'z

~ .,

=3
A VIRTUAL’!‘IACHINE FOR_CONCURRENT PASCAL

=

-

, - ON'THE TI 980 ' -

[-
o . ’

v

)
)

Tri Manh Pham

' A Thesis in the

i

Department of ComputerWSciencg

L

‘.

Y , .
Presented in Partial Fulfillment of the Requirements -

.for the Degree of Master of Computer Science at
‘ b

LY

.Concordia University
Montreal, Quebec, Canada
J ' ¢

/ o
June, 1981

-

'©Tri Manh Pham 1981
-/

LT

- 1\-

TR MY e o

Ty MRy

G ORISR, Tty

T T R I AN X

.
h .
1

ABSTRACT B

A VIRTUAL MACHINE FOR CONCURRENT PASCAL

ON THE TI 980B -

Tri Manh Pham

‘Concurrent Pascal is a programming language~ designed forvﬂﬂﬁ{‘

writing of portable operating systems, originally implemented on

a DEC PDP-11/45. This thesis describes the transportation of
Concurrent Pascal from the PDP-11/45 to the, TI 980B.. Some

comments are made about the portability of this language.

£l

- ii -

3~

. A

ACKNOWLEDGEMENTS

It is my pleasure to gratefully acknowledge the advice and

support df Professor J. W. Atwood during the preparation of this

thesis.
N

I wish® to thank Mr. Pierre Desjardins, Universite de
Montréal, for his availability and assistance in explainfng tgé
SQOLO operating system. ‘

“ I wish to thank Professor D. Thalmann of the Department of
Computer Science, Universitév de. Montréal, with whom "I had
fruitful discussions on virtual machines as tools for software
portability.

I wish to thank Professor V. Wallentine and Mr. David Neal
of the - Department of Computer Sciencez Kansas State University,
for having kindly sent me the invaluable technical report; on
Concurrent Pascal. -

I wish to thang Dr. I. Greenshields for his évailability and
precious vice in debugging concurrent programs.

I wa: to thank ali my friends who have helpeéd me one way or
another to get this work done.

' This work was supported by a research assistantship from the

Natural Sciences and Engineering Reasearch Council of Canada,

through Dr. Atwood. . :

-

1

1.1

1,7.1

1.1.2
1.1.2.1
1.1.2.2
1.1.2.3
1.1.3

)
1.1.3’1
1.1.3.2

1.2

1.2.1

1.2.1.1
1.2.1.2
Vs
1.2.104
1.2.1.5

'll201.6

1.2.1.7

1.3

;
.
2 -
A
\

]

TABLE OF CONTENTS o

»
’

" Introduction

Systems implemengation I@Aguages
Assembly languages” ‘ .
Machine-ariented hiéh-level languages
BLISS e
‘PL360 -
BCPL
Machiﬂe-independent h}gb—iével languagés
Concurrent Pascal
. Modula -)
| Software portability and .abstract machines
vittuaf-machines ‘
" The UNCOL machine- . ' ?
- The JANUS machine
The OCODE and‘IETCOpE machine
The pICA—BVmaphine' -
The MUSS machine
The LAMDA machine \ .
The Concutrent Pascal machine bai?

Thesis structure

“

Concurrent Pascal as an implémeﬁfation language

[

Abstrach data types’

- {v ~

N R R S I i

[

/
M

W o ® N U b

(T
-~ o O

—
N

13 -

13

PPN

-

e

T4 - ,
2.1.1 " ﬁeresgesg
2.1.2 Monitors '
. 24103 , .Classes N
. ~
2.2 Conclusion
i
3.0 The Concurrent Pascal virtual machine
3.0 ‘Thq Structure of anﬁgﬁient Pascél prégrams
(3.1. The Architecture of tﬁz—;irfualxmachinq
3.2 The PDP-11745 architecture:
3.2.1. The CPU - | .
3. 2.2 The registers, : - | 8
3.2.3 } rhe memofy'organization |
3.2.4 j‘ The memory management
;.2.5 ,THE‘I/O qréhitecture
3.3 " Concurrent Pascal and the PDP-11/45
3.3.1 ‘Use of the CPU
3.3.2',-'1 Use oé m?mory ma;agement~unit ; ‘

o 3.3.3 Tﬁe‘;nterpréter én'the PDP-11/45
3.3.3.1 The jump table ‘ ‘ 7
3.3.3.2 . The Process Head . :

4‘_3f3.3.3 The interpreter routines
3.3.3.4 ' Threaded-code {mplé‘ ntation

3.3.3.5 Interpreter traci

3.3.4 . The kernel on the PD

3.3.4.1 Processor multiplexing
3.3.4.2 Monito;fimplementation
. 3.3.4.3 Peripheral activation
4 __-v:__
, ~

17

19

20,

34

PR

—

e el g i e e o it g g oo

4.2.3.1

4.2.3.2
4,2.4

4.2.4.1
4.2.4.2
4.2.4.3
4.2.4.4
4.2.5

4.2.5.1

4.2.;.2 |

4.2.5.3
4.3

-
. m , W
‘Execution of a Sequgntial Pascal .program . 44
Inititing the system o T
The Concirrent Pascalamachine on the TI 980B 49 .
The transportation process ’ . : 49
The TI 9808 architecture ° R 50
The CPU \ : 1 50
The regqgisters . - J_ 50
",ﬁemory organization . - ’ 51 i
Memory management ‘ . < 52 \
1/0 architecture ' - , 52
Concurrent Pascal and the TI 980B . 53 \ ” |
Use of the CPU - ° ' 53 ’ 1!
Us‘e of memory with LLR ‘- ' ‘ 54
sgmulating the PDP-11/45 virtual memory . . 54
Address translation T B 54
Memory allocation o .57
The Inter;;reter on thg TI 9808 - 57
Hegister allocation 58
\/ Simulating- the bit/byte numbering system . 59
)Threaded-—code implementatian ' ‘ 59
Stack addressing o o - 60
The Kernel on the 'rI 9808 ‘ 61
“ Prccessor multiplexing - 61
Simulating PDP-11/45 real arithmetic 62 g
Peripheral zctivation 62
’ Initiating the-system | S 62

¢ - .

"'Vi"‘

& S

e

1Appendfx 1: PREFACE user manual

<i4.4 Validating the system

4.5 . Portabilig} of Concurrent Pascal
4.6 lContlusion
5. Conclusion | \
1
- \ ‘
References : v >

P

¢

Appendix-2: Interpreter operations

Appendix 3: Abstract data type examples
I . ,

N

%

-V Ve ¥
¢
¢

. 64
65
" 67

69

W10
74
77
80

- EE g U Aoy e Ly

Figure
Figure
Figurg
Figuré
Figure

Figure

Figure
Figure

Figure
f

Figure-

LIST OF FIGURES .

t

., _ _ “_
The UNCOL approach to portability
A‘bi eline system

bé&ompoéition the copy procéss ’
Skeleton of a‘gjncui}ent Pascal program
Concurrent and Sequential Pascal inteﬁfaée
A PDP-11 memory wgid v
Virtual address space in kernel mode
v;réuél address space for process n'

A simplefgab process skeleto;

The two address spaces on the TI 980B

A

16
17
22
24
27
31
33
46.
85

v

; . INTRODUCTION 4 :
(. -
) | .

1.1 Systéms implementa\b;ion languages,
et} .

Concurrent programming is intellectually ir;trxigt'ling!and
is essential in the design of operating systems. Operating

~—— - 2
systems have been written in three types of languages: !

1- assembly 1afmgu;ges) b

o H

2- machine-oriented high level languages ,)

3~ high level languages N

1.1.1 Assembly languages , c,ear..

. Assembly languages allow maximum exploitation of th .
hardware and therefore are advocated for their run-time an:j
memory efficiency. On the other ‘hand, °assemblf _languages
are unsafe because of théir complete freedom of .
accessibility to sensitix;'e areas of the hardware. Writing
operating systems in assembly code is very fdAstidious work.
'Bit‘—picking cleverness and mf.\chine—instruction intricacies
Y%end to camouflage program logic and underlying algorithms.,
Opergting systems written igz'_ assembly cod'e are“rarely well
docun_te_ntedv; modifications are hat‘& to impleme}ﬂ: and often
turn out as a s:urce of errors. Improvements may ;‘:herefore - .

‘result in actual degradation. Furthesmore, systems are not

portable from one machine t3 another.

%4

s,
-

&

. — et s s e e e =

~ -
' ~
141.2 Machine-oriented high—-1level languages

! Wh&le the need for space and time efficiency is a E
relevant criterionﬂ f5r opesg}zing systems, othe‘r criteria
have increased in importance, 1largely because ‘of the

increasing cost of software detelopment and maintenance:

1

High programmer produmctivity

]

Clarity o\{}yﬁtem structure

K

"such as data and control structures s ‘ o

) S ;

- Machine-oriented high-level 1langquages &stilla contain .

pitfalls inherent to aséembly languages. Due to the fact
© that éhey allow direct access to the hardware, they cannot

* be totally safe. Ec_:me of the well known machine oriented

) . %
‘\ . -

’

-2 - ,

. - Readability ,
- Control over programming style _ ' U
- Eame of testing and_dghu;;s;i.n.g-__,__’_~~ ' E v
- Portaebility ’ ’)
Machine-oriented high-1level .lang‘ua'ges ~ haue betls;l\.
developed in responge to the ab‘ove»menﬁi‘ox}ed criteria. 'J'l‘hey
—_— have the following characteristics:
, = they allow manI;ulation of bits and bytes s
- tLe&»ailo_w access to registers nand memc‘iry . ~
, addresses - ’ .
- they, allow driving of‘ peripherals
- they handle intérrupts and concur rené prokcesses . ,
- they contain high-level language coné'gruct‘s ” " ’

[N

AR T AL P O TR o

- ;.',: ' f £ Q - % _ Bt

/ 1 0
. | . <
~\ ¢
- , .) ‘. » “
v . .

high-level languages are: BLISS, PL360, BCPL. . o,

- ‘ \‘ i -
1.1.2.1 BLISS T

. v B
BLISS (1] was Pseﬁ to implement the HYDRA operating
~ . N

system at Caqgegie—Mellan Unive;sity. This language is
designed so as to be espeéially“suitable for use in writing
production software systems fo;'.a sp;cific machine\ (the
PDP -10)= 'éampilers, operating systems, eEb. Prn@ary d&sign '
goals ar;‘the ability to produce highly efficient object
code and to allow access to all relevant hardware features
i{;gr?e t\xost .m‘achine.) BL,"XGSS may\ ' be«:k characterized as, an
ALGOL-PL/I derivative. ’
1.1.2.2 PL360 M
PL360 [2] j was created by N. Wirth at' Stanford

University for the IBM 360 family of computers. ' Primary

desiqn\gpals were to facilitate structur{ng, conciseress and?

"Elétity in” operating system design withoug sacrificing

éfficiency. PL360 attempted to reflect the concurrent

~

aspect of operating systems.
1.1.2.3 BCPL ~

tool. It has proved to have many qualities which make it

highly suitable for systems prbgramming. BCPL hds/ a

§undet1yjnq semantic structure ‘which |is

" idealised’dbject machine. This megpod of design was chosen ’

R

oo

L hY

;7 T
W ®
'in order to make BCPL eas; to define accurately and t& .
| facilitate machine independence °which is one of the
? i fﬁndamental&a@ms of the langu;ge.
(/\\/ " . Machine-oriented high-level lanquages do represent'a
*;(ﬂ,i ' signjficant impfovement oYer assembly languages. 'The fact
) | that most of them afe not portable suggests,lhat better .~
s .h;ghllevel languaqges are needed. .
£ . ‘ .
! 1.1.3 ‘Machine-independent high-level languages e
- . There are two well-known landkyges‘ in this categdry:
Concurrent Pascal and Modula. - .
'1; . } ~’ N
: . 1.1.3.1 boncurrent Pascal
~ > Eoncurrent Pascal [9]'15 the first programming langugg;
. to pregent conéﬁrrent programming . concepts as high-level,
;_ languaqe constructs.: The concept of the abst(act data type
.é ' is used to struéture‘tﬁe operifiné system, Its semantics
'é :’3 require a virtual machiqe which includes a sizable amount of
: . < run-time support. ‘BCPL already usé¢ the concept® oé a
virtual machine as a tool for writing machine-independent
) programs. We shall demoﬁstrate that the degree off
'kortabiﬁiﬁy"dapends on the architecture of the virtual
.3,3' ' . machine. S

~

e d

'
~

o /

1.1.3.1 Modula,

' Modula [4] is a language for multiprogramming invented
N \

by N. Wirth. It is largely based on Pascal, but in addf{;on

to;tonventionaf block étrqcture it introduces a so called

module structure, Modula includes general multiprocessing

facilities, namely prooesses, interface modules, and

signals. ‘It also allows the specification of facilities

that represent a computer's, ec\fic ripheral devices.

.
¢ [
-~

-

1.2 Software portability and virtual machines

Tﬁe cost of develgping }argé programs is so high and
the time needed is so long, that it is desirable to use
_§?ftyaré systems on a number of different machines and/or to
&se'the iﬁé}ems on newer hardware without modification. The
fasﬁ‘wevolution of mini and micro computers further
emghaéizeé the need for portable soféware. The pr;ﬁary
benefit of a high level language liei in Ehe possibility of
defining” abstract macﬁines in a manner indépendent of
characteristics of particular"hardware. The use of an
abstract or virtual machiné is a well known technique for
writiné software whose portability . is very difficult to
achieveE- compilers, opérafing s;tems and real time systems.

-

The design of a virtual machine . is therefore crucial in

4

determining the portability of programs written for it.

% . ‘ e -
- - : "

o

1

’(u-,lt_‘ " .

1.2.1 virtual machines ’ . .

Abst{action has always been the most powerful tool
enabling ‘the scientist to conquer a comple¥ system. The
essence of abstraction consists 'in hidin&”ﬁrtelevant detalils

so that the human mind can juggle with concepts instead of

physica} objects. Atomic physics, for example, typifies the

use of abstraction to conquer the invisible world of a‘toms.
Progress in computer .science as well és in other sciences
relies he{ydly on aﬁgtractions. Machine languages, assembl§
lanéuages, and high-level langpages represent different
levels of abstraction of the same *underlying hardware. > A

major design concept, closely related to abstraction is the

virtual machine. To design a virtual machine amounts to’

designing an instruction set or primitive operations which
describe thbléossibie actions of a system. The machine is
——
called “"wvirtual" because it 1is simulated by software.
Programs written in the samevianguage can be made portable
in several ways: ' |
1- by having differ:nt compilers for different
machines. This is only practical for the most
widespread language.

2- Ey having a single compiler that can be médified

to generate. code for different machines.
[}

- 3- by having a .single computer that can be

‘simulated ,efficiently on different machines.
] - .
This computereis called a virtual computer or

!

virtual machine.

A

WM i e h emmt e o —

We shall briefly Pfesent some we11~xnown,vir;ual machines‘as
backérouna and as iffﬁstrations of tools t; achieve
portability. . . '
NS / '
The following "~ description of wvirtual machines |is
,adapted’ from the .artiqle, ‘ PAbstryct, fictitious,
hypothetical, ideal, imaginary and wvirtual m;chinesf by
Thalmann (11].

'
¢

/

+

1.2.1,1 The UNCOL machine oo
I UNCOL [5] (UNiversal Computer Oriented Language) 1is a
very early abstract machine. It was designed to be a

universal machine so that any pregramming language would be
~ translated into machine ctode of a target.computer. _UNCOL is

- the assembly language of the wvirtual machine UNCOL.

Compilers generate code which will be interpreted by each

. b

et machine. ?he UNCOL strateé& requires only M+§
instead of M*N combilers. The UNCOL approach to portability
héé been adopﬁed by IBM, DEC and other manufacturers. It
was ‘nét popular {pecause it did not define é universally

acceptéd virtual machine.

I

o>
,

Figure 1.1 The UNCOL approach to portability

Lanquoqe n

4

1.2.1.2 The JANUS machine
JANﬁS (6] is a family of abstract machines developed at
, fhe University of Colorado by Coleman, Poole and Waitg. The
' . goal was to study the problems of prodJcing portadble
sqféware and 'in particular portable compilers. JQNUS is a
symbolic code which is translatéd‘to the assembly language
of the target computer by a macroproéessor such -as Stage2.
A method of .bootstrapping' Pascal using JANYUS - has heen
d%veloped aé the‘Uhiversity of Colorado: |

)) '

The design of JANUS is based,upon the relztionship‘
between é&istiﬁg ‘laﬁguages‘ and existingj hardware. The
archi;ecs?re of the JANUS family of abstract machines
incluées a processor, a Qtack, a memory, an accumulator and

ﬁan Index register. This form of model was chosen to

‘ simpﬁif?,the generation of machihe code beéhusé it favours
target compdters,with a single arithmetic Esgister, or with

- multiple arithmetic rqgisters} registers/storage arithmetic .

oy

and stack.: . “ ‘ ' N

. - o e man i s o bperen e e e 3 P e e ot e e

A}

1.2.1.3 OCODE and INTCODE machine
OCODE [13] 1is the intermediate language used for the

BCPL compiler, designed by Richards. The OCODE machine
[N .

, . AN -
consists of a processor, two memory address rggisters (S, and

Y

P) and ; memory; it is ‘essentially a étack computer-‘ with a
rich ihstructipn »;et. Howevet;f even thougﬁ. ther'OCQDE
mechanism provided a reasoﬁable mechanism. for pottability,
it qu&)found that t%me éould}be saved by psiﬁg a simpler

machine-code INTCODE. The INTCODE machine is ‘Pot *fully
specified, but it has 6 ' control ,registers and the
instruction set includes only 8 machine functionsy . It
allows 'the’ BCPL installer to construct a teﬁporaty
,infgrpretative 1mp1ementation§on the targethhchine in the
‘minimum time. The method has been used many .times and, it
wprks very well. ‘ ' ‘

7

1.2.1.4 The PICA-B machine
. \ . o

The PICA-B machine (10] is an extension of the INTCODE

mahhine”, which includes two. hew oncepts:! a status
°(}n\:err pt) register I and a memory map of I1/0 d 1ces.h The
'I. redister has 3 fields: a bit which iqdiégtés whether the
in}er up£ system 1s enabled or disabléd, a second b;t which’
kfndidayes whethef \the interrupt and devicé vectors are
accessible, and,ﬁbg addreés of a vector whicﬁ' cohtains 'the
address of an {nterrupt routine and_a new vaiué for the I

register. Three new inéttuctions have been introducedmm.they

O

e all concerned with the I register. Device vectors have

. aljso been added. With these extensions, the PICA-B machine
an abstract machfng tied to the BCPL language but.

specially designed for developing operating systems.

1.2.1.%5 The MUSS machine

» L

The University of Manchester's MUSS system [7] was .
. ; ~
designed by Morris, 'Fraak\\ggg/’ggeaker to provide a
compatible environment on all the‘ly;chines of the MuUS
complex (MU5, ICL 1905e and PDP—11/4Q). It subsequently has
. s

“b&x\gorted to the ICL 2900 and MEMBRAIN MB 7700 computers.

'n

v

An abstract machine is used as the target machine for
the operating system. This abstract machine has to be
emulated on Ehe.rea1~hachines. All ;ct}gns in the abstract
machine are controlled by reading and writing special.
contr61 registerst Protection is also governed by a control
register which defines the cufrent execution mgde; two modés
ex;st: user (slave)‘and execuﬁive {master) . The interrupt
gysfem ‘of the abétract machineqinterfaces directly with the
operating system CPU manager. Idealised peripherals have
also been introduced 'and they are controlled using

-registers. -

-

L]

l1.2.1.6 The LAMDA machine

»

¥he L-machine has been designed by rhhlmahn {l;i to

prgduCe machine-independent soffware for mini and micro

computers. It is a v@'y power ful abstract machine. with n -

WQrd—registErs and ’n‘ byte-registers. A memory can be
addressed w}th.indei registe;s, by page_or‘indirectly." The
L-machine has an Ii/o system and an'ihtgrrupt syséem. ng
levels have been defined in the Lamachine,‘ they“Cerespoﬂd
to the .claSSical master and sl;ve modes. A,’sympolic
langJageASPIP has! been developed for ﬁbe L-machine. A
single user disk operating system has been written Am-SPIP.
The L-machiné has been related to 4 computers by using a
code generator developed by a top-down methodology. Thus,
the software developmfnt for the L-mabhine_can run on the
DGC NOVA, DEC PDP-11, INTERDATA4 and TI TM;>9900.
. ‘ , .
1.2.1.7 The Concurrent Pascal machine

Concurrent Pascal is an abstract programming language

designed by Brinch Hansen [9] to write .operating systems.

,The language extends PASCAL with three concepts: processes,

monitors -and classes. . Three model programs (operating
systems) were written {n 1t by Brinch Hansen. The most
known ‘is ;’singlé-uqer operating system called SOLO .[33].
ﬁgttménn, {24] wrote the Concurrent and Sequential Easqal

compilers which genera%; code for an abstract machine.

The implementation of this abstract machine on a

o

a
-

Rt

' a

PDP-11/45 consists of an 'interpreter which executes the

abs ract c¢ode, and a kernel (run-time support) - which
e

schedules tuﬁ execuéiop of concurrent procﬁéses. The

. \
abstract machine code is quite similar to the P-code [31].

There are about 110 instructions. . A quarter of these

™

instructions are used by Concurrent Pascal only, these are

.

thé spec}fié instructions for thexnew concepts introduced.

X

1.3 Thesis structure \

This thesis 1is structured as foflows. Chapter two
consists of a description of the languagé Concurrent Pascal.

Chapt?r ‘three contains detailed view of the CPASCAL virtual

machine. Chapter four provides a gdetailed\ description of,

the transportation _ process. Chapter ‘five suggests a

direction: for future research in operating . systems

portability.

" e

o

A

o

'

CONCURRENT PASCAL AS AN IMPLEMENTATION LANGUAGE
?

4 '
N ~—

Conhcurrent Pascal {s an abstract programming language

for - computer ope}ating systems, The language extends

s¢quential Pascal (35] with new concepts for structured

conéurrent érogrammingﬁ In particular, Concurrent Pascal
N t

includes abstract data ‘types to deal with the problems ofﬁ

data sharing (monitor), gpdé sWaring (class) and concurrent

processing (process).,)
3 £

2.1 Abstract data types ’ . -

‘'The following description of the abstractedata type
. *

xconcepé is.adapted from the article ™Overview of the HYDRA .

. operatiﬁg system®™ ‘by Wulf ([32]. A central concept in

structured programming is the concept 3; nigbstractioﬁﬁ.
Several authors have noted the close relationship between
many programming abstractions and the concept of "type"™ as

it appears in programming languages [14]. Specifically the

" concept of a "cl{" in Simula '67 [15] seems especially

well suited to Wexpressing these abstractions. A class in
Simula definés an {Pstract data typé by spécifying both an
underlyi;g storage s;ructutéﬁ%nd a set of operations wﬂich
operate on it. fThus,. for examplé, the abstract concept of .a

set of integers might be introduced into a language by a

‘ definition of the form

))
’ \ .

TYPE intset = , , ') . .

-3 - (

:

P | .

i BEGIN
VAR a:ARRAY[1:100] of INTEGER; n: INTEGER; -
OP union(u, v: intset) RETURNS(intset);‘

\

BEGIN ... END; .

OP intersect(u, v: intset) RETURNS%intSet);
") BEGIN LIS END; -~

END; .

it med
}wﬂ?'

s .o
.
et 0
. |
g, oG
- &

g
Such a définition 1is intended to describe how any

-particular "variable of type inpéet is to be réytfsgnted anﬁ
how operations on this type,?f variable afe to be performed.
Thus tpe EJeciaration "VAR a: BRRAY[1:100]) ofIINTEGER; nt
INTEGER;" defines howusgoraqe is to be allocated for each
variable of ° type intset. Thé, operator definitions, e.q.
that for "union", define how such variables are manipulated.
An important property of such definitions is that"8T1 the
sfepresentational information is localized and "hidden" '[16]
in the type définition; the only way to manipulate variables
of a defined type is by invoking the operations defined in
the type definitioh. After having made such definitioﬁ, the
programmer may writﬁ.;such tb{ngs 7as declarations of

variables of type intset and_stateﬁents which opérate on

i

these sets,.e.g. Y

.

VAR a, bi C! intset: ‘i > - ' R

a := union(b, c);

- - 14 -

,

<

~r

i
This - style of programming captufes the noqion,'of

abstraction. It effectively separate§~the application of
the abstract "primitives"™ from .he detaiisn of their
$fhplementation. The programmer, ‘working at a level where
intsets are an appropriate medium of expression,ﬁneed nev?r
concérn himself with tgg details of hﬂ? thgy are represented
or manipulated. Ccnverseiy, Ehe‘ implementor of te:
realization of the type intset may freely alter that
realization;(to~1mprove efficiency, for example) without
concefning himself with the details of how 1t'1s used, as

-
long as he preserves the functional propertées qﬁ the

‘v

operations.

¢

Concurrent Pascal's concept® of abstract data type is

dexived from Simula's class conceptﬁ the combination of a
data structure and the code operating on this data structure

defines an abstract data type. The abstract data types

:ﬁ‘introduced by Cghcurrent Pascal are called systé\htypes.

System types are types in the Pascal sense, that is théy are

templaqsf from ‘which variables ' can be defined and

- initialisgd. A variable of system type is called a "system

comppnent. A System coé%ongnt implies that its code be

ieentran; because components'of the same type shatYe a single

copy of the procedures associated with the data. .)
P L I . o . Cu
, ' :There are three system types: process, monitor and

”m) N .
class. They form the building blocks from which concurrent

-

- 15 - . v

. -

[

[

& e =

.programs are constructed. Concurrency {8 expressed by
v w $
' »

processes. Mufual exclusion and synchronization of

processes are provided by monitors. Code shatlng is
, *
provided by classes. System components may interact with
-]

one another by means of access rights. This 1is the
p .
Concurrent Pascal structuring mechanism: to connect program

componénts by access rights 1ntoihietarch1ca1 systems in

~ N v

Card process Copy process Printer Froce’s{s,

[) Figure 2.1 A pip?iﬁne system

which concurrent processes communicate by calling monitors.’

-

Figure 2.1 shohs_%s:ystem that reads cards and prints them
- . .
on a line érintef. The circles are cal}ed system components
> _ . 0 ‘
and the arrows, the access rights.- ‘The copy process can be

decomposed into smaller system types.’ >

,‘_

. } : ‘ “Bu”er) L

4
’ & . . . ‘
- : . kine maker. L
' . - .
N 'Paga maker® y
" . File maker

, : COPY° Pro;ccss]

[

- I .
.Figure 2.2 Decomposition of the copy process

-
a

...’16- N t

2 U

.,
T .
"';b g
1 \ T -
»
A
-~
.
Ty,
+ o
\ “
']
(1
&
N ¥

PO VTN

-

A o S

/

~ In -addition to asggss rights, the definition of system

o

ggpés may. include definition of constants and non-system

precedures

types, includind global variables and or
hfunct;ons. . . ” -
”)
“+ 2,1.1 PFocesses : i
‘A process is a SYstgm com Q} thét'is executed‘aé.qg' .
* asynchronqus sequential predram. It consists of three
pa?tsﬁ " ‘
a- a sequential Pascal phogram . -
" b- a prkvate data structure essed only b9 the ’j _ .
seque?tial program) | ‘ ';; ‘ "
. ©—- the aécess tights of fh;s 'ptocess to other '
ksY§yem components. ‘ '
. g ' , o0 ’ " " .
-« . . . ! ‘ . -:c {’
A.p ocess cannot opergte on the private data of another
process. However, processes must be able to share Qata @_'
Q;ruqtures (such as buffers) and to cooperate on commonv E Y
tasks. The sh;réd data on’whicﬁ?a process can operate are ‘V

‘dltermihed by its access rights. See appendix 3 for more
N .. . e s .

detaiis. o .

.
N
. <
) A
» .
» . ‘

TOTTTTTTTT

oY%

2.1.2 Monitors
A monitor is a system component that <controls
" L
communication and resource sharing among processes. It

defines a shared data sttucgy:&\gggzé'set of synchronizing

‘procedures operating on it. A monitor also defines an
¢

initial operation that is executed whemd its data structure

is created with an "init" statement.

The concept of a monitor was rntrodu€§d by Dijkstra
4 »
[34] and was further refined by both Brinch Hansen and Hoare
' \
{17). In Concurrent Pascal, monitirs are passive entities

which are activated by a process which has access to that

;monitor. Like a process, a monitor can have parameters that

define its access rights. It can also include definition of

const and types as well.as procedures and functions that

‘are faccessible only within the mormritor. uyérocesses cannot

operate di{ectly on a monitor shared data. They can only
call monitor procedures entries that hqye access to these
shired data. buring 1its execution, a monitor procedure
entry has exclusive access Eb gPated data. If concurrent
précesses éimultanequsly call mogitor procedure entries
operating on‘the same data, these procedure calls must be
executed strictly one at a time. This'implies that the
run-time system ‘must handle short-term schéduling of

simul taneous calls (mutual exclusion). "See appehdix 3 for

more details. .

\

PR S RSP R Y

4
a f

”Ther; are als&‘provisions for moniéo; procedures to
delay ‘a calling proéeés for any length of time by executing
a "delay" operat;on in a queue variabie if Ets request for a
resource cannot be satisfied immediately. Concurrent Pascal
introduces a simple data type called a "queue" that can ge

used by monitor procedures to control medium-term scheduling

df processes. To prevent deadlocks of monitor calls and

. ensure that access rights are hierarchical, the following

rules are enforced: a routine must be declared before it can

,]
be called; routine definitipons cannot be nested and cannot

|\

ééﬁl themselves; and a s§g%em type cannot call its own =
a * L3

2 A

2.1.3 Classes - e,

routine entries.

A class defines .a data structure and the possible
operations on it just like a monitor.. But unlike a monitor,
1- simultaneous calls of class procedures at

_ run-time do not exist. The exclusive access of

. = a Pprocess to class variables is '‘totally
> ¢ .
_ guaranteed at compile time; this means that

@»
checking need not be done by the run-time systém

X\ to guarantee that only one process is in a ¢lasg ™
’ when entering it. This makes class calls
conéiderably faster than monitor calls.
'2- a variable within & class can be declared, as
entry variable,. which means that it can. be | f

accessed by other qlass‘Procedures.

' * e

L2 4

- 19 -

s ot WP T WA TRy vt e,

See appenéix 3"for more details. N

2.2.Conclusion.

Concurrent Pascal provides for high 1level data and
control structures, the d“efi‘nitior; of a hierarchy of system
components, and the elimination of machine dependént
features (registers, addfesses, interrupts etc.).. Program
modularity 1is ‘supported by the concept of processes ‘(which
combine modularity and concurrent exeﬂc':utibn) and monitors

combine modularity and synchronized execution). A

Darge class of time-dependent programming . errors are

liminated at compile time by checking that processes do not
refer directly .to the same variable. Within monitors,
another class of synchronization errors is automatically
eliminated by a mutual exclusion of monitor calls enforced
during program execut.ion. In addition, the compiler detects
recursive monitor c¢alls to prevent a large class of

deadlocks,.

el

- 20 -

-

. —— o ——

e EAE P 5y o

= 1f The compeon, segment which groups together the

4

THE CONCURRENT PASCAL VIRTUAL MACHINE

3.0 The Structure of Toncurrent Pascal Programs
t

Concurrent Pascal was designed and implemented (on a

PDP-{1,/45) by Per Brinch Hansen ({33}. It sets out to prove
. . 4

is possible to write a'well-struqtured operating
system as one single program. Almost all machine-dependent
aspects of the' sytem are Isclated in the virtual machine so
that the parts of the system written in high-level lawuage

should be highly machine—fndepenw. \

A Concurrenht Pascal program consists(of two distinct
logical entities:
” - ,(+
Lode sharfd by all processes: the interpreter,
the copturrent code (compiler output of a

Concurrentipascal program), and the data s‘egment

. (
of the initial p"rocess.

2- The n private idatg) s\e%menfzs of the n child
processes., Each data gegment‘ includes a
run—~time stack and a heaﬁl.. Sequ%ntial code
(compiler output of a Sequential -Pascal program)
is dynamically loaded into an area allocated in
the “ stack. It 'is important to note that the
(concurrent code, &‘:hich is shared by all

processes, needs no protectipnA from ‘process ’ N

interaction since this protection is guaranteed

- 21 -

~—

rer—y

/\ , ° ’) t “ﬁ'—
~ by the scope rules of Concurrent Pascal: To (/

.permit the sharing of the code itself, the code

/
- is re-entrant.

- , ¥ ‘
The form. of a Concurtent Pascal. program {s shown |in

o

% .
.. . . Anonymous Pprocess N

Constant déclarat;ons (real, integer, string ..)

Type declarations (monitor, class, process ..)
. : !

—— iy = —in gl

-

3\ -

|
|
|
]
t
|
|
| . .o
| variable declarations (* constructs system

l . (* components by defining
|

|

|

!

]

|

|

|

|

* * *»
— — —

. {* instances of system types

Routines {* code of'all in;ernal pProcedures *)

Code of the anonymous process B (* initializes *)

— - A S et w— — p—— — —— —

. (* all system components *)
P . (* defines access rights *) .
. “(* among system“components *)

|
i
1
i
'
i
{
|
I
\
1
|
I
t
'
]
1
!
i
i
\
H
!
I
|
|
1
1
}
|
|
1
t
s
t
i
]
[}
i
1
i
1
{
|
.
4
'
}
|
!
|
i
{
I
¥
{

Figure 3.1 Skeletgh of a Concurrent Pascal program -

figuée 3.1. It consisksof 5 sections: constants, types,

variables, routines and the code of th

’

The initial process declares all instances - of

al process.

mo s, .
B classes and child processes, @nd then starts all child

jprocesses.

Concurrent Pascal runs on a virtual machine. This
machine. is sinulated by two distinct programs: the

-

interpreter and the kernel.
\ .

“A

The ieterpréter is an assembly language program
(although it could be micreprogrammed) which executes
virtualﬂcode generated by both the Concu;rent”hnd Sequentié}
Pascal cOmpilers. It inyokeé the kernel when a process
needs to énter:a monitor (to ac¢éss shared data), to perform
I/O,_éo Eteate another process-etc, Alilinput patameters to

the kernel are taken from each process stack (private

i
. segment) and copied into the kernel/interpreter interfagf

(communication) area,called the Process Head.

The kernel is another assemb1§ language program. It
multiplexes~the processor amofg the concurrent processes and
provides mutual exclusion of monltgr calls. The kernel also

allocates space for process records, ‘monitors and

»

peripherals.

A picture of cehtral‘memony will show, in ?agcending
order: the '5efﬁgi,_the interpreter, Egp/concurrent code of
the Concurrent Pascal program (e.g. SOLOf, the data areas
(DO, Dl;.;: S:waor the initial process (P0O) and the “user"
(child) processes (Pl, P2, ... ,%an.

if a prdéess within a Concufkent Pascal;prggfam“wishes
to execute a Segyential ptogram,‘it mGst load that program
(normally from disk) intq an area which is allocated in the
process data -segment and then Etfnsfer control to the code

just loaded. The sequential program interfaces. with the

~

. - 23 - "

operating system (concurrent code) via a list of procedure

3

names:, called the PREFIX. -.See figure 3.2. The b«éfbs of
these procedures are defined within the process. By
PREFIXing sequential programs with different interface
listé, a single concu;rentx'process may provide differené
usér programs with .varying degrees of access to system
resources. . Segtio% 3.4 will provide more(i;sightA}nto ﬁhe

execution of a Sequential Pascal program.,

’

1

1

Sczquanﬂél y churznﬁol : *chuanf{al
Pascal Seurce 5 Pascal . Pasca] E
Program ComFilcr | Objccf Code -
PREFIX Interface
“PROGRAM” | : Transfer

L Vectfor

L [

'fstﬁpz-..g Proces\s!' Concurrent | InTzrfagz
Ddtqs ace Size[7 Pascal | Roufines
7] PROERAM') ComFi,Qf %OnCUernT
. A SCa
I{J:{f:::' : ' {lOb e f Code
| Concurrent + || Data §
Pascal source : Space
Progra ‘ ‘ \ Size v
s -

- - -

Figuge 3:2 Cghggtrentﬁand Sequential Pascal interface

*

- 24 -

/L

"3.1 Architecture of the virtual machine

The concept of a virtual machir;e has been used as a
stagdard technique to build portable _compilers for
seqqg‘ntial languages. The virtual machines that support the
intermediate code generated by these types of compilers
consist only of an interpreter, maiplf because the languages

they cofRile do not incorporaﬁe 6peratingdsystem concepts.

]

Concurrent -Pa’scal's primary objegtive is to permit the
'ylri‘ting ‘of operating systems. To rﬂake the language
portable, Brinch Hansen had to desigh‘ an intermediate
language which is the "assembl language" of the virtual
machine& This virtual machin \ must support not only hormal
Sequentia; Pascal concept$ [but also Concurrent Pa5ca‘1
concepts. This necessitates an interpreter that executes
the virtual code and a kernel that:%s'chedules the execution

of processes and supports I/0.and concurrengy.

The Concurrent Pascal machine is essentially a stack
machine, ‘This stack michine is simulated on a PDP-11/45.)
Unfortunately, certain peculiarities ' of the PDP-11
architecture pervade the code assembly phase of the
¢ompiler. The resultant virtual machine takes' on many-
PDP-11/45 features, and may be :ermed a "hybrid" between a
true stack machiﬁe and a PDP-11.

5

f.zs..

e e s e e e e

g ot e 5

F
(’ s

LV)
3.2 The PDP-11/45 architecture’

-

' Before giving further details of the Concurrent Pascal

virtual machine design, it isunecessary to present certain

r]

aspecfs of the PbP—ll/dS architecture [19]. We will discuss

only aspects of the hardware afehiteqture relevant to the

Ll '

Concurrent Pascal virtual machipe. - -

{

]
: {
3.2.1 Th¢ Central Processing Unit

.

The CPU executes in one of three modes: kernel,

L]
supervisor or user. Each mode includes:

a- a stack register (R6) B - +
b- a set of memory mapping reglisters
c- a level of priority (0 to 7).

Only kernel mode can alter -the level of priority through the
e

SPL instruction. The instructions HALT and RESET ‘are also

L) ’
reserved for kernel mode. The_ program status. word (PSW)

-~ e ,
contains information on the current status of the CPU,

.

including among other things:
3
a- the register set (0 or 1)

b- the current mode

iy
-

¢- the previous mode

+ ' -

While kernel mode is the most powerful, and is equivalent to
8

the typical third generation privileged moae, the other two

A

*modes are not strictly hierarchically nested. (\/
..\ | ,)) |

- 26 -

»

. autodecrement

A7

RN
TN ._/ kY
“‘\

3.2.2 The registers

-

The PDP-11/45 is a true general register processor in
that any of the registers RO to R7 can be used for a variety

of purposes. The general

registers can be used as

accumulators, index registers,

registers, or ‘stack pointers. There are

several addressing modes, incPuding register relative,
: »

indexed, indirect, autoincrement and autodecrement. When an

interrupt or trap occurs, the

PSW and the PG are

automatically saved ofi*the kernel stack. The

kernel mode

uses general regifter set 0, the otger two modes use general
\ -
register set 1. ‘ %<k\ ‘

[N

3.2.3 Memory organization
The PDP-11 memory and instructions are designed to
handle both 16-bit words and 8-bit bytes. A word is divided

into a high-byte and a 107;Pyte as shown in figure 3.3.

L
.8, .81 0
a) * T
Hiql't BYTC‘ Lo YK . oo
’ : =
‘ +
Figure .3.3 A PDP-11 memory word
Bits and bytes are numbered from right to left. Since

.

ﬁemory is byte-addressable, consecutive words are found in

-

even addresses. The lobe§; addresses are reserved for-ftrap

and interrupt handling.

for periphekal.d!bice-regisiérs. A 16-bit word wused for

- 27 -

1

autoincrement or

The highest addresses are reserved .

.m

©

byte addfessing ca;\\eddress a _maximum of 32K words.

]
!

However, since the top 4096 word locations ate reserve for

Al . »
- .

special registers, the user must use the memory management
unit {f he wants to expand above 28K words.

1

3.2.4 Memory management

3

f
The PDP-11/43 memory management unit provides the

hardware facilitdes necessary for memory mapping and
protection. A simplifieg.view of, the address translatiog
procegs (sufficient to uhdergtand its use in thenConcurrent
Pascil system) isg as follows:/;he 64K byte address space is
divided into 8 pages of 8K bytes each. Associated with each
page is a page address register (PAR) which defines the

starting address in real memory of that page (this starting

‘address must be a multiple of 64 bytes or 32 words), and the

length of the page. The top three bits of a virtual

. (16-bit) address are used as an index into the array of

@

PARS, to determine the bias to be added to the in-page

displacement to obtain the real (18-bit) address.:

3,.2.5 1/0 architecture % . -
hY o

¢ The PpP—11/4S can perform I/0 without the -use of
éxplicit 1/0 instructions, because of the Unibus structure.

The PDP-11 has no channels in thé usual sense bpt it does

Ay

have slow (one word at a time) and fastA(one block at a

time, via DMAC) devices, each of which iﬁterface directly tB
é .

the Unibus. :Instead, each 1/0 device has one or more status

Y

}) .
. W -~ 28 -

L3

e £t e i

»y ! <
’ -

registers that control its behaviour, %lusb one Jbuffer

() register through which all information paéses on its way

N »

into or out of the device. These Lspecialv vegisters are

; { .
s i . directly _addressable by the CPU. "To perform an I/0,

» - \
i

operation, device driver sof;ﬁar} typicaltZ/ moves starta
~) /‘

Lo ", addresses, byte counts' and sttus inforhation to the

’ registers -as 1f they we}e no malr,memdry. Then, that
g
i) softwa yinitiateé the I/0 operation by setting the start
. o v

e ' bit in & status register. '

b N

1 " P

]

Inierrupt handling on the PDP-11/45 is quite simple.

No device polling is required:to determine wﬁich device and
‘therefore which service }outine.to execute. Every hardware
l ' device capable of interrupting the proggss@r has a unique
‘\\> </ sét of two locations €eserved for its ' interrupt wvector,
P which contains the 1location of the device s;rvice routine

and thé new PSW. This new PSW contains thé new proqégsor
. . priority and other inférmation. ~The interrupt service
routines run at processor priority 1ev§1 7, which provides

an effective intetiupt mask.

L * s °

3.3 Concurrent Pascal and the PDP-11/45

N
*

3.3.) Use of the CPU

s

Concurrent Pascal uses only two of the CPU modes:
kernel and user. Tﬁe kernel (run-time support) executes in
k!inel mode. The interpreter executes in user.ﬁode. Thg
PSW used in kernel mode is defined as 'follows:

KNLPSW:= (curren? mode js’kernel)\
~///“\\//, (reéiste; set ig 0) .
' (processor prigrity i% 7)

> (virtual 0 corresponds to real -0)

-

4

In kernel mode, the CPU operates with the highest priority
(7) and accordingly inhibits all interrupts. The PSW used -

in user médg is defined 'as follows:

Y

'USRPSW: = (current mode is user) -

(register set is 1) . *
' ‘ &
(processor priority is 0) f

13

(virtual 0 is beginning of interpreter)

In user mode, the CPU operates with the lowest priority ana

all interrupts are enabled. '
5

[

\

3.3..2 Use of memory mangqement\unit

The vir;ual address space used in kernel moa; is 32K

words and }ncludes the following: (see Eigure'3:4)
1- the interrupt ctors and trap locations

N

2- the kernél and the interpreter. -

’\\ -~

£ - 30 -

-
-

2 ' 3"

L

L
, v 4
~——)
‘ wherals | T
P«.r;rnd 4 A}QK words
. Regisfers ___'_k _____
. ' %!
,/:—*\\\\\\\r-—4%

-

o

SN L : Inra_rfsrefer

o i Kerncl.
{ [

‘ ; Inf@rrurr

.) ’ d i . e "
% ' , - TN \'T an t
S ‘ rap veclors ‘)
C J p Ly
i o Figure ;ah Virtual address space in kernel mode

-

& cQMplicat;d.{;The address space of each process

\ s

-
- -~
! 74

1- the interpreter

\i

2- the concurrent code for all processes

Y N ')
T - : - 31 -

*

-
ot

AdY

fj/ﬂ . The virtual ‘address space in user mode is more

{8 divided

into two logical segments: a common segmerit and'a private

-éegment (data segment) Th?‘common segment is comppaed of:

~

AV

AN

°
-

3~ the data ‘segment of the parent (initial) process

-

The private ‘segment includes:) -

1- the process run-time stack "" —

2- the process gequential program heap. . -

As mentioned befdre, if a Concurrent' Pascal progtam
instantiates n_ processes, there will be n private segments
and one cqmm;n segment. At any given time, only one prbcess
is exé%uéing. The addressable memory.includes the common

segment and the private segment associated with the running
w

process. Associated with each process (in’ ¥he Process

Control Black) is an array MAP

MAP: ARRAY [0..7) of INTEGER 4

i

which contains information pertaining_to the wvirtual space

allocated when a process was created by its parent process.

{

Each element of the array corresponds to a PAR. process n

-

3.3.3 The Interpreter on-the PDP-11/45 -
g
The interpreter is an asgembly language program. It

consists of : , ' - *

- 32

N

e s e
Y

W ,
» 9 ‘ .
’ Physical
' Hemary
Hoéu&n
]
*) //’ /// b%hhﬁ
< // /4’
P S o~
// //
@ Bn ' . 4 Pl . ‘
16 bils - Pid ,/ﬁ—lébifs -*—IG ‘st—, ,
. P ’//N C
' Process n vk Process 2 P
Data //, Data rocess 2
COMLIM Y Stgment |7 ——pm - chn&g{ 3 - WL
Froccss 1 - Process 1 ?roczss { ‘
Data Data dota Process 1
Segmanl | Segment |Segment|
COﬂCUﬂ'CﬂT C ommon Concurmnf tOﬂCUﬂ‘LﬂT fonr.urrenf
| Code Segment | Code | Code. Cede
e
‘ Inturr;ftr [nfurrofa.r InTtrFrc‘ftr Lnferpreter
Wrtalo L1y : ,\;
q' . Kernel
Raaro'

~

-

?‘igure 3.5.virtual address spacé for process n

-

-

2}

-.33 -

%‘: l- a jump table \—\J

2- a process he;d
~
3- interpreter routines
~ 4

1

3.3.3.1 The jump table

-

The jump table is located at virtual address 0 of user

‘e
© space. As its namer implies, it contains entry point
addresses of intérpreter routines. r

- 4 - “~ u
< .

e 3.3.3.2 The Procesé He ad

Process management and physfcal I/0 in the Concirrent

5 ' Pascai syétem are implemented by a Kernel, which is invoked
© by the interpreter when these operations are required. ‘This
. necessitates that the interpreter - and the kernel share a

coémon data strgcture called the progess head. The proéess
head 1is a record defining the attribut&s of the running
. pr;Zess: run-time, priority, 1/0 éarameters, etc. The
procegs head 1is saved in the Process Cogtrol Block inside

the kernel when a process is preempted and restored when the

process is resumed. The process head is used to communicate

gy g A

[4
{ < operation codes and arguments to the kerhel.

0

. . o _ 3? . . | 5 | . ‘4/7

e ———————

Foaan

«.3.3.3.3 The Interpreter routines

A virtual instruction consists of an op-code, Eizfsibly

foliowed by some arguments. The op-code and %ﬁf\a uments

are integers ;Eiéh occupy one word each. The arquments. are
always constants which are known at compile fime, so the
virtual code and the arguments are always read-only.
Operands which are only avgé aple at run—timé are taken from
the stack and all resulEs are returned, to the stack. There
are about 50 different virtual instructions. To make the

software interpreter fast (as opposed to microcode) . the

addressing modes (local or global) and the data types

(bytes, word, reals or sets) are encoded into the operation

0

codes. This expaﬂas the set of opcodes to 110.

The operation codes include arithmetic and logical-

'operations on word, real and set data types; relational

operations on word, real, set and structured data types;

+

operations perfofming agg;ess manipulation, index

verification = and initialization of variables; stack

‘manipulation operations; control transfer operations and

operations related "to monitgrs and classes. The specific

operations provided by the interpreter are 1listed " in

‘appendix 2. The, virtual code of a compiled Concurrent

Pascal program constitutes the operating systém of a Pascal
machine. ._Virtuai code which represents a compiled
sequéntial program may be fetched and run as a procedure by
a éoncurfent process.

.

- 35 -

Y

The interpreter maintains two imporﬁant data structures
to execute the virtual code of a process: an exécuﬁion_stack
and a program heap. Each instance of a process contains
these two data structures. The =stack 1is used for both
Concurrgnt and Sequential Pascal program execution, while
the heap 1is used only by Sequential ’MScal for the
allocdtion of dynamic variables. The stack and heap grow
toward one another from opposite ends of the ‘private
segment. Thé stack provides storage for .four basic purposes

1- local and global variable space for the

activation of a procedure, sequential program or .

~

Concurrent Pascal process. R

2- dynamic link for procedure return. ’
3- parameter passing '

4- expression evaluation temporary values.

To "administer the stack, the heap and the virtual code,
the interpreter needs nine reg@stets: W, X, ¥, P, Q, S, B,
G, and H. _ Registers W, X, Y are scratch registers. Thd
interpreter uses the real program counter (P) to execute its

7’
own code. A virtual program counter Q is used to fetch
————

instructions. The héaptap H defines the current extent of

the heap. The contents Bf the stack are addressed relative

to three register bases: a global base register G, ‘a ~local

. , -
base register B, ‘and a stack top register S. Temporary

-

variables and parametere of a procedure are addressed

-

relative to B. Permanent variables are addressed relative
- *

14

- 36 -

_heap. When a process calls one of its own procedure

to G. ‘Expression evaluation temporaries are addressed

relative to S.

A ;
//”Ehe dynamic link includes the stack addresses G, B and

S used by a procegb before a procedure call and .,a return
i ’

address Q (old wvirtual program counter). The link also

contains the current \ine number within the procedure to

facilitate the location of run-time errors.
/

v
%

When a process is created, its global and local base

registers both point to the permanent variables of

process. It is initialishd with no temﬁotaries and an

local base register will point to the temporary variable
that procedure while its global base register remains

{

unchanged. ' &

When a process calls a moniﬁo% or class procedure, the
G pointer will point to the variables of that monitor or
class and the local base q will point to the temporary
variables of the monitor (or class) prode§urei Upon return
from a procedure, the“temporary variables are popped f?om

the stack and the previous values of the base register are

restorgd by means of- the dynamic link. | '
$ YA &

< 3

. The” base address of a data segment dMRides the ™
. Y

variables from the parameters. _Component data segments have

-

- 37 - &

s

,their“addres;ZQ shifted by‘the variable length, or component
offiet, in order to point to the base location. Th;"base
locatfon contains either the 1line number at the point og
call for routines or it contains the component index for
system components. The parameter portion may contain more
than just the explicit parameters. This allo@s the routine
entry to address global combodent variables. A call of a
sequential program places a list of interface routine

h

addresses on the stack before the explicit parameters.
AV
After the explicit parameters, the address of the sequential

»
code store is placed on the stack [24].

3.3.3.4 Threaded-code implementation

The notioh of an interpreter can best be described as a

means of recognizing alternative actions and then performing
the processing required for the selected actions. The
‘steerinq' 1;;1c in Brinch Hansen's interpreter uses a
technique calied "threaded code™ [20]. The address of the
next virtual instruction is contained in the virtual program
counter (register Q). The interpreter uses the instruction
che (16-bit integer) as an index into a jump table located
at virtual addgess zero, which is the starting address of

the interpreter. The jump table contains starting addresses

of routines that perform the desired operations.

Every routine in the interpretér ends with the

in;§¥hctign NEXT, whose effect is:

dyr~
T - 38 -

-~ r

Y
goto S8T(ST(Q)); Q:=Q+2; .

.
»

yhere ST(Q) means the contents 6?\\§he ‘stack locations
pointed to by 0. On the PDP-11/45 this instruction‘is
translated by:

MOV @(Q)¥;PC +

E

1.é., use the contents of the 1location pointed at by Q,

indirectly to obtain an address; copy this address into thg

. program counter; increment register Q by 2. The

auto-increment- addréssing mode automatically increases-the
designated register by.2- bytes. This .instruction takes only
3 memory cycles. ' The correct operation of the MOV
ihstrdction is depéndént on the jump table belng located at

x L]
virébal address zero so that the operation code can be used

- without bias as an indirect address. =~ .

-,
. l ! !
-

3.3.3.5 Interpr;ter tracing

Before fetching the next virtuval operation code, a
conditional assembier t;gqle permits switching on oxoff a
line printer and console trace of each interpreter routine.
This is implemented by executing a kernel call which
transfers control to a debugging ' package resident .1n ‘the
kernel. <The informatiOn/stplayed 1nc1u5%s: all interpreter

registers, the contents of the staék, and the Qalue of the

stack pointer bgfote'and after exeéution. ’
Q

LR

o 4

i o

3.3.4 The kernel on thé‘bDP-ll/&S

> The following description of the kernel is adapted from
the book "The Architecture of Co;current Programs® by P.
Brinch Hansen. The kernel was first written in a
programﬁing language that resembles Concurrent Pascal, It
consists of a collection of(data structureS‘represenFing
processes, monitors, apd peripherals. Each datg, structure
consists of two- parts: one defines how the data are

represented in store, the other what operations one can

perform on these data. Thé abstract version of the kernel

‘ was transléted by Hand into assembly language (retaining the.

abstract version as comments). The kernel provides three
maifi functions to the virtual machine:
1~ Processor multiplexing

2- Peripheral activation

3~ Monito;,ikplementétion

~
-

3,.3.4.1 Processor multiplexing

Y

The computer execyted one process at a tiqe. While one
process is tunning, other processes must awaip théir‘turh in
one of three ready queu;s. Every 17 msec the computer
switches, from one process to another, to give the illusion
that they \are} executed simultaneously. A process is‘
represented by a data structure within the kernel called a
Process Control-Block (PCB). When a process is preempted,
all reglsters used to'interpret its code are stored in its

-

PCB. The régister values are'restorqd when the execution of

- _ S

...40-

»e

W b
¢
the process is resumed. A process gueue is represerited by a
sequeﬁce of references to the PCBs. The only operations on
. N o
a protess queue are:
i

AS

put t enters a process in the gqueue

get : removes a process from the queue .

3

any : tells whether the queue contains anything

empty : tells whether the“queue is empty

\ [
Y

The running process is represented by a class. It
*
contains a permanent variable: USER99 is the reference to

the running process} it is nil when tHe processor is idle.
.. . ’ 2

Only two operations are defined on the running process:

serve and preempt. They sta;t and stop the #xecutiop of a
proéess. The ready queues are

‘top : processes executing monitor éode

middle : processes to bé resumed after 1/0

bottém : compute-bound processes

® o
¢

Two operations can be pleormed on the ready queues:
enter a procesé in tﬁe}queue; and select one to be served.
An attemét to select a process from an empty ‘queue causes
the processor to idle untff,a peripheral opgratiéh has been

- completed and has entered a process in the ready queue. A
clock interrupt has no geffect if the procéssor'i& idle;
otherwise, it preempts the ruqqing progess, eﬁters it in the

« AN

ready queue, atd selects another process for &i}cutioﬁ. The

clqckfwill only ﬁﬂgempt a process when it has used a

- °

"‘41" -~

| F——

¥
>

o

reasonqele amount %f time, and it will never interrupt a

\

process inside a monitot procedure (since this could cause

N the resource controlled by the monitor to remain idle until

the execution of the proceddre is completed). The class’

"running"™ also contains procedures‘for process creation.

e

*

w 3.3.4.2 Monitor implementation

a “data structure
.at a time access

boolean variable

g N
1

Within the kernel, a monitor variable is represented by

called a gate, whiqh only gives one process
‘ ‘ '
to the monitor. A gate is represented by a

defining whether it is open,'and a queue of

Q...rg»“g'gﬁzsses waiting to enter it. At the beginning and at the

end of a monitor

and a "leave"

kernel routines
- executes' the

"exitmonitor™).

procedure, a process executes an "entet"
bperation respectively. {More precisely,
are called by the interpreter when 1t

o

virtual instructions ""entermonitor® and

Enter: if the gate 1is open, the process

enters and closes it; otherwise, the process is preempted to

wait outside the

-

gate. Leave: if nobody is waiting' outside

the gate, it 1is 1left open; 'othe;wise,*a single waitiﬁg

proéess is resumed (by transferring it to tﬂé ready dueue).

These are the short term operations which force processes té

enter a monitor one at a time. A monitor can also delay its
. » >

invoking processes for longer periods of time and resume

them again by means of 'delagﬁ and "continue® operations on

’ single~process queues. ﬁelay: preempis the ;unning Process

. and enters.it in a given single-process queue. The monitor

v

i

A

‘. \

- 42 -

-

™

.
s

' can now be entered by another pr@keés.~ Continue: forces the

running process’to leave the monitor and resumes any process

®hat may be waiting in a given singlé—process queuve., It is

important to distinguish between a multiproéess queue which

the virtual machine automatically associates with a monitor,

and a single-process queue which the programmer declares
- 4

within a monitor. The férmer is stored within the kernel’

L

while the latter is stored in the common _Segment. When a
monitor Variable 1is initialized the kernel executes a

‘Procedure that allocates its gate in the kernel heap and

initializes it.
The "gate reference"” s stored in‘the_stack of the

calling process and passed as a parameter to the kernel each

L
-

time one of the gate operations i{s executed.

"3.3.4.3 Peripheral activation .

ALl 1/0 operations follow the same pattern. The /0
operation code is copied into the kernel toddther with the
virtual address of the status word to bé returned later.
The virtual adéress of the data buffer is converted ‘to a
real physical address and transmitted to the device along
with additional " deviae-dependent parameters. This
necessitates a separate routine to convert the virtual
address of«the data buffer so that_the device registers can

/ * [
use it. The MTPD (Move To Previous Data Space) instruction
A .

can only store one word at a time and is used to fetch the

o~

4

° A

- 43 - B o
: .

¢ R Al
command and to - return the status at the endwof the I/0

' operatien. A pefipheral is represented by a. class within

‘ the kernel. It -defines the ."device number" of the
(J/ﬂ peripheral 4nd its 1curfeht "user" precess. An "io'
statement in Concurrent fascal is translated into a call of

f : a kernel procedure that starts a data transfer and preempts

Y

the calling procgss. An inteérupt rg;dmes the user process.”
‘ Only one process‘aﬁ a time can use a peripheral. This must
1 \\ | behgauaranteed by gﬁe operating system written in Concurreng
Pas€al (and not by the kernel). The main function of the

- ’ : kernel is to make peripherals loock uniform-with respect to
- “ ‘gifgigxinput/output opgrations and\ heirhtesulﬁs.
{ ’ .
3.4 Execution of a Sequentia%\fascal program \

The gollowing,description of a sequential program is
adapted from Wallentine's technicgl report’hn Concurrent
Pascal [29]. A compiled sequential program must have its
virtual code loaded into a variable which is declared within
the process which is going to execute 1t; ~A sequential «
program must be declayed‘using the kéyword-PROGRAM

PROGRAM EXEC (VAé PARAM: ARGLIST ; STORE: PROGSTORE);
kAV The virtuadl code representing the ;rogram to be exeguted is
’///) 2 ﬁassed as the second argument STORE. The first argument ‘is
actually a 1list of ;ther parémeters. The first of these
- ~ indicates whether the program terminates successfully. The
remaining parametérs can be used to pass explicit arguments

q

to the program. Intetface procedures are used to allow a

-)) ‘ | =
‘ “"44" _ \ ~

A, . PR
~ - - t

- Mm(.-nw- w—

. e wnmm = e M i e

sequential program to access system resources and to ‘perform
I/On. 'For_' example 1in fi’a\ure 3.6, the program EXEC is

declared to have access to the procedures ACCEPT and
. . v , . '
DISPLAY, These two procedures are defined within the o~

process which has the loaded the_EE)uential program andeare _
construtted from calls to systém— routinés which perform

character 1I/0 to a terminal. By declaring'sévepal programs
-3

s - with diffeérent int;rface procedures, a Concurrent Pascal-

™ ’

process may pr&vide different pr?qrams with varying degrees
. of access to sysgem resources. A‘kequential rogram must be -
. PREFI'Xed with the list of all the intiffac routines which‘

" .
are available for its use. This "prefix”™ ust list the

» routines in.an oPder identical to the interface procedure
list following the program's ~deglfration within the

ncurrent Pagcél process. For example, a program which is

under ,the job process in figure 3.6 sh " have the
! - . - "~
[3] ‘\ -
Procedure ACCEPT (var’C: char) ™ ,
/ » , . P
» B
L Ty Procedure DISPLAY (Cichar) . gy \
. L T . PN . <::j:>
‘ . Program EiAHﬂbB ' \\\\\\\\ Yy . :
. . . " ¢ . .
. 'o‘.o . ’ ' M R ! Tt ’
.. 7 ' user program ™ | ’ L ‘
- " " / T . ae T / v \/ - <
' ' ,) Vg .
= Y \ . o .
. o . - 45 - ° '\y

[P

s m

R

5

\

v m The declaration -JOB=PROFESS; +10000 reserves data space

.

Y

BEGIN
. END; ’ k o
PROCEDURE ENTRY display (c : CHAR):
L BEGIN '
END;

for the job process's heap. !This heap can be used by
Sequential'prograﬁuexecuted by the Concurrent Pascal process

: 4
to allocate data structures throug¥ use of procedure NEW.
. \ !. ~ 4

e ’ !

TYPE page = ARRAY[1..15] OF CHAR; v .

code = ARRAY([l..N] OF page; , -
job = PROCESS; +1000; /
VAR { : INTEGER; parm : idparam;
‘. store : code; plist : arglist;

v

PROGRAM EXEC (VAR paramlist:arglist;

segcode : code);
ENTRY accept,display; ’

(* beginning of interface procédures *)
PROCEDURE ENTRY accept. (VAR ¢ : CHAR);

. e
(* end of interface procedure; *)

BEGIN
""FOR 1 := 1 TO n DO
¢ I0 (store{i], parm, device);
EXEC (plist, store);

LI

9

END v
Figure 3.6 A simple Job process skeleton

' ‘ .

L
*

¥

]
*
e
-
b
FIN

cH. 4 -

3.5 Initiating the system

The PDP-11/45 version of the Concurrent ~Pascal system

. -

' is designed to run on a bare PDP-11 and to use the entire

\

, J/
system disk formatted to its own conventions. ,;hé .system«
Co
disk contains 4800 sectors of 256 words/sector. The sectors
are numered 0 to 4799. The beginning of the disk contains 4

contiguous segments; followed by the disk catalog and files.

~)

Septors ‘K words . Name
0..23 | 6 , kernel segment
24..87 ’ 16 ' SOLO segment
8§:.151 &6 other 0; segment
152...153 . '655\\\: free page list
) 154 . catalog page map
155..4799 i N catalog paéés and
‘ ' | files

To load the +.system, a human opérator must perform a
standard initial pr;qraﬁ lgadlfroﬁ disk drive 0 which 1loads
the code of .the kernel and the interpreter into memory
starting at physical addreﬁg 0. Control is passed 'to
procedd&e 'LOADSYSTEMPRSGRAM in' the kernel which“™oads the
entire system program from disk sector 24 using the length
information given in the first three words of the virtual
code. Once the virtual code has bean loaded,. c&ntrol is
given to a .procedure which will i:itialize all kernel
;lasses, a;d then to the ‘the” dispatcher . ‘which starts

N

N

\

P

.
&
o
G
.
N
\
,
4
\
.
™
.
¢
.
-\ -
ey
r
. -
o
.
!
-
C

vt

. e

I S 2 o e e =

. o
THE CONCURRENT PASCAL VIRTUAL MACHINE \
ON THE TI 980B
4.0 The transportation process . s

To move the Concurrent Pascal system to the TI 9808,

one praceeds as follows: P
v . <

1- The kernel and the interpreter logic, i.e., the

virtual machine, have to be recoded in "I‘I
assembly” language with the help of the
PASCAL-like comments of their PDP-11 version.

2~ The correctness of t:-he‘virtn;’nal machine has to be
established using the test programs prowvided

3- The TI disk has to be loaded with -an image of
the system disk used by - SOLO (a single-user
operating system written in Concurrent - Pascal).
SOLLO provides an environment in which the
Sequential ahd Concurrent Pascal compilers will
run, which can then be used to develop other '

Concurrent Pascal programs.

 To assist in the transportation, a utili't:y 'prog‘tam

called PREFACE was written. This program asgists in the

testing' process, and in the fnitial loading of the‘

~

Concurrent Pascal system.
' [

o e

0-49‘

O

o o, by

4.1 The TI 980B architecture

4.1.1 The Central Processing Unit

The CPU executes in one o

user. Some operations can only b

]

disable or enable interrupts

4

idle (halt) the CPU

perform 1/0

f two modes: privileged and

e used in privileged mode:

b

- pass from one CPU mpde to the other

The processor status {8 contained

4.1.2&T'he reg isters ‘

in the status register.

Eight 16-bit internal registers-are directly addressed

Do ¥
via *the instructions involving

PDP-11 counterparts, TI registers are

their functions and there is

inside the CPU.

[

' Register address

Name
, 0 ' A
1 £ E
2 X
- '3 - .M
4 s
"
‘ 5 L

re‘isters. Unlike the‘ir

more specialized in

only one set of registers

Functlon _

Primary arithmetic
register

Extended agithme;:ic
register

Index register
Maintenance register -
Storage register

Subroutine 1ink register

-

e e e Wl % s b e

6 B Base register to point to
¢ ‘address of operands
? e PC Program counter

& The TI addressing modes are: program cognter relative,
indexed, Iimmediate, extended, an& base register relative.
The base registér relative mode allows access to an operand
address too far for program counter relative. .The status
register permits, among other things:

- 1/0 bus and DMAC interrupt control

»
- setting different address spaces

%
,

4.1.3:.Memory organization

fhere aFe two exﬁernal memory bounds registers which
allow the ,upper .and lower-most portions of memory to be
protected. They are called LLR (Lower Limit Register) and
ULR (Upper Limit Registér). The TI 980B memory and
instiuctions are dq;igned to handle only words. (Some byte
oper?tions are avaiiable, but their semantics are so
different from that of the PDP-11 that gt was impossible to“*
use them.) Unlike the PDP-11, bits are numbered .from left
to right. ?here is no virtuai memory in the usual,\sense,
but there are separate agé;essing spaces as defined by the

LLR and ULR,

®

4.1.4 Memory management
There is no memory management on the TI 980B. For the
purpose of implépenting Concurrent Pascal, w? only need the
LLR. The LLR divudes physical ;emory into two distinct
address spaces corresponding to the 2 CPU modes: .
1- The privileged address space which covers the
entire memory (one-to-one mapping with physical
memory)

’ . [
2- The user address space which runs fromlthe lower

limit bound to the top of memory. Its address
zero corresponds to the content of the LLR plus
one, in real absolute address. .
Beforelthe privileged mode can be set, it is necessary to

load the LLR with its memory address which physically

separates the kernel from the Interpreter and the virtual

r *
code.

, -
4.1.5 I/0 structure

»
Slow devices (card reader, line printer, console) are

attached to the CPU-controlled data bus. - Fast devices
(disk, Atape) aré connected * to .the Direct Memory Access
Channel (DMAC). Special I/0 instructions and registe}s are
designed to perform I/0 on the data bus and on the DMAC. To

- :
start I/0 on the data bus, the instructions WDS and RDS are

xused in° conjunction with external and intern$1 registers.

Initiating a DMAC transfer requires Fhe 1n§;tuction ATI,
“ang

coupled with g list of mqmory words. Interrupt handling on

Ed

- 52 - .

——— -~ B

tnmp . a

e TI QBdB is more cumbersome than on th POP-11/45; the

N —_—

rogrammer has to examine an interrupt status word to

termine the interrupting device. Thi%’gives him complete
L

control ver devic

priorities. There are three types of
interrupts op the TH 980B. These interrupts, in order of
priocrity, are ollows:

1- internal interrupts (supervisog calls,‘

power failure, ...)

*
—~

2- DMAC interrupt (disk deqiceé)

3- data bus interruypt (ﬁty, card reader,
line printer, ...)
A

The priority interrupt %ption on the TI 980B 1is not

available in our installation. ‘

4.2 Concur?ent Pascal and the TI 980B
~ - '

4.2.1 Use of the CPU h
The kernel (run—-time support) executes in pfivileged*

moqe‘ The-LQ£etpreter executes in user mode. The status

register used in privileged mode is defined as follows:
KNLPSW:= (privileged mode is enébied)

(lower limit bias is disabled)

(data bus interrupt is disabled)

. * (DMAC interrupt is disabled)

The status register used in user mode is defined as follows:

- 53 -

¢

USRPSW:= (privileged mode is disabled)
(lower limit bias is enab}ed)
(data bus interrupt is enabled)
(DMAC inter}upt is enable@)
4.2.2 Usg of the memory with LLR
The address space used in privileged mode includes:
1- The interrupt and trap vectors .
2- The remainder of ‘memory
The address spaée uséé in user mode includes: .
l- The interpreter
2- The concurrent code

3- The private segments of all processes

See figure 4.1,

4.2.3 Simulating PDP~11/45 virtual memory

b ‘ S
Ve
4.2.3.1 Address translation

One ofcthe majdr‘proble;s to be overcome in simulating
the PDP-11/45% en;irogment is to provide for the translation
of PDP-11 virtual addresses to TI 980 physical addresses.
This 1is necessary because the Concurrent Pascal virtual
machine expects addresses to be byte oriented, while' the
fﬂterg:etef must use word addresses to address physical
memory. The most straightfor&atd ‘transformation is to
sep;rate the 16-bit virtual address into ‘a 3-bit index into
an array of bias yalues, and a 13-bit displacement (in

bytes) into the 8K byte page. This operation must be done

-

- 54 -

USERqedp"

ki

i

%

S’cha. é Sfmw.

\

Infe'r,orafzr%

Y Virfual ©
LLR

\

{
] 4
i . Karmlv

- Q_.Real o .._....;.-‘......._.i....-_
' .

Figure 4.1 The two address spaces on the TI 980B

. - ~
with care, however, as it léads to a 17-bit address if the

" operand is in the top 32K words of m'eonry.

v

In order to keep the arithmetic within the 16-bit

range, we may note that all operations . in the interpreter

ﬁi(except some which~- are specifically identified as
byte—man'ipulatio\ri operations) operate on an integral number

«0f words. Therefore the displacement can be divided by two

1
before being . added to‘a word-address bias value, thus

g

- 55 -

'
-

User Address Privi’alﬂew'claire;s /

¥

0

&

e
°

keeping the arithmetic within 16 bits, (Byte operations

must take note’of-the byte number before dividing by two.)

A faster algorithm, which is more specific to the
Céncurrent Pascal context, is the following: we note that
the address space of a running process is the common segment
and - 'the private segment b&bf that process. These are
separated b? a process-specific number of words DELTA. See
Figure 3.5. If we define COMLIM as the upper 1{mit of the
common_ segment ‘(in words), then the ,virtual-to-real
canyersion may be made in the following way. Let V be the
virtual PDP-11 byte address and R the TI physical address.

R := V)‘Z

IF R >= c’omum THEN-R := R + DELTA \
The TI assembler code for this _Sequence takes 6.75
microgeconds, assiming ;haé the current value of DELTA {s
stored in the current process head in the interpreter. The
real-to-virtual conversion (this is needed because values'
stored back onto the stack mu#t be in PDP-11 format) is

IF R > COMLIM THEN R:= R - DELTA

V = R*2

The two conversions are in-line coded in tﬂ?“interpreter.

Y

- 56 -

<

~

4.2.3.2 Memory allocation L -

Although the TI memory is not segmented, allocation of
memory. must be done in segments of 8K bytes aﬁd‘in‘bloqks of
32 words, becaué; fe?tures of the PDP~11/45 - memory

e

management unit have influenced the design of the virtual

»-

machine. The important condition that USER99, a pointef to
the ’running process located _ at the beginning of the
interpreter, must sit on a block boundary, caused
considerable difficulty as ’the TI does not have macro
facilities to make it self—adjustable; Thfs requires a
re-computation of the location of USER99 aﬁzlr every ug@ate

-

of the virtual machine.

4.2.4 The Interpreter on the TI 98080

In perfor@ing'the hand translation from the PASQAL
comments to TI assemble{, we have found it nec;ssary to
understand the PDP-11 macro assembler implementation in
detaila. most 'of thd Eimg the comhents reflect intent agd
implementation but there are a sufficient number of cases

where the direct relationship is violated to require a

detailed examination of the entire text. This is not to say -

thai the comments should always be changed to reflect “the

defails of the assembler version more accurately (indeed,

much of the power of using a high-level 1language for,

commentary would thereby be 1lost), 4but : rather, . that the

comments have to be interpreted only as commentary, and not
as a cémpilable program specification.

A

- 57 -

R AR

M

.
- 4.2,4.]1 Register allocation !

The TI 980B contains only one set of registers; the
. . *

register file (A, E, X, M, S, L, B), the PC, and the status

register pust be saved on entry to the kernel and restored
on ex-it; The interpreter uses the A, E,.and X registers as
ggnerai working registers W, Y, and X (X is uséd
o}:casionall)} for indexing). 'The‘ B gegister is ysed t6
access code and data outside the{ interpreter.. The PC is
used as the real program counter. Even though the M, S, anhd
L regi’sters cannot be used to directly address operands” in

R
memory, it is useful to keep three of the interpreter

addresses®d, s, G& H in these registers so that’'they may®

o

be quickly copied into the B register, since the B register

cannBt be loadéd from memory. Thus we have the following .

register allocation scheme:

’
RO (A) —==> W
S
Rl (E) =-—-> Y | -
, T
R2 (X)) -—->X h
f N 3 -
R3 (M} -==>¢Q “ ¢
R4 (5) —=->§ o B
"R5 (L)' ===>G - '

R6 (B) -=->12

R7 (P) ——-> P

5 % &

The remaining two interprgé:;r registers (B, H) are kept in

B3

. the process head. ') . -t) C .

LY

; maihine expects data to be in PDP-11 fdrmat

[S

. L)

4.2.4.2 Simulating the bit/byte numbering syetem

lx#d Whep moving character strings arpund or testing bits ih

sets, we must bear in mind their éeCuliar PDP 11 ordering.

With . regard to bytes in a string, the PDP-11 devices output’

.the lowWer-order byte of a word before the high byte. *- This

ey
must be followed when inputting or oeputting to the console,

the printer, the . cqrd reader,etc.”, because the virtual

- . w
L 4 ” 4
w t
.

o t

4.2.4.3 Threaded+code h{plementation ;

,)
The., ad8ress of the next virtual instruction is

contained in the virtual program counter Q. This address is
&

"a PDP-11 virtual byte address, which must be converted to-a

real TI word eddregs. Jn;eddition, it must be inéremented
by two. As the virtual preéram counter nust always point at
a word address, the overhead introduced by the required
conversion led us to decide to keep the Lecal value of Q in
the M register as a real word address. Ppetailed analy;ls of
the uses of Q can be found in (30}, As an eutéinerement
feetgre is nog aveilabie, tHis becomes a sequence of five
instructions: four to move the coritents of the M register to
tQ& B register, increment the M register, fetch the op-code,
and branch indirectly through the‘jump talfie; oné at the end
of each routine to branch to the -start of the fetch

-

sequence, located et address one gﬁ user space. ,(Aderess

' L]

zero ' contains USER99) *he TI assembler sequence for
. ’ i t) :
' -59 . - L
S ‘ . ‘
o LN .

)

P

v

e AR st

—

@

3

fetching a vir instruction is:
. ; d . ‘ .

FETCH RMO M,B move M to B
RIN M,M increment M
LDX 0,BR load X with op-code .

-

BRU *TABLE,X branch indirectly through table

F]
The brancqwinstruction at the end of each routine is:

BRU:s =] branch to location 1 (FETCH) .
The correct operation of this instruction 1is dependent on -
» ' .
"the LLR being set to the address of USER99-1. oo 3
L) ! /
O, ° . 41
4.2.4.4 Stack addressing ' , - @

Operands ,on the stack are addressed. relative to é,”G,

or B. An%analysis%similar to that of:Q may be made to .show T
the utility of keeping these Géluesuas word addresses, at.
3east inside the interpreter. Most oper&tions address oﬁly
word boundaries, so the same algorithms may‘be usgd'fo§
virtual/real gnd’ real/virtual conversions when required.
The exceptions.are the byte-o;iented operationg, which must
identify thg byte in question prior to gonversion of a
Y}riual (byte) addfess to a real (word),ad@ress. Becaﬁsg of
tgfrepp§site‘addre;sing gonventiéns in the PDPjtllds and the C
TI 980By byte operations fetch an entire wo g é% the A yo
registe;, manipulate the bgpéain qﬁestion,'ahé;then restore

L

the entire word.'

¢

: s N

&) , wF

7/

4.2.5 The kerrel on the TI 980B -
\ .
We only discuss relevant features of the implementation

¥ .
that require siginificaa&_changes;Y

&

4.2.5.1 Processor multiplexing | .

Since the TI possesses only'one set of fegisters; alil
pointers and regigfers that characterize the environment of
a prodess’must be z:;;d whenever there is a* context switch
from user mode to privileéed mode, even if the process is
not préempted./ The restoration of a process environment
when 1tWresumes execution must be delayed untilféhe last
moment when the registers are no longer ngeded for othé}
computations.) g ‘

4.2.5.2 Simulating the.pPDP-~11/45 real arithmetic

'As SOLO and the two compilers use real numbérs, we “were
: \

forced to write two conversion routines situated 1in the

kernel to convert PDP~11 real numbers into TI 980 real

numbers and‘ vice-versa. These conversions were necessary

because programs on the distribution tape have PDP-11 fdrmat
real numbers in their "constant" declaration area. .The TI

floating point instructions used inside the interpreter are

translated. into ;3E7gz£}cr’balls which Efansfer control to
the‘TI Floating Point Package physically 'integrated ,into the

kefnel code segment. It is worth mentioning that the TI
Floating Point Package required minor modification In

calliﬁé ! format and register usage to adapt to the

&
- 61 -

interpreter.

b "
4.2.5.3 Peripheral activation

A -rough calculation and comparison of the time used in

~
context switch and the time elapsed between two card-column

< N .
interrupts led us £0 let the card reader generate interrupts "4

only on the first colUmn ,and to hold the CPU for the
remainder of the card:. The first interrupt is negessary
because of a relatively large segment of time involved in
mechanical motion and reading the gap separq;iné the edge of
the card and iks first column. ~ ;;e1 gonsofg \interrupfs on
every input or qutﬁut character. The disk signals only at
the end of \its data transfer. The line prinéér'sigﬁgistbnly
at the end of a 1line printed.' The TI kernel contains a

virtual-to-real address‘conversiop routine similar to that

of the PDP-11 version. I . RS *

4.3 Initiating the system

After implementing the virtual machime, a virtdal disk
of 4800 PDE~11 sectors must Be initialized with the new TI
kernel and iAterpreter, the SOLO code{’ahfree-ﬁage list, a
catalog, and the SOLO files. Our ovetal; porling strategy
.proceeds as follows: | \ . ‘

14'ttansfer the virtual disk to the TI disk. (the
virtual disk resides qﬁ‘the distribution tape)
. 2- replace the PDP-11 virtual machine by the TI

virtual m;chine

r

(=]

é

called PREFACE, assists in loading the virtual machine

Gﬁven that the TI disk (a Diablo 44) can accomodate

twice as much data space as SOLO requires, we decided to

incorporaté the viré&él disk as a TI standard file. zhe TI

kernel and interpreter code segment which we have created

cannqt fit into the virtual disk, because it exceeds the 24
Qirtual sectors occupied by the PDP-11 virtual machine on
the distribhgfon tape. This, in turn, motivated ug to store
the TI virtual machine as a TI standard file. To move. the

SOLO wvirtuadl disk into a TI standard file requires the
following steps:
* 1- Transfer the SOLO tape (viftual disk) to a CYBER /
mass storage unit “
2- Download the virtual disk into a TI file using a

TI utility. +

This roundabout route was dictated by the lack of a TI
tape drive. The TI virtual maZBine is assembled from cards
ARRNS

and stored into a TI binary file. jzyce the virtual machine

runs on a bare’ machine, a speci utility that we wrote;, é‘p

into

Al

membry. Thé virtial machine, in turn, loads, the SOLO code

from an absolute TI addréés, and starts executing “t. !

. - L)

"\ . 3 ' 0— nd

o1 = ————— A — Lo o

- ’ w
4.4 validating the syséem

One of the ;equirements %Br software portability is to
provide test programs to validate the newly transported
'é/ software, Brinch Hangen provided us with programs to test
- tﬁe new kernel and‘sintérpreter. The kerpel tests are
carefuliy progressive in that they proceed from tgé\ most
basic functions of the kernel to the most sophisticaieég?'

ones. - The areas fcanned by the kernel tests are:

l1- system loading o
= ¥
2- processor multiplexing ’ \\\>
\
s 3= device drivers.

As thorough as it appears,, the‘ketnel tests overlooked the
disk and card reader drivers in the context of Concurrent
Pascal. The interptefer tests did cover the entir;‘spectrum
o 'of interprete; routines. The test programs are extracted
from another distribution tape containing both the sources

and binaries as sgeparate files. To retrieve the test
4 programs, the followling steps are taken -
J .
fi Transfer the tape confents to a Cyber mass

stosage unit - ‘

2~ Wripe' a Pascal program to convert the binariés

. . 2
4//’ ‘into binary card images
: 's

3- Read the cards into a TI standard file

3 »

S

(Again, PREFACE provided us with mechanisms to read in ////\
:Qhe "binary cards, d}splay the confents of the TI files, and

of central memory, on a peripheral device, énd other

. 8 ‘
. .) ',64'

!

indiépensable functions to help the debugging and testing.

For more details of PRERACE, refer to appendix 1.

4.5 Portability of Concurrent Pascal
Poole and Waite tZS] define sof;ware portability as
follows:
"Portability is a measure of the ease with which
a program can be transferred from one
environment to anot?gi; If the effort required
to move the program 1is much 1less than that
' required to ime;ement it initially, then we say
it is highly po;tagle.' —
w ' R
An operating system must be intimately concerned with
the hardware it supports and as such 1is inherently
machine-dependent. Brinch Hansen succeededﬁ in separatfhg
the ,machidb¥independent logié of an operaéing system from
igs machine-dependent part. Concurrent | Pasc;l,ﬂ which
embodies the maghine-independent logic; runs oﬁ a virtual
machine which hides the hardware dependency. The virtual
machine technique for software portability is not new. The
problem of portability is now confined to the portability of
the virtual machine. The Concurreﬁt Pascal virtual machine
suffers from an invasion of many PbP-11/45 éeatures. “which
tatnishééu its nature, f.e., to stay abovg ha?dware

peculiarities. AL a consequence, all virtual machines

dgsigned to support the Concurreﬁt Pascal g}rtual code are

~

Y
1

’) ‘- 65 -

By * o%

forced to simulate not only the orignally intended 1idéal

stack machine but alsoc the idiosyncrasies of the PDP-11/45

architecture. . -~

@

The major difficulties encountered in emulating the
PDP-11/45 fall into three broad areas: -
l1- the virtual memory
2- the 1/0 ?evices and I/0 architecture
3~ the internal ‘representation of data (real

arithmetic representation and the bit-byte

reverse order).

One»notable flaw of the Concurrent Paq?SI system is the
use of reals in- the sg:g’ operating system and the two
ceypilers. ‘ The Concurrent Pasca} virtual ' machine has a
dependence on the PDP-11 format for .real arithmetic. In
implementing the entife Concurrent‘ Pagcal system, it is
obvious that real arithmetig.mhst be proéided for. However,
the task of getting SOLO running is made considerably more
difficult by thefmgct that both SOLO and the two compilers
make use of real arithmetic. If they had not, then SOLO
could hava been made to work prior o implementation. of
support for real arithmetic. In summary, although the
Conéurrent Pascal kernel and interpreter ﬁave proved to be

relatively difficult to transport, in assessing epe,

portability of the system, one ha$ to consider the total

‘effort expended in the original development, inéiuding the

)

>

- 66 -

g A (v s - e

-

\weg;pilers and SOLO itself. From this perspective, Brinch

Hansen experiment in pbrtability appears to have been o

P relatively successful.

s 4.6'Conc1usion

.

g The Concurrent Pascal virtual machine totals. only 4
percent of the code of the entire Concurrent Pascal system,
However, as ‘it mugt sfmulate the PDP—11(455architecture, and
must normally be coded in assembly language, especially one.,
that does not have macro facilities, the effort involved in
its ' transportation far exceeds the 4 percent of the initial
implementation effort. This is -attributed to the vast
difference between the TI 9808 and the PDP-11/45
architectures. @‘”shart, Concurrent Pascal ,proves +to be
only moéerately portable. There are some peripheral itéms
which ﬁight improve ove;all portability:

1- bet;er documentation ‘including such things as aJ
A flow diagram of the kernel module$ and their)
| calling formats
2~ gi.more detailed explanation of the kg{nel
modules ind interpreter routines,
“3; @ more comprehensive set of test programs which

% .
guarantee that the virtual machine is truly fit

- and ready to tackle the real operating system.

>

)Y

CONCLUSION

) In this document, we have presented a panoramic view of
different virtual machines whose common goal , is to
éacilitate the production of portable operating systems. We
have described the Concurrent Pascal language and its
virtual machine, and finally, we have analyzed the
portability of Concurrent Pascal vis-a-vis the TI 980B.

»
Concurrent Pascal has raised considerable interest in
the programming field as shown by the many implementations
arouEE,the world. The adbstract data types introdu;ed by
Concurrent Pascal impart structuring, clarity and safety to
operating systems. However, Concurrent Pascal's portability
leaves much room for fimprovement. Its virtual machine

architecture resembles too much that of the PDP-11/45 and

‘therefore deviates from its original goal, i.e. staying

above any particular hardware.

&
i ¢

—

Since the design of ‘the virtual machine is crucial in
determining the portability of prégrgmg written for ity one
obvious area of 1its design worth exploring is the
parameterization or virtualization of machine-dependent

>

features, which is absent in most virtual machines. This is
>

consistent with the objective of the virtual machine: stand

at a 1level of abstraction high enough to enable

transportation across a wide spectrum of machine

-~ 68 -

AN

\

architectures. This requires that the Qirtuql instruction
set and its Yrun-time support refrain from being hgtdware

specific in its original version.

In more concrete terms, this ?ecessitates that .

1- The virtual instruction be abstract enough and

| provide enough paéameters for its run-time
support to function efficiently.

2- The run-time support, which is 100 percent
machine~dependent, be top-down designed and
modularized, so,that the highest-level modules
interfacing the interpreter are the least
hardware-specific and the 1lowest-level, modules
will handle all hardware idiosyncrasies., The®

l top-down design of the operating system should
extend to the design of its virtual machine as
well, The degrees of freedom from particular
hardware provided by this methodology
‘corresponding to the'levels of abstraction of
the virtual machine could be a:direction for

<
future research in operating system portabllity.

- 69 -

= O R % e Aze e e

5.

6.

~/
REFERENCES .

Wubf, W. A., Russell, D. B., Habermann, A. N., BLISSy a
language fof~system programming). Comm. ACM, Vol. 14,
Dec 1971, 780-790. . s

Wirth, N., PL360, a progr ng language for the 360

computers, Journal , Vol. 15, 1968, 37-74.

"‘Richards, M., BCPL : - for compiler writing and

systems programming, Spri Joint Computer Conference,
Vol. 34, 1969, 89=937 ' '

e

Wicth, N7 M

multiprogramming, Software - Practice and Experience,

ula: a language for modular

VOl‘ 7' 1977' 3"35-

Stee;, T. B. Jr., UNCOL, the Myth and the Fact, Annual
review in automatic programming, Vol. 2, Pergammon
Press, N.Y., 1961, 325. o

Coleman, S. S., Poole,‘P. c., and Waite, W. N., The
Mobile Programming System: JANUS, Sqftware - Practice

and Experience, Vol. 4, 1974, S-213.

a

Theaker;, C. J., Frank, G. R. . MUSS: a portable
operating system, Software - Practice and Experience,
Vol. 9, 1973, 633-643.

Moriis, D, et al., * Machine-independent operating
systems, IFIP Congress Proc., Toronto, North Holland,

1977, 819-825.

e -
Brinch Hansen, P., The Programming Language Concurrent
Pascal, IEEE Transaction on Software Engineering, Vol.

1, 1975, 199-207.

A - 70 -

N

.

¥

s b P S e ot 50

Ne e e

1o0.

o

11.

12.

13,

14.
15,

16.

17.

18.

.19,

Abramson, H. et al., The PICA-B Computer - an Abstract
Target Machine for ‘a\._ Transportable Single-usér
Operating Environment, Proc. Acﬁ 1978, Washington,
ACM, 1978, 301-309.

Thalmann, D., Evolution in the design of Abstract

-

Machines for Software:Portability, Proc. 3rd Intern.

Conf. ‘on Software Engineering, Atlanta, Georgia, IEEE
press, 1978, 333-340.

Richards, M., The implementation of” BCPL, Software
portability, Brown ~1éds), Cambridge Press, London,
1977. ‘

Richards, M., Bootstrapping ‘the BCPL compiler using
Intcode, Machine Oriented Higher Level Languages,» van
der Poel Maarseq, L. A., (Eds), 1974, 253-264.

Dahl, 0. J., Dijkstra, E. W., Hoare, C. A, R.;
Structured programminq} Academic Press, N.Y., 1974.
Dahl, 0. J., and Nygard, K.; Simula - An Algol based
simulation language, Comm. ACM, Vol. 9, Sept 1966.
Parnas, D. L., On th: ¢riteria to be wused in
decomposing systems into modules, Comm. ACM, Vol. 12,

Dec 1971.

" -

Hoare, C. A. R., Monitors: an operatihg system
structur ing concept, Comm. ACM, Vol. 17, 1974, 549-57.
Brinch Hansen, P., The Architecture of Concurrent

Programs, Prentice-Hall . Inc.j, Englewood Cliffs, N.J.,

1977. . -
PDP-II/dS“ﬁrocessor Handbook, = Digital Equipment

-7 -

s st S A AR A s+ s S ames -

v*\\\\ -

20,

21.

22.

23.

24.

25.

26.

27.

28.

. —
Corporation, Maynard, MA, 1973. '

Bell, J. R., Threaded \code, Comm. ACM, Vol. .16, June
1973, 370-372. , &) ;
Assembly Language Manual, TI 980 Minicomputer, Texas

» - a

Instruments Corporation, Digital 'Syétems Division,
\ ’ .

Dallas, TX, 1976. . ¢

Desjardins, P., personal communications. ‘

Thalmann, D.,' Abstract, fictitious, hypothetical, .

[ideal, imaginary and virtual machines. Publication:

329. Departegent d'Ipformatique et de Recherche
Operatidnhelle: Universite de Montreal, 1979.

Hartmann, A. C., A Concurrent Pascal compiler for
minicomputers. Lecture notes in computer science.
Springer Verlag, Berlin, Heidelbetg,‘ w York, 19792
Poole, P. C., and Waite, Q<\F., YPoftability ' and -

Rt

Adaptahility, Software Engineering, Springer-verlaq,
Berlin, Heidelberg, New York, 1973..

Brinch Hansen, P., Concurrent Pascal implementation

. »
notes, Information Science, California. Institute of

Technology, 1976. < f - R

Thalmann, D., Ecriture de systemes d'exploitation

portables pour mini-ordinateurs, These de Doctorat . es
. -

science, Geneve, 1977. ¥

9 &

Neal, D., An architectural base for Concurrent Pascal,

iechnical Report, Department of Computer Séienée,

Kansds State University, Manhattan, Kansas, 1979.

-y A8 - h
29. Wallentine, V. and McPride, R., Coﬁcutrcnt\rascal - A

\
s i

- 72.- f .
S -

& &)
-
N
[}
-
- v
. W
-
~ @
%
4
:]
.
(-4
A)
J.
.
¢ ..
ST
|
i a
.-
* -
v’
- >
. {
.
~
4
Y
. -
i
o
1
N
..,
» r
. ~ €
.
“ »
AR
N ¢

7z *

31.

tutorial, Technlcal Repor&, Departme?t of Computer

‘Atwood, Jl W. and T. Pham, ‘ A Concurrent. ﬁas;gl

lnterpreter for the Texas Instryments . 9808B,

& .

\
Science,,,Kaﬁgas State University, Manhattan, Kansas,

NOV. 19760 o N 1
R N - A N
? . 7

¥

- g

International Symposium on Hinl— and Micro- computbrs,
Monfreal, Conference Proceqdings, Nov 1977, 41-48."

Nori, K. V. et al., ~ The \‘}basdal—P > compiler:

-

Emplementation notes, - Berichte des Instituts fur

Informatik, Zurich, ETH, 1875. . .

o
32.

33.

34.

Wulf, W. A., OvetvinJ(of the HYDRA operating system,
£ ,

“—r

Comm. ACM, Vol. 17, Jufe, 1974. P

Brinch Hansen, P., The SOLO operatdng system, Software

in}th,.N., Systematic . pzﬁgraﬁming, Prehtice-Hall Inc., .
7

- Pravtice and Experience,, Vol. 6, 1976, 199-307.

-
3

-y

o
Processes. Acta IS%ormatica, Vel. - 1, No. 2, 1971,

115-138. ’ ' h

Englewood Cliffs, N.J:,1873. . =

/
}V
ot
Lve
‘ q
1
k:
—
—

7 ; o '
Dijkstra, E. W, Hierarcbical ordering of Squgntiai

L]

®,

JRp— —

)

~

“PREFACE USER MANUAL S 'y

Immediately after the bootstrap, the standard TI boot loader

V4

asks the user to enter Qﬂ§ystem file name
/\ ‘(’v&:.

SFN = ?2

2
»

User enters PREFAC, which will be loaded from D0 into upper
memory and given control. PREFAC (file name of PREFACE)
- “

will ask user to enter one of mqany commands:

2
L

‘ A ENTER COMMAND

Here ;.lre the commands that the user can use.

LOADVM : will load the memory image of the kernel and the
interpreter, in other words ® the virtual 1macp\ine
from the kernel file on_?l, in_g:o memory starting at
address 0, and give it control. : ST

GENCOR : This is the most ftequently'usec{ command to start
execution of a Concurrent Pascal program (test
programs or 'operat n§ systems). It essentially
processes tl)e objekt code which is the assembly

\ | P

output. of the virtual machine and whick resides on’

DO's ¥ile SMEFIL. GENCOR asks ‘user. to enter SMEFIL l

’ A , M
when it prompts him with:
. T 4
VFEN = ?
% { oL o
" ‘Once the object code has beéen converted into memory
! T ’ -
image form- and loaded into memory starting at
’ location 0, control is given to it. } ’ ,
. . w0 N ’ ., -
. 'f\ . : . * * |
. . - 74 - o

N . ot -

A

(W

g
STORVM : Stores the virt9a1 machine in memory image form on

»
D1 at beginning of "kernel® file. This command is

-

the opposite of LOADVM.

MT1.D1 : Takes test programs from tape and storés it on Dl

at sector address specified by thé user. MT1.D1l

-
will prompt user for a destination sector address -

)

on DI1:
: kY * J

SECTOR ADDRESS IN DECIMAL = ?

‘d%z.nl s Takes the SOLO b}naty”ccde from tap;\and stoges it .

sey o e

‘on D1 at a sector address specified by the user’
(similar tgL MT1.D1). These two ‘tape related

commands are not\éurrehtly in use because the tape
[) . \ ’
drive 1s nat connected.

CRTOD1 : Reads a deck 'of binary cards (Concurrent PaQ%?l

.

. . t * o
test program) and puts it on D1- at a sector addr€ss ©

- -

specified by the user. PREFACE asks the user to

enter a starting sector address: . " *\'

/ . . . ,)
SEEIQB»AQDRESS IN pECIﬂAp‘- ? /’
61TOL§~: DUmps on the line printer the contents qf sectors

/

- as' specified by the user. Same prompt as pPevious
‘ ! %.t * ' ’ /

command. ’ S < ‘ b

) § : :
. o B .) (’ -~ ’,'
! FROM SECTOR =? TO SECTOR =?

- ’ K v\ . /(—\

- w ° -~

. . .
P } R

L. “_ - A ‘l
f KV'JS - : .

) o !
] - s
N p
L] 1)
APPENDIX 2 : INTERPRETER OPERATIONS -
® L
N .r ’ ?
. ¢ \
' ' Arithmetic and Logical Operations
» A
- , \ /
Add word/real . In set 4
‘ , .
~ar word/set Build , set
. Subtract _word/real/set’ Empty set
™
. Multiply word/set - Increment word
~
- o and - .word/set Decrement word -~
Divide word/real Truncate real
Mod word ’ Convert word Y
/
/ Negate word/real Successor | word |
JNot‘ word Predecessor word | L
X Abs ¥ word/real i
, .
. -
: Relatiopal Operations ' ~ ‘
: ; ‘ ' “ 2 -,
5 “"‘ . ‘ .
J o , 'f \ L - - A
Equal " word/real/Bet/structure . '
. . . P ' ! T i
) - Not edyal - " : : -
, Not greater .- ! | , B t
; Not less . " ' : ,
[R ’ . !
N . ' 3 Y
Greater word/real/structure . v
) * " ',. ’ . ° v
- @ Less bw . N '
. : ' . ’ ,’1‘ '\ i
L Y - . v
Vo - { . "
', » " . f“' * ‘
] ~ . T
~ £ ¢ - /’I "
&9
-16 =\ ’ .
. | ' -, &

~, * h
' ¢
, L4
L . ro P
Address Manipulation and Verification
¥ :
) /)
Constaddr .Variant
/
Localaddr Range
Globaladdr))Jew
Field Newinit _
Index Initvar .
Pointer ‘ ! :~,;"';,
~ .“m‘v r‘
~ &
S ’ T T T / - N
D e e e e s e N
, Stack Operations .
;T &
A , b
Push o ‘const [Copy byte
{ : . . ,
7 ‘ local - \ word
r~C " -qlobal real °
' i . -«
indizrect syt
. L .
ke \@ . ’ G
/ v label ™ /f struc tu? ’
. Pop ’) ’ \?/ " .
. mmvglu\q | L ’
Setheap . /" o . .
~ /
/’ AN
» AN
. b
. . ‘ Y ' e \;
S , & : AN
’ ControlﬂTransfarfOpﬂtati,ons ;
B) N
N Jump o
' Falsejump .
¢ Y l ’ ‘ L3 ' { I .
v | ' \
- ,"L‘ _ 77 _-a -

-

N

" .
b
¥

Casejump
3 Call |
Enter
‘Exit
Callprog
Enterprog.
Exitprog

Initclass

[

¢ Beginclass -

Endclass

Enterclass

Exi;class
- Initmoén

) \Biginmon

Endmon
Engérmon
Exitﬁon~
Initproc
Begiﬁbtoc
Endproc.
Cailsys
Enterproc
'Ekitproc
Delay
, Continue .
S;a;tr

.- Stop

‘monitor procedure

f

procedure/function
T

sequential pfogram
-
4 . 3
L

n

initialize class

initial cléss statement

class procedure

“ .

initialize monitor

‘initial monitor statement

\.’{

L} ’ } *‘
initialize process #

concurrent process

" \(“"" < v L8
-

call prefix routine in concurrent process

™ '

‘kernel request to delay process

‘kernel requeé\,to continug process
request to start job

kernel request to stop job |,

4 - .

- 78 - A

- © . . hd
. . . .o
A N .

&

4
o N
Wait ‘ kernel request to wait for alarm clock
i r‘ ‘ . ‘
‘MiScellaneous
1 4
ewline note current line in source program
) Attribute return process attributes \
Realtime return real time in seconds ‘
10 perform input/output
w o
v . - b)
Kernel ¢perations
L)
¢ Initgate ;
Entergate .
. J .
Leavegate
Endprocess - . .
) X
initprocess’)
Stopjob :
: n
Wait Né& R -
Systemerror))
. 4]
« 3} \ ,
¢ <
v ~ - -
;
. s “) .
- i ' »
N v A.\ 1
' ” . ::). . .. ‘)‘]- ' .)
L ' . - ._.’ ' . L4 N
t -~ e ?9““* N ' - :

N

/ ‘ APPENDIX 3) .

PROCBSSES .
A process is.a system component that is executed as an
asynchronous sequential programy It consists of a private‘
data structure and a sequential program that operates on the
data. A process cannot operate on tgé private data of l
; another process, but processes can §hare certain data

strugpures. The sHared data on which a process can gperate

are determined by'its access rights. The notation

[N

. Type P = process (Al: Rl;Ak: Rk) ; . - -
Var,\V].: Tl; ...-{,Vm:Tm; s ’ ’ ,. . '&
3 begin ' *&
b Sl;5n;

» ! , 3
end;

declares a process P with tﬁemfollowing attributes: 4

1-"global variables Vi, ... Vm of type T1, .¢. Tm !

. which are private data defining the current

’

t state of the process.
: l

; v t 2-.parameters + +s» Ak of type Rl, ... Rk called
: u _ the a%cess‘-rights of proicgss P and which
\\ ' represent constants -and other sygtém céhponents .)
' on which the process can operéte. S ‘ ’ y
: 3- ;éaﬁement; él,'... Sn operating on.the global : -~

1 p
data and accesgssible system components.

18 * - .
| . P

{ - . .
i . R . . ' .- 80 - . ' . - ' +
i .) . .) oo

-

<

[

X

’ ¥
. .

A process can also include definitions of constants,
procedures and functions which are accessible only within
the process. The staégment INI'f P executed by the embedding
process allocates storage for the (global variables of
process P, starts its execution as a concurrent process and
replaces the formal parameters of the process' by the actual

paframeters which remain accessible to the process after

initialization. The execution of a process terminhates

repeat. the execution of a set of statements forever. This
SN v —
is done by means of the CYCLE statement, which deflnes a
sequence of Statements to be executed indefinitely.
| ¥
MONITORS

A monitor is a system <&tomponent that controls

'commu'nications a'gd resource sharing among concurrent

L8

1
’, It defines a shared data structure and a set of

;r%;sses.
synchronizing procedures operating on it. The execution of
'h\hese px;ocedurés exclude one another in't:ﬁne. A monitor
also definfs an initial operation that will'be exceuted when
its data structure is created. The hotation |

- y .
Type M = monitor ' L . S/

-

var Vl1: T1; ... Vm: Tnm; | \%\

procedure entry Pl1-{); .begin end; PR

S e ' /
proced\lﬁe ca\ntyy ﬁn {); beg\tn “ess @nd; |
) /@i‘n | \ | .
‘ o ; . _ . "
s) -

. g -8l - "

M Y

normally at the end of its statemen% but in some cases can

=

calling process just Iike any other procedure.

end;
.
declares a monitor M with thé following attributJ?:

1- gleobal variables Vi, ... Vm of type Tl, ... Tm

defining the current state of the monitor
2- procedure entries P! ... Py, that processes gan

call to o%erate on the global data

'3- an initial 'statement S _defining the initial .

- e
values of the global data.

As. for a process, a monitor can have pParameters, that

{ 1
-define {its access rights. It can also include definitions

of 'congtants and types as well as procedures and functions

that are accessible only within the monitor. Processes

cannat 'operate directly on a monitor's shared data. They

¢an only call& procgdure entries that have access to these

shared,data.//g call to a proceduré entry Pi within a

“

monitor M is denoted b§

/

e \ M.Bi () o

)

-

Such a monitor procedure ca&l is'executod as part of 4

Ko o o

TR

r 4

' class by using the notation

. CLASSES

L]

A system component that cannot be called‘simultaneously
by several ot?er components is calle% a class. A class
defines a data structure aﬁd the possible operations on |it,
just like a monitor. But unlike a monitor,

1- the execution of class Erocedure entries do not
exclude one another in time

2- a global J;riable within a class can be decl¥red
as an entry variable.

For example

' ”~
var C :'class; '

-

var entry Vi: Ti; ... ;

)

b/eg in - o o9 ef‘\di L 3
14 *

The value of variable Vi can be accessed outside the

v

‘¢

3 -

\

 but assignment to an entry variable can only be made by a

procedure of the class in -which it 13\ declared. One c'

advantage of classes over monitors is tha€ class calls are
much faster than monitor calls, because. the virtual machine

does not have to ‘schedule simultaneous calli at ryn-time,

o=

1since such calls cannot ocdﬁf.‘ -
P P
T . i ‘

e e e S s

P

A scope is a teiéﬁn of program test in which an

SCOPE RULES ‘
identifier .is used with a single meaning. An identifier
must bel 1ntrodhced before it is used. (The only exception
to this ;ule i$ a sequential program declaration within a’
process type: It may refer to routine entries defined latet
‘in the same procesd type. This allows one to call
sequential programs recuréive y.)

Ne

B séope ié eifher ; sygtem type(;i routine, or a "with"
statement. ;-éystem type or routine introduces identifiers
by declaration; a "with" qus ithby selection. When a scope
is defined within another scope/ we have an outer scope and
an 1""9RQ.5$?PQ that are nested. An identifier can onl; be
3ntroduced with one meaning“iy%g scope. It can, however,
introduced with another meaning in an inner Qcope. n that
case, the inner meanfnq applieshin the.inner scope and thez
outer -meaning applies in tha& outer scope.
~ . .

» '+ System types/}can be nes;ed, but routinéf: cannot.
Within a routine, "with" statements can be nested. This

leads to the following hierarchy of scopes

(nested system types - T)
{non-nested rﬂltines

<~

(nested "with" statements)))

25

- 84 - <
4 K

‘(/‘
\

©

