b) receive ASPs/PDUs: the values specified in a constraint must be received in the

ASP/PDU that is decoded according to this constraint.

42




From the above descriptions of constraints, it is clear that constraints are associ-
ated with data values in two ways: (i) assignment of values to the fields in a send
event, and (ii) satisfiability of boolean conditions on the values of fields in a receive

event. In the following, we explain these interpretations in detail.

(i) Constraint on a Send Event: A send event is rewritten by augmenting the
set of assignment operations associated with the event by another set of assignment
operations derived from the constraint in the event and dropping the constraint in the
new event without changing the semantics of the constraints. For example, in the
send event

L!PDU_A(PDU_A.F3:=2, PDU_A.F4:="A") PDU_A[CO0)

PDU_A is encoded according to the constraint C0; both PDU_A and C0 are described
in Fig. 2.6(a) and Fig. 2.6(b), respectively.

PDU Type Declaration
PDU Name; PDU_A
PCO Type: LOWER
Comment:
Field Name Field Type Comments
F1 HEX
F2 BOOLEAN
F3 INTEGER
F4 IASSTRING
Detailed Comments:

Fig. 2.6 (a) Declaration of PDU_A
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PDU Constraint Declaration

Constraint Name: CO
PDU Type :PDU_A

Derivation Pc!: :

Comments
Field Name Field Value Comments
F1 'FF'H
F2 T

Detailed Comments:

(b)

Figure 2.6 (b) Declaration of constraint C0.

The set of assignment operations in the above example is {PDU_A.F3 = 2,
PDU_AF4 :="A"}. The constraint CO specifies the values of two fields of PDU_A:
F1 and F2. According to the semantics of a constraint on a send event, the set of
assignment operations that can be derived from the constraint CO is {PDU_AFI :=
'FF’H, PDU_A.F2 := T}. Therefore, the given send event line can be rewritten as
follows.

L!PDU_A(PDU_A.Fl:='FF'H,PDU_A.F2:=T, PDU_A.F3:=2,PDU_A.F4:="A")

(ii) Constraint on a Receive Event: We replace a constraint on a receive event by
a set of boolean conditions checking those values, that is, we can rewrite a receive
event by augmenting the set of boolean conditions associated with the event with
another set of boolean conditions derived from the constraint on the receive event
and dropping the constraint from the event line without changing the semantics of
the constraints on the event. For example, in the receive event

L?PDU_A [PDU_A.F3 = N] PDU_A[C1]

PDU_A is decoded according to the constraint C1 which is described in Fig. 2.7.




PDU Constraint Declaration
Constraint Name: C1
PDU Type :PDU_A
Derivation Path :
Comments
Field Name Field Value Comments
F1 ‘10°'H
F2 FALSE
Detailed Comments:

Figure 2.7 Declaration of constraint Cl.

The set of boolean conditions in the above event line is {PDU_A.F3 = N}, where
N is some test case integer variable. The constraint C1 specifies values for two fields
of PDU_A: F1 and F2. According to the semantics of a constraint on a receive
event, the set of boolean conditions that can be derived from the constraint C1 is
{PDU_AF1 ="i0’H, PDU_A.F2 = FALSE}. Therefore, the given receive event line

can be rewritten as follows.

L?PDU_A [PDU_A.F1='10'H] [PDU_A.F2=FALSE] [PDU_A.F3=N]

(B) Parameterized Constraints: Constraint values may be parameterized. The
constraint name in a constraint table is followed by a parameter list and the parame-
terized fields shall have these parameters as values. In the dynamic behavior section,
while referring to a constraint, the constraint name is followed by a list of values,
which are assigned to the parameters in the constraint reference. An example of a

parameterized constraint is shown in Fig. 2.8.
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PDU Constraint Declaration

PDU Type :PDU_A
Derivation Path :

Constraint Name: CO(P1: HEX, P2: IASSTRING)

Comments

Field Name Field Value Comment
F1 P1

| /] 'FF'H

F3 '00°'H _

F4 P2

Detailed Comments:

Figure 2.8 An example of a parameterized constraint.

PDU Constraint Declaration
Constraint Name: COJ
PDU Type :PDU_A
Derivation Patk :
Comments
Field Name Field Value Comment
Fl '0’H
F2 'FF'H
F3 '00’H
F4 “Hello"

Detailed Comments:

by PDU_A[COI], where COI is an instance of CO with the values P1 and P2 substituted
by '0'H and “Hello", respectively; the tabular form of COI is shown in Fig, 2.9.
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Figure 2.9 An instance of the constraint in Fig. 2.8.

A constraint reference PDU_A[CO(’0’H, “Hello”)] in an event line can be replaced




ASP Constraint Declaration

Derivation Path :

Constraint Name: N_DATAreq_With_T_CON_Class4_1
ASP Type : N_DATArequest

Comments : TCON_Class4_1 is a PDU constraint (i.e., static chaining is used.)

Parameter Name Parameter Value Comments
CallingNetwork Address TS_Par3
CalledNetwork Address TS_Par4
Connectionldentifier *'CID’
Data TCON_Class4_1
Detailed Comments:
(a)
PDU Constraint Declaration
Constraint Name: TCON_Class4_1
PDU Type : T_CONNECT1
Derivation Path :
Comments
Field Name Field Value Comments
Source TS_Parl
Destination TS_Par2
T_Class 4
UserData “testing”
Detailed Comments:
®)

Figure 2.10 An example of static constraint chaining.

(C) Chaining of Constraints: Constraints may be chained by referencing a
constraint as the value of a parameter or field in another constraint. For example,

the value of the Data parameter of a Network Data Request abstract service primitive
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could be a reference to a Transport Connect Request PDU. Constraints can be chained

in one of the following two ways:

i. static chaining, where an ASP parameter value or PDU field value in a constraint
is an explicit reference to another constraint,

ii. dynamic chaining, where an ASP parameter value or PDU field value in a
constraint is a formal parameter of the constraint. When such a constraint is
referenced from a dynamic behavior, the corresponding actual parameter to the

constraint is a reference to another constraint.

Chairing is useful in specifying constraints for nested PDUs in ASPs. An exam-
ple of static constraint chaining is shown in Fig.2.10. An ASP constraint on an
N_DATArequest service primitive is shown in Fig. 2.10(a). This constraint contains a
parameter “Data” whose value, in fact, refers to another constraint “TCON_Class4_1",

which is defined in Fig.2.10(b).

An example of dynamic constraint chaining is shown in Fig. 2.11. An ASP
constraint on an N_DATArequest service primitive is shown in Fig.2.11(a). This
constraint contains a parameter “Data” whose value, in fact, refers to a parameter-
ized constraint name “A_Constraint.” The constraint “N_DATAreq_With_T_CON”
is dynamic in the sense that its value depends on the value of “A_constraint.”
For example, with two different values “TCON_Class4_1", shown in Fig.2.10(b),
and “TCON_Class4_2", shown in Fig.2.11(b), of “A_Constraint”, the constraint
“N_DATAreq_With_T_CON(TCON_Class4_1)" is different from the constraint
“N_DATAreq_With_T_CON(TCON_Class4_2).” In a dynamic constraint, since the
actual parameter is a constraint name, which can itself be parameterized, it is possible

to express an arbitrary depth of nesting of PDUs.
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ASP Constraint Declaration

Constraint Name: N_DATAreq_With_T_CON(A_Constraint: T_CONNECT)
ASP Type : N_DATArequest

Derivation Path :

Comments : A_Constraint is a PDU constraint (i.e, dynamic chaining is used.)
Parameter Name Parameter Value Comments
CallingNetwork Address TS_Par3

CailedNetworkAddress TS_Pard

Connectionldentifier 'CID’

Data A_Constraint

Detailed Comments: Different values of A_Constraint give rise to different
instances of N_DATAreq_With_T_CON constraint resulting
in a dynamic constraint.

(a)

PDU Constraint L eclaration
Constraint Name: TCON_Class4_2
PDU Type : T_CONNECT2
Derivation Path :
Comments
Field Name Field Value Comments

T_Address WrongAddress

T_Class 4

UserData "one, two, three"
Detailed Comments:

(®)

Figure 2.11 An example of dynamic constraint chaining.

Here we explain a methodology to derive a single constraint from a constraint
named X that refers to a derivation path C1.C2.C3...Cn and defines a table containing
value inheritance. This is done in two steps: (i) derive a single constraint from

the chain of constraints in the derivation path C1.C2.C3...Cn and (ii) compose the
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constraint values specified in the table of X with the single constraint derived in the

first step.

(i) First step: Let C1.C2.C3...Cn be a chain of constraints in a derivation path. Then,
a combined constraint C is generated from the chain C1.C2.C3...Cn by successively
combining two consecutive constraints Cj.Ck at a time, starting with C1.C2, as stated
below. In the set notation, let FCj = {(fi, vi)l fi is a field in Cj and vi is the value of
fi in Ck} and FCk = {(fi, vi)l fi is a field in Ck and vi is the value of fi in Ck}.
procedure constraint_chain_combine(C1.C2....Cn){
FCj=¢
fori=1,n
do {
Cm = constraint_combine(FCj, FCi)
FCj=Cm
}

return(C = Cm)

procedure constraint_combine(FCj, FCk) {
Initially, the set Cm is empty.
for each element (fi, vi) € FCj, do {
for any v, if (fi, v) € FCk, then Cm = Cm U {(fi, v)}
else Cm = Cm U {(fi, vi) };
FCj = FGj - {(fi, vi)}
FCk = FCk - {(fi, v)}
}
Cm = Cm U FCk
Return(Cm)
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(i) Second step: Let FC = {(fi, vi)l fi is a field in C and vi is the value of fi in
C, where C is the set computed in step (i)}. Let FX = {(fx, vx)! fx is a field in the
constraint table X and vx is the value of fx in X}. Then, the single total constraint

representing X is given by TX, where TX = constraint_combine(FC, FX).

(D) Base Constraints and Modified Constraints

For every PDU type declaration, at least one base constraint is specified. A base
constraint specifies a set of base, or default, values for every field defired in the PDU

declaration. There may be any number of base constraints for any particular PDU.

When a subsequent constraint, called a modified constraint, is defined for a PDU,
any fields not respecified in the modified constraint default to the values specified in
the base constraint. The name of the modified constraint is a unique identifier. The
name of the base constraint that is to be modified is indicated in the derivation path
entry in the constraint header. This entry is left blank for a base constraint. A modified
constraint can itself be modified. In such a case the derivation path indicates the
concatenation of the names of the base and previously modified constraints, separated
by dots. The rules for building a modified constraint from a base constraint are as

follows.

i. If a parameter or field and its corresponding value are not specified in the
constraint, then the value in the parent constraint shall be used, that is, the value
is inherited.

ii. If a parameter or field and its corresponding value are specified in the constraint,

then the specified value shall replace the inherited value.

If a base constraint is defined to have a formal parameter list, then the following
rules apply to all modified constraints derived from that base constraint, whether or

not they are derived in one or several modification steps.
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i. The modified constraint shall have the same parameter list as the base constraint.

In particular, there shall be no parameters omitted from or added to this list.
ii. The formal parameter list shall follow the constraint name for every modified
constraint.

iii. Parameterized ASP parameters or PDU fields shall not be modified or explicitly
modified.

(E) ASN.1 Modular Method: The ASN.1 Modular Method is a mechanism for
specifying constraints on PDU fields or ASP parameters defined in the declarations
part using ASN.1. The syntax and some of the semantics of ASN.1 constraints are
different from those of the TTCN constraints. The constraints specified using the
ASN.1 Modular Method can be used both for specifying PDUs/ASPs that are to
be sent, or for specifying patterns against which an incoming PDU or ASP may be
matched. For specifying constraints to be matched against received events, the ASN.1

Modular Method provides the following features.

i. The use of the “?” character as an element acts as a wildcard that must match
against any single value, whereas the use of the “*” character as an element acts
as a wildcard that will match against zero or more values.

ii. If a field is specified as OPTIONAL, then this indicates that the corresponding
field in the incoming value may or may not be present.

iii. If a field is specified as DEFAULT, then it means that the following value shall

be assumed if the field is missing from the incoming value.

iv. If a field is specified as CHOICE, then it means that the field in the incoming

value may take any one of the values specified by the CHOICE.

v. The ANY type.

For specifying values for events to be sent, none of the above five features are
used; this is to ensure that events to be sent are fully specified. Some of the above

features are explained in the following.
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OPTIONAL: In a receive constraint, if a field is specified with a value and an
OPTIONAL attribute, then it means if the specified field is present in the incoming
event, then the comesponding value must be equal to the value specified in the
constraint. However, if the field is absent in the received event, then the value
of the field in the constraint is irrelevant.

CHOICE: Whenever an ASP/PDU field has a CHOICE attribute, a set of alternative
values is associated with the field. The field in the incoming value may take any of
the values specified in the set of values. This naturally gives rise to a disjunction
of boolean conditions checking the equality of each value in the CHOICE with the
value of the comresponding field in the receive event.

DEFAULT: A DEFAULT attribute of a field implies that the value associated with
the field shall be assumed if the field is missing from the incoming event. That is, a
DEFAULT attribute does not impose a constraint on a receive event.

PUT and GET Semantics: The use of PUT and GET in a constraint reference in the
dynamic behavior section calls for extra semantics in the constraint reference. The
keyword GET is used in a constraint reference associated with a receive event. An

example of an ASN.1 constraint is given in Fig. 2.12.

ASN.1 PDU Constraint Declaration

Constraint Name: ThePDU(x, y)
PDU Type : APDU

Derivation Path :
Comments
Constraint Value
SEQUENCE ({
INTEGER [10] [L]] x,

\ BOOLEAN [ID] [LT] y

Detailed Comments:

Figure 2.12 An example of an ASN.1 constraint.
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The following is an example of a constraint reference with the keyword GET in a

receive event.
S_SAP?S_DATAind<UserData~APDU> ThePDU(GET N,GET STATUS)

This constraint means that the incoming integer and boolean values are assigned to

N and STATUS. In other words, the above event line has the following semantics.
S_SAP?S_DATAind<UserData~APDU> (N:=APDU.x) (STATUS:=APDU.y)

The other keyword that can be associated with a parameter in a ccnstraint

reference is PUT. An example of an event line using PUT is
S_SAP?S_DATAind<UserData~APDU>ThePDU (PUT N, PUT STATUS)

which means that the event matches if the incoming S_DATAind event has a UserData
field whose value is the correct encoding of the value obtained by substituting the
formal parameters x and y in ThePDU by the values of the actual variables N and
STATUS, respectively. Therefore, the above event can be rewritten as:

S_SAP?S_DATAind<UserData~APDU> [APDU.x=N] [APDU.y=STATUS].

(F) Constraint Processing: In the following, we present procedures to transform
a constraint on a receive event to a conjunction of boolean conditions and a constraint
on a send event to a set of assignment functions. A TTCN event line El with a
constraint is represented as:

El := N Label E (h) [B] C {Comment},
where N is the event line number, Label is a label identifier, E is an event, & is a set
of assignment functions, B is a boolean condition, and C is a constraint on E.

A constraint C is viewed as a set of triplets, such as, C = {<f, a, Val>| f is a field
in E, a € {OPTIONAL, CHOICE, DEFAULT, ANY, NULL} is an attribute, and Val
is a value or a set of values {vall, vai2, ..., valn}}.

Since 4 constraint is defined only for an external input/output event, for the pur-
puse of processing a constraint, we define two boolean functions input(E) and out-
put(E), such that input(E) and ourput(E) evaluate to true if E is an input event and an

output event, respectively. A constraint processing procedure Constraint_processing,
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which takes El as input and returns an event line E!' without C, is presented below.
Procedure Constraint_processing(El) |
/¥ El :=N Label E (h) [B] C {Comment} */
If input{E) then do {
Bl = input_processing(E, C)
return(E!l' := N Label E (h) [B AND Bl] {Comment})
}
else if output(E) then do {
hl = output_processing(E, C)
return(El' := N Label E (h, hl) [B] {Comment})

}

The two procedures input_processing{E, C) and output_processing(E, C) are defined
in the following.
Procedure input_processing|E, C) {
/¥ C = {<f, a, Val>) */
Bl = True
for each <f, a, Val> € C, do {
If (Val == “7”) then
Bl =[B! A [[Ef == ANY] A [Ef # NULL]]]
else if (@ == OPTIONAL) then
Bl =[B!l A[[Ef == Val] V [Ef==NULL}]}
else if (@ == DEFAULT) then do
{ if [Ef == NULL] then Ef = Val
else Bl = [Bl A [E.f == Val]]

}
else if (@ == CHOICE) then
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Bl=[BlA[[Ef==valllV ... V [Ef == valn]]]
else if (@ == ANY) then
Bl = [Bl A [Ef == ANY]]
}
return (B/)
}
Procedure output_processing(E, C) {
hl=¢
for each <f, a, Val> € C, do {
hl = hl U {Ef= Val}
}
return (k)
}
Note that in the output_processing(E, C) procedure, the attributes {OPTIONAL,
CHOICE, DEFAULT, ANY, NULL} and a wildcard value “?” of fields of an event
are not considered, because none of these features are used in a send event to ensure

that events to be sent are fully specified.

2.3.1.4 Dynamic Behavior

The dynamic behavior table for a test case contains the specification of the
combinations of sequences of test events that are deemed possible by the test suite
specifier. Such a table is provided in a format shown in Fig. 2.13. The first column
is for numbering the lines on the table. In the second column, a label name can
be associated with each behavior line. The third column contains the behavior
description. Constraint references are stated in column four. A test verdict can
be attached to a behavior line in column five. A description of the behavior line can
be put in column six in the form of a comment. In the following, we explain the

dynamic behavior table in detail.
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Test Case Dynamic Behavior

Test Case Name  : TesrCaseldentifier

Group * TestGroupReference
Purpose ! FreeText

Defauit : [DefaultsReference]
Comments : [FreeTex)

Nr.| Label Behavior Description Constraints Ref. | Verdict |Comments

1
2

[Label] Smrem;mLine [Constraint [Verdict]| [FreeText]
. Reference]

n

Detailed Comments: FreeText

Figure 2.13 Test case dynamic behavior table.

(A) Purpose: A test purpose is a natural language description of the protocol

functionality of an implementation that the test case is supposed to test for confor-

(B) Behavior Description: The behavior description column of a dynamic
b .avior table contains the specifications of TTCN statements that are deemed
possible by the test suite specifier. Each TTCN statement is shown on a separate
statement line. The statements can be related to one another in two ways: (i) as
sequences of statements and (ii) as alternative statements. Sequences of statements

are represented one statement line after the other, each new statement being indented

once from left to right, with respect to its predecessor as shown below:

EVENT_A
CONSTRUCT_B
EVENT_C.

Statements at the same level of indentation and belonging to the same predecessor

node represent the possible alternatives that may occur at that time as shown below:
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CONSTRUCT_A1
STATEMENT_A2
EVENT_A3.

Whether a statement can be evaluated successfully depends on various conditions
associated with the statement line. These conditions are not mutually exclusive, that
is, it is possible that at any given point in time more than one statement line could
be evaluated successfully. Since statement lines are evaluated in the order of their
appearance in the set of alternatives, the first statement with a fulfilled condition will

be successful.

Each behavior description table contains at least one behavior tree. For unam-
biguously referring to a tree, each tree has a unique name. The first tree in a behavior

description is called the root tree. All the trees except the root may be parameterized.

The tree notation allows the specification of test events initiated by the test
entities (SEND and IMPLICIT SEND events), test events received by the test
entities (RECEIVE, OTHERWISE, and TIMEOUT), constructs (GOTO, ATTACH,
and REPEAT), and pseudo-events comprising of boolean expressions, assignments,
and timer operations. These are collectively known as statements. Test events can be
accompanied by boolean expressions (qualifiers), assignments, and timer operations.
Boolean expressions, assignments, and timer operations can also stand alone, in which
case they are called pseudo-cvents. A send symbol is denoted by “!”” and a receive
symbol is denoted by “?”. Every send or receive event takes place at a Point of

Control and Observation (PCO), which is used as a prefix to a send/receive symbol.

(i) Receive Event: A receive event line evaluates successfully if an incoming
ASP/PDU on the same specified PCO matches the event line. A match occurs if the

following conditions are fulfilled:

1. The incoming ASP/PDU is valid according to the ASP/PDU type definition

referred to by the event name on the event line. In particular, all parameters
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and/or field values must be of the defined types.
ii. The ASP/PDU matches the constraint reference on the event line.
iii. In cases where a boolean expression is specified on the event line, the boolean

expression must evaluate to true. The boolean expression may contain references

to ASP/PDU parameters.

The incoming event is removed from the PCO queue only when it successfully

matches a receive event line.

(ii) Send Event: A send event line with a qualifier is successful if the expression
in the qualifier evaluates to true. Unqualified send events are always successful. An

outgoing ASP/PDU that results from a send event is constructed as follows:

i. The values of the ASP parameters and PDU fields are set as specified in the
constraint referenced on the event line.
ii. Any direct assignments to ASP parameters or PDU fields on the event line

supersede the corresponding values specified in the constraint.

(iii) Implicit Send Event: In the Remote Test {ISO 9646] architecture, to be
discussed in Chapter 3, altkough there is no explicit PCO above the Implementation
Under Test (IUT), it is necessary to have a means of specifying, at a given point in
the description of the behavior of the Lower Tester, that the IUT should be made to
initiate a particular ASP/PDU. For this purpose, the implicit send event is defined,
with the following syntax: < IUT!ASP/PDU >. There is no specification of what is
done to the IUT to trigger the specified ASP/PDU.

(iv) TIMEOUT: The TIMEOUT event allows expiration of a timer to be checked
in a test case. When a timer expires, a TIMEOUT event is placed into a timeout list.
A TIMEOUT is not associated with any PCO. TIMEOUTs are used in a test behavior
to avoid any indefinite wait due to a permanent communication failure or due to a

faulty implementation that never generates an expected output.
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(v) OTHERWISE: Since a faulty implementation can generate any unexpected

events whose types and values are not known at the time of designing a test case,
TTCN provides a facility in the form of OTHERWISE to trap those events as shown
in the following:

PCO1? A

PCO1? B

PCO1? OTHERWISE.
If the alternative events before an OTHERWISE are not successful and there is an
event at the PCO referenced in the OTHERWISE statement, then the OTHERWISE
event becomes successful. Due to the significance of ordering of alternatives,
incoming events which are alternatives following an unconditional OTHERWISE
on the same PCO will never match. An OTHERWISE event may also be used
together with qualifiers and/or assignments. If a qualifier is used, this boolean
expression becomes an additional condition for accepting any incoming event. If an
assignment is used, the assignment will take place only if all conditions for matching
the OTHERWISE are satisfied. An example of a conditional OTHERWISE is shown
below:

PCOI1? A

PCO2? B [X = 2]

PCO2? OTHERWISE [X <> 2] (Reason := “X not equal 2").

(vi) Test Step: A test case description, shown in Fig. 2.14(a), is structured as
a tree, as shown in Fig. 2.14(b), with test events as nodes in the tree and verdict
assignments as its leaves. A test case may also be structurcd by using test steps, as
shown in Fig. 2.14(c), where +STEP is a test step. The structured tree description of

the structured test case in Fig. 2.14(c) is shown in Fig. 2.14(d).
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MAIN STEP

B +STEP

E
L_ Il I 1
(@) (b) (c) @
Legend: @ =Event, O = Verdict

Figure 2.14 : (a) A test case, (b) a test case in tree notation, (c) a structured

test case containing a test step, and (d) a structured test case in tree notation.

(C) Default Behavior: A test case specifies alternative behavior for every
possible event. It often happens that in a test behavior tree every sequence of
alternatives ends in the same behavior. Therefore, this common behavior is factored

out as a default behavior to the tree.

2.3.2 Translation of a TTCN Test Case to an EFSM

Now we present the rules for translating a TTCN test case to an EFSM. To assist
us in the EFSM construction process, we introduce an auxiliary event empty that
follows every leaf event in a test case tree. In the following, we assume that F' = <
S, SLV,R s4, 2" by, C},Cp >and F' = < 8", S/, V" R, s, 2", hy,C},C}, >
are EFSMs for subtrees A' and A", respectively. Let sy be a control state absent in
both S’ and S”. If f: V1 — V2 and g : V2 — V3 then their composition
go f: D1 — D3 is defined by g o f(z) = g(f(z)). Let € : V — D be an arbitrary
but fixed function, where D is a set of constants.

Letr = < 5,5, a,p, f,n,1,V4 > be a transition. Then we define the following

functions on r.

i) From(r) = s, the from clause of r,

ii) To(r) = s/, the to clause of r,
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iii) R(s) = {r = < s,¢',a,p, f,n,l,V; >l From(r) = s},
iv) A(s, s') = a, the action clause of a transition from s to s,
v) Pr(s, s') = n, the priority clause of a transition from s to s/,

vi) ©(s,s') = f, the function clause of a transition from s to s'.

Algorithm 2.2: The translation rules in the algorithm are applied bottom-up
starting with the empty event. The algorithm operates in five phases. In the first
phase, we apply some replacement and rewrite rules to simplify a test case. In the
second phase, we construct an EFSM for the main tree and an EFSM for each subtree.
In the third phase, tree attachments are resolved. In the fourth phase, each transition
is updated by dropping the label clause and making the verdict clause a tag of the to
state of the transition. In the fifth phase, the ASP/PDU events are represented as I/O

diagrams. The translation rules are as follows.

(1) First Phase: In this phase, all the default behaviors are expanded and each
REPEAT statement is replaced by a combination of a GOTO and a boolean condition.
The rules for expanding defaults and replacing REPEATSs are discussed in [ISO 9646].
Constraint references are eliminated by transforming a constraint on a send event to
a set of assignment functions and that on a receive event to a boolean expression as
explained in Section 2.3.1.

(2) Second Phase: In this phase, we present rules for deriving an EFSM from a test
tree; the resulting EFSM may contain references to other irees, which are resolved

in the third phase.

Base Cases

e The Dummy Event

empty

Corresponding to an empty event, the EFSM consists of just one state and all other
fields have null values. Therefore, choose F' =< {so}, 4, 6, 8, sq, {s0},¢, ¢, & >.
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¢ GOTO Label

Here we create a new state sy and a tag (so, Label) with all other fields in
the EFSM equated to null. Subsequently, the tag (sq, Label) is used to resolve the

reference to the Label occurring at a predecessor statement of the GOTO.

Inductive Steps

e Tree attachment

+X(t1,...,tm) L

AI

Here we create a new state sy and add a transition from sg to the start state in
F', the EFSM for A'; the event in the added transition is +X which will be removed
while resolving the tree attachment in the third phase. There may be a GOTO in
A’ jumping to the tree attachment above. Therefore, we resolve all such GOTOs
jumping to the label L by adding a transition with an internal event from a state with

an extension +L to sg. This tree attachment will be resolved in the third phase of

the algorithm. Thus, choose

F =<5 U{s},Si,V'U fp(X),R, so, 2, e, ¢,6 > with
R = R U {< s0, 54,+X,T,¢€,1,L, Vg >}

U {< s,50,i,true, ¢,1,4,6 > |(s,+L) € S}
St = 5: U {(30’+X)} - {(8, +L)}’

fp(X) = < v1,..., v >, where fi{X) denotes the formal parameters of X.
eA send event
git(pl L Vy
A
Here we create a new state sy and add a transition from sg F' to the start state

in the EFSM for A'. The added transition has the event t, predicate p, verdict Vj,
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and function f. Moreover, for every GOTO in A’ to the label L, we add a transition

with an internal event from the state with an extension +L to so. Therefore. choose

F= S' U {30}1S!1V’a Rasoazla ¢9 ¢s¢ > with
R= R,U {< 30a3’()79!t1p1f31’L7Vd >}

U{< s,s0,1,true,4,1,¢,6 > |(s,+L) € S}
St = Sy - {(s,+L)}.

A receive event: This case is similar to a send event case.
oA pseudo-event
(Pl (H LYV,
AI
This pseudo-event is translated to an internal event. Thus, choose

F=< S'U{s0},5,V',R,jo, Z', 6,6,¢ >, where
R= R' U {< So)slo’i,p,f’ l’L, W >}

U{< s,50,i,true, 4,1, 6,4 > |(s,+L) € S}
Si= S - {(s,+1)}.

¢ Timer events
?TIMEOUT L V,
Ai
Because a TIMEOUT event does not occur at any particular PCO, it is translated
to a transition without an internal event. Thus, choose

F=< §'U {80},51,V',R,30,Z,,¢,¢,¢ > with
R= R U{< s,sp,i,true,¢,1,L,Vy>}

U{< s,s0,i,true,¢,1,8,¢ > (s, +1) € Sz}
S‘ = S: - {(S,+L)}

¢ Timer operations
START Tid Tval / CANCEL Tid / READTIMER Tid L V;
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Since these pseudo-events do not occur at any particular PCO, they are translated

to internal events. Thus, choose

F=< S U({s},S,V,R,s50,2',06,0,¢ > with
R = R'U{< s,sy,i,true, ¢,1,L,Vy >}

U {< s,s0,i,true, ¢,1,8,6 > |(s,+L) € S}
St = Sy — {(s,+L)}.

Corresponding to a timer pseudo-event, we create a new state so, establish a

ransition from sg to the initial state of F’, and resolve any references to the label

L in a GOTO in A’

s A set of alternative events
AI
A”

Anl

We create a new state so and add transitions from sg to all the states to which

there are transitions from sj, sh,.., si'. All the extensions of sy, s, ..., S5 are

made the extensions of sp. Therefore, choose

F=<«<8§8,5,V,R,jo,2',¢,¢,¢ > with

S = (8= {spHU..U(S™ - s3') U sp,

V=Vuviu..uv"Y,

St = {(s0,+X)| + X € {Si(sh)U... U S™(sf')}} U Si-1,

St = (S)={(sh, +X)+X € Si(sh)U..U(SF~{(sf', +X)|+X € SP(s3)})
R = {< s0,s,a,p, f,n,L, V4 > | < s1,8,a,p,f,n,L, Vg > € Ry} U(RuU..U
RY) - Ry,

Ry = {R'(GHU...URY (s}, 51 € {sg,80s--r50'}

R = (R-{rhu{r}

r' = < Sany,S0.i,true,¢,1,¢,¢ > is derived from
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r = < Sany, 8,8, true,¢,1,6,6 > |s € {sp, ..., sp'}.

There may be a transition leading to the start state of any EFSM F', F"' .., F™,
this transition may be due to a GOTO in the corresponding EFSM. Since the new
start state is sg with the transitions adjusted, the GOTO must lead to sq. In a set
of altzrnative events, we associate a priority number with each event; the first event
from the top has a priority 1, the second event has a priority 2, and so on. The
priority number only indicates the order of checking the occurrence of an event in
the execution model of TTCN. While formulating a transition for the first event of
each of A', A", ..., A™, we associated a priority of 1 with each of those events. In
the above set of transitions for obtaining the EFSMs F', F", ..., F™, we have not
adjusted the priority of the transitions from so. The priority of the transitions from
sg are adjusted as follows. Make the priority in the transition from sg to a state in
F' equal to 1, the priority from sy to a state in F" equal to 2, and so on. Note that

from sq there is only one transition to each of the EFSMs F', F", ..., F™.
o OTHERWISE event
g?OTHERWISE [p] L V;
Al
Here we create a new state sy and add a transition from sg to the start state in
the EFSM for A’ with an event name 70THERWISE. Therefore, choose

F=<S'U {SO}’SHV,’R’SOaZI,¢1¢1¢ > with
R =R U{< so,sy,g?0THERWISE, [p], {},n, L, V; >}

U {< 8, 80,1, true, ¢, n, ¢7¢ > I(sv +L) € S;}
Si = S — {(s,+L)}.

(3) Third Phase: In this phase, all the tree attachments are resolved. Let T, be a
tree containing an attach +7}, and let F' and F" be the EFSMs corresponding to T

and T, respectively. Let,

Fl'=< S S,V R s3.2' by, C1,Cq >,
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F' =< §" . §/,V"\R" s3,2" by, C¥,Cl, > and

(7,+Ty) € S;, where S is the extension set in F'.

Define PF = {s|(r € R")A(From(r) = s)A(To(r) = s')A(R"(s") = ¢)}. In
the EFSM for T, PF denotes the set of all states from which there are transitions

to terminating states,

Define Z = {s|R"(s) = ¢}, the set of terminating states in the EFSM for T,. Then,
R= R’ U{< jas”aapafa n, La Vd>| < j"aj'aaap»flana L,‘/d>€ R”}

UR;y —{R/(s)|A(s, ") = +T}}
R = {< 5"13'1 a,p, f»naL»Vd>|(< S',Sf,a,p, flvnv Lan>€ R")A

(" € PF) A (sy € 2) A(A(],$) =+Ty)}
St =S — {(s,+Ty)} f = f100(5, 8|40, &) = +Ty.

Tree attachments are done according to the guidelines in [ISO 9646]. In a tree
attachment, parameters may be passed; this parameter passing is expressed as a
function and is associated with the transitions constructed while translating a tree
attachment.

(4) Fourth Phase: In the fourth phase each transition r = < s,¢',a,p, f,n,1, V4 >
is transformed to a transition < s,s’, a,p, f,n > by dropping the label clause and
making the verdict clause Vj a tag of the state s' in the form of (s',Vy).

(5) Fifth Phase: In the fifth phase, each ASP/PDU event is represented as an 1/O

diagram as discussed in the following section.

2.4 Input/Output Diagrams

In the layered OSI communication architecture [ISO 7498], two protocol entities
communicate through the exchange of events, called Abstract Service Primitives
(ASPs) and Protocol Data Units (PDUs), at the service boundary between them.
If data in two communicating entities are defined using different data definition
techniques, then it is not possible to interpret a received event in a communicating

entity. It is rather natural than an exception to use different data definition techniques
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while specifying a communication protocol in LOTOS/Estelle/SDL, a test case in
TTCN, and a Test Management Protocol in a semi-formal manner using structured

data types.

Therefore, it is important that the syntax of and the naming conventions used
in t.e events are interpreted in a unified manner. In this section we present a
notation, called Input/Output Diagrams (IOD), which is used to represent an event
exchanged between two communicating entities. The concept of an I/O diagram was

first introduced by Jackson in the context of structured programming [JACK 83].

The 1/O diagram notation is selected as a means of representing a communication
event because of its ability 1o represent a variety of attributes of the parameters in the
event, such as tree structure of ASP parameters representir., composite data types,
grouping of parameters using Sequence and set semantics, choice of a parameter in
a set of alternatives, repetitive nature of the same parameter, optional/mandatory

presence of some parameters in an event, and default values of some parameters.

To represent a communication event as an /O diagram, we define two primitive
building blocks and a notation to combine them to describe a complete ASP/PDU. An
I/O diagram takes a tree structure using two types of nodes: internal node and leaf
node. The root node of a tree is also treated as an internal node. An internal node,
shown in Fig. 2.15(a), contains three fields: name, type, and rag, which can take
possible values {optional, mandatory, default, choice, set, sequence}. The name and
nype fields represent the name and type of a parameter field. The tag field represents
various attributes, as stated above, of the data field. A leaf node has only one field

to contain the value of a type stated in its parent internal node.

An event parcmeter can be either a primitive type or a composite type. Examples
of a primitive type are integer type, boolean type, bit string type, etc. A composite
type may contain more than one primitive types or a combination of primitive and

composite types. Therefore, an internal node representing a primitive type has only
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one child successor node which is a leaf node, whereas an intemal node representing a

composite type has at least two internal successor nodes or more than one successor
leaf node.

Name Tag

Value
Type

(@ )

Figure 2.15 (a) Structure of an internal node and (b) structure of a leaf node.

2.4.i 1/0 Diagram Representation of Events in ASN.1 Notation

The Abstract Syntax Notation One (ASN.1) is a data definition language widely
used in defining the ASPs and PDUs in protocol specifications. To construct compos-
ite data types from primitive types, ASN.1 provides a set of operators CHOICE, SE-
QUENCE, SEQUENCE OF, SET, and SET OF with OPTIONAL and DEFAULT
attributes. In the following, we illustrate the representation of each composite data

type constructed using the above operators.

CHOICE: A CHOICE operator is represented as a tree structure in which the root
node denotes the type of the composite object and each child node has a choice tag.
The leaf nodes contain the values of the individual primitive types. For example, if

a data asd is of type Assoc_src_diag defined as

Assoc_src_diag ::= CHOICE
{ s_user INTEGER {null(0), ...,
called_AE_invalid_not_recognized(10))
s_provider INTEGER (null(0), no_reason_given (1))}
},

then the corresponding 1/O diagram can be represented as shown in Fig. 2.16.
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asd
Assoc_src_diag
T
i |
s_user ¢ c: CHOICE tag s_provider |c
INTEGER INTEGER
| L
i ] i |
called_AE_invalid | reason_not_
I null (0) * Irecognized (10) nult (0) given(1)
L

Figure 2.16 An example of representing a CHOICE construct as an I/O diagram.

SEQUENCE: In the following, we give an example of representing a SEQUENCE
construct with OPTIONAL and DEFAULT attributes. If aare is an ASP of type
AARE_apdu defined as
AARE_apdu ::= SEQUENCE
{protocol_version BITSTRING {versionl(0)}
DEFAULT versionl
result_src_diag Assoc_src_diag
responding_AP_title AP_title OPTIONAL

),

then the corresponding 1/O diagram can be represented as shown in Fig. 2.17.

aare
AARE_apdu
l K]
pprotocol_version g (liti:::lt_mourcc_ q gﬁ}:ondmg_AP. g
BIT STRING Assoc_src_diag AP_title
|E T SEQUENCE |
' q: H
version1(0) 4 DEFAULT
o: OPTIONAL

Figure 2.17 An example of representing a SEQUENCE construct as an /O diagram.
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All the children nodes belonging to the same parent node and having a SE-
QUENCE tag denoted by a ¢ form a SEQUENCE from left to right in the /O
diagram.

SET: The /O diagram corresponding to a composite data type formed by a SET
operator is similar to that for a SEQUENCE operator except that an s-tag denoting
a SET is used in place of a g-tag. Semantically, all the child nodes belonging to
the same parent node and having an s-tag form a set with no consequence of their
ordering.

SEQUENCE OF: The SEQUENCE OF construct is similar to a SEQUENCE con-
struct except that the types in a SEQUENCE construct may be different from one

another, whereas they are all of the same type in a SEQUENCE OF construct.

SET OF: The SET OF construct is similar to a SET construct except that the types
in a SET construct could be different from one another, whereas they are all of the

same type in a SET OF construct.

2.4.2 /O Diagram Representation of Events in Estelle

In an Estelle specification of a protocol in a layered architecture, each channel
conventionally has two roles: service user and service provider. Therefore, a channel
definition contains two sets of external events, such that one set contains the events
generated by the service user and the other set contains events generated by the service
provider. In Fig. 2.18, we present an }/O diagram corresponding to the ConnectReq
event in the following channel definition between a transport protocol entity and a
network protocol entity.
channel {definition for the N-layer SAP}

N_SapDef {(User_role, Provider_role);
by User_role:
ConnectReq (ToAddress: AddressType;
FromAddress: AddressType;

Qos: QualityType;
Data: DataType) ;

i)




ExDataReq (Data: DataType);
by Provider_role:
Connect Ind (ToAddress: AddressType:
FromAddress: AddressType:

Qos: QualityType;
Data: DataType) ;
ExDataInd(Data: DataType)
Name
ConnectReq
1
L | ] 1
ToAddress FromAddress Qos Data
AddressType AddressType QualityType DataType
1 ] | |
(valuel) (value2) (value3) (valued)

Figure 2.18 An Estelle ConnectReq event as an I/O diagram.

2.4.3 1/0 Diagram Representation of Events in TTCN

ASPs and PDUs constitute events in a TTCN test case specification. There are
two ways of specifying a TTCN event: ASN./ definition and tabular definition. A
TTCN event specified as an ASN.1 type can be expressed as an I/O diagram as
discussed in Section 2.4.1. In the following, we discuss the presentation of a TTCN

event specified in a tabular notation.

For each table representing a TTCN event, an }/O diagram is generated. The
name and type of the event are used to construct the root of the I/O diagram and
each parameter/field in the table is used to construct the second level of internal
nodes. The value of each parameter/field is used to construct a leaf node. If a tabular

event contains a parameter type that is defined as another table, then an /O diagram
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representing the parameter type is attached to the parent /O diagram. In this way,

I/O diagrams of arbitrary depths can be constructed.

For example, the ASP CONreq defined in Fig. 2.19 can be represented as an
I/O diagram shown in Fig. 2.20. While sending the CONreq event, the value ficlds

valuel, value2, and value3 are assigned with proper values by the sender.

ASP Type Definition

ASP Name : CONreq (T-CONNECTrequest)
PCO Type : TSAP

Comments :

Parameter Name Parameter Type Commeonts
Cda (Calied Address) CDA ... of upper tester
Cga (Calling Address) CGA ... of lower tester
Qos (Quality of Service) QOS

Detailed Comments: Service primitive to be sent at Transport
service access point.

Figure 2.19 A CONreq ASP declaration in tabular notation.

CONreq
ASP
[ ]
Cda Cga Qos
CDA CGA QOS
[ [ L
(valuel) (value2) (value3)

Figure 2.20 1/O diagram representation of the CONreq ASP in Fig. 2.19.
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2.5 Complexity Analysis

While analyzing the complexity of an EFSM generated from a formal protocol
specification or a test case, it is essential to take the syntax and semantics of the
various constructs in the corresponding specification Janguages. In the following, we
analyze the complexity of the EFSMs in terms of the order of transitions generated

from TTCN and Estelle specifications.

2.5.1 Complexity for a TTCN Test Case

In the algorithm for translating a TTCN test case to an EFSM, initially, each
TTCN event is translated to a transition and each tree behavior is translated to an
EFSM. That is, a tree behavior with n event lines is translated to an EFSM with n
transitions. The number of states depends on the sequential and alternative behavior
in the tree. If there are N trees in a test case with n, ns, ..., ny event lines, then the
second phase of Algorithm 2.1 generates N EFSMs with n;, ng,...,nn transitions,
respectively.

In a test case T, for each attachment of a tree T, generating an EFSM M,, the
algorithm creates an instance of M,. That is, if there are k; attachments of T;, then
k, instances of Af, are present in the EFSM M representing the entire test case T.
Therefore, in a test case specification with N trees with n, event lines in tree 7, and

ky attachments of T;, the total number of transitions in M is of the order Zfi] ky.n,.

2.5.2 Complexity for an Estelle Specification

Deriving the total number of transitions from an Estelle specification is more
cumbersome. The difference between an Estelle transition (E-transition) and a
transition defined in Section 2.1, called a simple transition (S-transition), is in terms of
granularity of control-flow and computation. A S-transition is simple in the sense that
the function clause of the transition is a sequence of assignment functions, whereas

an E-transition is more complex in the sense that its transition block represented
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by a sequence of Pascal statements enclosed in begin...end, may contain all types
of control-flow statements and additional statements for creating, destroying, and
interconnecting task modules.

To compute the complexity of transitions generated from an Estelle specification,

it is necessary to take the fellowing into account.

e Generation of transition-EFSMs from E-transitions to create a module-EFSM for

each module.

e Creation of instances of modules.

To generate a transition-EFSM from each Estelle transition, here we explair the
complexity of generating transitions from each Estelle construct. An S-transition,
or simply transition, is created from each assignment, output, and procedure call
statement. For a “while condition do statement” block, three transitions in addition to
the EFSM for the “statement™ block are generated. For a repeat statement block, two
transitions in addition to the EFSM for the statement sequence of the repeat block
are generated. An “if ... else” block generates two transitions in addition to the
EFSMs for the statement blocks corresponding to the “if”” part and the “clse” part. A
“for” statement block, in addition to the transitions in the statement part, generates
one transition plus twice the number of final states in the EFSM corresponding to
the *‘staternent” part. A “case” statement with n choices generates n transitions in
addition to the EFSM corresponding to each statement block associated with each

choice in the case statement.

A complete Estelle transition generates as many transitions as there are in the
EFSM corresponding to its begin...end block plus as many transitions as there are
final states in the same EFSM plus one transition to take care of its input event.

While combining the modules, the “create” statements are taken into account.
A specification with N modules generates N module-EFSMs. Therefore, in a

specification with ¥ modules with n, transitions in module-EFSM M, with k,
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instances, the order of the transitions in the EFSM generated from the specification

is O( ]'I,I‘_'__1 k,.n,). The product is due to the concurrency among the task modules

in an Estelle specification.
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CHAPTER 3

TEST VERIFICATION SYSTEM

To test a protocol implementation for conformance with its specification, a
test case sends a sequence of input events to the implementation and observes the
responses of the implementation at well-defined points known as Points of Control
and Observation (PCOs). In the context of OSI’s layered protocol configuration, a
test system can be designed with the ability to cont-ol and observe test events at
two PCOs: one at the upper and the other at the lower service boundary of the
Implementation Under Test (IUT). However, practical considerations affect the PCOs

in the following two ways.

e Control and observation of events at the lower service boundary may be done at
a point away from the implementation.

e The test case may not control and observe test events at the upper service boundary
in an active manner, thereby delegating the control and observation functions to

a passive test entity.

The placement and number of PCOs in a test system give rise to the notion of fest
architectures in the 1ISO conformance testing framework [ISO 9646].

To verify the properties of a test case against a reference protocol specification,
it is essential to study the relationship of the test case to the reference protocol
specification in terms of the test architectural framework.

The organization of this chapter is as follows. In the first section, we discuss
and compare various test architectures. The process of deriving a test verification
system from a given test architecture is presented in the second section. Algorithms
to generate a global state space from a test verification system and a model for the
tes! serification system from the global state space are presented in the third section.

T .e fourth section contains complexity analysis of the algorithms.
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3.1 Test Architectures

Depending on the proximity of the PCOs to an IUT, there are two broad classes
of test architectures: local and external. Local test architectures are characterized
by control and observation being specified in terms of events occurring at the layer
boundaries immediately above and below the IUT. Extemnal test architectures, on the
other hand, are characterized by the control and observation of test events taking
place externally from the IUT, on the other side of the underlying service provider
from the IUT. The local test architectures are only applicable to in-house testing by
developers of implementations, whereas the need for external test architectures arises
due to the fact that conformance testing can also be the responsibility of users or
national/international organizations that undertake testing activities in a centralized
or distributed manner. The external test architectures have the advantage of closely

resembling a realistic communication environment.

In external test architectures, stimulation and observation functions are distributed
between local and external sites. The testing entity on the remote site is called the
Lower Tester (LT). It controls and observes ASPs below the IUT. Locally there is
no control and observation point on the (¥V-1) service boundary while testing an (N)-
entity implementation. However, direct or indirect control and observation of the

ASPs above the TUT are done through the use of an Upper Tester (UT).

The test architectures come in three variant forms: single-layer, multi-layer,
and embedded. Single-layer architectures are designed for testing one layer of a
protocol implementation at a time, without depending on the functionalities of the
layer under test. Multi-layer architectures are designed for testing a multi-layer
implementation as a whole. Embedded architectures are designed for testing a single
layer implementation within a multi-layer implementation stack, using the knowledge

of what protocols are implemented in the layers above the layer being tested.

In practice, an implementation of a protocol specification can support both single
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connection and simultancous multiple connections. Therefore, test cases must be

designed to test both single and multiple connection capabilities of an implementation.

In this thesis, we study the verification of only the single-layer test architecture
based single and multiple connection test cases. In the following, we present the
structural details of four single connectiun single-layer test architectures. Verification
issues related to parallel test cases with multiple connection establishment capabilities

are discussed in Chapter 7.

3.1.1 Local Single-layer Test Architecture

The Local Single-layer (LS) test architecture, shown in Fig. 3.1, defines the
points of control and observation as being at the service boundaries above and below
the (N)-entity under test. The test events are specified in terms of (NV)-ASPs above
the TUT and (N-1)-ASPs and (N)-PDUs below the IUT. In an abstract sense, a Lower
Tester is considered to observe and control the (N-1)-ASPs and (V)-PDUs while an

Upper Tester observes and controls the (V)-ASPs.

Upper Tester

l 1 (N)-ASPs
-

Implementation
Under Test

U: Uppper PCO

L: Lower PCO

(N)-PDUs
(N-1)-ASPs

Test Coordination Procedures

Lower Tester

Figure 3.1 The Local Single-layer Test Architecture.
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An LS architecture based test case, in principle, can take two kinds of structures.
On one hand, a test case behavior can consist of two separate behaviors representing
upper tester behavior and lower tester behavior, such that both the behaviors run
concurrently, with a test coordination procedure synchronizing their activities. On the
other hand, due to the local nature of testing, both the upper and lower tester behavior
can be combined into a single behavior without requiring any test coordination

procedure.

Because of the fact that the tester has full control and observation of all the
external access points of the implementation under test, the LS architecture has a

complete error detection ability.

3.1.2 Distributed Single-layer Test Architecture

Test Coordination
Procedures

Upper Tester

Lower Tester (N)-ASPs

effemmmems (N)-PDUS mmeemept  Implementation

@ Under

7 Test
(N-1)-ASPs

(N-1)-Service Provider

Figure 3.2 The Distributed Single-layer Test Architecture,

The Distributed Single-layer (DS) test architecture, shown in Fig. 3.2, defines
the points of control and observation as being at the service boundaries above the

(N)-entity under test and at the opposite side of the (N-1)-Service Provider from the
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(M)-entity under test. The test events are specified in terms of (N)-ASPs above the
IUT and (N-1)-ASPs and (N)-PDUs remotely.

In DS architecture, direct control and observatinn of (N)-ASPs are done with an
UT and control and observation of events at the lower service boundary of the IUT
are done in an indirect manner by a LT through the use of an underlying service

provider. A given test case is applied by both LT and UT running independently.

It has been observed that some DS architecture based test cases may result in
synchronization problems between the LT and the UT [SABO 84]. Tke synchroniza-
tion problem arises when, in a given test case, the LT (UT) is expected to send an
ASP/PDU while in the previous step the LT (UT) had not received/sent any ASP/PDU.
From a test design point of view, the synchronization problem is avoided by adding

one or more test events from the point where the problem arises.

Because of the concurrent executions of the LT and the UT, there is a need to
coordinate the actions of the two test entities in order to achieve the objective of a
test case. Such a coordination can be done by test coordination procedures. There are
various ways of designing the test coordination: defining a test management protocol
between the LT and the UT [ISO 9646], integrating the coordination into individual
tests, which are executed by the UT and the LT [BOCE 83}, and using an astride
responder architecture where the UT design is simplified by establishing an extra

(N)-connection and implementing the UT functions on the LT site [RACA 85].

3.1.3 Coordinated Single-layer Test Architecture

The Coordinated Single-layer (CS) test architecture, shown in Fig. 3.3, is an
enhanced version of the DS method, using a standardized upper tester and the
definition of a Test Management Protocol (TMP) to realize the test coordination
procedures between the UT and LT. There is only one point of control and observation

at the opposite side of the (N-1)-Service Provider from the (N)-entity under test. Test
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events are specified in terms of (N-1)-ASPs, (N)-PDUs, and Test Management PDUs
("T™MPDUs).
The Lower Tester in CS architecture can control and observe the behavior of

an implementation at its upper service boundary by deterministically controlling the

activities of the UT through test management PDUs.

Test Coordination
Procedures Upper Tester

] LOwer Tester seeseres o oo ne srrces 4 sesreveses sacers are ' seeres

e (N)-PDUS 1 Implementation

@ Under

Test
(N-1)-ASPs

(N-1)-Service Provider

Figure 3.3 The Coordinated Single-layer Test Architecture.

3.1.4 Remote Single-layer Test Architecture

The Remote Single-layer (RS) test architecture, shown in Fig. 3.4, defines the
point ot control and observation as being on the opposite side of the (N-1)-Service
Provider from the (N)-entity under test. The test events are specified in terms of the
(N-1)-ASPs and (N)-PDUs remotely. In the RS architecture, there is nc well-defined

upper tester as denoted by the dotted box in Fig. 3.4.

Because of the absence of the UT, no expected input/output behavior at the upper
boundary of the TUT can be specified as a part of a test case. TTCN provides a

facility, called an implicit send event, to specify an event to be sent by the IUT to
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the LT. The implicit test entity UT, shown by the dotted box in Fig. 3.4, has the role

of providing stimuli to the IUT such that the IUT generates the events stated in the

implicit send events at the appropriate instants of test execution.

Lower Tester

Lo

Test Coordination

Upper Tester

< (N)-PDUS -

l T(N- 1)-ASPs

Implementation
Under
Test

(N-1)-Service Provider

Figure 34 The Remote Single-layer Test Architecture.

3.1.5 Comparison of LS, DS, CS, and RS Architectures

The effect of the structural relationship among the test entities, the control and

observation points, and the implementation under test on the error detection ability

of a test architecture has been studied in [SARI 89].

In the LS architecture, due to the fact that the tester has full control and

observations of all the external access points of an IUT, the LS architecture has

a complete error detection capability. The restrictions in this architecture are the

impossibility of exhaustive testing and the nondeterminism in protocol specifications.

The second restriction means that it is not possible, for example, to deterministically

force a transport protocol implementation to reduce credit or a file transfer, access,
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and management protocol implementation to invoke recovery procedures from disk

crashes.

The error detection ability of DS architecture is reduced compared to the LS
architecture, since the (N-1)-ASPs are controlled and observed externally over a (N-
I)-service of the underlying service provider. The external control and observation
procedure has the disadvantage that certain inputs cannot be applied to an 1UT. For
example, the effect of a network reset on a transport protocol implementation cannot
be tested since a network reset cannot be generated. Compared with other external
architectures, the DS architecture has improved error detection ability due to the fact
that a part of a test case runs as the UT.

A CS architecture based test case consists of only one behavior, that is, the LT
behavior. Since observation and control of the activities at the upper service boundary
of the IUT are indirectly done through the use of TMPDUs flowing between the UT
and the LT through a possibly faulty IUT, the error detection ability of CS architecture
is further reduced compared to that of DS architecture.

The RS architecture offers the most limited error detection ability because of the
fact that activities at the upper service boundary of an TUT cannot be controlled and

observed.

3.2 Test Verification System

In this section, we define a generic test verification system that is applicable to
single connection test cases. Conceptually, a test case, designed to test implementa-
tions of a protocol specification in a given test architecture, is verified for correctness
by comparing the behavior of the test case with the behavior of the protocol speci-
fication in the same architectural framework. Incorporation of the test architectural
framework in the verification process is essential in the sense that it is the test archi-
tecture that defines the behavioral relationship of a test case with an implementation.

Formally, a Test Verification System (TVS) is defined as follows.

84




Definition 3.1: A Test Verification System (TVS) is defined to be a 5-tuple, TVS =
< Z,Q,P,¥,C >, where T is an EFSM cormesponding to the Lower Tester (LT-
EFSM), Q is an EFSM corresponding to the underlying service provider (USP-EFSM),
P is an EFSM corresponding to the protocol specification (S-EFSM), ¥ is an EFSM
corresponding to the Upper Tester (UT-EFSM), and C is a set of channel functions

defining the interconnections among X, Q, ¥, and P.

A channel function channel(EFSM1, EFSM2) denotes that EFSM1 outputs mes-
sages to the channel, which are received by EFSM2. In general, we denote a test
EFSM by T EFSM while referring to either the Lower Tester or the Upper Tester
EFSM. Corresponding to a test architecture, we derive a test verification system as

follows.

i Replace the IUT module by the EFSM representation of the corresponding
protocol specification.

ii  Replace the LT module by the EFSM representation of the lower tester part of
the test case. An EFSM can be generated from the TTCN specification of a test
case using Algorithm 2.2.

iii For a given test architecture, replace the UT module in the following manner.

a For LS and DS test architectures, replace the UT module by the EFSM
representation of the TTCN specification of the upper tester part of the test
case.

b For CS architecture, replace the UT module by the EFSM representation of
the Test Management Protocol (TMP) specification.

¢ For RS architecture, the behavior of the UT module is dynamically generated
during the model generation process. Initially, the UT-EFSM consists of
only one state s and one transition r = < sq, 80, UTOT H,true,{},1 >.
Implicit send events in conjunction with the behavior of the S-EFSM are

used to update the UT-EFSM while generating a global state space from the
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verification system.

iv Replace the underlying service provider module by its EFSM representation, that
is, by its input/output behavior.
v Replace each interaction point and PCO between two modules in the test archi-

tecture by two unidirectional FIFO channels.

Test verification systems corresponding to the four basic test architectures, LS,
DS, CS, and RS, are shown in Fig. 3.5 and a methodology to verify test cases
belonging to those architectures is presented in Chapter 4. A parallel test architecture

and verification of parallel test cases are discussed in Chapter 7.
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Figure 3.5 Test Verification Systems comesponding to LS, DS, CS, and RS architectures.
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3.3 Model Generation

In this section, we generate a model for a test verification system. A model for
a test verification system consists of the global state space of the verification system
with a set of atomic predicates associated with each state. The model generation

process consists of the following two steps.

o First, a global state space is generated from a test verification system by using
a reachability analysis algorithm.
e Second, a model is generated from the global state space by associating a set of

atomic predicates with each state such that the predicates hold in the state.

In the following, we discuss the issues related to both the steps in the model generation

process.

3.3.1 Reachability Analysis Algorithm

We generate a global state space representing the composed behavior of a test
verification system by using a reachability analysis algorithm. The reachability
analysis algorithm is based on the well-known concept of state perturbation [WEST
78] using all the executable transitions in the component machines’ present states. A
transition in the present state of a machine is said to be executable if the enabling

condition of the transition evaluates to true.

Therefore, before presenting the global state space generation algorithm, we define
a global state, a procedure to compute all the executable transitions in a global state, a
procedure to evaluate a transition’s enabling predicate, and a global state perturbation

process to generate all the reachable global states from a given state.

Definition 3.2: The global state s of a test verification system TVS = <
£,.Q,P, ¥, C >isdefined as a 6-tuple <¥,, Q,, P, ¥,, C,, [IUv>, where £,, Q,, Py,
and U, represent the present states of ¥, 2, P, and ¥, respectively, and C, is a set

of states consisting of the present states of each channel in C; 11 is the set containing
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values of all the variables of the EFSMs in the TVS, and v is a verdict variable

assumed to be unique.

In a global state space, the states are connected by global transitions. A global
transition in the transition space R is a four-tuple <s, s/, E, e> where s and s are
present and next states, respectively, E is the event that triggers the transition, and

e is an enavling predicate.
The initial global state sq is defined as follows:
<s.,,.¢(E), s.mg(ﬂ), S,m't(P), sm.‘t(\I/), Cempgy, zmt(H) Uv = Null>,

where 3,,(Z) is the initial state of &, s,,(2) is the initial state of €2, synit(P)
is the initial state of the specification entity P, s,,,¢(¥) is the initial state of ¥,
Cempty denotes all the channels in C to be empty, and init(II) = ho(Z) U ho(£2) U
ho(P) U hy(¥), where the function hg denotes initia! assignments to the variables in
the corresponding EFSM. Notationally, the present state of an EFSM, M, is denoted

by the function notation ps(M).

Definition 3.3: The set of executable transitions X7(s), occurring in the present global
state s = < 54,8, Py, V,,Cs,JIUv > of aTVS = < I, N, P, ¥,C > is given as
follows:XT(s) = XTP(s)UXTUSP(s)UXTLT(s)UXTUT(s), where
XTP(s)={r = < From,To,E,e,h,n > |(from(r) = P,) A

((int(E) A eval(s, ¢,€)) V

(ext(E) A (dir(E) =!) A eval(s, ¢,e)) V

(ext(E) A(dir(E) =7) A (msg(E) = head(channel(E)) A

eval(s, head(channel( E)), e))))

}.
XTUSP(s) = {r = < From,To,E,e,h,n > |(from(r) = Q) A

((ent(E) A eval(s, ¢,e)) V

(ext(E) A (dir(E) =!) A eval(s, ¢,€)) V

(ext(E) A (dir(E) =7) A (msg(E) = head(channel(E)) A
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eval(s, head(channel( E)), €))))

Initially, XTLT(s) := ¢, R = {rl from(r) = ps(T)}, init_priority := 0, Flag(c,) :=
False V¢, € C.

While R # ¢ begin {
init_priority := init_priority + 1
for r € R | (priority(r) = init_priority) do {
if ((znt(E) A eval(s, ¢, ¢)) then
XTLT(s):= XTLT(s)U {r},R:=R - {r}
if (ezt(E) A (dir(E) =!) A eval(s, $,¢)) then
XTLT(s):= XTLT(s)U {r},R:= R - {r}
if (ext(E) A{dir(E) =?) A (msg(E) == head(channel(E))) A
(flag(channel( E) = False) A eval(s, head(channel( E)), €)))
then
{(XTLT(s):= XTLT(s)U {r},R:= R—{r},
Flag(channel(E)) := True}
if (ext(E) A (dir(E) =7) A (msg(E) == OTH) A
(content(channel(E)) # ¢) A (flag(channel(E) = Falsc) A
eval(s, head(channel(E)), e))) then
{XTLT(s):= XTLT(s)U{r},R:= R~ {r},
Flag(channel(E)) := True)

}
1 XTUT(s) is computed the same way as XTLT(s) is computed.
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Here TTCN TIMEOUT events wanslated as internal (timeout) transitions in the
test EFSMs are treated qualitatively by assuming that a timeout can occur any time
without referring to its quantitative value. The advantage of such a treatment is that all
possible effects of the timeout transitions can be studied. Also, TTCN OTHERWISE
events translated as OTH transitions in T-EFSMs are selected only if none of the

events of higher priority alternatives match with the first event in the channel.

3.3.1.1 Predicate Evaluation

The procedure eval used in computing the set of executable transitions in a global
state space is defined here. This procedure decides on the truth value of the enabling

predicate e of a transition given a global state s and the 10D at the head of the channel.

Assume that e is expressed in conjunctive normal form such that each operand
of a logical operator in e is either a boolean variable or an expression of the form
op; relop op;, which we call an elementary predicate, and relop is a relational
operator. [t is also assumed that the IOD has non-symbolic values assigned at all
leaf nodes. These assumptions are essential for the procedure eval to always retun

a true or false value,

procedure eval(s, 10D, e) |
/* An 10D is a tree structured representation of an instance of an ASP or a PDU

event in a FIFO channel. */

1. Execute step 2 for each elementary predicate in e. If any of the retumed values
are false, then exit the procedure with a false value. If all the returned values are

true, then exit the procedure with a true value.

(S

Evaluation of a relational operator consists of the following three cases which

return a boolean result:

a. opl relop op2, where both opl and op2 are local variables: Evawate opl

relop op2 and return the boolean result.

91



b. opl relop cp2, where opl is a field of the IOD and op2 is a constant:
Traverse the tree-structured 10D and extract the value of opl, evaluate “opl
relop op2”, and return the boolean result.

c. opl relop op2, where opl is a field of the IOD and op2 is a local variable:
Traverse the tree-structured data IOD and extract the value of opl. Since op2
can be an expression in the local variables, first compute the value of op2,

then compute “opl relop op2”, and return the bonlean result.

3.3.1.2 Perturbation

Given the present global state and a transition, the perturbation function computes
the next global state. If the transition is an implicit send in an RS architecture then the
perturbation function also updates the UT-EFSM by calling the UT_gen procedure. In
the following definition, the procedure map_to_IOD(Event) is assumed to transform

the Event of type ASP or PDU to an 10D.

Definition 3.4: Lets = < T,,9Q,, Py, ¥y, {c1, .-y Ciy -y €n }, [TUv > be the present
global state of a test verification system TVS = < £,Q, P, ¥,C >. Let XT(s) be the
set of executable transitions in s. Then the perturbation of s by a transition r = <From,
To, E, e, h, n> & XT(s) is written as per(s, r) = s,, where s, is computed as follows.

if (From = Z,) Aint(E)) then
sp := < T0,Qy, Py, Wy, {1405 C1y ey ey cn }, I UV >, where
II' := h(I1) and o' := new_verdict(v, verdict(To))
if (From = Z,)A/dir(E) = ?)A(channel(E) = ¢;) A(msg(E) = head(c,)))V
((msg(E) = OTH) A (ci # ¢)), then
sp =< To,Qy, Py, ¥y, {1, .., tail(c,), ..,cn }, I UV >
if (From = Z,) A(dir(E) =!) A (channel(E) = ¢;)) then

sp := < To, g, Ps, ¥y, {Cly ey Conews -y en }, I UV’ >, where
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T

Ci_new := append(c,. map-to. IOD(msg(E)))
if (From = £,) A (dir(E) = ') A (channel(E) = IUT)) then
{sn := < To,Qy, Py, Vs, {c1,..,Cror e}, UV >, 5.t (¥,P)eC
Call UT_gen(s, 1)}
if ((From = P,) A int(E)), then
Sp 1= < 84,0, T0,¥,, {c1,.1 64, .eycn }, TP UV >
if ((From = Py) A(dir(E) = ?) A (ckannel(E) = ¢,) A (msg(E) = head(c;))),
then s, := < £,,Q,,T0,¥,,{c1, .., tail(c;),..,cn}, T UV’ >.
if ((From = Py) A (dir(E) =!) A (channel(E) = ¢;)), then
$p = < B4, 0, T, ¥y, {C1y ..y Ct_news --r €a }, II' U D' >, where
Ci_new = append(c,,maptoLOD(msg(E)).
if (From = Q) A int(E)), then
8p 1= < By, To, Py, ¥, {c1, .1 Ciynca}, T UV >
if ((From = Q,)A(dir(E) =?) A (channel(E) = ¢;) A (msg(E) = head(c;))),
then s, := < Ty, To, Py, ¥,, {cy,..,tail(cy), ..,cn }, TI' UV’ >.
if (From = Q,)A(dir(E) =) A (channel(E) = ¢,)), then
Sy i= < By, To, Py, ¥y, {C1y -y Crnews -y Cn }, II' UV’ >, where
Cinew := append(ci,msg(E)).
if ((From = ¥,) Aint(E)), then
Sp = < L4, 04, Py, To,{c1y -y Ciy ooy ey cn }, [T U ' >, where
I := h(I1) and v' = new_verdict(v, verdict(To))
if (((From = U,)A(dir(E) = ?)A(channel(E) = ¢;)A(msg(E) = head(c;)))V
((msg(E) = OTH) A (c, # $))), then
sp i= < Ty, Qy, Ps, To, {c1, .., tail(ci), ..,ca }, I UV >
if ((From = ¥,) A (dir(E) =!) A (channel(E) = ¢;)), then
sp = < T4, Q, Ps.To,{c1, ... Cs_news -y cn }, [I' U v’ >, where

Cinew = append(c,,map-to_I0D(msg(E))).
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In the TTCN specification of a test case, a test designer may associate intermediate
test verdicts with expected receive events from an implementation and a final test
verdict may be assigned on termination of a test case behavior. Depending on
the expected responses of an implementation, different verdicts — Pass, Fail, or
Inconclusive — may be assigned to receive events in a sequence of test behavior.
The resultant test verdict at any point in a sequence of test behavior depends on the
previous verdict and the current verdict. Therefore, to compute a resultant verdict in
a state given the previous verdict and the present verdict, in the following we define
a procedure new_verdict(ov, pv), where ov is the old verdict or the previous verdict
and pv is the present verdict.
procedure new_verdict(ov, pv) {

if (ov == “none” then return(pv)

else{
if (ov == Fail) or (pv == Fail) then return(Fail)
else if (ov == Pass) and (pv == Inconclusive) then return(Inconclusive)
else if (ov == Inconc.) and (pv == Inconc.) then return(Inconclusive)

else if (ov == Pass) and (pv == Pass) then return(Pass)

The RS test architecture does not have an explicitly defined upper tester. How-
ever, while executing an RS architecture based test case, it is required to specify some
behavior at the upper service boundary of the JUT. Therefore, during the global state
space generation process, we dynamically generate the desired behavior of the upper

tester in an incremental manner by calling the following UT _gen() procedure.
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procedure UT gen(s, r1){
Let ¥ = < 5,{},V,R,a0,{qa,}, h.C1,Co >,
s =< X4, Q, Py, ¥y, {c1,..,¢15.ycn }, TU D >, and

rp =< Z,,S],E],C],h],nl >

1. Explore all paths from P, until a transition r3 =< s3,s3, F3,€3,h3,n3 > is
encountered such that the event E3 mawches E;.
Letry = < s, 8y, Ez, €3, ha, na > be a transition cn the path from P, to s3 such
that ((dir(Ez) =?) A (channel(E;) = channel(¥, P))).

2. Generate:
E, = channel(Ey)levent(E>)
L, = a set of assignments to the fields of E, such that e; is satisfied and all
transitions up to and including r3 can be fired.

3. Update the UT behavior by creating a state a,.; and two transitions
' = < a,,a,41,En,true,hn,1 >, " = < aj1,a;41,0TH, true, ¢,1 >

¥ =< SU{ajs1}, ¢,V Uvar(h,), RU{r',7"},a0,{a;41}, R, C1,Co >

In the following, we present a state space gene.ation algorithm based on the tradi-
tional reachability analysis algorithm extended to EFSMs [WEST 78]. Our algorithm
handles some special characteristics of test specifications such as nondeterminism,

OTHERWISE events, and verdict computation.

Algorithm 3.1

Input: A set of EFSMs, a set of communication channels, and the capacities of the

channels.

QOutput: A global state space.

S1. Define a set of global states S and a set of global transitions R. Initially, S contains

only the initial global state s;,; and R = ¢.
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S2. Find a member s € S of the set of global states whose perturbations have not
been determined. If no such member exists, then terminate.
S3. Calculate the set of executable transitions X T'(s) in state s using Definition 3.4.
S4. Compute Sy, a set of global states by perturbing s. Initially S, = ¢.
Vr = < From,To, E,e,h,n > € XT(s),do
{ Sp = SpU {s'}, where s' = pert(s,r);
P,(s) = ¢; /* P,(s) is the set of predicates being true in state s. */
R=RU{<s,s,E,e,h,n>};
}
S5. If S, is an empty set, report s as a terminal state in the global state space.
S6. Vs € S do {
if channelover flow(s) then mark s “perturbed” and S = S U {s}
else if s ¢ S then mark s “unperturbed” and S = S U {s}
}
S7. Go to step S2.

3.3.2 Model Generation Algorithm

A model for a TVS is generated from the global state space of the TVS by
associating a set of atomic predicates with each global state. Therefore, we first
identify the types of predicates and then present an algorithm to systematically

associate a set of predicates with each global state.

We identify five types of atomic predicates to be associated with each global state:
state predicate, variable predicates, event predicates, PCO predicates, and verdict
predicate. Identification of the predicate types is guided by the test properties to be

verified. In the following, we explain the five types of predicates.

(i) State predicate: The state predicate INIT is associated with the initial state.
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(ii) Variable predicates: These are assertions about the values of the variables in
the global state space. These assertions arise from the enabling conditions of the

transitions in the component EFSMs of a test verification system.

(iii) Event predicates: These characterize the possibility or the actual execution of
specified events. There are two types of event predicates: AT and AFTER used
with different parameters. The predicate AT(Treceive(Channel, Event)) is true in a
state s if there is a test case transition in state s such that the Event is received
from the Channel. Similarly, AT(Sreceive(Channel, Event)) is true in a state s if
there is a protocol transition such that the Event is received from the Channel.
AFTER(Treceive(Channel, Event)) is true in a state s’ if there is a transition to the
state s' such that the Event is received from the Channel as a result of firing the

transition, A similar explanation holds for AFTER(Sreceive(Channel, Event)).

(iv) PCO predicates: The direction of events in a TTCN test case is with respect to
the points of control and observation (PCO). We define a set of assertions about the
PCOs and the input/output directions of events occurring at the PCOs: LOWER,
UPPER, INPUT, OUTPUT, LOWER_OUTPUT, UPPER_OUTPUT, INTERNAL,
and NULL. The predicate LOWER (UPPER) is true in a state if a transition fires in
the state with an external event occurring at the Lower (Upper) PCO. The predicate
INPUT (OUTPUT) is true in a state if a transition fires in the state with an external
input (output) occurring at one of the two PCOs. If the external event is output at
the Lower (Upper) PCO then LOWER_OUTPUT (UPPER_OUTPUT) is true. If an
internal event occurs in a state, then INTERNAL is true. If a transition containing
neither an external nor an internal event, but containing some assignment functions

occurs in a state, then the predicate NULL is associated with that state.

(v) Verdict predicate: This is an assertion about the test verdict and is one of the

following three: (Verdict == Pass), (Verdict == Inconclusive), and (Verdict == Fail).

In the following, we present an algorithm to associate a set of predicates with
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each global state of a test verification system. Such a predicated global state space

is denoted as a model for the verification system,

Algorithm 3.2

Input: The state set S and the transition set R of the global state space generated
by Algorithm 3.1.

Output: Predicated S.

S1. Initialization: Vs € S, P,(s) = ¢, where P, assigns a set of predicates to s.
S2. Vr=<s,s,E,e,h,n > € Rdo {

P,(s) = P(s) U Pper(r)

P.(s') = P,(s') U Pgen(r)

}

The functions Pper and Pgen are defined to compute the set of atomic predicates
evaluated to true in a global state. The function Pper(r) associates a set of predicates
with a state s when s is perturbed by the executable transition r. Similarly, the function
Pgen(r) associates a set of atomic predicaies with the state s' when s' is generated
by perturbing the state s using the transition r.

Pper(r){/ *r =< s,5',E,e,h,n > */
if (ext(E) A (dir(E) ==!)) then
{ if (pco(E) == L) then temp = {LOWER_OUTPUT, LOWER};
else if (pco(E) == U) then temp = {UPPER_OUTPUT, UPPER };
}
else if (ext(E) A (dir(E) == 7)) then
{ if (pco(E) == L) then temp = {LOWER};
else if (pco(E) == U) then temp = {UPPER};
}
else if (E == 1) then temp = {INTERNAL};
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else temp = {NULL};

return (temp U {e})
}
Pgen(r){/ *r =< s,8,E,e,h,n > %/
if (ext(E) and r is a test transition), then
{ if (dir(E) == ?) then temp = { AFTER(Treceive(pco(E), message(E)))};
else if (dir(E) ==!) then temp = { AFTER(Tsend(pco(E), message(E)))};
}

else if (ezt(E) and r is a protocol specification transition), then
{ if (dir(E) == ?) then temp = {AFTER(Sreceive(pco(E), message(E)))};
else if (dir(E) == !) then temp = { AFTER(Ssend(pco(E), message(E)))};
)
else temp = {};

return (temp)

3.4 Complexity Analysis

In this Section, we analyze the complexities of the global state space and model

generation algorithms, Algorithms 3.1 and 3.2, respectively. Let there be n EFSMs,

Fl =< SlyStla‘/laRl’sthyh11011a001 >,
F2 =< 523 Si2a‘/2’ R2a82vz2ah21 CI2$ COZ >,

Fy = < Sn, Stny Vay Ry 8ny Zn, hn,Cin,Con >

and m channels Cy,Cj, ..., Cy, interconnecting them in a test verification system.

Since a global state consists of the states of the individual EFSMs and the channel

states, to determine the complexity of the global state space, it is required to compute
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the set of states each channel can be in. The size of the state set of channel C| is
computed as follows. Let the capacity of channel C; be Cy; and let there be T, types
of messages thct can be present in channel C,. Then the number of states S(C,) of

channel C; is given as:

S(C=T2+T} + T2 + ...+ T
_ T‘Ck|+1 -1
T, -1
Therefore, the state complexity of the global state space S, denoted by SCom-
plexity(S), generated from the n EFSMs Fy, F;, ..., F;, and m channels C, Cy,...,Cm
is given as follows:

m Tck. +1 1

SComplezity(S) = (Jl—:I] S, (2=

1=1

which represents the product of all EFSM states and channel states.

The complexity of the data space, denoted by DComplexity(S), attached to the
global state space S depends on the data spaces of the individual EFSMs, the set of
predicates attached to each global state, and the complexity of the global state space.
The following expression represents the data space complexity:

DComplezity(S) = (V1 UV U..UV, U P, (S)) x SComplexity(S),
where P,(S) is the set of predicates associated with all the states in S.
The complexity of the model generation algorithm is linear in the size of the

global state space and is equal to the space complexity SComplexity(S).
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CHAPTER 4

MODEL CHECKING FOR TVS

To verify the correctness of a system, one must verify that the system satisfies
its safety and liveness properties. Safety properties state that something bad never

happens and liveness properties state that something good eventually does happen.

This chapter contains four sections. The branching time temporal logic formalism
is presented in the first section. In the second section, we define the safety properties
of a test case. In the third section, we define a set of notations to formally express a
test purpose as a temporal formula and a notation to express the liveness property of a
test case. Algorithms to evaluate temporal formulas using various temporal operators

on a model representing a test verification system are presented in the fourth section.

4.1 Temporal Logic

Temporal logic has been of particular interest to the designers of both hardware
and software specifications for more than a decade in the form of verifying some well-
defined properties of specifications [BOCH 82, LAMP 83]. With the widespread use
of communication protocols and the subsequent global effort in standardizing the
formal specifications of protocols, temporal logic is also used in verifying protocol

specifications [SAB 88].

Temporal logics are extensions of the propositional logic, which include certain
types of assertions about the future. A temporal formula is constructed using
propositional variables, the conventional logical operators, and a set of temporal
operators. The set of temporal operators in a temporal logic is defined based on
the structure of time on which the temporal formalism is based. There are two main
classes of temporal logics: linear time [LAMP 80] and branching time [BPM 83]. The

linear time temporal logic considers time to be a linear sequence and the branching
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time approach adopts a tree structured time allowing some instants to have more than
a single successor instant, Both types of temporal logics are used in the verification
of communication protocols [FRV 86, CES 86, SAB 88].
In the following we explain the two basic operators in linear time logic.

O — meaning “now and for ever”;
{ - meaning “now or sometime in the future”.
The following are some examples of temporal assertions using these operators:

(z > 0) - “the variable z is positive now™;
O(z > 0) - “z is positive now and forever”;

O(z > 0) — “z is positive now or will be positive some time in the future”.

Whether to use the linear time logic or the branching time logic is pragmatically
based on the types of systems and properties one wishes to formalize and study [BPM
83]. Since the global behavior of a test system containing multiple nondeterministic
protocol and test entities takes a tree structure rather than a sequential structure, we
use branching time temporal logic for studying the properties of a test system. In the

following, we present the syntax and semantics of branching time logic.

Definition 4.1: Let AP be a set of atomic propositions. A BTL structure is

defined as a 5-tuple: M = < S,V, R, Py, sinit >, Where

— §is a finite set of states.

— Vs a finite set of variables.

— R is a set of transitions among the elements of §.

— P : S — 24P assigns to each state the set of atomic predicates evaluating to
true in that state.

- Sinst € S is the initial state.

Definition 4.2: Using the propositional logic operators -, A, and V and the
branching time temporal operator Until (U), the formulas of a BTL structure are

defined as follows.
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i. Every atomic proposition f € AP is a BTL formula.
ii. If fand g are BTL formulas, then so are ~f, fAg, fVg, A[f U g}, and E[f U g].

Definition 4.3: A path is a sequence of states (sg, s;, S2, ...) such that
Vi[(ss, si+1) € R]. The state so need not be the initial state of a BTL structure.

We use a standard notation to express the truth value of a formula f in a BTL
structure M: (M, s¢ = f) means that the temporal formula f holds at state s ifi
structure M [CES 86]. When the structure M is understood, we simply write so = f.

Definition 4.4: The semantics of the temporal operators used to construct BTL

formulas are defined using the |= notation as follows:

i. so |= piff p € Pr(so).
ii. so | ~f iff not(so E f).
iii. so E fAgiff s = fand s = g.
iv. so E fVvgiff so = fors g
v. so = A[f U g] iff for all paths (s, s1,...) starting with s,
3G 2 0) Ay = ) A (G0 S G < i = (s, E H.
vi. sg k= E[f U g] iff for some path (sg, s1,...) starting with sg,
H[( 2 0) Alss b= ) A0 < j < i = (s1 k= HD-

The frllowing abbreviations are also used in writing BTL formulas:

AF(f) = A[True U f] means that f holds in the future along every path from sg;
that is f is inevitable.
EF(f) = E[True U f] means that there is some path from s, that leads to a state

at which f holds; that is, f potentially holds.

EG(f) = ~AF(~f) means that there is some path from so on which f holds at

every state.

AG(f) = ~EF(~f) means that f holds at every state on every path from sg; that
is f holds globally.
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(f1 = f2) = AG(fi = AF(f;)) (read * f; leads to f,”") means that for any time at

which f; 1s true, f; must be true then or at some later time.

4.2 Safety Properties

Based on the idea that nothing bad happens during a testing process, we group the
safety properties of a test case into four distinct classes: transmission safety, reception

safety, synchronization safety, and verdict safety. Each type of safety property is
defined below.

Transmission safety: There are two transmission safety properties corresponding
to transmission of events by the test case and transmission of events by the protocol

specification.

1. INIT E AG(AFTER(Tsend(Q, E)) — AFTER(Sreceive(Q, E))) and
2. INIT k= AG(AFTER(Ssend(Q, E)) — AFTER(Treceive(Q, E)))

In the above formulas, Q is any communication channel between the test system
and the protocol specification and E stands for an event. Intuitively, the first property
states that every event sent by the test case must eventually be accepted by the
protocol specification. That means the test case does not generate any event that is
unacceptable to the protocol. The second property states that every event generated
by the protocol specification during the testing process must eventually be accepted by
the test case, i.e., the test case is ready to receive any event generated by the protocol.
Satisfaction of these two properties ensures that there is no blocking reception error

[ZAFI 80] in the test system.

Reception safety: There are two reception safety properties corresponding to re-

ception of events by the test case and reception of events by the protocol specification.

1. INIT | AG(AT(Treceive(Q,, Es)) = AFTER(Treceive(Qy, Ey)) V
AFTER(Tinternal))
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2. INIT = AG(AT(Sreceive(Q,, Es)) — AFTER(Sreceive(Qy, E,)) V
AFTER(Pinternal))

In the above formulas, AT (Treceive(Qs, Es)) = AT(Treceive(Q1, E1))V

AT (Treceive(Qn, Ey)).
The predicate AT(Sreceive(Qs, E,)) is defined in a similar way. Tinternal and
Pinternal are internal events in the test case and in the protocol specification,

respectively.

Intuitively, the first (second) reception property states that when control reaches a
state in the test case (protocol specification) where there is a set of alternative receive
events, one receive event must be enabled or an internal event must occur in that state.
Satisfaction of these two properties ensures that the test case is not deadlocked [ZAFI

80] with the protocol specification. The internal event may be due to a timeout.

Synchronization safety: This safety property is a special characteristic of pro-
tocol testing and is not found in conventional program testing. The issue of synchro-
nization in a test case, which is an event timing problem, was first studied in [SABO
84] using deterministic FSM models of a protocol specification and a test case. This
problem arises when the test system interacts with the protocol through two PCOs.
Conceptually, a test case faces a synchronization problem at one of the PCOs if an
output test event is preceded by a sequence of events consisting of internal protocol
events and/or a test event occurring at the other PCO. The synchronization problem
in a test system using the nondeterministic EFSM models of protocol specification
and test case has been studied in [NASA 92b]. We express the synchronization safety

properties using the until (U) operator as follows.

1. For every state s in the BTL structure,
sE-E[fiU f2]. where fy =UPPERV INTERNALV NULL
fo = LOWER.OUTPUT.
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2. For every state s in the BTL structure,
s E-E[fiU f3], where f{ = LOWERVINTERNALV NULL
fo = UPPER.OUTPUT.

The first (second) synchronization safety property is for the Lower (Upper) PCO.
Verdict safety: Intuitively, during the testing process a test case must not assign
a Fail verdict to any behavior allowed by the protocol specification. Therefore, a BTL
structure representing the composed behavior of a test and a protocol specification
must not contain any state with the (Verdict = Fail) predicate true. Therefore, the

verdict safety propzrty is formulated as follows.

INIT = AG(—~(Verdict = Fail))

4.3 Liveness Property

While testing a protocol implementation using a test case, if the implementation
fulfills the test purpose, then the test case assigns a Pass verdict. Therefore, the test
case behavior satisfying the test purpose must end with a Pass verdict. Satisfaction
of the test purpose is a good thing that must happen in a test case. Thus, a test case
satisfying the liveness property means that the test behavior satisfies the test purpose
and eventually assigns a Pass verdict. The liveness property is formally stated as
follows.

INIT k= (fy — (Verdict = Pass)),

where f; is a temporal formula representing the test purpose.

We identify the following five primitive test purposes from which more complex
test purposes can be derived by using a composition rule. The test purposes are
expressed as temporal formulas using the — operator defined in Section 4.1.

i. Direct Response

(ps N AFTER(Tsend(Qs, E\))A(t = T))—

(pr NAFTER(Treceive(Q,,E))) N(T <t < T +7Ty))
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This purpose states that if the test systern sends an event E, to the protocol
through the channel Q, at time T with the predicate p, true, then it receives an event
E, from the protocol through the channel Q, during an interval of length Tq such

that the predicate p, is true.
ii. Timed Response
(ps A(t = T)) — (p, AN AFTER(Treceive(Q,, E,)) AN (T <t £ T + Tp))

This purpose states that if the predicate p, is true in the test system at time T and
the test system waits without doing anything, then it receives an event E, from the
protocol through the channel Q, during.an interval of length T such that the predicate
pr is true. This test purpose can be used to specify a conformance requirement in

which the protocol outputs an event after a timeout.
iii. No Response to External Input

(ps N AFTER(Tsend(Q,,E\))A(t = T)) ~
(ps N~AFTER(Treceive(ANY _channel, ANY event)) A (T < t < T + Ty))

This purpose states that if the test system sends an event E; to the protocol through
the channel @, at time T with the predicate p, true and waits an interval Tg, then no
event is received from the protocol specification through any of the channels during
the same period. This purpose is useful to model a conformance requirement in which

the protoco! ignores an invalid/inopportune event and does not output any event.
iv. No Response in an Interval
(P A(t =T))

(ps A ~AFTER(Treceive(ANY _channel, ANY _event)) A (T < t <
T + Tv))

This purpose states that if the predicate p, is true in the test system at time T and
the test system waits for an interval Ty, then no event is received from the protocol

specification through any of the channels during the same period. This purpose is
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useful to model a conformance requirement in which a timer does not prematurely

expire in the protocol.

v. Eventual Response
(ps A(t = T)) (pr NAFTER(Treceive(@i, E\)) A (T <t < o0))
Intuitively, this purpose states that if the predicate p, is true in the test system at
time T and the test system waits indefinitely without doing anything, then it eventually
receives an event E, from the protocol through the channel @, such that the predicate
py is true. This test purpose can be used to specify a conformance requirement in
which the protocol nondeterministically outputs an event. Though this purpose looks

like a special case of the Timed Response test purpose, conceptually they are different.
We define SEQ, a sequential operator for composing primitive test purposes into
larger test purposes using the following syntax where f; and f; are two test purposes.

so E (fi SEQ f2)iff sp = fi and Vs; € last(fy) 3s, € reachable(s;) such that
sj | f2. Intuitively, (fi SEQ f2) means f; is satisfied after f.

The function reachable(s) returns a set of states that can be reached from s.

The function last(f) is the set of all the terminating states of the finite partial
paths from sy, over which f is evaluated. In the expression so = f, the formula f'is

evawuated over a set of paths starting with sg.

sO
@ indicates the extent of the finite
s1 <8 s11 path over which a formula is
l evaluated.
s2 s4 s6 s9
i s12 513
s3 s5 s7 s10

Figure 4.1 An example to compute last(f).
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For example, referring to Fig. 4.1, let a formula f be evaluated over all the finite

paths whose extents are indicated by the bold states. Then last(f) = {s3, ss, S, S9, 511}

4.4 Verification of Test Case Properties

Safety and liveness properties of a test case are verified by evaluating, also called
model checking, the corresponding temporal formulas. The formulas used to express
the test case properties contain expressions of the form: A[fy U f], fi — f2, and
fi SEQ f;. The length of a formula is an important parameter in the termination of
a formula evaluation algorithm. Hence, in the following, we define length(f).

Definition 4.5: Let f' be the prefix representation of a formula f. Then, the length
of a formula f, denoted by length(f), is determined by counting ‘he total number of
operands and operators in f'.

Example: Let f= A[(NOT X) U (Y OR Z)]. Then f' = AU((NOT X)(OR Y Z)).
Thus, length(f) = 6.

Assume that we wish to evaluate whether a formula f is true in a BTL structure
M = (S,V,R,P,,sint) The model checking algorithm operates in stages: the
first stage processes all subformulas of f of length 1, the second stage processes all
subformulas of length 2, and so on. At the end of the ith stage, each state will be
labeled with the set of all subformulas of length less than or equal to i that are true
in the state. The notation label(s) denotes this set for state s. Upon termination of
the algorithm at the end of stage n = length(f), for all states s, M,s |= f; iff f, €

label(s) for all subformulas f, of f.
The following primitives are used to manipulate formulas and access the labels

associated with states:

- argl(f) and arg2(f) give the first and second arguments of a two-argument
temporal operator; thus if fis A[fy U f2], then argl(f) = f and arg2(f) = f,.

- labeled(s, f) retums true (false) if state s is (is not) labeled with formula f.
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- add_label(s, f) adds formula f to the current label of state s.
- marked|]:nstates] is used to indicate which states have been visited by the search

algorithm.

- Stacked(s) indicates whether state s is currently on the stack ST.

In the following, we present algorithms to evaluate operators U,+~, and SEQ.

4.4.1 Evaluation of Until Operator

In the following, we explain how a formula f = A[f; U f,] involving the until
operator is evaluated [CES 86). The recursive procedure au(f, s, b), given below,
performs the search for formula f starting from state s. When au terminates, the
boolean result parameter b will be set to true if s | f, otherwise it is set to false.

Algorithm 4.1
Input: A BTL structure, s, and f = A[fi U f3).

Output: True or false.

procedure au(f, s, b)
begin
if marked(s) then
begin
if labeled(s, f) then
begin b := true, return end;
else b := false; return
end
{Mark state s as visited. Let f = A[fi U f]. If f, is true at s, fis true at 5; so
label s with f and return true. If f; is not true at 5, then fis not true at s; so return
false. }
marked(s) := true;

if labeled(s, arg2(f)) then
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begin add_label(s, f); b := true; return end
else if —labeled(s, argl(f)) then
begin b := false; return end;
{Now we know that f; is true at s and that f, is not. Check to see if f is true at
all successor states of s. If there is any successor state s/ at which f is false, then f
is false at s also; hence remove s from the stack and return false. If f is true for all
successor states, then f is true at s; so remove s from the stack, label s with f, and

return true.)

push(s, ST);
for all s/ € successors(s) do
begin
au(f, s1, bl),
if - bl then
begin pop(ST); b := false; return end
end,
pop(ST); add_label(s, f); b := true; return

end {of procedure au}

4.4.2 Evaluation of “implies” Operator

Algorithm 4.2

Input: A BTL structure, s, and f = (f; — f2).

Output: True or False.

S1. Let the BTL structure be denoted by < S, V, R, P,, s;nit >. Define G, a set of
states, initially containing ¢ and a boolean variable Result that holds the result
of evaluating the formula f. Go to step S2.

S2. If ((f1 & Pris)) V (f2 € Pr(s))) then go to Step S4

else begin
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G « successors(s);
if (G = ¢) then go to step S5;
else begin mark(s) := true; Go to step S3 end
end
S3. If (G = ¢) then go to step S4
else for any g € G such that -mark(g) do
begin
If f2 € P(g) then begin
G — (G - {g})
mark(g) := true; go to step S3
end
else if (successors(g) = @) then go to S5.
else begin
G « (G U successors(g) — {g})
mark(g) := true; Go to step S3
end
end
S4. Result := true; Stop.

SS5. Result := false; Stop.

4.4.3 Evaluation of SEQ Operator

Algorithm 4.3
Input: A BTL structure, s, and f = (fi SEQ f2).
Output: True or false.

S1. If -(s = f1) then go to step S4
Else begin

compute S; = last(f1);
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If S; = ¢ then go to S4 else go to step S2

end
S2. If S; = ¢ then go to S5
else for any s; € S; begin
compute S, = reachable(s;);
St —(Si— {si})
Go to step S3
end
S3. If S, = ¢ then go to S4
else for each s; € S, begin
If 3; = f2 then go to step S2
else begin S, — S, — {s;}: go to step S3 end
end
S4. Result := False; Stop.
S5. Result := True; Stop.

4.4.4 Mouel Checking Algorithm

In this section we explain how to evaluate a BTL formula f with arbitrary nesting
of subformulas. Conceptually, a temporal formula can be viewed as a tree with
the internal nodes consisting of logical operators —,V,A and temporal operators
U,+—,SEQ, and the leaf nodes consisting of atomic predicates. Therefore, evaluating
a temporal formula means evaluating all the subformulas in the temporal formula tree
in a bottom-up manner. In order to represent a temporal formula as a tree consisting
of its subformulas and opcrators, we need a scheme to number the subformulas
and a data structure to store the subformulas. Therefore, in the following, we first
present a numbering scheme followed by the descriptions of two arrays to refer to

the subformulas of a temporal formula.

113




Assume that f is written in prefix notation. Then, length(f) denotes the total

number of operands and operators in f. length(f) is used to number the subformulas

of f in the following manner.

1. Assume that formula f is assigned the integer i.

2. Iffisunary, i.e. f=(op(f1)), then assign the integer (i+1) through (:+length(fi))
to the subformulas of f;.

3. If fis binary, i.e. f= (op(fif2)), then assign the integers from (i+1) through
(i + length(f1)) to the subformulas of f; and (i + length(f1)) through (i +
length(f1) + length(f2)) to the subformulas of fo.

Thus, in one pass through f, we can build two arrays nf[1: length(f)] and sfl:
length(f)], where nfi] is the ith subformula of f in the above numbering scheme
and sf[7] is the list of the numbers assigned to the immediate subformulas of the ith
formula. For example, the formula f = (AU(NOT X)(OR Y Z)) can be represented
by the tree structure shown in Fig. 4.2 with the contents of the arrays nf and sf

given below:

nfil] (AU (NOT X)}(OR Y Z)) 1] 24
nfl2] (NOT X) 2] 3)

nfl3] X 53] (nil)
nfl4] (OR Y Z) sf14] (5 6)
nfisly sA1S] (nil)
nfl6] Z sf16} (nil)
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o

The numeric tag of a node is used as
an index in the nf and sf arrays to
refer to the subformula represented
2(NOT by that node.

Figure 4.2 Tree representation of a formula f = (AUNNOT X)(OR Y Z)).

Using the model generated from a test verification system in Chapter 3 and the
safety and liveness properties stated in this chapter, we are in a position to apply the
model checking algorithm of [CES 86]. The following algorithm uses Algorithms

4.1, 4.2, and 4.3 stated above to verify test case properties.
Algorithm 44.
Input: BTL structure M and a test case property as a temporal formula f.

Output: Correctness of f.

S1. Compute length(f), the total number of subformulas and operators in f.

S2. Build two arrays nfi1:length(f)] and sfl1:length(f)] where nfii] is the ith subformula
of f, sfli] is the list of the ~umbers assigned to the immediate subformulas of the
ith formula. Essentially these two arrays maintain the tree structure describing
the formula f.

S3. Define a bit array L[s] of size length(f) for each global state s such that L[s]{i]
is set to true if the subformula nf[i] holds in s.

S4. /* Successively apply the state labeling algorithm label_graph to f. */
for fi := length(f) step — 1 until 1 do

label_graph(nf{fi]).

SS. If f is a synchronization property then f holds if L{s][1] is ttue Vs € S

else the property f holds if L[sp]{1] is true.
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Procedure label_graph(f)

begin

{main operator of fis AU}
execute Algorithm 4.1 for f

{main operator of fis +}
execute Algorithm 4.2 for f

{main operator of fis SEQ}
execute Algorithm 4.3 for f

end

4.4.5 Complexity Analysis

Let M = (S,V,R,P;,s,nu) be a BTL structure and f be a formula to
be evaluated on M. To evaluate a formula f, Algorithm 4.4 calls the procedure
label_graph() length(f) times. Then, label_graph() uses Algorithm 4.1, Algorithm
4.2, and Algorithm 4.3 to evaluate operators U, —, and SEQ, respectively. To
evaluate an operator, each of the Algorithms 4.1, 4.2, and 4.3 take time of the order
O(card(S)+card(R)). Therefore, the time complexity of evaluating fon M, denoted
by TComplexity(f, M), is given by the following expression:

TComplezity(f,M) = O(length(f) x (card(S) + card(R))),

where card(A) stands for the cardinality of a set A.
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CHAPTER 5

RS TEST CASE VERIFICATION

In this chapter, we apply the verification technique to a RS architecture based
test case chosen from a test suite developed at the Dutch PTT Research [PTT 90] to
test an Association Control Service Element (ACSE) protocol implementation. The
RS architecture and its corresponding test verification system are shown in Figs. 5.1

and 5.2, respectively.

This chapter contains five sections. In the first section, we briefly describe the
ACSE protocol. The dynamic behavior table of the test case to be verified is discussed
in the second section. An outline of the underlying service provider of the ACSE
protocol entity is presented in the third section. In the fourth section, the global
behavior of the test verification system is discussed. Finally, we state and verify the

safety and liveness properties of the test case.

Procedures Upper Tester

Lower Tester

® Under Points

Test /
l 1(N-1 }-ASPs
P

Service Provider

Figure 5.1 RS Test Architecture.
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TEST EFSM (UT-EFSM)
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; ! [
SPECIFICATION
EFSM
(S-EFSM)
\j —
wl ] [ l
P _IPI
! }

Underlying Service Provider EFSM (USP-EFSM)

Figure 5.2 Test Verification System for the RS Architecture,

5.1. ACSE Specification

ACSE [ISO 8650] is a protocol at the application layer, i.e., the 7th. layer of the
OSI protocol stack. A number of Application Service Elements (ASEs), such as the
File Transfer and Access Management (FTAM), Message Handling System (MHS),
etc., use the Common ASE (CASE) ACSE protocol for various services: confirmed
establishment (A-ASSOCIATE) and disconnection (A-RELEASE) of associations,
non-confirmed user initiated abortion of associations (A-ABORT), and provider ini-
tiated abortion of associations (A-P-ABORT). For a particular association, the ACSE
services operate either in the normal mode or in the X.4]0-1984 mode. The mode
of operation is determined by the “Mode” parameter in the A-ASSOCIATE request
primitive.

The state table model of the ACSE protocol is referred to as the Association
Control Protocol Machine (ACPM). The ACPM communicates with its service-user

by means of the ACSE service primitives and with its presentation service-provider
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by means of the presentation services. The ACPM is activated by the receipt of input
events from its user and service-provider. The input events from its user are request
and response primitives and the input events from its presentation service-provider are
presentation indication and confirm primitives. The ACPM responds to input events
by issuing output events to its presentation service-provider and ACSE service-user.
A new invocation of an ACPM is employed upon the receipt of an A-ASSOCIATE

request primitive or a P-CONNECT indication primitive.

The ACSE protocol consists of the following three procedures:

i. association establishment;
ti. normal release of an association; and

tii. abnormal release of an association.

(i) Association Establishment: The association establishment procedure is used
to establish an association between two Application Elements (AE). The association
establishment procedure uses the A-ASSOCIATE-REQUEST (AARQ) and the A-
ASSOCIATE-RESPONSE (AARE) Application PDUs (APDUs). This procedure is

activated by the following events:

i. an A-ASSOCIATE request primitive from the requester;

ii. an AARQ APDU as user data in a P-CONNECT indication primitive from its
service provider;

iii. an A-ASSOCIATE response primitive from the acceptor; and

iv. a P-CONNECT confirm primitive, which may or may not contain an AARE
APDU.

The requesting ACPM forms an AARQ APDU from parameter values of the A-
ASSOCIATE request primitive and issues a P-CONNECT request primitive. The User
Data parameter of the P-CONNECT request primitive contains the AARQ APDU.

Then, the requesting ACPM waits for a primitive from the presentation service-
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provider and does not accept any other primitive from the requestor other than an

A-ABORT request primitive.

The accepting ACPM receives an AARQ APDU from its peer as user data in
a P-CONNECT indication primitive. The ACPM determines if the AARQ APDU
is acceptable. If the AARQ APDU is not acceptable, a protocol error results, the
association establishment procedure is disrupted, and an A-ASSOCIATE indication
primitive is not issued. If the ACPM does not support a common protocol version,
then it forms an AARE APDU with Protocol Version, Application Context Name,
Result field with the value “rejected (permanent)”, and Result Source-Diagnostic field
with the values “ACSE service-provider” and “no common ACSE version.” Then
the AARE APDU is sent as user data in a P-CONNECT response primitive with a
result parameter that has the value “user rejection.” The receiving ACPM does not

issue an A-ASSOCIATE indication primitive and the association is not established.

However, if the P-CONNECT indication primitive and its AARQ APDU are
acceptable, the receiving ACPM issues an A-ASSOCIATE indication primitive to the
acceptor. The A-ASSOCIATE indication primitive parameters are derived from the
AARQ APDU and the P-CONNECT indication primitive. The ACPM waits for a

primitive from the acceptor.

When the accepting ACPM receives the A-ASSOCIATE response primitive, the
Result parameter specifies whether the service-user has accepted or rejected the
association. The ACPM forms an AARE APDU using the A-ASSOCIATE response
primitive parameters. The ACPM sets the Result Source-Diagnostic field to “ACSE
service-user” and the value derived from the Diagnostic parameter of the response
primitive. The AARE APDU is sent as the User Data parameter on the P-CONNECT

response primitive.

If the acceptor accepts the association request, the Result parameter on the related

P-CONNECT response primitive specifies “acceptance,” and the result field of the
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outgoing AARE APDU specifies “accepted.” Then the association is said to be
established on the accepting ACPM’s side.

If the acceptor rejected the association request, the Result parameter on the P-
CONNECT response primitive specifies “user-rejection,” the Result field of the AARE

APDU contains the appropriate rejection value, and the association is not established.

When the requesting ACPM receives a P-CONNECT confirm primitive, the

following situations are possible:

i. the association has been accepted;
it. the accepting ACPM or the acceptor has rejected the association; or

ili. the presentation service-provider has rejected the related presentation connection.

If the association has been accepted, the requesting ACPM issues an A-ASSOCIATE
confirm primitive to the requestor derived from parameters from the P-CONNECT
confirm primitive and the AARE APDU. The A-ASSOCIATE confirm primitive
Result parameter specifies “accepted.” Then the connection is said to be established

on the initiating ACPM’s side also.

If the association has been rejected, the requesting ACPM issues an A-
ASSOCIATE confirm primitive to the requestor derived from parameters of the P-
CONNECT confirm primitive and the AARE APDU. The A-ASSOCIATE confirm
primitive Result parameter indicates “rejected (transient)” or “rejected (permanent)”

and the association is said to be not established.

If the presentation-connection was rejected by the presentation service-provider,
the P-CONNECT confirm primitive Result parameter specifies “provider-rejection.”
In this situation, the User Data field is not used. The requesting ACPM issues
an A-ASSOCIATE confirm primitive with the Result parameter indicating “rejected
(permanent).”” The Result Source parameter indicates “presentation service-provider”

and the association is said to be not established.
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Collisions and Interactions: For a given ACPM, an A-ASSOCIATE collision
cannot occur, because a new invocation of an ACPM is employed upon the receipt
of an A-ASSOCIATE request primitive or a P-CONNECT indication primitive. Each
such invocation controls exactly one association. For a given application element,
two distinct ACPMs would be involved that represent the processing for two distinct

associations:

i. an ACPM that processes the initial A-ASSOCIATE request primitive that results
in the sending of an AARQ as user data in a P-CONNECT request primitive; and

ii. an ACPM that processes the subsequently received AARQ APDU as user data
in a P-CONNECT indication primitive.

(i) Normal Release: This procedure is used for the normal release of an
association by an AE without loss of information in transit. The rormal release
procedure uses the A-RELEASE-REQUEST (RLRQ) APDU and the A-RELEASE-
RESPONSE  KLRE) APDU. Each of these two APDUs contains two fields: Reason

and User Information. This procedure is activated by the following events:

i. an A-RELEASE request primitive from the requestor;
ii. an RLRQ APDU as user data in a P-RELEASE indication primitive;
iii. an A-RELEASE response primitive from the acceptor; or

iv. an RLRE APDU as user data in a P-RELEASE confirm primitive.

When an A-RELEASE request primitive is received, the ACPM sends an RLRQ
APDU as user data in a P-RELEASE request primitive and waits for a primitive from
the presentation service-provider. It does not accept any primitives from the requestor
other than an A-ABORT request primitive.

When the accepting ACPM receives the RLRQ APDU as user data in a P-
RELEAGE indication primitive, it issues an A-RELEASE indication primitive to the
acceptor. It does not accept any ACSE primitives from its service-user other than

an A-RELEASE response primitive or an A-ABORT request primitive. The Result
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parameter on the A-RELEASE response primitive specifies whether the acceptor
accepts or rejects the release of the association. The accepting ACPM forms an
RLRE APDU from the response primitive parameters. The RLRE APDU is sent as

user data in a P-RELEASE response primitive according to the following rules:

i. If the acceptor accepts the release, the Result parameter of the P-RELEASE
response primitive has the value “affirmative.”

ii. If the acceptor rejected the release, the Result parameter of the P-RELEASE
response primitive has the value “negative.” In this case, the association continues

to be active.

When the requesting ACPM receives a P-RELEASE confirm primitive containing
an RLRE APDU from its peer, the Result parameter on the P-RELEASE confirm
primitive specifies either that the acceptor agrees or disagrees that the association
may be released The requesting ACFM forms an A-RELEASE confirm primitive
from the RLRE APDU fields in the fellowing manners:

i. If the Result parameter on the P-RELEASE confirm primitive specifies “affirma-
tive,” the association is said to be released.
ii. 1f the Result parameter on the P-RELEASE confirm primitive specifies “negative,”

the association continues to be active.

A-RELEASE service collision: An A-RELEASE service collision occurs when
an ACPM has sent out an RLRQ APDU as the user data of a P-RELEASE request
primitive and instead of receiving the expected RLRE APDU as user data in a P-
RELEASE confirm primitive from its peer, it receives an RLRQ APDU as the user
data of a P-RELEASE indicaticn primitive. The ACPM issues an A-RELEASE
indication primitive to its service user. The procedure then followed by an ACPM
depends on whether its service-user was the association initiator or the association

responder as stated in the following:
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For the association initiator:

i.

ii.

iii.

The ACPM waits for an A-RELEASE response primitive from its service-
user. When it receives the response primitive, it sends an RLRE APDU as
user data in a P-RELEASE response primitive and the association continues
to exist.

The ACPM waits for an RLRE from its peer as user data in a P-RELEASE
confirm primitive. It does not accept any primitive from its service-user
other than an A-ABORT.

When the ACPM receives the RLRE, it forms an A-RELEASE confirm
primitive and sends it to its service-user. The association is said to be

released.

For the association responder:

il.

iii.

The ACPM waits for an RLRE from its peer and does not accept a primitive
from its user other than an A-ABORT request primitive.

When this ACPM receives an RLRE, it issues an A-RELEASE indication
primitive and the association continues to exist.

The ACPM now waits for an A-RELEASE response primitive fror. ..,
service-user. When it receives the response primitive, it forms an RLRE
APDU from the response primitive’s parameters. The RLRE is sent as user

data in a P-RELEASE response primitive and the association is released.

Abnormal Release of an Association: The Abnormal Release procedure can be

used at any time to force the abrupt release of the association by a request in either
application element, by either ACPM, or by the presentation service-provider. When
the abnormal release procedure is applied during an attempt to establish an association,

the association is not established. The abnormal release procedure supports the A-
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ABORT and A-P-ABORT services. This procedure is activated by the following

events:

i. an A-ABORT request primitive from the requestor;
ii. a P-U-ABORT indication primitive;
iii. a P-P-ABORT indication primitive; or

iv. a protocol error detected by an ACPM.

When an ACPM receives an A-ABORT request primitive from its service-user,
the processing that it performs depends on the version of the underlying session
protocol [ISO 8327] that supports the association as specified in the following. For
version 1, the ACPM simply sends a P-U-ABORT request to the service provider and
the association is released. For other versions, the ACPM sends an ABRT APDU in

a P-U-ABORT request primitive and the association is released.

When an ACPM receives a P-U-ABORT indication primitive, it issues an A-
ABORT indication primitive to its user. When an ACPM receives a P-P-ABORT
indication primitive, the ACPM issues an A-P-ABORT indication primitive to the

acceptor and the association is said to be released.

Two types of ACSE protocol errors are possible:

i. for a particular ACPM state, an unexpected APDU is received; or

ii. an invalid field is encountered during the processing of an incoming APDU.

We consider an Estelle specification of ACSE. The specification has two
Service Access Points A-also denoted as U in the testing environment-and
P through which it interacts with its user and the service provider, respec-
tively. The specification has 8 major states { ACSE_IDLE, AWAIT_AARE_APDU,
AWAIT_AARE, AWAIT_RLRE_APDU, AWAIT_RLRE, ACSE_ASSOC, COLLI-
SION_ASSOC_INITIATOR, COLLISION_ASSOC_RESPONDER} and 46 normal-

ized transitions in a single module [ISO 8650].
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By applying the transformation technique represented by Algorithm 2.1 to the
ACSE specification, we obtain 54 states and 89 transitions in the protocol specification
EFSM, i.e, S-EFSM. The transitions of the S-EFSM required to verify the test case

are shown below.

S1l: <ACSE_IDLE, 1, U?A_ASCreq,
[Event .Mode = MODE_Supported],
(P_CONreq.User_Data.Protocol_Version[VERSION1] := 1;

P_CONreq.Session_Con_Id := Event.Session_Con_Id;), 1>
S2: <1, AWAIT_ AARE_APDU, P!P_CONreq, [True], (),1l>
S3: <AWAIT_AARE_APDU, 10, P?P_CONcnf,
[ (Event .Result = P_ACCEPTANCE) and
{(Event .User_Data.Result = ACCEPTED) ],
(ASCcnf . Appl_Cntx_Name := Event.User_Data.Appl_Cntx_Name;

ASCcnf.Session_Con_Id := Event.Session_Con_Id;), 1>
84: <10, ACSE_ASSOC, U!ASCcnf, [Truel, (),1l>
S5: <ACSE_ASSOC, 25, U?A_RLSreq, [True],

i}

(P_RELreq.User_Data.reason := Event.Reason;
P_RELreq.User_Data.User_Info := Evernt.User_Info;),1l>
S6: <25, AWAIT RLRE_APDU, P!P_RELreq, [True], (),1>

S7: <AWAIT RLRE_APDU, 28, P?P_RELcnf,
{Event .Result = P_AFFIRMATIVE],
(A_RLScnf .Result ACSE_AFFIRMATIVE;
A_RLScnf .Reason := Event .User_Data.Reason;
A_RLScnfenf.User_Info := Event.User_bData.User_info;),1>
S8: <28, ACSE_IDLE, U!A_RLScnf, [True], ()},1l>
S9: <AWAIT_RLRE_APDU, 30, P?P_UABind, ([true],
(A_ABind.Abort_Source := Event .User_Data.Abort_Source;
A_ABind.User_Info := Event.User_Data.User_info;),1l>

5.2. Test Case

We consider a test case from the ACSE Abstract Test Suite (ATS) [PTT 90]. This
test case is designed as a valid behavior test to test the normal mode of IUT-initiated
association establishment. The dynamic behavior table of the test case is given in
Fig. 5.3. The main behavior of the test case is written to satisfy the test purpose,
which consists of three sequential activities: make the IUT initiate an association

by specifying an implicit send event, accept the association, and check that the IUT
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establishes the association by making the TUT release the association through the use

of another implicit send. A Pass verdict is assigned if the test goes through these steps.

The test case uses a default behavior tree DEFI (not shown here) to treat all
abnormal situations such as aborts, timeouts, and unexpected events. DEFI appears

as an alternative to the two input events L?7P_CONind and L?P_RELind in Fig. 5.3.

A fail/ inconclusive verdict is assigned for these cases.

By applying Algorithm 2.2 to the test case, we obtain 54 states and 53 transitions

in the LT-EFSM. In the following, we show the transitions corresponding to the main

tree of the test case. State 16 has a Pass verdict tag.

Test Case Dynamic Behavior

Test Case Name: BV/NM/AE/l/1

Group
Purpose : The IUT initiates the association.
The LT accepts the association. Check that the IUT establishes the association.
Default : DEFi
Comments:
Nri_al Behavior Description Constraints Ref. |V Com.
(STATE := NONE)
(TEST_BODY :=TRUE)
#<IUT!A_ASCreq> A_ASCregbase(
START A CONRQPDUbase)
L7P_CON:ind P_CONindbase(
# AARQ501)
SESS_CON_ID_IUT := Session_connection_identifier
CANCEL A
L!P_CONrsp(STATE:=CONNECT) P_CONrspbase(
# Session_connection_identifier:=SESS_CON_ID_IUT | AAREbase(
# EXTCONREbase))
<IUT!A_RLS1eq> A_RLSregbase(
# RELRQPDUbase)
START A
L?P_RELind P_RELindbase(
# ARLRQbase_R)
CANCEL A
L!P_RELrsp P_RELrspbase(
ARLREbase_§(
EXTRELREDbase))
(STATE := NONE)
[STATE =NONE]) @

Figure 5.3 A test case dynamic behavior taken from [PTT 90], Ref. BV/NM/AE/I/1
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LT_1: <1,2,Null,True, (STATE:=NONE, TEST_BODY:=TRUE), 1>

LT 2: <2,3,IUT!A_ASCreq, True,
(A_ASCreq.Mode:=Mode_normal,
A_ASCreq.Appl_context_name:=Appl_context_name_FTAM,

A_ASCreq.User_data:=CONRQPDUbase), 1>
LT 3: <3,4,START A, True, (),1,T>
LT _4: <4,5,L?P_CONind, [P_CONind.User_data=AARQ501], (), 1>
LT_5: <5,6,Null,True,
(SESS_CON_ID_IUT:=Sess_conn_identifier), 1>
LT _6: <6,7,CANCEL A, True, 1>
LT 7: <7,8,L!P_CONrsp,True,
{STATE : =CONNECT, Sess_conn_identifier:=SESS_CON_ID_IUT,
P_CONrsp.Resp_pres_addr:=TSP_pres_addr_tester,

P_CONrsp.Result:=Result_accept), 1>

LT _8: <8,9,Null, True, (STATE:=CONNECT) , 1>

LT_9: <9,10, IUT!A_RELreq, True, (A_RLSreq.User_data:=relrqpdu,

A_RLSreq.reason:=Release_request_reason_norm), 1>

LT_10: <10,11,START A,True, (),1,T>

LT 11: <11,12,L?P_RELind,

[P_RELind.User_data=ARLRQbase_R], (), 1>

LT _12: <12,13,CANCEL A,True, (),1>

LT _13: <13,14,L!P_RELrsp, True,
(P_RELrsp.User_data:=ARLREbase_S (EXTRELREbase),
P_RELrsp.Result:=result_affirmative), 1>

LT_14: <14,15,Null, True, (STATE:=NONE) , 1>

LT _15: <15,16,Null, [STATE = NONE], (),1>

LT _16: <4, 21,?Timeout(A), True, (), 2>
LT_17: <21,22,1i, [STATE <> NONE], (), 1>
LT_18: <21,24,i, [STATE = NONE], (), 2>

LT _19: <22,23,L!P_UABreq(STATE:=NONE)}, (),1l>

LT 20: <11, 25,?Timeout(A), True, (), 2>
LT _21: <25,26,1i, [STATE <> NONE], (), 1>
LT 22: <25,28,i, [STATE = NONE], (), 2>
LT _23: «<26,27,L!P_UABreq(STATE:=NONE), (),1>

128




5.3. Service Provider

In an external test architecture, such as the RS architecture, the LT test entity
communicates with the implementation under test through a service provider. To
provide connection association/release services to its users, an ACSE protocol entity
uses the services of a Presentation Layer protocol. Therefore, to verify RS architecture
based test cases against an ACSE protocol specification, it is essential to have the
EFSM description of the Presentation Layer in terms of input/output events as viewed
by its users. In the following, we present a state machine of a presentation protocol
entity that communicates with the LT-EFSM through an interaction point L and with
the protocol specification EFSM (S-EFSM) through interaction point P. This machine,
shown in Fig. 5.4, contains of 11 states and 21 transitions and maps the abstract

service primitives between the LT-EFSM and the S-EFSM.
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Figure 5.4 USP-EFSM, a simple model of the Presentation Service used by an ACSE protocol.

5.4. Global State Space

In the first step of the verification methodology, a model is generated from the
test verification system. While applying the global state space generation algo:ithm,

presented in Chapter 3, we detected an error in the test case. After selecting the
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LT_2 wransition containing an implicit send event <IUT!A_ASCreq> in the LT-EFSM
to perturb a global state, it was detected that it was not possible for the S-EFSM
to output an A_ASCreq event to the USP-EFSM. The correct implicit send event is
<IUT!P_CONreq>. Similarly, the implicit send event <TUT!A_RELreq> in transition
LT_9 was found to be incorrect. The correct event is <TUT!P_RELreq>. The corrected
version of the test case is shown in Fig. 5.5. After these two modifications to the

test case, we generated a global state space containing 45 states and 44 transitions.

Test Case Dynamic Behavior
Test Case Name: BV/NM/AE/I/1
Group :
Purpose  : The IUT initiates the association.
The LT accepts the association. Check that the IUT establishes the association.
Default : DEF1
Comments:
NriLabi Behavior Description Constraints Ref. |V Com.,
(STATE := NONE)
(TEST_BODY :=TRUE)
#<IUT!P_CONreq> A_ASCreqgbase(
START A CONRQPDUbase)
L7P_CONind P_CONindbase(
# AARQS01)
SESS_CON_ID_IUT := Session_connection_identifier
CANCEL A
LIP_CONrsp(STATE:=CONNECT) P_CONrspbase(
# Session_connection_identifier:=SESS_CON_ID_IUT | AAREbase(
# EXTCONREDbase))
<JUT!P_RELreq> A_RLSregbase(
# RELRQPDUbase)
START A
L?P_RELind P_RELindbase(
# ARLRQbase_R)
CANCEL A
L!P_RELrsp P_RELrspbase(
# ARLREbase_S(
# EXTRELREDbase))
(STATE := NONE)
[STATE = NONE] P)

Figure 5.5 The corrected version of the test case in Fig. 5.3.
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Then, by applying the model generation algorithm in Chapter 3, we associated a
set of atomic propositions with each global state. The resulting model for the test
verification system is given in Appendix 1.

The graphical representation of the state space is shown in Fig. 5.6. The path
from state g/ to g32 represents the behavior of the verification system corresponding
to the main behavior test tree given in Fig. 5.3. The path from state g6 to g36 and the

path from state g2/ to g45 are due to timeouts in the default behavior of the test case.

INIT @

& D @2

Figure 5.6 Structure of the global state space of the TVS in Fig, 5.2,

The message A_ASCreq generated as a part of the UT after the first implicit
send event in the test case is represented as a tree structure, shown in Fig. 5.7, and
is put in the channel AO. As an example we evaluate the predicate [Event.Mode
= MODE_Supported] , which is the enabling condition of transition S1 of the S-
EFSM. Here “Event’” A_ASCreq is received by the specification from the channel AO.
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To evaluate the predicate, the eval routine first extracts the value of "Event.Mode”
(in this case, it is 1) from the composite data A_ASCreq by traversing IOD until
the field “Mode” is encountered. Then the value of "EventMode” is compared
with the variable “MODE_Supported” which is also equal to 1. Thus the predicate
[Event.Mode = MODE_Supported] evaluates to true.

A_A8Creq I
ASP
|
l 1
Mode | User_data I
INTEGER FINIRQ (FTAM PDU)

|

! conrgpdu tree

Figure 5.7 IOD representation of A_ASCreq message.

5.5 Verification of Test Case Properties

In this Section, we show the detailed verification of a transmission safety property,

and the formalization and verification of the liveness property.

5.5.1 Safety Properties of the Test Case

Here we explain the satisfaction of a transmission safety property. The transmis-
sion safety property
INIT = AG(AFTER(Tsend(U,ASCreq)) —
AFTER(Sreceive(U, ASCreq))),
is satisfied, because the pradicate AFTER(Tsend(U, A_ASCreq)) holds in state g3
and the property AFTER(Sreceive(U, A_ASCreq)) holds in state g5. Thus, AF-
TER(Sreceive(U, A_ASCreq)) eventually holds on every path reachable from g3.

The test case under consideration satisfies all the safety properties.
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5.5.2 Liveness Property of the Test Case

To verify the liveness property of the test case, we first express the test purpose
as a temporal formula. As a part of the test case, the test purpose is specified in a

natural language as follows.

i. The IUT initiates the association.
ii. The LT accepts the association.

iii. Check that the IUT established the association.

In the following, each part of the test purpose is expressed as a temporal formula:

i. AFTER(Treceive(L, P_.CONind))
ii. AFTER(Tsend(L,P.CONrsp))
ili. AFTER(Tsend(U, A_.RELreq)) — AFTER(Treceive(L, P.RELind)).

These basic test purposes can be composed using the SEQ operator to give rise to a
formula for the entire test purpose as follows:
fi =(AFTER(Treceive(L, P.CONind)) SEQ
AFTER(Tsend(L,P.CONrsp)) SEQ
AFTER(Tsend(U,A_.RELreq)) — AFTER(Treceive(L, P_.RELind))
).

Then the liveness property of the test ca<e is stated as INIT = (f; =
(Verdict = Pass)), which is satisfied by the sequence of global states from gl
to g32 and (Verdict = Pass) holds at g32.

5.6 Generation of an Upper Tester

It may be recalled from Chapter 3 that there is no explicit Upper Tester in an

RS architecture. While generating a state space from a test verification system, the
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state space generation algorithm in Chapter 3 dynamically generates the behavior
of an Upper Tester. The initial configuration of such an Upper Tester is shown
in Fig. 5.8(a). It consist of one state, denoted by 1, and one transition <1, 1,
A?0THERWISE, T, (), 2> to accept any event from the protocol specification.
During the state space exploration process, as the algorithm encounters the first
implicit send event <IUT!P_CONreq>, state 2 and transitions <1, 2, A!A_ASCreq,
T, (), 1> and <2, 2, A70THERWISE, T, (), 2> are added to the initial UT behavior
resulting in another partial UT behavior as shown in Fig. 5.8(b). When the algorithm
encounters the second implicit send event <ITUT!P_RELreq>, state 3 and transitions
<2, 3, AA_RELreq, T, (), 1> and <3, 3, A70THERWISE, T, (), 2> are added to
the partial UT behavior in Fig. 5.8(b) to generate an UT behavior as shown in Fig.
5.8(c). The UT behavior shown in Fig. 5.8(c) is the final UT behavior since there

are no more implicit send events in the test case.

G%wom A0TH

Al!A_ASCreq
(@
A?70TH
(b)
OTH : OTHERWISE
A_ASCreq: Association Connect Request
A_RELreq: Release Request ©

Figure 5.8 Dynamic generation of UT behavior.
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CHAPTER 6

CS TEST CASE VERIFICATION

In this chapter, we present an example of verifying a single connection test case
chosen from a Coordinated Single-layer (CS) architecture based test suite [NCC 88]
designed to test a Class 2 transport protocol implementation. The CS architecture and

its corresponding test verification system are shown in Figs. 6.1 and 6.2, respectively.

. Upper Tester (UT)

est Management
Lower Tester (LT) TMPDUs @ protoco} U

- -FN.)-PBG e ] Implementation
- s
(N-1) ASPs Under
Test
(N-layer) N
I (N-1) Underlying Service Provider

U: Interaction Point between the TMP and the Implementation
N: Interaction Point between the Implementation and the Service Provider

Figure 6.1 Coordinated Single-layer (CS) test architecture.

EFSM Model of the
EFSM Model of Test Management
a Test Case Protocol
Representing the uo I’—L‘I _L ul
Lower Tester 1‘ L}"
EFSM Model of the
1 Protocol Specification
L= [—] LO

‘ -

EFSM Model of the Underlying Service Provider

Figure 6.2 The Test Verification System for the CS architecture.

We first present the specifications of the transport protocol, the Test Management

Protocol (TMP), and the service provider of the transport protocol. Then the test case

is explained and verified.
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6.1 Transport Protocol, TMP, and Service Provider

In this section, we describe a Class 2 transport protocol specification [NCC 88],
a test case for testing an implementation of the protocol, the underlying service
provider of the protocol, and a Test Management Protocol (TMP) used in testing an

implementation in the CS architecture.

6.1.1 Class 2 Transport Protocol Specification

A nondeterministic EFSM model of a Class 2 transport protocol specification
[BOCH 89] is shown in Fig. 6.3. State 1 is both the initial and final state of the
EFSM and represents a closed connection. State 10 corresponds to an open connection
state. On one hand, if the connection establishment procedure is initiated by the user
of the transport entity, then the EFSM moves from state 1 to state 10 through the
state sequence {1, 2, 3, 4, 10}. In this case, if the peer entity refuses to establish a
connection, then the EFSM goes back to the initial state through the sequence {1, 2, 3,
19, 20, 21, 1}. On the other hand, if the connection is established by the peer entity,
then the EFSM moves from state 1 to state 10 through the sequence {1, 5, 6, 7, 10}.
In this case, a request for connection establishment can be refused by the protocol
EFSM such that the EFSM goes back to the initial state through the state sequence
{1, 5, 1}. However, if the request for connection establishment is refused by the user
of the protocol entity, then the protocol EFSM goes back to the initial state through
the sequence {1, 5, 6, 8, 1}. There are two internal transitions in the EFSM. The
first internal transition from state 10 to 11 models the effect of the environment on
the protocol specification leading to a disconnection of the transport connection along
the state sequence {10, 11, 12, 9, 1}. The second internal traasition from state 10 to

18 models the acknowledgement (AK) transmission policies including timeouts.
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Figure 6.3 Class 2 Transport Protocol Specification.

The transitions of the EFSM shown in Fig. 6.3 are given below.

Following variables are updated during the example state
exploration process.

opt := " /* negotiation option */
PRseq :=0 /* receive sequence number */
PRcredit := 2 /* receive credit */

SPEC_1: «<1,5,N?NDTiuad(CR), T,
{opt :=CR.Exp_option, PScredit:=CR.credit},1l>
SPEC_2: <5,6,U!TCONind(CR.Called_addr,
CR.Calling_addr, opt,CR.Qos,CR.User_data),
T, {}, 1>
SPEC_3: <6,8,0?TDISreq,T,{},1>
SPEC_4: <«8,1,N!NDTreq(DR(TDISreq.Reason,
IDISreq.User_data)),T,{}.1>
SPEC_5: <6,7,U?TCONresp, [TCONresp .Exp_option<=opt],
{opt : =TCONresp.Exp_option, PRseq:=PSseq:=0},1>
SPEC_6: <7,10,N!NDTreq{CC (TCONresp.Calling_addr, TCONresp.Qos,
opt, PReredit, TCONresp.User_data)),T, {}.,1>
SPEC_7: <«10,11,1i,7,{},1>
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SPEC_8:

SPEC_9:

SPEC_10:
SPEC_11:

SPEC_12:
SPEC_13:
SPEC_14:
SPEC_15:
SPEC_16:
SPEC_17:
SPEC_18:
SPEC_19:
SPEC_20:
SPEC_21:
SPEC_22:
SPEC_23:

SPEC_24:

SPEC_25:

SPEC_26:

SPEC_27:

SPEC_28:

SPEC_29:

SPEC_30:
SPEC_31:

<11,12,U!TDISind(Reason, User_data),

T, {User_data:=NULL}, 1>
<12,9,N!NDTreq (DR (Reason, User_data) ),

T, {User_data:=NULL}, 1>
<10,13,U?TDISreq, T, {},1>
<13,9,N!NDTreq{DR (TDISreq.Reason,

TDISreq.User_data)),T,{},1>
<9, 1,N?NDTind(DC), T, {}, 1>
<9,1,N?NDTind (DR), T, {},1>
<10,14 ,N?NDTind (DR), T, {}, 1>
<14,15,U0!TDISind (DR.Reason, DR.User_data),T,{},1>
<15,1,N!NDTreq(DC),T,{},1>
<10,18,1i,T, {}, 1>
<18,10,N!NDTreq(AK (PRseq, PRcredit)),

T, {}),1>
<10,17,N?NDTind (DT},

[PRcredit <> 0 & DT.Seg=PRseq, {}.,1>
<17,10,U!TDATAind (DT.User_data, DT.EOT), T,

{PRseq:= (PRseq+l)mod 128, PRcredit:=PRcredit-1},1>
<1,2,U?TCONreq, T, {opt:=TCONreqg.proposed_options}, 1>
<2, 3,N!NDTreq (CR(TCONreq.Called_addr,

TCONreq.Calling_addr,opt, PRcredit)),

T, {},1>
<3,4,N?NDTind (CC), [CC.Exp_option <= opt],
{opt : =CC.Exp_option, PRseq:=0, PSseq:=0,
S_credit :=CC.credit_value}, 1>
<4,10,U!TCONconf (CC.Calling_addr,

CC.Exp_option,CC.Qos,CC.User_data),

T, {(},1>
<3,19,N?NDTind (CC),

[not (CC.Exp_option <= opt)], T, {},1>
<19,20,N!NDTreq (DR (procedure_error,

User_data)), T, {User_data:=NULL}, 1>
<20,21,U!TD1Sind (procedure_error,

User_data), T, {User_data:=NULL}, 1>
<10, 22, N?NDTind (AK),

[TSseq < AK.expected_send_sequence],

{new_credit:=AK.credit_value+

AK.expected_send_sequence - (TSseq+128)},1>
<10,22,N?NDTind (AK),

[PSseq>=AK.expected_send_sequence],
{new_credit :=AK.credit_value+
AK.expected_send_sequence - PSseq},l>
<22,10, i, T, (PScredit:=new_credit}, 1>
<10, 16, U?TDATAreq,
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[PScredit > 0], {PScredit:=PScredit - 1},1>
SPEC_32: <16, 23, NI!NDTreqg{(DT(TSseq,
TDATAreq.TS_user_data, TDATAreq.EOT) },
Tv{),1>
SPEC_33: <23, 10, 1, T,
{PSseq:=(PSseqg+l) mod 128}, 1>
SPEC_34: <5, 1,N!NDTreq (DR{Reason, User_data)),
fopt not supported], {User_data:=Null},b2>
SPEC_35: <21,1,N?NDTind(DC),T, {}.,1>

6.1.2 Service Provider

The transport protocol, in order to provide the desired service to its user, uses
the services of a network layer. That is, the network layer acts as the Underlying
Service Provider in the CS test architecture. A simplified EFSM view of the service
provider is shown in Fig. 6.4. The service provider EFSM has 9 states. In the test
verification methodology, the basic function of the service provider is to transport
a request primitive from the Lower Tester (protocol specification) to the protocol

specification (Lower Tester) in the form of an indication primitive.

Figure 6.4 Underlying Service Provider of the Transport Protocol.

The transitions of the EFSM shown in Fig. 6.4 are given below.
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USP_1l: <1,2,L?NCONreq(x),T,{},1>
USP_2: <2,1,N!NCONind(x),T,{},1>
USP_3: <1,6,N?NCONreqg(x),T,{},1>
USP_4: <6,1,L!NCONind(x),T,{},1>
USP_5: <1,3,L?NCONresp(x),T,{},1>
USP_6: <3,1,N!NCONconf (x),T,{},1>
USP_7: <1,7,N?NCONresp(x),T,{},1>
USP_8: <7,1,L!NCONconf (x),T,{},1>
USP_9: <1,4,L?NDTreq(x),T,{},1>

USP_10: <4,1,N!NDTind(x),T,{},1>

USP_11: <1,8,N?NDTreq(x),T,{},1>

USP_12: <8,1,LINDTind(x),T,{},1>

USP_13: <«1,5,L?NDISreq(x),T,{},1>
UsSP_14: «5,1,N!NDISind(x),T,{}.1>
USP_15: <1,9,N?NDISreq(x),T,{},1>
USP_16: <9,1,L!NDISind(x),T,{},1>

6.1.3 Test Management Protocol (TMP)

A TMP is required to function as a test responder (Upper Tester) while testing an
implementation in the CS architecture. Since the TMP entity in the CS architecture
interacts with the upper service boundary of an implementation to be tested, every
protocol specification must have a corresponding TMP. In this section, we explain a
TMP [NCC 88] corresponding to a transport protocol. We developed an EFSM model
of the Test Management Protocol from its informal tabular description. There are 35
states and 447 transitions in the TMP EFSM given in Appendix 2. For the Lower
Tester to be able to control the events occurring at the upper service access point of
the implementation, the TMP entity must be controlled in a deterministic manner by
the Lower Tester through the use of Test Management Protocol Data Units (TMPDU).

The TMP contains three types of internal variables: counts, modes, and stored items.

There are 38 count variables C1 through C38. The counts monitor the traffic of
transport service primitives across the interface between the TMP and the transport
protocol entity. Counts are assigned to each category of service primitive in cach

direction across the interface, with normal and out of context primitives being counted

140




separately. in addition to the transport service primitives, counts also exist for various
totals. Data and expedited data octets received by the TMP entity are also counted.
For exumple, C1 counts normal T-CONNECT indications, C2 counts normal T-
CONNECT confirms, C8 counts out of context T-CONNECT indications, etc.

The behavior of the TMP is controlled by the Lower Tester through a set of 25
mode parameters M1 thru M25. Mode parameters are used to define the series of
actions which make up the response to a defined event, or to define the parameters for
the Count Limit Event, or for generating data to be sent in a T-DATA/ T-EXPEDITED-
DATA request service primitive. For example, M1 defines the action to be taken in
response to a normal T-CONNECT indication, M2 defines the action to be taken in
response to a T-CONNECT confirm, etc. Each mode parameter can take values from

the set {AO, Al, .., Al5}.

The defined events mentioned above are simply some form of stimulus to which
the TMP makes a response. Exarnples of the defined events are the START internal
event, receipt of T-CONNECT indication, receipt of T-CONNECT confirm, Count
Limit Event, etc. Inresponse to these events, the appropriate mode parameters specify
a sequence of primitives. For example, if the TMP receives a T-CONNECT indication
in the IDLE state, then it moves to the IUT_WFTRESP_M1 state and takes an action
depending on the value of the mode parameter M1. For instance, if the value of
M1 is Al then the TMP issues a T-DISCONNECT request and moves to the IDLE
state, if the value of M1 is A4 then the TMP issues a T-CONresp and moves to the

OPEN state, and so on.

A Count Limit Event (CLE) is an internal event generated in the TMP when
the count variable identifier specified by the mode parameter M13 attains the value
specified in M14,

The 28 stored items S1 thru S28 consist of additional variables, which include

the last received parameters from incoming service primitives and the values supplied
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as parameters to outgoing primitives. For example, the stored items (S35, 86, S7, S8)
are used with a T-CONNECT response such that S5 contains “‘Quality of Service”,
S6 contains “Responding Address”, S7 contains “Expedited Data Option”, and S8
contains ““TS User Data”. If a T-CONNECT indication is received by the TMP, then
the “Called Address” is saved in S16, the “Calling Address™ is saved in §17, the
“Expedited Data Option” is saved in S18, the “Quality of Service” is saved in §19,
and the “TS User Data” is saved in S20.

The TMP's internal variables can be controlled and monitored by the Lower Tester
through the Test Management Protocol Data Units (TMPDUs). There are 23 TMP-
DUs, which can be classified into two groups: command and reply. TMPDU 1 through
TMPDU15 constitute command TMPDUs and TMPDUS8r through TMPDU15r con-
stitute the reply TMPDUs. The Lower Tester can issue a command to the TMP to
take some action by sending a command TMPDU and the TMP can send a reply to
the Lower Tester through a reply TMPDU. There are three categories of commands:
those which set intemnal variables, those which request relay of internal information,
and those which cause the TMP to take some other specific actions such as sending

T-DATA requests by starting a data source.

We show the EFSM aescription of the part of the TMP that is used in the

verification of a test case in Fig. 6.5.

Figure 6.5 A part of the Test Management Protocol.
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The transitions of the above TMP are given below.

TMP_1: <IDLE, IDLE_M9, Internal_START, [T],
{C1:=0,C2:= 0,..,C38:=0,M1:=A4,M2:=20, ..,
M10:=A0,M11:=A5,M12:=A5,M13:=A0, ..,M25:=A0,
8l:=..,82:=..,.., S85:=*1",86:="you",
S7:="No*,S88:="any_data*,..S28},1>
TMP_2: <IDLE_MSY, IDLE, Null, [M9=A0]}, {}.1>
TMP_3: <IDLE, IUT_WFTRESP_M1, U?TCONind, [T],
{816:=TCONind.Called_address,
S17:=TCONind.Calling_address,
S18:=TCONind.Exp_data_option,
S$19:=TCONind.Qos,
S20:=TCONind.TSuser_data, i. "1, C19)},1>
TMP_4: <IUT_WFTRESP_M1l, OPEN,
U!TCONresp(S5,S6,S57,58), [M1=2a4],
{inc(C24,C37)},1>
TMP_5: <OPEN, OPEN_1, U?TDTind, [P_TMPDU],
{inc(C4) per octet, inc(C5,C19)}>
TMP_6: <OPEN_1, OPEN_M9, Null, [TMPDUl in TDTind],
{M1:=TDTind.TMPDUl.M1,
M2:=TDTind.TMPDUl1.M2, ...,
M25:=TDTind.TMPDUl .M25}, 1>
TMP_7: <OPEN_M9, OPEN, Null, [M9=A0], {},1>
TMP_8: <OPEN_1, OPEN, Null, [TMPDU4 in TDTind],
{S5:=TDT:nd.TMPDU4.S5, 86 :=TDTind.TMPDU4. S6,
S7:=TDTind.TMPDU4.S7, $8:=TDTind.TMPDU4.58}, 4>
TMP_9: <OPEN, IDLE_M3,U?TDISind, [T].
{S14:=TDISind.Reason,
S$15:=TDISind.TSuser_data,inc(C3,C10)},1>
TMP_10: <IDLE_M3, IDLE, Null, [M3=a0], {()}.,1>
TMP_11: <OPEN_1l, OPEN, Null, [TMPDU3 in TDTind],
{S1:=TDTind.TMPDU3.S1}, 3>
TMP_12: <OPEN_1, OPEN, Null, [TMPDUS5 in TDTind],
{S9:=TDTind.TMPDUS5.S9,
S10:=TDTind.TMPDU5.810, S11:=TDTind.TMPDU5.S11,
S12:=TDTind.TMPDU5.5812,
S13:=TDTind.TMPDU5.S13}, 5>
TMP_13: <OPEN_1,OPEN,U!TDTreq(TSuser_data), [TMPDU8 in TDTind],
{TSuser_data:=HERALD] |*8"| | *25" | IML}||...
... IM251| | TRAILER}, 8>
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6.2 Single Connection Test Case

In this section, we give an example of verifying a CS architecture based test case.
First, the TTCN specification of the test case and its EFSM description are presented.
Second, a global state space is generated from a test verification system using the
transport protocol specification, the underlying service provider, the TMP described
in Section 6.1, and the EFSM representation of the test case. Third, the safety and

liveness properties of the test case are specified and verified.

6.2.1 EFSM Model of the Test Case

For verification purpose we select a test case from a human designed CS archi-
tecture based test suite developed at the National Computing Center, UK [NCC 88].
The main dynamic behavior of the test case is shown in Fig. 6.6. For the sake of
clarity, the subtrees of the test case, identified by a “+” sign in front of them, are
not shown here. The functionality of the test case consists of two distinct phases:
preamble and test body. The preamble part consists of five steps. In the first step,
the test case establishes a transport connection between the LT and the TMP. In the
second step, the LT sends a command TMPDU (TMPDU1) directing the TMP to set
the default values of its counters, mode parameters, and stored items. In the third
step, the LT sends a command TMPDU (TMPDU4) directing the TMP to set the value
of the stored item S8 which is used as the “User_data” parameter in a T-CONNECT
response primitive. The “User_data™ parameter in a T-CONNECT response prim-
itive becomes the “User_data” parameter in a Connect Confirm Transport Protocol
Data Unit (CC TPDU). In the fourth step, the LT waits for acknowledgements of the
previously sent two DT TPDUs containing the TMPDUs from the implementation.
In the fifth step, the LT disconnects the transport connection. The objective of the

preamble is to set S8 to a known value VAL.
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Test Case Dynamic Behavior

Identifier: ABCT2URAQ0

Group:

Purpose: LT sends CR, receives CC with VAL octets of user data.
Default: Def1

Comments :
Nr.| Lab.| Behavior Description Constraint | Verdict Comment
Test (VAL)
preamble
+ LT_con Step1: Establish a transport connection.
L!ITMP10Q Step2: Send TMPDU1 in a DT TPDU.
L!TMP4 (S8 := VAL) Step3: Send TMPDU4 in a DT TPDU.
+ Wait_for_ak St=p4: Wait for acknowledgements.
+LT_dis StepS: Release the transport connection.
body
+ preamble
LICR CR1 Initiate a connection establishment.
Start (A, no_response) Start a no_response timer.
L?CC [user_data = VAL] CCi Pass | Connection is established.
! Cancel (A)
I 4 POI1/Postamble Release the connection.
|
7Timeout (A) Fail | Implementation not responding

Comments: This test relies on the ability to control user data.

Figure 6.6 A CS architecture based single connection
test case taken from [NCC 88], Ref. ABCT2URAOQOC.

In the test body, the LT initiates the establishment of a transport connection with
the TMP by sending a Connection Request (CR) TPDU and waiting for a CC TPDU.
If the LT receives a CC TPDU with VAL as the “User_data” parameter, then the
LT assigns a Pass test verdict and releases the transport connection. Otherwise, if
the LT receives a CC with the “User_data” value different from VAL or it receives
a different TPDU, or a timeout occurs, then the LT assigns a Fail test verdict and

terminates its operations.
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Figure 6.7 EFSM representation of the test case in Fig. 6.6

The transitions of the above test case are given below.

Following are the verdict TAGS of the states:
verdict (5) = verdict(1l2) = verdict(l7) = verdict(22) = Fail

verdict (32) = Fail
Fail verdict(23) = Pass

verdict (31)
verdict (34)

verdict (30)
verdict (33)

Initialization:

VAL := “test_data*
/* Parameters of a TCONresp primitive.*/

TS5 := 1 /* Quality of service*/
TS6 := "you* /* Called_address*/

TS7 := No /* Expedited data option*/
TS8 := VAL /* User_data*/
Called_address := *you"

Calling_address :=z "me"
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Exp_option := "No*

Qos := "1°

User_datal := *"any_data"
seqrecak := 0

seqgsendt := 0

Transitions of the LT EFSM:

LT 1:

LT_8:

LT_9:
LT _10:
LT_11:
LT _12:
LT _13:

LT _14:
LT_15:
LT_16:

LT_17:
LT _18:
LT_19:
LT_20:
LT _21:
LT_22:

LT_23:
LT_24:
LT 25:
LT_26:
LT _27:

<2,3,L!NDTreq(CR(Called_addr,Calling_addr,
Exp_option, Qos,User_data0)),T,{},1>

<3,4,Start (A, no_response),T, {}, 1>

<4,30,L?0TH, T, {(}, 3>

<4,5,?Timeocut (A),T,{}, 2>

<4,6,L?NDTind (CC),T, {},1>

<6,7,Cancel (A),T,{},1>

<7,8,L!NDTreq (DT (User_datal, EOT)),
{M1:=A4,M2:=A0,..,M10:=A0,M11:=A5,M12:=A5,
M13:=A0,...,M25:=20,
User_datal:=TMP1 (M1, M2,..,M25),
EOT:=True, segsendt:=0},1>

<8,9,L!NDTreq (DT (User_data2, EOT)),
{User_data2:=TMP4 (TS5, TS6,TS7,TS8),
EOT:=True, seqgsendt:=1},1>

<9,10,Null, [seqrecak < segsendt],{}, 1>

<10,11,Start (B,wait_ak),T,{}, 1>

<11,31,L?0TH, T, {}, 3>

<11,12, ?Timeout (B),T, {},2>

<11,13,L?NDTind (AK), T, {seqrecak:=AK.seqno}, 1>

<13,9,Cancel(B),T,{}, 1>
<9,14,Null, [seqrecak >= segsendt], {},1>
<14,15,L!NDTreq (DR(Reason, User_data3)),T,

{Reason:="normal_disconnect®, User_data3:=Null},1l>

<15,16,Start (A,wait_dec),T,.{}.,1>
<16,32,L?20TH, T, {(}, 3>
<16,17,?Timeout (A),T, {},2>
<16,18,L?NDTind(DC), T, {},1>
<18,19,Cancel (A),T,{}., 1>
<19,20,L!NDTreq(CR(Called_addr,Calling_addr,
Exp_option,Qos,User_datal)),T,(}., 1>
<20,21,Start (A, no_response) ,T,{},1>
<21,33,L?0TH, T, (), 3>
<21,22,?Timecut (A),T, {},2>
<21,23,L?NDTind (CC), [CC.User_data=VAL], ()}, 1>
<23,24,Cancel (A),T,{(}, 1>
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LT_28: <24,25,L!NDTreq(DR(Reason, User_data3)),T,
{Reason:="normal_disconnect", User_data3:=Null},1>

LT_29: <25,26,Start (A,wait_dc),T,{},1>

LT_30: <26,34,L?20TH, T, (}, 3>

LT_31: <26,27,?2Timeocut (A), T, {}, 2>

LT _32: <26,28,L?NDTind(DC),T,{}, 1>

LT_33: <28,29,Cancel(a),T,{(},1>

6.2.2 Model Generation

The sequence of states connected by
thick arrows (w==gp> ) represent the

.K behavior of the verification system
“J4 corresponding to the main path m

6 @ the test case satisfying the
test purpose.

INIT

'rl 03 r76 m .ﬂo
‘m Fail 1’79
185
g8l

Figure 6.8 Structure of the global state space.

Using the global state space generation algorithm in Chapter 3, we generate

the global state space of the test verification system, shown in Fig. 6.2, by using
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the LT-EFSM in Fig. 6.7, the USP-EFSM in Fig. 6.4, the S-EFSM in Fig. 6.3,
and the TMP-EFSM in Fig. 6.5. The global state space contains 110 states and 109
transitions. We show the entire global state space in EFSM notation and only partially
in graphical form in Fig. 6.8. The detailed state descriptions and the transitions of

the global state space are given in Appendix 3.

Events between two EFSMs are exchanged in the form of I/O diagrams. For
example, the representation of the NDTreq event sent by the test case in step 3 of
the preamble is shown in Fig. 6.9. In the receiving EFSM, the 1/O diagram is
| traversed from its root downward to extract the values of its fields while executing

an assignment function or evaluating a boolean condition.

NDTreq
NDTreq_ASP_type

|

DT
DT_PDU_type
I
I
User_data EOT
OctetString Boolean
TMP4
TMPDU4_type True
S5 S6 s7 S8
Qos_option_type OctetString OctetString OctetString
"o “you" "No" “test_data"

Figure 6.9 Representation of an event in a queue as an /O diagram.
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6.2.3 Verification of Safety and Liveness Properties

The global state space of the TVS, shown in Fig. 6.8, contains one initial state
and 10 final states. Therefore, there are 10 paths from the initial state to the final
states. Let us denote a path by a function path(g,,g;), where g; and g, are the
initial and a final state, respectively. The 10 paths in the global state space are
denoted by path(g1,g6), path(g1,ges), path(g1,ger), path(gi,ga0), path(g:,gas)s
path(g1, 9102), path(gy, g110), path(gy, geo), path(g1, g7s). and path(g1, gss ).

A. Safety Properties

In the given test case, there are a few transmission safety errors. Let us consider
the property
INIT = AG(AFTER(Ssend(N,NDTreq(CC)))
AFTER(Treceive(L, NDTind(CC)))).

The predicate AFTER(Ssend(N, NDTreq(CC))) holds in the global state g4 but the
predicate AFTER(Treceive(L, NDTind(CC))) holds only in state g;7. Therefore, the
property

AFTER(Ssend(N,N DTreq(CC))) — AFTER(Treceive(L, NDTind(CC)))
holds on all the paths except path(g;, gs). That is, the safety property does not hold
on all possible exccutions of the test system. This safety error arises because of a

timeout in the test case as explained in the following.

From the global state gy, there are two possible transitions, r5 and r/6, which
are derived from the LT_4 and LT_S transitions in the test case EFSM. Transi-
tion LT_4 represents a timeout event as an alternative to transition LT_5 which
is a LINDTind(CC) event. If the timeout occurs before the test case receives the

NDTind(CC) event from PCO L, then the safety error would occur.

150



Consider another transmission safety property
INIT = AG(AFTER(Ssend(N NDTre¢(AK))) —
AFTER(Treceive(L, NDTind(AK)))).

The predicate AFTER(Ssend(N,NDTreq(AK))) holds in state ¢35, but the predi-
cate Treceive(L, NDTind(AK)) holds only in state g4;. Therefore, the formula
AFTER(Ssend(N,NDTreq(AK))) — AFTER(Treceive(L, NDTind(AK)))
does not hold on the path path(g;, g40) leading to a transmission safety error in the
test system. This error is also due to the timeout in the test case represented by the

LT_12 transition.

The other transmission safety properties, which are not satisfied due to the test
case timeout transitions LT_19, L'T_25, and LT_31, are
INIT = AG(AFTER(Tsend(L, NDTreq(DR))) —
AFTER(Sreceive(N, NDTind(D R)))),
INIT | AG(AFTER(Tsend(L,NDTreq(CR))) s

AFTER(Sreceive(N, NDTind(CR)))), and
INIT |= AG(AFTER(Tsend(L,NDTreq(DC))) —

AFTER(Sreceive(N, NDTind(DC)))),
respectively. It is observed that if the timeouts in the test case are appropriately tuned,
then all the above transmission safety properties are satisfied. That is, in a qualitative
sense, if the imeouts are well tuned, then the global transitions 5, r39, r45, r59, and
r77 would be absent from the global state space and the safety properties would hold

in the remainder of the state space.

Two other transmission safety properties, which do not hold in the test system,
are:
INIT = AG{AFTER(Ssend(N,NDTreq(DR))) —
AFTER(Treceive(L, NDTind(DR)))) and
INIT | AG(AFTER(Ssend(N,NDTreq(AK))) —
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AFTER(Treceive(L, NDTind(AK)))).

The predicate AFTER(Ssend(N,NDTreq(DR))) holds in the state ggg. but the
predicate does not hold in any of the states following ggo. To find out the cause of
the error, we analyze the test system in the following.

The test system arrives at global state ggg from state g3; due to the global transition
sequence {r86, r87, r88}) derived from the transition sequence {SPEC_7, SPEC_S8,
SPEC_9} in the protocol specification EFSM. The sequence {SPEC_7, SPEC_8,
SPEC_9} means the specification nondeterministically seleases an open connection
by sending a TDISind primitive to its service user and a DR TPDU to its peer entity,
which is the test case EFSM in this situation. The safety error denotes a design error
in the test case in the sense that the test case is not ready to receive the DR TPDU
from the protocol specification.

Similarly, the second transmission safety error is due to a design error in the
test case in the sense that after the establishment of a transport connection, the test
case is not ready to receive spontaneous acknowledgement (AK) TPDUs from the

protocol specification.

B. Liveness Property

To verify the liveness property of the test case, we first express the test purpose
as a temporal formula. As a part of the test case, the test purpose is specified in a

natural language as follows:

i. LT sends CR,

ii. LT receives CC with VAL octets of user data.

In the following, corresponding to each part of the test purpose, we state a temporal

formula:

i. AFTER(Tsend(L, NDTreq(CR;)),
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ii. (AFTER(Treceive(L, NDTind(CC))) and (NDTind.CC.User_data = VAL)).

We compose these basic test purposes using the SEQ operator to give rise to a formula
for the entire test purpose as follows:

fi = (AFTER(Tsend(L, NDTreq(CR))) SEQ

(AFTER(Treceive(L, NDTind(CC))) A (NDTind.CC.User data = V AL))).
Then, the liveness property of the test case is stated as INIT = (f) — (verdict =
Pass)).

The liveness property is satisfied by the sequence of global states denoted by the
path{;.. g86). The predicate (AFTER(Tsend(L, NDTreq(CR)))) holds in state g58
and the predicates (AFTER(Treceive(L, NDTind(CC)))) and (NDTind.CC.User_data
= VAL) hold in a subsequent state g7/ where the predicate (verdict =Pass) also holds.

All other paths do not satisfy the test purpose. The paths reachable due to the time
out transitions (5, r39, r45, r59, and r77) can be avoided from the global states by
appropriately tuning the timeout intervals. However, the test purpose is not satisfied

if the implementation behaves nondeterministically.
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CHAPTER 7

VERIFICATION OF PARALLEL TEST CASES

There are three reasons to define parallelism in a test specification language
such as TTCN. First, parallelism in a test specification language makes it easier to
specify test behavior at several PCOs and non-sequential protocol behavior. Second,
it provides language constructs to describe explicitly the cooperation of distributed
components of a test architecture. Finally, parallelism in a test notation is essential
for testing some aspects of an implementation such as multiple connection support
capability.

In Section 7.1, we present a test architecture incorporating parallelism. A
methodology for verifying a parallel test case is discussed in Section 7.2 and an

example of verifying a parallel test case is given in Section 7.3.

7.1 Parallel Test Architecture

A parallel test architecture for multi-party testing is shown in Fig. 7.1 [IS09646-
3E]. Conceptually, a tester consists of a Main Test Component (MTC) and zero or
more Parallel Test Components (PTC). Test components may communicate with each
other by exchanging Coordination Messages (CM) through Coordination Points (CP).
A test component may communicate with an implementation under test via points of
control and observation. A test system may have any number of PCOs, but only one
test component shall be connected to a particular PCO. Coordination points always
connect exactly two test components. The implementation under test provides a

connection between a pair of Lower Tester and Upper Tester.

The MTC is intended to fulfill the role of the Master Lower Tester. Its behavior
is described in the first tree of a test case behavior description table. The MTC is

responsible for:
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e creating and terminating PTCs,
e managing coordination points that exist between itself and PTCs,
e receiving local test verdicts from PTCs, and

e computing the overall test verdict using the local verdicts.

Master Lower Tester l«————TCP ————»{  Master Upper Tester

3 ]
Coordination Coordination
Messages Messages
PLTn la———TCP ‘ > PUTn
\
PLT2 - TCP i PUT‘Z/v PCOn
1
- TCP ———» PUTI PCO2

PLT! Coordination PCO1 s

/ / Messages F)-AsPs

PCOn |e—(N)-PDUs —»

)
PCO2 (N)-PDUS ——»
PCOI - (N)-PDUS———» Implementation
Under
Test
(N-1)-ASPs
]

(N-1)-Service Provider

Figure 7.1 A Multi-party Test Architecture.

Parallel Test Components are intended to fulfill the role of the Parallel Lower
Testers (PLT) or the Parallel Upper Testers (PUT). Their behavior are described in
trees of the test case behavior description table, following the first tree describing
the Main Test Component. A verdict assigned in a PTC has orly local significance.

Each PTC is responsible for:

- assigning its local verdict, and

- sending a message containing its local verdict to the MTC.
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Multi-party testing requires multiple parallel lower testers, a master lower tester,
and possibly multiple upper testers. In a multi-party test architecture, conceptually,
it is possible to view the IUT as a multi-peer IUT, which handles more than one
interface, that is, connection or association, at a time. A mult-peer IUT is called
homogeneous if all sets of protocols on the different interfaces are identical, otherwise
it is called heterogeneous [BEWI 90). In this thesis, we consider the verification of
test cases for testing a homogeneous IUT.

In the given multi-party test architecture, it is interesting to observe that the
interconnection structure cf a pair of PLT and PUT, the service provider, and the IUT
resemble the DS test architecture. Since the multi-party test architecture does not
impose a one-to-one correspondence between a test component - Lower or Upper - and
a PCO, in principle, it should be possible to define any basic test architecture - CS, DS,
RS, and LS - between a pair of PLT and PUT. However, a Test Management Protocol
used in the CS architecture in the multiparty test architecture must be designed such
that it communicates with the Master Upper Tester in addition to communicating
with the IUT.

An advantage of using different basic test architectures between different pairs
of PLT and PUT is that the resulting multi-party test architecture achieves total
error detection capability in contrast to the partial and complementary error detection

capabilities of the individual basic test architectures [SARI 89].

7.2 Parallel Test Case Verification

Verification of a multiplexing test case running in a parallel test architectural
framework can be done by first deriving a test verification system from the test
architecture. A test verification system corresponding to the parallel test architecture
is given in Fig. 7.2. The test verification system is derived from the parallel test
architecture by representing the Master Lower Tester (MLT), Master Upper Tester
(MUT), PLTs, PUTs, and the service provider by their EFSM representations. The
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IUT is replaced by the EFSM model of its protocol specification. Each PCO, CP,
and interaction point is replaced by two FIFO channels. If there are n simultaneous
connections being opened by the test system, then there are (27 + 4) EFSMs in the
verification system. The 2n factor is due to a pair of PLT and PUT for each of the
n connections, and one EFSM for each of MLT, MUT, service provider, and the

protocol specification.

mlf?w :ﬁlTw
PLT1-EFSM PU'll"l-EFSM l
TRk

1

USP-EFSM

[ T]

Legends: MLT-EFSM = Master Lower Tester EFSM
MUT-EFSM = Master Upper Tester EFSM
PLTn-EFSM = Paraliel Lower Tester-n EFSM

PUTn-EFSM = Parallel Upper Tester-n EFSM
S-EFSM = Specification EFSM

USP-EFSM = Underlying Service Provider EFSM

Figure 7.2 A Test Verification System for Parallel Test Architecture
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To verify a parallel test case, one can directly use the verification technique

discussed in Chapters 3 and 4, that is:

i. Derive a test verification system from a parallel test architecture as discussed
above.

ii. Generate a global state space from the test verification system with a set of atomic
predicates attached to each global state.

iii. Express the test case safety and liveness properties as temporal formulas.

iv. Verify the test case properties on the global state space.

However, in practice, because of the large number of EFSMs in the verification
system, there is a possibility of state space explosion while generating the global
state space model of the verification system. To contain the state space explosion,

we adopt the following approach.

Let us represent the verification of a single connection test case t in a test
verification system TV S by the function Verify(t)|rys. Since the verification
process involves the verification of the safety properties and the verification of the
liveness property, we express the verification function as follows:

Verify(t)lrvs = Safety(t)|rvs U Liveness(t)|Tvs,
where the functions Safety(t)|rys and Liveness(t)|ryvs represent the verification

of the safety and the liveness properties in TV S, respectively.

Assume that a multiple connection test case T is represented as the parallel
composition of n single-connection test cases, that is:
T =t ” to “ ” ta.
Then, we define the verification of the multiple connection test case T in a parallel

test verification system TV SP corresponding to a parallel test architecture as follows:
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Veri fy(T)|rvse = Safety(T)|ryse U Liveness(T)|ryse

= (Safety(t1)lrvs1 U ...U Safety(ty)lrvss) U

(Liveness(ty)|tvsy A ... A Liveness(tn)|rvsn)

where TV S1,...,TVSn are n distinct single connection test verification systems

derived from TV S? which contains n pairs of Upper/Lower Testers. A well

structured parallel test system with the following characteristics makes it possible

to decompose a parallel test verification system TV S¥ to a set of single-connection

test verification system {TVS1,..,TVSn}:

ii.

iii.

The Master Test Component communicates with the Parallel Test Components
only at the beginning and end of their executions. At the beginning, the MTC
creates 'a'PTC and sends some parameters and receives the local verdict returned
by a PTC at the end of execution of the PTC.

The Parallel Test Components do not communicate among themselves.
Therefore, verification of a multiplexing test case can be done as follows.

Obtain n single connection test verification systems from the parallel architecture
test system.

To verify the safety properties of the multiplexing test case, verify the safety
properties of the n single connections separately.

To verify the liveness property of the multiplexing test case, express the test
purpose as a temporal formula and verify that the test purpose temporal formula is
satisfied by arriving at a Pass verdict in all the n single connection test verification
systems. This is because, the test purpose of a multiplexing test case must take

the local Pass verdicts of all the n connections into account.

7.3 Example of Verifying a Parallel Test Case

To test the multiplexing capability of an implementation, a test case must establish

at least two connections. The CS architecture based transport test suite in [NCC 88]
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contains four multiplexing test cases. In this section, we give an example of verifying
one of the multiplexing test cases. First, the TTCN specification of the test case and
its EFSM description are presented. Second, a global state space is generated from
a test verification system using the transport protocol specification, the underlying
service provider, the TMP described in Section 6.1, and the EFSM representation of
the test case. Third, the verdict composition mechanism in a multiplexing test case

is illustrated.

7.3.1 EFSM Model of the Test Case

The TTCN specification of a multiplexing test case chosen from the human
designed test suite [NCC 88] rewritten using the extended TTCN [ISO 9646-3E]
is shown in Fig. 7.3. The test case contains a Main Test Component (MTC) which
creates two Test Components (TC) denoted by TREEI and TREE2. A TC returns
a test verdict to the MTC after completing its execution. The MTC computes the
final verdict after receiving verdicts from both the TCs. Both the TCs have identical

behavior except their source and destination addresses.

Each TC contains four major steps. In the first step, a TC establishes a connection
with an Upper Tester. In the second step, which is a data transfer step, five TMPDUs
are sent to the Upper Tester. TMPDUI initializes the Upper Tester, TMPDU3 contains
a value to be assigned to the S1 stored item in the Upper Tester, TMPDU4 contains
values to be assigned to the S5, S6, §7, and S8 stored items in the Upper Tester,
TMPDUS contains values for the S9, S10, S11, S12, and S13 stored items, and the
command TMPDUR requests the Upper Tester to send all the mode parameters in a
response TMPDU denoted by TMPDUS8r. After sending all five TMPDUs in separate
five DT TPDUs, the TC waits for an AK TPDU. In the third step, the TC waits for a
DT TPDU containing a TMPDUSr. If the TC receives a TMPDUST, then it returns a

Pass test verdict. In the fourth step, the TC closes the connection. The TC retums a
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Fail test verdict if the connection cannot be established, an AK TPDU is not received

after sending five DT TPDUs, or there is any error while releasing a connection.

To verify the test case, we first construct an LT-EFSM for each test component.
Second, we generate a model for the test verification system by considering one
LT-EFSM at a time. Third, the transmission, reception, and synchronization safety
propertics of each test component are verified. Fourth, the final test verdict assigned
by the main test component is computed by combining the verdicts returned by both

the test components.

In this example, since both the test components are identical, we construct only
one LT-EFSM, as shown in Fig. 7.4. There are 31 states and 30 transitions in the
EFSM. The test component assigns a Fail verdict if control reaches one of the states
in the set {$5, 12, 20, 21, 26, 27, 30, 31} and assigns a Pass verdict if control reaches

the state 29,
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Test Case Dynamic Behavior

Reference: ABCT2MPAQO
Identifier:  CS_Example_2
Purpose: Each TC establishes a_connection, transfers data with a command to make a reply, and
receives areply TMPDU.
Default: Def1
Labell  Behavior Description Constr.|Verdict| Comment
Main Test Component
CREATE(PTC1, TREE) Create 1st. test component
CREATE(PTC2, TREE2) Create 2nd. test component
CP1? result(R L:=resuit) Receive result from 1st. component
CP2? result(R2:=result) Receive result from 2nd. component
[(R1="PASS") AND (R2="PASS")] Pass | If both components Pass the test
[R1="FAIL") OR (R2="FAIL")] Fail | If any component Fails the test
TREEL First connection
(set_A) Set the address values for 1st. conn,
+Con_Data_Disconn Invoke the connection
TREE2 Second connection
(set_B) Set the address values for 2nd. conn.
+Con_Data_Disconn Invoke the connection
Con_Data_Disconn
+LT_trans_con Establish a connection
LITMP1() Set mode parameters
LITMP3(S1:="") Set DR parameters
L!TMP4(85:="",S6:="you",
$7:=1,88:="") Set CC parameters
L!TMP5(S9:="me",S10:="you",
S$11:=1,512:="" 8§13:="")
LITMP8() Request mode parameters
+Wait_for_ak Wait for acknowledgements
+Wait_for_mode_params() Pass | Wait for the response TMPDUS8r

+P01_muly/postamble

Release the connection

Figure 7.3 A CS architecture based muitiple connection test case.
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Figure 7.4 EFSM Model of the test case in Fig. 7.3.

29

The transitions of the above test case are shown below.

Following are the verdict TAGS of the states:
verdict (5)=verdict (12)=verdict (20)=verdict (21)=Fail
verdict (26) =verdict (27) =verdict (30)=verdict (31) =Fail
verdict (23)=verdict (24) =verdict (25) =Pass

verdict (28)=verdict (29) = Pass

Initialization:

TS1l:= **,TS5 := 1,TS6 := *you",TS7 := No,

TS8 := *"*,TS9 := "me",TS10 := *you",

TS11 := *1*,TS12 := *1°,TS13 := **,

Called_address := "you",Calling_address := "me"
Exp_option := *No",Qos := "1*,

User_data0 *any_data®*, seqrecak := 0,segsendt := 0
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LT 1: <2,3,L!NDTreq(CR{(Called_addr,Calling_addr,
Exp_option, Qos,User_datal)),
T,{},1>
LT 2: <3,4,Start(A,no_response),T,{},1>
LT_3: <4,30,L?20TH, T, (}, 3>
LT _4: <4,5,?Timeout (A),T,{},2>
LT_5: <4,6,L?NDTind(CC),T,{},1>
LT 6: <6,7,Cancel(a),T,{}.,1>
LT_7: <7,8,L!NDTreq (DT (User_datal, EOT)),
{M1:=24,M2:=A0,..,M10:=A0,M11:=A5,
M12:=A5,M13:=20,...,M25:=20,
User_datal:=TMP1 (M1,M2,..,M25),
EOT:=True, segsendt:=1},1>
LT 8: <«<8,15,L!NDTreq(DT(TMP3 (TS1),EOT)),
{seqsendt :=2}, 1> ‘
LT _16: <15,16,L!NDTreq(DT(User_data2,EOT)),
{User_data2:=TMP4 (TS5, TS6,TS7,TS8),
EOT:=True, seqgsendt:=3},1>
LT_17: <16,17,L!NDTreq(DT(User_data2,EOT)),
{User_data2:=TMP5(TS9,TS10,TS11,TS12,TS13),
EOT:=True, segsendt:=4},1>
LT_18: <17,18,L!NDTreq(DT(TMP8(),EOT)),
{segsendt:=4},1>
LT _9: <9,10,Null, [seqrecak < segsendt],{}, 1>
LT 10: <10,11,Start (B,wait_ak),T,{},1>
LT _11: <11,31,L?20TH, T, {(}, 3>
LT _12: <11,12,?Timeocut(B),T,{},2>
LT _13: <11,13,L?NDTind(AK),T, {seqrecak:=AK.seqgno},1>
LT_14: <13,9,Cancel(B),T,{(},1>
LT_15: <9,14,Null, [segrecak >= seqgsendt],{},1>
LT_19: <14,18,i,T,(}.,1>
LT_20: <18,20,L?0THERWISE,T,{},2>
LT_21: <18,21,i, T, {}. 3>
LT_22: <18,19,L?NDTind(DT(TMP8)),T,{},1>
LT_23: <19,22,L!NDTreq(AK(1),T,(},1>
LT 24: <22,23,1,T,{}.1>
LT_25: <23,24,L!NDTreq(DR(Reason, User_data3)),T,
{Reason:="normal_disconnect*,
User_data3:=Null}, 1>
LT _26: <24,25,i,T,{},1>
LT_27: <25,26,L?0THERWiSE, T, {(}, 2>
LT _28: <25,27,1i,T,{},3>

164



LT _29: <25,28,L?NDTaind(DC),T,{(},1>
LT_30: <28,29,Cancel(A),T,(},1>

7.3.2 Test Verification System for the Parallel Test Case

A test verification system for the multiple connection test case is shown in Fig.
7.5. The MLT-EFSM is derived from the TTCN specification of the Main Test
Component in the test case, PLTI-EFSM is derived from the TTCN specification of
TREEI, and PLT2-EFSM is derived from TREE?2 of the test case. Both PUT1-EFSM
and PUT2-EFSM are identical in behavior and correspond to the Test Management
Protocol discussed in Section 6.1. The S-EFSM and the USP-EFSM are also discussed

in Section 6.1.

MLT-EFSM PUTI-ZFSM PUT2-EFSM

T T R
AT, 7

PLT1-EFSM PLT2-EFSM

USP-EFSM

Figure 7.5 A Test Verification System for the test case in Fig. 7.3.

Generation of a global state space from the TVS shown in Fig. 7.5 would result in
state space explosion. Therefore, as discussed in Section 7.2, we derive state spaces
for individual connections by deriving a test verification system for each connection

as shown in Figs. 7.6 and 7.7.
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USP-EFSM

Figure 7.6 A Test Verification System for first connection in Fig. 7.3.

PUT2-EFSM
i
I 1_; |
!
PLT2-EFSM S-EFSM
Y _L| v
|
T Py
USP-EFSM

Figure 7.7 A Test Verification System for second connection in Fig. 7.3.

7.3.3 Model Generation

Using the global state space generation algorithm in Chapter 3, we generate the
global state space for each of the test verification systems in Figs. 7.6 and 7.7 by
using the PLT-EFSM in Fig. 7.4, the Underlying Service Provider EFSM in Fig.
6.4, the protocol specification EFSM in Fig. 6.3, and an Upper Tester EFSM derived
from a Test Management Protocol in Fig. 6.5. Since both the verification systems
in Figs. 7.6 and 7.7 are identical, in the following, we present the global state space
for unly one of them. The global state space contains 116 states and 115 transitions.
We show only the structure of the global state space in Fig. 7.8. The detailed state

description and the transitions of the global state space are given in Appendix 4.
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The path indicated by the bold amrows ( eammge-)

4
r 5 leads to the test purpose being satisfied.
. ....rl4
Y,

Figure 7.8 Structure of the global state space.

7.3.4 Verification of Safety and Liveness Properties

Safety Properties

Verification of the safety properties of the multi-party test case consists of

verifying the safety properties of the individual test components (TC). Since in the
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test case example under consideration both the test compenents are identical, in the
following we verify the safety properties of one test component only. In each of the

test components, there are a few safety errors. Let us consider the property:

INIT = AG(AFTER(Ssend(N,NDTreq(DR))) -
AFTER(Treceive(L, NDTind(DR)))).

The predicate AFTER(Ssend(N, NDTreq(DR))) holds in the global state g95
which is a descendant of state g93 in the global state space diagram in Fig. 7.8. From
the global state g95, execution can proceed along two paths leading to the two global
states gl02 and gl03. However, the predicate AFTER(Treceive(L, NDTind(DR)))
does not hold in any of the states following g95. Therefore, the above stated safety

property does not hold. The cause of the safety error is explained as follows.

While the test verification system is in the global state gd48, the Lower Tester is
in its local state 9 just after sending four DT TPDUs and is about to enter into a loop
in which it expects to receive AK TPDUs from the protocol specification, the service
provider is in state 1 waiting for any input events from the Lower Tester or the protocol
specification, the protocol specification is in state 10 representing a connection open
state, and the TMP is in state OPEN. Then the test system moves to state g93 after
a nondeterministic internal transition takes the protocol EFSM from state 10 to 11.
The protocol EFSM initiates the disconnection of the transport connection by sending
a TDISind event to the TMP and a NDTreq(DR) event to the Lower Tester through
the service provider. The protocol EFSM sends the TDISind in state 11 and moves
to state 12 and then sends the NDTreq(DR) event to the service provider and moves
to state 13. These two actions of the protocol EFSM takes the test system through
the global state sequence {g93, g94, g95}. The TMP consumes the event TDISind
event sent by the protocol EFSM and moves to the IDLE state through a sequence of

internal transitions, thereby taking the test system through the state sequence {g95,
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g96, g97}). When the service provider transfers the NDTreq(DR) event from the
protocol EFSM to the input channel of the Lower Tester, the test system goes through
the state sequence {g97, g98, g99}. After this point, the Lower Tester enters into
a loop initiating a timer to receive AK TPDUs from the protocol EFSM. Since the
protocol EFSM has initiated a nondeterministic termination of the connection, there
are two alternative scenarios in the Lower Tester: occurrence of an OTHERWISE
event and occurrence of a timeout. Both these events take the test system to states
£102 and g103, respectively. Therefore, the desired predicate AFTER(Treceive(L,
NDTind(DR))) is never satisfied after state g95 and hence the safety error occurs. A
design deficiency in the test case in the form of its inability to handle nondeterministic

termination of the transport connection causes the safety error to occur.

Next, let us consider the following safety property:

INIT |= AG(AFTER(Ssend(N, NDTreq(AK)))
AFTER(Treceive(L, NDTind(AK)))).

The predicate AFTER(Ssend(N, NDTreq(AK))) holds in global state g56, which
is a descendant of state g49 and an ancestor of g60. Control can proceed along two
sequences of states starting with g56: {g56, g57, g58, g59, g60, g62} and {g56, g57,
£58, 259, 260, g61}. Both these paths execute the same event sequences until reaching
state g60, after which point they execute different events. Global state g60 refers to
the LT-EFSM'’s local state 11 where the LT waits for an NDTind(AK) event from
the service provider. There is also the possibility of the occurrence of a timeout in
state 11. Because of the occurrence of the timeout, the predicate AFTER(Treceive(L,
NDTind(AK))) holds in global state g62 only, that is, it does not hold on all paths

reachable from g56. Hence the safety error occurs.

The first error is due to the nondeterministic disconnection of the transport

connection by the protocol specification. To avoid any safety error due to the first
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cause, a test case must be designed to accept events nondeterministically generated
by the protocol specification. The second “error” is due to a qualitative analysis of
timers in the test case. It indicates that the timers in test cases must have sufficiently
long durations. As such the conclusion is that a diagnostic message rather than an

error message should be generated during the verification process.

Liveness Property

Since the liveness property of the test case relates the satisfaction of the entire
test purpose with the assignment of a Pass verdict, for the test purpose to be satisfied
it is imperative that the purpose of each TC is satisfied with the TC returning a Pass
verdict. In the following, we explain the computation of final verdict by the main
test component.

The overall test verdict assigned by the test case to an implementation depends
on the verdicts assigned by each test component. Since, both the connections are
independent and run in parallel, the final test verdicts are computed by taking the
product of the possible set of verdicts over each connection. In the example under
consideration, referring to the global state space in Fig. 7.8, each state in the set
VS = {g6, g61, 289, g90, g91, g102, g103, g108, gl16} returns a verdict to the test
coordinator. Only the state g89 returns a Pass verdict and all other states return a

Fail verdict. In this example, since both the connections are identical, we compute

(VS x V.S) as follows.

verdict (g6, X) = Fail for all X in VS,
verdict (g6l, X) = Fail for all X in VS,
verdict (g89,989) := Pass,

verdict (g89, X) = Fail for all X, except g89, in VS,
verdict (g90, X) = Fail for all X in VS,
verdict (g91, X) = Fail for all X in VS,
verdict (gl02,X) := Fail for all X in VS,
verdict (gl03,X) := Fail for all X in VS,
verdict (gl08,X) := Fail for all X in VS,
verdict (gll6,X) := Fail for all X in VS.
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The test coordinator assigns a Pass verdict to the implementation if Pass verdicts

are assigned over both the connections.

To formulate liveness property of the test case, we first state the informal
description of the purpose of each test component and then specifv its formal

representation. The three steps of the purpose of a test component are that a TC

i. establishes a connection,
ii. sends data including a command in TMPDUS to send a reply in a TMPDUZSr, and
iii. receives a reply in a TMPDUST.

The formal specifications of the above three steps are stated below.

i. AFTER(Tsend(L,NDTreq(CR))) v

AFTER(Treceive(L, NDTind(CC))),
ii. AFTER(Tsend(L,NDTreq(DT(TM PDUS8)))), and
iii. AFTER(Treccive(L, NDTreq(DT(TMPDUS8r)))).

We compose the basic purposes of a test component using the SEQ operator as
follows:
fi = AFTER(Tsend(L,NDTreq(CR))) —

AFTER(Treceive(L, NDTind(CC))) SEQ
AFTER(Tsend(L,NDTreq(DT(TMPDUS8)))) SEQ
AFTER(Treceive(L,NDTreq(DT(TMPDUS8r)))).

Then the liveness property of a test component is stated as INIT = (fi —
(verdict = Pass)).

All the execution paths in the global state space, shown in Fig. 7.8, do not satisfy

the liveness property. Only the path indicated by bold arrows satisfies the property.
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Therefore, the entire test purpose, which is the logical AND of the propertics of the

individual test components, is only partially satisfied.
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CHAPTER 8

CONCLUSIONS AND FUTURE RESEARCH

This chapter summarizes the results contributed by inis research and presents some

suggestions for further research extending the scope of the test verification technique.

8.1 Conclusions

This thesis represents the beginning of a new research topic in the area of Pro-
tocol Engineering Life-cycle. To develop operational confidence in the conformance
of a protocol implementation with its formal specification, conventionally, the im-
plementation is tested with a collection of test cases designed to check the behavior
of the implementation in representative and exceptional instances of communication.
Because of the complex nature of software systems, research over the last fifteen
years on generating test cases for conventional sequential software in general and
communication protocols in particular has not produced any breakthrough. Though
limited success has been achieved in generating test cases from simplified protocol
models such as deterministic finite state machines [SILE 89, DSU 90], automatic test
generation becomes more and more elusive as more and more powerful standardized
specification languages [Z100, 1S7094, 1S8807] are used in formalizing the behavior

of complex communication systems.

Since the state-of-the-art in automated test suite design is still in a nascent state,
human intuition and ingenuity play a decisive role in developing a complete test
suite for a protocol specification. Expectedly, like any human designed systems,
the development of a test suite for a large and complex protocol is error-prone.
Philosophically, since the objective of a test case is to detect any implementation errors

for the purpose of judging the implementation’s conformance with its specification,
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such a conformance judgement is meaningful only if the test case is comect with

respect to the protocol specification.

With a simple protocol model, such as a deterministic FSM, a test case consists
of a sequence of input/output events and is easy to comprehend in the sense that no
parameters or predicates are attached to the test events. Therefore, verification of
such a test sequence is a straightforward exercise. However, protocol specifications
and test cases can be more complex than a simple deterministic FSM [NASA 92b].
The complexity of a protocol specification is due to higher expressive power of the
specification language [Z100, 157094, 1S8807] including nondeterminism and the
complexity of a test case is due to its expressiveness in detecting both desirable and
unexpected behavior of an implementation, conditionally sending and receiving test
events, in using timeouts and repeating some test behavior, in checking the values of
various parameters received in an event, and in assigning a test verdict with respect
to the purpose of the test case [ISO 9646]). Additional difficulties in test verification
arise due to different languages used in specifying protocols and test cases, and

architectural issues in a test system.

The objective of this research is to assist test designers, in the form of providing
a methodology, to verify the correctness of test cases against the formal specifications

of protocols. The verification methodology consists of the following steps:

i. Eliminate the syntactic and semantic differences among the languages used to
specify protocols, test cases, and test management protocols by transforming
them to a common EFSM notation.

ii. Derive a test verification system from a given test architecture.

iii. Generate the global behavior of the test verification system.

iv. Identify the test case properties as safety and liveness propertics expressed as
formulas in branching time temporal logic.

v. Verify the test case properties on the global behavior of the test verification system
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by using a model checking approach.

In the following, we summarize the results of each chapter.

In chapter 1, the role of test case verification in protocol engineering life-cycle was

identified and some preliminary test case verification techniques were summarized.

In chapter 2, a common EFSM notation for representing protocol specifications
and test cases was defined, the protocol specification languages Estelle and the test
specification notation TTCN were introduced, and algorithms for translating Estelle
and TTCN specifications to EFSMs were presented. A notation, called 1/O diagram,
to represent the external ASP/PDU events exchanged among the entities in a test
system was also defined. The need for a common notation to represent an external
ASP/PDU event arises for accessing the parameter values in a received event while

evaluating a boolean condition.

In chapter 3, we outlined the four basic test architectures LS, DS, RS, and CS
and summarized their comparative error detection capabilities. We also defined the
notion of a test verification system and derived test verification systems from different
test architectures. Architectural concept played an important role in the verification
process, because a test architecture defines both the physical interconnection among
the components of a test system and the logical interconnection betwsen two test
entities in the form of a test coordination/management protocol. The global behavior
of a test verification system was obtained by using a reachability analysis algorithm
and a set of atomic predicates was associated with each global state. The motivation
for associating a set of atomic predicates with each global state was that the predicates

were used while verifying the safety and liveness properties of a test case.

In chapter 4, many new concepts developed as a result of this research were
presented. For verification purpose, test case properties were expressed using the
well known notions of safety and liveness. We identified four types of test case

safety properties: transmission safety, reception safety, synchronization safety, and
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test verdict safety. Identification of these properties was based on the safety notion
that nothing bad happens. To express the liveness property, it was essential to formally
express a test purpose, because fulfillment of the test purpose is something good that
must happen in the testing process. We presented a set of notations to represent
primitive test purposes as temporal formulas and a composition operator to define
complex test purposes from primitive ones. To verify the test properties expressed
as temporal formulas, we presented a model checking algorithm that runs in lincar

time with the size of the global state space.

In chapter 5, we demonstrated the verification of an RS architecture based test
case designed to test an ACSE protocol implementation. An RS architecture has the
distinction of defining a test case with only the Lower Tester and no Upper Tester. In
this architecture, we had to derive the behavior of an Upper Tester using information
from the Lower Tester and the protocol specification. Two desiga errors were found in
the test case in the form of wrong use of implicit send events to define the behavior

of the nonexistent Upper Tester.

In chapter 6, we verified a CS architecture based single connection test case
designed to test a Class 2 transport protocol. The special feature of a CS architecture
based test case is the use of test management protocol data units in the Lower Tester
to control the behavior of the Upper Tester. We found out some transmission safety
errors in the test case arising due to the nondeterministic send of acknowledgement
PDUs and nondeterministic disconnection of the transport connection by the protocol
specification entity. It was discovered that the test case was not designed to handle
nondeterministic protocol behavior. We also detected the qualitative effect of timeouts

on transmission safety.

In chapter 7, we verified a CS architecture based parallel test case with two
simultaneous transport connections. We found out some transmission safety errors

in the test case arising due to the nondeterministic send of acknowledgement PDUs
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and nondeterministic disconnection of the transport connection by the protocol spec-
ification entity. It was discovered that the test case was not designed to handle

nondeterministic protocol behavior.

Here we analyze the intertwining of safety and liveness properties of a test case.
In the context of conventional program verification, in order to prove that "something
good eventually happens”, which refers to the liveness properties, one has to show
that “nothing bad happens", which refers to the safety properties, along the execution
of a system [OWLA 82]. That is, if something bad happens along the execution of
a system, then something good cannot happen eventually. Moreover, in connection
with program verification, a liveness property is evaluated with respect to program
termination. Therefore, satisfaction of the safety properties is a prerequisite for the

satisfaction of the liveness properties.

However, the context of protocol testing is slightly different from executing
a conventional program. The purpose of a test case may be satisfied before the
termination of the execution of a test system. That is, many test cases are designed
in such a way that the test cases continue to interact with the IUT even after the
purposes of the test cases are satisfied. Such interactions arise in practical testing,
because the entire process of evaluating the conformance of an implementation is
done by a set of test cases with 2 view that each test case tests one protocol function
of an IUT at a time. Since a protocol function need not lead to the termination of the
protocol, satisfaction of the purpose of a test case may need to be evaluated much
before the protocol operation is terminated and a test case continues to interact with

the IUT after the satisfaction of the test purpose.

For example, the purpose of the test case, referred to by the identifier
ABCT2PREOQO in the CS architecture based test suite in [NCC 88], is to "test IUT’s
ability to connect and then disconnect.” To achieve the test purpose, the test case

contains the following behavior steps. The Test Management Protocol is initialized
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in such a manner that it initiates a connection request by sending a TCONreq event
to the TUT. If the test case receives a CR TPDU, then a CC TPDU is sent to the
IUT followed by a DT TPDU. The DT TPDU contains a TMPDU directing the TMP
to initiate a disconnection. If the connection is properly established, then the TUT
must send an AK TPDU after receiving the CC followed by the DT TPDUs. After
receiving the TMPDU, the TMP disconnects the transport connection by sending a
TDISreq event to the IUT. If the test case receives a DR TPDU from the IUT, then
it is confirmed that the IUT can initiate a disconnection procedure and hence the
test purpose is satisfied. However, the test case does not terminate immediately after

receiving a DR TPDU, but completes the disconnection procedure.

Therefore, it is essential that the test case does not contain any safety errors before
the liveness property is satisfied, but it may contain safety errors after the liveness

property is satisfied.

The safety and liveness errors reflect on the quality of the test case under
verification. Ideally, a good test case should not contain any safety errors and the test
purpose should be satisfied on all the execution paths in the model generated from
a test verification system. Because of some inherent nondeterministic actions in a
protocol specification, there may be a possibility that the test purpose is not satisfied
on all execution paths. If a test case satisfies the liveness property on some execution
paths in spite of containing a few safety errors, it is possible to improve the quality
of the test case by eliminating the safety errors. However, if the liveress property is
not satisfied along any execution path in the model, it is implied that the test case is

highly erroneous and is useless from the point of the test purpose.

While verifying a parallel test case, we observed that the test purpose may
be partially satisfied. In the presence of nondeterministic actions in the protocol
specification, a partial satisfaction of test purpose does not indicate any design errors

in the test case provided there are no safety errors in it.
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The question of whether to continue with the verification process after detecting
a safety error does not have a simple answer. On one hand, if the causes of safety
errors are independent of one another, then the verification yrocess can be run until
all the present errors are detected and then corrections can be made to the test case.
On the other hand, if a safety error occurs due to a previously occurring safety error,
the second error vanishes once the first error is eliminated from a redesigned test
case. In such a scenario, it is desirable to stop the venfication process after the first
error is detected and resume the verification process once the error is eliminated.
However, determining the interdependence of errors is not an easy task. Therefore,
the verification process may be run like compiling a program in the sense that if the
number of errors detected exceeds some predetermined number then the verification

process may be stopped.

8.2 Future Research

A natural phenomenon in research is that the solution of one problem leads to
many new questions and to better solutions of some other problems. Since this work
represents the beginning of research on test case verification, naturally, a large number
of potential future tasks remain to be done to study the test verification issues with a
broader perspective. In the following, we categorize the future tasks into four areas:
implementation of the verification methodology, verifying invalid behavior test cases,
piecewise test verification, and the use of model checking approach in generating test

cases in a different and probably better way.

8.2.1 Implementation of the Verification System

None of the steps of the test verification methodology was implemented. Appli-
cations of the verification methodology to the three RS and CS architecture based test
cases were developed manually. However, to be able to verify all the test cases in a

test suite, it is essential to automate the verification methodology as follows.
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-~ To generate EFSMs from protocol specifications in Estelle, LOTOS, and SDL
and test case specifications in TTCN, it is essent'al to write an interpreter or a
compiler for each of the languages. Experience in using a LOTOS interpreter
[LOGR 88], which translates a LOTOS specification to horn clauses, shows that
PROLOG is a good language for fast implementation of the EFSM construction
algerithms described in chapter 2.

- In the implementation of the global state space generation algorithm in Chapter
3, a crucial step is to implement the predicate evaluation procedure eval.

— The model checking algorithm in Chapter 4 can be implemented in a manner

similar to some other model checking implementations [FRV 86, CES 86].

8.2.2 Verifying Invalid Behavior Test Cases

Ideally, the objective of a complete test suite is not only to check that an
implementation with valid irputs behaves correctly as stated in its specification, but
also to check that the implementation does not behave abnormally under exceptional
situations. The second type of behavior checking is known as robustness testing.
An essential element in robustness testing is the application of invalid/inopportune
test events to an implementation, that is, a test designer intentionally makes a test
case output invalid/inopportune events. Therefore, if special care is not taken in
the verification system, then correct test cases designed to test exceptional protocol

behavior would be declared by the verification methodology as erroneous.

To verify test cases designed for robustness testing, it is required to modify
the global state space generation algorithm such that generation of a state space
continues after ignoring the invalid/inopportune events received by the protocol
specification, because an ideal implementation, conceptually, can detect and ignore
invalid/inopportune events and continue to behave as if no invalid/inopportune events

were received. This is the basis of designing test cases for robustness testing in many

test suites [NCC 88, PTT 90].
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8.2.3 Piecewise Test Verification

Generation of EFSMs from protocol and test case specifications is the first
step in the test verification methodology. Our observations reveal that test case
EFSMs are small in size with states and transitions in the order of 100 and the
EFSM representations of some of the protocol specifications could be very large
with thousands of states and transitions. In reality, a protocol specification provides
several communication functions with many mandatory and negotiable optional and
alternative features in terms of protocol behavior, protocol parameters, and quality
of service. Therefore, a test case, in general, is designed to check one protocol
function implying that only a small part of the protocol specificaticn gets activated in
the reachability analysis process. Therefore, to verify a test case against a protocol
specification, it is not required to generate a large EFSM, taking a large space and

long time, representing the complete behavior of the protoco! specification.

Accompanying every test suite are two documents: Protocol Implementation
Conformance Statement (PICS) and Protocol Implementation eXtra Information for
Testing (PIXIT). Information in the PICS and PIXIT can be used to divide a large test
suite Ts into a collection of smaller test groups {T'sy, Ts2, ..., T'sy, ..., Tsn } and a large
protocol specification Pg can be transformed into a collection of smaller specifications
{Ps1, Psy, ..., Psi, ..., Psp ), such that test cases in group T, are verified against a
smaller specification Pg;. For example, all the test cases in which the Upper Tester
initiates the connection establishment procedure in the test suite [NCC 88] can be
grouped as T's, and a smaller specification Pg, can be derived from a transport
protocol specification by eliminating its behavior responsible for handling connection

requests from its peer entity.

Incorporating the PICS and PIXIT information with a large protocol specification
to generate a collection of smaller specifications requires that the PICS and PIXIT

are formally specified and the protocol is specified in a structured manner such that if
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some behaviors are eliminated from a specification, the resulting smaller specification

possesses a semantically consistent behavior.

8.2.4 Test Generation Using Model Checking Approach

The current test generation techniques, such as the transition tour method, the
distinguishing sequence method, the characterizing sequence method, and the unique
input/output method, derive test cases from a protocol specification by syntactically
analyzing the protocol model [SILE 89, DSU 90, TRSA 91]. After deriving a test
case using one of those methods, it is a hard task to know the purpose of the test
case. Since a protocol specification is better understood as an entity providing a
set of communication functions, if no functioncl purpose is associated with a test
case, it becomes increasingly difficult for a test party to know how many protocol
functionalities one test suite can test. Therefore, it is essential to define a functional
purpose and then derive a test case fulfilling the same. The following steps outline a

purpose-directed test generation technique using the model checking approach.

i. Identify a test purpose T}, and express it as a temporal formula f.

ii. Generate a state space model from a protocol specification and attach a set of
atomic predicates AP, with each state s, such that all the predicates in the set
AP, hold in state s,.

iii. Using the model checking approach, find out a set of paths T satisfying the
temporal formula £ Now T denotes a test case that can check whether an

implementation satisfies the test purpose T,
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Appendix 1

Global state space of the RS Test Verification System in Chapter 5.

VARl = {STATE=*"",TEST_BODY=*",MODE_Supported=1,

Verdict=Null}

{ STATE=NONE, TEST_BODY=TRUE, MODE_Supported=1,

Verdict=Null)

VAR10 = {STATE=NONE, TEST_BODY=TRUE, MODE_Supported=1,
Verdict=Null}

VAR13 = {STATE=CONNECT, TEST_BODY=TRUE, MODE_Supported=1,
Verdict=Null}

VAR27 = {STATE=NONE, TEST_BODY=TRUE, MODE_Supported=1,
Verdict=Null)

VAR28 = {STATE=NONE, TEST_BODY=TRUE, MODE_Supported=1,
Verdict=Pass}

VAR34 = {STATE=NONE, TEST_BODY=TRUE, MODE_Supported=1,
Verdict=Inconclusive)

VAR39 = {STATE=CONNECT, TEST_BODY=TRUE, MODE_Supported=1,
Verdict=Inconclusive)

<
b
Py}
o
1]

gl =<1, 1, A, "+, (E,E,E,E,E,E}, VARL1>{INIT}

g2 =<2, 1, A, **, (E,E,E,E,E,E}, VAR2>
{AT(Tsend (U, A_ASCreq) )}

93 = <3, 1, A, *+, {(E,E,E,E,E,A_ASCreq()}, VARZ>
{AFTER (Tsend (U, A_ASCreq))}

g4 = <4, 1, A, **, (E,E,E,E,E,A_ASCreq()}, VAR2>
{AT(Sreceive (U, A_ASCreq)))

g5 = «4, 1, 1, **, {(E,E,E,E,E,E}, VAR2>
{(AFTER{Sreceive (U,A_ASCreq)),AT(Ssend (P, P_CONreq,

g6 = <4, 1, B, **, {E,E,E,P_CONreq(),E,E}, VAR2>
{(AFTER(Ssend (P, P_CONreqg) } }

g7 = <4, 2, B, **, (E,E,E,E,E,E}, VAR2>{)

gB =<4, 1, B, **, {£,P_CONind(),E,E,E,E}, VAR2>
{AT{Treceive (P, P_CONind))}

g9 = <5, 1, B, "*, (E,E,E,E,E,E}, VAR2>
{AFTER(Treceive (P, P_CONind)) }

gl0= <6, 1, B, **, {(E,E,E,E,E,E}, VARLO>{)

gll= <7, 1, B, **, (E,E,E,E,E,E}, VAR1O>
{AT (Tsend (L, P_CONrsp))}

gl2= <8, 1, B, **, {P_CONrsp(),E,E,E,E,E}, VAR1O>
{AFTER (Tsend (L, P_CONrsp) )}

gl3= «9, 1, B, "*, {P_CONrsp(),E,E,E,E,E}, VAR13>
{AT (Tsend{U,A_RELreq))}

gl4= <«10,1, B, **, {(P_CONrsp(),E,E,E,E,E}, VAR13>
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{AFTER (Tsend (U, A_RELreq) )}

gl%= <11,1,B,"**,{P_CONrsp(),E,E,E,E,A_RELreq())},VAR13>{}

glb= «11,5,B,**,{(E,E,E,E,E,A_RELreq{)},VAR13>{)}

gl7= «11,1,B,"*,{E,E,E,P_CONcnf!{),E A_RELreg()},VAR13>
{AT(Sreceive (P, P_CONcnf))}

gl8= <11,1,10,**,{E,E,E,E,E,A_RELrer()},VAR13>
{AFTER(Sreceive (P, P_CONcnf)),
AT(Ssend (U, A_ASScnf)))

gl9= «11,1,D,*",{E,E,E,E,A_ASCcnf ().A_RELreqg()},VAR13>
{AFTER (Ssend (U, A_ASScnf) ),
AT(Sreceive (U, A_RELreq) )}

g20= «11,1,25,**,{(E,E,E,E,A_ASCcnf(),E},VAR13>
{AFTER (Sreceive (U, A_RELreq)),
AT(Ssend (P, P_RELreq) }}

g2l= «11,1,E,**,(E,E,E,P_RELreq{),A_ASCcnf{(),E},VAR13>
{AFTER (Ssend (P, P_RELreq) )}

g22= «<«11,10,E,**,{E,E,E,E,A_ASCcnf (),E},VARL3>{}

g23= <11,1,E,*",{E,P_RELind()},E,E,A_ASCcnf{),E},VAR13>
{AT(Treceive(L, P_RELind))}

g24= <«12,1,E,**,{(E,E,E,E,A_ASCcnf (),E},VAR13>
{AFTER (Treceive (L, P_RELind) )}

g25= <13,1,E,"",{E,E,E,E,A_ASCcnf(),E},VAR13>
{AT(Tsend{L, P_RELrsp) )}

g26= <14,1,E,"",{P_RELrsp().E,E,E,A_ASCcnf{),E},VAR13>
{AFTER (Tsend (L, P_RELrsp) )}

g27= <15,1,E,*",{P_RELrsp{),E,E,E,A_ASCcnf (),E},VAR27>{)

g28= «<16,1,E,*", {P_RELrsp(),E,E,E,A_ASCcnf(),E},VAR28>{}

g29= <16,7,E,"",{E,E,E,E,A_ASCcnf (},E},VAR28>()

g30= «16,1,E,"",{(E,E,P_RELcnf(),E,A_ASCcnf(),E},VAR28>
{AT(Sreceive (P, P_RELcnf})}

g3l=z <«16,1,28,**,{E,E,E,E,A_ASCcnf(),E},VAR28>
{AFTER (Sreceive (P, P_RELcnf) ),
AT{(Ssend (U, A_RELcnf) )}

g32= <16,1,A,"*,{(E,E,E,E, (A_ASCcnf(),A_RELcnf()},E},

VAR28> (AFTER(Ssend (U, A_RELcnf))}

/* g33 1is obtained from g6. */

g33= «21,1,B,"*,{E,E,E,P_CONreql(),E,E},VAR2>{}

g34= <24,1,B,*",{(E,E,E,P_CONreql(),E,E},VAR34>{}

g35= <24,2,B,"*,{E,E,E,E,E,E}, VAR34>{)}

g36= <24,1,B,"*,{E,P_CONind(),E,E,E,E)}, VAR34>{}

/* g37 is obtained from g2l. */

g37= <25,1,E,"",{E,E,E,P_RELreqg(),A_ASCcnf(),E},VAR13>{}

g3B= <26,1,E,"",(E,E,E,P_RELreq{),A_ASCcnf(),E},VAR13>
{AT(Tsend (L, P_UABreq))}

g39= <27,1,E,"",{P_UABreq(),E,E, P_RELreq(),
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A_ASCenf (),E)},VAR39>
{AFTER (Tsend (L, P_UABreq)) )
g40= <27,10,E,"*, {P_UABreq(),E,E, E,A_ASCcnf(),E)},VAR39>{}
g4l= <27,1,E,*",{P_UABreqg(),P_RELind(),E,E,
A_ASCcnf(),E},VAR39>{}
g42= «27,11,E,"*,{E,P_RELind,E,E, A_ASCcnf () ,E},VAR39>{}
gd43= «27,1,E,"*,{E,P_RELind(),P_UABind(),E,A_ASCcnf(),E},
VAR39>{AT (Sreceive (P, P_UABind) )}
gdd4= <27,1,30,**,{E,P_RELind(),E,E,A_ASCcnf (),E}, VAR39>

{AFTER (Sreceive (P, P_UABind)),
AT (Tsend (U, A_ABind) }}

g45= <27,1,A,"*,{E,P_RELind(),

E,E, {A_ASCcnf (),A_ABindl() },E},VAR39>

{AT (Tsend (U, A_ABind) )}

rl = <gl,

r3 = <g3,

rd5 <g5,

r7 <g7,

r9 = <g9,

rll <gll,
rl3 = <gi3,
rl5 <gls,
rl? <gl7,
rl9 = <gl9,
r2l = <g2l,
r23 = <g23,
r25 = «<g25,
r27 <g27,
r29 <g29,
r3l <g31,
r33 <g33,
r35 <g35,
r37 = <g37,
r39 = <g39,
ril = <gdl,
rd3 = <g43,

g8,

gls,
g20,
g2z,
g24,
g26,
g28,
g3o,
g3z,
g34,

g40,

LT_3>,
SPEC_2>,
USP_2>,
LT_5>
LT_7>,
LT _9>,
Use_7>,
SPEC_3>,
SPEC_5>,
UsP_13>,
LT_ 11>,
LT_13>,
LT_15>,
USP_20>,
SPEC_8>,
LT_18>,
USP_2>,
LT 21>,
USP_13>,
USP_11>,
SPEC_9>,

gll,
gl3,
gl5s,
gl7,
gls,
g21,
g3,
ga5,
g27,
gag,
g31,
g33,
g35,
g37,

g4,

LT_2>,
SPEC_1>,
USP_1>,
LT_4>,
LT_6>,
LT_8>,
LT_10>,
USP_8>,
SPEC_4>,
SPEC_6>,
USP_14>,
LT_12>,
LT_14>,
USP_19>,
SPEC_7>,
LT_16>,
USP_1>,
LT_20>,
LT_23>,
USP_14>,
USP_12>,
SPEC_10>.
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Appendix 2

EFSM model of a Test Management Protocol Used in Chapter 6.

Transitions of a Test Management Protocol for testing a

transport protocol implementation in the CS architecture.

STATES:

IDLEl,IDLE_M3,IDLE_MS, IDLE_M10,IDLE_M12,IDLE_SAS, IDLE,
IUT_WFTRESP_M1, IUT_WFTRESP, IUT_WFTRESP_SAS,
IUT_WFTRESP_M1, TUT_WFTRESP_M12, IUT_WFTRESP_M10,OPEN,
OPEN_1,OPEN_2,0PEN_3,OPEN_8,0OPEN_16.0PEN_M2,0PEN_M4,
OPEN_M5, OPEN_M6, OPEN_M7, OPEN_M9, OPEN_M12, OPEN_SAS,
OPEN_SAS_M6, OPEN_SAS_M7,RST STOP,UT_WFTCONF,
UT_WFTCONF_M10, UT_WFTCONF_M12,UT_WFTCONF_SAS.

Data Type Declaration:
The TMP contairs THREE types of variables:
Counters, Modes, and Stored items.
The Counters are numbered Cl thru C38,
the Modes are numbered M1 thru M25,
and thz Stored items are numbered S1 thru S28.
Integer C1l;
Integer C2;

Integer C38;
Mode_type M1;

Mode_type M25;
OctetString S1;

OctetString S28;
NOTATION: "inc" function increments its parameters.

For example, inc(Cl, C2) increment counts Cl and C2 by 1.

This 1s the INITIALIZING transition.
<IDLE, IDLE_MS, Internal_START, [T],

{Ci1:=0, C2:= 0,.., C38:=0,

Ml:=A4, M2:=A0,.., M10:=A0, M11l:=A5, M12:=AS5,
M13:=A0,...,M25:=A0,

sli:= .., S2:=..,..,85:=%*1",86:="you",

S7:="No",S8:="any_data",..,S528}>
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<IDLE, IUT_WFTRESP_M1,U?TCONind, [T],
{S16:=TCONind.Called_address,
S17:=TCONind.Calling_address,
S518:=TCONind.Exp_data_option, S19:=TCONind.Qos,
S20:=TCONind.TSuser_data, inc(Cl, C19)},1>
<UT_WFTCONF, UT_WFTCONF_M12,U?TCONindg, [T],
{S16:=TCONind.Called_address,
S17:=TCONind.Calling_address,
S18:=TCONind.Expdata_option, S19:=TCONind.Qos,
S20:=TCONind.TSuser_data, inc(C8, C20)},1>
<IUT_WFTRESP, IUT_WFTRESP_M12,U?TCONind, [T],
{S16:=TCONind.Called_address,
S17:=TCONind.Calling_address,
S518:=TCONind.Exp_data_option, S19:=TCONind.Qos,
$20:=TCONind.TSuser_data, inc(C8,C20)},1>
<OPEN, OPEN_M12, U?TCONind, [T],
{516:=TCONind.Called_address,
817 :=TCONind.Calling_address,
S18:=TCONind.Exp_data_option, S19:=TCONind.Qos,
$20:=TCONind.TSuser_data,inc(C8, C20}},1>
<IDLE, IDLE_M12,U?TCONconf, [T],
{S21:=TCONconf.Qos, S22 : =TCONconf.Responding_address,
S23:=TCONconf.Exp_data_option,
524 :=TCONconf.TSuser_data.inc{(C%, C20)},1>
<UT_WFTCONF, OPEN_M2,U?TCONconf, [T],
{821:=TCONconf.Qos,522 :=TCONconf.Responding_address,
$23:=TCONconf.Exp_data_option,
S$24:=TCONconf.TSuser_data,inc(C2, C19)},1>
<IUT_WFTRESP, IUT_WFTRESP_M12,U?TCONconf, [T],
{821:=TCONconf.Qos, S22 :=TCONconf.Responding_address,
$23:=TCONconf.Exp_data_option,
S24:=TCONconf.TSuser_data,inc(C9, C20)},1>
<QOPEN, OPEN_M12,U?TCONconf, [T],
{S21:=TCONconf.Qos, 522 :=TCONconf.Responding_address,
S23:=TCONconf.Exp_data_option,
S24:=TCONconf.TSuser_data, inc(C9, C20)},1>
<IDLE, IDLE_M12,1J?TDISindg, [T],
{S14:=TDISind.Reason, S15:=TDISind.TSuser_data,
inc(C10,C20)},1>
<UT_WFTCONF, IDLE_M3,U?TDISind, [T],
{S14:=TDISind.Reason, S15:=TDISind.TSuser_data,
inc(C3,C19)},1>
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<IUT_WFTRESP,IDLE_M3,U?TDISind, [T],

{S14:=TDISind.Reason, S15:=TDISind.TSuser_data,
inc(C3,C19)},1>
<OPEN, IDLE_M3,U?TDI1ISind, [T},
{S14:=TDISind.Reason, S15:=TDISind.TSuser_data,
inc(C3,C10)},1>
<IDLE, IDLE,U?TDTind, [not (EDTSDU) and P_SPF],
{per octet (S25:=TDTind.data, inc(C15)},1>
<IDLE, IDLE,U?TDTind, [(not (EDTSDU) and not (P_SPF)]},
{per octet (S25:=TDTind.data, inc(Cl1)},1>
<IDLE, 10LE,U?TDTind, [EDTSDU and P_SPF],
{inc(Cl6,C21)},1>
<IDLE,IDLE_M12,U?TDTind, [EDTSDU and not (P_SPF)],
{inc(C12,C20})}, 1>
<UT_WFTCONF, UT_WFTCONF, U?TDTind,
[not (EDTSDU) and P_SPF],
{per octet (S25:=TDTind.data, inc(Cis)},1>
<UT_WFTCONF, UT_WFTCONF, U?TDTind,
[not (EDTSDU) and not (P_SPF) ],
{per octet (S25:=TDTind.data, inc(Cl1)},1>
<UT_WFTCONF, UT_WFTCONF, U?TDTind,
[EDTSDU and P_SPF],
{inc(C16,C21)},1>
<UT_WFTCONF, UT_WFTCONF_M12,U?TDTind,
[EDTSDU and not (P_SPF) ],
{inc(C12,C20)},1>
<IUT_WFTRESP, IUT_WFTRESP,U?TDTind, [not (EDTSDU) ],
{per octet (S25:=TDTind.data,inc(C11)},1>
<IUT_WFTRESP, IUT_WFTRESP_M12,U?TDTind,
{EDTSDU], {inc(C12,C20)},1>
<OPEN, OPEN_M4,U?TDTind, [not (EDTSDU) and not (P_TMPDU) ],
{per octet(S25:=TDTind.data, inc(C4)},6 1>
<OPEN, OPEN_MS5,U?TDTind, [EDTSD'J and not (P_TMPDU) ],
{inc(C5,C19)},1>
/* When the TMP receives a TDTind containing a TMPDU */
<OPEN, OPEN_1,U?TDTind, [P_TMPDU],
{inc(C4) per octet,inc(C5,C19)}>
<OPEN_1,0PEN_M9, Null, [TMPDUl in TDTindj,
{M1:=TDTind.TMPDU1.M1,
M2:=TDTind.TMPDUl.M2,..,M25:=TDTind.TMPDU1.M25},1>
<OPEN_1,0PEN,Null, {[TMPDU2 in TDTind],
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{C1:=0, C2:= 0,.., C38:=0},2>
<OPEN_1,OPEN, Null, {(TMPDU3 in TDTind},
{S1:=TDTind.TMPDU3.S1},3>
<OPEN_1,0PEN,Null, {[TMPDU4 in TDTind]},
{S5:=TDTind.TMPDU4. S5,
S6:=TDTind.TMPDU4.S6,87:=TDTind.TMPDU4.S7,
S8:=TDTind.TMPDU4.S8},4>

<OPEN_1,OPEN, Null, [TMPDU5 in TDTind],
{S9:=TDTind.TMFDU5. S9,
S10:=TDTind.TMPDU5.510, S11:=TDTind.TMPDUS. S11,
S12:=TDTind.TMPDU5.S12,S513:=TDTind.TMPDU5.S513},5>
/* If a TMPDU6 is received, START auto. source
in OPEN state.*/
<OPEN_1,OPEN_SAS,Null,
[ (TMPDU6 in TDTind) and (M15 <> 0)],{}, 6>
/*If a TMPDU7 is received, then generate a new
UT_TMP_ENTRY .Here we do not generate a new
UT_TMP_ENTRY. */
<OPEN_1, OPEN, Null, [TMPDU7 in TDTind], {},7>
<OPEN_1, OPEN, U!TDTreq (TSuser_data),
[TMPDU8 in TDTind],
{TSuser_data:=HERALD]| {"8*} {"25" | IM1Il1..1]
M25] | TRAILER}, 8>
<OPEN_1, OPEN, U!TDTreq (TSuser_data),
[TMPDU9 in TDTind],
{TSuser_data:=HERALD| |*9*{{"*38"||C1i|. .|}
C38| ITRAILER}, 9>
<OPEN_1, OPEN, U!TDTreq ,TSuser_data),
(TMPDUL10 in TDTind], {TSuser_data:=HERALD|["10"{|
"2*1151411S15| I TRAILER}, 10>
<OPEN_i,OPEN, U!TDTreq (TSuser_data), [TMPDU1l in TDTind],
{TSuser_data := HERALD||"11“}J|"5"{|S1611S17}|
S1811S1911S201 ITRAILER}, 11>
<OPEN_1,OPEN, U!TDTreq (TSuser_data), [TMPDU12 in TDTind],
{TSuser_data:=HERALD| |"12" [ |"4" 118211182211
S23|1S24| I TRAILER}, 12>
<OPEN_1,OPEN,Null, [TMPDU13 in TDTind}, {},13>
<QOPEN_1,OPEN,U!TDTreq (TSuser_data), [TMPDUl4 in TDTind],

{TSuser_data:=HERALD| ["14"||"1"|]S25| | TRAILER}, 14>
<OPEN_1,OPEN, U!TDTreqg (TSuser_data), [TMPDU15 in TDTind],
{TSuser_data:=HERALD| |"15*||"1"||1S26| | TRAILER}, 15>

/*An invalid TMPDU fires following transition. */
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<OPEN_1,0PEN_16,Null, [T),{},16>

/*1f you receive a TDTind while doing
AUTOMATIC source*/

<OPEN_SAS, OPEN_2, U?TDTind, [P_TMPDU], {},1>

<OPEN_2,0PEN_M9, Null, [TMPDUl in TDTind],

{M1:=TDTind.TMPDU1l.M1,

MZ::TDTind.TMPDUl.MZ,...,M25:=TDTind.TMPDUl.M25},1>
<OPEN_2,0PEN_SAS,Null, [TMPDU2 in TDTind],
{Ci:=0, C2:=0,...,C38:=0},2>

<OPEN_2,0PEN_SAS,Null, [TMPDU3 in TDTind],

{S1:=TDTind.TMPDU3.51},3>
<OPEN_2,0PEN_SAS,Null, [TMPDU4 in TDTind],

{S5:=TDTind.TMEDU4.S5,

S6:=TDTind.TMPDU4.S6, S7:=TDTind.TMPDU4.S7,

S8:=TDTind.TMPDU4.S8}, 4>
<OPEN_2,0PEN_SAS,Null, [TMPDUS in TDTind],

{89 :=TDTind.TMPDUS.S9,

$10:=TDTind.TMPDU5.510,511:=TDTind.TMPDUS5.S11,

§12:=TDTind.TMPDUS.S12, S13:=TDTind.TMPDUS5.S13},5>
/* Ir a TMPDU6 is received,START automatic source

in OPEN state. */
<OPEN_2,0PEN_SAS,Null, [ (TMPDU6 in TDTind) 1, {},6>
/*If a TMPDU7 is received, then generate a new

UT_TMP_ENTRY.

Here we don’t generate a new UT_TMP_ENTRY.*/
<OPEN_2,0PEN_SAS,Null, [TMPDU7 in TDTind], {},7>
<OPEN_2,0PEN_SAS, U!TDTreq(TSuser_data),

[(TMPDUS8 in TDTind], {TSuser_data:=HERALDI| |"8"||"25"|]

M1lll...|IM25| | TRAILER}, 8>
<OPEN_2,0PEN_SAS, U!TDTreq(TSuser_data),

[TMPDU9 in TDTind], {(TSuser_dJdata:=HERALD| |{"9"| |

*38*||C1I|..|1C38||TRAILER}, 9>
<OPEN_2,0PEN_SAS,U!TDTreq(TSuser_data),

[TMPDU10 in TDTind]}, {TSuser_data:=HERALD]| |"10"||

"2" 115141 |S15| I TRAILER}, 10>
<OPEN_2,0PEN_SAS,U!TDTreq(TSuser_data),

[(TMPDU1l in TDTind}, {TSuser_data:=HERALDI| ["11" ||

“5%118161181711S8181181911S20| |ITRAILER}, 11>
<OPEN_2,0PEN_SAS, U!TDTreq(TSuser_data},

[TMPDU12 in TDTind], {TSuser_data:=HERALD| |"12"] |

“4"]1821115221182311S24|ITRAILER},12>
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<OPEN_2,0PEN_SAS,Null, [TMPDU13 in TDTind], {},13>
<OPEN_2,0PEN_SAS,U! TDTreq (TSuser_data) ,
[TMPDU14 in TDTind], {TSuser_data:=HERALD| [ "14" ]| |
"1"}1525) |ITRAILER}, 14>
<OPEN_Z2,OPEN_SAS, U! TDTreq (TSuser_data),

[TMPDU1S5 in TDTind],

{TSuser_data:=HERALD| | "15"||"1*]1S26| | TRAILER}, 15>
<OPEN_2,0PEN_S16,Null, [T], {},16>
<OPEN_SAS,OPEN_M4,U?TDTind,

[not (EDTSDU) and not (P_TMPDU) ],

{per octet (S25:=TDTind.data, inc(C4)}, 1>
<OPEN_SAS, OPEN_M5, U?TDTind, [EDTSDU and not (P_TMPDU) ],

{inc(C5,C19)},1>
<OPEN_SAS NPEN_SAS_M6,U?TEXind, [not (EDTSDU) ],

{per octe’ (S25:=TDTind.data, inc(C6)},1>
<QPEN_SAS,OPEN_SAS_M7,U?TEXind, [EDTSDU}, {inc(C7,C10}},1>
/* If a CLE occurs while doing an AUTOMATIC source,

fire the following transition. */
<OPEN_SAS, OPEN_8, ?CLE, [T], {CLE_count := 0}, 2>
/* Start AUTOMATIC source. */
<OPEN_SAS,OPEN_3,Null, [T],

{TSuser_data := make_data(M16,M17,M18,M19,M20,M21)},3>
<OPEN_3,0PEN_SAS,U! TDTreq {TSuser_data), [P_AUTODT],

{inc(C26) per octet,inc(C27,C37),

S26:=last_octet_from auto_source},l>
<QPEN_3,0PEN_SAS,U! TEXreq (TSusexr_data), [not P_AUTODT],

{inc(C28) per octet,inc(C29,C37),

S26:=last_octet_from_auto_source},l>

/* TEXind */
<IDLE, IDLE,U?TEXind, [not (EDT3DU) and P_SPF],
{per octet (S25:=TEXind.data, inc(Cl17)},1>
<IDLE, IDLE,U?TEXind, [not (EDTSDU) and not (P_SPF)],
{per octet (S25:=TDTind.data,inc(C13)}, 1>
<IDLE, IDLE,U?TEXind, [EDTSDU and P_SPF], {inc(C1§,C21)},1>
<IDLE, IDLE_M12,U?TEXind, [EDTSDU and not (P_SPF)],
{inc(C14,C20)},1>
<UT_WFTCONF, UT_WFTCONF, U?TEXind, [not {EDTSDU) and P_SPF],
{per octet (S25:=TDTind.data,inc(C17)},1>
<UT_WFTCONF, UT_WFTCONF, U?TEXind,
[not (EDTSDU) and not (P_SPF)],
{per octet (S25:=TDTind.data, inc{C13)},1>
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<UT_WFTCONF, UT_WFTCONF,U?TEXind, [EDTSDU and P_SPF],

{inc(C18,C21)},1>
<UT_WFTCONF, UT_WFTCONF_M12, U?TEXind,

[EDTSDU and not (P_SPF)], {inc(C14,C20)},1>
<IUT_WFTRESP, IUT_WFTRESP,U?TEXind, [not (EDTSDU) ],

{per octet (S25:=TDTind.data, inc(Cl13)},1>
<IUT_WFTRESP, IUT_WFTRESP_M12,U?TEXind, [EDTSDU],

{inc(C14,C20)},1>
<OPEN, OPEN_M6, U?TEXind, [not (EDTSDU) ],

{per octet (S25:=TDTind.data,inc(C6)}.,1>
<QOPEN, OPEN_M7,U?TEXind, [EDTSDU], {inc(C7,C10)},1>
/* Internal Count Limit Event (CLE) */
<IDLE, IDLE_M10, ?CLE, [T], {(CLE_count:=0},1>
<UT_WFTCONF, UT_WFTCONF_M10, ?CLE, [T], {CLE_count:=0},1>
<IUT_WFTRESP, IUT_WFTRESP_M10, ?CLE, [T], {(CLE_count:=0},1>
/* Automatic Source (TSDU Release) */
<IDLE_SAS, IDLE, Null, {P_AUTODT],

{inc(C33) per octet, inc(C34,C38)},1>
<IDLE_SAS, IDLE,Null, [not (P_AUTODT) },

{inc(C35) per octet,inc(C36,C38)},1>
<UT_WFTCONF_SAS, IDLE1,Null, [P_AUTODT],

{inc(C33) per octet,inc(C34,C38)},1>
<IDLE1l,IDLE,U!TDISreq(54), [T],{},1>
<UT_WFTCONF_SAS, IDLE1,Null, [not (P_AUTODT) ],

{inc(C35) per octet,inc(C36,C38)},1>
<IUT_WFTRESP_SAS,IDLE1,Null, [P_AUTODT],

{inc(C33) per octet, inc(C34,C38)},1>
<IUT_WFTRESP_SAS, IDLE1,Null, [not (P_AUTODT) ],

{inc(C35) per octet,inc(C36,C38)},1>
/* If a TCONind is received in IDLE state,

then do exec(Ml). */
<IUT_WFTRESP_M1, IUT_WFTRESP,Null, [M1=A0], {}, 1>
<IUT_WFTRESP_M1, IDLE,U!TDISreq(S4),

(M1=A1/A2/A3]), {inc(C30,C38)},1>
<JUT_WFTRESP_M1,0PEN, U!TCONresp (S5, 586,57, S8), [M1=A4],

{inc(C24,C37)},1->
<IUT_WFTRESP_M1, IDLE, U!TDISreq(S2),

[M1=A5 and P_ITMP], {inc(C25,C37)},1>
<IUT_WFTRESP_M1, IDLE,U!TDISreq(S3),

[M1=A5 and P_POC, {inc(C25,C37)},1>
<IUT_WFTRESP_M1, IDLE,U!TDISreq(S1),

[M1=A5 and not (P_ITMP or P_POC)], {inc(C25,C37)),1>
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<IUT_WFTRESP_M1, IUT_WFTRESP, Null, [M1=A6],
{append S25 to S27)},1>
<IUT_WFTRESP_M1, IDLE,U!TDISreq(S$4), [M1=A7],
{inc(C32) peroctet,inc(C34,C38)},1>
<IUT_WFTRESPF_M1, IUT_WFTRESP,Null, [M1=A8],
{append S25 to 8§28},1>
<IUT_WFTI ESP_M1, IDLE,U!TDISreq(S4), [M1=A9],
{inc(C35) peroctet,inc(C36,C38)},1>
<IUT_WFTRESP_M1, IUT_WFTRESP_SAS,Null, {(M1=A10],{(},1>
<IUT_WFTRESP_M1, IUT_WFTRESP,Null, {M1=A11]), {}, 1>
<IUT_WFTRESP_M1, IDLE,U!TDISreq(54),
(M1=212 and not (P_SINGDT) ],
{inc(C34) per octet,inc(C35, C37)},1>
<IUT_WFTRESP_MI1, IDLE,U!TDISreq(S4),
[M1=A12 and P_SINGDT], {inc(C33) per octet,
inc(C34, C38)},1>
<IUT_WFTRESP_M1, IUT_WFTRESP,Null, [M1=A13]), (}, 1>
<IUT_WFTRESP_M1,RST,Null, {M1=A14], (},1>
<IUT_WFTRESP_M1, STOP,Null, [M1=A15], {},1>
<UT_WFTCONF_M12,UT_WFTCONF,Null, [M12=A0}, {(},1>
<UT_WFTCONF_M12, IDLE,U!TDISreg(S84),
[M12=A1/A2/A3], {inc(C30,C38)},1>
<UT_WFTCONF_M12, IDLE,U!TDISreq(S4), [M12=2A4],
{inc(C31,C38)}.1>
<UT_WFTCONF_M12, IDLE,U!TDISreq(S2),
[M12=A5 and P_ITMP], {inc(C25,C37)1},1>
<UT_WFTCONF_M12, IDLE,U!TDISreq(S3),
[1112=A5 and P_POC], {inc(C25,C37)1},1>
<UT_WFTCONF_M12, IDLE,U!TDISreq(S1),
[M12=A5 and not (P_ITMP or P_POC)], {inc(C25,C37)},1>
<UT_WFTCONF_M12, UT_WFTCONF, Null, [M12=A6],
{append S25 to S$27},1>
<UT_WFTCONF_M12,IDLE,U!TDISreq(54), [M12=247],
{inc(C32) peroctet,inc(C34,C38)},1>
<UT_WFTCONF_M12, UT_WFTCONF, Null, [M12=A8],
{append S25 to S28},1>
<UT_WFTCONF_M12,IDLE,U!TDISreq(S4), [M12=A9],
{inc(C35) peroctet,inc(C36,C38)},1>
<UT_WFTCONF_M12, UT_WFTCONF_SAS,Null, [M10=A10],(},1>
<UT_WFTCONF_M12,UT_WFTCONF,Null, [M10=211]),(}, 1>
<UT_WFTCONF_M12,IDLE,U!TDISreq(S4),
[M12=A12 and not (P__SINGDT)]},
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{inc(C34) per octet, inc(C35, C37)},1>
<UT_WFTCONF_M12, IDLIZ, U!TDISreq(S4),

(M12=A12 and P_SINGDT],

{inc{C33) per octet, inc(C34, C38)},1>
<UT_WFTCONF_M12, UT_WFTCONF,Null, [M12=A13], {}, 1>
<UT_WFTCONF_M12, RST,Null, [M12=A14],{},1>
<UT_WFTCONF_M12, STOP,Null, [M12=A15]), (}, 1>
<IUT_WFTRESP_M12, JUT_WFTRESP,Null, [M12=A0}, {},1>
<IUT_WFTRESP_M12, IDLE,U!TDISreq(S4),

(M12=A1/A2/A3}, {inc(C30,C38)},1>
<IUT_WFTRESP_M12, OPEN,U!TCONresp(S5,56,S87,58),

[M12=A4]), {inc(C24,C37})},1>
<IUT_WFTRESP_M12, IDLE,U!TDISreq(S2),

(M12=A5 and P_ITMP], {inci{C25,C37)},1>
<IUT_WFTRESP_M12, IDLE,U!TDISreq(S3),

(M12=A5 and P_POC, {inc(C25,C37)},1>
<IUT_WFTRESP_M12, IDLE,U!TDISreq(Sl),

(M12=AS and not (P_ITMP or P_POC)]}, {inc(C25,C37)},1>
<IUT_WFTRESP_M12, TUT_WFTRESP,Null, [M12=3A6],

{append S25 to S27},1>
<IUT_WFTRESP_M12, IDLE,U!TDISreq(S4), [M12=A7],

{inc(C32) peroctet,inc(C34,C38)},1>
<IUT_WFTRESP_M12, JUT_WFTRESP,Null, [M12=A8],

{append S25 to S28}, 1>
<IUT_WFTRLSP_M12, IDLE,U!TDISreq(S4), [M12=A9],

{inc(C35) peroctet,inc(C36,C38)},1>
<IUT_WFTRESP_M12, IUT_WFTRESP_SAS,Null, [M12=A10],{},1>
<IUT_WFTRESP_M12, IUT_WFTRESP,Null, (M12=A11], {},1>
<IUT_WFTRESP_M12, IDLE,U!TDISreq{S4),

[M12=A12 and not (P_SINGDT)],

{inc(C34) per octet, inc{(C35, C37)},1>
<IUT_WFTRESP_M12, IDLE,U!TDISreq(S4),

[M12=A12 and P_SINGDT],

{inc(C33) per octet,inc(C34, C38)},1>
<IUT_WFTRESP_M12, IUT_WFTRESP,Null, [M12=A13], {}, 1>
<IUT_WFTRESP_M12,RST,Null, (M12=A14], {(}, 1>
<IUT_WFTKESP_M12, STOP,Null, [M12=A15], {}, 1>
<OPEN_M12, IDLE,Null, [M12=A0], {},1>
<OPEN_M12, IDLE, U!TDISreq(S4), [M12=A1/A2/A3],

{inc(C30,C38)},1>
<OPEN_M12, IDLE,U!TDISreq(S4), [M12=24],

{inc(C31,C38)},1>
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<OPEN_M12, IDLE, U!TDISreq(S2), [M12=A5 and P_ITMP],

{inc(C25,C37)}, 1>
<OPEN_M12, IDLE, U!TDISreq(S3), [M12=A5 and P_POC,

{inc(C25,C37)}, 1>
<OPEN_M12,IDLE, U!TDISreq(S1),

[M12=A5 and not (P_ITMP or P_POC)], {inc(C25,C37)},1>
<OPEN_M12, OPEN, Null, [M12=A6], {append S25 to S27},1>
<OPEN_M12,0PEN, U!TDTreq(S27), [M12=A7],

{inc(C26) peroctet, inc(C27,C37)},1>
<OPEN_M12,0OPEN, Null, [M12=A8], {append S25 to S28},1>
<OPEN_M12,0PEN, U!TEXreq(S27), [M12=A9],

{inc(C28) peroctet,inc(C29,C37)},1>
<OPEN_M12,0PEN_SAS,Null, [M12=210], {}, 1>
<OPEN_M12,0PEN, Null, [M12=A11], {}, 1>
<OPEN_M12,0PEN, U!TEXreq(single shot},

[M12=A12 and not (P_SINGDT)],

{inc(C28) per octet, inc(C29, C37)},1>
<OPEN_M12,0PEN, U!TDTreqg(single short),

[M12=A12 and P_SINGDT],

{inc(C26) per octet, inc(C27, C37)},1>
<OPEN_M12,0PEN, Null, [M12=2A13],{},1>
<OPEN_M12,RST,Null, [M12=A14],{}, 1>
<OPEN_M12, STOP, Null, [M12=A15],{},1>
<IDLE_M3,IDLE,Null, [M3=A0}, {(},1>
<IDLE_M3,UT_WFTCONF,U!TCONreq(s9,s510,511,8512,813),

(M3=A1], {inc(C23,C37)},1>
<IDLE_M3,UT_WFTCONF,U!TCONreq(S17,510,811,512,813),

[M3=A2], {inc(C23,C37)}.,1>
<IDLE_M3,UT_WFTCONF,U!TCONreq(S22,810,811,812,513),

[M3=A3]1,{inc(C23,C37)},1>
<IDLE_M3,IDLE,Null, [M3=a4], {inc(C31,C38)},1>
<IDLE_M3,IDLE,Null, [M3=A5], {inc(C32,C38)},1>
<IDLE_M3,IDLE,Null, [M3=A6], {append S25 to S27},1>
<IDLE_M3,IDLE,Null, {M3=A7],

{inc(C33) per octet,inc(C34,C38)},1>
<IDLE_M3,IDLE,Null, {M3=A8], {append S25 to S528},1>
<IDLE_M3,IDLE,Null, [M3=A9],

{inc(C35) per octet,inc(C36,C38)},1>
<IDLE_M3, IDLE_SAS,Null, [M3=A10],{(},1>
<IDLE_M3,IDLE,Null, [M3=A11],{},1>
<IDLE_M3,IDLE,Null, [M3=A12 and not (P_SINGDT)],

{inc(C35) per octet,inc(C36, C38)},1>
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<IDLE_M3,IDLE, Null, [M3=A12 and P_SINGDT],
{inc(C33) per octet,inc{C34, C38)},1>
<IDLE_M3,IDLE,Null, ([M3=A13],{},1>
<IDLE_M3,RS5T,Null, [M3=A14]},{},1>
<IDLE_M3, STOP,Null, {M3=A15},{},1>
<IDLE_M9, IDLE,Null, [M9=A0], {},1l>
<IDLE_M9,UT_WFTCONF,U!TCONreq(S9,S10,S811,8S812,513),
[M9=Al1], {inc{C23,C37)}, 1>
<IDLE_M9,UT_WFTCONF,U!TCONreq(S17,510,5811,812,513),
[M9=A2], {inc(C23,C37)},1>
<IDLE_M9,UT_WFTCONF,U!TCONreq(S22,S10,511,S812,S13}),
[M9=A3], {(inc(C23,C37)},1>
<IDLE_M9, IDLE,Null, [M9=A4], {inc(C31,C38)},1>
<IDLE_M9, IDLE,Null, [M9=A5], {inc(C32,C38)},1>
<IDLE_M9, IDLE,Null, [M9=A6], {append S25 to S27},1>
<IDLE_M9,IDLE,Null, {MS=A7],
{inc(C33) per octet, inc(C34,C38)},1>
<IDLE_M9, IDLE,Null, [M9=A8], (append S25 to S28},1>
<IDLE_M9,IDLE,Null, [MS=A91],
{inc(C35) per octet,inc{C36,C38)},1>
<IDLE_M9, IDLE_SAS,Null, [MS=A10],{}, 1>
<IDLE_M9,IDLE,Null, [M9=A11),{}.1>
<IDLE_M9, IDLE,Null, {M9=A12 and not (P_SINGDT)],
{inc(C35) per octet,inc(C36,C38)},1>
<IDLE_M9, IDLE,Null, [M9=A12 and P_SINGDT],
{inc(C33) per octet, inc(C34, C38)},1>
<IDLE_M9, IDLE,Null, [M9=A13],{},1>
<IDLE_M9,RST,Null, (M9=A141,{(},1>
<IDLE_M9,STOP,Null, [M9=A15],{},1>

/*If a TCONconf is received in IDLE state,
then do exec(M1l2}).*/

<IDLE_M12, IDLE,Null, [M12=A0], {},1>

<IDLE_M12, UT_WFTCONF, U!TCONreq(s9,s10,811,512,813),
[M12=A1]), {inc({C23,C37)},1>

<IDLE_M12, UT_WFTCONF,U!TCOMNreq(S17,S810,811,S812,813),
[(M12=A2], {inc{C23,C37})},1>

<IDLE_M12, UT_WFTCONF,U!TCONreq(S22,510,811,812,813),
[M12=A3], {inc{C23,C37)},1>

<IDLE_M12, IDLE,Null, [M12=A4], {inc(C31,C38)},1>

<IDLE_M12, IDLE,Null, [M12=A5]), {inc(C32,C38)1},1>

<IDLE_M12, IDLE,Null, [M12=A6], {append S25 to §27},1>

<IDLE_M12, IDLE,Null, {M12=A7],
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{inc(C33) per octet, inc(C34,C38)},1>
<IDLE_M12, IDLE,Null, [M12=A8], {append S25 to S28}>
<IDLE_Ml12, IDLE,Null, [M12=A9],

{inc(C35) per octet,inc(C36,C38)},1>
<IDLE_M12, IDLE_SAS,Null, {M12=A10},{}, 1>
<IDLE M12,IDLE,Null, {M12=A11},{},1>
<IDLE_M12, IDLE,Null, {M12=A12 and not (P_SINGDT)],

{inc(C35) per octet,inc(C36,C38)},1>
<IDLE_M12, IDLE,Null, [M12=A12 and P_SINGDT],

{inc(C33) per octet,inc(C34,C38)},1>
<IDLE_M12, IDLE,Null, [M12=A13],{},1>
<IDLE_M12,RST,Null, (M12=A1473,(},1>
<IDLE M12, STOP,Null, [M12=A15],{}.1>
/* 1f a TCONconf is received in state OPEN,

then do exec(M2). */
<OPEN_M2,0PEN,Null, {(M2=A0],{},1>
<OPEN_M2, IDLE,U! TDISreq(S4), [M2=A1/A2/A3],

{inc(C30,C38)},1>
<OPEN_M2, IDLE,U!TDISreq(S4), [M2=A4], {inc(C31,C38)},1>
<QPEN_M2, IDLE,U!TDISreq(S2), [M2=A5 and P_ITMP],

{inc(C25,C37)},1>
<QPEN_M2, IDLE,U!TDISreqg(S3), [M2=A5 and P_POC],

{inc(C25,C37)},1>
<OPEN_M2, IDLE,U!TDISreq(Sl),

[M2=A5 and not (P_ITMP or P_POC)], {inc(C25,C37)},1>
<OPEN_M2,0PEN,Null, (M2=A6], {append S25 to S27},1>
<OPEN_M2,0PEN,U! TDTreq(S827), {M2=A7]},

{inc(C26) peroctet, inc(C27,C37)},1>
<OPEN_M2,0PEN,Null, [M2=A8], {append S25 to S28},1>
<OPEN_M2,OPEN, U! TEXreq(S27), [M2=A9],

{inc(C28) peroctet, inc(C29,C37)},1>
<OPEN_M2,0PEN_SAS,Null, [M2=A10], {(}, 1>
<OPEN_M2,0PEN,Null, [M2=A11],{},1>
<OPEN_M2, OPEN,U! TEXreqg(single shot),

[M2=A12 and not (P_SINGDT)],

{inc(C28) per octet,inc(C29, C37)},1>
<OPEN_M2,0OPEN,U! TDTreq(single short),

[M2=A12 and P_SINGDT],

{inc(C26) per octet,inc{C27,C37)},1>
<OPEN_M2,0PEN,Null, [M2=A13],{},1>
<OPEN_M2,RST,Null, [M2=A14],{},1>
<OPEN_M2, STOP,Null, [M2=A15],{},1>
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/*If a TDTind is received in state OPEN,

then do exec(M4) .*/
<OPEN_M4,0PEN,Null, [M4=A0],{},1>
<OPEN_M4, IDLE,U!TDISreq(54), [M4=A1/A2/A3]},

{inc(C30,C38)},1>
<OPEN_M4, IDLE,U!TDISreq(S4), [M4=24]), {inc(C31,C38)},1>
<OPEN_M4, IDLE,U!TDISreq(S2), [M4=A5 and P_ITMP],

{inc(C25,C37})},1>
<OPEN_M4,IDLE,U!TDISreq(S3), [M4=A5 and P_POC,

{inc(C25,C37)},1>
<CPEN_M4,IDLE,U!TDISreq(S1),

[M4=A5 and not (P_ITMP or P_POC}], {inc(C25,C37)},1>
<OPEN_M4,0PEN,Null, [M4=A6], {append S25 to S27},1>
<OPEN_M4,0OPEN, U!TDTreq(S27), [M4=A7],

{inc(C26) peroctet, inc(C27,C37)},1>
<OPEN_M4,0PEN,Null, [M4=A8], {append S25 to S28},1>
<OPEN_M4,0PEN, U!TEXreq(S827), [M4=2A9],

{inc (C28) peroctet, inc(C29,C37)},1>
<OPEN_M4,0PEN_SAS,Null, [M4=A10], {},1>
<OPEN_M4,0PEN,Null, [M4=A11],{},1>
<OPEN_M4,OPEN, U!TEXreq(single shot),

[M4=A12 and not (P_SINGDT)],

{inc(C28) per octet,inc(C29, C37)},1>
<OPEN_M4,OPEN, U!TDTreqg(single short),

[M4=A12 and P_SINGDT],

{inc(C26) per octet,inc(C27,C37)},1>
<OPEN_M4,0PEN,Null, [M4=A13]1,{},1>
<OPEN_M4 ,RST,Null, [M4=214], {}, 1>
<OPEN_M4,STOP,Null, [M4=A15]),{},1>
/* If a TDTind is received in state OPEN,

then do exec(M5). */
<OPEN_MS5,0OPEN,Null, [M5=A0], {},1>
<OPEN_M5, IDLE,U!TDISreqg(S4), [M5=A1/A2/A3],

{inc(C30,C38)},1>
<OPEN_MS5, IDLE, U!TDISreq(S4), [M5=A4], {inc(C31,C38)},1>
<OPEN_M5,IDLE,U!TDISreq(S2), [M5=A5 and P_ITMP],

{inc(C25,C37)},1>
<OPEN_MS5, IDLE,U!TDISreq(S3), [M5=A5 and P_POC],

{inc(C25,C37)},1>
<OPEN_M5, IDLE,U!TDISreq(S1),

[M5=A5 and not (P_ITMP or P_POC)], {inc(C25,C37)},1>
<OPEN_M5,0PEN, Null, [M5=A6], {append S25 to S27},1>
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<OPEN_M5, OPEN, U!TDTreq{S27), [M5=A7],

{inc(C26) peroctet, inc(C27,C37)},1>
<OPEN_MS, OPEN, Null, [M5=A8], {append 825 to S28},1>
<OPEN_MS5, OPEN, U!TEXreq(S27), {M5=A9],

{inc(C28) peroctet, inc(C29,C37)},1>
<QPEN_MS5, OPEN_SAS,Null, [M9=A10},[].1>
<OPEN_M5, OPEN, Null, [M9=A11],([],1>
<OPEN_M5, OPEN, U!TEXreq(single shot),

[M5=A12 and not (P_SINGDT) ],

{inc(C28) per octet, inc(C29, C37)},1>
<OPEN_MS, OPEN, U!TDTreqg(single short),

[M5=A12 and P_SINGDT],

{inc(C26) per octet,inc(C27, C37)},1>
<OPEN_MS5, OPEN, Null, [M5=213}, {},1>
<QOPEN_M5, RST,Null, [M5=A141, {},1>
<OPEN_M5, STOP, Null, [M5=A15], {}, 1>
/*If a TEXind is received in state OPEN,

then do exec (M6). */
<OPEN_M6, OPEN, Null, [M6=20], {},1>
<OPEN_M6, IDLE, U!TDISreq{S4), [M6=A1/A2/A3],

{inc(C30,C38)1},1>
<OPEN_M6, IDLE, U!TDISreq(S4), [M6=A4],{inc(C31,C38)},1>
<OPEN_M6, IDLE, U!TDISreq(S2), [M6=A5 and P_ITMP],

{inc.C25,C37)},1>
<OPEN_M6, IDLE,U!TDISreq(S3), [M6=A5 and P_POC],

{inc(C25,C37)},1>
<OPEN_M6, IDLE,U!TDISreq(Sl),

[M6=A5 and not (P_ITMP or P_POC)], {inc{(C25,C37)},1>
<OPEN_ME€, OPEN, Null, [M6=A6]), {append S25 to S27},1>
<OPEN_M6,OPEN, U!TDTreq(S27), [M6=A7],

{inc(Cz6) peroctet, inc(C27,C37)},1>
<OPEN_M6, OPEN, Null, [M6=A8]1, {append S$25 to S528},1>
<OPEN_M6,OPEN, U!TEXreqg(S27), [M6=A9],

{inc(C28) peroctet, inc{C29,C37)},1>
<OPEN_M6, OPEN_SAS,Null, {M6=A10], {(},1>
<OPEN_M6, OPEN,Null, (M6=A11], {},1>
<OPEN_M6, OPEN, U!TEXreqg(single shot),

[M6=A12 and not (P_SINGDT)],

{inc(C28) per octet, inc(C29, C37)},1>
<OPEN_M6, OPEN, U!TDTreq(single short),

(M6=212 and P_SINGDT],

{inc(C26) per octet,inc(C27, C37)},1>
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<OPEN_M6,0PEN, Null, [M6=A13],{},1>

<OPEN_M6,RST,Null, [M6=A141, {},1>

<OPEN_M6, STOP, Null, [M6=A15],{},1>

/*1f a TEXind is received in state OPEN_SAS,
then do exec (M6) .*/

<QOPEN_SAS_M6, OPEN_SAS, Null, [M6=A0], (},1>

<OPEN_SAS_M6,IDLE, U!TDISreq(S4), [M6=A1/A2/A3],

{inc(C30,C38)1},1>
<OPEN_SAS_M6, IDLE,U!TDISreq(S4), [M6=A4],

{inc(C31,C38)},1>
<OPEN_SAS_M6,IDLE,U!TDISreq(S2),

[M6=A5 and P_ITMP], {inc(C25,C37)},1>
<OPEN_SAS_M6,IDLE,U!TDISreq(S3),

[M6=A5 and P_POC, {inc(C25,C37)},1>
<OPEN_SAS_M6, IDLE,U!TDISreq(S1),

[M6=A5 and not (P_ITMP or P_POC)1],

{inc(C25,C37)},1>
<OPEN_SAS_M6,0PEN,Null, [M6=26], {append S25 to S27},1>
<OPEN_SAS_M6,0PEN,U!TDTreq(S27), [M6=A7],

{inc(C26) peroctet,inc(C27,C37)},1>
<OPEN_SAS_M6,0PEN,Null, [M6=2A8], {append S25 to S28},1>
<OPEN_SAS_M6,0PEN,U!TEXreqg(S27), [M6=A9],

{inc(C28) peroctet,inc(C29,C37)},1>
<OPEN_SAS_M6,0PEN_SAS,Null, [M6=A10]),{},1>
<OPEN_SAS_M6,0OPEN,Null, [M6=A11], {}, 1>
<OPEN_SAS_M6,0PEN,U!TEXreq(single shot},

[M6=A12 and not (P_SINGDT) ],

{inc(C28) per octet,inc(C29, C37)},1>
<OPEN_SAS_M6,0PEN,U! TDTreq(single short),

[{M6=A12 and P_SINGDT],

{inc(C26) per octet, inc(C27, C37)},1>
<OPEN_SAS_M6,0PEN,Null, [M6=A13], {}, 1>
<OPEN_SAS M6,RST,Null, [M6=A14},{},1>
<OPEN_SAS_M6, STOP,Null, [M6=A15], {},1>
/*If a TEXind is received in stace OPEN_SAS,

then do exec (M7).*/
<OPEN_M7,0PEN,Null, [M7=A0], {},1>
<OPEN_M7,IDLE,U!TDISreq(S4), [M7=A1/A2/A3],

{inc(C30,C38)},1>
<OPEN_M7, IDLE,U!TDISreq(S4), [M7=2a4], {inc(C31,C38)},1>
<OPEN_M7, IDLE, U!TDISreq(S2), [M7=A5 and P_ITMP],

{inc({C25,C37)},1>
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<OPEN_M7,IDLE,U!TDISreq(S3),[M7=A5 and P_POC],

{inc(C25,C37)},1>
<OPEN_M7,IDLE,U!TDISreq(Sl);

[M7=A5 and not (P_ITMP or P_POC)],

{inc(C25,C37)},1>
<OPEN_M7,0PEN_SAS,Null, {M7=A6], {append S25 to S27},1>
<OPEN_M7,0PEN_SAS,U!TDTreq(S27), [M7=A71,

{inc(C26) peroctet, inc(C27,C37)},1>
<OPEN_M7,0PEN_SAS,Null, [M7=A8], {append S25 to S28},1>
<OPEN_M7,0PEN_SAS,U!TEXreq(S27), [M7=A9],

{inc(C28) peroctet,inc(C29,C37)},1>
<OPEN_M7,0PEN_SAS,Null, [M7=210], {},1>
<QOPEN_M7,0PEN_SAS,Null, [M7=A111, {},1>
<OPEN_M7,0PEN_SAS,U!TEXreqg(single shot),

[M7=A12 and not (P_SINGDT) ],

{inc(C28) per octet,inc(C29,C37)},1>
<OPEN_M7,0PEN_SAS,U!TDTreq(single short),

[M7=A12 and P_SINGDT],

{inc(C26) per octet,inc(C27,C37)},1>
<QOPEN_M7,0PEN_SAS,Null, {[M7=A13], {},1>
<OPEN_M7,RST,Null, [M7=214]1,{(},1>
<OPEN_M7, STOP,Null, [M7=A15],{}, 1>

/*If a TEXind is received in state OPEN_SAS,
then do exec (M7) .*/

<QPEN_SAS_M7,0PEN_SAS,Null, [M7=A0],{(},1>
<QPEN_SAS_M7,IDLE,U!TDISreq(S4), (M7=A1/A2/A3],

{inc(C30,C38)},1>
<QPEN_SAS_M7,IDLE,U!TDISreqg(S4), [M7=A4},

{inc(C31,C38)},1>
<QOPEN_SAS_M7,IDLE,U!TDISreq(S2), [M7=A5 and P_ITMP],

{inc(C25,C37)},1>
<QOPEN_SAS_M7,IDLE,U!TDISreq(S3), [M7=A5 and P_POC]),

{inc(C25,C37)},1>
<OPEN_SAS_M7,IDLE,U!TDISreq(S1),

[M7=A5 and not (P_ITMP or P_POC)1],{inc(C25,C37)},1>
<OPEN_SAS_M7,0PEN_SAS,Null, [M7=A6],

{append 825 to 827},1>
<OPEN_SAS_M7,0PEN_SAS,U!TDTreq(S27), (M7=271,

{inc(C26) peroctet,

inc{C27,C37)}, 1>
<OPEN_SAS_M7,0PEN_SAS,Null, [M7=A8],

{append S25 to S28},1>
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<OPEN_SAS_M7,0PEN_SAS, U!TEXreq(S27), [M7=A9],

{inc(C28) peroctet,inc{C29,C37)},1>
<OPEN_SAS_M7,0PEN_SAS,Null, [M7=A10],{(},1>
<OPEN_SAS_M7,0PEN_SAS,Null, [M7=A11],{(}.1>
<OPEN_SAS_M7,0PEN_SAS, U!TEXreq{single shot),

[M7=A12 and not (P_SINGDT)],

{inc(C28) per octet,inc(C29,C37)},1>
<OPEN_SAS_M7,0PEN_SAS,U!TDTreq(single short),

[M7=A12 and P_SINGDT],

{inc(C26) per octet, inc(C27, C37)},1>
<OPEN_SAS_M7,0PEN_SAS, Null, [M7=A13],(}., 1>
<OPEN_SAS_M7,RST,Null, [M7=A141],{},1>
<OPEN_SAS_M7,STOP,Null, [M7=A15],(},1>
<OPEN_M9,0OPEN,Null, [M9=A0], {},1>
<OPEN_M9, IDLE,U!TDiSreq(S4), [M9=A1/A2/A3],

{inc(C30,C38)},1>
<OPEN_M9, IDLE.U!TDISreq(S4), [M9=A4], {inc(C31,C38)},1>
<OPEN_M9, IDLE,U!TDISreq(S2), [M9=A5 and P_ITMP],

{inc(C25,C37)},1>
<OPEN_M9, IDLE,U!TDISreq(S3), [M9=A5 and P_POC],

[inc(C25,C37)},1>
<OPEN_M9, IDLE,U!TDISreq(S1),

[M9=A5 and not (P_ITMP or P_POC)], {inc(C25,C37)},1>
<OPEN_M9,OPEN,Null, (M9=A6], {append S25 to S27},1>
<OPEN_MS9, OPEN, U!TDTreq(S27), [M9=A7],

{inc(C26) peroctet,inc(C27,C37)},1>
<OPEN_M9,0OPEN,Null, [M9=A8], {append S25 to S28},1>
<OPEN_M9, OPEN, U!TEXreq(S27), [M9=29],

{inc (C28) peroctet,inc(C29,C37)},1>
<OPEN_M9, OPEN_SAS,Null, [M9=Aa10},{},1>
<OPEN_MY9,0OPEN,Null, [MS=211],{},1>
<OPEN_M9, OPEN, U!TEXreqg{single shot),

[MS9=2a12 and not (P_SINGDT) ],

{inc (C28) per octet, inc{C29, C37)},1>
<OPEN_M9, OPEN, U!TDTreq (single short),

[MS=A12 and P_SINGDT],

{inc (C26) per octet,inc(C27,C37)},1>
<OPEN_M9, OPEN,Null, [M9=A13}, {},1>
<OPEN_M9,RST,Null, [M9=A14],{}, 1>
<OPEN_M9, STOP,Null, [M9=A15], {},1>
/* After receiving a CLE in state IDLE,

TMP does exec (M10).*/
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<IDLE_M10, IDLE,Null, [M10=A0], {}.,1>
<IDLE_M10, UT_WFTCONF,U!TCONreq(S9,S10,811,S12,S813),
[M10=Al], {inc(C23,C37)},1>
<IDLE_M10,UT_WFTCONF,U!TCONreq(S17,S10,5811,5812,513),
(M10=A2], {inc(C23,C37)},1>
<IDLE_M10,UT_WFTCONF,U!TCONreq(S22,S10,811,S12,813),
(M10=A3], {inc(C23,C37)},1>
<IDLE_M10, IDLE,Null, {[M10=241], {inc(C31,C38)},1>
<IDLE_M10, IDLE,Null, [M10=A5], {inc(C32,C38)},1>
<IDLE_M10, IDLE,Null, [M10=A6], {append S25 to S27},1>
<IDLE_M10, IDLE,Null, {(M10=A7],
{inc(C33) per octet,inc(C34,C38)},1>
<IDLE_M10, IDLE,Null, [M10=A8], {append S25 to S28},1>
<IDLE_M10,IDUE,Null, [M10=A9],
{inc(C35) per octet,inc(C36,C38)},1>
<IDLE_M10, IDLE_SAS,Null, [M10=2A10}, {},1>
<IDLE_M10,IDLE,Null, [M10=A11],{(}.,1>
<IDLE_M10,IDLE,Null, [M10=A12 and not (P_SINGDT)],
{inc (C35) per octet,inc(C36,C38);,1>
<IDLE_M10, IDLE,Null, [M10=A12 and P_SINGDT],
{inc(C33) per octet,inc(C34,C38)},1>
<IDLE M10,IDLE,Null, [M10=A131,{}.,1>
<IDLE_M10,RST,Null, [M10=A14], {},1>
<IDLE_M10, STOP,Null, [M10=A15], {},1>
/* After receiving a CLE in state UT_WFTCONF,
TMP does exec (M10).*/
<UT_WFTCONF_M10, OT_WFTCONF,Null, [M10=A0],{},1>
<UT_WFTCONF_M10, IDLE,U!TDISreq(S4), [M10=A1/A2/A3]},
{inc(C30,C38)},1>
<UT_WFTCONF_M10, IDLE,U!TDISreq(S4), [M10=24]},
{inc(C31,C38}},1>
<UT_WFTCONF_M10, IDLE,U!TDISreq(S2),
[M10=A5 and P_ITMP], {inc(C25,C37)},1>
<UT_WFTCONF_M10, IDLE,U!TDISreq(S3),
[M10=A5 and P_POC], {inc(C25,C37)},1>
<UT_WFTCONF_M10, IDLE,U!TDISreq(Sl),
[M10=A5 and not (P_ITMP or P_POC)], {inc(C25,C37)},1>
<UT_WFTCONF_M10, UT_WFTCONF,Null, (M10=a61],
{append S$25 to S27},1>
<UT_WFTCONF_M10, IDLE,U!TDISreq(S4), [M10=A7],
{inc(C32) peroctet,inc(C34,C38)},1>
<UT_WFTCONF_M10, UT_WFTCCONF,Null, (M10=A8],

209




{append S25 to 528},1>
<UT_WFTCONF_M10,IDLE,U!TDISreq{S4), [M10=A9],

{inc(C35) peroctet,inc(C36,C38)},1>
<UT_WFTCONF_M10,UT_WFTCONF_SAS,Null, [M10=A10]},{},1>
<UT_WFTCONF_M10,UT_WFTCONF,Null, [M10=A11],{},1>
<UT_WFTCONF_M10,IDLE,U!TDISreg(S4),

(M10=A12 and not (P_SINGDT)],

{inc(C34) per octet,inc(C35, C37)},1>
<UT_WFTCONF_M10, IDLE,U!TDISreq(S4),

[M10=A12 and P_SINGDT],

{inc(C33) per octet,inc(C34,C38)1},1>
<UT_WFTCONF_M10,UT_WFTCONF,Null, [M10=A13],{},1>
<UT_WFTCONF_M10,RST,Null, [M10=A14],({},1>
<UT_WFTCONF_M10,STOP,Null, (M10=A15],(}, 1>
/*After receiving CLE in state IUT_WFTRESP,

T™™P does exec(M1Q).*/
<IUT_WFTRESP_M10, IUT_WFTRESP,Null, [M01=A0], {},1>
<IUT_WFTRESP_M10, IDLE,U!TDISreq(sS4),

[M10=A1/A2/A3],{inc(C30,C38)},1>
<IUT_WFTRESP_M10,0PEN,U!TCONresp ({S5,56,S7,S8),

[M10=A4], {inc(C24,C37)},1>
<IUT_WFTRL"P_M10,IDLE,U!TDISreq(S2),

(M10=A5 and P_ITMP], {inc(C25,C37)},1>
~IUT_WFTRESP_M10, IDLE,U!TDISreq(S3),

{M10=A5 and P_FOC,

{inc(C25,C37})},1>
<IUT_WFTRESP_M10,IDLE,U!TDISreq(S1l),

[M10=AS and not (P_ITMP or P_POC)],{inc(C25,C37)},1>
<IUT_WFTRESP_M10, IUT_WFTRESP,Null, [M10=2a6],

{append S25 to 827},1>
<IUT_WFTRESP_M10,IDLE,U!TDISreq(S4), [M10=A7],

{inc(C32) peroctet,inc(C34,C38)},1>
<IUT_WFTRESP_M10, IUT_WFTRESP,Null, [M10=A8]},

{append S25 to S$28},1>
<IUT_WFTRESP_M10,IDLE,U!TDISreq(S4), [M10=A9],

{inc(C35) peroctet,inc(C36,C38)},1>
<IUT_WFTRESP_M10, JUT_WFTRESP_SAS,Null, [M10=A10],{},1>
<IUT_WFTRESP_M10, JUT_WFTRESP,Null, [M10=2a11l]l, {},1>
<IUT_WFTRESP_M10,IDLE,U!TDISreqg(S4),

[M10=A12 and not (P_SINGDT)],

{inc(C34) per octet,inc{C35,C37)},1>
<IUT_WFTRESP_M10,IDLE,U!TDISreqg(S4),
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[M10=A12 and P_SINGDT],

{inc(C33) per octet,inc(C34,C38)},1>
<IUT_WFTRESP_M10, IUT_WFTRESP,Null, [M10=A13),{},1>
<IUT_WFTRESP_M10,RST,Null, [M10=A14],{},1>
<IUT_WFTRESP_M10, STOP,Null, [M10=A15]), {},1>
/*After receiving a CLE in state OPEN,

the TMP does exec(M10).*/
<OPEN_8,OPEN, Null, IM10=A01},{},1>
<OPEN_8, IDLE,U!TDISreq(S4), [M10=A1/A2/A3],

{inc(C30,C38)},1>
<OPEN_8, IDLE,U!TDISreq(S4), {(M10=A4]}, (inc(C31,C38)},1>
<OPEN_8, IDLE,U!TDISreq(S2), (M10=A5 and P_ITMP],

{inc(C25,C37)},1>
<OPEN_8,IDLE,U!TDISreq(S3), [M10=A5 and P_POC,

{inc(C25,C37)},1>
<OPEN_8, IDLE,U!TDISreqg(S1},

[M10=A5 and not (P_ITMP or P_POC)], {inc(C25,C37)},1>
<OPEN_8,OPEN_SAS,Null, [M10=A6], {append S25 to S27},1>
<QPEN_8, OPEN_SAS, U!TDTreq(S27), ([M10=A7],

{inc(C26) peroctet,inc(C27,C37)},1>
<OPEN_8,OPEN_SAS,Null, {M10=A8], {append S25 to S28},1>
<QOPEN_8,OPEN_SAS,U!TEXreq(S27), [M10=A9],

{inc(C28) peroctet, inc(C29,C37)},1>
<OPEN_8,OPEN_SAS,Null, (M10=A101,{},1>
<QOPEN_8,0QPEN_SAS,Null, [M10=A11]1,{},1>
<QOPEN_8,OPEN_SAS,U!TEXreq{(single shot),

(M10=A12 and not (P_SINGDT)],

{inc(C28) per octet,inc(C29,C37)},1>
<OPEN_8, OPEN_SAS,U!TDTreq{single short),

(M10=A12 and P_SINGDT],

{inc(C26) per octet,inc(C27,C37)},1>
<QOPEN_8,OPEN_SAS,Null, (M10=A13],{}.1>
<OPEN_8,RST,Null, [M10=A14],{(},1>
<OPEN_8, STOP,Null, ([M10=A15], {}, 1>

/* When the TMP receives an invalid TMPDU in the OPEN
state, take the following action depending on Ml1l. */
<OPEN_16,0PEN,Null, {M11=A0], {}, 1>
<OPEN_16,IDLE,U!TDISreq(S4), [M11=A1/A2/A3],
{(inc(C30,C38)},1>
<QOPEN_16,IDLE,U!TDISreqg(S4), [M11=A4},
{inc(C31,C38)},1>
<OPEN_16,IDLE,U!TDISxreq(S2), [M11=A5 and P_ITMP],
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{inc(C25,C37)},1>
<OPEN_16, IDLE,U!TDISreq(S3), (M11=AS5 and P_POC,

{inc(C25,C37)},1>
<QOPEN_16, IDLE,U!TDISreq(S1),

(M11=A5 and not (P_ITMP or P_POC)], {inc(C25,C37)},1>
<OPEN_16,0PEN,Null, [M11=2A61, {append S25 to S27},1>
<QOPEN_16,0PEN,U!TDTreq(S27), (M11=A71,

{inc(C26) peroctet,inc(C27,C37)1},1>
<OPEN_16, OPEN,Null, [M11=A8], {append S$25 to S28},1>
<OPEN_16,0PEN,U!TEXreq(527), (M11=A9],

{inc(C28) peroctet,inc(C29,C37)},1>
<OPEN_16,0PEN_SAS,Null, (M11=A10],{},1>
<OPEN_16,0OPEN,Null, [M11=A111,{}, 1>
<OPEN_16,0PEN,U!TEXreqg(singlie shot),

[M11=A12 and not(P_SINGDT)],

{inc(C28) per octet,inc(C29,C37)},1>
<OPEN_16,0PEN,U!TDTreqg(single short),

[M11=A12 and P__SINGDT],

{inc(C26) per octet,inc(C27,C37)},1>
<OPEN_16,0PEN,Null, [M11=2A131,{}, 1>
<OPEN_16,RST,Null, [M11=214],(},1>
<OPEN_16, STOP,Null, [M11=A15],{}, 1>
/* When the TMP receives an invalid TMPDU in the OPEN_SAS

state, take the following action depending on M1l1l.*/
<OPEN_S16,0PEN_SAS,Nu.l, [M11=A0],{}, 1>
<OPEN_S16,IDLE,U!TDISreq(S4), [M11=A1/A2/A3],

{inc(C30,C38)},1>
<OPEN_S16, IDLE, U!TDISreqg(S4), [M11=A4],

{inc(C31,C38)},1>
<OPEN_S16, IDLE, U!TDISreqg(S2), [M11=A5 and P_ITMP],

{inc(C25,C37)},1>
<OPEN_S16, IDLE, U!TDISreqg(S3), [M11=A5 and P_POC,

{inc(C25,C37)},1>
<OPEN_S16,IDLE, U!TDISreq(S1),

[M11=A5 and not (P_ITMP or P_POC)], {inc(C25,C37)},1>
<OPEN_S16,0PEN_SAS,Null, [M11=A6],

{append S25 to S27},1>
<OPEN_S16,0PEN_SAS,U!TDTreq(S27), [M11=A7],

{inc(C26) peroctet,inc(C27,C37)},1>
<OPEN_S16,0PEN_SAS,Null, [M11=A8],

{append S25 to S28},1>
<OPEN_S16,0PEN_SAS,U!TEXreq(S527), [M11=A9],
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{inc(C28) peroctet,inc(C29,C37)},1>
<OPEN_S16,0PEN_SAS,Null, [M11=A10],{)},1>
<OPEN_S16,0PEN_SAS,Null, [M11=A11],(},1>
<OPEN_S16,0PEN_SAS,U!TEXreq(single shot),

(M11=A12 and not (P_SINGDT)],

{inc(C28) per octet,inc(C29,C37)},1>
<OPEN_S16,0PEN_SAS,U!TDTreq(single short),

[M11=A12 and P_SINGDT],

{inc(C26) per octet,inc(C27,C37)},1>
<OPEN_S16,0OPEN_SAS,Null, {M11=A13],{},1>
<OPEN_S16,RST,Null, [{M11=A14], {},1>
<OPEN_S16, STOP,Null, [M11=A15]),{},1>
<RST,IDLE_M9, Internal_START, [T],

{Cl1:=0,C2:= 0,..,C38:=0,

Ml:=A4,M2:=A0,..,M10:=A0,M11:=A5,
M12:=A5,M13:=A0,.., M25:=A0,
Sl:= ..., S2:=.., ... S28:=..},1>
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Appendix 3

Global state space of the single connection CS Test Verification System in Chapter 6.

Global States
Abbreviations:/* Vc is a set of constant values. */
Vc = {VAL:="test_data", Called_addr:=*you",
Calling_addr:="me",Exp_option:="No",Qos:="1",
User_datal:="any_data",TS5:="1",
TS6:=*you", TS7:="No", TS8:=VAL}

/* Var is attached to each state. */

Var = {(Vc,seqrecak, seqsendt), (opt, PRSeq, PRcredit),
(s5,86,S87,S8,M1,M3,M9) ,Verdict}

/* V1 is Var with initial wvalues. */

V1l = {(Vc,seqrecak:=0,seqgsendt:=0),
(opt:=Null,PRSeq:=0,PRcredit:=2),
(S5:="1",86:="you",S7:="No",
S8:="Null",M1l:=A4,M3:=A0,M9:=A9),
Verdict:=Null}

{{(Vc,seqrecak:=0,seqgsendt:=0),
(opt:=Null,PRSeq:=0, PRcredit:=2),
($5:="1",S6:="you",S7:="No",S8:="Null",
M1:=A4,M3:=A0,M9:=A9),Verdict:=Fail}

{(Vc,seqrecak:=0, segsendt:=0),

(opt:=1, PRSeq:=0,PRcredit:=2),

V6

V9

1]

(85:="1",86:="you",S7:="No",S8:="Null",

M1:=A4,M3:=A0,M9:=79),Verdict:=Null}

{ (Vc,seqgrecak:=0, seqgsendt:=1),
(opt:=1, PRSeq:=0,PRcredit:=2),
(85:="1",86:="you",S7:="No",
S8:=%*Null",M1:=A4,M3:=A0,M9:=A9),
Verdict:=Null}

{ (Vc,seqrecak:=0, seqgsendt:=1),
(opt:=1, PRSeq:=1,PRcredit:=1),
(85:="1",86:="you",S7:="No",
S8:="Null*,M1:=a4,M3:=A0,M9:=A9),
Verdict:=Null}

{ (Vc,seqgrecak:=0, segsendt:=1),
(opt:=1, PRSeq:=2,PRcredit:=0),
(S5:="1",86:="you",S7:="No",
S8:="Null",Ml:=A4 ,M3:=A0,M9:=A9),

<
t
o
n

V26

v28

i}
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V33

V40

V4l

V46

veo

V63

V71

V78

Verdict :=Null}

{(Vc,seqrecak:=0, seqgsendt:=1),
(opt:=1, PRSeq:=2,PRcredit:=0),
(SS5:="1",86:="you",S7:="No",
S8:="test_data",M1:=A4,M3:=A0,M9
Verdict :=Null}

{(Vc,seqrecak:=0, segsendt:=1),
(opt:=1, PRSeq:=2,PRcredit:=0),
(S5:="1",86:="you",S7:="*No",

S8:="test_data",M1:=A4,M3:=A0,M9:

Verdict:=Fail}
{(Vc,seqrecak:=2, segsendt:=1),

(opt:=1, PRSeq:=2,PRcredit:=0),

(S5:="1",S6:=*you",S7:="No",

S8:="test_data",M1:=A4,M3:=A0,M9:

Verdict:=Null)

{(Vc,seqrecak:=2, segsendt:=1),
{opt:=1, PRSeq:=2,PRcredit:=0),
(S5:="1",S86:="you",S87:="No",

S8:="test_data",M1:=A4,M3:=A0,M9:

Verdict :=Fail}
{(Vc,seqrecak:=2, segsendt:=1),

(opt:=1, PRSeq:=2,PRuredit:=0),

(S5:="1",86:="you",S7:="No",

S8:="test_data",M1:=A4,M3:=A0,M9:

Verdict:=Fail}
{(Vc,seqrecak:=2, segsendt:=1),

(opt:=1, PRSeq:=0,PRcredit:=2),

(S5:="1",S86:="you",S7:="No",

S8:="test_data",M1:=A4,M3:=A0,M9:

Verdict:=Null}
{(Vc,seqrecak:=2, segsendt:=1),

(opt:=1, PRSeq:=0,PRcredit:=2),

(85:="1",S8S6:="you",S87:="No",

S8:="test_data" ,M1:=A4,M3:=A0,M9:

Verdict:=Pass}

{ (Vc,seqrecak:=2, segsendt:=1),
(opt:=1, PRSeq:=0,PRcredit:=2),
(S5:="1",S6:="you",87:="No",
S8:="test_data",M1:=24,M3:=A0,M9
Verdict:=Fail}

215

+=A9),

=A9)l

=A9) ‘

=A9) '

=A9) '

:=A9),



V96 = {(Vc,seqrecak:=0, segsendt:=1),
(opt:=1, PRSeq:=2,PRcredit:=0),
(S5:="1",S6:="you", S7:="No",
S8:="test_data",M1:=A4,M3:=A0,M9:=A9),
Verdict:=Fail}

V97 = ((Vc,seqrecak:=0, seqgsendt:=1),
(opt:=1, PRSeq:=2,PRcredit:=0),
(S5:="1",S6:="you", S7:="No",
S8:="test_data",M1:=A4,M3:=A0,M9:=A9),
Verdict:=Fail}

V103 = {(Vc,seqrecak:=2, segsendt:=1),
(opt:=1, PRSeq:=2, PRcredit:=0),
(S5:="1",S6:="you",S87:="No",
S8:="test_data" /M1l:=A4,M3:=A0,M9:=A9),
Verdict:=Fail}

Verdict attachments:

Fail: g6,940,946,960,978,996,997,g102,g103,
gl04,9105,9g106,9107,g108,g109,g110

Pass: g71

gl: <2,1,1,IDLE, E,E,E,E,E,E, V1>{INI1}
g2: <2,1,1,IDLE_MY9, E,E,E,E,E,E, V1>{}
g3: «2,1,1,IDLE, E,E,E,E,E,E, V1>
(AT (Tsend (L, NDTreq{(CR)))}
g4: <3,1,1,IDLE, NDTreq(CR(*you",'me",“No","1",
"any_data")),E,E,E,E,E, V1>
{AFTER (Tsend (L, NDTreq(CR)))}
g5: <4,1,1,IDLE,
NDTreq(CR("you", "me*, "No", "1*, "any_data")),
E,E,E,E,E, V1>{}
g7: <4,4,1,IDLE, E,E,E,E,E,E, V1>{}
g8: <4,1,1,IDLE, E,E,NDTind(CR(*you", "me", "No",
"1","any_data")),E,E,E, Vi>
{AT (Sreceive (N,NDTind(CR)) )}
g9: <«4,1,5,IDLE, E,E,E,E,E,E, V9>
{AFTER(Sreceive (N,NDTind(CR))),
AT (Ssend (U, TCONind) ) )
glO: <4,1,6,IDLE, E,E,E,E,
TCONind("you", "me","No","1", "any_data"),E, V9>
{AFTER(Ssend (U, TCONind) ),
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gll:

gl2:

gl3:

glq:

gls5:
glé:

gb6:

gl7:
gl8:

gl9:

g20:

g2l:

g22:

AT (Treceive (U, TCONind) )}
<4,1,6,IUT_WFTRESP_M1, E,E.&£,E,E,E, V9>u
{AFTER(Treceive (U, TCONind)),
AT (Tsend (U, TCONresp) ) }
<4,1,6,0PEN, E,E,E,E,E,
TCONresp("1l", "you", "No", "any_data"), V9>
{AFTER(Tsend (U, TCONresp) ),
AT (Sreceive (U, TCONresp) )}
<4,1,7,0PEN, E,E,E,E,E,E, V9>
{AFTER(Sreceive (U, TCONresp) ),
AT (Ssend (N, NDTreq(CC)))}
<4,1,10,0PEN, E,E,E,
NDTreq{(CC("me","1l", "No","2", "any_data")),E,E, V9>
{AFTER(Ssend (N, NDTreq(CC)))}
<4,8,10,0PEN, E,E,E,E,E,E, V9>{)}
<4,1,10,0PEN, E,
NDTind(CC("me","1l", "No","2", *any_data")),
E,E,E,E, V9>
{AT (Treceive(L,NDTind(CC)) )}
<5,1,10,0PEN, E,NDTind(CC("me","1","No","2",
"any_data")),E,E,E,E, V6>
{(Verdict = Fail)}
<6,1,10,0PEN, E,E,E,E,E,E, V9>
{AFTER(Treceive (L,NDTind(CC)))}
<7,1,10,0PEN, E,E,E,E,E,E, V9>
{AT (Tsend (L, NDTreq(DT) } )}
<8,1,10, OPEN,
NDTreq (DT (*TMP1 (M1=A4,M2=A0, .,M10=A0,M11=A5,
M12=A5,M13=A0,.,M25=A0)", "True"))),E,E,E,E,E, V9>
{AFTER(Tsend{L,NDTreqg(DT)}),
AFTER (Tsend (L, NDTreq(DT)) )}
<9,1,10, OPEN,
{NDTreq (DT ( "TMP1 (M1=A4,M2=A0, .,M10=A0,
M11=A5,M12=A5,M13=A0, .,
M25=A0)", "True"))),
NDTreq (DT ("TMP4 (*1", "you", "No", *test_data")))},
E,E,E,E,E, V20>
{AFTER(Tsend(L,NDTreq(DT))) }
<9,4,10,0PEN,
NDTreq (DT ("TMP4("1", “you", "No", “test_data")))},
E,E,E,E,E,V20>{}
<9,1,10,0PEN,

217




g23:

g2d:

g25:

glé6:

g27:

g28:

g29:

g30:

g31l:

g32:

g33:
g34:

NDTreqg (DT ("TMP4 (1", *you", *No", “test_data"))),E,
NDTind (DT (*TMP1 (M1=A4,M2=A0,.,M10=A0,M11=A5,

M12=A5,M13=A0,.,M25=A0)", "True"))),
E,E,E, V20>(}
<9,4,10,0PEN, E,E,
NDTind (DT ("TMP1 (M1=A4,M2=A0,..,M10=A0,M11=A5,
M12=A5,M13=A0, .,M25=A0)", "True"))),E,E,E,V20>{}
<9,1,10,0PEN, E,E,
{NDTind (DT (*TMP1 (M1=A4,M2=A0, .,M10=A0,M11=A5,
M12=A5,Mi3=A0,.,M25=A0)", "True*))),
NDTind (DT ("TMP4 ("1", *you", "No", "test_data")))},
E,E,E,V20>{AT (Sreceive (N, NDTind(DT)))}
<9,1,17,0PEN, E, E,NDTind (DT ("TMP4("1", "vou", *No",
"test_data'))),E,E,E, V20>
{AFTER (Sreceive (N,NDTind{(DT)})),
AT (Ssend (U, TDATALnd) )}
<9,1,10,0PEN, E,E,
NDTind (DT ("TMP4("1", "you", "No", "test_data"))) ,E,
TDTind{("any_data", "True'),E, V26>
{AFTER(Ssend (U, TDATAind) ),
AT (Sreceive (N,NDTind(DT)))}
<9,1,17,0PEN, E,E,E,E,
TDTind("any_data", "True"),E, V26>
{AFTER (Sreceive (N,NDTind(DT)) ),
AT (Ssend (U, TDATAingd) )}
<9,1,10,0PEN, E,E,E,E,{TDTind("any_data", "True",
TDTind ("test_data", "True")},E, V28>
{AFTER(Ssend (U, TDATAind) ) ),
AT (Treceive (U, TDATAInd)) }
<9,1,10,0PEN_1, E,E,E,E,
TDTind("test_data", "True") ,E, V28>
{(AFTER (Treceive (U, TDATAing) )}
<9,1,10,0PEN_MS, E,E,E,E,
TDTind("test_data", "True") ,E, V28>{}
«<9,1,10,0PEN, E,E,E,E,
TDTind("test_data", "True") ,E, V28>
{AT (Treceive (U, TDATAING) ) }
<9,1,10,0PEN_1, E,E,E,E,E,E, V28>
{AFTER (Treceive (U, TDATAiINndg) )}
<9,1,10,0PEN, E,E,E,E,E,E, V33>{}
<9,1,18,0PEN, E,E,E,E,E,E, V33>
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g35:

gl6:
gl7:

g38:
g39:

gdo:

gdl:

gd2:
g43:

gdd:

gd5:

gd6:

gd’7:
g48:

gd9:

g50:

g51l:

{AT (Ssend (N, NDTreq (AK)) )}

<9,1,10,0PEN,E,E,E,NDTreq(AK("2","0")) ,E,E, V33>

{AFTER (Ssend (N, NDTreq (AK) ) )}
<9,8,10,0PEN, E,E,E,E,E,E, V33>{)
<9,1,10,0PEN, E,

NDTind (AK("2","0")),E,E,E,E, V33>{)
<10,1,10,0PEN,E,

NDTind(AK("2","0")),E,E,E,E, V33>{}
<11,1,10,0PEN,E,

NDTind(AK("2","0")),E,E,E,E, V33>{()
<12,1,10,0PEN, E,

NDTind(AK("2","*0")),E,E,E,E, V40>

{AT (Treceive(L,NDTind (AK) ) ), (Verdict =
<13,1,10,0PEN, E,E,E,E,E,E, V41>

{AFTER (Treceive (L,NDTind (AK)))}
<9,1,10,0PEN, E,E,E,E,E,E, V41>{)
<14,1,1" ,OPEN, E,E,E,E,E,E, V41>

{AT (Tsend(L,NDTreqg{(DR)) )}
<15,1,10, OPEN,

NDTreq(DR("normal_disconnect", *"Null")),

E,E,E,E,E,V4l>

{AFTER(Tsend (L, NDTreq(DR) ) )}
<16,1,10,0PEN,

NDTreq(DR("normal_disconnect"', "Null")),

E,E,E,E,E, V41>{(}
<17,1,10,0PEN,

NDTreqg(DR("normal_disconnect", "Nuil")),

E,E,E,E,E, V46>

{ (Verdict = Fail)}
<16,4,10,0PEN, E,E,E,E,E,E, Vi4l>{}
<16,1,10,0PEN, E,E,

NDTind (DR(“normal_disconnect", *Null")),

E,E,E, V41>

{AT (Sreceive (N,NDTind(DR) ) }}
<16,1,14,0PEN, E,E,E,E,E,E, V41>

{AFTER (Sreceive (N,NDTind (AK))),

AT (Ssend (U, TDISind) )}
<16,1,15,0PEN, E,E,E,E,

TDISind("normal_disconnect", "Null"),E,

{AFTER(Ssend (U, TDISind)),

AT (Ssend (N, NDTreqg(DC)) )}
<16,1,1,0PEN, E,E,E,NDTreq(DC),
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TDISind ("normal_disconnect", "Null") ,E, V41>
{Z.2FTER(Ssend (N,NDTreq(DC))),
AT (Treceive (U, TDISind))}
g52: <16,1,1,IDLE_M3, E,E,E,NDTreq(DC),E,E, V41>
{AFTER(Treceive (U, TDISind) )}
g53: <16,1,1,IDLE, E,E,E,NDTreq(DC) ,E,E, V41l>{}
g54: <16,8,1,IDLE, E,E,E,E,E,E, V41>{}
g55: <16,1,1,IDLE, E,NDTind(DC),E,E,E,E, V41>
{AT (Treceive (L,NDTind(DC)))}
g56: <18,1,1,IDLE, &,E,E,E,E,E, V41>
{AFTER(Treceive(L,NDTind(DC))} )}
g57: <19,1,1,IDLE, E,E,E,E,E,E, V4l>
{AT (Tsend (L,NDTreq(CR) ) )}
g58: <20,1,1, IDLE,
NDTreq(CR("you", "me", "No","1l", "any_data")),
E,E,E,E,E, V41>
{AFTER(Tsend (L, NDTreq(CR)) )}
g59: <21,1,1,IDLE,
NDTreq{CR("you", "me", "No","1", "any_data")),
E,E,E,E,E, V4l>{}
g60: <22,1,1,IDLE,
NDTreq{CR("you", “me","No","1", "any_data")),
E,.E,E,E,E, V60>
{ (Verdict = Fail)}
g6l: <21,4,1,IDLE, E,E,E,E,E,E, V41>({}
g62: <21,1,1,IDLE, E,E,
NDTreq(CR{"you", "me", *No*,"1", "any_data")),
E,E,E, V4dl>
(AT (Sreceive (N,NDTind (CR) ) )}
g63: <21,1,5,IDLE, E,E,E,E,E,E, V63>
{AFTER(Sreceive(N,NDTind(CR)) ),
AT (Ssend (U, TCONind) )}
gb64: <21,1,6,IDLE, E,E,E,E,
TCONind({"you", "me", "No","1","any_data"),E, V63>
{AFTER(Ssend (U, TCONind) ),
AT (Treceive (U, TCONind) )}
g65: <21,1,6,IUT_WFTRESP_M1, E,E,E,E,E,E, V63>
{(AFTER{Treceive (U, TCONind)),
AT (Tsend (U, TCONresp) ) }
g66: <21,1,6,0PEN, E,E,E,E,E,
TCONresp("1l", "you", "No", "test_data"), V63>
{AFTER(Tsend (U, TCONresp)),
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gb67:

gb68:

g69:
g70:

g7l:

g72:

g73:

g74:

g75:

g76:

g77:
g78:

g79:

g80:

AT (Sreceive (U, TCONresp)) )
<21,1,7,0PEN, E,E,E,E,E,E, V63>
{ZFTER(Sreceive (U, TCONresp) ),

AT (Ssend (N, NDTreqg(CC)))}
<21,1,10,0PEN, E,E,E,
NDTreq(CC("you","1","No", 0, "test_data")),
E,E, V63>

{AFTER (Ssend (N,NDTreq(CC) ) )}
<21,8,10,0PEN, E,E,E,E,E,E, V63>{}
<21,1,10,0PEN, E,
NDTind(CC("you","1", "No", "0", “test_data")),
E,E,E,E, V63>

{AT(Treceive (L,NDTind(CC)))}
<23,1,10,0PEN, E,E,E,E,E,E, V71>

{AFTER (Treceive(L,NDTind (CC))),

(NDTind.CC.User_data = VAL), (Verdict = Pass)}
<24,1,10,0PEN, E,E,E,E,E,E, V71>

{AT (Tsend (L, NDTreq(DR) ) )}
<25,1,10,0PEN,

NDTreq(DR("normal_disconnect", "Null")),

E,E,E,E,E, V71>

{AFTER (Tsend (L,NDTreqg(DR)) ),

AT (Treceive(U,TDISind) )}
<25,4,10,0PEN, E,E,E,E,E,E, V71>

{AFTER (Treceive (U, TDISind) )}
<25,1,10,0PEN, E,E,
NDTind{(DR{"normal_disconnect", "Null")},
E,E,E, Vil>

{AT (Sreceive (N,NDTind(DR)))}
<25,1,14,7PEN, E,E,E,E,E,E, V71>

{AFTER (Sreceive(N,NDTind(DR)) )} }
<26,1,14,0PEN, E,E,E,E,E,E, V71>{}
<27,1,14,0PEN, E,E,E,E,E,E, V78>

{AT (Ssend (U, TDISind) ), (Verdict = Fail)}
<26,1,15,0PEN, E,E,E,E,
TDISind('normal_disconnect","Null'),E, V71>
{AFTER (Ssend (U, TDISind) ),

AT (Ssend(N,NDTreq(DC)) )}
<26,1,1,0PEN, E,E,E,NDTreq(DC),
TDISind("normal_disconnect",*Null"),E, V71>
{AFTER (Ssend (N,NDTreq(DC))),

AT (Treceive(U,TDISind) )}
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g8l: <26,1,1,IDLE M3, E,E,E,NDTreq(DC),E,E, V71>
{AFTER (Treceive (U,TDISind))}
g82: <26,1,1,IDLE, E,E,E,NDTreq(DC),E,E, V71>{}
g83: <26,8,1,IDLE, E,E,E,E,E,E, V71>{}
g84: <26,1,1,IDLE, E,NDTind(DC),E,E,E,E, V71>
{AT (Tsend (L,NDTind(DC) ) )}
g85: <28,1,1,IDLE, E,E,E,E,E,E, V71>
{AFTER (Tsend (L, NDTind(DC)) )}
g86: «29,1,1,1IDLE, E,E,E,E,E,E, V71>{}
g87: «9,1,11,0PEN, E,E,E,E,E,E, V33>
{AT (Ssend (U, TDISind) )}
g88: <«9,1,12,CPEN, E,E,E,E,
TDISind("normal_disconnect", "Null"),E, V33>
{AFTER(Ssend (U, TDISind) },
AT (Ssend (N,NDTreq(DR)) )}
g89: <9,1,9,0PEN, E,E,E,
NDTreq (DR ("normal_disconnect", "Null")),
TDISind("normal_disconnect", "Null"),E, V33>
{AFTER (Ssend (N, NDTreq(DR)) },
AT (Treceive (U, TDISind) )}
g90: <«9,1,9,IDLE_M3, E,E,E,
NDTreq{(DR ("normal_disconnect", *Null")),
E,E, V33>
{AFTER(Treceive (U,TDISind) )}
g91: <9,1,9,IDLE, E,E,E,
NDTreq (DR ("normal_disconnect", "Null")),
E,E, V33>{}
g92: <«9,8,9,IDLE, E,E,E,E,E,E, V33>{}
g93: <9,1,9,IDLE, E,
NDTind (DR ("normal_disconnect", *Null")),
E,E,E,E, V33>{(seqrecak < seqgsendt)}
g94: <«10,1,9,IDLE, E,
NDTind (DR (“normal_disconnect", *Null")),
E,E,E,E, V33>{)
g95: «11,1,9,IDLE, E,
NDTind (DR ("normal_disconnect", "Null")),
E,E,E,E, V33>{}
g96: <«31,1,9,IDLE, E,E,E,E,E,E, V96>
{(Verdict = Fail)}
g97: <12,1,9,IDLE, E,
NDTind (DR ("normal_disconnect*, "Null")),
E,E,E,E, V97>{)
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g98: <16,1,18,0FPEN, E,E,
NDTind(DR {*normal_disconnect", “Null*)),
E,E,E, V41>
{AT (Ssend (N, NDTreqg(AK) ) )}
g99: <16,1,10,0PEN, E,E,
NDTind(DR ("normal_disconnect", *Null*})),
NDTreq(AK("2",*0")),E,E, V41>
{AFTER(Ssend (N, NDTreq(AK)))}
gl00: <16,8,10,0PEN, E,E,
NDTind (DR (*normal_disconnect”, "Null")),
E,E,E, V41>{}
gl0l: <16,1,10,0PEN, E,NDTind(AK("2","0")),

NDTind (DR ("normal_disconnect", "Null")},
E,E,E, V41>{}
gl02: <17,1,10,0PEN, E,NDTind(AK("2","0"}),

NDTind (DR ("normal_disconnect", "Null*")),
E,E,E, V102>{(Verdict = Fail)}
gl03: <32,1,10,0PEN, E,E,
NDTind (DR ("normal_disconnect", "Null*")),
E,E,E, V103>{(Verdict = Fail)}
gl04: <32,1,14,0PEN, E,E,E,E,E,E, V103>
{ (segqrecak >= seqgsendt), (Verdict = Fail)}
glo5: <32,1,15,0PEN, E,E,E,E,
TDISind ( "normal_disconnect", "Null") ,E, V103>
{AT (Tsend (L,NDTreq(DR) ) ), (Verdict = Fail)}
gl06: <32,1,1,0PEN, E,E,E,NDTreq(DC),
TDISind ("normal_disconnect", *Null"),E, V103>
{AFTER(Tsend (L, NDTreqg(DR}) ),
AT (Treceive (U, TDISind)), (Verdict = Fail)}
gl07: «32,1,1,IDLE_M3, E,E,E,NDTreq(DC) ,E,E, V103>
{AFTER (Treceive (U,TDISind)), (Verdict = Fail)}
gl08: <32,1,1,IDLE, E,E,E,NDTreq(DC) ,E,E, V103>
{ (Verdict = Fail)}
gl09: <32,8,1,IDLE, E,E,E,E,E,E, V103>
{ (Verdict = Fail)}
gl10: <32,1,1,IDLE, E,NDTind(DC) ,E,E,E,E, V103>
{(Verdict = Fail))}
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Global Transitions:
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rl=
r3=

ri=

r9=

rll=
rl3=
rl5=
rli=
rl9=
r2l=
r23=
r25=
ra2i=
r29=
ril=
ril=
r35=
ri7=
r39=
rd4l=
r4i=
r45=
r47=
r3s5=
r3i=
r3g=
r4l=
rd3=
r45=
r4i=
r49=
r51=
r53=
r55=
r57=
r59=
r6l=
r63=
ré65=
r67=
r69=

<gl,g2,TMP_1>,
<g3,g94,LT_1>
<gl6,g6,LT_4>,
<g7,g8,U0SP_10>,
<g9,qgl0, SPEC_2>
<gll,gl2,TMP_4>,
<gl3,gl4,SPEC_6>,
<gl5,glé6,UuUsp_12>
<gl7,918,LT_6>,
<gl9,g20,LT_8>,
<g21,g22,USP_10>
<g23,g924,0SP_10>,
<g25,g926,SPEC_20>,
<g27,g28,SPEC_20>
<g29,g30,TMP_6>,
<g31,g32,TMP_5>,
<g33,934,SPEC_17>
<g35,g36,U0SP_11>,
<g37,938,LT_9>,
<g39,g40,LT_12>
<g41,942,LT_14>,
<g43,g44,LT_16>,
<gd45,946,LT_19>
<g47,948,USP_10>,
<g35,936,USP_11>,
<g37,938,LT_9>
<g39,940,LT_12>,
<g4l,g42,LT_14>,
<gd43,9g44,LT_16>
<g45,946,LT_19>,
<g47,948,USP_10>,
<gd49,g50,SPEC_15>
<g51,952,TMP_9>,
<g53,9g54,U0SP_11>,
<g55,956,LT_20>
<g57,958,LT_22>,
<g59,g60,LT_25>,
<g61,9g62,0SP_10>
<g63,964,SPEC_2>,
<g65,966,TMP_4>,
<g67,968,SPEC_6>
<g69,g70,USP_12>,

r2=

rd=

ré6=

r8=

rl0=
rl2=
rld=
rlé=
rl8=
r20=
r22=
r24=
r26=
r28=
r30=
r32=
r3d=
r36=
ri8=
r40=
rd2=
r44=
rd6=
r3d=
r36=
r38=
r40=
r42=
rdd=
rd6=
rd8=
r50=
r52=
r54=
r56=
r58=
r60=
r62=
r64d=
r66=
r68=
r70=
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<g2,93,TMP_2>,
<g4,g5,LT_2>,
<g5,g7,USP_9>,
<g8,g9,SPEC_1>,
<gl0,gll, T™MP_3>,
<gl2,gl3,SPEC_5>
<gld,gl5,uUspP_11>,
<gl6,gl7?,LT_5>,
<gl8,gl9,LT_7>
<g20,g21,USP_9%>,
<g22,923,USP_9>,
<g24,925,SPEC_19>,
<g26,g927,SPEC_19>,
<g28,g29,TMP_5>,
<g30,g31,T™MP_7>
<g32,933,TMP_8>,
<g34,935,SPEC_18>,
<g36,937,USP_12>
<g38,g39,LT_10>,
<g40,g4l1,LT_13>,
<g42,943,LT_15>
<gd4,g45,LT_17>,
<gd6,g47,U0SP_9>,
<g34,935,SPEC_18>
<g36,9g37,USP_12>,
<g38,9g39,LT_10>,
<g40,941,LT_13>
<gd2,943,LT_15>,
<g44,g45,LT_17>,
<g46,g47,USP_G9>
<g48,g49,SPEC_14>,
<g50,9g51,SPEC_16>,
<g52,9g53,T™MP_10>
<g54,g55,USP_12>,
<g56,g57,LT_21>,
<g58,g59,LT_23>
<g59,g6l1,USP_9>,
<gb62,963,SPEC_1>,
<gbd4,g65,TMP_3>
<g66,967,SPEC_5>,
<g68,g69,USP_11>,
<g70,g71,LT_26>



r7l=
r73=
r75=
ril=
r79=
r8l=
r83=
r85=
r87=
r89=
r9l=

<g71,g72,LT_27>,
<g73,g74,TMP_9>
«<g75,976,SPEC_14>,
<g77,g78,LT_31>,
<g79,g80, SPEC_16>
<g81,g82,TMP_10>,
<g83,9g84,USP_12>,
<g85,986,LT_33>
<g87,g88, SPEC_8>,
<g89,g90, TMP_9>,
<¢g91,9g92,USP_11>
r93= <g93,g9%4,LT_9>,

r95= <g95,g9%6,LT_11>,
r97= <g47,998,SPEC_17>
r99=<g99,g100,USP_11>,
r10l= <gl0l1l,gl02,LT_19>,
r103=<gl03,g104,LT_14>,
r105=<gl105,g106,LT_16>,
r107= <gl07,g108,T™MP_10>,
rl109=<g109,g9110,USP_11>

x72=
r74=
r1é=
r78=
r80=
r82=
r84=
r86=
r88=
r90=
r92=

<g72,973,LT_28>,
<g74,g75,TMP_10>,
<g76,9g77,LT_29>
<g78,979,SPEC_15>,
<g80,g81,TMP_9>,
<g82, g83, USP_11>
<g84,985,LT_32>,
<g33,987,SPEC_7>,
<g88,989,SPEC_9>
<g90,991,TMP_10>,
<g92,993,USP_12>,
r94= <g9%94,995,LT_10>
r96= <g95,997,LT_12>,
r98= <g98,999,SPEC_18>,
r100=<gl00,g101,USP_12>
r102=«<gl01,g103,LT_18>,
r104= «gl04,gl05,LT_15>,
r106= <gl1l06,g1l07, TMP_9>
r108=<gl08,g109,USP_11>,
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Appendix 4

Global state space of the multiple connection CS Test Verification System in Chapter
7.

Global states

Abbreviation:

/* Vc is a set of variables taking constant values. */

Vc = {Called_addr:="you",Calling_addr:="me",
Exp_option:="No",Qos:="1",User_datal:="",

TSl:="",TS5:="1",TS6:="you",T87:="No",
TS8:="",TS9:="me",TS10:="you",TS1l1l:="1",
TS12:="",TS13:="",M1:=A4,M3:=A0,M9:=A09}

/* Var is attached to each state. */

Var= {(Vc, seqrecak,segsendt), (opt, PRSeq,PRcredit),
(M1,M3,M9), Verdict}

/* V1 is Var with initial values. */

Vli= {(Vc,seqrecak:=0,segsendt:=0,TRcredit:=1,
TScredit:=0), (opt:=Null, PRSeq:=0,PRcredit:=5,
PSSeq:=0,PScredit:=0),Verdict:=Null}

V9 = {(Vc,seqrecak:=0,seqgsendt:=0,TRcredic:=1,
TScredit:=0), (opt:=Null, PRSeq:=0,PRcredit:=5,
PSSeq:=0, PScredit:=1),Verdict :=Null}

V17 = {(Vc,seqrecak:=0,seqsendt:=0,TRcredit:=1,
TScredit:=5), (opt:=Null, PRSeq:=0,PRcredit:=5,
PSSeq:=0,PScredit:=1),Verdict :=Null}

/* V19 after the 1 DT sent by LT */

V19 = {(Vc,seqrecak:=0,segsendt:=1, TRcredit:=1,
TScredit:=4), (opt:=Null,PRSeq:=0,PRcredit :=5
,PSSeq:=0,PScredit:=1),Verdict:=Null}

/* V22 after the 1 DT received by SPEC */

V22 = {(Vc,seqgrecak:=0,segsendt:=0,TRcredit:=1,
TScredit:=4), (opt:=Null, PRSeq:=1,PRcredit:=4,
PSSeq:=0,PScredit:=1),Verdict :=Null}

/* V27 after the 2 DT sent by LT */

V27 = {(Vc,seqrecak:=0,segsendt:=2, TRcredit:=1,
TScredit:=3), (opt:=Null, PRSeq:=1,PRcredit:=4,
PSSeq:=0,PScredit:=1) ,Verdict :=Null}

/* V30 after the 2 DT received by SPEC */

V30 = {(Vc,seqrecak:=0,seqgsendt:=2, TRcredit:=1,
TScredit:=3), (opt:=Null, PRSeq:=2,PRcredit:=3,
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PSSeq:=0,PScredit:=1),Verdict :=Null}

/* V34 after the 3 DT sent by LT */

V34 = {(Vc, seqrecak:=0,segsendt:=3, TRcredit:=1,
TScredit:=2), (opt:=Null, PRSeq:=2, PRcredit :=3,
PSSeq:=0,PScredit:=1),Verdict :=Null}

/* V37 after the 3 DT received by SPEC */

V37 = {(Vc,seqgrecak:=0,seqgsendt:=3, TRcredit:=1,
TScredit:=2), (opt:=Null,PRSeq:=3, PRcredit:=2,
PSSeq:=0,PScredit:=1),Verdict :=Null}

/* V41 after the 4 DT sent by LT */

V4l = {(Vc,seqgrecak:=0,seqsendt:=4, TRcredit:=1,
TScredit:=1), (opt:=Null, PRSeq:=3, PRcredit:=2,
PSSeq:=0,PScredit:=1),Verdict :=Null}

/* V44 after the 4 DT received by SPEC */

V44 = {(Vc,seqrecak:=0,segsendt:=4, TRcredit:=1,
TScredit:=1), (opt:=Null, PRSeq: -4, PRcredit: =1,
PSSeq:=0,PScredit:=1),Verdict :=Null}

/* V48 after the 5 DT sent by LT */

V48 = {(Vc,seqrecak:=0,segsendt:=5, TRcredit:=1,
TScredit:=0), (opt:=Null, PRSeq:=4, PRcredit: =1,
PSSeq:=0,PScredit:=1),Verdict :=Null}

/* V51 after the 5 DT received by SPEC */

V51 = {(Vc,seqrecak:=0,segsendt:=5, TRcredit:=1,
TScredit:=0), (opt:=Null, PRSeq:=5, PRcredit:=0,
PSSeq:=0, PScredit:=1),Verdict :=Null}

/* V62 after the LT receives an AK. */

V62 = {(Vc,seqgrecak:=5,segsendt:=5,TRcredit:=1,
TScredit:=0), (opt:=Null, PRSeq:=5, PRcredit:=0,
PSSeq:=0,PScredit:=1) ,Verdict :=Null}

/* V67 after the SPEC sends a DT. */

V67 = {(Vc,seqrecak:=5,segsendt:=5, TRcredit:=1,
TScredit:=0), (opt:=Null, PRSeq:=5, PRcredit :=0,
PSSeq:=0,PScredit:=0),Verdict : =Null}

/* V70 after the LT receives DT. */

V70 = {(Vc,seqrecak:=5, seqsendt:=5, TRcredit:=0,
TScredit:=0), (opt:=Null, PRSeq:=5, PRcredit:=0,
PSSeq:=1,PScredit:=0),

Verdict:=Null}

V76 = {{Vc,seqrecak:=5, segsendt:=5, TRcredit:=0,
TScredit:=0), (opt:=Null, PRSeq:=5, PRcredit:=0,
PSSeq:=1,PScredit:=0),

Verdict:=Pass}
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Va0 { (Vc,seqgrecak:=0,segsendt:=0, TRcredit:=1,
TScredit:=0), (opt:=Null, PRSeq:=0, PRcredit:=5,
PSSeq:=0,PScredit:=1),Verdict:=Fail}

{ (Vc,seqrecak:=5,segsendt:=5, TRcredit:=1,
TScredit:=0), (opt:=Null, PRSeq:=5, PRcredit:=0,
PSSeq:=0,PScredit:=1),Verdict:=Fail}

{ (Vc,seqgrecak: =0, segsendt : =5, TRcredit: =1,
TScredit:=0), (opt:=Null, PRSeq:=4, PRcredit:=1,
PSSeq:=0,PScredit:=1),Verdict:=Fail}

{ (Vc,seqrecak: =5, seqsendt : =5, TRcredit:=0,
TScredit:=0), (opt:=Null, PRSeq:=5, PRcredit:=0,
PSSeq:=1,PScredit:=0),Verdict:=Pass}

Verdict attachments:

Fail: g6,9g90,9102,9103,9g61,g108,g116

Pass: g89 (starts in g76)

Vo1l

V102

V104

gl: <2,1,1,IDLE, E,E,E,E,E,E, V1>{INIT}
g2: <2,1,1,IDLE_MS, E,E,E,E,E,E, V1>{}
g3: <2,1,1,IDLE, E,E,E,E,E,E, V1>
{AT(Tsend (L, NDTreqg(CR)))}
g4: <3,1,1,IDLE, NDTreg(CR{"you", "me", "No","1","")),
E,E,E,E,E, Vl>
{AFTER(Tsend (L, NDTreq(CR)))}
g5: <4,1,1,IDLE, NDTreq(CR("you*, "me","No","1l","*)),
E,E,E,E,E, V1>{)}
g6: <5,1,1,IDLE, NDTreqg(CR{"you", "me","No","1l",6"")),
E,E,E,E,E, Vi>
{ (Verdict = Fail)}
g’7: <4,4,1,IDLE, E,E,E,E,E,E, V1>{}
g8: «4,1,1,IDLE, E,E,
NDTind(CR(*“you", *me", *No","1","*)),E,E,E, V1>
{AT (Sreceive (N, NDTind(CR)))}
g9: <4,1,5,IDLE, E,E,E,E,E,E, V9>
{AFTER(Sreceive (N,NDTind(CR))),
AT (Ssend (U, TCONind) )}
gl0: <«4,1,6,IDLE, E,E,E,E,
TCONind(“you*, *me", *No","1",“") ,E, V9>
{AFTER(Ssend (U, TCONind)),
AT (Treceive (U, TCONind) )}
gll: <4,1,6,IUT_WFTRESP_M1l, E,E,E,E,E,E, V9>
{AFTER(Treceive (U, TCONind) ) ,AT (Tsend (U, TCONresp) ) }
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gl2: <4,1,6,0PEN, E,E,E,E,E,
TCONresp (*1","*you*,"No"*,"*), V9>
{AFTER (Tsend (U, TCONresp) ),
AT (Sreceive (U, TCONresp) ) }
gl3: <4,1,7,0PEN, E,E,E,E,E,E, V9>
{AFTER (Sreceive (U, TCONresp)),
AT (Ssend (N, NDTreq(CC))) }
gld: <4,1,10,0PEN, E,E,E,
NDTreq(CC("me", “1","No","2","*)),E,E, V9>
{AFTER(Ssend (N,NDTreq(CC)))}
gl5: <4,8,10,0PEN, E,E,E,E,E,E, VO9>{}
glé: <4,1,10,0PEN, E,
NDTind(CC(“me*, "1","No","2","")),E,E,E,E, V9>
{AT (Treceive (L,NDTind(CC) ) )}
gl7: <6,1,10,0PEN, E,E,E,E,E,E, V17>
{AFTER (Treceive(L,NDTind (CC)))}
gl8: <7,1,10,0PEN, E,E,E,E,E,E, V17>
{AT (Tsend (L, NDTreq(DT))) }
glo9: <«8,1,10,0PEN,
NDTreq (DT ( "TMP1 (M1=A4,M2=20, .,M10=A0,
M11=A5,M12=A5,
M13=A0,.,M25=A0)", "True"*))),.E,E,E,E,E, V19>
{AFTER(Tsend (L,NDTreq(DT) ) )}
g20: <8,4,10,0PEN,E,E,E,E,E,E, V19>{(}
g2l: «8,1,10,0PEN,E,E,
NDTind (DT (DT ("TMP1 (M1=A4,M2=A0, .,M10=A0,
M11=A5,M12=A5,
M13=Aa0,.,M25=A0)", "True")),E,E,E, V20>
{AT (Sreceive (L,NDTind(DT) ))}
g22: <8,1,17,0PEN,E,E,E,E,E,E, V22>
{AFTER (Sreceive(L,NDTind (DT))),
AT (Ssend (U, TDATAind) ) }
g23: <8,1,10,0PEN,E,E,E,E,
TDTind ("TMP1l (Ml1=A4,M2=A0, .,M10=A0,
M11=A5,M12=A5,M13=A0,.,M25=A0)") ,E, V22>
{AFTER (Ssend (U, TDATAind) ),
AT (Treceive (U, TDATAind) ) }
g24: <8,1,10,0PEN_1,E,E,E,E,E,E, V22>
{ATTER(Treceive (U, TDATAiIind) )}
g25: «8,1,10,0PEN_M9,E,E,E,E,E,E, V22>({}
g26: <8,1,10,0PEN,E,E,E,E,E,E, V22>

i
|
|
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(AT (Tsend(L,NDTreq(DT)))}
g27: <15,1,10,0PEN,
NDTreq (DT (*TMP3 (TS1)", "True"))),E,E,E,E,E, V27>
{AFTER(Tsend (L, NDTreq(DT)))}
g28: <15,4,10,0PEN,E,E,E,E,E,E, V27>{(}
g29: <15,1,10,0PEN,E,E,
NDTind (DT (*TMP3 (TS1)", "True*))) ,E,E,E, V27>
{AT (Sreceive (L, NDTind (DT)))}
g30: <15,1,17,0PEN,E,E,E,E,E,E, V30>
{AFTER(Sreceive (L,NDTind(DT))),
AT (Ssend (U, TDTind) ) }
g31: <15,1,10,0PEN,E,E,E,E,
TDTind(*TMP3 (S1)") ,E, V30>
{AFTER(Ssend (U, TDTind) ),
AT (Treceive (U, TDTind) )}
g32: <15,1,10,0PEN_1,E,E,E,E,E,E, V30>
{AFTER(Treceive (U,TDTind) )}
g33: <15,1,10,0PEN,E,E,E,E,E,E, V30>
{AT (Tsend (L, TDTxreq(DT) ) )}
g34: <16,1,10,0PEN,
NDTreq (DT ("TMP4 ("1", "you","No", *test_data"))),
E,E,E,E,E, V34>
{AFTER (Tsend (L, NDTreq(DT)))}
g35: «16,4,10,0PEN,E,E,E,E,E,E, V34>(}
g36: <16,1,10,0PEN,E,E,
NDTind (DT ("TMP4 ("1", *you", "No", "test_data"))),
E,E,E, V34>
{AT (Sreceive(L,NDTind (DT)))}
g37: <16,1,17,0PEN,E,E,E,E,E,E, V37>
{AFTER(Sreceive (L,NDTind(DT))),
AT (Ssend (U, TDTind) ) }
g38: <16,1,10,0PEN.E,E,E,E,
TDTind(“TMP4 (1", *you", *No", "test_data*)"),E, V37>
{AFTER(Ssend (U, TDTind) ) ,AT(Treceive(U, TDTind) )}
g39: <16,1,10,0PEN_1,E,E,E,E,E,E, V37>
{AFTER(Treceive (U, TDTind))}
g40: <16,1,10,0PEN,E,E,E,E,E,E, V37>
{AT (Tsend (L,NDTreq(DT) ) )}
g4l: <17,1,10, OPEN,
NDTreq(DT ("TMP5()")), E, E,E,E,E, V41>
{AFTER(Tsend (L, NDTreq(DT))) }
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g42:
gd3:

gdd:

gd5:

gdé:

gd7:

gd8:

gd9:
g50:

g51:

g52:
g53:
g54:

g55:

g56:

g57:
g58:

<17,4,10,0PEN,E,E,E,E,E,E, V4l>(}
<i17,1,10,0PEN,E,E,
NDTind (DT ("TMP5()")), E, E,E, V41>
{AT (Sreceive(L,NDTind(DT)))}
<17,1,17,0PEN,E,E,E,E,E,E, V44>
{AFTER (Sreceive (L, NDTreq(DT))),
AT {Ssend (U, TDTind)} )}
<17,1,10,0PEN,E,E,E,E,TDTind("TMP5 () ") ,E, V44>
{AFTER (Ssend (U, TDTind) ) ,AT (Treceive (U, TDTind) )}
<17,1,10,0PEN_1,E,E,E,E,E,E, V44>
{AFTER (Treceive (U, TDTind)} )}
<17,1,10,0PEN,E,E,E,E,E,E, V44>
{AT (Tsend (L ,NDTreq(DT)) )}
<9,1,10,0PEN,
NDTreq (DT ("TMP8()")), E, E,E,E,E, V48>
{AFTER(Tsend (L,NDTreq{(DT)}) ), INTERNAL}
<9,4,10,0PEN,E,E,E,E,E,E, V48>{(}
<9,1,10,0PEN,E,E,
NDTind (DT ("TMP8()")), E,E,E, V48>
(AT (Sreceive (L,NDTind (DT))}}
<9,1,17,0PEN,E,E,E,E,E,E, V51>
{AFTER (Sreceive (L,NDTind(DT))),
AT (Ssend (U, TDTind) )}
<9,1,10,0PEN,E,E,E,E,TDTind("TMP8(}) ") ,E, V51>
{AFTER (Ssend (U, TDTind) ) ,AT(Treceive (U, TDTind) )}
<9,1,10,0PEN_1,E,E,E,E,E,E, V51>
{AFTER (Treceive (U, TDTind) } ,AT (Tsend (U, TDTreq) )}
<9,1,10,0PEN,E,E,E,E,E, TDTreq("TMP8x ()", V51>
{AFTER (Tsend (U, TDTreq) ) , INTERNAL}
<9,1,18,0PEN, E,E,E,E,E,TDTreq("TMP8r() "), V51>
{AT {(Ssend (N,NDTreq(AK) ) )}

<9,1,10,0PEN,E,E,E,NDTreg(AK("2","0")),
E,TDTreq("TMP8xr()"),V51>

{AFTER (Ssend (N,NDTreq{(AK) ) )}
<9,8,10,0PEN,E,E,E,E,E, TDTreq("TMP8x () ") ,V51>{}
<9,1,10,0PEN, E,NDTind(AK("2","0")),E,E,E,
TDTreq("TMP8r{)"), V51>{(}

<10,1,10,0PEN, E,NDTind(aK(*2","0")),E,E,E,
TDTreq("TMP8r()"), V51>{(}

: <11,1,10,0PEN, E,NDTind(AK("2","0")),E,E,E,

TDTreq("TMP8r()"), V51>
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(AT (Treceive(L,NDTind (AK))) }
/* g59 is from g58 */

g6l:

<12,1,10,0PEN, E,NDTind(AK("2","0")),E,E,E,
TDTreq("TMP8x()"), V6l>
{AT (Treceive (L,NDTind(AK))), (Verdict = Fail)}

/* g60 is from g58 */

g62:

g63:
géd:

g65:

g66:

g67:

g92

g68:
g69:

g70:

g7l:

g72:
g73:

g74:

g75:
g7e6:

g77:

g78:

<13,1,10,0PEN, E,E,E,E,E,TDTreq("TMP8r()"), V62>
(AFTER(Treceive (L,NDTind (AK)) )}
<9,1,10,0PEN,E,E,E,E,E, TDTreq("TMP8xr {)"),V62>{}
<14,1,10,0PEN, E,E,E,E,E,TDTreqg("TMP8r()"), V62>
{seqrecak >=segsendt}
<18,1,10,0PEN,E,E,E,E,E, TDTreq ("TMP8X () ") ,V62>
{AT (Sreceive (U, TDTreq) )}
<18,1,16,0PEN, E,E,E,E,E,E, V62>
{AFTER(Sreceive (U, TDTreq)),
AT (Ssend (N, NDTreq(DT) ) )}
<18,1,23,0PEN, E,E,E,
NDTreq(DT ( "TMP8r()",EOQOT) ,E,E, V67>
{AFTER (Ssend (N,NDTreq(DT) )} ), INTERNAL )}

:<18,1,10,0PEN, E,E,E,

NDTreq (DT ("TMP8x () " ,EOT) ,E,E, V67>{}
<18,8,10,0PEN, E,E,E,E,E, V67>{}
<18,1,10,0PEN, E,
NDTind("TMP8r()"),E,E,E, V67>
{AT (Treceive (L, NDTind(DT)) )}
<19,1,10,0PEN, E,E,E,E,E, V70>
{AFTER(Treceive(L,NDTind (DT} ) ),
AT (Tsend (L, NDTreq(AK)) )}
<22,1,10,0PEN, NDTreq(AK()),E,E,E,E,E, V70>
{AFTER(Tsend (L,NDTreq(AK)))}
<22,4,10,0PEN, E,E,E,E,E,E, V70>{}
<22,1,10,0PEN, E,E,NDTind(AK()),E,E,E, V70>
{AT (Sreceive (NDTind(AK)))}
<22,1,22,0PEN, E,E,E,E,E,E, V70>
{(AFTER(Sreceive (NDTind (2K)))}
<22,1,10,0PEN, E,E,E,E,E,E, V70>{)}
<23,1,10,0PEN, E,E,E,E,E,E, V76>
{AT (Tsend (L, NDTreq(DR) ) )}
<24,1,10,0PEN, NDTreq(DR()),E,E,E,E,E, Vi6>
{AFTER(Tsend (L, NDTreqg(DR) )} }
<25,1,10,0PEN, NDTreq(DR()),E,E,E,E,E, V76>{}
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g79: <25,8,10,0PEN, E,E,E,E,E,E, V76>{}

g80: <25,1,10,0PEN, E,E,NDTind(DR()),E,E,E, V76>
{AT (Sreceive (NDTind(DR) ) )}

g8l1: <25,1,14,0PEN, E,E,E,E,E,E, V76>
{AFTER (Sreceive (NDTind (DR))),
AT (Ssend (U, TDISind) )}

g82: <25,1,15,0PEN, E,E,E,E,TDISind(),E, V76>
{AFTER(Ssend (U, TDISind) ),
AT (Ssend (N, NDTreq(DC)) )}

g83: <«<25,1,1,0PEN,E,E,E,NDTreq(DC()),TDISind(),E, V76>
{AFTER(Ssend (N,NDTreq(DC))),
AT (Treceive (U,TDISind) )}

g84: <25,1,1,IDLE_M3, E,E,E,NDTreq(DC()),E,E, V76>
{AFTER(Treceive(U,TDISind))}

g85: <25,1,1,IDLE, E,E,E,NDTreq(DC()),E,E, V76>(}

g86: <25,8,1,IDLE, E,E,E,E,E,E, V76>{(}

g87: <25,1,1,IDLE, E,NDTind((DC)),E,E,E,E, V76>
{AT (Treceive (L,NDTind(DC)))}

g88: <28,1,1,IDLE, E,E,E,E,E,E, V76>
{AFTER (Treceive(L,NDTind(DC)))}

g89: <«29,1,1,IDLE, E,E,E,E,E,E, V76>{}

/* reached from state gl5 */

g90: <5,8,10,0PEN, E,E,E,E,E,E, V90>{(verdict=Fail)}

/* reached from state g66 */

g91: <21,8,10,0PEN, E,E,E,E,E, V91>{(verdict=Fail)}

/* from g48 */

g93: <9,1,11,0PEN, NDTreq (DT ("TMP8r()")),
E,E,E,E,E, V48>
{AT (Ssend (U, TDISind) )}

g94: <9,1,12,0PEN, NDTreq(DT("TMP8r()*)),E,E,E,
TDISind ("normal_disconnect", *Null"),E, V48>
{AFTER(Ssend (U, TDISind) ),
AT (Ssend (N, NDTreq(DR)) )}

g95: <9,1,9,0PEN, NDTreq(DT("TMP8r()")),E,E,
NDTreq(DR("normal_disconnect*, *Null")),
TDISind ("normal_disconnect®, "Null"),E, V48>
{AFTER(Ssend (N,NDTreq(DR)) ),
AT (Treceive (U,TDISind) )}

g%96: <9,1,9,IDLE_M3, NDTreq(DT("TMP8r()*“)),E,E,
NDTreq(DR("normal_disconnect", "Null*)),E,E, V48>
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{AFTER (Treceive (U, TDISind) )}
g97: <9,1,9,IDLE, NDTreq(DT("TMP8x()")),E,E,
NDTreq (DR ("normal_disconnect", "Null*)) ,E,E, V48>
{}
g98: «<9,8,9,IDLE,NDTreq(DT("TMP8X()")) ,E,E,E,E,E, V48>
{}
g99: «9,1,9,IDLE, NDTreg(DT("TMP8r()")),
NDTind (DR("normal_disconnect", “Null")),
E’E,E'E, V48>(*}*******
gl00: <10,1,9,IDLE, NDTreq(DT("TMP8r()")),
NDTind (DR ("normal_disconnect", "Null")),
E,E,E,E, V48>
{ (seqrecak < segsendt)}
glO0l: <«11,1,9,IDLE, NDTreq(DT("TMP8r()"}),
NDTind (DR(“"normal_disconnect", "Null")),
E,E,E,E, v48>{}
gl02: <31,1,9,IDLE,
NDTreq (DT ("TMP8x () *)),E,E,E,E,E, V102>
{(Verdict = Fail)}
gl03: <12,1,9,IDLE, NDTreq(DT("TMP8r()")),
NDTind (DR(“normal_disconnect", "Null")),
E,E,E,E, V102>
{ (Verdict=Fail)}
/* from g80 */
gl04: <25,1,18,0PEN,E,E,
NDTind (DR("normal_disconnect", "Null")),
E,E,E, V76> {AT(Ssend(N,NDTreqg(AK)))}
gl05: <«25,1,10,0PEN,E,E,
NDTind (DR(“"normal_disconnect", "Null")),
NDTreqg (AK("2",%0")),E,E, V76>{}
gl06: <25,8,10,0PEN, E,E,
NDTind (DR{"normal_disconnect", "Null")),
E,E,E, Vi6>{)}
gl07: <25,1,10,0PEN,E,NDTind(AK("2","0")),

NDTind (DR("normal_disconnect', *Null®)),
E,E,E, V76>{}
gl08: <27,1,10,0PEN, E,NDTind(AK("2","0")),

NDTind (DR("normal_disconnect", "Null")),
E,E,E, V108>{(Verdict = Fail)}
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gl09: <26,1,10,0PEN, E,E,
NDTind (DR ("normal_disconnect", *Null")),
E,E,E, V108> {(Verdict = Fail)}
gl10: <26,1,14,0PEN, E,E,E,E,E,E, V108>
{ (seqrecak >= segsendt), (Verdict = Fail)}
glll: <26,1,15,0PEN, E,E,E,E,
TDISind ("normal_disconnect"',*Null"),E, V108>
{AT (Tsend(L,NDTreq(DR))), (Verdict = Fail)}
gll2: <26,1,1,0PEN, E,E,E,NDTreq(DC),
TDISind (*normal_disconnect",*Null*),E, V108>
{AFTER (Tsend (L ,NDTreq(DR) )),
AT (Treceive (U,TDISind)), (Verdict = Fail)}
gll3: <26,1,1,IDLE_M3, E,E,E,NDTreq(DC),E,E, V108>
{AFTER (Treceive(U,TD1Sind)), (Verdict = Fail))}
gli4: <26,1,1,IDLE, E,E,E,NDTreq(DC),E,E, V108>
{ (Verdict = Fail)}
gll5: <26,8,1,IDLE, E,E,E,E,E,E, V108>
{(Verdict = Fail)}
gll6: <26,1,1,IDLE, E,NDTind(DC),E,E,E,E, V108>
{ (Verdict = Fail)}

rl:= <gl, g2, TMP_1>, r2:= <g2, g3, TMP_2>,
r3:= <g3, g4, LT_1> rd:= <g4, g5, LT_2>,
r5:= <y5, g6, LT_4>, rés;= <g5, g7, USP_9>
t7:= <g7, g8, USP_10:, r8:= <g8, g9, SPEC_1>,
r9:= <g9, gl0, SPEC_2> r10:= <gl0, gll, TMP_3>,
rll:= <gll, gl2, TMP_4>, ri2:= <gl2, gi13, SPEC_5>

ri3:= <gl3, gl4, SPEC_6>, rld:= <gl4, gl5, USP_11>,
ri5:= <gl5, gl6, USP_12> rl6:= <gl6, gl7, LT_5>,

rl7:= <gl7, gl8, LT_6>, rl8:= <gl8, gl9, LT_7>
rl9:= <gl%, g20, USP_9>, r20:= <g20, g2l1, USP_10>,
r2l:= <g2l, g22, SPEC_19> r22:= «g22, g23, SPEC_20>,
r23:= <g23, g24, TMP_5>, r2d:= <g24, g25, TMP_6>
r25:= <g25, g26, TMP_7>, r26:= <g26, g27, LT_8>,
r27:= <g27, g28, USP_9> r28:= <g28, g29, USP_10>,
r29:= <g29, g30, SPEC_19>, 1r30:= <g30, g3l1, SPEC_20>
r3l:= <g3l, g32, TMP_5>, r32:= <g32, g33, TMP_11>,

r33:= <g33, g34, LT_16>

235



r56:

r58: =
r66:=
r62d:=

ré4:

r66:=

g51,

gs7,
g59,
g6l,
gb63,
gés,
g67,

USP_9>,
SPEC_19>
TMP_5>,
LT 17>,
Usp_10>
SPEC_20>,
TMP_12>,
USP_S>
SPEC_19>,
TMP_5>,
SPEC_17>

USP_11>
LT_9>,
LT 12>
LT_14>,
LT_19>,
SPEC_32>

USP_11>,
LT _ 22>,
USP_9>

r35:=
ri7:=
r39:=
rd4l:=
rd43:=
r45:=
r47:=
rd49:=
r51:=
r53:=
r55:=

r57:=
r59:=
rél:=
r63:=
r65:=
r67:=

r68:=
r70:=

Uusp_10>,
SPEC_20>
TMP_8>
USP_9>,
SPEC_19>,
TMP_5>
LT_18>,
usp_10>,
SPEC_20>
TMP_13>,
SPEC_18>

UspP_12>
LT_10>,
LT_13>,
LT_15>
SPEC_31>,
SPEC_33>

Usp_12>
LT_23>,

r99.

riol:
rl03:
r105:
rl07:

n

g77,
g79,
g8l,
g83,
g85s,
gs87,
g8g,
g91,
g94,
g96,
g98,

<g9%99, gl00,

<gl01, gl02, LT_11>,
<g80, glo4,

USP_10>,
SPEC_30>
LT_25>,
USP_11>,
SPEC_14>
SPEC_16>,
TMP_10>,
USP_12>
LT_30>,
LT_21>,
SPEC_8>
TMP_9>,
USP_11>,
LT_9>

r73:=
r75:=
r77:=
r79:=
r8l:=
r83:=
r85:=
r87:=
rg89:=
r92:=
r94:=
r96:=
r98:=
rl00:
rl02:

SPEC_17>,r104:

<gl05, gl06, USP_11>,r106:

<gl07, gl108, LT_28>,

rl08:
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il

g4,
g6,
g78,
g80,
g82,
g84,
g86,
g8s,
g9g0,
g93,
g95,
g97,
g99,

glol,
glo3,
gl0s,
glo7,
gloo9,

SPEC_28>,
LT_24>,
LT_26>
USP__12>I
SPEC_15>
TMP_9>
USP_11>,
LT_29>,
LT_4>
SPEC_7>,
SPEC_9>,
TMP_10>
USP_12>,
LT_10>
LT_12>
SPEC_18>,
USP_12>,
LT _27>



ri09:= <gl109,9110, SPEC_14>,
rlll:= <glll,gll2, SPEC_16>,
ril3:= <gl1l13,gll4,T™MP_10>,

rllS5:= <gll5, glle6, USP_12>

r1lo0:
rlii2:
rli4:

<gl10,gl1l1ll, SPEC_15>,
<gll2,glll3, TMP_9>
<glld4, glls,USpP_11>
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