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ABSTRACT

VERSATILE REED-SOLOMON DECODERS

Yousef Ralableh~-Shayan, Ph. D.,
Concordla Unlversity, 1990.

This thesls is concerned with the development of versatile Reed-Solomon
(RS) decoder structures. Reed-Solomon decoding algorithms can be divided
Into two categorles: 1) syndrome-based algorithms which can be further divided
Into algebralc decoding and transform decoding algorlthms, 11) the time-domaln
decoding algorithms which are time-domaln equivalent of syndrome-based algo-
rithms. These two categorles of algorlthms are compared from the structural
polnt of view and It Is shown that time-domaln algorithms are the best candl-
dates for designing versatile hardware decoders. However, for the sofrware

decoders, It I1s advantageous to use the syndrome-based algorithms.

The decodlng algorithms of RS codes requlre algebralc operatlons over
Galols flelds. Parallel-1n/parallel-out muitipllers and Inverters In Galols fields
are consldered and least complex structures for the multiplier are introduced
both In standard and normal baslis. A new normal basls multiplier Is presented
whlich 1s less complex compared to the Massey-Omura multipller. A unlversal
multipller Is also introduced which can muitiply two elements of Galols fleld

2™ . m =4,5,8,7,8.

In this thesls, the time-domaln algorithm based on transform decoder Is
restructured and two versatile decoder structures are presented. Both of these
structures are simple and modular, and hence sultable for Very-Large-Scale-
Integration (VLSI) deslgn. These versatile decoders can be used for decoding

any primitlve RS code defined In a specific Galols fleld. The error correction
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capabllity of these versatile decoders 1s conflgurable and they can correct both
errors and erasures. The structure of a universal RS decoder Is also presented.
The time-domalin decoding algorithm based on algebralc decoder 1s modified to
reduce the complexity of the unlversal decoder. This unlversal decoder can
decode any primitive RS code In Galols fleld 2™, for m =4,5,6,7,8. The error
correctlon capabllity and the size for the Galols fleld of thls decoder are
configurable. To Increase the versatility of the decoder, a method Is also Intro-

duced for decoding the RS codes generated by any generator polynomilal.
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CHAPTER ONE

INTRODUCTION

1.1. Motivation

There are many communication channels which are affected by distur-
bances that cause transmission errors to cluster Into bursts. For example, on
telephone llnes, a stroke of lightning or a human made electrical disturbance
frequently affects many adjacent transmitted digits. Other examples of bursty
nolse are intentlonal jJamming, and fading. Storage medla such as film, mag-
netic tape and magnetic disk also suffer from burst errors. Burst errors can

occur on these systems through scratches, defects, etc.

A typlcal data transmisslon system (or a data storage system) can be
represented by the block dlagram as shown In Flg. 1.1. The channel encoder,
accordlng to some rules, adds some redundancy to the digltal information
sequence d and transforms it Into a longer blnary sequence ¢ called a code
word. The channel encoder Is implemented to ~ope with the nolsy condition In
which the resulting code sequence is to be transmitted or stored. The function
of the modulator Is to assign a slgnal to each output diglt of the channel
encoder. The output of the modulator enters the channel and Is disturbed by
nolse. The demodulator makes a decislon for each received slgnal, to determine
the transmitted digit, e.g., O or 1 In the case of binary transmisslon. Thus, the
output of the demodulator Is a sequence y of (blnary) digits. Because of the

channel nolse disturbance, the recelved sequence y might not match the code

word ¢. The code used for channel encoding should be such that the code
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words have the capabllity of combating the transmisslion errors ¢ . The channel
decoder, based on the recelved sequence v, and thc rules of channel encoding,
trles to correct the errors. If the errors Introduced In the channe! are not more
than the error correction capabliity of the code, the decoder corrects all the

errors and outputs the transmitted information sequence d.

The cholce of code depends on the characteristics of the channel. For
channels which are disturbed by burst errors, non-binary Bose-Chaudhuri-
Hocquenghem (BCH) codes are sultable. Reed-Solomon (RS) codes, discovered
by Reed and Solomon in 1960 (1}, are an Important subelass of non-binary BCH
codes. They are also an !mportant subclass of Maximum Distance Separable
(MDS) codes. Reed-Solomon codes have a very large burst error correcting
capabllity when the symbols are transmltted bit by bit. These codes can also
correct a large number of random errors and erasures 1n a code word. RS codes
are normally used concatenated with convolutional codes, In order to make the

use of the possible soft declslon informatlon of the demodulator.

Recently, RS codes have found many applicatlons due to thelr error
correcting capabllitles and optimum structure. For example they are used In
space, spread spectrum and mobile communlications (2]-{10}. They have also
wldespread applcatlons In magnetic and optical recording systems [11]-[13].
Every particular application has its own distinct requirements such as the errcr
correction capabllity of the code and the code word length. Moreover, the
encoder and decoder structures are different from throughput and complexity

points of view.

For encoding RS codes, the general non-blnary BCH encoding algorithms
are used. The RS encoding algorithms are simple In structure and can be used
to design RS encoders. Recently, Berlekamp has developed new concepts and

techniques for !mplementation of RS encoders {14] which reduces the necessary
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hardware. Using this concept an RS(255, 223) encoder has been reallzed on a

single Very-Large-Scale-Integration (VLSI) chip [15].

The existing algorithms for decoding RS codes have complicated struc-
tures. To design an RS decoder with specified requirements, a long deslgn time
1s needed and the outcome 1s a complex decoder with a large number of
Integrated-Circults (IC). This results in a large, high welght, high power con-
sumption and unrellable RS decoder, which Is a disadvantage speclally in space
communications. To solve this problem, VLSI Implementation of RS decoders
can be considered. VLSI systems have the potential advantages of significant
savings In size, welght, and consumption while at the same time providing

higher rellabllity over systems Implemented in discrete loglc circults.

VLSI design 1s time consumlng and very expensive. To decrease the design
time, cellular structures for RS decoders should be Introduced. It may also be
eflcient to develop a unlversal decoder on a VLSI chip, to save the design cost
of many different RS decoders. By a universal decoder we mean a decoder that
can be used to decode any primitive RS codet up to the limits of the siorage
registers assoclated with the chip. WIithln these llmlits it should correct any
number of errors and erasures, depending on the code, and for any block length

and symbol alphabet.

1.2. Existing Reed-Solomon Decoders

One of the decoding algorithms for Reed-Solomon codes is the algebrale
decoding algorithm [16]. In thls algorithm, the syndrome 1s computed from the
recelved vector. This step can be consldered as a transformatlon of the
recelved vector into the frequency domain. Then the error locations and error

values are computed In time domaln and flnally the error correction 1Is

1 In this thesis we only consider primitive RS codes.



performed. This algorithm Is performed partly in time and partly in frequency

domain and hence it Is called hybrid decoder [25].

Several papers and books In the area of error control coding discuss the
structure of hardware RS decoders based on algebralc decoding algorithm [18]-
[20). All of these designs use llnear feedback shift registers. These structures
are very complex, noncellular, and hence not sultable for VLSI implementation.
Moreover, they can only be used for a specific RS code and can not be easlly

generallzed for designing a unlversal RS decoder.

Reed-Solomon decoders can also be lmplemented using general or speclal
purpose processors [9],[22],{43],[50]. The first speclal purpose computer sultable
for RS decoding, called GF1 processor, was presented by Berlekamp In 1979
(21]. Cohen has studled software RS decoders using general purpose micropro-
cessors and GF1 processor [22]. He has shown that for software decocers the
algebrale decoding Is faster than other decoding algorithms for high rate codes.
Then, by using the algebralc decoding algorithm, he has discussed Implementa-
tlon of RS decoders based on general purpose, bit-slice and speclal purpose
microprocessors (GF1). He has shown that using GF1 processor and algebralc
decoding one can have a worst case throughput of 5 Mb/s for RS(255, 239)
code, while, 1n the case of general purpose microprocessors such as Intel 8086
and hit-slice mlcroprocessors the achlevable throughputs are 15 and 200 Kb/s,
respectively. The proposed snecial purpose mlcroprocessor was useful in design-
ing high rate RS decoders, but for low rate decoders the speed decreases
rapldly. Because large numbers of chips are required, decoders based on thils
processor are large, high weight, high consumption and unreliable. Moreover,
for each RS code a separate software should be developed and for development

and test of the software, special development tools are requlred.
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To solve the above problems, VLSI implementation of RS decoders have
been considered. Recently, two pipellne VLSI Reed-Solomon decoders based on
algebralc decoding algorithm have been Introduced [24],[59]. These structures
are sultable for the deslgn of individual RS decoders with fixed error correction
capabllity and block length. They can be bullt on VLSI chlps since they have
modular and cellular structures. These structures use many kinds of cells for
different steps of the algebralc decoding algorithm. The number of cells for
each step of the algorithm depends on the error correctlon capabllity of the
code. Because of these reasons, they can not be used In the design of a univer-

sal decoder.

Reed-Solomon codes can also be decoded using the transform decoding
algorithm [25]. This algorithm 1s performed completely In the frequency
domaln, 1. e., even the error values are evaluated 1n the frequency domain. At
the end of thils algorithm an Inverse Fourler transform Is needed to convert the

corrected data into time domaln Information.

Several digital slgnal processing techniques can be used In error control
coding [25])-[28]. In particular, we can apply many avallable Fast-Fourler-
Transform (FFT) algorithms in digital signal processing te error control codlng.
These FFT algorithms reduce the decoding time of software decoders. As an
example, fast syndrome calculatlon can be done using the Chinese Remalnder
Theorem and Winograd's algorithm [26]-[28]. But the problem with FFT tech-
niques 1s that most of them can be used for certain block length and error

correcting capabllities and therefore are not useful for universal RS decoders.

Recently, some attempts have been made to modify transform decoding
algorithm a_d present structures sultable for hardware decoders uslng VL.SI
technology. Two VLSI architectures have been Introduced both uslng

transform decoding algorithm. The first design [29), uses Linear-Feedback-
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Shift-Reg'ster (LFSR) synthesis circult for inding the error locator polynomial.
In [29], two kinds of VLSI chips are deslgned as the baslc bullding blocks for
RS decoders. These baslc blocks are not the same for different finite flelds. An
RS(255, 223) decoder can be made using 40 VLSI chips and 100 Small-Scale-
Integration (SSI), Medium-Scale-Integration (MSI) and memory chips. Thls
amount Is approximately 10% of chip count compared to thelr counterparts
Implemented using SSI and MSI chips. In [30], a plpeline structure of a
transform RS decoder similar to a systollc array 1s developed. Thls structure s
very modular and cellular and hence 1t Is more sultable for VLSI design com-
pared to the structure of [29). This structure 1s very simillar to the plpeline
structure based on algebrale decodlng. Thls systolle structure is also only good
for deslgning Indlvidual RS decoders with filxed block length and error correc-

tlon capabllity. However, It 1s not sultable for deslgn of universal RS decoders.

In [31)}, a unlversal transform decoder Is proposed. Thls hardware decoder
can decode a wide range of RS codes; the symbol flelds range from 4 to 8 bits,
the code lengths range from 15 to 255 symbols, and the rates are programmable
downward to a minilmum of one-half. As an example the (255,127) RS code can
be decoded by this decoder with throughput of 4 Mb/s. This decoding speed 1s
much higher than the speed of the software universal decoder based on GF1
processor [22]. The difficulty with this decoder 1s that it Is very complex and
the deslgn tlme of this decoder Is very high. The most difficult part of the
design Is the control unit of the system which is complex because of the capa-
bility of the decoder for decoding wide range of codes. Moreover, this unlversal
decoder Is non-systematlc, hence it loses the entire Information block when the

errors in the channel are higher than its error correctlon capabillity.

In 1084 Blahut [32] Introduced fully time-domalr decoding algorithms.

These algorithms are equivalents of algebralc and transform decodlng algo-
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rithms In time domaln. In these algorithms no Fourler transform (syndrome
computation) or Inverse Fourler transform are needed and the algorithms work
directly on the raw Input data. This Is part of the reason why Blahut felt that
these algorithms are good candldates for universal decoders. In thls thesls, we

will Introduce a few structures based on these algorithms.

1.3. Existing Multipliers and Inverters in Galois Fields

Reed-Solomon codes utllize the finite fleld of 2™ elements. This finite fleld
(Galols fleld) Is denoted by GF(2™ ) and the size of each element of the fleld Is
m bits. The encoding and decoding of an RS code requlre algebralc operations
in the chosen fleld GF(2™ ). The operations of addition, subtractlon, multipll-
catlon and dlvislon In GF(2™) are quite different from the usual binary arlth-
metic operations. Addition and subtraction In GF(2"‘ ) are bit-wise exclusive-or
operatlons. Thus, It Is easler than the usual binary additlon and subtraction.
Although arithmetic In GF(2™ ) does not involve carrles, multiplicatlon and
divislon are more complex and difficult than binary Integer multiplication and

division.

Several methods have been proposed to realize multiplication and division
In finlte flelds. Some of these methods use look-up tables [16],[22],{33},[45]
which are used In software decoding. Inversion can also be done In software
decoding by the use of look-up table techniques and divislon Is implemented by
an Inverslon followed by a multiplication. Multlplicatlon and Inverslon in finite
flelds can be also done uslng hardware clrcultry. Most of the clrcults proposed
for muitipllers have serlal-ln/serlal-out structures [14],[16},[34],[35],[48]. These

kind of multipliers are malnly used in data encryption.

For hardware Reed-Solomon decoders, parallel-in/parallel-out multipilers

are required. Many such multiplier structures are avallable [36]-[41]. Some of
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these structures are cellular, but complex [36)-[39) and some others are noncel-

lular [40].

Galols fleld elements can be represented with respect to a standard basls or
a normal basls. For each of these bases, there are many polynomlials which can
generate Galols flelds and the complexity of the multipllers depend on the
cholce of basls and polynomial [42],[44]. In this thesls, the multipller structures
are studled, compared, and new structures are Introduced. Unlversal multl-
pllers are alsc studled since they are used in the deslgn of unlversal decoders,
The unlversal multipller Is capable of multiplylng two elements of Galols flelds
In GF(2™ ) for m =4,5,8,7,8.

Inverter structures are very complex [41], and hence many efforts [30),[47]
have been made to avold inversion in the decoding algorithms. But the exlsting

algorithms still suffer from at least one Inversion clrcultry. Therefore new

Inverter structures should be developed speclally for universal Inverters.

1.4. Thesis Outline

As discussed before, to design an RS decoder with specified requirements, a
long design time s needed and the outcome Is a complex decoder. Thls results
In a large, high welght, high power consumption and unrellable RS decoder.
VLSI impiementatlon of RS decoders can be considered to solve these problems,
VLSI design 1s time consuming and very expensive. To decrease the design
time, cellular structures for RS decoders should be introduced which uses the
same cell many tlmes. To share the expense and the development time a versa-
tlle decoder on a VLSI chip can be consldered. A versatlle RS decoder Is able

to correct any number of errors and erasures for 2 wide range of RS codes.
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The maln objective of thls research 1s to search for structures of versatlle
Reed-Solomon decoders suitable for VLSI deslgn. The versatile decoder should

have a cellular structure conslsting of simple cells.

In Chapter 2, after a brlef review of the characteristics of Reed-Solomon
codes, RS decoding algorithms are presented. These algorithms are classified
into two maln categorles: 1) syndrome-based algorithms which can be further
divided Into algebralc decodlng and transform decoding algorithms, 1) the
time-domaln decoding algorithms which are tlme-domaln equlvalent of
syndrome-based algorithms. These two categorles of algorithms are compared
from the structural polnt of vlew and It Is shown that time-domaln algorlthms

are the best candldates for designing versatile hardware decoders.

RS decoders require computations In Galols flelds such as parallel-
In/parallel-out multipliers and multiplicatlve inverters. The complexity of an
RS decoder Is also dependent on the complexity of arithmetle functions in
Galols flelds. In Chapter 3, the arithmetics In these finite flelds are discussed.
Two maln representation of the fleld elements, standard and normal basls, are
explalned. A new normal basis multipller Is Introduced which has less complex-
ity compared to Massey-Omura multipller. The least complex multlpllers 1In
both bases are determined and 1t Is shown that the standard basls multiplier
has less complexity compared to normal basls multiplliers. In normal basls, a
low complexity structure Is avallable for the Inverter, but In standard basls
there is no such an Inverter. A unlversal multipller capable of multlplylng two
elements of GF(2™) for m =4,5,8,7,8 Is also Introduced In ctandard basls.
Note that there 1s no low complexity universal Inverter avallable In non of the

two bases.
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As discussed In Chapter 2, tlme-domasaln algorithms are sultable for the
design of versatile hardware decoders. In Chapter 4, time-domaln decoding
algorithm based on transform decoder 1s consldered and a versatile decoder
structure for correcting errors and erasures Is Introduced. This decoder can
decode RS codes with varlable error correction capabliity defined over a flxed
Galols fleld. It 1s shown that hardware versatile decoders based on syndrome-
based algorithms requlre more circultry and 1 more complex compared to the

structure introduced in this chapter.

In Chapter 5, the tlme-domaln decoding algorlthm based on transform
decoder Is restructured In order to make it suitable for introduclng cellular
decoder structures. A cellular decoder Is Introduced to decode RS codes defined
In a fixed Galols field having varlous error correctlon capablilities. The intro-
duced decoder can be designed using n lidentical cells where n Is the code
length. The slmple deslgn of this cell and the control eircultry make the intro-

duced decoder structure attractlve for VLSI implementation.

Since unlversal inverters are falrly complex, 1t Is desired to reduce the
number of Inversions used In RS decoders. In Chapter 8, a technlque 1s Intro-
duced to reduce the number of inverslons in the tlme-domaln decoding algo-
rithm based on algebralc decoder. The modifled algorithm Is used In the
universal RS decoder to decrease the complexity of the unlversal decoder. This
universal decoder can decode any RS code In GF(2™ ), for m =4,5,6,7,8. In thls
chapter, a structure Is also Introduced to decode RS codes generated by any

generator polynomlial.

" For completeness of the thesls, software RS decoders are considered 1n
Chapter 7. Because of the structure of tue t!lme domaln algorithms, the
software for versatlle decoders can be easlly written using these algorithms.

However, this polnt Is not lmportant since even a badly structured algorithm
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can be written In software with a good structure. In this chapter, the decoding

algorithms are compared and It Is shown that time-domaln algorithms are

-

slower than syndrome-based algorithms for software RS decoders. A method Is

also Introduced for fast software decoding of high rate RS codes.

Chapter 8 con:luces the thesls with a summary of results and suggestions

for further research.
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CHAPTER TWO

REED-SOLOMON CODES AND DECODING ALGORITHMS

In this chapter, first the structure of Reed-Solomon codes and thelr proper-
tles are described. Then syndrome-based RS decoding algorithms and thelr
time-domaln equivalents are explained. Flnally the decodlng algorithms are

compared from structural polnt of view.
2.1. Reed-Solomon Codes

2.1.1. Description

Reed-Solomon codes are a speclal subclass of generallzed BCH codes. The
BCH codes form a large class of powerful cyclic codes. Blnary BCH codes were
discovered by Hocquenghem in 1959 [51] and Independently by Bose and Chau-
dhur! 1n 1960 [52). Generallzation of the binary BCH codes to codes In p™
symbols (where p 1s a prime) was obtained by Gorensteln and Zlerler In 1961
[53). The RS codes were introduced by Reed and Solomon 1n 1960 (1] indepen-

dently of the works by Hocquenghem, Bose, and Chaudhuri.

For any cholce of positive Integers s and t, there exlsts a ¢ -ary BCH code
of length n =¢*-1 (¢t <n), which Is capable of correcting any comblnation of ¢
or fewer symbol errors (¢ Is a prlme power). Let a be a primlitive element In
the fleld GF(¢®). The generator polynomlal of a ¢-error-correcting BCH code
s the polynom!ial of lowest degree with coefliclents from GF(g) for which

a, o2, + -+ ,a? are the roots. Let ¢;(z) denote the minimal polynomial of
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o', and note that the degree of this polynom!al Is equal to or smaller than s.
The generator polynomlal of the g-ary BCH code 1s the Least-Common-
Multiple (LCM) of ¢.(z), do(z), * *, d5 (). The degree of the generator
polynomial Is at most 2sf, and the number of parlity-check diglts of the code 1s

no more than 2st.

An important subclass of ¢-ary BCH codes s called Reed-Solomon codes
which have capabllity of correcting both burst and random errors. RS codes
can be formed from ¢-ary BCH codes when s =1. The practical codes In the
class of RS codes are constructed over alphabet slzes which are powers of 2
(¢g=2™) and the most commonly used codes have symbol sizes of
m =4, 5, 8, 7, 8f.

An (n,k) primitive RS code with symbols from GF(2™ ) has code word
length of n =2™ -1 where m Is the element slze of the fleld. The ratlo, k /n,
Is called the rate of the RS code. This code has minimum distance of n -k +1
and the number of parity-check symbols I1s n-k. The generator polynomial
¢ (z ) of the code 1s

n-k-1 .
§(z)= TI (z-a**'), (2.1)
i =0
where h 1s an Integer constant. By choosing different values for the constant

h, n different RS codes can be formed. The constant £ Is usually, but not

always, taken to be 1. In that case, the generator polynomial g(z)Is

n-k-1 .
g(z)= II (z-a'")
1 =0
=gO+g 1.’L'+ v +gn-k zn—kv (2.2)

and the code s called a narrow sense RS code.

+ Henceforth we restrict our attention to GF(2™ ).
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2.1.2. Code Word Generation

Let d=(dg, d,, '+ -, dy_y) be the message vector tc be encoded, then the
message polynomlal can be defined as, d(z)=dy+d,z+ . .. +d;_z*"1. Any

code word polynomlal ¢ (z ) can be formed as,
¢c(z)=d(z)g(z)=cotec,z+ " +cyz"7, (2.3)

and the corresponding code word Is ¢ =(cg ¢, - * *, €,_,). This code Is non-
systematic because k¥ message symbols are not explicitly present In the code
word. Hence, 1n the decodlng process one extra step Is needed to extract the

Information from the corrected code word.

The generatlon of RS codes by Eq. (2.3) Is the tlme-domain generatlon of
these codes. We can also generate the RS codes In the frequency domaln. To
explain the encoding process In frequency domaln, let consider a valid code
word ¢ deflned in the time domaln and its corresponding frequency-domaln
vector C'=(C,, * * * ,C, _,) Where

n-1 .
C;i=Y a'¢, =0, -+ ,n-1. (2.4)

§ =0

From Egs. (2.3),(2.4), the components of C are

Cj=c(a’)=d(a’)g(a’), j=0, - ,n-1 (2.5)
Consldering the fact that g(aj )==0for j =1,2, - * - ,n—k we have

C;=0 , =12, ,n-k (2.8)
Therefore the RS code with minimum distance n-k+1 In GF(2™ ) Is the set of

all vectors ¢ whose frequency-domaln components satisfy Eq. (2.6).
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To encode In frequency domain first C; for j=1, - -, n—k are set to
zero and the remaining k£ components of C' to the k Information symbols. An
Inverse Fourler transform shown In Eq. (2.7) glves the code word ¢ In time
domaln.

n -1

L sais C;, t=0, -+, n-1. (2.7)
n =, J
J=

¢

It Is also possible to generate the code words In systematic form. In sys-
tematic generation, the rightmost k symbols of each code word are the unal-
tered message symbols and the leftmost n —k symbols are parlty-check symbols,
To generate the code words In systematic form, foliowing three steps should be
performed [18]:

Step 1. Premultiply the message polynomial d ‘z) by z™~*.

Step 2: Obtaln the remalnder p (2 )=py+p,T+ - * +Pn_i _lm""" “1 (the
parity-check polynomial) from dividing z”~* d (z ) by the generator polyromial
g(z)

Step 8: Combine p (z ) and z"~* d (z ) to obtaln the code word polynomial

p(z)+z™*d(z). This means that the code word vector Is,
£=(c09 cl' Ty cn_1)=(p09 pp Cty Pack -1y dO’ dl, oty dk—l)‘ (2.8)

For hardware lmplementation of the systematic RS encoder, a feedback-
shift-register division clrcuit can be used [168]. Recently, Berlekamp [14] has
shown that for any RS code there 1s a speclfic constant A In Eq. (2.1) such that
the generator polynomlal becomes reclprocal. Using this property, he has given
the structure of a systematlc encoder which has a very low complexity. This Is
due to the fact that for a reclprocal generator polynomlal just half of the
coeflicients need to be stored. Uslng this concept an RS(255, 223) encoder has

been realized on a single VLSI chip [15].




S T TR e TR

T PR T e e T

St M L o

-17 -

2.1.3. Properties

For channels which are disturbed by burst errors, non-blnary BCH codes
are among the good cholces. There Is a distinct advantage to character
orlented codes (llke non-binary BCH codes) In terms of burst error correction
capability compared to binary codes. Reed-Solomon codes are the most Impor-
tant subclass of non-blnary BCH codes. They have a very large burst error
correcting capabllity and an optimuvm structure.

An (n,k) linear code has minimum distance d <n -k +1 [18]. Codes with
d =n-k+1 are called maximum distance separable (MDS) codes. Reed-
Solomon codes are the most important subclass of MDS codes and have error

correction capability of ¢ = |(n-k)/2]1.

Block codes such as RS codes, can use one bit of soft-declslon Information
per symbol. This information, called an erasure indlicator, 1s an indicatlon that
the recelved symbol 1s Incorrect. In fact an erasure s an error with known
location. An RS(n,k) code Is able to correct up to n—k erased symbcis. Any
pattern of v symbol errors and p symbol erasures can be corrected providec
that 2v+p<n-k. To correct each error; “he decoder must find both 1ts loca-

tion and 1ts value, to correct each erasure, only the value must be found.

2.2. Decoding Reed-Solomon Codes Based on Syndrome

Let ¢ (z) be a code word polynomlal of RS(n,k) code generated by the

generator polynomlal ¢ (z) and let e (z ) be an error polynomial

e(z)=¢eot+e,z+ - +e, 1z (2.9)

t I_:t_l denotes the integer part of T .
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The recetved polynomlal at the Input of decoder is

v(z)=c(z)+e(z)=votv, T+ - - +y, 2"}, (2.10)
where the polynomlal coeflicients are components of the recelved vector . We
can evaluate thls polynomlal at roots of g(z), which are a, a?, - - -, o2.
Since ¢ («? )=0 for j=1,2, - - - ,2¢,

. . n-1 .. .

v(al)=e(a’)=Y ¢ o', j=12, - 2t (2.11)

=0

This final set of 2¢ equatlons Involves only the components of the error pat-
tern, not those of the code word. Therefore they are the syndromes for

evaluating the error patterns [25] and,

. m-} s
S;=v(al)=Y v;a", 7=12,- 2L (2.12)
=0
After evaluation of syndromes, the error pattern e;, =0, - - - ,n-1, can be

determined.
Now, suppose that v errors actually occur, 0<» <!, and that they occur in
unknown locat': is ¢,, ,, * - -, 4,. The error polynomial can be written as
e(x )=e,-l:c"+e,-2a:"+ SR +e;”xi”, (2.13)

where ¢; 1s the value of the /th error. We do not know ¢;, -, 1, nor do
we know ¢;, -, ¢;. In fact we do not even know the value of v. These
must be computed In order to correct the errors.

The first step In decoding Is the evaluatlon of syndromes glven by Eq.

(2.12). Let us evaluate the recelved polynomlal at a to obtain the syndrome

S,

S ;=v (a)=c (a)+e (a)=¢ (a)=e,-la"‘+c,-aa"*+ v +e,-ya'.". (2.14)
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To change the notatlon [25], we deflne the error values Y, =g¢;, for l=1, -,

and the error locatlon numbers X,=a;' for [=1, - - - ,v, where 4; Is the actual
location of the [th error and X; 1s the fleld element assoclated with this loca-

tlon. WIith this notatlon, the first syndrome s glven by
SI=Y1X1+ Y2X2+ vt +Y‘,Xu. (2-15)

Similarly, we can evaluate the recefved polynomtial at each of the powers of «

used to deflne g (z). Then we have the following set of 2¢ simultaneous equa-

tlons in the v unknown error location numbers X ,, - - - ,X, and the ¥ unknown
error values Y, - -+ ,Y :
S;=Y,X{+Y, X{+ - Y ,X] j=12 -2t (2.18)

This set of equations must have at least one solutlon because of the way In
which the syndromes are defined. It can be shown that the solutlon Is unique
[25].

Now we can summarlze the decoding process 1n two followling steps:

1) Evaluation of syndromes uslng the recelved vector Eq. (2.12).

2) Solving the system of 2¢ nonlinear equations given in Eq. (2.16) to find

the error locatlons and error values.

The first step is In fact a Fourler transform evaluation, which finds 2¢
frequency-domaln components of the recelved vector ¥ according to Eq. {2.12).

In the second step, the direct solutlon of a system of nonlinear equations Is

too difficult, except for small 2¢ [9],[16],(58],{70]. A better approach requires

some Intermedlate steps. The error-locator polynomlial Is Iintroduced as,

A(Z)=AZ¥+A, 2%+ AT L (2.17)
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This polynomlal Is defined with roots as the Inverse error locatlon numbers X;™!

for =1, - -+ ,v. The error location numbers X; Indlcate errors at location )
for l=1, - - - ,v. That s,
d i
Az)=T](1-zX;) , Xp==a' (2.18)

=1

The methods for finding the error locator polynomlal from the syndromes,
are explalned later In this chapter. After obtaining the coefliclents of the
error-locator polynomtal, the error locatlons and error values can be found as

shown 1n the following subsections.

2.2.1. Algebraic Decoding

One way to decode RS codes Is the algebralc decoding. In thils algorithm,
first the syndromes are evaluated using Eq. (2.12) Then, based on the syn-
dromes the error-locator polynomlial A(z ) Is found. Thils polynomlal has roots

at the Inverse error location numbers X;™! for =1, - - - ,1.

The algebrale decoding continues with using the Chlen search to evaluate
the roots of A(z ) In order to find the error locations. Chien search method sim-
ply conslsts of the computatlon of A(a’ ) for 3 =0, - - - ,n~-1 and checklng for
zero. Use of this trlal and error method is feaslble, slnce the number of ele-

ments In a Galois fleld Is finite [17].

After evaluation of roots of A(z) uslng Chlen search, the error locatlon
numbers .X’,=a"’ can be substituted In Eq. (2.18). Now, thls system of 2¢
equations becomes linear and can be solved for the error values Yj for
J=1, -, [63]. Tofind Y;, one matrix Inversion Is required for each of the
errors. This method 1s not efficlent because of v matrlx Inversions involved

and, therefore, other methods should be used for finding the error values.
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A more efliclent way to find the error values 1s called the Forney algorithm
[56]. This algorithm 1s derived starting with the error-locator polynomlal A(z ).
Define the syndrome polynomlal
2t . 2t v .
Si)=3%S;z'=3% S Y, X/z’, (2.19)
j =1 j=ll'=l
and deflne the error-evaluator polynomial 2(z ) in terms of these known poly-

nomials by the key equation,
Oz )=[14+S(z))A(z) (mod z2*?), (2.20)

The error-evaluator polynomial can be related to the error-locations and error

values as [58],

X, =Y, [T0-X; X;™), (2.21)
P £l
and the error values are given by [25],
(X,
Y =X} ———— , l=1,.., (2.22)
A (X

where A' (z) Is the formal derivative of A(z). The above equation defines the
Forney algorithm which Is a conslderable improvement over matrlx inverslon
but requires divislon. An important difference between matrix Inverslon and
the Forney algorithm 1s that In the former, the Chlen search must be com-
pleted before error evaluatlon can start. But In Forney algorithm, as soon as

one X Is found, the corresponding Y; can be evaluated using Eq. (2.22).

After evaluatlon of the error values, the recetved vector can be corrected

by subtracting the error values from components of the recelved vector.

In the algebraic decoding algorithm, we notice that first the received vec-
tor Is transformed to frequency domaln by evaluation of syndromes, and then,
based on the syndromes, the error locations and error values are found in tlme

domaln. Because of the mixture of frequency and time domaln technlques, thls
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algorithm 1s sometimes called hybrld decoding algorithm [25).

2.2.2. Transform Decoding

To explain the transform decoding algorithm ([25],[57], let's assume that
the code word ¢ Is transmltted and the channel makes errors described by the
vector ¢. The syndromes of thls nolsy code word y=¢ +¢ are deflned by the
set of 2t equations glven In Eq. (2.12). Obviously using the definltion of
Fourler transform, the syndromes are computed as 2¢ components of a Fourler
transform. The recelved nolsy code word has a Fourler transform given by
Vj=C'J- +EJ- for =0, * -+, n-1, and the syndromes are the 2¢ components
of this spectrum from 1 to 2¢{. But by construction of a Reed-Solomon code,

C;=0 j=1, ''-,2t; (2.23)
hence,
S;j=V;=E; 7=1, - -+, 2t (2.24)

The block of syndromes gives us 2 window through which we can look at
2t of the n components of the Fourler transform of error pattern. The
decoder must find the entire transform of the error pattern given a segment of
length 2¢ of that transform and the additional informatlon that at most {
components of the time-domaln error pattern are nonzero. After evaluation of
the frequency-domaln error vector fF, the decoding can be completed by an

inverse Fourler transform to find ¢ and subtracting from y [25)].

To find the rest of the components of f, consider the vector A of length n
whose components are coefficlents of the polynomlal A(z ). The vector A has an
inverse transform A=(Xq, " * * ,A,_;) Where,

n-1 .. .
A= 2 AjaV =A(a™). (2.25)
J=0

Therefore, using Eq. (2.18),
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A = [ (1-a" o), (2.26)

=1

which 1s zero If {1 =1;, where §; for /=1, - - - ,v Index the error locations; and
\; Is nonzero otherwise. Hence, \; =0 If and only if ;0. That Is, In the
time domaln, \;e; ==0; therefore, the convolution in the frequency domaln is

zero,
n-1 .
A*E= EAjE'-_j‘-:o ’ '=Oy o ,n—l. (2.27)
J=0

Now we assume that the coefficlents of the error locator polynomlal s
known, and hence thls convolution can be consldered as a set of n equations Iin
k unknown components of £. The methods for evaluation of the error-locator

polynomial A(z ) will be explalned In Sectlon 2.3.

The remalning components of F can be obtalned by lteratlve extension
[25], that Is, they can be sequentlally computed from A using the convolution of
Eq. (2.27) written {n the form

n-1
E;j=-Y A;E;;, i=0, - ,n-1. (2.28)
J=1
and known frequency domain error pattern Eq. (2.24). In thls way all com-
ponents of the vector £ are computed. An Inverse transform on £ results In
the time-domaln error vector ¢ and error correctlon can be completed by
L£=y-€.

In the transform decoding algorithm, first the recelved vector Is
transformed to frequency domaln by evaluation of syndromes. Then the
frequency-domaln error vector, is evaluated, and, finally, an Inverse Fourler
transform Is performed to find the tlme-domaln error vector. Therefore, all the
effort for finding the error values is performed In the frequency domalin. That

is the reason for calllng this algorithm the frequency-domain decodling algo-
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rithm [25].

2.3. Evaluation of Error-Locator Polynomial

In this sectlon, we explain the procedures for evaluation of the coefliclents
of the error locator polynomial A(z ) given by Eq. (2.17). This polynomlal has v
roots at X;~! for I=1, - * - v. The error locatlon numbers X;, Indicate errors

at locatlon ¢ for l=1, - - - ,v.

To find the coefliclents of A(z), multiply both sldes of Eq. (2.17) by

Y, X/ *¥ and set £ =X;~! [25]. Then the left side Is zero and we have

Y (X7 PHA X - 1A X)=0. (229)
Such an equatlon holds for each ! and each j. Sum up these equations from
{=1to [=v. This glves for each 7,

v . 1 . v \
DY XA DY, X - 44, T Y X =0 (2.30)

=1 {=1 =1
The Individual sums are recognized as syndromes, and thus the equation
becomes
AIS]'+U—1+“'QSJ'+U—2+ te +AVS]. == J‘+V [} j=1! e vv- (2‘31)
This Is the set of lilnear equatlons relating the syndromes to the coefficlents of

A(z) [18),[25]. These equatlons can be written In a matrix form as,

- 1 .
rsx 52 .. Su rAu ’Su+1
SQ Sa e Su+1 Au—l "SV+2

=\ . (2.32)
hS" Sppr Szu—xi A1 ] _“Szu |

Note that Eq. (2.32) Is a speclal case of Eq. (2.27). This system of equations
can be solved by Inverting the matrix provided that the matrix s nonsingulsr.

However, first the correct value of v should be found as follows. As a trial
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value, set ¥ to the er~~" correction capabliity of the code { and compute the
determinant of the matrix In Eq. (2.32). If it Is nonzero It can be shown that
this 1s the correct value of v [25]). Otherwise, If the determinant s zero, reduce
the trlal value of ¥ by 1 and repeat. Contlnue In thls way untll a nonzero
determinant 1s obtained. Now, the actual number of errors s known. Then,
evaluate the coefliclents of A(z ) using the value of v and Eq. (2.32).

This method 1s very Inefliclent speclally for the codes with high error
correction capabllity (high £). To solve this problem three methods will be dis-

cussed in the followlng subsections.

2.3.1. Berlekamp-Massey Algorithm

Berlekamp-Massey algorithm [16],[19] relles on the fact that the matrix
equation of Eq. (2.32) 1s not arbitrary In its form; rather, the matrix Is highly
structured. This structure Is used to advantage to obialn the polynomial A(z)
by a method that Is conceptually more complicated but computationally much

simpler.

Suppose that the polynomlal A(z) Is known. Then the first row of the
above matrix equation defines S, in terms of S, * - -, §,. The second row
defines S,,, In terms of S,, - * *, §,,,, and so forth. This sequential process
Is summarized by the equatlon

v
S; ==Y A S; J=v+1, -, 2. (2.33)
1=1
For fixed A(z ), this Is the equation of an autoregressive fllter. It may be lmple-
mented as a linear-feedback shift register with taps glven by the coefliclents of
Az).

Now, the problem Is the deslgn of the llnear-feedback shift reglster that

will generate the known sequence of syndromes. Many such shift reglsters

exist, however, we wish to find the shortest llnear-feedback shift register with
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this property. The shortest shift register glves the least-welght error pattern
that will explaln the recelved data, that 1s, A(z) of the smallest degree. The
polynomla: of the smallest degree will have degree v, and 1t 15 unique, since the

vX v matrix of the original problem Is invertible,

The Berlekamp-Massey algorithm Is explained using the following set of

recurslve equatlons computing A% )(z ):

n-1
A, = AFDS, ., (2.34)
-
L, =§r-L,_))+Q1-6)L,_,, (2.35)
A(r)(.’l.‘ ) 1 ~-A,x A('—l)(:l:)
ey | = P A -1 _5 (r=1)s\ |? (2.38)
B(T)z) a6 (1-0)x | Blr-1g)
for r==1, - -+, 2t. The Initial conditlons are A9(z)=1, Bz )=1,L =0,

and 6=1 If both A, 540 and 2L, _,<r -1, and 6=0 otherwise. Then, A(*')(z)1s
the smallest-degree polynomlal with the propertles that Aé”)=1 and,

n-1
S+ T APIS, =0, r=Ly,, .2t (2.37)
fau=

It is also possible to find the error-evaluator polynomial Q(z ) of Eq. (2.20).

To find Q(z ) we need to combine Eq. (2.20) to the above recurslon to get,

[ﬂ(’)(:c) ]_ 1 -8,z

AT |asts (-8 (2.38)

Q" -1z)
ATy |

The Initlal conditions are 2(°)(z )=1, and A (¥=0. After 2¢ Iterations, N )(z)
1s the error evaluator polynomial. Note that in many references {18],{25], the
algorithm 1s called "Berlekamp's algorithm™ when both error polynomials are

calculated. In this thesls we will continue to use this convention.

The Berlekamp-Massey algorithm 1s modified In [48] for speeding up the
decoder. This method provides a saving in decoding time, If the low-weight

errors are dominant errors.
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2.3.2. Euclidean Algorithm

In 1975, a new method for evaluation of the error locator as well as error
evaluator polynomlal was Introduced [54). This method uses the Euclidean

algorithm, a method for inding the Greatest-Common-Divisor (GCD) of two
polynomials.

The Euclidean algorithm Is explained using the following set of recursive

equations:
r _| R (r )(a: )
Q" )(z)= l—_—T(' ) l. (2.39)
o 1
A (z)= [1 o )z )]A(’ Xz), (2.40)
R(f+1)($) 0 1 R(r)(z)
Ty [T @) T | T@) | (2.41)

In Eq. (2.39), |_ J means the quotient of the division. The Initlal conditions are

2t . 10
RO(z)=g%, TO(z)=Y S;z '™ and Az )= [0 1]. The algorithm stops
=

when degree of T{")(z ) 1s less than ¢{. Then

Az )=a"1T" Xz) (2.42a)
Az)=a"4F") (2), (2.42b)

where A=A ;;')(o), and A ,, Is the element of the matrix 4, in the second

column and the second row. Note that consldering Egs. (2.39)(2.41) and
A {9 (z)=1, the value of A ') (0) Is nonzero In all the lterations and hence A
is nonzero In Eq. (2.42).

In Eq. (2.42), the error locator polynomlal A(z) and the error evaluator

polynomial ﬁ(z) are unlque solutions of Eq. (2.43), where thelr degrees are less
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than ¢ 41, and ¢, respectively, and A,==1.

Q(z )= jV_‘: Sj:vj"A(z) (mod z2). (2.43)

j=1

This algorithm 1s modified in [30]. The modified algorithm has a better
structure for hardware Implementation compared to the orlginal algorithm.

This modified algorithm is very simllar to the Berlekamp-Massey algorithm.

2.3.3. Continued Fractions Algorithm

The continued fractlons approx!mation technique which s applicable on
integer numbers can be applled to find the error-locator and error-evaluator
polynomials [55). It can be shown that polynomials A(z), (x ) and the syn-

dromes S,,5,, - - - ,5,, arerelated by

S(x)=8,a 148,274 - +Sy a7+

t-1 .

2 Q,- 3'

= =z§:; . (2.44)
zt+ Azt

k=1

where S(z) Is a power serles [55).

Let v be the degree of A(z ), If only the first 2v coefficlents of S(z) are
known, then S(z) and hence fI(z) and A(z) can be obtalned by continued
fractlons operating on §,z7+ - -+ +5,,272Y. In continued fractlons method

Initlally set
RO=8 3714827 %4 - - - +8,, 7% (2.45)

and then divide 1 by R© to ind N and the remalnder R(Y where

1
R©)

=NM4£R(), Then continue In this way by dividing 1 by

R=g; 27" +a; 5™ 4 - - (2.48)
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and evaluating

N(r+1)=a','—lz"r+ o by (2.47)
R(r+l)=b_1$_l+ e (2.48)

The algorithm stops when R{") 1s zero, r =+’ . The values of fi(z) and A(z)

are then evaluated from

1 _ =)
1 T AMz)'
1
NG . ..

S(z)= (2.49)

N4

N®4

2.3.4. Comparison

Implementation of the Berlekamp-Massey algorithm Is stralghtforward,
and can be deslgned with shift registers [25]. The reason for having simple
implementation 1Is the structure of the algorithm which does not have any mul-

tiplication or dlvislon of two polynomlals.

The hardware Implementatlon of the Euclidean algorithm 1s not difficult
using shift registers. But 1t Is more difficult compared to implementation of the
Berlekamp-Massey algorithm, slnce this algorithm has polynomial multlplica-
tlon and polynom1lal divislon. The modified Euclidean algorithm [30], I1s very
similar to the Berlekamp-Massey algorithm and can be used for hardware

implementation.

Obvlously the hardware Implementation of continued fractions algorithm
Is very difficult. This I1s due to the polynomlal Inversions in this algorithm.
Moreover, after evaluation of N(") for r =1,2, - - - ,+' and stopplng the poly-
nomlal Inversions, Egq. (2.49) should be considered for calculating A(z) and
I'(z ). Evaluation of these two polynomlals from Eq. (2.48) needs some polyno-

milal multiplications and additions with a difficult control clrcuitry.
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In this thesls, we will only conslder the Berlekamp-Massey algorithm. The

maln reason Is the simple structure of the algorithm.

2.4. Decoding Reed-Solomon Codes in Time Domain

As 1t was shown, in transform decoding, the algorithm starts with a
Fourler transform and ends with an inverse Fourler transform. There Is also a
Fourler transform at the beginnlng of the algebrale decoding algorithm. How-
ever. Instead of transforming the recelved word into frequency domaln, 1t Is
possible to find the equlvalent of the algorithm In the timne domaln. Using the

tlme-domaln algorithm, the Fourler transforms simply vanish.

As discussed above, the Berlekamp-Massey algorithm has a simple struc-

ture compared to other two structures, therefore, this algorithm is used In this

sectlon. Moreover, this algorithm does not have any polynomlal diviston, and
hence, transforming the algorithm In time domaln is easier and results In a sim-

ple structure.

2.4.1. Algorithm Based on Transform Decoding

The transform decoding algorithm has two maln steps, In additlon to the
Fourler transform at the beglnning and the inverse transform at the end of the
algorithm. These two steps are the Berlekamp-Massey algorithm to find the
error locator polynomial A(z) and the recursive extenslon to evaluate the com-

ponents of the frequency-domalin error pattern [25).

To find the equivalent of Berlekamp-Massey algorithm In the time domaln,
let ) and b denote the inverse Fourler transforms of the vectors A and B,
respectively. To express the Berlekamp-Massey equations In the time domaln,
simply replace the frequency-domaln varlables A; and BJ- with the time-
domaln variables ); and b;, replace the delay operator  with a~* , and replace

product terms with convolution terms. The Berlekamp-Massey algorithm then
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transforms into a recurslve procedure In the time domaln, as described In the

following theorem [25).

Theorem 2.1: Let y be the recelved ncisy R3S code word. Let the following

set of recurslve equations be used to compute )\,(2” for 1 =0, * ' - ,n-1:
n-1 .
A,= Y o' NNy, (2.50)
=0
L,=§r-L,_))+@1-6)L,_,, (2.51)
)\,'(r) 1 -4, a‘f )\,(r'l)
= . , 2.52
b,-(') Ar-15 (1-6)a b,-(r'l) ( )
r=1, -+ ,2¢; where the Initlal conditions are )\,(°)=1,b,-(°)=1 for all ¢, and

6=1 If both A, 40 and 2L, ,<r-1, and otherwise §=0. Then, X {?*’=0 if and
only If e; 7£0.

Proof: Take the Fourler transform of all vector quantitles. Then the
recursive equations (2.34)-(2.38) are obtalned, with Eq. (2.34) having V In place
of S. But, AJ("I)=O for j >2t, and V;=S§; for j=1, - - -,2¢t. Therefore,

the proof 1s complete. Q. E. D.

For RS codes we must also compute the error values. In the frequency
domaln, the error values can be computed using the following recursion:
n-1
E;=-YAE;,, J=02t+1,2t+2, - ,n-1. (2.53)
1=1
Once the error locator polynomial is known, this recursion can be used to

extend the 2¢{ known components of £ to all components of E, by iterating
n -2¢{ times.

It Is n-., possible to ind the Fourler transform of this equatlon without
some restructuring. The time domaln equivalent of the above equation Is given

in the following theorem [25].
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Theorem 2.2: Let v =¢+¢ be the recelved nolsy RS code word. Glven

the time-domaln error locator vector ), the following set of recursive equations

A, =ﬂ§a" v (D) (2.54)
| =0
v;(’)——:v;("’)—A, o (2.55)
for r =2t +1, - - - ,n, results In
v{M=e; {=0, - ,n-1. (2.56)

Proof: The equation of the recursion in the frequency domaln, Eq. (2.25), 1s
rewritten by breaklng it Into two steps, starting with the recelved frequency-

domain vector ¥ and changing 1t to £ one component at a time:

n-1
A,=V,+[ AV (2.57)
=1
yir-1n .
J J7F=r
Vif=\ " _» _?_é_ (2.58)
vir-t-a, J=r.

Since Vj(”)=E‘j, for j =1, - -,2t, and A j==0, ftor 7 >t, the above equations
are equivalent to Eq. (2.53). This equlvalence proves the theorem. Q. E. D.
Now, the decoding algorithm has only two steps. In the first 2¢ lteratlons

the error-locator vector ) s found. In the next n -2¢ Iterations, the error

evaluator vector g =_y(") 1s calculated, and then error correctlon s performed.

2.4.2. Algorithm Based on Algebraic Decoding

It s possible to map the algebralc decoding algorithm In the time domaln
as well [32]. By this approach the last n-2¢ Iteratlons of the time-domaln
transform decoder wlll be avolded at the expense of Increasing the complexity

of the first 2¢ 1teratlons.

Conslder the Berlekamp's algorithm glven in the previous sectlon. This




-33 -

algorithm can be put In the form of time-domaln equations as explalned for the
Berlekamp-Massey algorithm. To do thls, first the Berlekamp’s algorithm 1Is
expanded to compute the formal derivative of the error locator polynomlal
A’ (z) as well [32]. Note that this polynomial can be computed from A(z ) after
the first 2¢ lterations are complete. To include A’ (z ) as 1terates, we must also
Introduce the temporary polynomial B’ (z ). The iterations for the polynomial

A’ (z) then becomes

A )z) A, -A, Z Bl('—l)(z)
B txzy|T|1-8) a5 -8z} |* r-1z) |, (2.59)
r BI (’, _l)(x)

where A, ,L,, and § are as defilned prevlously and the Initlal conditlons are
A Oz)=B' Oz )=0. After evaluatlon of the polynomials A(z ), (z ) and
A’ (z) the Forney algorithm Is used to find the error values.

To express the Berlekamp algorithm In the time domaln, an approach
similar to the one used In the case of the Berlekamp-Massey algorithm can be
used [32]. The Berlekamp algorithm In time domaln Is expressed with the fol-

lowing set of recurslve equatlons.

n-1 .
A, =S o Ny, ), (2.60)
2 .
§=0
LT =5(T —Lr—1)+(1_6)Lr-1v (2.61)
-)\t(') P1 N . o ] rx'(r—l)
b;(r) A7l 1-8a” o o br-1)
k'.l (') = o —Ar 1 ._Ar a_" x"/ (f—l) y (2.62)
b;l (r) 0 (1_6) A;l5 (1—6)0!4 b‘,' (r -I)J
w‘(r ) 1 -A, ot w‘(r—l) 1

(2.83)

G,'(’) = A;15 (1—6)02-.. a,-("‘)J'
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for +=0, -+ -+, n-1 and for r==1,2, ---,2¢. The Inltlal conditlons are
AO=p. = ©)=1 for all 1; \; P=b;' O=4a,=0 for all i; L,=0, and é=1
If both A, 540 and 2L._,<r -1, and =0 otherwise. Then, )\ {?)=0 If and only
If the ith symbol of the recelved vector ¥ Is In error, and we have ) =) (3!
and w=w??),

The reason for computing these vectors is the Forney algorithm, which
evaluates the errata values,

o 0(e™)

1 : ! "=o' ctan _1| (2c64)
A (o)

e" ——

whenever o' Is & root of A(z). By the definltlon of the inverse Fourler
transform we have w; =0(a™ ), and \; =A’ (¢ ). Therefore, Eq. (2.84) can be

written as,
e; =-a' ——, 1=0, - ,n-1. (2.65)

2.5. Decoding Errors and Erasures

An RS(n ,k) code s capable of correcting up to n -k erased symbols. Any
pattern of v symbol errors and p symbol erasures can be corrected provided
that 2v+p<n-k [25]. To correct an error, the decoder must find both its loca-

tion and its value, to correct an erasure, only the value must be found.

In this sectlon, the decoding algorithms are modifled to decode erasures as

well [25],[32]. A summary of all the algorithms are also glven.

2.5.1. Decoding Based on Syndrome

To modlfy syndrome-based algorithms to correct erasures as well, an

erasure-locator polynomial I'(z ) Is formed [25],

P .
I'(z)=]] -z a"), (2.66)
=1

B T D S T s

P W W
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where ¢, [=1,2, -+ - ,p are locatlons of p erasures. Thls polynomial can be
combined with the error-locator polynomial A(x) to form the errata-locator

polynomial A(z ),
Az )=T"(z)A(z). (2.67)
Roots of this polynomial Indicate the locations of the errors and erasures.

To form the errata-locator polynomlial, first the erasure-locator polynomial
Is formed based on Eq. (2.66) and then the Berlekamp's algorlthm 1s performed
for only n-k—p terations. In this step, the polynomials A(z) and B (z) are Inl-
tialized by the erasure locator polynomial Instead of 1 [25]. At the end, the
errata-locator polynomial is obtained. We will now drop the notatlon A(z),

replacing It with A(z ), which we will call the errata-locator pclynomial.

Based on the above discussion, the complete algebralc decoding algorithm
for errors and erasures Is shown In Flg. 2.1 and summarized In 8 following
steps.

Step 1: Calculate the syndromes uslng Eq. (2.12).

Step 2: Evaluate the erasure locator polynomtal using Eq. (2.88), where i,

l=1,2, - -+ ,p are locatlons of p erasures. This polynomlal initlalizes the

Berlekamp's algorithm explalned In step 3.

Step 8: Perform the Berlekamp-Massey algorithm to obtaln the errata loca-
tor polynomial. A(z ). Berlekamp's algorithm for decoding errors and erasures
is explalned using the lteratlve equations (2.34),(2.36),(2.68) to compute A(z),

for r=p+1, - - -,n-k.
L, =6r-L, ,~p)}+(1-6)L,_, (2.68)
The Initial conditlons are A¥Xz)=B(X(z)=I'(z), L,=0, and é=1 If both

A,5#0 and 2L, _,<r-1+4p, and 6=0 otherwise. Then A®=k)z) is the errata

locator polynomlal.
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Step 4: Perform the Chlen search to find the roots of A(z). The roots of
this polynomial, Indicate the error locations In the recelved word. It X f"——-a"'
iIs one of the roots, then the recelved symbol v; Is in error or It Is an erased
symbol.

Step 5: Find the errata value polynomlal using Eq. (2.20) and the errata
values from Eq. (2.22).

Step 6: Correct the recelved vector y=(vg, vy, ..., vy). This vector
can be corrected from the knowledge of the errata locations and the errata

values. The corrected code word ¢ s found by subtracting the errata values

from the received vector.

The transform decoding algorithm can also be modifled to correct both
errors and erasures (25]. This algorithm has slx steps as shown in Fig. 2.2,

which Is explained as follows:

Steps 1, 2, 3: Compute syndromes, the erasure locator polynomial and the
errata locator polynomlial uslng the first three steps of the algebrale decoding

algorithm glven In the prevlous subsection.

Step 4. Calculate the remalning components of E=(E,, - - - ,E,_,) by

recurslve extenslon using Eq. (2.28).

Step 5: Compute the Inverse transform of E;, j=0,- - - ,n-1 over

GF(2™) to obtaln the error vector ¢ .

Step 6: Finally, the estlmate of the original code vector is obtained by sub-

tracting the error vector ¢ from the recelved vector g .

2.5.2. Decoding in Time Domain
To correct errors and erasures In the time domaln, the erasure locator vec-
tor 3==(Yp * * * +¥n-1) €an be introduced. This vector Is the equivalent of the

erasure locator polynomlal in time domaln [25].
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P . .
7= (-a"a"), $=0,1, -, n-1. (2.69)
I=1

In this equation, j; indlcates that the recelved nolsy vector ¥ has erasures at
locations 7, for l=1,2, - -, p.

The time-domaln decoding based on the transform decodlng algorithm for
correcting errors and erasures Is shown In Fig. 2.3 and can be summarized as
follows:

Step 1: In the first step of the algorithm, the erasure locator vector 7

should be evaluated using Eq. (2.69). Evaluatlon of thls vector can be put In

the form of p lterations using the following recursive equation to compute fy,-(p):
YD=AfrVa-a" o), (2.70)

for ¢=0,1, **-,n-1 and r=1,2, -::,p. The Inltlal condition Is
7{9D=0a"=1 and finally ~; =~{.

Step 2: In this step of the decoding, the time-domaln errata locator vector
A=(\¢, * * " »Aq_,) Is calculated using the time-domaln Berlekamp-Massey algo-
rithm. Thils step Is expressed In terms of the recurslve equatlons
(2.50),(2.52),(2.68) for computlng X;, for =0, ---,n-1 and
r =p+1, p+2, - - -, n-—-k. The Inltlal conditions are \[P=h;P)=~, for all i,
L ,=0, and 6=1 If both A, 50 and 2L,_,~p<r~—1, and 6=0 otlerwise. Then
A\{*~#)=0 If and only If the {th symbol of the recelved vector » 1s In error and

hence the components of the errata locator vector Is A\; =X\ f*~*) for all 1.

Step 8: Recursive equatlons (2.54), (2.55) for r=n-k+1, - --,n can be
used In tlme domaln to find the errata values e;=v,(") for ¢ =0, - - ,n-1.
Starting with \; =\{*"%¥) for =0, - - -, n-1, the last Iteration results 1n the

errata value vector,
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Step 4 Finally, the estlmate of the errata value vector € is obtsined by

e,-='v,-("), If X\=0
€; =0 It )\;7#0 (2.71)

and subtracted from the recelved vector ¥ to form the corrected vector ¢.

The time-domaln algorithm based on the algebralc decoder can not be put

In the form of recurslve equatlons of (2.80)-(2.63), since the errata evaluator

vector, ¢, can not be initialized with the erasure vector [16].

2.8. Comparison of Decoding Algorithms

Here we compare the time-domalin algorithms with the syndrome-based
ones. Thls comparison Is only from the structural point of view. In the follow-

Ing chapters these algorithms will be compared in detall,

There are following distiuct differences In the structure of these two

categorles of algorithms.

1 The tlme-domaln algorithms have fewer steps. Therefore, fewer modules

are requilred In the deslgn of time-domain decoders.

2- Time-domaln algorithms are dealing with vectors which have n com-
ponents while different length vectors and different degree polynomials are
used 1n varlous steps of the syndrome-based algorithms,

3- The operations In time-domaln algorithms are malnly Galois fleld opera-
tlons, while the syndrome-based algorithms have other operatlons such as
shift to left or right operations.

4- By changing the error correctlon capabliity of the code, the operations in
the time-domaln algorithms remaln the same, while In the syndrome-based

algorithms, each step Is dependent on the error correction capability.

Constdering all the above factors, time-domaln algorithms are the best
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candldates for designing versatlle hardware decoders. In the following chapters,
these algorithms are restructured and all the steps of the decoding are put in
one single step. for this single step cellular and noncellular structures are
Introduced. It Is also shown that the Introduced structures are very slmple to

design and can be used In the design of unlversal decoders.

The syndrome-based algorithms are used when speed 1s an important fac-
tor, since they are faster than time-domaln algorithms. These algorithms are

used 1n software decoders and non-versatlle hardware decoders.
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CHAPTER THREE

COMPUTATIONS IN GALOIS FIELDS

Reed-Solomon codes are defined In GF(2™), and decoding of an RS code
requires algebralc operations in this finlte fleld. Therefore, before discussing

decoder structures, It Is necessary to study the arlthmetlc In Galols fields.

In thls chapter, after an overview of the Galots flelds and different bases
for defining thelr elements, the multipller and Inverter structures are introduced
both In standard and normal bases. It s shown that in standard basis it 1s pos-
sible to deslgn a unlversal multipller. By unlversal multiplier we mean a struc-

ture that can multiply two elements of GF(2™ ) for different values of m .

As an lllustrative example the least complex Massey-Omura multipller in

GF(2%) and 1ts LCA and VLSI deslgns are glven.

3.1. Galois Fields

The set of Integers modulo-2 (l.e. O, 1) forms a finlte or Galols fleld of
order 2, and Is denoted by GF(2). In binary arithmetlc we use modulo-2 addl-
tlon and multiplication. Thls arithmetic I1s actually equlvalent to ordlnary
arithmetlc, except that we conslder results modulo-2, l.e., 14+1=0. Note that
since 14+1=0, 1==-1 and, hence, In blnary arithmetlc, subtraction Is the same
as addition. Uslng the binary field GF(2), one can construct extension flelds
with 2™ elements. There exists a Galols field of order 2™, for every Integer

m >0 [20).
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Let I(z ) be an Irreducible polynomlal of degree m over GF(2), l.e., a poly-

nom!lal which has no roots In this fleld, glven as

I(z)=z™+I,_;z™ '+ - - +I,. (3.1)
A root o of I(z) exists and can be found In the extension fleld GF(2™ ). The

Irreducible polynomlal I(z ) Is called the generator polynomial of GF(2™7 ).
The elements of GF(2™ ) can be represented In powers of the primitive ele-
mert. o as,
GF (2™)={0,1, @, ---,a', - a®" 2}, (3.2)
The multiplication of two elements In GF(2™ ) Is defined as,

0.af =a’ .0=0,
l.al =al 1=a’,
o' .ol =al of =olli+7) modulo-n] (3.3)

where n =2" -1,
It can be shown that all the elements In GF(2™ ) given by The elements of
GF(2™ ) can be represented 1n polynomlal form as,
o' =a;00%+ *  * +a; p_pa™%+a; , 0™ (3.4)
The GF(2™ ) can also be regarded as a vector space of dimenslon m over GF(2)
where
S={1,a,a?% ---,a™ 1} (3.5)

forms a basls of the vector space. The definltlon of the fleld elements based on
Egs. (3.4), (8.5) is called standard basls definitlon. In general, there always
exists a GF(2™ ) defined 1n standard basls [20]. The irreduclble polynomials for
generating these flelds are glven In [20]. Using this basls each element o' can

be represented In vector form as,

o' =(8;00 Biys """+ B m-1)- (3.8)
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The addition of two elements In GF(2™ ) 1s defined as,
o' +a’ =(8;0+0;01 8148y 7y G g H8 g y)s (3.7)
where a; ; +a; ; Is carrled out modulo-2.

One can find a fleld element a such that
N={a, a% a%, - - -, o™}, (3.8)

1s a basls for GF(2™ ). This basls is called normal basls and every element o'
In GF(2™ ) can be unlquely expressed In normal basls [70] as

of = bioatb; 107+ b g+ - - ¢ by 0?7, (3.9)

or In vector form,
o =(biov bg' 10" " T b."m_l) (3.10)
where the coefficlents are In GF(2).

With regard to the propertles of Galols flelds, Peterson and Weldon [20]
llst a set of Irreduclble polynomials I (z ) of degree m <34 over GF(2) for which
the roots {a, o at, - -, az("—”} are llnearly Independent. These llnear
Independent roots clearly form a normal basls for GF(2™ ) and there always

exlsts such a basls for all positive Integers, m [48].

The multiplicatlon and additlon operations In normal basls are deflned in
the same way as In standard basls. The multiplication Is based on Eq. (3.3)

and additlon based on,
a'. +aj =(bio+bjo, b"1+bj1, c e ’ b"'m__l"'bj'm__l). (3-11)
" Three useful properties of the finite fleld GF(2™ ) are stated here. These
propertles are:

(1) Squaring In GF(2™ ) Is a llnear operatlon. That s, glven any two elements

B and « In GF(2™),
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(B+7)*=F*+~. (3.12)
(11) For any element 8 of GF(2™),
A =p. (3.13)

(1) If o 1s a root of any irreducible polynomial I(z) of degree m over GF(2),

)

m-]
the powers, a, a2, o4, - - -, o®™™, are all In GF(2™ ) and constitute a com-

plete set of roots of I (x).

In the design of Reed-Solomon decoders, each element of the Galols fleld Is
represented by m blnary digits (bits) slmllar to the vector representation of the
element. Each blt of the element Is the corresponding component of the vector

representation which can be O or 1. Converting binary representation to

decimal, the fleld elements have valuesof 0,1, * * *, n where n =2"-1.
The addltlon or subtraction of two elements f=(bo, b,, - - -, b,,_,) and
Y=(€g) €y» "' Cpy_y) 2Te performed as,
Bty=p-r=(botco " s by_1ten_y) (3.14)

where the component by component addition is performed In modulo-2. This
operation can be performed easlly using digital circultry. For modulo-2 addltion
or subtractlon of two m -bit elements, m blt wide exclustve or (XOR) gates are
needed. Multipllication and division In Galols flelds are not as simple as addl-
tion and subtraction. The dlvislon of an element # by ~ Is defined as
B/y=PB.4! (45£0). Therefore, first the multiplicatlve inverse of ~ should be

found and then multiplted by A to form the division of §/~.

One way to do multlplication Is uslng look-up tables, [16],[22],[33]. These
methods are normally used in software decoding. In software decoders, Inver-

sion can also be done using look-up tables.

In the followlng sectlons the multipllers and multiplicative Inverters are
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discussed for standard as well as normal basls for different generator polynomi-
als. Our objcctive In these sectlons 1s to find parallel-in/parallel-out multipllers
and Inverters with low complexity and high speed. We are Interested In unlver-
sal multipllers and Inverters as well as non-unlversal ones. By unlversal we
mean structures which can operate In GF(2™ ) for different values of m namely

for m =4,5,6,7,8.

3.2. Arithmetic in Standard Basis

In thils sectlon first the structure of unlversal and non-universal multipllers
are Introduced. The best polynomials In GF(2™) for m =4,5,8,7,8 are glven
and the complexity and speed of the multipliers are explalned. At the end of

the sectlon the standard basls Inverter Is discussed.

3.2.1. Standard Basis Multiplier

m-1 . m-1 .
Let f= N ba'=(bg -, b,_;) and Y= c;a' =(cqg -, €py_y) be

f =0 § =0

two elements of GF(2™ ) In standard basls. The product can be written as,

b=f.4=(bytb,a+ - - +by,_,a™ ).y
=bgyt+b,v.a+ - +b,_;v.a™ (3.15)

Eq. (3.15) can be Implemented as shown In Fig. 3.i [41]. This structure needs
m -1, blocks of a-multiplier, m?2 AND gates and m (m —-1) XOR gates. In this
structure only the a-multiplier circultry depends on the generator polynomilal

of the fleld. The structure of Flg. 3.1 1s modular and simple.

To complete the structure of the multipller, the a-multipller block should

be designed. The multiplicatlon by a can be explalned by
a.vy=c oo+ 0%+ - - +epy 0™ (3.16a)

This equation can be reduced to
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a.y=Iotp_yH(c ot tm )t - ""(cm-2+Im—lcm-1)am-l- (3.18b)

In the reductlon to Eq. (3.16b), we have consldered the fact that the element o

is the root of the generator polynomial of the fleld, l. e.,

a™=I, o™+ - +1,a+],.

In [18], 1t Is shown that more than one Irreducible polynomlal can generate
GF(2™) for m =4,5,8,7,8. Therefore for each of the values of m, the polyno-
mial which introduces the least complex a-multiplier, should be choésen. The
maximum number of gates needed to deslgn an a-multipller In GF(2™ )1s m -1

XOR gates and the propagation delay s always equivalent to delay of one gate.

Obviously the polynomtal which will Introduce the least complex -
multiplier Is the one which has the least number of nonzero coefficlents. As an
illustratlve example In Fig. 3.2., the least complex deslgn of a-multiplier 1s
given for GF(2°). It 1s shown that there are two polynomlals which introduce
the least complex a-multiplier. Each of these a-multipllers need only one XOR

gate.

In Table 3.1, the best Irreducible polynomlals in each GF(2™) for
m =4,5,6,7,8 are given. These generator polynomlals are shown by the powers
of thelr nonzero terms. For example, let m =4 then the notation (4, 3, 0)
means the polynomlal % + 3+ 1. As shown there are 2,2,3,4,17 polynomlials
avallable for m =4,5,8,7,8, respectlvely. The best polynomials for different
values of m , generate multipliers with the complexities as shown in Table 3.2.

The propagation delay of these multipliers are equal to delay of m +1 gates.




- 49 -

Table 3.1: The best Generator Polynomials of GF(2™)

m nonzero terms

4 ||l (4,1, 05
(4, 3, 0) %
5 || (5,2 0)
(5, 3, 0) *
e || (8,1,0)
(6, 3,0)
(6, 5, 0)
7 || (7,1,0)
(7, 3,0) »
(7, 4,0)
(7,6,0)
8 || (8,4,3,1,0) %
(8,4,3,2,0) *
(8,5,3,1,0) %
(8, 5,3,20) *
(8, 5, 4, 3, 0) *
(8, 6,3,2,0) *
(8, 6,5,1,0)
(s, 68,5, 2,0)
(8, 8,5, 3,0) *
(8, 8, 5, 4, 0)
(8,7,2,1,0)
(8,7,3,1,0) %
(8,7,3,2,0)
(8,7,5,1,0)
(8,7,5,3,0) %
(8, 7, 5, 4, 0)
(8,7,6.1 0)

Table 3.2: Number of Gates of a-multipller and Multipller

Designs In GF(2™)

—_ 31

4 1

5 1 49
8 1 71
7 1 97
8 3 141

3.2.2. Universal Standard Basis Multiplier

The structure of Fig. 3.1 can be used to deslgn the universal multiplier.

To have a universal multipller In GF(2™) for m =4,5,6,7,8, a universal a-



multiplier should be deslgned.

The complexity of the universal a-multipller depends on the polynomlals
which generate the GF(2™) for m =4,5,6,7,8. To have a low complexity a-
multiplier, the generator polynomlals should be chosen from Table 3.1. If, for
different values of m, we can find polynomlals with common nonzero
coefficlents, the complexity will be very low. For m =4,5,8,7, 1t Is possible to
find such polynomlals having the general form of I, (z)=z™'+z3+1 (Indl-
cated by "*" in Table 3.1). But none of the polynomlals In the GF(2®) has this
general form. In GF(2%) any of the polynomials Indicated by "% In Table 3.1,
can be used and we have consldered the first polynomial, .e., z8+z4+ 2341 +1.
Using these polynomlals, the definltlon of a-multiplier can be found based on
Eq. (3.18). These definitlons of a-multiplier can be reduced to
@ =CmyH(c o€ 7)1 0P H(C gt e y)o+(c gt p)ot+e g0+ sa+c gol

(3.17a)
or 1n vector form,

@ Y=0a.(CiCys * * " +Cpm_1)=ACpp_1sCoF C7:C 1,C o Cp _1:C 53+ C7,C C5iC6). (3.17D)

Eq. (3.17) deflnes the unlversal o-multiplier as long as the value of ¢, _, Is
known. In Fig. 3.3, thls a-multiplier Is shown which Is configurable to different
a-multipliers based on the variables ¢gf .., m =4,5,8,7,8. At any time, only one
of these varlables has hilgh level. This determlines working fleld of the o~
multipller. As shown In Flg. 3.3., there 1s a need for 3 XOR and 5 PASS gates
to deslgn the unlversal a-multipller. A PASS gate 1s a transistor which con-
trols the transfer of informatfon. The propagatlon delay of thls a-multlpller 1s

equlvalent to two gates.

The design of the unlversal multlipller 1s the same as the GF(2™) multi-
plier of Fig. 3.1 where m =8. There are two dlfferences between GF(2%) and

universal multipllers. In unlversal multipller we should use the universal o-
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multipller of Fig. 3.3. Moreover, In the universal multlplier a block should be
added at the output of the multipller to force the 8-m most significant digits
of the product to zero. This block Is shown In Flg. 3.4, which needs 4 AND
gates and 3 OR gates. For example If ¢gf , Is high, only 4 least slgnificant

digits can be nonzero, l.e., d;=d g=d ;=d ,=O0.

The unlversal multlpller needs 183 gates and has a propagation delay

egqulvalent to 17 gates for any value of m =4,5,8,7,8.

3.2.3. Standard Basis Inverter

In standard basls there Is no structure avallable for the Inverter which has
low complexity and which can find the Inverse of the elements with a very high
speed. Structures avallable are elther high complexity [40] or low speed [18].
Therefore, table look-up method is normally used for the Inverter design. In
thls method, the preprocessed Inverse values of the elements of Galols field are
stored In a Read-Onlv-Memory (ROM) chip. This ROM can find the Inverse

values by applying the element 1n blnary form to the address lines of the chip.

Obvlously this approach for finding the inverse, can not be used when a
large number of Inverters are needed In a specific deslgn. Fortunately, In the
deslgn of RS decoders only one inverter Is needed and hence It Is possible to use

the table look-up method.

To deslgn a universal Inverter using this method, five partitions for the
ROM chip should be consldered for m =4,5,6,7,8. These partitions have the

Inverse values for different values of m .

3.3. Arithmetic in Normal Basis

For constructing 2 GF(2™ ) in normal basls, there Is more than one irredu-

cible polynomial for m =4,5,8,7,8 {20].
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Table 3.3: Nonzero Terms of Generator Polynomlals for Generation of

GF(2™ ) in Normal Basls

m nonzero terms
[e———————
4 (4, 3,0)
(4, 3,2,1,0) ‘

5 1| (5, 4,2,1,0)

(5, 4, 3, 1, 0)

(én 41 31 g_! 0)

8 |l (s, 5,0)

(8, 5,2, 1, 0)

(8, 5,4, 1, 0)

(6, 5,4, 2, 0)

7 il (7,8,0)

(7, 8,2, 1, 0)

(7, 8, 4, 1, 0)

(7, 8, 4, 2, 0)

(7, 6,5, 2,0)

(7, 6,5, 3,2,1,0)
(7,6.5,4,2.1,0) |
8 |[(8,7,21,0)
8,73 1,0)
8,7,3 2,0

(8, 7,5, 1, 0)

(8, 7,5,3,0)

(8, 7, 5, 4, 0)
(8,7,86,1,0)
(8,7,4,3,21,0)
(Sv 71 5: 5, 39 2. 0)
(8v 7’ 6' 3! 2, 1’ 0)
(8,7,6,4,2,1,0)
(8,7,6,4,3,20)
(8,7,86,5,2,1,0)
(8, 7,6, 5, 4, 1, 0)
(8, 7,86, 5, 4,2 0)
8,7,8,5 4,3, 0)

Suppose that {a®"", ... a4 a2 a} 1s a normal basls for GF(2™ ). Using
the propertles of the Galols flelds, the square of an element

m-l

f=b, 02 + - +boals
B=b, 02"+ ... + beo?+ b,_a. (3.18)

Thus, If 8 Is represented In vector form, B= (by_ys bppgr . ..+ bo by, bo)

then the square of f1s, f%= (by, g, bpy_ar - - -+ 014 b 0py_y). Hence in normal
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basis representation ﬂ’ 1s a cycllc shift of f. This property can be used to

deflne normal basls Inverter and multipliers [39].

3.3.1. The Massey-Omura Multiplier

In this subsection the Massey-Omura multipller which 1s based on normal

basls representation Is explained [39].

Let f=(b,_y, ..., by,bg) and y=(¢p,_;s . . .4 €4, €) be two elements of
GF(2™ ) In a normal basls representation. Then the last term d,,_, of the pro-
duct,

b=Pf.v=(dp_4s . . ., dy, dy) (3.19)
Is some binary function of the components of # and 4, l.e.,

dp=f (b by, .. v by i€ Cpee oy Cpoy) (3.20)

Since squaring means a cyclle shift of an element In a2 normal basls representa-
tlon, one has §°=/2.4% or equivalently,
(dpgr . -1 dy doy )=
=(bm_2, v e -9 bl’ bo, bm_l).(cm_zy “ e ey Cl, CO, Cm_l). (3.21)
Hence the last component d,_, of & Is obtalned by the same functlon f/ In Eq.
(3.20). That s, dp =1 (bp_30 b ys. . . v by i Cnys Cor €av - -+ s Cpu_g):
By squaring 6 repeatedly, 1t Is evident that

Ay =f (b by . .. v by i€ €pn e v vy Cppy)

pno=f(bp_ 1 b bys . by i Cngs €Cr €0 o - -y Cppy)

do =f(bybo ... by _pboicyCa. .y Cm_ys €o) (3.22)
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The equatlons In Eq. (3.22) define the Massey-Omura multtplier. In the
normal basls representation, this multiplier has the property that the same
logic function f which Is used for finding the last component of d,, _, of the
product § can be used to find the remalning components d,, ,, dp, 5, . . ., dy
of the product. This feature can be used In the design of serlal and paralle)
type multipliers [38],[39]. Here we only consider the parnliel Massey-Omura
multipliers, since this kind of multipller Is required in the structures introduced

in following chapters.

For parallel type multipllers, the above mentioned feature permits the use
of m ldentlcal logle functions, f , for calculating slmultaneously all com-
ponents of the product. In this case, the Inputs to the m loglc functions f are
connected directly to the components of # and <. The only difference in the
connections to the components of 8 or 7y to a function f 1s that they are cycll-
cally shift=d versions of one another. The maln problem in the deslgn of these
multlpliers 1s avallabllity of more than one irreduclble polynomlal which gen-
erate a GF(2™) for m >4 and represent a normal basls. Therefore, there are
more than one deslgn for the GF(2™) multlpller, since the structure of the
parallel Massey-Omura mulitipller depends on the generator polynomial of the

fleld.

As an example, consider the design of the parallel multiplier in GF(2%).
The structure of this multipller based on the product function f s glven In
Fig. 3.5. To complete the design In this figure we should focus on the product

function f .

3.3.2. The Least Complex Product Function

The design of [ 1n GF(2%) begins with the selectlon of the irreducible

polynomial of degree m =5 over GF(2) [38],(42]. There are three Irreducible
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polynomlals (Table 3.3) which generate GF(2°) in a normal basls representation.
These polynomlials are

I(z)=25+ 2% + 22+ 1 +1,

I(z)=25+ 2%+ 23+ 2 +1,

I(z)=z54+ 2%+ 234+ 22 4+ 1. (3.23)
These three polynomials have linearly independent roots, namely, a, a2, a*, o8,

and a!S,

Any two elements of § and v In GF(2%) can be expressed as

B=(boa’ + b,a® + bya* + bya® + b,a'9),
r=(coa’ + ¢ ,a? + cat + cza® + ¢ ). (3.24)

The product of 8 and v Is é=/0.7 or equivalently,

doa' + d,a® + dya* + dy0® + d o=
=(boo' + b,0® + b0t + bya® + b,a'®).
(coa! + ¢,0® + c,a* + ¢ 08 + ¢ ,a'®)

=boeo0® + boc,0° + boca® + bycga® + bye a7 +
bicoa® + biciat + byc,0® + bic0' + byc,a® +
bacoo® + bye,a® + byea® + byega'? + bye 0 +
bacoa® + bye a0 + byc,a’® + byc,aal® + bye 0t +
b oo + bycia® + b e 0% + bye0? + byc 0, (3.25)
where o®?=qa. Uslng Eq. (3.25) and the fact that a Is a root of the generator
polynomial, one obtalns three product functions f ,, f,, and f ; corresponding

to three generating polynomlals I,(z), I,(z), and Is(z), respectlvely. These

product functions are
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Jalbgo by bgy bg b cpicys €y 3 c )=
=boco+ bpcg+ bgey+ bycog+ byeg + byey +
bcg+ bge, + byey, (3.20)

S obogy by by bg by € Cyy €y €3 € Q)=
=bocl+b160+6003+baco+6163+b301+
bocg+ bgcy+ bocy+ bycy+ by (3.27)

falboy by ba, ba by cicyy g €3 €4)=
=6062 + b2c0 + boca + baCo + bICQ + bQCl +
bicg+ becy+bocg+ bgeg+ bocy+ byey +

bacg + bgey+ b e, (3.28)
These three product functions offer three different logle clrcultries. The
loglc clrcuitries for functlons f,, f, and [ ; need 9, 11 & 15 AND gates and
also 8, 10 & 14 XOR gates, respectively. All of these three product functions
have propagation delays equivalent to delay of five gates. In hardware deslgn
of the multiplier, the dominant factor for choosing the product functlon Is the
number of the gates needed for the design. Based on the gate numbers, [ 1
Introducss the least complex design and the corresponding polynomilal I,(x)
should be used to deslgn the GF(2°%) multipller. The functlon [, s equivalent

to digit d, of the product and the other digits can be found using Eq. (3.22).

The loglc design of the product function [ , Is glven in Fig. 3.6.

In [44], the minlmum number of terms of the product function f is glven
for different values of m as shown in Table 3.4. Based on the number of terms
of /, the complexity and propagation delay of the GF(2™ ) multiplier can be

evaluated which are also given 1n Table 3.4.
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Table 3.4: Complex!ity and Propagation Delay of

Massey-Omura Multiplier

m Minlmum Gate # of | velay
Lterms ol L L Multlpiler f

4 7 52 4

) 9 85 5

8 11 132 5

7 19 259 6

8 21 328 8

3.3.3. LCA and VLSI Designs of the Multiplier

In this sectlon, the Implementation of the GF(2%) Massey-Omura multipller
I1s discussed [42]. LCA and VLSI designs are considered and compared. For
LCA deslgn, a new LCA system produced by Xilinx's [71] 1s consldered. In
VLSI design, Complementary-Metal-Oxlde-Semiconductor (CMOS) 3 um tech-

nology s used.

A 1200-gate LCA with an array of 64 Configurable-Logic-Blocks (CLB)
and 58 Input/Output-Blocks (IOB) Is used. Each CLB has a comblnational
loglc sectlon, a storage element, and an Initernal routing and control section.
Each CLB has also four general purpose Inptts, a ciock Input and two outputs.
Each IOB provides an interface between the external package pin of the device
and the Internal logle. The creation of a Inglc network from these elements Is
defined by a configuration program stored In an Internal memory (RAM).
Therefore, there 1s no custom factory fabrication process. The configuration
program which 1s developed on an IBM PC/AT Is elther loaded automatically
from an external memory or programmed by a processor when the device Is
powered up, or upon command while the system 1s operating. This LCA chlp Is
fabricated with 1.2 um CMOS technology. Power consumption Is very low and

clock speed can be as high as 35 MHz.
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To deslgn the GF(2°) multlpller using LCA, first the product function f )
should be conflgured. In order to minimize the resources required by this
design, 1t Is necessary to partition the design of the product function f 1+ Note
that this partitioning Is required to minimize the deslgn, since each CLB of an
LCA can generate a functlon of at most four varlables. To prevent unnecessary
use of blocks, we must try to have partitions with four Input varlables. The
partitions of the expression for the functlon [, are {b,, b, ¢, czh
{bg b g cocy}sand {8y, by, ¢, c,} and, hence, f | Is equlvalent to,

[a(boi by ba by, 045 concyy € €3 €)=
=(bacg+ bgc, + byc3)+ (byeog+ bocy+ bycy) +
(bocy + boco + bycyp). (3.29)
The functlon f , In the above equation Is equlvalent to the digit d, of the pro-
duct In Eq. (3.25). Other digits of the product can be found using Eq. (3.22)

and the same kind of partitioning.

From the partitioned equation (3.29), It Is clear that each digit of the pro-
duct wlll require four loglc blocks (CLBs). Three CLBs for three partitions and
one for finding the resultant digit. Therefore to evaluate flve digits of the pro-
duct (d,d,d,,d,.d,), 20 out of 64 avallable CLBs are required. We also need
15 10Bs for 10 Inputs and 5 outputs of the multipller. The propagation delay
of this LCA multipller 1s 270 ns, and therefore, the maximum operating fre-
quency can be 3.7 MHz. Thls propagation delay has been measured by simula-
tlon. The reason for the high propagation delay Is the lIlmited number of
"direct” Interconnect llnes between the CLBs. In thls !mplementation 1t Is
necessary to use Indirect Interconnectlons passing through pass transistors
which ylelds to large propagation delay. The configuration of the LCA chlp for

the GF(2°) multiplier is given In Fig. 3.7.
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Using VLSI technology we can design multipliers which are more rellable,
consume less power, and operate at higher speeds. However, thls requlres a
longer development time and higher englneering cost. Normally, the VLSI

chips can be afforded for large production volumes.

To develop the VLSI layout, first the layout of the product function f , of
Fig. 3.6 Is done to form the digit d, of the product in Eq. (3.25). To develop
the other four bits of the product, thls layout can be copled four times and
proper Interconnectlons according to Flg. 3.5 can be done. The VLSI layout of

the GF(2°%) multiplier 1> shown In Fig. 3.8.

This VLSI chip takes a chlp area of 3800 um by 800 um and the propaga-
tlon delay 15 equal to 32 ns, and therefore, the maximum operating frequency
can be about 30 MHz. This shows that VLSI deslgn can be up to 9 times faster
than LCA design. The propagation delay of 32 ns which also includes intercon-

nection capacitance effects, has been measured by a simulation package.

3.3.4. Another Normal Basis Multiplier

m-1 m -1 .
Let f=Y b;a¥ =(by, -, by_,) and v= Y ¢;a¥ =(cy - -+, Cp_y) be
1=0 § =0

two elements of GF(2™ ) 1n normal basls. The product In polynomial represen-

tatlon can be written as,

6=ﬂ-’7=(boa+bla2+ « e +bm_la20-l).ﬁ’
-1

=bgyv.a+b,v.0?+ - - +b,_;v.0% . (3.30)

Eq. (3.30) can be Implemented as shown 1n Fig. 3.9. This structure needs m,
blocks of a? -multiplier for § =0,1,...,m —1. Moreover, m2 AND gates and m?
XOR gates are also used in the multipller structure. In this structure, only the

az'-multlpller circultry depends on the generator polynomilal of the fleld.

To complete the structure of the multiplier, the a“'-mumpller blocks
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shouid bde deslgned. These blocks can be deslgned using the Massey-Omura
multipller. As an example, we consider GF(2%) and use the best generator poly-
nciulal to design the o -multipliers.

The a? -multipliers are speclal case of the Massey-Omura multipllers since
o® for i =Q0,1,* - - ,m-1 are constant values. ‘These elements can be
represented In binary form as shown in Table 3.5. Using the blnary form of
these constants, the least complex product function f of Eq. (3.26) can be
simplifiled as shown 1n Table 3.5. To form this table, it Is assumed that a? is
multiplled by y==(c 4¢3 ;.¢o). In Table 3.5, complexity of each product
function f and the corresponding a® -multipller Is also glven. The propaga-
tion delay of these a"-mumpllexs is equlvalent to delasy of one gate for
t =0,1,2,3 and has no delay for {=4. The complexity and propagatlon delay
of the normal basls GF(2™ ) multipller of Fig. 3.9 are glven in Table 3.8 for

m =4,5,6,7,8.

Table 3.5: Complexity and Propagation Delay of az'-Mumpllers

In Normal Basls

Vector Product # of Gates | # 29f (Gates ;)elay
(41 (00001 Cot+C, 1 5 1
a® || (00010) CotCa 1 5 1
a* i (00100) ¢otcC, 1 5 1
| o® || (01000 cite, 1 5 1
a'® || (10000) Co 0 0 0
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Table 3.8: Complexity and Propagation Delay of

Normal-Basis Multiplier

m Gate # of | Delay
%

4 44 4

5 70 S5

8 102 5

7 182 8

8 232 8

3.3.5. Normal Basis Inverter

For any element 8 In GF(2"), A% =pB. Hence the Inverse of f Is
B'=F""2, Let 2™-2 be decomposed as 2422423+ - - - 42™~1 [38], then £

can be expressed as

B=(8%).(F)(B). - - - (F),. (3.31)

Therefore, the Inverter In GF(2™ ) can be realized by m —2 multlpliers based on
the above equatlon. Note that the square of the element f1s just a change of
Interconnection to the muitiplier circult. As an lllustratlve example the
Inverter structure for GF(2°) Is glven In Fig. 3.10. The GF(2™ ) inverter has a
propagation delay equlvalent to 2 muitipliers for m =4,5 and 3 multipllers for

m =6,7,8.

3.4. Comparison of Normal and Standard Bases

In this chapter, a standard (Flg. 3.1) and a normal basis (Fig. 3.9) multl-
pller In GF(2™ ) were Introduced. The complexity of these multlpliers and the
Massey-Omura multipller Is given in Table 3.7 for comparison. This table
shows that the nun' ' gates for the standard basls multipller 1s less than

hat of the other . * ¢rs. The Massey-Omura multipller has the most com-

plex structure, howev 1s more modular than the other structures,
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Table 3.7: Comparison of Complexity of

GF(2™ ) Multipllers

ISR TR IrF R

4 31 52 44
5 49 85 70
8 71 132 102
7 97 259 182
8 141 328 232

The propagation delay of the multipliers iIs compared in Table 3.8 which
shows higher delay for the standard basls multipller. The dejays of two normal
basls multipllers are the same. Note that 1t Is possible to design these multl-

pliers for lower propagation delays, but the complexity will increase.

In normal basis an lnverter can be designed which has complexity of m -2
multipliers. The propagatlon delay of this GF(2™) Inverter Is equlvalent to
delay of 2 muitipliers for m=4,5,6 and 3 multipllers for m =7,8. The Inverter

in standai d basls is very complex, thersfare table look-up should be used.

Table 3.8: Comparison of Propagation Delay of

GF(2™ ) Muluipllers

00 =3[0 O |
© {00 i~ i Jon
o] (o] .3 (4] £8
@ o jon fen i

In this chapter, a unlversal mult!pller was also introduced which can be
conflgured for m =4,5,6,7,8. The unlversal multiplier needs 183 gates and has

a delay of 17 gates. In normal basls, there 1s no universal multipller avallable.
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Figure 3.2: GF(2°) a-Multipllers in Standard Basls

Generated by a) z5+z2+1 and b) z°+2%+1
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Figure 3.3: Universal a-Multiplier In GF(2™ )

for m =4,5,6,7,8
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CHAPTER FOUR

A VERSATILE TIME DOMAIN REED-SOLOMON DECODER

In this chapter, the time-domaln algorithm based on transform decoder
[32] is restructured and a versatlle Reed-Solomon (RS) decoder structure 1s
developed [682]. This decoder can be programmed to decode any Reed-Solomon
code deflned In GF(2™ ) with a fixed symbol slze m. The reason for llmiting
ourselves to a specified GF(2™ ) Is that the unlversal multipller in Galois flelds
has higher delay and complexity compared to the multipllers for one speclfied
value of m. The versatile decoder can correct both errors and erasures for any
RS code. It Is shown that the Introduced versatlle decoder has a very simple

structure and can be used to design high-speed, single-chlp VLSI decoders.

The Input/output interface and decoding unit of the decoder I given and
the complexity and throughput s discussed. It Is also shown that versatlle

decoders are best deslgned usling t!ime-domaln decodlng algorithms.

As an lllustratlve example, a Gate-Array-Based programmable RS decoder
Is Implemented on a slngle chlp [63]. This decoder chlp can decode any RS
code defined In GF (2°) with any code word length and any number of informa-
tilon symbols. The fabrication of the decoder chlp 1s done using low power 1.5

mlicron, 2-layer metal, high-speed CMOS technology.



4.1. Decoding Algorithm

The time-domaln decoding algorithm based on transform decoding which
was explalned in Chapter 2 [32], may Introduce a large number of exira errors,
wlien the number of errors In the channel !s larger than the error correction
capabliity of the code. 1In this section, a block Is added at the end of the time-
domaln decoding algorithm, to overcome thls problem. Some other

modifications are also given 1n order to simplify the structure of the decoder.

Consider the ¢t error correcting time-domaln Reed-Solomon decoder.
When the number of errors Introduced in the channel, v, Is larger than t, two

cases can be distingulshed.

In the first case, the pattern of the recelved vector y Is such that the
decoder assumes a code word has been recelved which contains u<t errors
(u;éu). Therefore, the decoder decodes ihe recelved vector by Introducing at

most u errors. Hence the decoder output has at most y+-v errors.

In the second case, the recelved patiern to the decoder is such that the
decoder assumes a code word has been recelved which contalns >t errors. In
thls case the decoder trles to correct the recelved vector, but slnce this Is out of
the capabllity of the code, the decoder falls and can Introduce up to n errors In
the recelved vector. This happens even when the number of errors Introduced
iIn the channel 1s Just above the error correction capability of the code, l.e,,
v=t+1. This case can be detected eastly and the decoder can output the

recelved vector as It Is without Introducing any extra error.

To detect the second case, one way Is to count the zero components of the
vector A. If this count Is equal to the value of L (Chapter 2), the decoder per-
forms the correctlon, and If not, the output is the recelved vector without
correction, ¢ ==y [16],[25]. For implementation of this method, a counter Is

required for counting the zero components of A
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To avold this counter, conslder the second step of the time-domaln algo-
rithm. In this step when the {th component of the errata locator vector )\ Is
zero (\;==0), then there s an error in locatlon t. Moreover In step 3 of the
time-domaln algorithm, when the tth component of the errata value vector ¢
Is zero (e; =0) then the recelved vector y Is not corrected In location 1. In
other words for each index of 1, If the product X;e; 70 then we detect the
second case explalned above when v>!. As shown In the next sectlons, thils
comparlson requires only one flip-flop and has less complexity compared to the
prevlous method.

It 1s shown in [69] that malfunction may happen In the decoders where the
Euclidean algorithm Is used for calculatlon of the error location polynomlal.
This means that the decoder may have an output which I1s not a code word at
all. In the time-domaln algorithm based on transform decoder, It appears to be
no malfunctlon, since we have used the Berlekamp-Massey algorithm.

In Fig. 4.1, other modifications are also provided to decrease the complex-
1ty or In-'rease the speed of the decoder. As shown In this figure, after updating
r, the block s, «a's; Is Introduced [32]. This helps the equatlon for A, not to
have the factor In o, as does the equatlon for updating s;. Since there are n
lteratlons, the flnal s; s multlplled by a™, but o™ equals one since & has
order n and, hence, the final resuit Is not aflected. Thls modificatlon ellm-
inates the calculation of '’ In the algorithm.

In the algorithm of Flg. 4.1, the value of L Is initlalized to zero, A\; and
b;, =0, - - - ,n-1, are Inltlalized to a’=1, and g =y.

After Initlalization, the first teratlon starts and the components of g§ are
updated to s; a'. In the first p iteratlons, the components of the erasure loca-

tor vector 7 Is evaluated as,
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A=a”

6=0

>‘i 1 —Aa“‘ )‘f
p— o
b; A6 (1-8)at | |4 |
by =X; (4.1)
where a==)\ at the end of pth lteration. Eq. (4.1) Is the approach to find the
value of erasure locator vector with Iterative equations slmllar to the
Berlekamp-Massey lteratlons [32]. In the above equatlon, j, for r =1,2, " * * ,p

are erasure locatlons. To use Berlekamp-Massey Iterations to perform Eq. (4.1),

initialization of A=aj’ , 6=0 1s done 1n each iteration.

In lteratlons r==p+1,p+2, - - - ,n~k, the errata locator vector )\ Is
evaluated usling following set of recursive equatlons [32].
n-1
A= 2 )\,- S¢

1 =0

L «6(r-L)+(1-9)L,

A 1 ~Aa™t A
b {7 las -8 | {6 | (4.2)

for 1 =0, - - - ,n~1, where =1, If both A£0 and 2L ~p<r -1, and 6=0 other-
wise. After the (n—k)th iteration, the estlmate of the errata value vector g Is

calculated according to,

n-1
A= E X,’ 8
=0
8" 4"‘3,‘ —A, (4-3)
and finally, if )\; s, =0 for ¢ =0, - - - ,n -1, the recelved vector y s corrected to
£=y-5. (4.4)

Note that 1n this algorithm, the vector g, at the last iteration, 1s equivalent to

the errata value vector ¢ .




-77 -

4.2. Decoder Architecture

In this sectlon, the architecture of the versatile time-domaln decoder 1s
presented [62]. The Reed-Solomon decoder has two units, namely, the
Input/Output (I/O) Unit and the Decoding Unit. These two blocks are
explalned In thls sectlon assuming that the decoder recelves the symbol v, _,
first and the symbol v, last. The output of the decoder Is also In the same

order, 1. e., d;_;==c, _, !s transmitted first and dy==c, _; last.

The structure discussed in thils sectlon can easlly be modifled to decode
shortened, singly extended, decreased redundancy, and nonprimitlve RS codes

[32],{61],[65].

4.2.1. Input and Output Interface

The J/O Untit, shown In Fig. 4.2, accepts the recelved data (y ) at a symbol
rate defilned by Clk-In, and stores 1t in the bufler. The Decoding Unit corrects
the erasures and errors of vector v up to its capabllity and transfers the

corrected vector ¢ to the I/O Unit symbol by symbol. The I/O Unilt outputs

the decoded data ¢ at a symbol rate defined by Clk-Out.

The Inputs and the outputs of the decoder are continuous, hence they can
not be stopped or delayed. On the other hand, the decoder needs some time to
correct the errors after recelving an entire Input block. To let the decoder
correct the erasures and errors wlthout losing any data at the lnput or output
of the decoder, three sets of n-stage parallel-in/parallel-out shift reglsters are

used where n =2" 1.

The I/O unit, upon recelving a code word, stores It symbol by symbol in
one of these buffers and then the phase control connects thls buffer to the
decoder unit. When the decoder is correcting the errors another buffer recelves

the next code word and stores It. In the third phase, the buffer which holds the
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corrected code word outputs the data. The phase control Is responsible for the

operation of these buffers In each phase.

Note that we have assumed a systematic RS(n ,k) code and the Informa-
tlon symbols of and ¢; are In locatlons with !ndexes
t=n-k,n-k+1, -, n-1 while the parlty symbols are in locations
1=0,1, ' -, n-k-1. Therefore after correction of the errors, the I/O Unlt
only needs to output the Information symbols which are lccated at k locations
at the right side of the output buffer. Thls Is done automatlcally, slnce the
output buffer Is shifted out with a lower frequency clock compared to the

Input-Buffer.

There Is another input, ER, to the I/O unit which glves the erasure infor-
mation about any recelved symbol. This Input exhiblts a low to high transitlon
to denote that an erasure has occurred In the synchronously recelved symbol.
If the recelved symbol v; Is an erasure then we need to store o' and use It
later. To generate o', a multiplier and the register Rpp are used. The register
Rpp s inttlalized to a®=1 and the clock for this reglister Is Clk-In. The eras-
ure Iniormation Is stored in n-stage parallel-ln parallel-out shift reglsters.
Obviously two sets of these n-stage shift registers should be used, one for the
input and one for the work buffer. The phase control circultry changes the role
of these buffers consecutively. An up-counter flnds the number of erasures, g,

to be used In the Decoding Unlt.

4.2.2. Decoding Unit

The Decoding Unit structure 1s shown in Fig. 4.3. In the Decoding Unlt,
there are three sets of n-stage parallel-in/parallel-out shift registers for sioring
8;» \;, and b;, for +=0,1, - -, n-1. The contents of these registers are

shifted to the Arithmetic Unit with clk; which Is the Internal clock of the sys-
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tem. The Arithmetlc Unit processes the contents of these reglsters and feeds
them back circularly. To distingulsh between the different iteratlons of the
decoding process, the Internal ctock Is divided by n to form clk, which is fed
to the lteratlon counter. Output of thls counter indlcates uhe iteration number
r. There are n +1 Iteratlons, and In each Iteratlon, r determines the com-

mands glven to the Arlthmetlc Unlt by the control circultry.

In thls deslgn, three n-stage shift reglsters are shifted to the right with
clk; clock. This shifting Is performed tlll the end of decoding process. The
switches are connected based on the value of the lteration counter, r. The

connection of these switches Is shown on the contacts by specifylng value of r.

In Iteratlon r =0, the content of the work buffer, v;, Is multiplied by a'
and loaded In to the shift register s;. At the same tlme, v, o' 1s accumulated
In A; reglster to form A for the first 1teration. In thls lteration, shift registers
A\; and b; are loaded with the Inltlal value of a®=1. In order to keep the data
of the work buffer, values of v; are also fed back to the work buffer with clk;.

In this iteratlon, L 1s Initlalized to zero.

In lteratlons 1 to p, the registers \; and b; are Initiallzed by the erasure
locator vector. In iteratlons p+1 to n—k, the value of § and updated value of
L are calculated based on the value of iteration counter r, discrepancy A and
previous value of L. In these Iteratlons, \;, b; and A are calculated simul-
taneously. In iteratlons n-k+1 up to n-1, value of §; 1s added to A and
simultaneously the new value of A Is calculated. In these lterations A; Is also

shifted circularly to malntain the contents.

In the last, l.e., the n th, lteratlon, s; 1s added to thLc previous value of A
to be used for correcting v;. For proper correctlon, the values of \; s; are com-
pared with zero, and If k;s,- =0, then the corresponding component of y Is

corrected. If \;s;£0, then the component v; and remalning components are
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directed to the work buffer without correctlon. This Is done by an m-blt OR

gate and a JK flip-flop.

In this design, two similar circultries are used to calculate values of o' and

a". The registers of these two clrcultries are Initlallzed at the beginning of

each lteratlon to a® with Clk; clock.

4.3. Complexity and Throughput

In thls section, the complexity and throughput of the versatlle ‘decoder 1s

discusse/d for different Galols fleld sizes.

In the decoding unit, seven multipliers and one inverter In GF(2™ ) Is used,
where two of the multipllers have a constant multiplicand, and, therefore, have
lower complexity. Slnce, the standard basls inversion In GF(2™ ) requires a
large number of g;ates or ROM as discussed in Chapter 3, we use normal basls
arithmetic. Note that this cholce is justified when there are not many mult}-
pllers In the design. As discussed in Chapter 3, the Massey-Omura muitipller is
not used, since 1t has higher complexity compared to the other normal basls

multipller.

As shown In Flg. 4.3, the decodlng unit uses , three n-stage paraliel-
In/parallel-out shift registers (n =2 -1) where each reglister conslists of m -blt
symbols. Table 4.1 shows the number of gates needed for different parts of the

decoding unit In GF(2™ ), for m =4,5,6,7,8.

As shown In Fig. 4.2, the I/O unit uses 5, n -stage parallel-In/parallel-out
shift registers (n =2™ -1) which contaln m-bit symbols. These reglsters are
used as buffers for storing Input, output and erasure information. Table 4.2,

glves the number of gates needed for the J/O unlt for different Galols flelds.
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Table 4.1: Number of Gates Needed for the Decoding Unit of

the RS Decoder In GF(2™ )

m Buflers Arithmetle Total
& Control
T T T
5 2800 1000 3800
8 6200 1400 7600
7 18100 1900 18000
8 36700 2500 30200

Table 4.2: Number of Gates Needed for the I/O Unit of
the RS Decoder In GF(2™)

m Buffers Arithmetic Total
& Control
Mo | e | 00
5 5600 700 6300
8 12400 800 13200
7 32200 900 33100
8 73400 1000 74400
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Considering Tables 4.1 and 4.2, we note that the number of gates for the
buffers Is much more than the number of gates for the control and arithmetic

section of both 1/O unit and the decoding unit.

All the buffers In the decoder are very easy to design, since they have
modular structure and are simllar to each other. The irregular parts of the
design are the arlthmetic and control sections. However, these sectlons are very
small compared to the buffer sections, and, therefore, their design time Is very
short. For hardware deslgn, this property wlll decrease the design and lmple-

mentation cost by a large factor.

The decoding time of the decoder 1s determined by the longest delay path.
This path has a delay 7 equlvalent to delay of 19 gates. The decoding algo-
rithm needs n ==2"-1 Iiterations and one extra iteratlon for Inltlalizatlon. In
each Iteration the shift registers are shifted n =2™ -1 times to the right, so one
iteratlon perlod s T=n 7 and the decoding time Is n(n +1)7. The decoding
time can be used for evaluating the maximum input bit rate of the decoder,
m /(2™ )r. Consldering an Internal clock of 20 MHz (r==50 ns ), the maximum

bit rates at the Input of the decoder for GF(2™ ) are glven In Table 4.3.

Table 4.3: Max!imum Bit-Rate of the RS Decoder

m | Bit-Rate [Mb/s]

4 4.9
5 3.1
8 1.8
7 1.1

8 0.6




-83 -

4.4. VLSI Gate-Array-Based Design

As shown In the previous sectlon the buffer sections of the decoder use
most of the gates needed for the decoder deslgn. Since the buffer structure Is
cellular and regular, the deslgn and layout time for VLSI Impiementation of
these sections becomes very low. The control and arlthmetlc sections of the
decoder are not cellular. However, they are very simple and require low

number of gates, and, hence are very easy to be designed and Implemented.

These features make thls decoder structure sultable for VLSI deslgn. One
other reason for the sultability for VLSI design 1s the versatility of the RS
decoder structure. In fact, because of high cost of fabrication, general purpose

chips such as this decoder should be consldered for VLSI deslgn.

As an lllustrative example, a Gate-Array-Based programmable RS decoder
is implemented on a single chlp [63]. The decoder chip operates In a 5-blt sym-
bol Galols fleld, GF (2%). For the fabricatlon of the decoder chip, the low-
power, 1.5 mleron, 2-layer metal high-speed CMOS technology is used. The
decoder chip can decode any RS code defined In GF(2°). The power dlssipation
of the chlp Is 0.6 watts In worst case and the design needs 20500 gates on a 68-
pln package. One of the reasons for uslng more gates In thils deslgn compared
to tables 4.1 and 4.2 Is the restrictlons avallable In the gate array deslgn [80].
The other reason Is the additlon of some more features to the versatlle RS
decoder, such as microprocessor interface circults, compared to figures 4.2 and

4.3.

The Gate-Array-Based RS decoder chlp can be used In two modes: stand-
alone and microprocessor-peripheral. In stand-alone mode, 1t operates as a
stand-alone device, as shown In figures 4.2 and 4.3, directly In the data symbol
stream. In this mode, it does not requlre a processor or any external buffer. In

microprocessor-peripheral mode, it can be directly Interfaced to any standard
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4.4. VLSI Gate-Array-Based Design

As shown in the previous section the bufler sectlons of the decoder use
most of the gates needed for the decoder design. Since the buffer structure is
cellular and regular, the design and layout time for VI.SI implementation of
these sectlons becomes very low. The control and arithmetic sectlons of the
decoder are not cellular. However, they are very simple and require low

number of gates, and, hence are very easy to be deslgned and implemented.

These features make this decoder structure sultable for VLSI design. One
other reason for the suitabllity for VLSI design 1Is the versatility of the RS
decoder structure. In fact. because of high cost of fabrication, general purpose

chlps such as this decoder should be considered for VLSI design.

As an illustrative example, a Gate-Array-Based programmable RS decoder
iIs implemented on a single chlp [63]. The decoder chlp operates In a 5-bit sym-
bol Galols fle'd, GF (2°). For the fabrication of the decoder chlp, the low-
power, 1.5 micron, 2-layer metal high-speed CMOS technology 1s used. The
decoder chip can decode any RS code defined 1n GF(2°%). The power dissipation
of the chip 1s 0.6 watts In worst case and the deslgn needs 20500 gates on a 68-
pln package. One of the reasons for using more gates in thls design compared
to tables 4.1 and 4.2 is the restrictlons avallable In the gate array deslgn [60)].
The other reason Is the additlon of some more features to the versatile RS
decoder, such as microprocessor interface circults, compared to figures 4.2 and

4.3.

The Gate-Array-Based RS decoder chlp can be used In two modes: stand-
alone and microprocessor-peripheral. In stand-alone mcde, It operates as a
stand-alone device, as shown in figures 4.2 and 4.3, dlrectly In the data symbol
stream. In this mode, It does not require a processor or any external buffer. In

mlcroprocessor-peripheral mode, 1t can be directly nterfaced to any standard
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microprocessor bus. This conflguration is useful for appllcations In magnetic
recording systems, data communications as well as digital-signal-processor
based modems. In thls mode the decoder chlp operates as a standard perl-

pheral devlce of a mlcroprocessor or a digital signal processor.

4.5. Versatile Decoders Based on Other Algorithms

To Introduce versatile RS decoders using syndrome-based decoding algo-
rithms, many modules should be designed. For example, let's consider the
module for the Berlekamp-Massey algorithm to evaluate the error locator poly-
nomlal A(x ). We have chosen this module slnce, as will be shown, the design 1s
simllar to the deslgn of the decoding unit In Fig. 4.2. This module is the same

for both syndrome-based decoding algorithms.

As we know the Berlekamp-Massey algorithm can be designed using shift
registers as shown In Fig. 4.4. [16],[25]. In this figure, registers are provided for
three polynomlals S(z), A(z), and B(z), and the length of each reglster 1Is
large enough to hold the largest degree of its polynomial. Shorter polynomials
are stored slmply by fllling out the register with zeros. The S(z) and B(z)
registers are each one stage longer than needed to store the largest polynomtal.
This, and the number of clocks applled to each shift register durlng an itera-
tlon, are set up so that the polynomtlals will process one position during each
iteration. This supplies the multiplication of B(z) by z and also offsets the
Index of S; by r to provide S;_» wWhich appears In the expression for A. To
see this, refer to Flg. 4.4; the syndrome reglster 1s shown as 1t Is initialized.
During each lteration, it will be shifted to the right by one symbol so that it
will be timed properly for multiplication with A. Durlng one lteration, the A

reglster 1s cycled twice, first to compute A, then to be updated.

This structure can compute the error locator polynomial for the case when
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only errors are avallable. To change the design to correct both errors and eras-
ures, the B(z), A(z), and S(z) shift registers should have n -k +2, n~k +1,
and n-—k +1 stages, respectlvely., For a versatlle decoder with varlable error
correction capability, value of k£ should be varlable (1<k <n). This means

that the shift registers shouid have n +1, n, and n stages.

Now, we see the slmllarity of the Berlekamp-Massey module with the
decoder of Fig. 4.3. They both have 3 sets of about n stage shift registers and

hence, we can design the module of Fig. 4.4 In the same manner as Fig. 4.3.

Obvlously the Berlekamp-Massey module has less arithmetic compared to
the structure of Flg. 4.3. In Flg. 4.4., we need only three muitipllers and one

Inverter but in Fig. 4.3 there Is a need for seven multipllers and an Inverter.

The maln problemn with the design of Berlekamp-Massey module for a ver-
satlle decoder I1s the structure of the shift reglsters. For different values of k,
different number of these shift registers, n -k, should be shifted circularly.

There are two ways to solve this problem:

1- To deslgn a complex control ¢ircultry to flll In zeros In the remalning regis-

ters which are not used In the decoding of that particular code.

2- To deslgn a complex structure for the shift registers, such that by choosing
values of k£, the data Is shifted circularly In n -k registers only.
Both of these methods Increase the design time and also the complexity of the

versatlle Berlekamp-Massey module.

We see that just the module for the Berlekamp-Massey algorithm In
Syndrome-Based algorithms, Is more complicated than the decoding unit of Fig.
4.3 which Is the whole versatlle decoder In the time-domaln. Moreover, to
deslgn a versatlle RS decoder using syndrome based algorithms, other modules
should also be deslgned. Consldering the above dlscussion, we note that the

versatile time-domaln decoder of Flg. 4.3 Is less complex than the versatile
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decoders using syndrome-based decoding algorithms.

Now, let's conslder two time-domaln decoding algorithms and compare
them. As previously mentloned, the time-domain algorithm based on the
transform decoder needs 3 sets of n stage shift reglsters. The number of these
shift registers should be doubled In the time-domaln algorithm based on alge-
brale decoder to store valuesof A, A ,w, b, b , & vectors. The arlthmetlc and
control units of the time-domaln algorithm based on algebrale decoder Is almost
twice complex. Therefore, we can say that the time-domaln algorithm tased on

algebralc decoder has twice the complexity of the other time-domaln algorithm.

The time-domaln algorithm based on the transform decoder should shift
the reglsters n times clrcularly in each iteration. The number of iteratlons Is
n, and therefore this decoder can decode with n? clocks. The time-domaln
algorithm based on the algebralc decoder, has the same number of shifts In
each Iteratlon, n . However, thls algorithm only needs £t iteratlons to decode a
t error correcting RS code. Therefore this decoder can decode with 2{n clocks
which Is much less than that of the other tlme-domalin decoding algorithm, spe-

clally for hlgh rate codes.

4.6. Summary

In this chapter, a versatile Reed-Solomon decoder, capable of decoding any
RS(n ,k ) code In a specific Galois fleld was presented. The time-domaln decod-
ing algorithm based on trapsform decoder was used to Introduce the decoder.
The structure of the versatlle decoder Is such that 1t can be programmed to
correct errors and erasures for different RS codes. As an lllustrative example, a

Gate-Array-Based deslgn of the decoder 1n GF(2°) was also given.

To compare the syndrome-based algorithms and time-domaln ones, imple-

mentation of the Berlekamp-Massey algorlthm was consldered. The
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Beriekamp-Massey algorithm s one of the steps of the syndrome-based algo-
rithms which evaluates the error locator polynomial. It was shown that the
hardware required for the implementation of this step alone, Is more than that
of the total structure of the Introduced versatlle decoder based on time-domaln

algorithms.
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CHAPTER FIVE

A CELLULAR STRUCTURE
FOR A VERSATILE REED-SOLOMON DECODER

The time-domain decoding algorithm based on the transform decoder ls
restructured to be sultable for cellular Implementation. This cellular decoder
can be programmed to decode any (n,k) RS code defined In the Galols fleid,
GF(2™), with a fixed block length n and a fixed symbol size m . The versatile
decoder can correct both errors and erasures for any message length £. The
Introduced deco.er is cellular and has a very simple structure and, hence, It Is
sultable for VLSI designs. The complexity and throughput of the decoder are
explained. It is shown that the Introduced structure has a very high decoding

speed.

5.1. Decoding Algorithm

To design a cellular structure for the Reed-Solomon decoder, some
modificatlons and restructurings should be Introduced In the time-domaln
decodling algorlthm. These modificatlons malnly reduce the complexity of the
decoder. As shown In Fig. 4.1, there are three steps In the time-domaln decod-
Ing algorithm for finding the errata locator and value vectors. The operatlons
in these three steps are different, but, there are some simllaritles and all
together n Iterations are needed to perform the decoding. Our maln objectlve
s to combine these three steps and obtaln an algorithm which has n 1iteratlons

with the same operatlons In each iteratlon.
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First step which has p iterations, Is the time-domaln erasure locator vector
calculation. In this step, there 1s only one vector 7, which Is updated for p
1terations.

In the second step, the Berlekamp-Massey algorithm Is performed to find
the errata locator vector A. In this step vectors ) and b are Initialized with the
result c: the first step, 7, and updated In each lteration and after n -k —p tera-

tlons A=X\{""*¥) is the errata locator vector.

In the third step whirh has k 1terations, the errata value vector Is calcu-
lated. In this step, the vector )\ s fixed and has the final value of the second
step of the algorithm. But thls time the value of another vector s Is Initlallzed
with the recelved nolsy vector ¥ and updated In each lteratlon to correct v In

the n th lteration.

To combine these three steps, two control varlables are added to the algo-
rithm to differentiate between three steps of the time-domaln decoding algo-
rithm. These varlables, o, and 3, are equal to one In the first p terations. In
iterations p+1, - -, n-k, o I1s zero, and £ is one. In the last k£ Iteratlons,

hoth o, and § are zero.

The restructured time-domaln decoding algorithm, having the same opera-

tlons In all n 1teratlons, I1s as follows. Let py be the recelved nolsy Reed-

Solomon code word with erasures at locatlons j,, r=1, * * * ,p. The following
set of recursive equations can be used to compute ¢;(*) for i=0, 1, - - -, n-1:
. n-1
A=pa” +(1-F) 33 Mg, (5.1)
§ =0

L «—&(r-L -p)+(1-6)L , (5.2)



AT [1 ocAa™ } A

b= A a-gart | [s0r0 ] 6.3)
e;(=5,r"V1(1-0)A, (5.4)

s'.(' )=a" e'.('), (5.5)

bl )= BN )+ (1-B)b; (™) (5.6)

for 1=0, ‘' -,n-1 and for r=1,2, - - , n. The inltlal conditions are

5;{0=0a'v,, \[¥=b;(P=a=1 and L =0. If both As£0 and 2L —p>r, then
6==1, and 6§ =0 otherwlse. Filnally, after the nth teration, the errata value
vector has components equal to e,-(" ), and the recelved vector g s corrected
using the errate value vector ¢, with components,

e;=e;("), 1t \f")=o,
e; =0, if \[*)x£o, (5.7)

The flow dlagram of the restructured time-domaln decoding algorithm ls
shown in Flg. 5.1. In thls algorithm, first the Initlalizatlon s performed. The
terations start by Incrementlng the lteration counter r and calculating the
discrepancy A. Then, the control variables £, and o are found based on the
iteration counter r and the value of A Is updated. After evaluation of § and
L . values of )\,f’), b,-(’), e,-(') and s,-(") are calculated for ¢=0,1, * -, n-1.
Finally, after n Iterations, the errata-value vector ¢ Is found. The components

of this vector are equal to ¢;{"~) 1t X f") 1s zero and are zero, otherwlise,

In the next sectlon, this restructured algorithm is used to Introduce a cellu-
lar structure for Reed-Solomon decoders. The part of the algorithm inside the
dashed box forms the arithmetlc and control unit of the decoder. Note that
the part for evaluation of A and the varlables X;, b;, ¢;, and s; are not impii-
citly dependent on the value of Iteration counter, r. This point will help In

introducing a simple structure for the cells of the Reed-Solomon decoder.
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5.2. The Cellular Structure

In thls sectlon, a cellular structure for Reed-Solomon decoders 1s intro-
duced. This structure Is based or: the restructured tlme-domaln decoding algo-
rithm shown In Fig. 5.1. The Introduced decoder can decode any (n,k) RS
code with fixed code word length n =2™ -1 and programmable message length
k. The structure of the decoder Is shown in Fig. 5.2. This decoder conslists of

three sets of n ldentlcal cells, a Decoding-Control, and an Exponentiation cell.

The Input/output (I/O) cells recelve the Input to the RS decoder symbol
by symbol with a symbol rate of Clk-In and provlde each recelved component
v; to the ¢t th Decodling Cell. The Decodlng Cells evaluate the errata value vec-
tor and apply the ¢ th component of thls vector ¢; to the ¢t th I/O cell for all 1.
Then the tth I/O cell corrects the recelved symbol v; by adding the errata
symbol e;. After correctlon the message part of the corrected code vector is

sent to the output of the decoder with symbol rate of Clk-Out.

As the recelved vector 1s belng stored In the I/O cells, the erasure Informa-
tion ER s passed through the Exponentlation cell and stored In the Erasure
cells. After recelving the whole block of the recelved vector, the number of
erasures p and values of aj', r=1, - -+ ,p are avallable to the Decoding control

cell.

The Decoding cells are responsible for all the functions outslde the dashed
box of Flg. 5.1. These cells calculate the components of the errata value vector
In n iteratlons using Clk-In. The Decoding Control circultry controls the func-
tlon of the Decoding cells In each iteratlon based on the erasure Information,

the discrepancy Ay and the number of Informatlon symbols k.
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5.2.1. Input/Output Cell

Three sets of registers are considered In the I/O cells as shown in Fig. 5.3.
The tn; registers recelve the Input block and at the same time the oul; regls-
ters transmit the decoded bdblock to the output of the decoder. The third set of
the registers dec; keeps the previously recelved block to be decoded by the

Decoding cells.

To explaln the function of the I/O cells let T be the time Interval for
recelving one block of data (n symbols), and also assume that the decoder
recelves the symbol v,_; first and the symbol v, last. The output of the
decoder Is also In the same order which means that d,_,=c, _, Is transmitted

first and d g=c, _; last.

Fig. 5.4 shows the I/O cycle flow for recelving, decoding and transmitting
the data. Let assume at time ¢ =0 the decoder recelves the first symbol of the
first block of data. At time Interval 0<{ < T the I/O cells recelves the data
symbol by symbol with a symbol rate of Clk-In and shifts them to the right
I/O cells. At the end of the first time Interval thc in; registers have stored the

first block of data.

In the second time interval by recelving the first symbol of the second
block of data (¢==T), the previously recelved block is stored In the dec; regls-
ters and the decodlng process of the first block of deta starts. In this interval
(T <t <2T), the input registers recelve the second block of data and at the
same tlme the Decodlng cells evaluate the errata values e;. Then, the first
data block which was stored In dec; reglsters 1s corrected and stored In the

out; registe~s by receiving the first symbol of the third data block (t=2T).

In Fig. 5.3, 7 1s a control varlable which Is equal to 1 after recelving the

last symbol of each data block and before recelving the first symbol of the next
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data block and Is equal to zero otherwise. This varlable 1s formed In the

Decoding Control cell which will be explalned later.

During the time Interval 2T <t <3T three functions are performed 1n
parallel. The third data block Is recelved and stored In in,- reglsters., The
second data block Is decoded and the first data block Is transmitted to the out~
put of the decoder. Note that we have assumed a systematic RS(n k) code
and the Information symbols of v; and c¢; are In locatlons with Indlces
t=n-1,n-2, ---,n-k whlle the parity symbols are In locatlons
t=n-k-1, n-k-2, - --,0. Therefore, after correction of the errors, the I/O
Unlt only needs to output the Informatlon symbols which are stored in oué;
registers located at £ rightmost I/O cells. This Is done sutomatically, since the
output buffer 1s shifted out with a lower frequency clock (Clk-Out) compared to

the Input clock, Clk-In.

The function of the I/O unlt after the third time interval is simllar and Is

shown in Flg. 5.4.

5.2.2. Erasure and Exponentiation Cells

There Is an Input, ER, to the decoder which glves the erasure Information
about any recelved symbol. If the recelved symbol v; Is an erasure then we
need to store o'. To generate o', a muitiplier and the m -blt register B 1s
used as shown In Flg. 5.5. The register R Is Initlalized to a~! before recelving
the first symbol of the data block (p=1). The clock of this register 1s Clk-In
therefore after recelving the symbol v; the output of this m -bit reglster has

value of a' for t$=0,1, - - - ,»n —1.

The erasure information Is stored In n m-bit registers ein; which are
located In the Erasure cells of Flg. 5.6. The clock of these registers Is the ER

signal, and therefore only the values of o' for which the symbol v; 1s erased
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.

are stored 1n these reglsters, o’

y T =1, - ,p. Obvlously, another set of m -bit
registers, as the ones In the I/O cells are required. These reglsters, eout;, are
used for storing the values of oz""' for the previously recelved data block. In
each time Interval T, the efn; registers recelve the values of a’ and store
them by shifting to the right. Ther after recelving the complete data block,
contents of the ein; registers are transferred to the eoul; reglsters. In the next
time Interval T, the eout; registers are shifted to the left by Clk-In to be used

by the Decoding Control cell. During the same time interval, the ein; registers

store the erasure Information of the next data block.

In F1g. 5.5, the erasure counter Is responsible for inding the number of the
erasures in each data block and storing them In the m -bit register R p The

output of the R p register 1s avallable to the Decoding Control cell.

5.2.3. Decoding-Control Cell

The Decoding-Control cell is shown in Fig. 5.7. The algorithm of this unit

is based on the dashed box In Flg. 5.1.

The decoder has a Reset Input which becomes high to enable the RS
decoder. This Input is only applled to the iteration counter and Is not pro-
pagated to any other cell of the decoder. The iteratlon counter which 1s a
divide by n counter is activated by Clk-In. The output of thls counter r indl-
cates the lteration number of the decod!ing process. A comparator evaluates
the iteration controls 7, o, and S based on the iteration number r, the message
length k&, and the number of erasures In each data block, p. Valueof 7 1s 11n
the lteration r =0 and 1Is zero otherwise. Values of ¢ and f are as shown in

Fig. 5.1.

There are two other signals for controlling the decoding process of the

Decoding cells which are the m-blt discrepancy A and 1-bit varlable §. In
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1terations r =1,2, - - - ,p, the erasure Information aj' are directed to the A out-
put. In the rest of iterations value of A 1s equal to the recelved value of the
discrepancy A, which Is calculated In the Decoding cells. The control varlable
6 1s evaluated as shown In Fig. 5.1. This value Is found based on the Iteration
number r, the number of erasures p, the discrepancy A, and the value of the
temporary varlable L. The value of L Is stored In an m -bit register which 1s

Initially set to zero and updated In each lteration based on Eq. (5.2).

5.2.4. Decoding Cell

The structure of the Decodlng Cell Is based on the operations avallable
outside the dashed box In Fig. 5.1. The detalled structure of the Decodlng cell
1s given in Flg. 5.8. This cell has three sets of m -blt reglsters for storing values
of 5;, \;, and b; after each iteration. The m -bit symbol v; Is the lnput to the
cell and the m-blt symbol e; Is the component of the errata value vector which

Is calculated at the end of the decoding process.

In each Mteration, the sth cell evaluates the partial value of the
discrepancy A; and propagates It to the next cell. This partial discrepancy Is

calculated as,
A=A+ 5, (5.8)

based on the partlal discrepancy coming from the previous cell A;,,. As
shown In Flg. 5.2, the partlal discrepancy A, Is fixed to zero and thls forces
the output of the left Decoding cell In Fig. 5.2 to have the value of the

discrepancy Ay which Is an Input to the Decoding-Control unit.

In each iteratlon the Decoding-Control cell updates the discrepancy A, and
feeds It back to the cells. The Decoding-Control cell also calculates the control
variables 3, o, and §. The 1-blt control variables 7, 8, o, and § together with

the m-blt discrepancy A are propagated to all the cells which control the
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operation of the cells in each Iteratlon. Note that values of o' and a~' are two

constants which are applied to the ¢ th cell.

To explaln the lteratlons of the algorithm, assume that the recetved code
word Is stored In registers tn; In the I/O cells. Inltlalizatlon of the algorithm
shown in Fig. 5.1 1s performed when the 1iteratlon counter is 0 which means
n==1. Therefore, v; is multipiled by o and Is ready at the Input of s; reglster.
At this step, Input of registers A\; and b; are set to a®=1. By applying the
first clock to three sets of registers the Initialization Is performed and the first
1teration starts. Then, the discrepancy Is calculated as explalned above and the
Decoding-Control cell sends the updated values of the control variables to all
the cells. After recelving the controls, each cell calculates values of s;, \;, and
b; . With the application of the next clock, the calculated values are stored In

the reglsters and the second lteration starts.

After applylng n clocks, the nth lteration starts and the contro] varlable
7 becomes 1 again. At the end of this 1teration, the errata values are found
and sent to the I/O cells to correct the recelved data block which Is avallable In
the dec; registers of the I/O cells. By applylng the next clock, the corrected
code word 1s loaded In registers out; of the I/O cells and at the same time the
reglsters of the Decodlng cells are Inltlalized to decode the next recelved data

block.
5.3. Complexity and Throughput

5.3.1. Complexity

As shown In the prevlous sectlon, maln bullding blocks of the Introduced
cellular structure are the Galols fleld multipller and m-blt register. To discuss
the complexity, let’s define the RS-Decoder cell as the collection of one Erasure

(Fig. 5.8), one 1/O (Fig. 5.3) and one Decoding cell (F1g. 5.8). The Decoder-
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Control cell I1s the combination of the Decoding-Control cell (F'ig. 5.7) and the
Exponentiation cell (Flg. 5.5). Therefore, the cellular structure conslsts of

n =2™ —1 RS-Decoder cells and one Decoder-Control cell,

Each RS-Decoder cell conslsts of five Galols fleld multipllers and elght m-
bit registers. There are also four m-bit exclusive or gates (XOR), four m-blt
switches (multiplexer), four m -bit simple switches and two 1-bit switches.
Moreover, for fan-out problems we need to pass all the control signals through
a delay gate, therefore 2m +4 extra gates are needed for this purpose. Ry sim-

ple switch we mean that one of the Inputs of the switch is constant.

The m-bit reglsters are very simple and each of them Is a D Flip-Flop
with one D Input, one clock Input and one Q@ output. These reglsiers do not
need clear or set controls. The XOR gates, switches and delay gates of an RS-
Decoder cell are aitogether equivalent to five m-blt registers from the gate
count polnt of view. Therefore, an RS-Decoder cell requires equivalent of thir-
teen m -blt reglsters and five m -bit Galols field multipllers. The complexity of
the decoder In terms of number of multipllers and number of m -blt reglsters Is

given In Table 5.1.

Table 5.1: Complexity of the Cellular Decoder

m || m -blt Reglster | m-bit Multiplier || Total # of Gates

5 418 160 20500
6 832 320 53000
7 1664 840 132000

8 3328 1280 340500




-102 -

In Table 5.1, the total number of gates needed for deslgning the cellular
decoder, 1s also glven. For the calculation of the total number of gates, stan-
dard basls multipller and Inverter are considered. The reason for this cholce 1s
having many multipliers and only one Inverter In the deslgn of the decoder, and
the multipller In standard basls has the least complexity compared to other
multipliers. For the inverter, a combinational logic circultry or a table look-up

ROM can be used.

5.3.2. Throughput

To discuss the throughput of the Introduced decoder, the maximum propa-
gatlon delay path for each iteration should be found. Thils path has three fol-

lowing major components:

1- The delay for evaluation of A, after );s; Is ready In all of the Decoding

cells. This delay Is equivalent to delay of 2™ —1 gates.

2- The delay for propagating all the control sig-als from the Decoding-
Control cell to all the Decodlng cells. This delay is also equlvalent to
delay of 2™ —1 gates, consldering extra gates Included in each Decoding cell

for fan-out problems.

3- The delay In Decoding-Controi cell and the Decoding cells which Is
equivalent to the delay of three multipliers and 10 gates. Note that we
have assumed the multipller and Inversion circultry in Galols field have the
same delay. Consldering delay of m +1 gates for one muitipller, the total

delay for this component 1s 3m +13 gates.

Adding up the above three components, the propagation delay for each

1teratlon 1s equal to the delsy of 3m +11+2™*! gates. And the maximum bit

rate at the Input of the decoder is n [bits/sec.] where 7 [sec.] Is

(3m +1142™ 1)y

the delay of one gate. Consldering 2ns for delay of one gate the maximum blt
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rate at the Input of the RS decoder Is about 38, 25, 19, 12, 7 Mb/s for
m =4, 5, 8, 7, 8, respectively. To Increase the Input bit rate of the decoder
some modifications in the structure of the decoder can be made to decrease the

delay components of 1, and 2.

To decrease the delay component 1, Instead of evaluating the partlal
values of A Inslde the Decoding cell of Fig. 5.8, we can output the values of
\;8; from the cells and ind A, by the use of an XOR summation clrcultry.
This summation clrcultry has a delay of only m gates and, hence, the exponen-

tlal delay of 2™ -1 Is reduced to a linear delay of m.

The second delay component can also be reduced using the same kind of
1dea. In this case, Instead of passing the control signals from one Decoding cell
to another with one gate delay, we Introduce a fan-out clrcultry. That Is, each
blt of the control slgnals 1s applied to the cells In such a way that one control
blt supplles 8 of the Decoding cells. Therefore, the delay of this circuitry is
only m -2 gate delays.

The total delay for one 1lteration In this case Is equal to delay of 5m +8

gates and the maxImum blt rate at the Input of the decoder 1Is -(S—m-'%_-g);-
[bits/sec.], where 7 [sec.] Is the delay of one gate. In this case, the maximur.
bit rate of the decoder, given In Table 5.2, I1s much higher. Note that this
Increase In the maximum bit rate decreases the number of gates of the decoder

but the deslgn of t!. ~ decoder will be more difficult.



- 104 -

Table 5.2: Maximum Input Bit Rate of the Cellular Decoder

m MaXximum BIit Rate

T

5 75 Mb/s
8 78 Mb/s
7 81 Mb/s
8 83 Mb/s

5.3.3. Comparison with Other Structures

In Chapter 4, a versatlile RS decoder based on time-domaln decoding algo-
rithm was presented. The versatlle decoder of Chapter 4 was less modular and
slower compared to the cellular structure we have Introduced in tbils chapter.
However, the cellular structure uses more chlp area for VLSI deslign. Both

these decoders can be used In a specified Galols fleld 2™ , l.e., for fixed m .

Recently, two unlversal RS decoders were proposed one based on algebralc
decoding algorithm [22] and the other one based on transform decoding algo-
rithm [31]. These decoders are not cellular and their designs are very difficult.
The decoding speeds of these de.oders are much less than that of the Intro-

duced cellular structure.

Three cellular RS decoders two, based on algebralc decoding (24], [59] and
the third based on transform decoding (30], have also been Introduced. The
disadvantage of these structures Is that they are not versatlle and can only be
used for decoding one specific RS code. Moreover, these structures use many
different types of cells and thls makes thelr deslgn very difficult compared to

that of the Introduced cellular structure.
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Figure 5.4: Input/Output Cycle Flow of the Cellular Decoder




El,

ER
Erasure
ter
Coun Clk-1n
J Eo,
Rp =1
“—0
', 1 a’

Flgure 5.5: Exponentlation Cell of the Cellular Decoder



ER

EI; i EIL; +1
emnm; -
Clk-In
EO; l n=1 { E0; 4,

1?

Figure 5.8: Erasure Cell(s) of the Cellular Decoder



- 111 -

p Clk-In a’
, Clk-In By
Reset Iteration } o |
g "| Counter {
} f=0"we—rl
m -bit
™ OR
6
A oy
| -1
P 2~
¢——ne -)
Clk-In]
| L e
] T n=1"""0
]
Compar . g
k ator g 2

Flgure 5.7: Decodlng Control Cell of the Cellular Decoder



-112-

€; U
Al m AAl.'Ql
L ‘{ Clk-In
Ni 8 O—d 1’\‘=0 ‘ n=1}
g(} o §; e
L 1 []la
-1 =1
N 7 ‘ Clk-In
; Yy o
e 0 A
A
1k-I ]
n C ‘ n
———’—
B p= ‘
o : % §=1 o b'

Flgure 5.8: Decoding Cell(s ) of the Cellular Decoder




CHAPTER SIX

A UNIVERSAL TIME-DOMAIN REED-SOLOMON DECODER

In thils chapter, first the time-domaln algorithm based on algebralc decoder
Is modified to reduce one out of two Inverters, and then the universal decoder
structure 1s glven. This decoder can be programmed to decode any Reed-
Solomon code deflned In Galols fleld 2™, m =4,5,6,7,8. The Introduced univer-
sal decoder can only correct errors. The unlversal decoder has a slmple struc-

ture. Complexity and throughput of this structure 1s discussed.

An RS code with block length n can be generated by n =2™ —1 diffcrent
generator polynomlals. To Increase the versatility of the Introduced unilversal
dec oder, a structure Is given which 1s cap- .1e of decoding RS codes generated

by any generator polynomial [66].

6.1. Decoding Algorithm

In the design of the unlversal decoder, we have to use the unlversal multl-
pller In standard basls, since there 1s no universal multipller avallable 1n normal
basis. Therefore, we should use a com''natorial loglc clrcultry or a ROM for
the Inverter. Obviously, uslng a unlversal multlpller, Increases the propagation
delay and the number of gates of the decoder compared to the structures of the
prevlious chapters. So, the decoder of Chapter 4 will be very slow and the
structure of Chapter 5 will be very complex for the design of the unlversal

decoder.
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To have a low complexity and hlgh speed unlversal decoder, we propose a
structure silmllar to that of Chapter 4, however, with the time-domaln algo-
rithm based on the algebralc decoder {32]. This algorithm Is much faster than
the algorithm used in Chapters 4, and 5. There Is only one problem which is
the need for two Inveriers, One of these Inverters can be omitted by modifying

the algorithm. The modification is Introduced and Justifled In this section.

The tlme-domaln decoding algorithm wased on algebralc decoder for
correcting errors has one maln step which evaluates the error-locator vector ),
error evaluator vector w and the vector X . This algorithm 1s explalned by the

following set of recursive equations [32].

n-1
A, =3 o MYy, (8.1)
=0
L, =6, (r-L,_))+(1-6,)L,_,, (8.2)
L 1 [, A, o . o 1o ]
;") A6, (1-6,)a ¢ 0 b; (")
VRN bl [0 -4, 1 A, || e 69
] -1 q ]
Lb" (r)_ -0 (1-5,) A7, (1-8, )a-.J _b,- (r—l)~
wir) 1 -a, 0 wfr-1
= ; , 6.4
a'.(r) Ar—lar (1_51' )a—l a‘_(r-—l) ( )
for +=0, ---,n-1, and r=1,2, - --,2¢t. The Iinltlal conditlons are

AfO=p, 0= [0=1 for all i; \] O=b,;" @=q;(P=0 for all {; L =0, and §, =1
If both A, 70 and 2L <r-1, and §, ==0 otherwise. Then, Af2")==0 1f and only
If the ¢ th symbol of the recelved vector y Is In error. Also we have )\ =)’ @),

and gz=gg(2‘ ) 1t A; =0, the error values are evaluated as

. W
¢ =-a' —, (6.5)
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and e; =0 otherwlise.

In this algorithm, one Inverter 1s needed In Eq. (6.5) and another for the
evaluation of A;! in Egs. (6.3), (6.4). The Inverter for A;! can be omitted
and, hence, the structure for the unlversal decoder will need only one inverter

for evaluating e; In Eq. (6.5).

To omit the inverter of A, !, we will show that the Berlekamp-Massey

algorithm In time domaln can be explalned by the followlng recurslve equa-

tlons.
. n-1 ., 1
A, =% o 1y, (8.8)
f =0
L,=8 (r-L,_)+01-8.)L,_,, (6.7)
§ () ] 'g A o ] Fxgr-l) T
s r-1 r . 0 0 H
5, & (1-8)a" o ¢ 6,
SOl A, b A |[sew| @9
;0] 0wy & abet | |6 0]
@i 0, , -A, o @
= . , 6.9
a,") 5, (1-8,)a 2, ("1 (6.9)
0, =8, A, +(1-5, ), _, (6.10)
for $+=0, - -,n-1, and for r=1,2, ' -,2t. The Inltial condlitlons are

AO=§,0=5 =1 for all i; K, D=4, D=4,=0 for all i; [ =0, =1 and
8, =1 If both A, 70 and 2L, <r-1, and 8, =0, otherwise. Then, X /*)=o0 1f
and only If the sth symbol of the recelved vector v Is In error. We have
X,-' =X,-’ 2 and Wy =GJ,-(2t ), for all 5. If X,-=0, the error values are evaluated

as

—_— (6.11)
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and e; =0, otherwise.

The new algorithm 1s shown in Fig. 6.1. In this algorithm, a new parame-
ter 6, 1s added compared to the original algorithm. Thils parameter Is Initial-

1zed In the beginning of the algorithm and updated In each 1teration.

To prove that thls algorlthm 1s equlvalent to the original one, we will

prove the followling:

1) X;==K)X;, for all ¢ where K 1s a non-zero element of GF(2™).

N W ,
—=q' — for all 1.
LZ),- wi

2) €; =a"

To prove above two conditions we present the following *“heorem,

Theorem 6.1: The varlables of the original algorithm and the modifled one

are related by,

L,=L, (8.12)
5,-(r)=9, b;(r), (8.13)
r-1
A=A 116, (6.14)
=0
b =g, 8, (), (6.15)
-, , Tl
)\" (r)=>". (r)H o[ ’ (8.16)
=0
8, =6, a,(", (6.17)
o () TT 0 g
wl wl H 1l (8.1 )
i=0

where r=2f. Note that after proving Eqgs. (6.12), (6.13), (6.15), (6.17), they

are used In the proof of the other three equations.

Proof: To prove this theorem we use Inductlon [47]. The baslic step of the

0
inductlion Is evident from the Inltialization of the vectors and [J 6, =6,=1.
=0

The assumptions of the Induction are Eqgs. (6.12)-(6.18) when r=r'. There-

fore, assuming Egs. (6.12)-(2.18) are true for r =r', we should prove the same
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equations for r =r’ +1.
Considering Egs. (6.1), (8.8), and Eq. (6.14) for r =r' , we have
. r -1

=0

According to Eq.(6.10) and the definition of §,, it 1s obvious that §; s always

2t -1 .
nonzero and so Is [] 6,. Hence, from Eq. (6.19), A, and A, are both
=0

zero or both nonzero at Iteration r’ +1. This results In

8, 1=, 11» (6.20)

and L =L, ., and the proof of Eq. (6.12) Is complete.
Now the proof of Egs. (6.13)-(6.18) can be given by expandling the left-
hand sldes of these equations and showlng that they are the same as the right-
hand side. Thls can be done by using Egs. (6.10), (6.19), (6.20), (6.3), (6.4),

(6.8), (6.9), and assumptions of the induction.

Proof of Eq. (6.13):

5._(1' +1)=3r, _H)}‘_(r )_*_(1_3', +1)ari 5.'(' )

r -1 , . ,
=8r' 111 6, )\'(r )+(1_3r' +1)a°' g, bi(r )
=0

=8, A7 A, +1)‘n(r +(1-8, +1)a_i 6, ;")
=35,/ #1870, +1>‘z(r )+(1—8r' ) +1b:'(r )

=0, +11,‘.(r' +1),
Proof of Eq. (6.14):

R 8B g

r' -1 - : ,
=0, 116 >‘s'(r )+Ar' 119 0y bi(r )

=0
r , r -1 ) ,
=TION" +a,  T10 o6, ()
=0 {=0
= 1'-[ g LT+,

=0
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Proof of Eq. (8.15):
6',l {r +1)=(1__8r, +l)6i(’ )+8r, +lx‘.l' (' )+(1_8r, +l)a-i 6'_' ")
’ r -1 : [ . B ]
=(1-8, . )0, b;" )48, ,, 1] 0 T+(1-3, ot e, b ()

=(1-8, )0, bi" +8r V-SRIV *4(1- -5, 1)0‘-‘9 b )
=(1-8,7 )0, 1 BT By AT 0 N OB e 8 8 ()
=0 b/ (r+1),

r +17

Proof of Eq. (6.168):

5, (7= 5(r)+0 5 (r)+A, AR
= r'+1H0l b( )+6,: Hol)‘ ( )+A'+1H0,oz'0 b
I =0 =0
",n 018, b N A 0 )
=0
=Ir'101>~." '+,
=0

The proofs of Egs. (6.17), (6.18) are the same as the proof of Egs. (6.13), (8.14),
respectively. Note that according to Eq. (6.10), 0,/ ,,=4,* for &, ,=0 and

0, +,=A,' ,» otherwise. This fact Is used in expanding above equations. Q.E.D.

68.2. Decoder Architecture

The structure of the universal decoder Is shown In Fig. 6.2 [32]. Figure 6.2
shows that we need six sets of shift registers to store values of the vectors
6,5 6' % @, and a. This decoder works the same way as the versatlle
decoder of Chapter 4. In Iteration r =0, all of the vectors are Initlallzed to
their inltial values. In each Iteratlon the recelved vector u Is entered to the
arithmetic and control unit for calculating A, according to Eq. (6.8). All the
shift registers are shifted right by the system clock and the components of the
vectors are updated In the arithmetlc and control unit based on Egs. (6.8), (6.8)

and are stored again In the shift registers. At the end of lteratlon 2¢, the
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recelved vector 1s corrected at components where X\; =0 using Eq. (6.11), and
L=y-¢.

The length of the shift register buffers, should be equal to 51,31,63,127,255

4 for GF(2™), m ==4,5,8,7,8, respectlvely. To have a varlable length buffer, we
use 255-stage buffer and a multiplexer to direct the output of the right register
to the arithmetle and control unit. The structure of the buffer Is shown In Fig.
6.3, where ¢f,, Is a varlable Indicating the GF(2™), for m —=4,5,6,7,8. The

varlable ¢gf,, Is high only for one of the values of m =4,5,6,7,8 at a time,

TRSAEG v YR

which chooses the right Galols fleld. For thils deslgn, 5 extra pass gates are

needed.

To desilgn the arithmetic unit of the unlversal decoder, 14 multipllers, 3
a-multipllers, and one Inverter are needed. As shown In Chapter 3, unlversal
multiplier and unlversal a-multipller are avallable In standard basls. The
unlversal multipller needs 183 gates and has a delay equlvalent to 17 gates.
For the Inverter, table look-up using a ROM can be used. Consliderlng the
complexity of the multiplier and the number of multipllers used, we need about
5000 gates to bulld the arithmetlc and control unit. The buffers requlre about

75000 gates. So, the complexlity of the decoder 1Is about 80000 gates.

The decoding time of the decoder Is determined by the longest delay path.
This path has a delay of 7, equlvalent to delay of about 50 gates. The decoding
algorithm needs 2¢ Iteratlons and one extra iteration for inltlalization. In each
Iteratlon the shift reglsters are shifted to the right n=2"-1 tlmes. So, one
Iteration perlod I1s T =n 7 and the decoding time 1s n (2{ +1)7. The decoding

time can be used to evaluate the maximum blt rate of the code, which Is

m__
(2t +1)7

4 of the decoder for GF(2™ ) are glven In Table 6.1.

. Consldering a clock of 10 MHz, the maximum blt rates at the Input
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Table 6.1: MaxImum Blt Rate of the Unlversal

Reed-Solomon Decoder [Mb/s]

m n Rate=1/2 | Rate==3/4
TFTS-‘ 4.4 8.0
5 31 3.0 5.5
6 83 1.8 3.3
7 127 1.1 2.1
8 255 0.6 1.2

8.3. Decoding with any Generator Polynomial

A Reed-Solomon (RS) code with block length n and number of Informa-
tion symbols k, can be generated by n =2" -1 different generator polynomials,

n-k-1

§(z)= II (z+o**"), (6.21)
f=0
where the constant A can be chosen to have values of 0,1,2, -, n-1 and

m 1is the element slze cf the fleld.

Berlekamp has shown [14] that for any RS code there Is a specified con-
stant h in Eq. (8.21) such that the generator polynomlal becomes reciprocal.
Using this property, he has given the structure of a systematlc encoder which
has a very low complexity. This Is due to the fact that In a reciprocal generator
polynomial only half of the coefliclents need to be stored. On the other hand
the decoder structures are simpler when the constant A 1n Eq. (6.21) Is equal to
one, 1. e,

n-k-1

g(z)= I (z+a**"). (8.22)

=0

The relation between § (z ) and g (z ) can be written as,
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§ (z )=a(n -k Xa-1)g (o~h-1)g (6.23)

In thls section, generation of RS codes using different generator polynomi-
als are compared, and a method Is Introduced to use a decoder which Is based
on ¢ (z), for decoding a code generated using §(z ). The design of the extra

hardware needed for this structure Is also glven [686].

8.3.1. RS Code Generation with Different Polynomials

In this section, generatlon of RS codes using two generator polynomlals
represented by Egs. (6.21), (6.22) are compared. It Is shown that generatlon of
the code polynomlal ¢ (z) by the generator polynomlal ¢ (z) from the message
polynomlal d (z), s equivalent to generation of é (z ) by the generator polyno-
mial § (z) from d (z ) and then evaluating ¢ (z ) from & (z ), where

d(z)=d(@*Vz) or d(z)=d(ah V1), (6.24)
c(z)=é(@®Vg) or ¢é(z)=c(alhNz). (6.25)
The equations In Eq. (6.24) are alternate representatlons of each other, thls also

applies to Eq. (8.25).

Consldering Eq. (6.24) Is true, we will prove that Eq. (8.25) Is also true.
Note that It Is also possible to prove the Inverse which means to prove Eq.
(6.24) from Eq. (6.25). Let d (z) be the message pulynomial and p(z) be Its
parity polynomial which Is the remalnder from dividing z"~* d (z ) by the gen-

erator polynomilal ¢ (x ),
z"* d (z =g (z)q (z )+p (z) (6.26)

where deg [p (z))<deg [q(z)]}. The code word polynomlal for d(z) can be

formed as,

¢ (z)=d(z)+z*p (z). (8.27)

{ deg [ ] denotes the degree of the polynomial.
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The parity polynomlal of d(z) which Is §(z) is formed from dividing
2% d (z) by the generator polynomilal g (z). The remainder of this division 1s
p(z)

2"k d(z)=9 (z)3 (z)+p (z) (6.28)

where deg [p (z)]<deg[j(z)]. The code word polynomlal for d(z) can be

formed as,
é(z)=d(z)+z* p (z). (6.29)

To find the relation between p (z ) and p (z) and prove Eq. (6.25), the par-
ity polynomial f(z) 1s evaluated by substituting Egs. (6.23), (8.24) Into Eq.

(6.28)
2k d (ot g y=of*FXh-Ng (o PV )g (z)+P (z). (6.30)

Changing the variable z—a*-Vz and dividing both sides of Eq. (8.30) by

ofn-EXk-1) yie)gs,
z(n -k )d (z)=g (z )é (a(h -1y )_*_a—(n-k Yh —l)p (Ot(h g ). (6.31)

Comparing Eq. (6.26) and Eq. (6.31) and noting that degrees of p (z) and j(z)

are less than that of ¢ (z) and § (z ), respectively, we can conclude that,

p (z )=a "~k Xb-Dg (oh-17). (6.32)
Now, ¢ (z) can be evaluated using Egs. (6.24), (8.27), (8.32)

¢ (z )=d (A~ Vg )} o " Xb =gk g (q b1z ), (6.33)
Change of varlable, —a# -1z 1n Eq. (6.29) ylelds,
& (oA )=d (a"# Vg 4ok 4~z ko (ah-Vzx), (6.34)

Since In & fleld of order n, the nth power of any element of the field 1s 1, S0
a~"h-1)—=3 and right hand sldes of Egs. (8.33), (6.34) are simlilar. Therefore,

the relation between ¢ (z) and & (z ), shown In Eq. (6.25), 1s proved.
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The dlscussion in thils sectlon can be used to Introduce a decoder structure,

which can decode an RS code generated by §(x), uslng a decoder based on

g(z)

6.3.2. Decoder Structure
To Introduce the decoder structure, Eqs. (6.24), (6.25) are wrltten in the
form as shown In Egs. (8.35), (6.38). respectively.

dj=d;a’*-Y  j=01, - k-1 (6.35)

¢;=¢ o *1 =01, - ,n-1 (6.36)

In these equations dj, Jj » ¢; and é&; are coefliclents of the corresponding poly-

nomilals in Egs. (6.24), (6.25).

Now, let's conslder an RS code word, £, generated by the generator poly-
nomial § (z). In the channel the error vector € Is added to ¢ to form the
recelved vector £ at the Input of the decoder. To decode this code, the struc-
ture shown In Fig. 6.4 can be used. Thls structure Is based on the discussion
presented in previous subsection. In Flg. 6.4, each symbol of the recelved vec-

tor, ¥, Is multiplied by oz"'“'

1 to form v;. The vector ¥ has two com-
ponents, the code word vector ¢ and a new error vector ¢. The ¢ th symbol of

these vectors are as shown 1n Egs. (6.36), (6.37).
e;=¢;0" ") {=0,1, - - ,n-1. (8.37)

The new error vecvor ¢ has the same zero components as the vector &, since
the coefliclent o' (#-1) 1n Eq. (6.37) 1s nonzero for all values of { and k. There-
fore, the new vector § has the same error locations as £, and a decoder based
on ¢ (z) can be used to correct the errors Introduced In the channel. However
after the error correction, the message vector d, 1s based on generator polyno-

m1lal ¢ (z) and should be transferred to d as given in Eq. (6.35). This transfer
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of the message vector, completes the decoding.

In Flg. 6.4, the generation cf the constants needed for muitiplications is
also shown. In this deslgn, we have assumed that the decoder recelves the sym-
bol ¥, first and the symbol 9, _, last. The output of the decoder Is also In the
same order which means that d,!s transmitted first and d; _; last. To generate
o "(A-1) the m -bit reglster R;, 1s Initialized to a®=1 when the first symbol Do
Is recelved. By recelving the next symbol 9, the register R, s clocked and
the new value In this register a{#~1) 1s multiplied by 9, to form v,. This pro-
cedure carrles on and by recelving each lnput symbol, the reglster R, Is
clocked and proper v; Is generated. The constant o {h-1) which Is an element
of Galols fleld, is fixed based on the constant A of the generator polynomial
§ (z ). The circultry for generating the output of the decoder Is simllar to the
Input clrcuitry. In this clrcultry, the register R, 1s clocked when outputting a

symbol from the decoder.

As shown In this sectlon some extra hardware Is used to change the struc-
ture of the g (z) decoder to the §j (x) decoder. Four parallel type Galols field
multipllers, and two registers of size m are needed for this design. Note that
for deslgning the g (z) decoder there Is no limitation on the cholce of the
decoding algorithm, and any ealgorithm such as algebrale, transform and tlme-

domaln decoding algorithms can be used.




R Wk A U

- 125 -

Enter

!

Ni=b; =a;=1 for all ¢

X =b;' =8;=0 for all ¢

Lo=0, 00——:1, r =0

|

r+—r+1

!

N
A= E o' [x‘_(r-l)v‘_]

=0

L, =6,(r~L, )+(1-6,)L, _, K ]
It X i =0,
: vt
Evaluate Egs. (6.8, 6.9). c; =V; +a R “
! It X; 540,
§,=6, A, +(1-5, )L ¢ ==v;.
. ‘
-l No /’—'—‘2‘?\ °s Halt

Figure 6.1: Modifled Time-Domaln Decoding Algorithm

Based on Algebralc Decoder
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A-1)
at olh-y

Rl'- Rod

0; v; d; ;
—_— g (z) decoder _l_,&.___.

Figure 6.4: Structure of § (z ) decoder




CHAPTER SEVEN

SOFTWARE REED-SOLOMON DECODERS

In this chapter, microprocessor based RS decoders are discussed. First the
look~-up table method Is explalned In detall, since In software decoders based on
general purpose mlcroprocessors, this 1s the best method for arlthmetic In
Galois flelds [22]. Then, the syndrome-based algorithms and time-domaln algo-
rithms are compared for microprocessor-based decoders. It Is shown that

syndrome-based algorithms are best sulted for software decoders.

In the last sectlon, a method 1s Introduced to speed up the Chlen search
step of the algebraic decoding algorithm for high rate codes {23]. To Introduce
this method software evaluation of the roots of polynomlals defined In Galols
flelds are consldered. It Is shown that second and third degree polynomials can
be solved using a small look-up table by applylng a linear translatlon to the
polynomlals [87). For findlng the roots of higher degree polynomials, a new and

fast algorithm Is presented based or the translated polynomlals.

7.1. Arithmetic in Galois Fields Using Look-Up Table

The look-up table method for Galols fleld arlthmetlc 1s used In software
decoders based on general purpose processors. In look-up table method it 1s
possible to Increase the speed of the multiplication In Galols flelds by Increasing

the memory space [22]. Thls approach Is explalned In this sectlon.

Each element of Galols fleld (2™ ) Is represented by m binary digits (bits).

Converting binary representation to declmal, the fleld elements have values of
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0,1, - -+, n where n =2"-1.
The addition or subtraction of two elements f==(bgq, b,, - - -, b, _,) and
v=(Cqs €y * * *» Cpy_y) are performed as,
B+y=fy=(botco "' by_1F+Cm_1) (7.1)

where the component by component addition I1s performed in modulo-2. This

operation can be performed easlly by microprocessors.

Multiplleation of two elements § and v can be performed by look-up table

method. Thls method can be explalned using the following formula [22]:

B.y=alog [log [ B]+ log [~ ]]. (7.2)

The log [ ] table Is set up so that

log [ |=log, ¢, for 1<i<2"-1
log [ 0 ]=2n-1, (7.3)
where o Is a root of the generator polynomlal of the fleld.  The largest value In

the log [] table (other than the speclal value log [0]) Is n-1. Thus, the sum
of two values from the log [ ] table cannc! e.ceed 2(n~1)=2n —2, unless one of

the two addends Is log [0 ].

The alog [] table Is set up so that

alog [i J=a', for 0<i<n-1,

glog [i J=a'", for n<i<2(n-1),

alog [+ ]=0, for 2n-1<:<3n-2, and $=4n-2, (7.4)
In thls way, table space Is traded off agalnst running time and code space, l.e.,
the log [ ] table 1s made m +1 bits wide (instead of m ), and the alog [] tablels
made 4n -1 characters long (Instead of n+1). As a result, no testing 1s neces-
sary for dolng Galols fleld multiplication by summing the logarithms of the
multiplicands and taklng the antllog of the sum. If one of the multiplicands s

zero, vhe large value (2n-1) stored at log [ O ] guarantees that the antllog of
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the sum 1s zero (since the zero entrles are stored from location 2n —1 onwards 1n
the alog [)).
The multiplicative inversion can also be found using table look-up method.
The Inverse of an element # based on log/alog tables is
1/B==alog [n-log [f]] (7.5)
provided that ,6740. It 1s also possible to Implement a new table which gives
the Inverse of an element, the entrles in the Inverse table are multiplicative
Inverses of the Galols fleld elements. The Inverse values are preprocessed and

stored In the memory as,
1/f=1/a' =a~" =o' (7.8)
The slze of Inverse table Is m X2™ bits.

In software RS decoders, the table look-up method can be used easlly. It
1s only necessary to preprocess two tables for multiplication (log and alog) and
one table for Inverslon (Inverse table). These tables should be stored In the
permanent memory of the system. For multlplicatlon of two elements, three
memory references and for each Inverslon only one memory reference are

needed.

The table look-up method which was explalned in thls sectlon, can be
Implemented for both standard and normal basls representation of the elements
of GF(2™). The cholce of the basls or the generator polynomial of the fleld
does not affect the performance or complexity of table look-up multipliers or

inverters.

In applications where the symbol size (m ) Is small, a dlrect table look-up
can be used for multiplication [43]. In the direct method, multiplication of two
elements requires a memory space of m X22™ bits. As an example the size of

memory for GF(2°%) 1s 1K table of 5-bit symbols.
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7.2. Comparison of Decoding Algorithms

To deslgn software decoders, the following two main polnts should be dis-

cussed which are
1) The decoding algorithm and the software lmplementatlon.

2) ! llcroprocessor type and hardware lmplementation.

In this sectlon, we will only compare the decoding algorithms and dlscuss the
software Implementation. We will not discuss the second toplc here and will
refer the reader to [22], where the hardware implementatlon based on general
purpose processors, blt sllce processors, and speclal purpose processors are dis-

cussed In detall.

The cholce of the algorithm affects the versatility of the software imple-
mentatlon. As we dlscussed earller, time-domaln algorithms have a very good
structure for versatlle decoders. Obviously, writing a software using these algo-
rithms for versatlie decoders 1s much easler than using the syndrome-based
algorithms. However, this point 1s not Important since even a badly structured
algorithm can be written {n software with a good structure. This can be done
by writing different subroutines and macros, and structuring the program. In
writing the software, because of the low cost of memory devices, we can use a
large amount of ROM for storing the source code, and avold branches In the
program. Avolding branches In the program speeds up the decoder by a large

rfactor, at the expense of Increased memory requirement.

The comparison of algebralc and transform decoding algorithms based on
number of multiplicatlons has been presented In [22], and [50]. In [50], the
number of multiplicatlons for the algebralc and transform decoding algorithms
Is glven as, n (4t-1)+5¢24-3t-1, and (n-1)[I (m )+2]+t(n +3)-1, respectively.

These values are for the worst case conditlon, and hence the error only case has
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been consldered. Note that I(m ) Is the number of Irreduclible polynomials of
degree higher than 1 In GF(2) having a root In GF(2™). The cross over of

these two values, occurs at

t * =(-3n +V0n 2+[20] (m )+60]n —20[I (m )+2])/10. (7.7)

It we conslder, t-error correcting RS(255,k) code defined In GF(2%), the cross
over happens at {*==11.43 (I(8)=34). For values of ¢ <11, the algebralc

decoding Is faster and for { >11 the transform one.

Now, let’'s evaluate the number of multiplications for the time-domaln
decoding algorlthms. To have the worst case we will conslder the error only
algorithms.

The time-domaln algorithm based on transform decoder, shown In Fig. 4.1,
has three steps, l.e., calculating the error locations, inding the error values, and

performing the correction.

In the first step, 2¢ Iteratlons are performed to evaluate the error locator
vector M. In each iteration, we need to evaluate g, A, A and &. In the worst
case, these values can be calculated with 5n multiplications per iteration, and

1n total 10{n multiplications are needed.

The second step of the algorithm has n -2t iteratlons, and In each ltera-
tlon we should calculate § and A. Calculation of these values needs 2n multl-
plicatlons In each iteration and in total 4in.

The error correction step has no multiplicatlons. So, the total number of
multiplicatlons for the tlme domaln decoding algorithm based on transform
decoder Is 14in .

The time domaln algorithm based on algebralc decoder has two steps. In

the first step, there are 2¢ terations and the valuesof A, A, 4, A . b, w and

g should be evaluated. Evaluatlon of these values needs 12n maultiplications In
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each fteration and 24{n 1In total. Consldering the error correctlon step which
has 2n multiplicatlons, the total number of multiniications for the time domaln
decoding based on algebrale decoder I1s 24¢n +2n . The cross over polnt occurs

at t*=~0.1. That s, there Is no cross over for positive ¢ .

To compare the syndrome-based algorithms with the time domaln ones,
consider RS(255, k) code deflned In GF(2%). The number of multipiications
needed for all the decodling algorithms versus ¢, 1s drawn In Fig. 7.1. Flgure
7.1 shows that the syndrome-based decoders are much faster than time-domain
ones. For high rate codes (¢t <11), algebralc decoding and for low rate ones
(t 212) transform decoding are the fastest algorithms. Therefore, In software

decoders, syndrome-based algorithms should be considered.

7.3. Software Evaluation of the Roots of Polynomials

In thils section, a fast method 1s Introduced to find the roots of polynoml-

als. Thls approach can be used In software RS decoders for high-rate codes,

Let's consider a polynomlal of degree ¢ defined over GF(2™ ),
Pi(z)=z'+a,_ 2"+ ... +a,3+a,. (7.8)
This polynomlal has ¥<t roots in GF(2™ ).

The only general way for inding the roots of P, (z ) is simply tc evajuate
thls polynomlal for all elements of the fleld and comparing the result with zero
(Chlen search). This procedure is used for inding the roots of pclynomials
since 1964 (17]. In Chlen search, which Is one of vhe steps of the algebralc
decoding algorithm, P, (z) should be calculated and compared with zero 2™
times. In software Implementation, this large number of calculatlons of the

polynomial (large m ), takes a long time.

Another way for finding the roots of P,(z ) Is to use look-up tables. In

this approach, since coefficlents of the polynomilal In Eq. (7.8) contaln all the
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information about the roots, we can use these coefliclents as addresses and the
roots of polynomlal as entrles of a look-up table. This approach Is very fast
but needs a large look-up table even for low degree polynomlals. Therefore, in
most cases, It 1s not practical to use thls approach and 1t Is only used for low

degree polynomlals In low order finite flelds such as GF(2%).

To reduce tke size of look-up tables, ‘he polynomlals can be translated
Into other polynomials using a linear translation [16],[67]. In thls sectlon, roots
of the polynomlals are studled for different degrees based on the translated
polynomlals. At the end, a fast algorithm Is presented based on the translated

polynomlals.

7.3.1. Linearly Translated Polynomials
For finding the roots of the polynomial P;(z) deflned In GF(2™), this
polynomilal can be translated Into another polynomial [18], [58], [67], using the

linear translation,
T =u,2+Uu, . (7.9)

By substituting Eq. (7.9) Into the polynomial P, (z ) and slmplifying the polyno-

mia: we can find a new polynomlal @, (z) with the same number of roots,
Q (2)=2'+b, 12"+ ... +b,z+b,. (7.10)

The coefficlents of @, (2 ) are functlons of coefiiclents of P, (z) and the transla-
tion coefliclents u,, and u, Therefore, 1t Is possible to ind #,; and %, as func-
sfons of coefliclents of P, (z) such that two of the coeflficlents of @, (z) are con-
stant values. Usling this method, l.e., by determining u, and u, appropriately,
@, (2) will have t-2 coefliclents where P, (z) has ¢ coefficlents. This decrease
In the number of coefliclents 1s advantageous in both general ways of finding

the roots, 1. e., Chlen search and look-up table method.
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In the followlng subsections, this approach 1s discussed In detall for
different degrees of the polynomial P;(z). It Is also compared to two general

methods of finding the roots of polynomials.

Let’s conslder the second degree polynomlal P ,(z ) defined In GF(2™) as,
P,(z)=z%a ,z+a, {(7.11)
The appropriate llnear translation 1s,

T=a,z , @a,7#0, (7.12)
which ylelds,

Qu(z)=2%+z+b, , bg=ay/a}. (7.13)

The polynomlal @ ,(z) has Just one coefflclent, b,, and hence for findlng roots
of Q,(2) a smaller look-up table is needed in comparison to P,(z). The size of
the table for finding each root of FP,(z) 1s 2°™ bytes, but for Q ,(z) It Is Just
2™ bytes. So, uslng this method, the slze of look-up table for inding the roots

decreases by a factor of 2™,

After finding the roots of @ ,(z), the roots of P,(z) can be calculated
using Eq. (7.12). When a,=0, we have P,(z)=z%+a,, and there Is no need

for the llnear translatlon. In this case, root of P,(z ) Is equal to \/a,.

For findlng the roots of P,(z) uslng thls method, the following steps

should be performed:
a) If a,==0go to step "e".
b) Calculate by=a,/a .

¢) - Apply b, to the look-up table and find one of the roots z,. The other root

Is zo=1+z2,.

d) Calculate z; =a,z;, ¢ =1,2, and go to step "f",
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e) Calculate z,=32=\/E; using a table of square root.
f) Stop.
Let’'s conslder the third degree polynomtial P 4(z ) defined tn GF(2™) as,
Py(z)=2%+a,2%+a ,z +a,. (7.14)

The appropriate llnear translation ls,

s=(as+y/a)z+ya;, , It a# /e, (7.15)

and

a:=z+\/a-l' , If a2=\/a_,, (7.18)

which ylelds,

Qa(2)=23+2%+by , T a,5%\/a,, (7.17)
where,
bo=(aq,a,+ag)/(e 2t/ al)a,
and,

Qi(z)=23+(a,a 1t+agy I a2=\/z. (7.18)
For the case of a2=\/a_,, roots of @ (z) can be found easily using Eq. (7.18).
When aﬁé\/ﬁ_; , since, @ ,(z) has only one coeflicient, each root of @ 4(z) can
be found using a look-up table with a size of 2™ bytes. In the case of using
P 4(z) and applylng look-up table method, the size of table would be 22™ bytes
because of having three coefliclents. So, using this method the size of look-up
table is reduced by a factor of 2°™.
For finding roots of P4(z) uslng this approach the followlng steps should

be performed:
a) 1If a,=+/a, go to step "d".
b) Calculate by=(a,a,+a,)/(a,+/a,)".

¢) Apply b, to the look-up table and find the roots z,, 2,, and z3. Calculate
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z; =(a 2+\/E:)z,- ++v/a,, t =1, 2, 3 and stop.

d) Solve z3=a,a,+a, to find 2,2, and z, Calculate z; =z +/a, for
1 =1,2,3 and stop.
This method Is much faster than Chlen search, since In Chlen search the

polynomlal should be calculated 2™ times and compared with zero, but In this

method very few calculations are required.

For higher degree polynomlals we can apply similar Iinear translation we
used for the second and third degree polynomlals. As a result of this transla-
tlon, the number of coefliclents of a t-degree polynomlal decreases from ¢ to
t-2. So, In the look-up table approach for finding each root, the size of look-
up table Is decreased by a factor of 22™m  For example this reductlon factor In

GF(28) 1s 2'%=64k .

Note that even by using this method the size of the look-up table for high
degree polynom!tals becomes large for high order fields. In thls case, the only
way to filnd the roots Is the Chlen search. In the next subsectlon, an algorithm
Is Introduced which Is a mixture of Chlen search and the iook-up table method.
It will be shown that using this algorithm (88], roots of high degree transiated

polynomilals can be found much faster than conventlonal Chlen search.

7.3.2. Segmented Search Algorithm

Let's conslder a translated polynomial of degree £, having t-2 coefliclents.
In the segmented search algorithm, first the fleld elemenis are divided Into two
or more segments and the segment which contalns most of the roots Is
ldentified. Then a Chien search Is applied to that segment and the correspond-
ing roots are found. For finding the rest of the roots, the degree of the polyno-
mlal 1s reduced and then Chilen search 1s applied to the second segment which

has more roots compared to rest of the segments. After finding new set of
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roots, the procedure Is continued as before. In this algorithm, to declde where
to apply the Chlen search at each step, a look-up table Is preprocessed and
stored In the permanent memeory of the system. Each entry of thls look-up
table Indlcates the segment of the fleld which contalns most of the roots. Since
coeflicients of the translated polynomial have all the Information about the

roots, they are used as addresses to these entriles.

To explaln the look-up table In detall, let’s consider the GF(2™). Now we
divide n into [ equal segments. Number of segments, !, Is an Integer power of

two, which is defined as,
[=2'. (7.19)

So, the length of each segment is 2™ ~ elements. For preprocessing the table,
for each comblnation of ¢-2 coefliclents, a Segment-Identifler (SI) value Is
assigned which Indlcates the segment with most of the roots. Each Sl entry In
the table 1s ¢ bits long, where ¢ 1s given in Eq. (7.19). Since each coefficlent of

Q, (z) Is represented by m bits, the slze of SI table Is equal to i. 2™ (-2 bits.

Now, the segmented search algorithm based on preprocessed SI table can
be explained In detall using the flowchart shown in Flg. 7.2. For explalning
this algorithm, we assume that there are v roots (v<t), and the translated
polynomlial I1s formed as explalned. 'm the flowchart of Flg. 7.2, first (-2
coefliclents of the polynomlal @, (2 ) are applied to the SI table and the segment
which has most of the errors Is 1dentifled. Then @, (z) Is calculated for all the
elements of the segment and the roots In this segment 1s found (7 roots). Then
the degree of the polynomlal Is reduced to t-j and a new polynomial Q;_;(2)
I1s formed. If the degree of the new polynomilal Is zero ({ —7 =0), then there s
no more roots left and the search Is stopped. If the degree 1s not equal to zero,

the algorithm shown in Fig. 7.2 Is repeated for the new polynomlal.
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The execution times of the Chien search and the new algorithm can be
compared using Flg. 7.2. For comparison, we consider the worst case only. In
Chlen search, In the worst cos<e, the translated polynomial of degree ¢ should

be calculated and compared with zero, 2™ times.

In Tables 7.1 and 7.2, estimated number of Central-Processing-Unit (CPU)
cycles and memory size, for Chlen search (I) and the algorithm of previous sub-
section (II) are glven. As an lllustrative example, Intel 8086 microprocessor and
three Reed-Solomon codes defined In GF(28) are used. The codes are RS(255,
251), RS(255, 249), and RS(255, 247) which can correct two, three, and four
errors, respectively. Note that the degree, ¢, of the error locator ;.olynomial for

each code is the same as error correcting capablliity.

Table 7.1: Worst Case Number of CPU cycles for

|
|
|
1
calculating the error locations

Codes t 1 II

RS(255,251) | 2 || 13000 500

RS(255,249) | 3 || 20000 600

RS(255,247) | 4 || 35000 | 1500

Table 7.2: Required memory slze (Kbytes)

for calculating the error locatlons

Codes t 1 1I

RS(255,249) | 3 [[ 8. 1.5

RS(255,247) | 4 || 14. | 65
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Tables 7.1 and 7.2 show that for these codes the method of previous sub-
section (II) 1s about 20 to 30 times faster than the Chlen search (I). But In the
case of 4-error correcting code, RS(255, 247), the memory slze becomes very

large.

Table 7.3 compares the number of CPU cycles and memory size for the

following algorithms.
I) The Chlen search.
II) Uslng translated polynomial and look-up table method.

III) Using translated polynom!al and segmented search algorithm with [ =2.

Table 7.3: Comparison of three algorithms for

4-error correcting RS(255, 247) code

RS(255,247) I I 11
[ #of CPU || 35000 | 1500 | 8000 |
cycles
memory slze 14 65 12
(Kbytes)

This table shows that for the 4-error correcting RS(255, 247) code, the best
algorithm Is the segmented search algorithm applled on translated polynomial
(I). This algorithm, using almost the same memory space as the Chlen search

(I), finds the error locatlons almost four times faster.
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CHAPTER EIGHT

CONCLUSION AND FUTURE WORK

8.1. Conclusion

This thesls presents a contribution to the effort that has been made by a
number of researchers to make simple and fast Reed-Solomon decoders. Our
goal has been to Introduce versatile Reed-Solomon decoder structures which can

be used for decodlng a large number of RS codes with different parameters.

In this thesls, after a survey of the exlsting decoder structures, Reed-
Solomon decodlng algorithms for correcting both errors and erasures were con-
sidered. It was shown that from the structural point of view, time-domaln
algorithms are good candidates for designing versatile Reed-Solomon decoders.
The time domaln decoding algorithms were modifled and versatlle decoders

were Introduced.

Reed-Solomon codes are defined over GF(2™ ). In decoding these codes,
algebralc operations are required. These operations were studled and least
complex multiplier structures over Galols flelds were Introduced both In stan-
dard and normal basls. It was shown that the complexlity of the standard basls
multiplier Is less than that of the one in normal basls. A new multipller In nor-
mal basls was Introduced which 1s less ccruplex compared to the Massey-Omura
multiplier. A unlversal multlpller over GF(2™) was also Introduced which
could be configured for m =4,5,8,7,8. It was shown that the Inverter structure

In standard basls 1s very complex, and, therefore table look-up should be used.
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In normal basls, the inverter can be designed usiag a few multipllers and this is

the maln advantage of normal basis over standard basls In the deslgn of RS
decoders.

A versatlle Reed-Solomon decoder, capable of decoding any RS(n,k) code
in a specific Galols fleld was presented. The time-domaln decoding algorlthm
based on transform decoder was used to Introduce the decoder. The structure
of the versatile decoder Is such that 1t can be programmed to correct errors and
erasures for different RS codes. As an lllustrative example, a Gate-Array-Based
deslgn of the decoder In GF(2°%) was also glven. To compare the syndrome-
based algorithms and time-domaln ones, Implementation of the Berlekamp-
Massey algorithm Is considered. The Berlekamp-Massey algorithm 1s one of the
steps of the syndrome-based algerithms whilch evaluates the error locator poly-
nomlal. It was shown that the hardware requlired for the implementation of
this step alone, Is more than that of the total structure of the Introduced versa-

tile decoder based on tlme-domaln algorithms.

A new cellular structure for a versatile Reed-Solomon decoder was
presented. The tlme domaln decoding algorithm was restructured In order to
make It sultable for introduclng the cellular structure. The svructure of the cel-
lular decoder is such that It can be programmed to correct errors and erasures
for fixed block lengths n and fixed symbol slze m for different RS codes in
GF(2™), by changing the length k. The structure of thils decceer Is very sim-
ple, cellular and hence easy to Implement using VLSI. It was shown that this
decoder 1s much simpler compared to the decoders based on algebralc and

transform decoding algorithms. The maximum blt rate at the Input of the

decoder Is very high and Is equivalent to S, — [bits/sec.] where 7 [sec.] Is

(5m +8)r

the delay of one gate.
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The time-domaln algorithm based on algebrale decoder was modified to
reduce one out of two Inverters, and then a structure for the unlversal decoder
was glven. Th.e universal decoder Is capable of decoding any RS code defined
over GF(2™), m =4,5,8,7,8. Complexity and throughput of this universal
decoder was dlscussed. To Increase the versatllity of the unlversa! decoder a
method was Introduced for decoding an RS code generated by any generator

polynomlal. The deslgn of the extra hardware requlred for applylng this

method was also glven.

It was shown that the structure of the decoding algorithm is not an impor-
tant factor ln the cholce of the algorithm for software decoders. Therefore,
decoding algorlthms were compared from speed point of view and It was shown
that syndrome-based decoding algorlthms are better cholces. High rate RS
codes were consldered and a method was Introduced which Increases the speed

of the software decoder for these codes.

8.2. Future Work

As explalned in Chapter 2, the tlme-domaln algorithms are time-domain
equlvalents of syndrome-based ones. In this thesls, for inding the time-domain
algorithms, the Berlekamp-Massey algorithm was transformed to tlme-domaln.
The Berlekamp-Massey algorithm 1s used for the evaluation of the error locator
polynomlal In syndrome-based algorithms. However, there are other algorithms
for finding this polynomlal, such as the Euclidean and continued fractlons algo-
rithms. Therefore, one directlon for future research would be the modification
of these slgorithms In order to transform them Into time domaln., After thils
transformation new time-domain algorithms can be used to design Reed-
Solomon decoders. New structures can be developed and compared with the

time-domalin structures !ntroduced In thils thesls.
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As explalned In this thesls, normal basls multipliers are more complex than
standard basls ones. So, standard basls should be used In structures, such as
the cellular structure of Chapter 5, where a large number of multipliers are
required. On the other hand, the standard basls has the problem of very com-
plex inverters. Two approaches can be considered to solve this problem. One
way 1s to modify the Reed-Solomon decoding algorithms to omit the cnly inver-
slon avallable In the algorithms. The other approach Is to introduce a new

structure for the inversion circultry with low complexity.
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