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. \ ABSTRACT . L

TWO SCOTT MODELS FOR THE A~ CALCULUS’

Athina Roussou o o '! ’

. R [y
¢ ’ 4

At first glance a model of the A-calculus appears to requiré a set

X iﬁ which its own function space X + X can be embedded, and this s

requirement appears to contradict Cantor's theorem.- This difficulty was >

-«

overcome by D.S. Scott in his 1969 constructien of D_ by restricting

"
.

: . v
X+ X to the set of continuous functions on X (provided with a suitable”

&7
W

topology). Since 1969, a number of other constructions have been (@:fv'/ “

- presented, including one based ¢h the theory of domains in [16]. .fn
o I8 wito

. thig thesis, the construction of D_ and of the domajn-theoretic' modél D

\ R , ... . ()14
are studied, and it is proved that D, is an extensional A-model, whi

‘: : . /”l X)) .
D is non-extensional. : o ; oy :
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N I§TRODUCTION_
The A=-calculus is a theory about fuégtions as rules, rather t;mn ] .
as graphs. A function is regarded as ‘a process of going from argument
to value, a process coded by a‘defi,nition. When functions are treated
as rules, there is no need for an :}ndication of a domain and range; thus
the A -calculus is a type—free. structure wh;:re the quect;s, of study are
at 'the sgme time functions and arguments. In particular a funct;ion ean
be appiie@ to itself. For the gsual notion of functic;n this is impossible
-gince applying a function to itself viola‘te.s the rules. of ordinary set .
theory. \
The ‘A.- c.alculus and its related theory of combinatory logic were
initiated dround 1930 by Church, Schinfinkel and Curry respectively.
Later on, based also on works by Kleene and Turing, a fundamental result
emerged: the genmeral recursive functions are exactly the X—de}finable l
Dfunctio‘ns a's are the Turing computable functions. By the analysis of

Turing it follows that in spite of its very simple syntax, the A - cai-

culus is strong enough to describe all mechanically computable functions.

'Therefore the A -calculus can be viewed as a paradigmatic programming

language. -

/

languages, ideas for ‘the semantics of the former may be applied to the . ‘

Because of the similarities of X - calculus and some progranming

latter, In particular, the problem of the déhotational semantics of pro-
gramning languages appears in a pure form in the X -calculus. The first
model for the X -calculus, D_, was constructed by Scott in 1969, and

since thén about half ‘a dozen other models have been discovered.

. 3
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to /the theory of A -calculus

]
/ In Chapter I we give an introduction
and define.the notion of a )\/—’model. Chapter 1II gives the background

we need for the construction of the D, model. Chapter III gives the

\background we need for ‘the conatructioﬁ of the doma}n—thneoretic model.

In Chapter IV we construct the D_ model and the newer domain-theoretic
A - calculus, and

prove that they are models of the

model of [16],
prove that D 1is eéxtensional while the domain-theoretic model is not.

- .
»




CHAPTER I

The material of this chapter is derived from Hindley and Seldin [iO] .

Section 1. The A = calculus ' )
- v . (’ .

In everyday differential calculus, an expression such as 'x -y’

can be considered as defining either a function f of x or a functiom

g of y . One convenient way to distinguish these two functions, sug-
*

gested by the logician:Alonzo Church in the 1920's, is to introduce a
symbol, say 'A', and define -

f=2Ax.x~-y , = Ay.x-y .

¢

This éives a systematic way of constructing, for each expression iamvolv-

¢

ing

ly for 'y', et¢. This is the starting point of the X -calculus.

¢

The above notation can be extended to functions of more than one

variable. For example to the expression 'x -y'

correspond two func-
tions h, k of two variables defined by

h(x,y) = x-y, k(y,x) = x-y .

- However, we can avoid the need for a special notation for functions of
N

s\)\everal variables by using functions whose values are not numbers but
functions‘: For gxample, instead of using the two-place function h
};bove, we could represent h by the function h* defined by
ht=Ax, (Ay.x=-y) .

Foz: this reason we shall only need a A -notation for functions of one
variable. 4

Begin by assuming that there is an infinite sequence of symbols
called variables. ‘

Definition 1.1.1

r

The set of A —terms is defined inductively as follows:

x' , a notation for the corresponding function of x, and similar-




-G -
(1) All variables are A -terms (called atoms) *

(44) If X and Y are XA-terms, then (XY) 1s a. A-term

-

. (414) If Y 1is a A-term and x 1is a variable, then (Ax.Y)

is a A=-term, ' '
> v
Notation > '
Letters 'x','y','z','u','v' , 'w' will denote variables. Cap-

ital letters will denote arbitrary A - terms.. Parentheses will be omit=-

~

ted in such a way that, for example 'WXY' denotes the X-term

(WX) Y) and 'Ax.XY' denotes (Ax.(XY)). Also '"Ax, ... x .Y
1 n

3

will be used for the X -term (Axl.(A xz.(...(kxn.Y)...))). Syntac-
tic identity of terms will be denoted by '=' . It is assumed of course
that 4f XY = UV them X=U and Y=V, and 1f XAx.Y Z Au.V

then x Zu and Y = V. It is also assumed that the three classes of

terms do not intersect.

Interpretation

in general each A ~term is intended to‘represent a one-place func-
tion, whose values and arguments might themselves be funétions. The
variables represent arbitrary (one-place) functions, and (XY) repre-
sents the result of applying the funct.ion X -to the argument Y . A
term (Ax.Y) stands for the function whose value at an argument A 1is
calculated by substituting A for x ir; Y. |

Definition 1.1.2

The length of a term X 1s the total number of atoms in X .

'\Qefinition 1.1.3

The rela‘tion X occurs in Y is defined by induction on the
length of Y, as follows:

(1) X occurs in X
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(i) If X occurs in U or in V, then X occurs in tUV)

e
~~(111) If X oceurs in U or X = y, then X occurs in (Ay .U).
‘ o

Definition 1.1.4
,An occurrence of a varfable x ina term Y 4s bound 1ff it is
in a part of Y with the f‘orm Ax.Z2; otherwise it 1is free. A vari-

.able x with at least one free occurrence in Y i1is called a free vari-

able of Y; the sét of all such variables 1s called FV(Y) . A closed

N term 1s a term without any free variables.
Definition 1.1.5 ' -

For any M, N ,x define [N/x] M to be the result of substituting
N for every free occurrence of x in M, and changing bound variables

to avoid clashes. The precise definition is by induction on the length

of M, as follows:

A i

7 1) [ﬁ/x];; =N ) ) |
' - (i) [N/x.]hy =y for all atoms y Ex
(111 [WxIPQ) = ([N/xIP)([N/x1Q)
’ / (iv) [N/x](Ax.P) = A x.P ' :

v) [N/xl(Ay.B) = Ay.[N/x]P if y £x, and
' yEFV(N) or x€FV(P)”

(vi) [N/x)(Ay .P)

1

Az N/x]1z/y]lP if’yﬁx and
- ' yEFV(®N) and x€FV(P) . (z is the firstt variable
& FV(NP).) ( : *

Definition 1.1.6

A cﬁange of bound variables in a term X is the replacement of a

~

part of X whose form is8 Ax.N with x not bound in N, by
Ay.[{y/x] N for any y which is neither free nor bound in N . X

is congruent to Y 1ff Y d4is the result of applying a series of

. , . -
N—— ey P N ST SO I S - ., L T i » e, [N v
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changes of bound variables to X.
Congruence is symmetric, reflexive, and transitive. Congruent terms

have identical jnterpretations and play identical roles in any applica-

“ tion'of X - calculus.

Definiti‘.on 1.1.7

X B - countracts to Y 1ff Y is lthe regult of replacing a part
c;f X of the.form (Ax.M)N by ([N/x]M. X n—'contracts to- Y 1iff
Y 1is the result of replac;ing a part of X of the form Ax.Mx, where
x@ VM), by M.
X B8-reduceg to Y (or xia‘{) if:f Y 1is obtained from X by a
finite (perhaps empty) series of B - contractions and changes of bou'nd

variables. X n -reduces to Y (or X"inY) 1ff Y 4is obtained from

X bya finiu&’ (perhaps empty) series of 8- contractions, n - contrac-

‘tions, and changes of bound variables.

Any teim 'of the form (Ax.M)N,K6 1is called a B -redex, and any term of
the form Ax.Mx with x & FV(M) is called an n - redex.

Definition 1.1.8 .

] <

A téerm X which contains no 8 - tedexes is said to.be in g - normal < 7
LY —,———

form. If a term U By.-reduces toran X in B = normal form, then X 1is

-

called 2 B8 -normal form of f

A term X which contains no n-redexes is said to be in n-normal

form. If a term U n-reduces to an X in ' 1 -normal form, then X

18 called an n~-normal form of U .

Theorem 1.1.9 (Church-Rosser Theorem for B8 —reducfion) \
j

b ey
¥

If U> _ X and U> Y, then there exists Z such that -

8

> .
X2 g% and Y> 2

B

o ;
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'The formulae a%er;ll the ,expression; X=7Y where X and Y are o -
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. ) b
Corollary 1.1.10
If U has” B -normal forms, X and Y, then X 'i;jcongruent to
Y. - ' . . /.
» ¢ *
Theorem I.1.11 (Church-Roswer Theorem frf{ n -reduction)
If U> "X and U> Y, then there extsts Z such that - & 3
~ \ R o A .
X> 2 and Y> 2. . . B oo ! N
- n - n . . . . P
. ' 4 - ‘
Corollary 1.1.12 ) PR .
If. U has n -normal forms X- and .Y , then X s congruent to
Y . b -
Definition 1.1.13 ~ ‘ . l
X 4s B- egull to Y (or Xx= BY) iff 'Y is obtained frod X /
by a finite (perhaps empty) series of B = reductions and ged B~
reductions. ; / : :

5 . . .
T2 1

X 18 n=-equal to Y (or X='nY) iff Y is obtained from X by a

finite (perhaps empty) sgries of n -reductions and reversed n-reduc-

4

tions<” - -

In other words = 8 18 the eqiivalence. relation generated by > 8 and

= n is the equivalence relation generated by > n ' )
\

- Definition 1.1.14 (The forma]. theory A) ’ "

A 1is a formal theory in the usual sense (e g. Mendelson [14] ch.

1.§ 4). It has formulae, axi(s\and rulps.

a' L
; .

. A -terms., - . f

- st

The axioms are: . . S

(@) AxvW= Ay [y/xIN i y ¢ FY(H) and "x,y are not'bound in N
B) (Ax.MN= [N/x]M ‘ _ B . .
() M3 M T




' Corollary 1.1.20

—
W
. Y -8« :
o ' ) L4 %
_The rules’ are: ' ,
() . %= X' = 2Xx = £X' .
. 1 B [} . ) .
(v) X=X'=Xz2=X'2 .
(5) ¥=%X' = Ax.X = Ax.X' -
1 - . /
(t) X=Y and Y= 2=X=2 - P

L4

(o) ¥=Y=Y=X

Definition 1.1.15-

The formal theory A, is said to be extensional 1f it has the extra
" ’
rule: >

’

(n) xx.Mx=M if x € FV(M) . .

Propoéition 1.1.16 (see Curry et al [ 51p. 92)

- ’

. The Tule (&) and the rule (n) taken together are equivalent to

the £ ollow_fng rule: .

(z) If x ¢ FV(MY) and 4f Mx'=Nx , then M= N .

~

Proposition 1.1.17 4

X = BY 1ff X =Y 1is provable in the non-extensional

theory. " &

P

-
- i

~

~

. X = nY iff X=Y is provable in the extensional theory.

" ¥
Theorem 1.1.18" (Church~Rosser THeorem for 8- equality)

Z and Y > Z .

8

If X= SY then there is a Z such That X.g_e

- K

Corollary 1.1.19

1f x-‘-"BY and Y is in B -normal form, then X> Y.
! Y )

I£*X=_Y, then either X and Y do not have B = normal forms,

A

, B
,or X and Y 'boch have the same” B - normal form. ' *

Corollary 1.1.21

.

Two B ~eyual terms in B -normal form must be congruent.

-
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Corollary 1.1.23 ' 4 '
If X= Y and Y is.in n-normal form, then x> Y. L
‘ A%

L] ’

Corollary 1.1.24 :

U x= Y , ' then either X and Y do not have n~-normal forms,

N h

. o
. '

or X \apd Y both‘have the éame n=~normal form.
_Corollary 1.1,25 !

Two n - equal terms in n -normal form must be congruent.
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Section 2. Models for the X=calculus  *

A model for the X - calculus should give interpretations to A -

" terms such that p;rovably equal terms are interpreted 3s the same object.
. ! £

This section will p;resent two ‘equivalent definitions of , A -~ model.

1

-

Notation

"'Vars' will denote the class of all variables.
Given a set D, 'a','b','c','d' will denote arbitrary members of
- ) N k‘ ?
D (not formal variables, which are aenoted by 'x', 'y' as usual).

N Given a mapping o from D2 into D, expressions such as -((aob)oc)

will be shortqﬁ’ed “o aoboc (the convention of association to the

~

" Neft).’

.

Definition 1.2.1
If D is a set, any mappiﬁ'g‘. p. :‘Vars +D wilJ: be called a valua-
tion, For d€D and x€Vars, the valuation o' which‘is the same
~ I as p except that p" (x) = d, will be ca'].le&
d Claxle .
(I p(x) = d, then [d/xlo=p.)n.

Definition 1,2.2

»

,

An applicative structure is a pair < D, ¢ > where D 18 a set:
: with at least two members, and o is any mapping from D2 into D .

Definition 1.2.3 o '

°

A co‘mbinatory aléebra is a quadyuple <D, 0, K, S > whete

<D,o0 > is an applicative structure, and K, SED such that

(1) Koaob = a for all a,b€D ,
(11) Socaoboc= aoco(borc) for all a,b,c€D .
f - Deffnition 1.2.4 - B

i . A X-model is a triple <D, o0 ,{[ ]]) where <D,o0 > is an

. E
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applicative structt;re, and {[ ] is a mapping which assigns, ta each . Y
X—t;m M and e ch.val.uatib{ﬁ,, a member [[ M ]] p€D , such that
W TxlpDNo@; L
. ———— - . ’
. (D [IPQ]]D=[[PIIPWD; . ' .
(11.1) fAx.PNlpod= ‘[.[,P 1 [d/;c]p for all d€D ;-
Av) [MDe=M Mo 1if o(x) = p(x) :for all xEFV(H) ;
v [rx.Mlo =1l Ay.[y/'x]M Noe Fif y -does not occur ;Ln. M
(vi) 1if [[\M I [d/x]o SN [\d[x]p for all ,d€D, then
frx.MTo=MArx.N]po .

Definition 1.2.5

A A-model < D,o,{ ]]'> is extensional iff for all a,b€D
aod =bod for all de€p implies a = b . Note that in an extension-

al X -model, (z), and hence (n), is true. Therefore an extensional
. ¥

A -modelris a m;Jdel of the extensional A ~calculus, "

Definition 1.2.6

A Scott-Meyer X -model is a quintuple <D,o,K,S5, % > where ;

<D,0,K,S > 1is a combinatory algebra, and £ED sﬁ\ch t':ha{: for all

d

n
4,&D “we have: '
1+ 9 we éve.‘ 1
co(d) .Eodlodz'—' d10d2
(11) if d,0d = d, od for all d€D, then fod; = fody . .- .

Theorem 1.2.7

Every A-model <D,o,{ Q> in the sense of 1.2.4 contains
K,S and £ such that <D,o0.,K,S,% > is a Scott-Meyer A -model.

Theorem 1.2.8° /

In every Scott-Meyer A-model <D,o0,K,S,8>, [[ ] can be

defined so that <D, o,{[ 1] > is a A -model in the sense of 1.2.4.

-

. : . -

.
Ad -
13
\ . ’ ~
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Remark 1.2.9 - " -

By Theoréms 1.2.7 and 1.2.8, the two definitfons.of A-model id -

this section are esseptially equivalent,

Remark . to “ .

Tt

. N . \ , !
L As Scott has emphasized in Scott [17], the A -calculus considered
. . A8 .

in fhis chapter f:an be viewed as the special casé of the typed A -cal-
culus in wh}ch there is inj one fype. (For a definitj.;»n of the typed
A - calculus s'en;, Barendregt [ 1 ] .Z Moreover every refle‘xi}e objectg of
a Ca;tesign clos.ed"category is a model oé"the (tyﬁe-free) A"- calculus,
(An object U -is reflexive if chgre exists ; pair c"f( maps
'i:, fU + ) ->‘U and ‘j: U+ (U~+U). where j o 1.=,idu_;_‘J ‘) N;)te that
‘any Cartesian’' c®losed category. is a model qf a typed

4

(For a brief analysis of the subject see Scott [17‘] and Lambek {121].)

. . , .
[N % .

8 . . )

A= calculus.

£t
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CHAPTER II  + .

The material of this chapter is deri}jed from Scott [15].

‘S.ect:l‘lori 0. Background /

The purpose of this section 1s to introduce/ some of the fundament‘al '
concepts and definitions which will be used throqg.ho;.xt. '~
Definition 2.0.1 : | ) s

.

Let (X, t) be a topological space.and let Y(S_ X. Let

~

Ty = {Y " U|UET}. The space (Y, ‘rY) is called a subspace of (X, 1).

Definition 2.0.2 oy

)

A topological space is called T, if for each pair of distinct

0
points, at least one has a neighborhood not containing th.e other.

All spaces in this thesis are Ty -'spaces. QY‘

Definition 2.0.3

The topological space consistiﬁg of a two-point set X = {_L y T}

with the topology t = {¢,{]},X} 1s called the Sierpinski space and

is denoted by 0 . ( . ?

The Sierpinski space is a T -space.' . .

0

’

Definition 2.0.4 °

3

Let {Xilie 1} be any family of toéological'. spaces. For each

i€I, let 1, be the topology for X

1 . The cartesian product topology

i

Tp in- é Xi is that having for a subbasis all sets of the form
i€l
-1 .
€ .
Py (Ui) x.:here Ui Ty Py Xi + Xi is the projection onto the

i€l

*1ith coordinate, and 1€1I !

The basic open gets are all those sets of the form ™ Ai where
- i€l

€
Aj€1, and the set {i§1|A1+ X;} s finite. ,

Definition 2.0.5 ' ‘

Let (X., TX) , (Y, T'Y) be topological“, spaces and let 'xOEX . A

¢ .

pary VAR T 3 B T T T YO SO
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\

map f: X+ Y is continuous at X if for each neighborhood V of

f(xo) in Y “there exists a neighborhood U of %5 in” X - such that

]

£QU) CV .

Definition 2.0.6

Let (X, Txi and (Y, t{,) be topological spiaces. A map f: X+ Y
. . \
1s called continuous if the' inverse image of each set open in Y Jis open
in X .

Definition 2.Q.7

For topological spaces (X, T¢) . and (Y, 1y) we let (X > Y] be
the space :of all continuous functions f:X + Y endowed with the product
topokcigy, sometimes called the t:o.pology of ;’mintwise convergence.

This tt;bology has as a subbase sets of the form: | oo
F(x,U) = {(f€[X + Y]|f(x) €U} ,

'

where x€X and UETY .

Definition 2.0.8 ' q

Let X,Y be tOpolog:i,c':al spaces. A continuous bijective map

f: X.» Y such that f-l: Y - X is also continuous, is called a homeo-

1

phism . i : .
mor snllu.} ; ‘

Two spaces X ,Y are homeomorphic, written X = Y, if there is a homeo-
morphism f: X + Y.

Theorem 2.0.9 (7 ] . .

Let £: X+ Y and g: Y+ X be -continuous and such that both

-

gof =1d, and fog = id

- 1dy y
\€=f'l.

g\f.finition 2.0.10

Then £ 1is a homeomorphism, and in fact,

\ t1f Zz is any space and f: X + z 1s a map satisfying

X =\f(X) €Z, then f is called an embedding map of X into Z, and

\
)
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X 1is said to be embedded in Z.

Definition 2.0.11
| Let (X, 1) be a topological space and A C X. A 1is a retract
' of X 1if the identity map idA: A+ A is extendable to a continudus
j: X ~ A; such an extension is called a retraction. Equivalently, A

is a retract of X if thére exists a continuous j: X + A such that

j(a) =.a for each a€A.

. 'Definition 2.0.12
° N
A binary relation ' < ' 1in a set A 1s called a preorder if it
. ~

is reflexive and transitive. A set together with a definite preorder

is called a preordered set.

. Definition 2.0.13

A directed set is a preordered set (I ,<) with the following ,
property: For each 1, J€I there exis;s a k\5 I such that 1 <k |
| and j < k.
All directed slets in this th‘ea.is are considered to be non-empty.

Definition 2.0.14

Let (I,<) be a directed set and X any set. Any function

x: I - X is called a net in X . We write x(1) = Xy for all 1€T1I. :

Definition 2.0.15

&.et (I,<) be a directed set and (X, ) a topological space.
We say that a net x: I » X converges to y€X 4iff whenever .UE1 ‘ -
and y€U, then for some 1€I we have x,€U for all j > 1.

‘ 3
Proposition 2.0.16 ([ 8 ])

FLet f be a function from a space (X, Tx) to a gpace (Y, TY) .

.Then 'f 1is continuous 1ff for every net {xi|i€ I} in X which con- ;

\\

verges to x€X, the net - {f(xi)[iEI} in Y converges to f(x) .

LY . ‘ : PR -
. % .
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Defimition 2.0.17 . Lo
, - ~ .
Let X and Y .be two sets and, AC X . Given an f: X~>Y, the

map ¥ conaidered only on A is called the restriction of.‘.': f to. A

iy

A

and is written flJA, 1In the inverse direction, 1f g: A+ Y 1is a given
map, a map G: X + Y satisfying GIA = g 18 called an extension of g

) over X relative to Y .

N
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Section 1. Injective Bpaces ’
Definition 2.1.1 ) .
A To-spacg D 1is injective i1ff for arbitrary spaces X and Y
1f X C ¥ as a subspace, then every continuous function f£f: X -+ D can
. be extended to a continuous function £: Y~ D . q
) Proposition 2‘:1.2
‘ . The Sierpinski space 0 1is injective.
) Let X,.Y be spaces such that X 1is a subspace of Y, and let
, f: X+ 0 be continuous. Then U= f-l({T}) is open in X, and there
exists V open in Y such that U= VN X . Define g: Y+ 0 to be
_ the characteristic function of V (th’at is g-l({T}) = V). Then S
. g: Y+ 0 is continuous and g|X'= £. Hence 0 is injective. 0

[

Proposition 2.1.3 ‘ . }

The Cartesian product of any number of injective spaces is injec-
" tive under the product topology.
Proof:

Let {Dilie I} be a family of injective spaces, and D= 1 Di . Let
o i€1

X,Y be spaces such that X 1s a subspace of Y and f: X+ D be con-

tinuous. Then each fi = Py of: X+ D, can be extended to a continucus

i
‘function ?;: Y + D:L . Thus f = (_f_]-: ,g, ++.): Y+ D 1s a continuous
extension of f£. Hence D 1is injective, . a '

Proposition 2.1.4

A retract of an injective space 1is injective. -

Proof: R

Consider an injective space D, and let D' be a retract of D .
-

There exists a continuous map j: D - D' such that j(d) = d for ‘all

e - PR L TR P L Lol T Ay 4 e — e dw e e - -
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d€D'. Let X,Y be spaces such that X is a subspace of f, and
let f£: X+ D'. be continuous. Thus £: X > D continuous, and let
£: Y+ D be a continuous extension of f. Then |} J?: Y+ D' 1is con-
tinuous and (jof)|X = f . |Hence D' is injective. o

Theorem 2.1.5 ( 31, p. 484) ’ !

N .
Every To-—space can be embedded in an injective space; in fact, in
a Cartesian power of the two-=element space 0 .

Corollary 2.1.6

Proof:

The injective spaces are exactly the retracts of the Cartesian

powers of 0.

[
»

Let D be an injective space. Then by 2.1.5 D 1is homeomorphic to a

éubspace of a power of ©® .’ Since D .18 1injective the identitf func-

. r
»

tion on the subspace’ to itself‘can be 4xtended to the whole of the power

of O providing the required retraction map.

‘Conversely if D 1is a retract of a power of ©, then by 2.1.4 D 1s

injectdive, . O

Corollary 2.1.7

A gpace is injective iff it 1s a retract of every space of which it
is a subspace.
Let D be an injective space apd suppose D C D' as a subspace. Since

D is injective the identity map on D to itself can be extended to D!

providing the required retraction map.

|
Conversely let D be a space which is a retract of every space of which

it is a subspace. Then by 2.1.5 D 1is a retract of a power of O . ‘

Hence D 1is injective. a

[P OR IO - . PN T % e MR T 0T e Waad MT Vi W acum e
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Section 2. Partially ordered sets ‘
) ! -

Definition 2.2.1
. L ;

A binary relation ' < ' in a set A 1is called a partial ordering

1f it is reflexive, antisymmét;ic, and transitive. A set together with

a definite partial ordering is called a partially ordered set (poset).

" Definition 2.2.2

Let (P,< ) be a poset and let XC P .

N

(1) A least element of X 1is an element a€X such that a < x

for all x€X,

(11) A greatest element of X 1s an element bEX such that
. \

~

b x <b for all x€X.
~

(i11) An element c€X 18 maximal 1if ¢ < x implies ¢ = x ‘for

¢,

all x€X,
(iv) An element d€X 1is minimal if x < d dimplies d = x for

\
all x€X. /

Definition 2.2.3 b “

Let (P, 2) be a poset and let XCP.

(1) An upper bound of X is-an element a€P such that x < a

for all 'x€X . » ‘\\

(11) A lower bound of X 18 an elemént bEP such that b < x

\/ for all x€X. .

~ ’ 2

- (i11) An upper bound a of X is the least upper bound (lansup
or U) of X 4if for any upper bound ¢ of X we have a < c .

. - )
(iy) A lower bound b «0of X 1is the greatest lower bound (glb or

infor 1) of X 1f for any lower bound ¢ of X we have c <b .

_Proposition 2.2.4 ([ 21D . ?

TN
A directed set is a stet in which any two elsments, and hence any

o,
e S

. , : ' ~

-

v
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finite subset, has an upper bound in the set.

Proposition 2.2.5 ({181

Le(t (P ,i) be a poset and let A,BCP . Then
(1) ACB= UA'<UB and MB < Ma —
(2) U {z€P|z <y}=y and M {z€P|y < 2} =y ,
for all y€P . - v
(3) If a 1is an upper bound of A and a€A, then a~= LJA/.' ‘
(4) U {a} = a for all a€P . |
(5) Notation: If x and y are any elements of P we write x U y
for U {x,y}, and xMy for I {x,y}.
(6) Whenever‘ny exists, xix‘l..ly and y_<_ny.‘
(7) Whenever x U y exists, xUy=y iff x<y.

(8) Suppose A

iS_P and UAi’nAi exist for all 1i€I . Then.

U( v A) = U{Ua 1€} and
i€1 _ v

(]

nCY a) = N{NaJi€1} .
i€1 e R
\ [ L
(9) Convention: U ¢ = | , provided that P has a least element. Alsc
- - .
Me= T , provided that P has a greatest element.

Y Proposition 2.2.6

. . . .
Let (P, <),(P',<') be posets and A C P x P' =P . Consider the

' *
projections A and A' of A into ‘P ‘and P' respectively. Then,
v .,

. .
if the necessagy lubs exist, WA = (UA,UA").
Proof: e t

.* i * %* e f 3 Y
A" C A x A" therefore UA < U(AxA'")= (UA,UA"). so (UaA,UA")

* . .
is an upper bound of A", Must show that it is the least Gpper bound, —__
“ , /,

* . * '
Suppose (a,b) is arLo’ther upper bound of A . "«ﬁhen (x,y) < (a,b)
° »
: *
for all (x,y)€A . Thus x < a for all x€A and y <' b for 1all

-

L

v \ 2 t
% : ' '
» 7
) ?
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Ca ' : *
vyEA', Therefore A< a and UA'<'"b. So (UaA,U A') < (a,b). _
. .
Hence LIA = (UA,UA"). : . 0

[N

Definition 2.2.7

A poset D is a lattice if xUy and xMy exist for all’

-

\

x,YED. ) .

Proposition 2.2.8 ((181]) - . a

Every non-empty' finite subset of a lattice D has both a lub and a
glb in D .

Proposition 2.2.9 ([ 21]) .

The direct product of any two lattices 1is a lattice. o

¢

Definition 2.2.10 ¢ ’
L

x

A sublattice of a lattice D 1s a subset D' of D such that

Xx€D', y€D' imply xlkyED' and xﬂiyED’f |

Definition 2.2.11 ' ‘

' -

&

A lattice D- is saig to be complete if every subset of D has a
.ot o

Y

1\.{ and a glb in D .

Proposition 2.2.12 ( 9 1) . ‘ ’

¢ 4

v

If D g a poset and every subset of D has a glb (or a iulﬁ)_i?f

D, thenu D 1is a%c;o'mplete lattice. T ) . :
‘*P‘roposition 2.2.13 ( 2])" . ‘ o | g :
Any noh-empty complete lattice cont\a:ins a least elemen;: J_ (bot’tom),

]

and a greatest element |. (top).

1 .

" Proposition 2.2.14 ([ 2 ]~

o -AnY'fin)ite lattice is a complete lattice, . .

Proposition 2:2.15 ({ 41 . ‘ : LT ‘._ M

: @ i N

&'he product of any number of cdomplete lattices is.a complete lattice..

- . -’ v
- )
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. Let.-D be a sup-se;nilattice with [ .°
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Theorem 2.2.16 (' 21])
Let D .be a comfplete lattice and f a monotonic function on D

into D.

L SN L4

Then f§(x) = x for some x©€D. .

yDefinition 2.2.17 .

L
.

- Y- I . €
A sup-semilattice 1is a poset D 1in whiclievery nonempty finite

subset has a lub. S .

An inf-semilattice 1%&& D in which eve nonemptj; finite

subset has a glb, S ' N ;

“ 2 f
Propositicfn 2.2.18

\

If every directed subset\\

of D has a lubin D, then D is a complete lattice.

Proof:

N -

Let XC'D. Then every nonempty finite subset of X ‘has a lub in D.

Also ¢ = |ED. Thus every finite subset of X has a lub in D.
Let- F'= {lA|A is a finite subset of X} . F 1s obviously directed.
Therefore UUFED . We have XC F. Thus any upper bound of F 1is

also an upper bound of X . But an upper bound of X 1is also an upper

bound of 'A for all A C X "and therefore is an upper bound of F So
. b g .

X and F have the same set of upper bounds. Hence UX=LUFED. So

D 1is a complete lattice’ o

Definition 2.2.19 ' o

Define a binary-relation 'LC ' in

Let (X, 1) be a& 'Po-space.
X as follows: . ’

-

xC y 4iff whenever x€U and U€t then yE€U, ¢
for all x,y€X. - . :
This relation is obvilously refle¥ive and tranmsitive, and the cor,;dition
that ﬁ:_be antisymmetric is exactly equivalent to the To-axiom. . Thus »
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'C ' 1s a partial ordering on X, and it is called the induced partial
[

ordering on X. . ,
Proposition 2.2.20

Let X,Y be T -spaces, and consider the function space [X + Y]. "y,

0
Then the @ﬁduced I;art.ial ordering on [X + Y] 4s such that:

. 3
fC g 1iff f(x) C g(x) "for all x€X,

where f,g€[X+ Y]} . - ‘ - -
p ! .

?roof:

Let f,g€[X+Y]. S

Suppose f C g, and let xE-}f/. Let .V be open in Y with f(x)€EV.-
.Tt:en' the set'F(x,V)={fE[X.-> Y]If(x)g\'} is open in [X+ Y], and
fefrx,v) . " Then gEF(x,V) . Tﬁus g(x)EV. Hence f£(x)C g(x).
Conversely sup'pose f(x) C g(x) for all x€X, and l;t F(x,{T) 'be
l,op_en in [X +Y] with fEF(x;V).' hThen V 1is open ;l.n Y and ' '. >

£(x)€EV. Then g(x)EV. 'i.'husr gEF(x,V). Hence fLC g. . (Wi

Definition 2.:2.21
Let (X,C) ©be aposet. Define €E X to be open iff it satis—

fies the conditions:

L]

(1) whenever x€U: and \cl'_:_y then yE€U

(11) whenever’ S C X is diretted, US exists, and USEU,
6 o X ~ A .
then SN UF#+¢ . .

-

The family {UC X|U is open} 'is obviously a tqlpology on X, called

the induced topology (tI) on X.

_Proposition 2.2.22 , ‘ : ‘

Let (X,C) be aposet, and consi&er the induce:d topology on X .

For any y€X the set (x€X|x [ y} is open.
v ’ ' ) N

§

.
P s
S . S s R e -
* - + . * .
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‘"Let y€X and let U= {xgxley}.

0
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Proof: : o ~

A

Al

r

(i) Suppose z€U and zLw. Then zZ y and zC w., There-
fore wi y. Hence wEU.

(11) Suppose § C X 1is directed, US exists and WS®™U. Then

USZ y. Thus .2@y for some 2z€S. So z€U for some zES. -
- ' .
Hence SN UF4H . .
Therefore U 1is open. y o ' . . a
] P w

Proposition 2.2.23

"Let (X,E) bea poset.' Then (X, I‘I) ;Ls a T'o-sp§ce.

Proof: ’ -

Let x,yEX such that x #y. We cannot have both-xLC y" and yC x.

.

If xZy, then the set U= {z€X|z[Z y} 13 open, x€U, and y € U.

- . . » R
Similarly if y I x, then the set V= {z2€X|z Z x} is open, y€EV,
Iand X % V. . - "
So at leastsone of x,y has a ﬁeighborhood net containing the othelj.‘

I{ence X , TI) ‘}s. \To ‘ ' ad

Pr0po‘sition 2.2.24
Let (X,C) be a poset, and consider 'the induced topology pn X. .

Let S C X be directed. Then S 1is iobviously a net in° X, and §

" converges to, Us if this lub exists.

Proof: - . ' ‘.

Let U be open in X with USEU. Then -SN U ¥ ¢. So there exists

h n

x'€S such that x'€U. Thus, there exists x'€S such that x€U

for all x€X with x' C x. Hence S converges to LS. 0

Definition 2,.2.25

et (I,<) bea directed set snd let (X ,E) be a poset. A

o
- * -

\ !

e R R R e,
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net =x: I > X is monotode if 1 < j implies xing for all i,j€1.

Proposition 2.2.26

. w
In a poset (X,C) with the induced topology, a monotome net
L]

1)

‘x: I +'X with a lub converges to an

i

element y€X iff yEU{xiliel}.

~

"Proof:
Suppose x converges to yEX,' and suppose that vy Z,U{xil i€1}.
Then the set' U= {z€X|z'{ U{iniGI}} is open and yE€U . Thus for

3
X, g U{xilie I} for all j > i-. Contradiction. Hence

some 1§I we have x,€U for all j > 1. So for some 1€I we have

yC Ulx,|1€1}. g

1

Conversely suppose y E U {xilie I}, and let U be open with y€U.
Then U{xiliE I}€U. But (iniE I} 1s directed because x: I+ X

is a monotone net. Therefore {xi|ié I}NU#4. Thus x, €U for some
i€I. So, since x%I + X 1is monotone we have that there exists i€l
\

such that x.€U for all J > 1. Hences x converées to y.

j LA
4 .
Proposition 2.2.27 . J
\ In To-spaces continuous functions are always monotonic. ) f
, 1
Proof- ; ' ‘

Let (X, Tx) , (Y, TY)‘ be T -spaces and let f: X + Y be continuous,

0
Consider the induced partial orderings on X and Y.

Let, x,y€X such that xC y, and let VErt, with f(x)€V. Then - l

Y
£l €r, and x€£7H(V) . Thus yEE£ (V). Therefore £(y)€V
Thus £(x) C £(y) . , ¢ ’ O
- N ' ’)“ ® “
“Proposition 2,2.28 . . i |

If D and D' are complete lattices with their induced topologies,
P

|
then a function £: D + D' is continuous iff for all directed subsets . f

- . J

SCD:

- ey e A ——————
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v : .
. £(US) = U{fex)|x€ES). -

+ Supposee f: D + D' is continuous, 'ar:d let S_C_ D be di::ecte&'. Then §S
'converges r.o‘ Us, and {f(x)|x€S} converges to £(US). Tt:us, by
2.2.25 S

| £(US) C U{f(x)]|x€8) 'f (1)
' Also, since’ f. is monotonic we have  f(x) C £(Us) for all x€85.
Therefore ' . '
| U{f@) |x€S)DnECUS) . @
), (@) = £(Us) = U{f@)|x€Es}, ' ‘
Convergely suppose £(US) = U{f(x)|x€S} for 'al‘l directed gubsets
SCD, and let x,y€D with xC y. Then
_f(y) =f(xUy)= U{Lx),f(0} = £(x) UE(y) . S0 £(x) CE(y) .-
ﬁence f is monotonic. ) ' .

8

Now let U' € D' "be open and consider the set U = f-l‘(U') CD. We
have: ‘ . S _ 7 d_/‘
- (1) .f'If x€EU and xLC y then £(x)€U' and £(x) C £(y). Thl;b
JE(ED . é yETU . | .
(i1) .If SCDh is di'rected and LS €U t:hei'.l f(us)eu'. oThus
U {£(x)|x€S}EU' . So £(S)NU'#F ¢.:\Hehce SNUF¢.

Therefore U is open. Hence f: D + D'“\is continuous. ' ]

Proposition 2.2:29 ' g

With functions.from complete lattices to complete lai:ti'ces, a func-

tion of several variables is continuous in the variables jointly L1ff it
§ . ‘

is continuous in the variables séparately. J

Proof:
——-’——— L) . R
It will be sufficient to discuss functions of two variables. Lets N
. . ) LY
¢ .( < *
- ?

&



'.. - 27 - .

c

. D,D',D" be complete lattices and let £: D x D' + D" be continuous

on the product la‘i.ce D xD'. Then clearly

E ' for all d'€D'_ the function d -~ £(d,d'): D > D" 1is continuous, and
] - R

for all d€D the function d' - f(d,d'): D' + D" .43 cantinuous.

Hence f .is continuous in each variable separately.

To check, the converse suppose that £: D' x D'+ D" 15 a map where the . - .

¢

separate continuity holds as follows:
‘ »

a g . ' kN *

- ) *  E(US,y) = U{f(x,y)|xES} , and .

f(x,Us')= U{f(x,y)|yes'} , ’ -
where SCD and S§' C D' are directed and x€D " and }'é D'. Let now*
* : . x .
S CD xD' be directed in the product. The projectior of § to

- * » “ . - R

SCD and S to S'CD’ _produces directed.subsets of D a’nd D', . ;
" - . . B

and US'= (Us,Us"). Thus, byuasbumption

f(Us™) = £(US, Us'y = U{f(USs, y)]yes } = u{u{f(x,y)leS}Iyes }

1}

U {£(x, y)lxes,yes }.

. But since S* is directed, Xx€S and y€S' implies x l'_:_-u'»and a ’ .
yEv for (u,v)E S* . Thus, by monotonicity of £ vwe have: ,
‘ £(Us™) = U{fu,v|lu,nes’t - L :
' <
. : which gives the joint contimuity’ - ' | ‘0 .

Proposition 2.2.30

-

Let '{Diliel} be a family. of complete lgttices and D be‘a com~

plete lattice. Then the lattice operation W: m D, +D 1is contin~-

, 1e1 ! \ '
uous, ' ‘
‘ w y
‘ Proof: . /
. Since Di are complete lat';ices we have by 2.2.15 that , m Di is a .
o, . -1€1

_complete .lattice. Let S S Di be directed in the product. Then
- ’ ier ‘ ~

e

[ S
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. \ .
1

o - - k * I *
I v (s) = Us = U {x}]x€s), .
. . ,
1 ] ' ‘
Hence U s continuous. ' .
A L 1 ‘
‘
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Section 3. Continuous lattices
Definition 2.3.1 . - .
L/ét‘ D—be ‘a./;c;t;plete lattice with its induced t'opol‘ogy. For all
~ :,:.,yGD define: | | , B \ ' o e

N

x <y if y€Int{ve€D|xCw} .

[

. Proposition 2.3.2 e

-,

Let ‘D be a complete lattice with its induced topoloé’y. Then for

all x,y, zE€ED we have:

W L <x; , . ’ :

(11) x < z and y<z imply xU y<z;
(111) x < yC z 4implies x < z ; ’

(iv).xr:r/y<z impiies 'x<z;

~

(vi) x < x 1ff {wéD|x£:_.w} is open;
4

(v} x <y implies xC y ;

(vii) if SCD “is directed, then

x¢uUs 4ff x <\y Jor some yGS*.
5 .

- '

\l
Proof: e
let x,y,z€D. Then '
(1) X€ED = x€IntD = x€E Int{wED| |Cwl= | <x .

(1) 'x < z and .y <z™ z€Int {wED|xC w} . and . -

e
-

z€ Int{vED|y Cw} = |
z€ Int{w€D|x C w} N Int{w§D|y C w} = L K ‘
z€ Int{wéﬁlx Cw and yLE w} -

z€Int{wED|x UyL w} =xUy < z.

(Aiii) x <yCz=y€mnt{wED|xCw} and yCz = o ~ !

) z€Ir;t{w€D|x Cwl=*x<z,

- e o e e e , - . .- . L
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(iv) xl_:;y <.z"x_E_ y and zEInt{w'EDI}.'_E_w} -
{w€p|y Cw} C {‘wEDIx C w} and z€Int{wED|yLC w} =
Int{wED|yC w} € Int{wE D[)’cg_w} and
zEIn_t:{v.vED‘Iy C w}=:z€ Int{v;GDlx Cwl=x <z,
| ‘(v) X<y™= yEInt{oG‘éDfxE w} C {VED]xE w} “J" v
yE{(wWED|xCwl = xCy .

(v:{.) Stippqsé x<x, and z€ {wGD[x C w}'. Then x < x and
xCz=x<z= 2z€EMnt{wED|xC w} . Thus
{w€D|x C w} C Int{v€D|x C w} = {we€D|xL w}-= Int{weD[x'E w}. Hence
{w€D|x C w} 1is open . ‘ . X
Couversely suppose that the set {w€D|xC w} is open. Then

{w€D|x C w} = Int{wED|x C w}. Therefore x€Int{wED|xC w} .

Hence x < x.

‘ -
(vii)  Suppose SCD is'directed. Then /

x <'US == USE Int{wED|x C v} ==
SN Int{wE€D|xC w}#¥ ¢ *= yEInt{wED|x T w} for some. yES *> x-<y

for some 3yES . - . o | g

Propesition 2.3.3

Let ‘D be a_complete "lattice with its induced topology. Then for
each xED the set (wED|w< x} 1s directed.
Proof : . .
A S :
Let' x€D, ‘and let /5= {w€D|w < x} . Then s,tES5 =g < x and

t<x = s'LI t< x=gll-t€S, Hence S isg directed. ’ n}

®  Definition 2.3.4

" A continuous lattice 1is a complete lattice >D in which for ever'y

© yE€D we: have:

S s to ks eite o 0 TS a8 s
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y= U{wED|w < y}.

Proposition 2.3.5 ' ' . ’

Proof:

Let D be a continuous lattice under its induced topology. Then
the sets of the form ({y€D|x <y} where x€D form a basis for the

open sets of D.

Let x€D-. Then {y€D|x < y}= Int{w€D|x C w}. Thus
{y€D|x < y} is open.

Let now U be open with z€U. But z= L{w€D|w < z} and

{w€D|w < z} is directed. Therefore {wED|w <z} N U ¢ . So

v < z for some VOEU . . \

Since U is open we have

{yEDIwo CylCcu= Int{yEDIwO[:_ vy} Cu= {y€ Dlwo' <ylCU.
Also z€{y€D|w) < y}. Hence the family {{y€D]x < y}|x€ED} 4isa
basis for the induced topology on D . . - ' a

A

Proposition 2.3.6

—_—

A complete lattice D 1is continuous iff for every y€D we have:

N et A e
. s ’

| y = u{nulyeun,
where U ranges over the open subsets of D.
Suppose D is a continuous lattice under its 1nduceld topol‘ogy Tpo
and let y€D. Let also v, = {zEDlg <z} bea basic open set of D
with y€V_. " Then ' )
V_C{z€D|xCz} = N{z€p|xCzlC NV Cy
~xC NV Cy=Ulxlx<y} CUINV [x<y}Cy

- yC umvxlyevx}gy. Thus y = U{MNV|y€V} where V ranges

over the !;a'sic open subgsets of D. So y*= U{Nu|y €U} where 'U

R I

- - ¢
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rangeé over the open subsets of D.-

"For the converse let y€D. Then y= U{MNU|y€U and U 1is open}.

But whenever U 1s open we have

yEU *=» yEInt U=y& Int {zED|NUC 2z} += MU < y.

So y=U{wED|w< y}. Hence D is a continuous lattice. 0

Definition 2.3.7

. U{My|yeu} C U{N{x

In any complete lattice D define the princilpal.iimit: of a net
xt I +D by the formula ’

. lm<x, [1€1> % U{N{x, |21} 1€D).

N

Proposition 2.3.8
Let D be a continucus lattice and let x:-I +D be anet in X.
Then x comverges to ‘ yE€D 1iff

%
o yElim<x |1€I> ..

|
Proof:
Suppose x converges to, y€D, and let U be opem in D ‘with

y€U . Then for some 1€I we have x, €U for all j > 1 . Thus

3
nu C l'l{xj'lj > 1}. Therefore

j|j >1}|1€1} = y C lm<x [1€1> .

For the converse suppose that yl_.'_:_ lim<xiliEI> ", and let U be open
in D with y€U ., Thén

Um<x [1€1> €U~ U{n{lej > i}|i€ L} €V

- {rﬂ[lej > 1}|[1EI}NU $¢ = ﬂ[lej > 1}€U for'some
1€1 = for some 1EI we have ijU forall j>1 . Hence x
converges to y. - . O

We have shown that in continuous lattices the two notions of con-

vergence are the same.- Moreover if the two notions of convergence coin-

‘cide for a complete lattice D, then D 1is a continuous lattice.
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Proposition 2.3.9

PR
¢ k3

Let (D, t) bea TO— space which becomes a complei:e lattice under

its induced partial ordering. Consider now the induced topology 1 on

L

D. If tCrt. andfor all y€D y= U{Nv|yEV, VE1}, then

I

I

Proof :

T2 1. and D is a continuous tattice,

Let U& T and .y€U, Then -

y= U{NvV|y€Vv, VEt}€EU= (NV|yEV,VET}NUF* ¢ »NVEU for some *

VEtr with yEV. But VCU follows, and so U 41s a uniom of given

open sets and it 1is itself open in the given topology.

Thus Tr C 1. Hence T 3
y= U{HU]yEU,UETI} .

and for all y€D we have:

Hence D 1is a. continuous lattice. » a

Proposition 2.3.10 -

-~

A finite lattice is a continuous lattice,.

Proof : -

Let D be afinite lattice. Then, by 2.2.14 D is complete. Let
"y€D, and consider the set U= {wE€D|yC w}. Then
. (1) x€U .and xC z»yC x and xC z=*yC z=~z2€U0

+ (44) 1f 8§ € D s directed and USEU , then LISES' because S

%
is finice and_UseU*.USES'ﬁU”SﬁU#‘d’. y .
. Thus U = (webly Cw} 1is o'pen, and so y <y. Therefore
y= U{x€D|x<y}. Hence D is a continuous lattice. O
" .mgosicion’z.s.lr -
_ A - The Cartesian product of any number of continuous lattices is.a

continuous lattice with the induced topology agreeing with the product

1]




y ¢ -3 -
8 ‘ 34
. topology. ’ ’ . .
Proof :.

Let {Di[iE I} be a family of continuous lattices. The ﬁ'm‘duc't

. .
D =-n1 Di is a complete lattice by 2.2.15, and has its induced
i€1 : ' :

* ’ ‘
topology T - Suppose yE€D and let i€1I. Then inD Since

i .
D 1 is a continuous lattice
‘ y, = Ll{xEDi[x < yi} .
1% ‘
For xEDi , let _‘Lx] €D be defined by:
;M ) .
“rx Af 1= {a
. :
x] = v \ e
[ j . .
1 1f 1%

b

Then since D { is contin‘xious we have:
[y, o= Ulixlt [x<yr © 0
and y= Ully,I'1e1} .
e 1 .
Considering V= {uEDiIx < u}, which is a basic open subset of. D

s 2

we have:

1 *_
[x]"C z forall z€D ~with z €V =
[x]il_:_ n{zéD*lziEV}" :
Ulkxl'|x < y,} € U(N{z|z, €V}y, €V} =

i . .

: € - o
[Yi] l_:_U,'{r'l{zlzi V}IinV} |
u{[yi]i|1e1}r_:_ U{N(z]z, €V}ly, €V, €1} = o
vC U{n{zlziev}lyiev,iel} . : (D)
Also
U{ﬂ{z]ZLGV}IinVD,iQI}Ey‘. ) _— (2)
(1) ,@2) = y= U‘{ﬂleziEVHyiEV, 1€1} . .
.But the sets {zlziEV}‘= pzl(.V) are open in the product sense, and so

©

ey U or SO - o e el

—n
s .

x
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L~ y = U{nul|yeu ,
- i [N ! , > . : *
where U ranges over the members ofs the product topology rp on °D
\ . - - : : ‘
Let noy UCD ‘be a basic openset of t . Then U= =m A_ ,
R - ) ' P . i€1 i
N N - where A, isopen in D, and the set {LGI}Ai #D,} is finite, and
» « . - D B .
- * we have:
‘ (i)f (xl\,xz,...)EUQ~and (xl,xz‘,...) E‘(yl,yz,..\’) "' \

o , et

. . xiEAi and in;_ Vi fpr all {€1 "' "
C Cye € VYa ) ees) E
' .. yieAi for all 1€1 = (yl ,YZ )‘ ) U e
s 14y 1f 'sTcpD” 1sd d and o
A . (11) c. s direcfed an ‘ -

. * .
Q = . 6 .
: us (LISl , U82 sy +++.)EU J then U Si Ai fo1" all

4€T1 =5 NA #¢ forall i€I=s*NU+o

e,
LThus' ve Ty Sp_- T contains all 'the basic open subsets of 'cp .
. . Therefore rp S/Ti‘ . Hence 'by,2.3.9 - rp = T, eand D*, is a continuous
) : lattice. ’ [ ’ a
o . Lemma 2.3.12 R . :
. . ﬂ ‘E.véry-—nonotoni_c function on a complete lattice into itself ﬁas a
| leagt fin;ed point, T ' oo . ' ~
\ ' . M: | o ‘ |
: . i .
: " Let D be a complete-lzhaxti_ce and f: D~-+D mptioténic. Then by 2.2.16
‘i ’ we hav;. ch‘a‘t the se;: M= {‘xED|f(x')) = x}\ is not ampty. Let,
N= {x€D|f(x) Cx} and let a=NN. Then f£(a) C £(x) for all !
. XEN =.£(a) E_:x for all x€N = f(a) 1is a lower boun'd' 'of' )
) ’ﬁﬁ ' 'bi"f'(a)l'__'_a"f('f‘('a))‘l;i_ f(a) = f(a)EN = f(a) = a= a€EM, I»
T Also MCN=NNCAM=al Ny . N
) . Thus a 1s the least element of M . a
: ' P;oposition 2.3.13 - ) | - ’
.. 0;‘ A're’t:.ract of a contzinuo&;{‘]’.a\ttice is a cont'inuous lattice xith the ‘
INUE A
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subspaceAtopology agreeing with the induced topology.

!

-Proof:
Let D' be a contint{ous lattice and let D C D' 'be a subspace wh:i:ch is
a rtetract'.. Then there é;(i;ts a continuous J: D”‘"-'- D such- that

Y(x) = x for all x€D . '

Suppose X,yED ._e Let 2' "-'-‘x’ L' y€ED' and define z = jfz')ED .
Now xC z'. ,\a;ld y _C_“.z' and § 1s monot:_ongc, so 3(x).C j(z'} and
%’fcgz'and yC z. Suppos‘e\wa and .y C v with

JGYE3GE"
wED . - 'I:hén in D' w;a have ,1; U'yCw=2z!Cw=1(z")C jw =

zC w .. Hence z=x‘Uy 1n/D.1 }

Also j’is mon;atonic and D 19 the set of %ixed points of j. So by

2.3.12 D Jhas ‘a ieast element _L . Thus D is a sup-semilattice |
with _]_ . By 2.2.18 to’s}xow that D is a‘coﬁplete’vlattice we need to

. show that every directc.ad subset of D has a 1;_1b in D. '

Let SCD be directed. Then § € D' 4is directed and U' SED' . So,

S converges to LI'S in D', and by 2.0.16, {§(x)|x€ S} " converges

T to j(\é' $) in D .(Moreovd: {3(x)|x€S} 1s a monotone net. So,‘

by 2.2.23\\ -
\\ O 8) T L () =€) Lo
Also x[ U'S\ for all xE€S5= j(x) C j(U'S) for all xE€§= -
- S UG |xESTEg(Us) . . 1 (2)
(1), ()= (' 8) = U{j(x)|x€ sy | X
‘ - =‘us.

+ * » 0
Hence D 15 a complete lattice. We must still show that D 1is contin-

)
-

uous.

Suppose y€D. In D' we have:
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y = U{x€D'|x <y}

‘ . )

_But, since {x€D'|x < y} C D' 1s directed and j:-D' » D is contin-

xCz for-all z€V=j(x)C j(z) for all z€V = §(x).C z for all

Y

Vd
uous we have

A

4 L ,
i =y = Ui |x<y,x€ED'} . . ;

N

Note that for each x€D' the sets V= {z€D|x < z} are open in D

0
‘

and we have: . ’ A . .

26V = JG) C MV = U{y@|x < y,xEp'} L U{NV|yevr=
yC W{nv|yev} ; ~ “
also U{MV|y€VICy. Therefore . -

y= U{nv|yev},

where V ranges over the members of the subspace topology on D.
Lft fow V= {z€D|x < z} where x€D' be a basic open set of the sub-
)

space topology on D. Then V=UND for some U 'open in D', and

we have: ‘

.
-

(1) wE€V end wCu at;d uED* wEVPND and wC u and W€D
#*y€Y and wEC u and u€D = u€y and uED = uEUND = uEV -
(11) if S CD dis directed and WS = J(U'S)EV, then there
exists W C D' open such that ; U'SEW Mand j&W) E.Sf,* SNW ?“:b ‘
ad JW) CV=SNVo. ' | -
Thug V belongs to the induced t:opolc;gy on D. So the in&uced topol=-
8y on D c¢tontains all the basic open sub;ets pf the suiaspace topoloﬁy.
Therefore it contains the subspace ‘toporogy. Henge by 2.3.9 the two .

topologies on D coincide and D is a. continuous lattice. a

Proposition 2.3.14 . . . o

5, Evfery continucus lattice is an injective space -under its ind{zced

-

-

| ee—————rm i

S A




topology. ) -

\ : . N T
Proof: ¢

S

I;et D, be a continuous lattice ‘with‘ its induced topology, and let

s .

- .
XCY be two T,-spaces in the subspace relation. Suppose £: X + D
. 4

0

is con.tinuous, a;td define -f.::Y + D by therformula:, '
. Ey) = u{n {f(x)|x€X N U}|y€;U} ’
where 'U ranges over the open su'bsets of Y. We nead to show that f
extends f and that ‘it is continuous.
First the continuity: Let y€Y, and let V= {z€D|d < z} be

»

open in D with f(y)EV. |

Since D is continuous E(y) = U{v‘vEDlw&.f‘(y)} , and th; set.
{w€D|w < £(y)} 1s directed. Therefore {wG.D]w <fy1rn V 7'=‘¢> -

d'€{w&D|w<E(y)} for some d'€V = there exists d'E€D such that
d<d <E®. | ¢ .

- ! - - .
Now d' < f(y) = f(y) € Int{z€D|d' C z} = ) »

L U{A{f(x)|x€X N u}(yeu}exnc{zen'|9' C 2}

- ﬂ{f(x)]xEXﬁU}GInt{zED[d'Ez} for some U open in Y with

yEU=4d'LC ﬂ{f(x)leX N U} for some U open in Y with

yEU = d' C f(y') for all y'€U. by virtue of the definition of f.

«

Therefore d < f(y') for all y'€U. Then U isopen In Y, y€U,

and  E(U) C V. Hence f 1is contiguous. /

Next the extension éroperty: Let x'€X. Then

¢

- ﬂ{f(x)lxexﬁU}_E_f(x') for all' U open in Y with x'"€U. Thys
N A

) - E(x'f_ £(x') . - \ (1)
Let now d€D be such that d < f(x;) . Then :

f(x')f-':vl= {z€D|d < f(x')°} and V is open in D. Thus, by the con- -

tinuity of f -there exists U open in Y such that x'€EXNU and



e sl

AC U{N{E(x") |x"€X N U}|x' €U} = F(x').

) . .
(1), (2) = F(x') = f(x'). Hence f, extends f . 0

- 39 -
f(XNY)CV . Then
F(x")EV for all x"E€XNU=d < f(x") for all x"€XNY=dC £(x"

v

for all x'.'E),(ﬂtJ') ' ’ L o
¢ * { .

So d < f(x') always implies dC f(A'). Therefore ¢

U{depld < £(x")} C E(x'). Thus

f(x") C E(x") . ‘ . @

Theorem 2.3.15

Preoof:

. Proof: ' . .

~and 1is thelleast element of [D = D'] .

~The injective spaces are exactly the contiruous latticgs.l

- ’ ‘

<

‘'Let D be an injective space. .Then, by 2.1.6 D {8 a retract of a "

A : )
power of O . |But O 1is a finite lattice ( _L!_:_T ), and so D 1is

L4 \

a continuous lattice under its induced topology. On the other hand a

continuous lattice is an injec'tive/ space, by 2.3.14. a

- Y
Theorem 2.3.}6

If D and D' are continuous lattices, then so is [D + D']

under the(\induced partial ordering with thé induced topology agreeing

- with the \product topology.

~

Let f£,g€[D +D'], _Since by 2.2.30 the lattice operation U oan D'
is ¢ontinuous, then the compositrion fUg, defined by
- C(EfUg)(x) = £(x)Ug(x) ,

[

for all x€D, i‘s also continuous and represents the lub of {f , é}

I b

in [D +D'].

Also, the constant function with value |€D" is obviousl); continuous

LY
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So [D+D']l 1s a sup-semilattice with 1l . By 2.2.1; to sho’w.that

[D -+ D'] i3 a complete lattice we need to show that 3’éwiér; directed sub--

set of [D > D'] has a lub in _ED“:* i)‘] . ~

Let S C[D + D'] be directed. Define a function from D dinto D' -by

th; equation:- . - \ ‘o '
(US)(x) = U{f|eest , ‘

for all x€D. If we can show that LS is conFinupus, then being in

[D + D'] it has to be the lub of §,. Consider V C D', an open subset,

-

and take the inverse image (US)-‘l(V) = {x|(Us)(x) G.V} . ‘Then we have
{x](US)(x) €V} = U {{x|f(x) €V}|fE S}
because: ' : \
ﬁkxléus)(x)EV}“ (Us)(x) €V w~ h .-
U{f(x)|f€ S}G.V - é(x)GV for some ‘fGS -
x€U ({ x|£(x) EV}|£ES} .
But the set {xl\f(x)EV} is open in D, since“nf_ is contim{ma, for (
, all fe€s, Thus U{{xlf(x)‘e V}|£€S) 1s open‘;.n D. Therefore
- ¢ S)-l(V) is open in D. Hence US is continuous. : . o
So [D+D'] 1is'a cogpl;;.te latt_:ic’e.‘ We must stili show .that [D -+ D']

! .
: is continuous. =~

For e€D and e'€D' we define the continuous function ele, e'l]
- ’ W ~

. . . l + '////
' by'. : o //" .
e' 1if e < x ///'/
ele,e'l (x) = N \
B .1 if not,
. . 4 .
5 .
for all x€D. Then for all f€[D +D'] we have:®
f=U{e[e,e'l]e' < £(e)} . o (1)
. \ { .
e - 4 ’I
* —, ' . A,

A L LR L R, - o lh e
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Proof of (1): ' _ "

Let fE[D + D'l and xE€D. Then

(Ufe’[e ,e'lle’ < f(e)‘})(x) = U{e'] 3e < x with "e' < f(e)} and -

13
{e'|3e < x with e' < f(e)}C{e'le' < £(x)}.

"Let now e'E€{e'le' < f(x)}. Then
E(X)E{ZED'le' < z} ® there exists V open in D"inth x€V such
that f‘(V) C {z€D'|e' < z} = there exists d€D such that
x€{y€D|d <y} and £({yE€D|d< y}) C (zE€D'|e’ < z}.
Since D 1s continuous we can also find e€D such that d < e < x.
" So éhere exists e€D such that e < x and e' s.f(e) . Thus |
e"e{e'la e <x with e' <\f(e)} . Therefore .
{g' |3e < x with e' < f(e)} = {e'|e' < £(x)} = \
U{e'|3e <.x with ’e‘ < f(e)} = Ule'|e' < £(x)} = £(x) . o
Moreover for all g€&€[D + D']. we have:
e' < g(e) = zfe,e'] Cg. \ 2)
Proof of (2): |

Let g€[D + D'} ancivlet x€D. Then we have:
‘(1) if e < x theh ;[e',e'] ix) = e' < gle) = )
e'Cge) Cg®) '
(11) 1if e £ x the:; ele,e'](x) =|Cgx .
Hence ele,e'] Cg. | . ' - ‘D
Let now V= {f€[D > D']|e' < £(e)}. Then V= F(e, {zGD'[e' <z})
is a subbasiqol;en set of the product topolegy on [D =+ D'] and we
have: B

ele,e'l C f for all fEV =

,;[e,e'] C Nv =

¥ 0
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N 7 -
Ufele,e'l|e' < £(e)}C U{NV|EEV} = £C U{MNV|EV}. Therefore

£= U{NvV|fEV},

where V ranges over the subbasic open sets of the product topology on

[D+D']. !

Let ngwr F(e,U) be a subbasic open set of the product topology on
[D+D'l. Then we have: ‘

(1) f€F(e,U) and fL g= £f(e)€EU and .
f(e) C g(e) = g(e)EU = gEF(e, V)

(11) 4f S C[D » D'l is’directed and WUSEF(e,U) then
(US)(e)EU = LU{f(e)|[fES}IEU = f(e)GU’for some f€S
- £f€F(e,U) for some fE€S = Fle, NS F o . ,
Thus F(e,U) belongs to the induced topology on .(D +D'] . So the
induced topology on [D -+ D'] contains the product topology. Hence by
2.3.9 the two topologies on [D + D'] coincide and [D + D'] 1is a
con:inug;s faceice. ' ’ : 0

Corollary 2.3.17

For continuous latti?es D and D', the evaluation map

eval: [D +D']x D + D' such that

eval(f, x) = £(x),
for all £f€([D + D'] and x€ED 1is continuous.

Proof:

'
[

With, £ fixed, this is obviously continuous. With x fixed, we proved.

the continuity above in view of 2.2.28. Hence eval is jointly contin-

uous. . . a

Proposition 2.3.18

A\l

If an expression E(x,y,2z2,...) 1is continuous in all its vari-
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variables x,y,z,... with.values in D' as’ x panges in D, then

the expression

Ax: D . E(x,¥,%2,...)

with values in [D + D'] 1s continuous in the remaining variables

.

VeZyooo

Proof:
Let the variable y, say range over D" and let § C D" be a directad

$
subset. Then

Ax; D, E(x,lS,z,...) =Ax: D. U{E(x,y,z,...)|yES}
= U{xx¢D .E(x,y,2,...)|]yES},

\because the lubs of functions are computed pointwise.

These uses of M- notation should not be confused with that of the

ordinary X-calculus, .The notation is part of the meta-language, and is

‘ usé& as a notation for functions, where the variable after the A is the
\ .
argument and the expression after the . 1is the value (a8 a function of
the argument). :

Proposition 2.3.19

For continuous lattices D,D', and _D" , the map of functional s

ai;etraction

Lambda: [[D x D'] +D"] > [D +[D' +D"]] such that

Lambda (£) (x) (y) = £(x,7) ,

for all £€[[D x D'] + D"] and x€D and y€D' 1is continuocus,
We write: '

lambda = Af: [[D x D] +D"] . Ax: D.Ay: D', f(x,y) ,
and because f(x,y) is continuous fn f,x, and y, the conclus,ion '

follows.

Y
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These results give only some examples of the number of continuous
functions that are a{rgilable on continuous lattices. As anqth‘er funda~-
mental éxample w; have .that composition’ fog of functions (on con-
tinuous 1a;tices) is co;xtinuous in the two function variables, where we

write -

4

(f 0 g) (x) = £(g(x)).

Definition 2.3.20 ' ) .

~

A continuous lattice D 1is said ‘tq be a Erojéction of a continuous
\lattice D' iff there is a pair of continuous ma{:s, oo " .-
i: D+ D' and j:’D"-*D ,
such that . , . -
joi= 1d  and iojEidD,.
Proposition 2.3.21

Suppose the two pairs of maps
. ! . 1
1:D +D! and § :D)>D |
for n= 0,1 make Dn a projection of Dt'z . Then [Do > Dll is also

a projection of [D(') + Di] by means of the pair of maps:

I(f) = ilofojo , and
STy = jlof'oio ,
where fE(D »D;] and £'€[D) > D] .
[D0 + Dll and [D(') > Di] are continuous lattices by 2.3.16, and for
the pair of continuous maps 1. [D° + Dl] -+ [D") - Di] an&
3*: [D(') > Dil -+ [Do + Dll we have:
FoDe) = Jd(e)) = J( 0f0dy) = jjod 080 0dy = £, for all

!

£€[D, + D,]; and S /&
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' . - ' ' ' -
iilojlof oioojo';f , for all fE[D0+D1]. ,
He'nce. Io 1=14

[ DyD,]
Proposition 2,3,22 - .

-
If D 4is a cont

inuous lattice and e: X > Y a subgpace embedding,

A

then for each continuous f: X » D, the function f: Y + D glven by

the formula: /

f(y) = U{ﬂ{f(i)le(x)euﬂyeu}}
where U ranges over the open gubsets of Y and x over X, 1is the
‘maxi.mal extension of f L to a function in the poset [Y + D] |

Let f: X+ D be continuous. In 2.3.14 ve have proved that £: Y=+D

-

L - -
is a continuous extension of £f. In other words f 1s a solution

to the equation s .o y
\ | - £=foe. = ‘
Must show that. f 1s the maximal solution. So let f' be any other,

and let y€Y. Then
f'(v)% U{r£'()|y€Eu,vCY open}

C U{ME"(e(X) NU)|y€U, UCY open}

U{N{£'(z)|z€e(® N U}|y€U, UCY open)

U{MN{£'(e(x))|e(x)EVU}|y€EU,UC Y open}

U{N{f(x)|e(x) €EV}|yEU, UC Y open}

= £(y) . i

Hence .£' C T ., ‘ ) a

Corollary 2.3.23

Let D be a continuous lattigé and e: X+ Y a'gubspace embedding.

- ’ )

+
and 10jLC dd. ) 4y - ' a
| [00;]

s meeg e ot e e e o - - P e e et e = - - -
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Then:
(1) fCg=£fCg for all £,g€[X~>D]

(11) 1f . f€[{X + D] and h€[Y + D] are such that

hoeL £, then hC ¥ .

AProof:

(1) Let £,gE[X~+D] and y€EY. Then
fCg=f(x)Cgx) forall x€X =
um{f(xile(x)eunyeu} C U{N{g(x)|e(x)EU}|yEU} =
£(y) C 5(yp) '
Thus fLC g . ,.“

(i) ‘Let fE€[X > D] and hE€[Y + D) such that hoe C £f. Then,

herf . But h is an extension of hoé and hoe is the maxi-
mal extension of hoe in [Y +D]. Thus hC hoeC E . _ ]

v

Lemma 2.3.24

Suppose the continuous lattice D is‘a projection of the continuous
lattice D' wvia the pair of continuous maps 1,3J . Let e: X+ Y be
a subspace embedding and f: X - D, g: X + D' ’continuous. If £ and
g are extended coﬁ £: Y+>D and §:’Y + D' as in 2.3.212, and if
£f= jog, then f;j'oqg;. ‘
We have: -

LY

f=foe and g=goe .

4

Now £=jog=f=3jogoe. Thus .
. " jogLCE ‘ S ;1

because f 1 the maximal extension of £ .. —

Also ioz’be=iof=iojoggg. Thus, by 2.3.23(ii)
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io‘fEE’joiof'Ejog -

AR

ECjog 4 | i 2)

, . i : ,
(1),(2) =F=jog. : ‘ 0

Proposition 2.3.25

Every continuous lgttice D 1s a projectifn‘of ts function space

fp+D]._

N

Proot:’

Consider the following 'pair ;af mappings con: D+ [D + D] and

min: (D - D] + D where |
con(x)(y) = x and

¢

min(f) = £(]) ,

for all X, yED and f€[D +D]. ' They are ob‘{iously continuous,

ard we have: : \

(min o con) (x) = min(con(x)) = cc}ﬁ(x)(_]_) = x F, foi; all x€D. Apd
- | . a
(con omin) (£f) = con(min(f)) = é}on('f(‘j_)).l;_ £, for \rll fE€(D » D]’.

Hence D 1is a projecticn of. [D+D] . ’ ' ‘ - 0

i .

\ ! ’

|
!
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“.CHAPTER III

[P

The nmaterial of this chapter s derived from Scott [16]

Section 1.

Information systems

Definition 3.1.1

(D

[

A’ConA’ }- )

x

A :imd members of DA

VAR

An element can often be determined by

Therefore, we can think of an informa-~

We thidk of .the members

An information system A 1s a structure
s ..where: 4
~ N g
Dy ‘18 a get;- .
g ) ~
- AA‘ is a distinguished member of £ 3 L
JCon'A is a set of finite subsets of’ D,
satisfying the axioms:
1)y If u _C_*:r and vGConA“ then\\tEQonA
(11) If XE€D, ‘then {x}ec:on
. A A .
(111). 1f uEConA‘ and u I—AX then uV {X}ECon ,
- for all finite subsets -u »vED, '
N S 5 1s @ binary relation between members of Con
;. , .
satisfying the axioms:
. . T . N
(iv) u I—A AA ‘
(v) If X€u t:hen u I—A
R ' - (i) If v, ¥ for all YEu and u[— X then: v }-A
e~
for all u ,v.ECon and all XGDA
The notion of an infotmat:ionx‘syst"em is in‘t':rorduped in order to con=-
_struct the elements of a domain. .
.a selectiop of its propérties‘.
tion’ gystem as a set.of proposi,tions tha't‘: can -be made®about possible
LR o
elements of the desired domain. .More.precisely:
. : DA is the set of data obje!cts or propoeitiona.
» of DA as consisting of fi e’d'ata/obj/ects some of which are more in-
L]

t




- ——geo
. ’

..

f,

a

- - 49 - : .

formative than‘, others. It is of course possible to introduce information

© B

'systems where the data objects are infinite sets but relative to DA
N »

they are fin:[.ce in the sense that they can be specified by a finite

amount of information about D, . . ’ ,
I N A ‘ :
A, is theﬁ least informative member ‘of DA . Note that every element of
. ~ “ o : ° .
. the domain to be constructed contains 4, because A provides zero in-
: “ \ '
formation. » 2 \
A ¥
(fonA 1s a set of finite subsets of D, - A finite set of data objects
u belongs to Con, 1if the "propositions" in u can all be applied to

A
‘ s . ' T
the same element at the same time.  Not every finite subset of DA be-

+

longs to Cox}A since ‘not aﬁy combination of data objects will describe

a possible element of the desired domain. Finally u c D, is-called
consistent if every f"hjlit:e gubset of u belongs t? (:onA . \ o

A a

: I-A is ‘the entailment relation for objects. For u€Con, and X€D,

_ . -the meaning of u }-;X can be expresséd as '"whenever 41l the proposi-

tions in u are true of an element then so is X true of that element'.

4 1]

Definition 3.1.2 . ‘.. %

" Let A be an informatjon system. For all uw,vE€ CoﬁA we write
u F,v to mean u !'A)f for all XEv .

~ Proposition 3.1.3

N

- i .
° 3 ] | B -
For all u,v,w,u', v',"€ Con, we have:

A a : \
1) of, (8,1 ( . o Y
% - \ . A
(i) u}-Av implies u Vv e ConA .
o (111) u}-Au ' " L ' ‘ ’

(1v) u|-Av_ and v»l-Aw, imply u}-—Aw

(v) u'du, up, v, and v3Iv' imply u'f, v

! . . o

ooy
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. ® ' ,
(vi) u [-Av and u |—Av' imply u }-A vuvy' .
k: .

" Proof:

(1) ¢€ CrmA

¢}-A{AA} o \ .
(11) ul-Av - u|-AX for all X€v~.uU{X}€Con, for all

by 3.1.1(1) and ¢ I—Ar 8, b& 3.1.1 (iv). Therefore

~

o~
T (1) u [-Ax for all X€u = ul, u

(1v) uI-Av and v I_Aw »'u}-AX for all X€v and v|-'AY for all
YEw = ul—A"I' for all, YEw = uI-Aw

(v) u'"2u and u IvAv and vOv' = u' I:-AY for all YEuCy' and
u}-Av cand v, X for all XEv' Cv=u'l,u and

u}-—Av and v}-v - u'I-Av and v}-A"'u'}-v .

(vi) up,v and uf, v’ = ul-Ax for all X€v and ul-A}{ for

"-all XEy' v uf, X for XEvUv' = ul, vUv' . : C0-

Considgr the structure N o (Dy » 8y » Comy s ) vhere:

' DN ={(n, m [nﬁj_ m and_ n ,1;: are non-—negat?.ive integers}, a
object (n,}) €D, stands for the proposition n < x < m

: 'gn el;ment yet Qo be determined. N
8= (0, )
Com.N is ‘defined by saying that u.E ConN 1ff there 1s an-integer §
fyixtg all the propositions in u, where . u < Dy f}inite. It 1s obviotls
then that Con.N does not contain all the finite elements~3E DN.; for
example the set {(1,3), (4,7)} does not belor(lg‘ to CcmN because

there is no integer x catisfying 1<x<3 and 4 .
\ ‘\x\\-’ /

» Py ig defined by saying~ that u |—Nx iff whenever an integer satisfigs

-
’
K3
-

i
' Al

\ Y / .« —
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all the propositions in u then it satisfies X, for all u€ Cc:mN and

‘ XEDN . ‘

9

Then N (DN » by ’E°“1:; , I-N )« is an information system.

_ Proof: ul

- LY

(1) Let vE€E Ct'mN 'a,nd uCv .. There 1is an integer x satisfying all

the propgsitit;ns in v . Then x satisfies all the pr~opositions in u.
Therefore uEConN . .

(i1) Let (mn, m),El')N . Then for the :l'.n.teger n we have’ 31_5 n<m.’

Thus {(n,m)}EConN . '

(111) Suppos.e u |-N(n ,m) where 46 Cong and (n, m)GDN . There is

an integer x .satisfying 811. the pr;:positibns in u . Then % s:atis-

fies also (n,m). Thus x satisfies all the propositions in

.uY{(,m)} . Therefore uU{(n.,m)}GConN .

(iv) Let u€ ConN‘ and let x be an integer which satisfies all the
e\roposi_.tions in u. Then obviously 0 <x <o ., So x satisfies AN .

_Therefore u | by - -

-

(v) Let uECcmN and (n, m) €u. They obviously whenever an integer
. .

L]

: %
satisfies all.the propositions in u it als.cl satisfies (n,m) . _ Thus

. J .
u I—N (n,m). : . ,E
(vi) Llet u,v € Cong , and suppose that v }-N (n,m) for all (n,m)Eu
and u ]»-N (n',m') . Let. x be an integer which satisfies all the pro-

- )

positions in v . "Then zé satisfies (n,m) for all (n,m) € u. So
t
x sgatisfies all the proposi'tir)ns in u . Then x must also satiaéy)

(n',m') . Therefore v F—N (n',n') , ()

L

Example 3.1.5 . (for Predicate Logic see Daler [ 6 ])

Consider the structure L = (DL , AL s ConL’, |-L) where:

A Y

3.

—

e ! o

foor e
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. ~ ‘ ,
D = {¢|¢ 1s a consistent sentence of Predicate Logic}

4= Vx (x = x)

1

Cony = {u|u 1s afinite consistent set of sentences Jf Predicate
‘\j.ogic} ,. and >

!—L means derivability in Predicate Logic. °
Then L.= (D ,'A.L » Con "I-L) is an in?omation systenm.

Proof: .
ZIooL

\

(1) Let uE*ConL and vCu. Then u is a finite consistent set of ]
sentences. I.e. ulf | . Then v}t | (because v || would ‘imply

u l— _L ). Therefore v€ Con.L .

(11) Let @EDL . Then {0} 1s a finite consistent set. Therefore

L]

{o}€Con, .
(111) Let u€Qdn and u I-Lw . Suppose that uU(®} 4is inconsis-
tent. Then u Fle. .But‘ u o . Thug u 1s inconsistent; contra-

diction, Therefore uVU{¢} 1is_consistent and, since dECon.L, we have

4

uU{(D}GConL .

il

(1v) Let- u€ Con, . Then u BV x(x = i) . There}n'e u l—L A . -
"(v) Let uGConL and ¢€u . Then u}-cp . Therefore. u l'-Lto -

' (vi) Let u,v€Con and v I—L(p for all ©€u and u}-an . Then
)

vio for all ¢€u and u y. So v k¢ . Therefore vl—N;”. 0 Y
"o
. . .
. 2
N )




Section 2. Domains .

Let A= (DA , AA R CouA ' }—A) be an information"system. The members.

of DA (the data objects) are meant to be propositions about the desired

elements, therefore we have to assume that DA contains enough objects

tp distinguish‘between distinct elements. ' Formally, we can write of two

elements’ x and 1y :
§

x =y 1ff all XE€D, which are true of x are‘also true of Y,

A

and conversely.

The elements can be identified with the sets of propositions true of then.

”

So if x 1is an element,

) : "x-{XEDA'|X is true of x} J

S

Definition 3.2.1 ‘ i .

« The elements of an information system A are those subsets x of

-

D A where:

(1) all finite subsets of x are fn Con

) A
(11) whenever uCx and u I—A X, then X€x. ‘/)
v

The set of all elements of an information system' A 18 called the domain

-

determined by A and is denoted by |[A].
Since the members of |A| are introduced as sets the set-theoret-
‘ ] ' !
ical inclusion relation can be applied. - Iftuitively, for x,y€ | A] ,

x C y means that every proposition (among the ones given by A ) true of

x is algo true of. y . We often read "x C y" as '"x approximates y",

< \/

Obviously evéry eiement of an information system A contains A, as a

A

member because the least informative proposition is true of all el‘ements".

3
!

\

[,




P‘ro'p.osition 3.2.2

Let A be an information s.ystemr and let J—A= {xe DA|{AA} I—A X} .

. - 7
Then [, €|Al.

-

Moreover . L\ is contained in all other elements.

Proof: '

\

(L) Let u_C_J_A be finite. Then {4,} I-AX for all -

€ U '
X€u =~ {AA} .|—Au - {AA} u€Con, * u€Con, .

(11) 'Let’ uCly and ub,X. Thea {6, Fpu and.
ub,Xx = {8,}F, X =Xx€] .
Hence’_[_AEIAI. ' v

PR

Let now X€|, . Then {4,} FyX , and since 4, is true of all

elements so is X true of all elements. Thus X€x for. all x€[A].

O

. o

Hence |, C x for all x€|A

Def@nition %.2. 3

Given an information system K A the element j_Af{XE DA|{AA}|-AX 3

is called the bottom element.of the domain | A

Moreover if there exists an element !_AE |A| such that x %/TA for all

x€ |A| then is called the top element of the domain |A | .

la
Evéry domain ixas a bottom, but not every domain has a top element.

Proposition 3.2.4

Let A be an information system, TA’ exists 1ff all finite subsets

of D, are in Con, , in which lase, as a set, TA= D, -

*Proof:

Suppose | A | has a top element TA and let utC_D be finite. Then

A
A * - A

Conversely if all finite subsets of D, are in Con, then D, € | A

o O S . , }
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and obviously D,. {s the top element of |aA]. : 0

Definition 3.2.5

Let A be an information system. An element that is not included

in any strictly larger element in the domain 1s called a total element.
[

Any other element 1s called a partial element.

Proposition 3.2.6 -

3 Let A be an information system. If TA exists it is the utiique_ :
total element of |A| and conversely. ?
Proof :

If TA exists then obviously TA is the unique total element of | A |.

For the converse suppose y€|A | 1isthe unique total element of |A}.
f

Then xCy for all x€|A|. Hence y=TA. a

Proposition 3.2.7

Let A be an information system. Suppose we have 8 sequence of

elements such that

' -
xo_C_x*_C....._C_x Cx
@«
Then = J
hen y I~

1 n S¥ab S0
x is als0 an element of A .
0™

Proof :

y is a subset of DA and

(1) If uCy finite then u C x for some n since the sequence 1is

increasing. Therefore tiEConA .

(1) If uCy and 'ul-Ax then uCx_  for some n and uf, X.

=) o~

"Then }PLEJTu for the same n. Therefore X€y. Hence y€ |A

Definition 3.2.8

The finite elements of an information system A are all those sets

’

of the form u = {XEI?A | uf, X}- where u€ Con, .

. O

[

. im ey g g s (e : e e e

Iy
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Proposition 3.2.9
) i
. Let A be an information system. Then for all x€|A| we have:

x=U{1_1|u€ConA and u C x}

" Proof:

Let x€|A]| .
If X€x then {X}€Con, , {X}< x, and XE{X}. So

X€U {u|u€cCon, . and u C x}, Therefore x _C_U{ﬁluecbnA and u C x}.

A
If XEU{u IUECOD.A and uCx} then X€u for some uEConX* with
ulx =™ u I-AX foxr some uGConA with u S x = X€x. Therefore
U {u|u€ Con, and u(C x} € x. Hence x = U{GIuEConA and uCx}. O

Intuitively .the meaning of this result is that every element of the
domain {8 the limit of {ts finite approximations.
Return now to the examples of infoma/tion eysf:ems gi\ien above to

gseé what the elements are.

Example 3.1.4 o

We ha‘)e seen that Con.N does not contain all the finite subsets of DN .

-

Therefore there is mo top element. The elements of N are all the sets

-

of the form

{n,)|n2n<p<ql
where' m < p are giveﬁ and also q== is allowed, If m=p we get
a total element {(n,q) |n <w=m <q} which corresponds to the non—
negative integer m .
Otherwise we get an element {(n; Q) |n <m< p <q} " which is a partisfl

element since there 1s always a larger element say,

{(ﬁ,q)lnim< p<q}C{(n,q)n<m + 1<p<ql.

N e i e s
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*

Example 3.1.5

The elements of L are the theories, because 1f T 1is a theory then:

L’ : B ‘
(11) T o * 9€T , and

(1) TS D

(1{41) T 4is consistent ,

Remark 3.2.10

Let A be an information system.” We have seen that the set—theor-
etical inclusion relation can be applied to eleménts and the domain |A b
becomes a poset under inclusion.

Let now x,y€|A|. Then x N y€E|A| because xNy EDA' and

(1) If u Cxn y~ is finite = uCx 1is finite = u€ Con,
(11) If uC xNy and u |-AX"u§_x and uCy and u }-AX"XEx
and XE€y=* XE€xNy.

So, according to definition 2.2.17, ]A(l' is an inf-semilattice.
Consider now any nonempty subfamily of l A‘l .- The set=-theoretical
intersgaction ?:f all the elements in the sﬁbfamily is again an element of
the domain. Hence every nonempty subset of - |A | has an inf iIn |[A] .
Moreover if TA exists then |Al is a complete lattice. (see Gierz,
et al [ 9] p. 8 Proposition 2.2 (i1)).

The domain IA} can be also regarded as a topoldgical space. For

each u€Con s Ve define a corresponding neighbor."hood of IA[ by the

-

- //

equation: . .

[u]A'{xE|A| | uCx}.

_.The neighborhoods of an element x are all those sets [ u ]A where

ulC x .

Let now x,y€ |A| and suppose that x and y have exactly the same

- Tk,
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o o rr = e

. neighborhoods. Since x = U {u | u€Con, and ul .x} and A
y;U{;IVGConA‘ and v Cy} “we have that x=y. ,
Hence [A|'dis a T,-space.
1
1
el ‘/ .
i s . ]$
: \
v A
B ' {
\-
. f
1
) . ‘ :
¥ ) ' / o
\ N
\ ’ i :
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Section 3. Approximable mappings between domains
Once the notion of a domain has been defined, the next major issue
is how are the different domains to be related one to another. In the .
theory of domains, wh;re the approximations to the elements are all we
can ever know at one time, an appropriate' mapping between them 1is a map-

ping that proceeds by approximation. ’

Definition 3;3. 1 .

‘Let A and B be two information systems. An approximable mapping
f: A+ B 1is a binary relat:ic:mP between the sets ConA. and ConB .such
that: s ‘
@) efe
(41) ufv and ufv' =uf (vuy")
(141) u’' l—Au, ufv, and v[—B v =y fv'

We say that A 1is the source of £ and B is the -target. - -

Note 3.3.2

ufv 4ff uf {Y} for all YEv .
In other words an approximable mapping is completely determined by fhe
relation set up between consistent sets on the left and single data ob=—
jects on, the right.

Intuitively the relationship ufv is an inpu!:/o‘utput passage which
can be read informally as: "if you are willing to give at least u
amount of information about the argument, then the mapping £ dis wiliing
to give at least v amount of information about the wvalue" . 0f
courge to get the full effect of f it i3 necessary to take all the v's
related to the given u and that way any approximable mapping £: A+ B

L4

naturally defines a function f between the elements of A and B .

’

-4 /

Loy
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Proposition 3.3.3 o

Given information systems A and B an approximable mapping
f: A+B always determines a function f: |aA| + [B] between do\iilaina
by virtue of the formula: '
f(x) = {Y€D, | u £{¥} for some wu C x} \[
= U {v€Con, |ufv for some uCx} ,

for all x€ IA:[ . > \
Conversely the function uniquely determines the original relation by
the equivalence:

\, .-
\\ ~ufv 1££f vC £(u) .

A

Proof: (. [

hal

To prove th:at the range of f 1s . |B|' must show that £(x)€ |B| for
all x€|a| .
So let x€ |A| and consider £(x). Then,

(1) If w= {Yl s eve s Yk} C f(x) "IiE £(x) for all
ie{l,...,'k}'uif{Yi} for some uigx , for all

. . -
1€{1,... ,k}I» Uu f(Yi} for a1l i€{1, ...,k} by

g =11
3.3.1(111) = U uifw"WEConB» .
i=1

(1) If wC f£(x) and wl—AY then ufw for some u C x and.

Y

by 3.3.1({11) ve have uf{Y} for some us;: . Thus YE€f(x).
Hence f(x) € |B]| . . '

For the proof of the equivalance, .
suppose ufv and let YEV . Then Vv }-BY and by 3.3.1(iii) we
have uf{Y} . Then YEf(G). ' Therefore v C £(3).

Conversely suppose v C f(u) and let YEv . Then

YEV =~ YE £(R) »wf {Y)} for some w C u=wf {Y} for some w € Con,
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with u |, w= uf{¥} by 3.3.1(iii). Therefore ufv . a
froposition 3.3.4 ’ | ‘ -
Let f,g be two approximable mappings between the inf'o‘rma'tian » ,
systeme; ‘A and B : Then: ‘
(1) xCy 1in |A]| alvays implies £(x) _C_: £(y) in |B|
(11) f=g 1ff £(x) = g(x) for all x€|A] Y
(111) £C g {ff £(x) Cg(x) for all x€ ] . ’
_P_t_:g_(_)_f_: s i
, (1)  Let x,yE€ IA[ wvith xCy . Then, i | . |
‘Yef(x)"uf{Y} for some uC x =»uf {Y} for some uC y=*YE£f(y). .
Therefore f(x) € f(y). i
(11) :Suppose f= g asrelations, an.d let  x€ IA[ Then, )
| £(x) = {Y€Dy |u £ {Y} for some uC x}‘ - ' - ,' .
= {YEDBIug {Y} for some uC x}. j l
= g(x) . , .

Conversely suppose f(x) = g(x) for all xGlAI, and let uGConA,

B ) .
ufve>vCf(u) =gu) *=ugv
Thus f and g are identical as relatioms. v

« Then,

(111) Suppose £ C g' as relations, and let x€ {A

YEf(x) *uf {Y} for some uC x =*ug {Y} for some u C x= Y€ g(x).

Therefore f(x) C g(x). : ) . ;'
* t
Conversel{y suppose f(x) C g(x) for all xE€ [A| , and let ue€ ConA s
' )
' vEConB . Then, i i ’ ' ) f
. ( |
i ufves yCE(@) Cgu) = ugv L
Thus £ G g as relations. o ] .
4 i ,'i‘.,
g
!
.- :;";71
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1

=

Proposition 3.3,5— ) SN ..—/
- N~

* Let A be an information system. Then the following formula de-
fines an approximable mapping IA: A~+A

3. ‘ ‘uIAv iff~ ul'AV, 2

for all u, vGConA . And we have:
I’A(i) = x , for all x€ |A]

-

Proof:

We have for all v:x,v.,u‘, vtEConA o \ * .
W 'L, : S ‘
(11) ul, v and u I, vi=u I-(-and u}- v' , ‘

"u ]-AvUv"'uI (vUv)

(i,n? u'l—Au, uwi, v, and vl—A'v"’u'i-Au,

A

ul»—Av, and v}-Av":u'l-AV'*and v,V }-Av""u' v .

So IA : A+ A 1is an approximable mapping.

Let now x€ |A| . Then,

‘(x) = U {v€ ' :
I, (x) {v€cCon, [u I, v for some uC x}

U {v&Con, lu F

a vV for some u Cx}

= U {G]uEConA and ul x}

=x ‘ ‘ ’ ’ Q.

Propos{ition 3.3.6"

° -

-

Let f: A+ B and g: B+ C be two al\)ptoximable mappings between

!

the information gystems A,B and C . Then the 'folloving formula -de~-

fines an approximable mapping gOf: A+ C :

Y

u (gof) w 1ff u fv and vgw fé? some vEConB,

for all uEConA add wE€Con. . And we have: ‘ e

C . -
- @of)(x) = g(£(x)), forall =x€|A] .

i
i
t

[ L S

e

.

..

<
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Proof: ]
t ’ 1 .
We have for all u,u’ EConA cand W, w' EConC : .
3

1) ¢ (80f) ¢

(11) u (gof) w and u (gof) w' =*uf v and v gw for some

vEConB" and uf v' and v' gw' for some v'ECouB =y f(vUv')
L] M-

and (vUwv') gw and (vUv')\g w' for some v',v'EConB

v uf (vUv') dnd ,(vUv') g (WUw') for some

Tk

v‘,v'e ConB"u (go D) (wUW') .
(111) v’ }-At‘x, u(gof) w and chw"u't-Au, u f.v and
14 ~ “
v g w for some vEConB,

1 |
B. u'(gof) w' . ) -

and w . w' =u' fv and vgw' for

gome . vE€ Con
[
¥

» ,
(g‘o £f)(x) = U{wEConC l,u (gof) w for some u C x} 1

. - gU{wGConCquv and v g v for some

I b
v€Cony and some u C x}

= U{yE Ci;nc | vgw for some v E f(x)}’
= g(f(x). | _

;, . - ' ?
Proposition 3.3.7

Given information systems A,B,C dand D , and given a fixed

element b€ [B|, then there is a unique approximable mapping = .

A,B" 7

. (const b), .: A+ B such that: L T oy
(1) fconst b)A,B (x) F b,

t

for all x€ |A

',  Moreover we have:

(11) (f o (const: b).A B),(x) = (const f(b))A é(x) .
% . L v ! ' #
for all x€ |A]” and for all approximable mappings’ £: B +C ; and
(40 ((const b), 5 0g)(x) = (canat By 5x)

@

So gof: A~+C is an approximable mapping. Let now xE€ [Al . Then,
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4

for all x€ |D| and for all approximable mappings g: D + A .Ki

. 4
Subscripts will be omitted when they are clear from the context. A
Proof: .
We défine (conmst b)A < A-+ B by the fam\t}}a: ) R
. ’ .
N\ ; c
R u (const b)A,B v iff vCb ,
& et - o :
for' all th anA and v (:cmB ., Then (const b)A{; A-+>3B {is a .
obviously an approximable mapping, and ' <
(1) for all x€.|A] :
= € .
(const b)A,B(x) {Yy DB, | u (dons.t b)A,B {Y} for some uCx }
= (Y€p, | {¥} C b} .
=b ., .
’ >, s “
Al:>\if (const' b) A B A+ B 1s another approximable mapping such
Rt .

that (const' b)A'B(x) = b for all x€|A|, then for each x€ |A]" )

’ . <

w\have: ' 7/ .

(coxpt;' b)A B(x) = b = (const -b)A ‘B(x) . '

So (const' B)A B = (c’onst b) therefore (const b) :‘A+ B 1is

A,B° “’a,B
unique,
(11) Let £: B - Cf be an approximable mappihg and let xE€ |A] . e
. {
. » ) . '
We have: ‘ . ) '
. i .. . *\ ‘
(f o (const b)A’B) (x) = £((const b)A,B-(x)) ) w
= £(b) '
( = (const £(b)), .(x) v A
A,C ‘ ‘ e
(111) Let g: D > A be an .approximable mapping and let x€ |D| . -
Ve have: ‘ |
((const b?A,n°3) (x) ﬂ' (const b)A’B(s(x)) —
-'. b const b)D,p(x) . a
, .
: / }
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* Remark' 3.3.8

o ‘ L}

Let f: A+ B be an app;-o;:im%le mappiﬁng between the information

systems A -and B . Lf . |A| and .|B| are regarded as topological

spaces then f: |A| + |B| 1s continuous on the-finite elements of

B ’
» i

|A| because: i . ' , . -
- ' Y
Let u€|A| where u€Con, and let [v], = {y€ |B] [ Sy} be a
ne¢ighborhood of £(u)  in |B| . Then, l b
. e
ve f), (1)
Take [u] , = {x€|a| |uCx}, which 1s a neighborhood of;. u in  |4] .
’ - -
since uCu, and let y€f(['u]A).' Then y = £(x) for some e .
, ? -~ o
x€[vw], . And we have: : RS -
' A ) ~ '
uCx®ulx=f)Cflx)*£Cy = vCy»yeElvly , |
‘C, N
Hence f.([u]A)__[v]B . ) n |
Moteover every infirite element of |A| 41s the directed union of -
. 1Y . » ’ % '
its finite approximations, and f: |A| + IB] preserves'directed unions.
\{hus\‘.ﬁe can finally conclude that f: |A| - |B| 1s continuous. ,
Hence the notion of an approximable mapping is the same as that of a
continuous mapping when domains are viewed topol&gically,
) 1 4
\ - ' '
( \
. N \ 4
¢ .
1 :
- X |
o | -~
SR * x ’
Y /,»/J ' 5 ‘
e p
, : o
, - t i ‘ {4
'\
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~

Ve h;ve defined in this chapter the general notion of a domain and
we have seen how -the different domains are to be related one to an~ ‘
other. The next basic topic is how to construct new domains given old -
ones. We shall give three basi; constructs: the product’, the sum and

-~
the function space constructions.

Given the information systems A and B lwe'shall construci; the A -

pro‘dpct domain directly form the given data objects and prove that it
is. just the one expected when we look at the elements. ' o

Definition 3.4.1

"Let. A and B. be two information systems. By AxB , the pro-
duct system, we understand the. system wherg: ’ 4
(i) Duvp = {(X,AB)IXEDA}U"{(AA,‘Y)IYEDB}‘;
(11) 8,5 =-(4,,8p) ;
for all u -C-DAxB we let: '
fst u = {X€D, | (X, 85) €u)
snd u = {YED, | (8,,Y)€u}; then
(111) uEConAx

iff fst u€Con, and snd u€ ComB R

B A

where u /is any finite bubset of Dyvp s

iv) u FAxB( y4g) 1ff fet u I-Ax' and ,

u I-AXB(AA »Y') 1ff .snd u I-BY' s A
@

.whete “EC“AxB . - - 3 |
Lemna 3.4.2 o ' S

For all u,vCD, , we ‘have: ) : o ;

uCv 1ff fstu C fst v and 'nndu_c_sudv. -




N
3
e

-

A4

.

Proof: -

Suppose u C v . Thed

xefstu»xeDA and (x,AB)@»xEDA and (X,AB)Ev»fostffr.j

And, Y€snd u= YED_ A and (AA,Y)Eu*YEDB and

B
(AA,Y)GV"YEsnd v .

Hence fst u C fst veand snd u C snd v ,

+

Conversely suppose fst u C. fst v and snd u C snd v . Then:

a) (X,AB) €y~ XEfst u= XEfst v = (x,AB)Ev

b) (4, ,Y¥Y) €Eu=YE€snd u=™ YEasnd v = (AA.‘f)Gv .

Hence uC v

lg‘é‘oposition 3.4.3

-

Llet A,B and C be infofmation systems., Then
(I) AxB 18 also an information sys.tem.
(II) There exist nappings
fst: AxB~+A and snd: A Xx B -+ B,
duch that, for approximable mappings
| £: C+A and‘g:IC-rB, o
there 18 one and only one approximable n;abping < f,g > C~+AxB
such that ’
(a) £8t 0 <, f,g>=f and ‘(b) sndo< f,g > = g k
(i) Must show that A x B ;s'a‘cisfies the (vi) axioms of definition
3.1.1.

1

(1) ugv and veCon « fgt u g fst v and sndﬁgsndv

AxB

and fst vE.Con N

A
€ - ’
snd u Cou:B u€ ConAxB R

and snd vE CouB = fgt uEConA and

\
t

|
|
|

¢
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r

(11) 1f (X, AB)EDAXB theg fst {(X, AB)} = {X}e ConA

"¢ecQ’pB 1f X #8,

"and snd {(X, AB)} =

‘ N . e i = -
. {AB} CcmB £ X AA

so {(X, AB)} € ConAxB .

Similatly 1f (A

A »

€ . ' e
(iii). u ConAxB AxB (X ,AB) = fst u ConA and

snd u€Con, and fst uf, X' = fst u U {X'}E€Con, and e

.. . .
snd uECcmB = fat (u Y {(X', AB)})ECc:mA and

snd (|:1 v ', AB)}) € Con

€ ‘ ~ ;
Y) DAXB then {(A ,Y)}ECt:mAxB . _ '

and u |

v

' € .
g™ u U {x ’ AB)} ConAxB 4 ,

|
Similarly, u€Con, . and ulf, (8, ,Y') = u(U‘{’(AA »¥')}€ECon,

(iv) u€Con » fgt u€Con, and snd uEConB = fst u }—A AA

B .

AxB A

and snd u |—B’AB = u }-AxB(AA,AB) .

and (X, AB') €Eu™ fst u€ECon, and . s

(v) u€ ConA)< A

B
X€fst u= fst u [-A X=u l-AXB X 0, .

Similarly u€ ConA and (AA , Y)Eu = , Y1) .

xB . U Facp (g

(v1) v}, (X, 485) for all (X,4;)€u and ' '
u !-AxB(X' » 8g) fst v }—A X for all X€fst u and
fst u }—AX’ = fst v I—A X' =»v AxB x', AB) .

k]
Similarly, v (4, ,Y) for all " (A, ,¥Y)Eu and
AxB*CA 0

2

v '
u AXB(AA’Y ) =v AXB(AA’Y)

{ - -

(II) We define fst: A x B>A and snd: Ax B~ 3B by the formulae:
u fst v 1iff fstu }-A v and

’ . ushd w {ff sndul—Bw )

€ .
for all u ConAxB , vECOﬂA , and WEConB

' _Let now f: C -A and g: C + B be approximable mappings; we define

i . <f,g> : C+ A x B by the formula:

!

‘

e -y Fam L - s - ; 4 e e e — e Tt 8
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s<f,g>u {1ff s f (fstu) and s g (snd u) ,

for all s€Con, and u€Con,

c AxB °

Then fst: AxB—+A , snd: AxB-+B, and < f,g >: C+~A X B P

are appto:ﬁimable mappings, anc}l we have: -~

(a) For each xE‘IC,[ * . ‘

YG‘(fst o< £f,8 >)(x) * s (fst o < f,g >) {Y} for some
sCx=gs< f;g >u ‘and u fst {Y} for soﬁe uGConA><B and

sCx=s f (fst u) and fst u }-A{Y} for some uEConA)<B and

-t

sCx=sf {Y}‘ for some :sEx"-Yef(x) , thus

(fsto< £,8 >)(x) C £(x) ; also '

Yéf(x) =g f {Y} for some s C x = s £ (fst {(Y, A};)}) am.i

s g (snd {(Y,AB)}) and fst {(Y, AB)} }—A {Y} for some ’
sCx=g (fsto< £f,g >) {Y} for some s C x ™ YE (fst 0.< f,‘g >)(x) ,
thus £(x) C (fsto< f,g >)l(x) ; so, (fsto< f,g >)(x) = £(x) .

Hence fsto< f,g >= f . :

(b) Similarly sndoc< f,g>=g .

lemma

If z and z' are two elements of the product system AxB such

that fst z = fgt 2' and snd z = snd z' , then z = z'

Proof:
(x,AB)Ez""XEfst z * XE fgt z' = (X,AB)Ez' , and

(4, ,Y)€Ez = YEgnd z + YEgnd z' = (4, ,¥)Ez*".

A,

Hence z = z' . ' (|

Now if < f£,g >' : C + A x B is another
fying conditions (a) and (b) then we

for all x E|C] :
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‘ snd(< £f,8 >'(x)) = g(x) = snd(< f,g >(x)) ; thus, according to the

;\ . previous lemma, < f,g8 >'(x) = < £, > (x) . %
\‘t **ﬁencé < f,g>' = < f,g > and thgrefore < f;é > C+AXxB is ~
unique. ) . . ]
* Definition 3.6:4 : * ‘

L]
o’

Let A and B be info;mg:tion,sys;tems. For elements x€ |A|
andx\vy.e |B] we define R |
(x,y) = <comst (x), const (y)> (-I-C) ,
for any convenient fixed information system C . ®

Proposition 3.4.5

Let A and B be information systems. For all x€|A| and

PO S

o

' y€ |B| we have: .
, 1) (x,y) = {(x,a)|x€x}V{(a, ,V)[YEy}E |A x B

'(11—)\{st(:g,y) =x , “ snd (x,y) =% .

For all z€ |A x B| wé have: S
(111) z= (fst z, sud z).

Givén also an in\formation system C we h;ve that for all approximable

mappings f: C+A , g: C+ B , and for all t€|c| :
(i;v) < £,8 > () = (£(t),8(t)) .

Proof: °

1
’

P
Let x€|A| and y€ |B|. Then for some convenient fixed information

| ) system C we have:
(1) (x,y) = <const (x) , const (y) >(-LC )
= {(X,8) €D,  |u <const ‘x) » const (y) > {(X, 87)} for some uC .}

U {Q,, Y)EDAxBIu <const (x) , const (y) > {(4, , Y)} for. some u SJ—C}

fat(< £,8 > (x)) = £(x) = fst(< £,8 >(x)) , and —

I
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= {(X, bg) € Blu const (x) (fst {(X, AB)}) and

DAx
u const (y) (snd {(X ,.85)})  for some uC -LC }

N k)
U {(, ,Y)ED, _|u const (x) (fst {(4, ,¥)}) and

~

AxB .
u-const (y) (snd {(AA,
= {(X, AB)EDAXBHX} C x}u{(a, ,1)€ED

Y)}) for some u E—LC}

AxB
= {(X, 8,) [X€x}V{(4, , D|YEYIE |a x B[ . RS \

[{Y} € y}

(11) fst(x,y) = fst({(X,AB)|X€x}U{(A ,Y)IYE}:}) ]}

. /

L]

snd(x,y) = snd({(X,AB)lXEX}U{(A yD[reyh |

= y .
(111) Let z€|A x B| . Then fst z€|A|, snd hnl, and
(fst z , snd 2) = {(X, 8;) |R€fst 2}V {(a, ,V)|VE€snd z}
=3z . )
(iv) Let £: C+ A and g: C+ B be approximsble mappings, and
let t€|C| . Then
< f,8 >(t) = {(X,AB)EDAxBls < f,g > {(X,AB)} for some sCt}
U {(a ,Y)GDAxnls <f,g > {(4,,Y)} for some sCt}
= {(X, AB)IXGDA and s f {X} for some sCt}
7
U {(a ,Y)]YEDB and s g {Y} for some sCt}
= {(x, 8 [REL()IVL(, , DI |YER(R)]
> , = (£(t), g(t)) . - a
N .
S0, given dnformation systems A and B, the domain IA X B| is in
an one-ome correspondence with the set-theoretical product of the
domains [A| and [B] .
‘ . 8

Now, from the information systems A and B we shall construct

the sum system A + B whose elements divide into disjoint copies of




‘where u 1is apy finite subset of D
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L

those of A and B plus an extra element, the bottom of |A + B| .

Definition 3.4.6
~

o

Leét A and B be two information systems. By A+ B , the

separated sum system, we understand the system where, after choosing

some convenient object A belonging neither to D, nor to DB ’

A
.we have: R o
(1) D&a = {(x,A)IXEDA}U{(A,Y)[YGDB}U{(A,A)} H
(1) 845 = (A,A} ; )
for ali\’u < Dy4p We let: . )

1ft u= {X€D,|(X, 8) €u}
rht u = {YGDB|(_§,Y)Eu} ; then

(111) u€Con

A+B 1£ff either 1lft uG‘CcmA and thtu= ¢

or 1ft u= ¢ and rht uEConB .

A+B
‘(iv) ubyp (X, 0) 1ff 1ft usd ~and 1ft u |-Ax'

U Ca+p
u A+B(A,A) always,

(4,Y') 1ff rht u¥¢ and rht u I-BY;

wheré u€ CouA+B . .

Proposition 3.4.7

Let A,B and C be information systems. Then
(I) A +B 1is also an information systeﬁl
(I1) There exist mappings
, inl: A+ A+B ‘and inrz B+A+ B T
such that, for approximable mappings
f: A+ C and g:B~+C, -
there is one and oniy one approxx.m\:ble mappiné [£,8]: A+B~+C

such that

-
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a) [f,gloinl= £, (b) [£f,g)loinr=3g, ~and (c.) [f’g](lA*"B):-‘LC .
Proof.: ) o

(I) Must show that A + B satisfies the (vi) axioms of definition
¢ \

3.1.1. .

(1) uCv and vGConA+

either 1ft vEConA and rht v = ¢

B"lft:uglftv and

rht u C rht v, and

or 1lft v= ¢ and rht v€Con

B

either 1ft uG(:onA and rht u= ¢
- ' ‘ - uEConM_B .

or 1lft u="¢ and rht uGConB

(1) If (X,A)€D, . then 1ft ((X,4)} = (X}€Con, and

rht {(X ,‘A)} = ¢ therefore {(X-, A)}GConM,B .
Similarly if (AA"Y)EDA+B then {(A ,Y)}e(;onA+B .
And {(a, A)}EConA+B
\ ‘(iii) u € Con and ul— (X', a) = 1fc uepon and rht u= ¢’

A+B A+B A
and 1ft uI-AX' = 1ft uU{X'}€Con, and rht u= ¢ =

1ft (uu{(x',4)})€Con

, and rht (WU{E', 0} = ¢
uV{x', A\)}ECOPA-PB . ‘
Similarly u€Con, ., and ul, .. (4,Y") = uU{(A,sz')}ec?nA+B ‘
And u€Com, . = uU{(4,4)}ECon, o .
(iv) uEConA_|_B - ul-A+B(A , A) ‘ . ,
(\{) l u‘&CcmA_{_B and (X, A)€u = 1ft uéConA 'and

XE1ft u = 1ft u¥¢ and L1ft ul-AX "ul_—A+B(X,A) .

Sinilerly” u€Con, . and (4,V)€u=uf, (a,V) .

B

atp (81 8) for all -u€Con, ., .

o e e e e ., [ P R
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(vi) v'}-A,,_B (X,8) for all (X,4)€u and

ubyp &', 8) *1ft v#¢ and 1ft v|, X for all XE€1ftu and

1Ift u#¢ and 1ift u }-A X' = 1ft v¥ ¢ and®

1fev}-A X' = x'; ) .

W Ca+s

Similarly v }-‘A+B (A,Y) for all (A,Y)Eu and

4 Fa+p V Fa+B o

(II) We define inl: A+ A+ B and inr: B+~ A + B by the formulae:
A’

(A,Y') = (a,1") .

vinlu 1ff {(X,8)|X€v}}, . u and

(4

.

)

B L]
Let now f: A+ C and g: B+ C be approximable mappings; wef‘defﬁle .

for .:111 u.x'ECouA_‘_B , v€Con, , land wE Con

[f,8]: A+ B +C by the formula: 2 )

ulf,g]l s 1ff either |—Cs,or 1fftu?™¢ and 1ft uf s .

or rht u #¢ and rhtug's. R

A\

for all sEConC and uEConA_’_B .

Then inl: A >A+B, dinr:B~+A+B, -and [£,8]: A+ B +C are RN
approximable ‘mappings, and we have: - ’ . _  -

a) For gach x€ |A]:

Z€([£f,8] o inl)(x) = v ([£,g] o 1nl) {Z} for some vC x=*v inl u

and u[f,g] {Z} for some u€Con, o

and u[f,g] {Z} for some u€Con, . and

ejther |--c {z}

/
and v Cx={(X,a)|x€v}}, o u

v_C_x"v}-Alftu and
or lft u#¢ and 1ft u £ {2}

1

for some u€Con, . and vex=v{f{Z} for some vC x=ZEf(x) ,

thus (£,g] o inl)(x) C £(x) ; also
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ZEf(x) = v f {z} for some v C x = v inl {(X,A)|X€v} and

{(x,)|X€v} [£,g] {2} for some v c x=v ((£,8] o inl) {Z} for

ache v Cx=1€4 £,8] 0 1nl) (x) , thus £(x)C ((£,8] o 1nl)(x) ; so
"([f,g]loinl)(x) = £(x) .
Hence [f,gloinl = £ .

LI 1 L

(b) Similarly [f,gloinr =g .

. . ' C 0y \
fc) [£,8] (-LA+B) = {2€D, lulf,gl {2} for some u—Jﬂ+B} :
Il
= (S
. = {z€p, |}, (2})
“ o = lC ' ) - ‘ ) .
Lema - o
- The elements oé} A+ B , apart from -LA'*'B , are just the elements
in the ranges of inl and inr ., Lll‘l',
It 1s sufficient to prove the lemma for all the finite eléments of
+ . ’
A+B. So, let :uGConA_*_B and u *{AA_._B Then: .
(1) 1If 1ft uGConA and 1ft u#¢ and rht u= ¢ _then
\ us {WED ple Fpg W
|
o {wenA+B[{(x,A)l§E 1£€ utp 0 W) |
\ .
} = {WGDA+B|1ft u inl {W}} . :
= inl(1ft u).
) \*L (i1) Similarly if 1ft u= ¢ and rht uGCcmB and rht u ¢ {

\ . [ H 0y

then u = inr (zht u). o -

Now, let \[ £,8]': A+ B+ C be another approximable mapping patisfy- L

ing conditions (a) , (b) , (¢ . Then:

b ' (£,8]' ({nl(x)) = £(x) = [f,g] (inl(x)) ,




for all x€lAl; ‘ - .
[f,gl; (inx(y)) = g(y) = [ £,g] (inr(y)) ;
for all y€ |B|; and o ' .
(£,81" L) = Lo (281 (L up) - |

Qo, according to the previous lemma, [f,g])' =[f,g] and therefore

s

[£,8]: A+ B ~>C is untque. ~ ' ‘ O -

Remarg 3.4.8 . .

There 1s a trivial product of no terms, 1 , called the unit type,
or domain. It 1is such that Dl = {Al} , and that equation determines
it up to isomorphism. The domain 1 has but one element, namely -Ll ‘e

Moreover, if A 18 an information syétem, all approximable mappings
r

f: 1 + A are constant and there is but one approximable mapping . -

o ?

f: A+ 1, namely f = 0=’const(_|_l) . . ﬁ ‘

‘o
,

The domain BOOL = 1 + 1 has two elements true and Lfalse, such that

)

any mapping on BOOL 1is uniquely determined by its action on true,

false and , and the values on the first two elements may be .

-‘L BOOL

arbitrarily chosen.

The construction t:hat:‘makes' the whole theory zf domains work 86
smoothly 1is the function‘spac,e constructt: Given information systems
A. . and B we construct the function space A™* B z;nd prove that the,

approximable mappings from A to B are exactly the elements of the

A

domain |A + B|.

¢

Definition 3.4.9 . ', I

Q. »
Let A and B be ‘two information systems. By A + B, the

function space, we understand the system where:

) o = {(v.l,v)LuE(.‘.onA and vGCQnB}; ' b .

A+B
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-

(i1) AA+B = ($,¢); and where, C N .

for all 'n and all w» {{ v.) (u &v )} wehave:
. _ s l “6’ O’ ] nl’

(111) wE€Con, ., 1iff whenever I C {0, +eo s0n=1} and - o
ki I A"B .
. _— ' U {u liel}GCon , then U{y  J1€d €Con, ;
' ; : ) (1v) v[- 1!(u ,v) 1ff Vv hﬁAd}}- v', .
S ,‘, ‘ for all u' G(:t'mA and v'€Con_ . R ’ ’ ' :
‘ B |, 2. .
! _ Proposition 3.4.10 N _ \ ~
% ‘ Let .w = {(ﬁo ,vo), ,(un_l s vnwl‘)}.EConé_’B . 'Ih:n ;he set »
E " ALY .vz’)lU{vilu'[—A‘uiH—Bv'}' v whgte‘.u'EConA and v'ECan J o
o~ E ' defines an approximable mapping from A to B . A .
? .. ° 1
: Proof : ) ) ' N
, E u'}- Y{u, Iu'}- u b= U(uilu'I-AuiJeConA’ U{vilu'}- u, } € Cony , .
f‘ since -w€ ConA B So w 1is well defincd, and we hwe.
T (1) (e HET; \ , .
{ ‘ o~ : §
?{ (11) (u,v)€w and (u,v!)E€uw= U{v\;’t u }-Afgi}l-nv and
L . : o 7 X ‘ - .
i ‘ “ U{vi|u|-Aui}}-nv" ,l‘J'{vilul-Aui}}-B»v vi'= (u,vyUv')Ew ; \
1 /‘ £111) u.!}- u, (u, v)E\-v , and vl—Bv' "u'l-A’u, '
. U{vil|u[-Aui}l-Bv, and v}-Bv"’U{vilu |'A“:L}I—B
\ and vj o v' = U{v |u’ A“i}}'nv - (u,v')€Ew ., ‘ N
’ So' w 1s an approx:l.mble mpping fron A to B. . : . o’
13 f‘_
| i wquwu:!.tiou 3. 10 11 v A \ . "i
N Let A B %d C be informatiqn systems. " Then  » 4 y s
’. e . B «
S (1) A~ B is_also an mfomtion cyétem, and the approxiuble mppiqzs ) R
; £/ A+ B a:u) exactly the lmntn f€ A~ B] . ! SR A A
- L (i ".Thn'r’n.oxisu‘;a.n approximable mapping apply: (B+C)xB 3> C
e boey . . : ,
“ ¢ . such that, S T R .,
”“ .‘,- . -+ s \‘ ( . ‘
- T \ ' L N
t s > &
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apply(g,y) = g(y) ,
¢ P N ~ ) F
for all g: B+ C ¢ y€ |B| . 1 @

(111) For!allﬁnp'pr mable mappings h: A x.B + C <4here i{s one and

., only one 'apprqxi.uable mapping curry h: A + (B + C) such that

)‘/N ' ' h = apply o <(curry h) o fst, snd > .
" Proof: e . g .
: ¥ %

(I) /ﬁuat ghow that A + B satisfies thé ;vi) axioms of defimdtion
{ .

3.1.1. )y

¢

Lo

' C T
(1) let w= {(uo.vo),... ,(uﬂ_.l,vu_l)}ECouA and A
ww' = {(u('),v(')),K... f(ux'n-l ,vl'l_l\)} Cw . Sup%se Ic {Oy... smel}

B
. -3 / ' o '
and V(ui(iEI}ECanA. Then U{ui]‘iel}'U{uj[jEJ}ECon » .
j€J}€Con, . ~Therefore

jl p  Therefore
U{vi]iEI}E‘ConB. Hence w/éc A-»B '

where J C (0, ve.,n-1}. Then Uf{v

' (11)' Let. (u,v) EDA-»B » Then u€ ctmA and ~E€ Con]?‘ « Therefore ‘
{(u,v)}econkiB .t ! 4 ,
/ (111) Let. v {(ho , vo), ,'(uu_1 , vn_l)‘}ECc.zsA_*B and %
\\'—JGI-A-*B (u',v') . Suppose I é {0, s ‘il‘i} _and l{{uilie I}Ud'VeépnA
Then Umgl}EConA . Thus U{vili/e I}EConB . But®
U{vili:_e I} P‘B v'. 'ltbus v (vilie 1} Uyt € Con, . "’S;o wU{(u’ ,v‘\.')]'eConA_'B .
) - (1v) ‘fl'tA+B (¢,¢) for all w€ Con, o ° . l .A o o )

; (V) Let w';{(ué,ve),...,(un_l,v J}€Con, . and (u,v)€w. -

A+B
en VEU {v, }-Aui}. 58 U{:vi](u,:}-Aug}]-Bv - Therefore

4 YFA—}B (u ', v) . . «

)b, a

‘ o~ (Vi) Let we {,,(ub", v ); res 93(“ a~1 ’ n 1 .
] t
Supposg ""A-rs (u1 , vj) . for ‘all JG{O. .m-l} and
, ‘, : R o o N
) 4 b ‘ | ' ‘
’ | \ _ /
r 1Y 2 -

T
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) .
LA N (u,v). #Then we have:

U{viluil—A ui]:}-B v:; for all jQE{O s vosym=1} and

U{vi‘ul—A ua}i'-nv-bU{vi[u:" A Yy and uI-A u;'lH.B vi for all

Vse{ﬂ.SIUI-Au;} and U{v:'llu&-A ui}FBV‘U{XiIuI—A ui}l-Bvi for

all v-fle{v:'llu}-A ui} anf:l U{v:ilul—A ug}}-nv"'u{vi[ul-A u dbg v .

¢

(u,v) . '

Therefore w | AoB

£ .
s& A+ B {is an informatiom system, and we shall show that the ele-

!

: ts are exactly the approximable mappings f: A + B .

Let an approximable mapping £: A +§ . Then, as a binary re-
B ° 4 EDA-*B‘ and ve have:
(1) Let w= {(uo , vo), ,(un_‘1 ,vn_l)} C f . Suppose:

lation between Con

A and Con

I1c{0,...,n-1} and \J{t.xilif':'I)ECouA . Then
({

U {u,|1€1} £v, for all 1€I . Thus

v {uili‘EI} fu {viliEI} . Therefore V ('vilzl.GI}ECcmB .

4

- So wGCanA_,B .

(’ii) Let w= {(uo,vo), ,(un_l',vn_l)} Cf and w }-_A_*)Bsg',v').
Then u f v, for all’i and U {vi|‘u']-A u g v . 4
So u' fU {v’ilu'l—A u,} and V {vilu'}-A ui}|—‘B v . Thus u''fv'.

u
t e

Thérefore (u',v")EFf . o -~

Héence f€ |A > B|.
| Conversely suppose f€ |A + B . Then £ C DAI_*B 1s a binary re-

-

lation between ConA and ConB* and we have: ) .

‘ (1) (4,9)€£
(1) (6, v), @, vVIEE= {(u, V), (u, v}, o (4,vUv])
- (u,vVUV')EF : . ‘ S ) "
) w'hku, (e, EE, vhg v"" (W g (W)= (uhv')Ef,
! 1 \ .

P o
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Hence f i1is an approximable mapping from A to B .

(I1) Let g: B~+C and y€|B| . We define apply: (B + C)x B + C

’

1 3 ¢

by the formula:
(w,u') apply v' 4iff w I-M (u', vf) R

/
for all wECon}’C . u'ECohB, and v'€Con Then

c
apply: (B + C)x B+ C 1is an approximable mapping and we have:
Z€ apply(g,y) = (w,u') apply {Z} for some
(w,u')_C_(g,y)*wFM (u', {Z}) for some .
wCg and u'Cy={(@',{z})} Cg for some u' Cy= u'gf{Z} d
for some u' Cy = ZE€g(y) ,ﬁ thus, apply :(g,y) C g(y) ; also
Z€g(y) = ((u', {Z})} Cg for some u' Cy= ({(u',{z}h}, u')apply (2}
and ({(u', {2})}, u")S_ (g,y) = Zfapply%,y) » thus g(y) C apply (g,y) .
Hence apply(s,y) = 8(y) . | | ‘
(IIT) Let h: A x 3+ C ., Ve want to define an approximable niapping o
curry h: A + (B + C) such that _ |

h= applyo < (curryh) o fst , snd > _ (1)
But (1) 1is equivalent t'o ‘ |

bEy) = (ury DO, . | @

for all “x€ |a] and ye|B| because! /

1]

h(x,y) = (applyo < (curryh) o £st, snd > ) (x,y) Lo

apply(< (curryh) o fat , sud > (x,7))

‘apply(((curryh o fst) (x,y) , snd(x,y)) . |

apply((curry h)((x) , y) y ' ' L

“(cur:_:y h) (x)(y) . -
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mappings f: A+ B . An element of the form {(u ,v)} where u€Con

-81" : '

We define curry h: A + (B + C) by the formula: , \
p
ucurry h) {(v,w)} iff (u,v) hw ,
for all uEConA , c -
Then curry h: A + (B + C) 1is an approximable mapping and for all

vGConB ,and w€ Con
x€ |A| , y€ |B| we have: u '
(curryh) (x) (y) = {ZEDCIV ((éﬁrryhXx)){Z} for some v C y}‘ '
= {ZEDC|u (cur;.'yh) {(v,{2z})} for some uCx
and v C y}

'{ZEDcl(u,v)h{Z} for some (u,v) _C_ (x,y)}
=h(x,y) .

So (2), and equ.ivalently 1), is proved.'

Now, let curry' h: A + (B ~+ C) be another approximable upping satis~

fying (1) and equivalently (2). Then for all x€ |A|, y€ |B| we have:

‘ (curry' h)(x)(y) = h(x,y)
= (curry h)(x)(y) .

So curry' h= curry h and therefore curry h: A + (B +C) 1is
14
unique. ‘ . . a
é -
The elements of the domain |A ~ B| are exactly the approximable

A

and V€ ConB corresponds to the gonstant function const v: A+ B .

Moreover the elements of the form w= {(u',v')|w I_A->B (u',v")}  where

4

wE C(mA +B are the finite elements of the domain and they correspond to
. ' RN T
the simple functions from A to B , A

In general, elements of domains are the 1Mnivs of their finite
approximations. But the approximable mappings form the elements of a .

domain themselves. It follows that the Qppro_ximable mappings can be

”»

A
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4

approximated by simple functions, and that is why we call them "approx-
imable".

| In the above discussion we hav‘e already combined the function-
space constryction with other doma'ins by means of products. We can
also iterate thg,;rrow domain constructor with itself as much as we
like, and this is how the so-called higher types are formed. There
,Ju’e many mappings between these spaces that can be defined iq terms of

the simple notions we have been working with. Some basic higher-type

operators are defined in the following propositions.

Proposition 3.4.12 .
¢
Given information systems A and B there is a unique approxim- “
able mapping const, p: B+ (&#-+ B) such that /
»

coustA’B(b) = (const b)A,B .

for all b€ [B| .

Proof:
Define constA B B > (A +~ B) as follows:
’ .
1 !
v constA’B {(u, v)g iff vC v', .
1
for all . v, v' €Cony ..and uE(zonA . N
Then const A B B+ (A+B) 1is clearly an approximable mapping, and
’ . . - ¥

" for each b€ |B| we have:
., .

1

cc)'nstA,B(I?) = {(u ,v)EDA_;B]v' consﬂ:A,B {(u,v)} for some v'C b}
. = {(4 ,;v)EDA_*Blv =4 v' for some ;." C b} ”
= {(@;v)€D, |vC b}
. 3 ) = '{(‘;’V)EDA-A!!“ (const b)A,B v} - ‘
o= (const b)A,B .
Finally const, . B+ (A+ B) .is obviously unique. | ) °9, O

I

~4
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Proposition 3.4.;.3
- Given information systems A,B and C. there is a unique approx-
imable mapping pair: (C + A)x(C + B) + (C +» (A x B)) vsuch that
) pair (f,g)=<f,g> ,
for all f€|C +A| and g€|C -+ B|.
> Proof : *

Define pair:(C -+

A)x(C +B) - (C > (A x B)) as follows:

vk pair {(w, u)} 1ff (w,fst u) C fst v* and v

for all v*€Con

(C+A) % (C~B

(w,snd u) C snd v* ,

and u€Con X

e .
),w Conc AxB

. Then pair: (C -+ A)x(C - B) *+ (C + (A x B)) is clearly an approximable

mapping and for each f€|C+ A| and g€ |C + B| we have:

pair(f,g) =

A ' -

' Proposition 3.4.14

{(v,u)EDC_*'(A“B)lv* pair {(w,fx)} for some v* C (f,g)}

{(w,u) €D I(w,fst u) C fst vk -

C+(AxB)
and (w,snd u) C snd vk for some vk C (f,g)}

[

{(w,u) €D (w,fst u) C f and (w,s;:ld uw) C g}

C+(AxB) |

{(w’u)eDCtﬁAXB)iw < £3g > u}’

<£,3> .

'Finally pai: (C'+A) x (C+B) + (C+ (A x B)) is obviously unique. O

[

&

for all g€ |B +C
| ‘ . Proof:

Define ‘comp: (B +

Given information systems A,B and ( there is a unique approx-

. imsble mapping comp: (B +C)x (A+3) + (4>C) such that

comp(g,f) = gof, '

| and fE|A +B|.

#

C)x (A+B) + (A+C) as follows:
. ‘ \ R i ("

’ 1]

~

&
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vt comp {{u,w)} 1ff (v ,w) C £st vt and .

(u,v) € 5nd v* for some vE€Con, ,
T ykE .
for all v Con(H)X(A_._B) ,uGConA and wEConc
Then comp: (B > C) x (A+ B)+ (A ~+C) is an approximable mapping
and for each ‘g€ |B~+C| and f€|A +B| we have:

comp(g,f) = {(u,w) EDA-»ClV* comp {(u , w)} for some v*C (g,f)}

{(u, ‘I&‘SDA-*C[(V » W) C fst v* and

(u,v) € snd v* for some vE,ComB and v* C (g,f) 1}

= {(u,w)EDA'_’C|v 8 w‘ and u fv for some\vEConB}
= {(u,w) €D, [u (gof) w} ,
= gof .
Finally comp: (B +C)x (A » B) + (A +C) is obviously wique. O

Remark 3.4.15 (for Cartesian closed categories see Lambek [13 ]) w

Consider the category ( of domains- (objects) and their approx-
imable mappings (arrows) where composition on arrows 1is defined in

3.3.6 and for each object |A| the identity on [A| is defined in
3.3.5. Then,

(1) the domain 1 ,Cu%ﬂu:k 3.4.8), 1s a terminal object

(1) by 3.4.1 and 3.4.3 every two objects have a product;

Q

(111) by 3.4.9 and 3.4.11 for every two objects |A| and |[B] ,

in C ;

there is a power |A +B| .
Thus € 181 a Cartesian closed category and therefore it is a model of

the typed ‘A= calculus. Moreover the typed atomic combinators can be

B
)

defined as follows:

“

e [ VU LU



. (1) 1

Mo v

“A

. (D) Ky = consty
(144) 8-y o= curry (((curry comp) (apply)) o pair)




, " ' CHAPTER IV \\ .

2

The material of this chapter is derived primariy from Scott [15] and

Scott [ 16]. ' \

\\

Section 1. A lattice-theoretic model for the A -éalculus
H N

4 Preliminaries 4.1.0 (see Dugundji [ 7]) . \
“ . "
Suppose that the sequence < Xn , jn >n=0 if an\inverse gystem of
) To-spaces Xn and continuous maps jn: xn+l > Xn . \Lhe inverse lim;t
space X ' of the dystem consists of exactly those infinite sequences
) = < >m '
X *n’n=0 °’ ' o
L . K
where for each n we have: . \*2
€ = ’
. x Xn K\and jn(xnﬂ) xn . - i \\
| The space }'&r—* which 1is a subs/pace of the product space 3 Xn is
! " given the product topology, and the maps gt Ko = X, such that
L ‘ : \
| . Jop (X} = x ‘
wy

. are of course concin_uouh and satisfy the recursion equation:
joon B Jno je='(n4'1) ‘
Moreover for all «x, yé X, we have 1 |

x =y iff jwn(x) = jwn(y) for all n.

Given also a 'I‘o ~gpace Y and a system of continuous maps fn:‘Y + Xn

where for each n
me . .
fn * Jn ° fn+l ’

we can define f_: Y~ X_ by the equation
' ®
& £,0) = <£.()> -p » ' )

. *  for all y€Y ; whence \
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Proposition 4.1.1 : '

Let be an inverse system of continuous lattices

< Dn ? jn > =0
;zhere each jn: Dn+l > Dn is a projection. Then the inverse limit 7paée
D_ 1is also a continuous lattice. T

Proof:

By 2.3.15 it 1s sufficient to show .that. D, as a ‘TO‘- space is injective. l

So suppose X,Y are T,-spaces with XC Y as a subspace, and

0
£ : X+D_ 1is continuous. Define fn: X + Dn by the fequation

(-]

! n
. ) , .

and let fn: Y » Dn be the maximal extension of f,;1 according to 2.3.22.

But

* 3n%a(nty) °f

= JnOfn+l . 7
Therefore £ =j_ Ofnﬂ by 2.3.24.
Then fm: Y +D,  ,defined by the equation

£ = <E (),

for all y€Y, 1is a continuous extension of £f: X~ D,. Hence D_
is injectdive.. : . . n|
Note 4.1.2 : ’

xLCy iff x, Ey, forall n,l~

for all x,y€D .

Proposition 4.1.3 a A ’

‘Let <D , j; >;0 be an inverse system of continucus lattices

uhere,veach jn: Dn+1 + Du is a projectic#u. Then the maps jwn: D, Dn )

. are projections. ' . ” -




)

- v _g8-

Proof: r

7

The proje'ction& jn: Dn+l + Dn , as we know, have their uniquely deter-

mined inverses i : D +D , We can define 1 : D_~+1D by the
n’ n otl ne n o

N

equation: .
' ) /4’\
inm(x) = <ym>m=0
where \
3p Oty if m<n
Y = x' if m=n
10, ) Em>n | Z

-~

for all xEDn . Then we have: .

1) G ol )& =3 G () =3, (<y >ng) =y, "%, for

all xGDn

1Y) G 03, ) =1 (060 = 1. (y))Ey by 4.1.2,, forall
YEDR, .
Thus dinw" ian and 1 o0 J, c idDm .
-
Hence inm and jwn form a projection.

. The maps 1nw: Dn +D, gatisfy the racursion equation

i 4

n+1)¢°°. n

oinw = i(

4

and for all xEDw we have:

x&= L inm(xn) .
=0 "
Moreover we have:

e (xn) = (n+‘1);n oi, OLju) (xn'*'l) £ :“(n+l)':° (xn+1)' ’

. o .
Thus x= U inw (xn) is a monotone lub, and so we can say each x€D_

‘=0 ,
in the limit of its projections X, . In fact, from what we know gbout
, b . ® )

projectiotis, X igs the best possible approximation to x in the space
' - . .

4 &

#e
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Definition 4.1.4 (Construction of the X —-model D ) )

Let D= D0 be a given non~-trivial continuous lattice. Conswider
the continuous lattice [D0 -+ Do] = Dl and let 10 , jo be a pair of '
continuous maps that makes Do a projection of Dl . Define) recursively:

. D 41 =D, >D]
and introduce the pairs ‘in+1 , jn+l making Dn+1 a projection of Dn+2
by the method of 2.3.21. Specifically we shall have {or x € D .+ and
x'GDn+2: - . ' ' SN
'1n+l(x) = :Lnoxojn ,
/\‘jn+l(x')= jno:;'oi . )

Then the sequen(;e <Dn : ::In >:"0 is an’ erse system ‘of continuous

lactices and define D to be the inverse limit space of the system.

Proposition 4.1.5
%&he inverse 1limit D_ of the recursively defined sequence

’ <Dn ’ jn > ;0 of function spaces is not only a continuous lattice but

it 1s also homeomorphic to its own function space [D“° 4'D“] .

Proof:

D, 1is a continuous lattice by 4.1.1.

i (x) = nuo (inmoxnﬂ a jwn) s | , o

for all xEDw; and

t

. ' I
Define 4 :D_~[D +D_] and 3J_:(D_ > D_]+D_ by the formilae: !
E

for all f£€[D;+D_] . o .
' / L N , 3 i
Then i;o ,'jw are continuous maps since the cogpoaition of conc’iguous

functions 1s continuous, and the lattice operation U is continuous. & »‘:f

Let x€D_. - Since-all the lubs are monotone we have: . o ‘ :

UL
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(3,01 )(x) = U i(n+l)°° (‘jmu ol o X410 jwjo )
n=( a .
O 1, o\ x,.)
=0 ('n+l) ntl | -

¢

) = x .
Hence j_o i = id.D .
-]

{

Lemma 4

Y ' e .
Suppose for each n we have U atl) Dn+1

o
Let u= U {1
7 n=0

(n+1)°° (u(n+l)) . 1f

duty Wenta)) = Ueaiy

for each n, then

;o Jatyy W = Uy -
Proof:

" For each n we have:

i(n+1)w(u(n+l?) = (i(n+2)w ° in+1) (u(n+1)) = ‘ . \ '

A 42)e @ Tnt1 0I5t Gz E Lproye Bineay) -

Thus the lub defining u is monotone. Also jw(n+]_) is continuous for
each n., So

Jo(ut1) @ = jm(n"'l)(#o Lo 1))

(1

. | . a | joo(n+1)

IR CUSIUED b o
=0 (artl)e ™ (artl)

Therefore it is sufficient to prove that

, Ja(ot1) A t1)e Cae1)?) ™ Yt 0 . 1
for all m > n., The proof is by induyction on m*n, ;
JIf m=n then g
Ha@@tn) Catl)e C@ir)) = Yaty) -

[

’ M . - N

"v : s ' e {
a . ' ‘\ i

-, . i . Y - a
: . ' { . .
~ ’

. ,
. .

R
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T .
Suppose (f) 1strue for m = n + k; "then - . >
A . o, ! T {,\\
Jw(n+2)jcn+ktz>a ©latig2))) = Sy T )
. . ‘ _ S * *
U1 © 3(ni2)) atick2)e Caiten))) = Jpn Tty \
¢ “ “ ‘ _\‘j .

. » '
Jo @iy (ictzye G i) F S
80, (l/) is true for m =n +k+1, Henc'e (1) 1is true ¥or all m>n. O

Let f€[D_-+D_). Then °

~

(Ap3® = U (1 o, (())oi ) Sy~
K i n=/b *n (nt1) =’ 4 -
,6< ‘- f o .
\ = n,l;lo (in‘” ° j"'(n+l) ( n"FJO i(MI)w(jmo f 0 im'”)) o j”n) ' \
o ' «’
nl:lo (inw o jn;,n ofo inm ) jwn) by the_ previous lemma
’ , 5 »
- o= # (1nmo jmn) okf ) l:J (inmojwn) by the continuity of f
0 =0 ,
f a G‘ II -
= f beqause (i 0] ) = id ’
N =0 ol on’'d D,
! LY
Hence 1,03 = 1d[D 4D ] ? -~ - -
Sso p_=[D_+¥D_}. o . O
Definition 4.1.6 (Dw—aﬁplication) ‘ . ’ J

.

Define a binary operation application ' = ' on D_ by thd

equation: ,
. R S '
X =xey = nL=Jo Lo 00
for all &, y€D_ s Application '*' on D_ 1is well defined because

-

Dwale+Dw] *

Propoeition 4.1.7 °

. “
For all x,y€D_ we have ' .

“leyﬂx.zs\yowz for all z€D_.

» ¢



3 . ' . Proof: e ‘/: | . t |

. -
. ’ - . ° L]
- . P
f.oo - Leg x,y€D . © oo o : ' I
4 b Suppose x ='y and let> z€D_ . Then L e , v
st ‘ . o ¥ : r
Comezm Do s O ey B \ -
5&“0 . =0 . \
. ~ Conversely suppose x:z = ¥z for all z€D_ . Then ¥ - I»
¥ v ' , !
' (x* z)'\1 = (y-z) for all n and for all z€D_ . . Lo
; = ' . . ] ) - s
Thus xn+l(zn) yn_’_l(zu? for a\llr_ n and for all zé’)m . Thefefore R " 1
- . \ .
- L] = \ . !
X 41~ Totl for. all* n. Hence ;: y . . \ Vo . a ]
L] . d r . \
- Parentheses will be omitted by assoclatiqn to the leétéas in ) -calculus.
. - B . . e - - } , L 3
) e ! ~ I3 .
) , Propogijn_&.l.s . : /, \\\_/ // , |
» There exist K, Sf/l?,;/so that <D_,*,K,S> is a combinatory
algebra}. : // . *
4 i ~ . . J
Proof: . /_ - Cd
- : .o : o 1
Define, KED by/thg sequerite: N - ‘a %
" ’ ‘ Ky ¥ 3g&p = 1 . AL
J . Kg= 3 &) = dx: Dyx
o Kn+2~= ?\x: Dn+1 . Ay Dn-"jn(x) fo,t" n>0 . ' o ' , :
- N Deftne SED_ by the sequence: - P ' ) o \ '
. 0 ‘ - -
J . . ’ » ‘
= - . , r X , .’
L STaepel e
\M N Sl=jl(52)=kx:D0:x - ) | o -
- : M‘s\2=j2(53)= )\:.c: Dy - Ay: Dy . x(]) |
‘ < N Sn_‘_3 = A%y Dn+2 . Ay: Dn«l-l ?Az: Dn .‘x(."Ln(z))(y(z)Q) , for‘ n>0.
v . Then for all x,y,z€D_ we have: ’ ‘ ’
N ) o * / - ~ . . ! ' .
S : . 3 ) : ‘ ) .
‘ . S . '
3 ‘ - : . J
? .
w ' ) ’ ) <\ ' 1
/ ’ ' } ' N ‘ . . -
/y - r A } . N ' ]

0 s / ' e o L ) ‘ R . [ . ‘ .' . L“
B A A L * R

i B T U " L e
[ e————— T -




) L ~ T
A j P ———— ,(“ ) . - L4 ‘ ﬂ\z_,_____“ .
‘ / \\ o ) . ! . 1—
~— — v N . - -
N, L ~, . £ ' b
N s y Lo \‘ 93 4
- - . ’
» ‘/ » -] ) . | LY
- (1) Kex.y= Uo Lo (K 4y (xi ), .
- . » ] ‘z: . -
‘ ‘ u : Y ) A
’ = (J (x . ). . -
+
- ] - ?0 n 1 . - H -
r - M ‘ L ‘I . t ‘q
T = Ut _x) L ( '
. ' mo B . - :
L ST E _ ‘ SR
- w s x- y: ex 0 £y (8 n+3("n+z>%;1+1) (z))) ) * ‘
v | " o : :
1' - ) ‘ , f . @ e ’.
’ - o Tm U e L (2 ))(yn+1(z ) - ;
‘ i . . t IFO 4 ~
A} \ L < .
. ' = x‘. 2" (y ;, z) R x b
) ( Thus, according to 1.2,3, .r <D_,"*,K,59> ~1s a co'mbinftory algebra. a
/ C . » r ;o ] ,
. The’ k—mtion is part of .the meta-language as in 2.3.18. -
. ) . . a ,( . . . N
I /Prqgosition ‘4.1.9 * : : P
,‘\ 0 ' There exists £€D_ such that , \
) ~ . ' .o -
() L4+*x+y=x+y and ) .
1 ' ' ' :
(1) if x-z=y-+z for all z€D_ then L°x= 1 y, .
. ~ .
o for all x,ySD_ . S - e .
| YA L : ~
Proof: °, . Lz v
S . ' \ )
\ . Define , "
| )' y ¢ "' ' R PN
- 2=8"' (5-(K*8) K)* (K- (5*K-K)) . b
- ‘ - . ¢
« Then R.E'Dm , and for all x » YED_ we have: ~ ..
- //\ ,
e ‘\— < . -
. / , ’
; .‘ - i
f . ) ™
> N
- F " .
. - . .
" ( 4 \ R ' - )
| ' I : \ .
' ~ ( NG . §
. / L P} : ' ' \ ' ) ‘.'.Q",
ol -\,ﬂ ' , ‘ o v '
« L. ¢ - t ) e ' "x\\‘ . ¢
1 | ' o C N ' Ev \
- e Kt e W T e \ . \:'MMZ L T e e e ;;‘/—,
,,.,.'. e o - o - N - —
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" . . , A »
A -
P . wte or . w "
4 * ~. » ’
' ‘ . T
. P ¥ LN 1
. [N ’ ' .
v - l‘ - [ pd
° o
<

I P A S R R

‘S'(K'S.)'K‘x"(K'éS;'K'K)°x) '.y

.-‘\

'K"S‘JA['(K'X).'(S'K’K)'Y l ‘l‘

S (K*x)* (5'K*K) *y

ﬁ . a‘x.x:(’y-(SoK.K.y) {*E; /
. o ey () e 3

=x.y

- ’

(i;l) suppose x-z = y-z for all .zEDd;

-

: ﬁhsn
' N . ('z-x)'z,"‘x-z’-y-Az*(z-y)-z',l ' 1
- for .all zED;. Hence by 4.1.7 fLex = L-y . : o

Proposition 4.1.10

<D_, _;5/, S,%> 1is & Scott-Meyer A -model,

e

v Proof: - C T . . (

By 4.1.8 and 4.1.9 it is obvious that the quintuple <D, ,K,S, %>
+ \ s
: ® satisfies definition 1.2.6. . ‘ A

3

Now, according to theorem 1.2.8, [[ ]| can be defined in
P . ¢ - ® '

<D_,',K,8;4%> so that <Dw,-,[[ 1> 1is a A-model in the sense

)

of 1.2.4. v a “

Proposition 4.1.11 - . o 1
< <D, +, I l]‘>‘ is an extensional A -model. LT
. Proof: ‘ b

Obvious by 4.1.7. . ' I : a
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Section 2. A domain - theoretic'modél for the ) -calculus

Definition 4.2.1

! -

Lgt' A be an information system. Take an object A outside DA

an_‘d let AD'f (8,4) . .Define the structure D‘=.(DD,‘AD , COI'LD‘, Fp) L~

inductively as follows:

~

1) dyep, ; . C : '

2}

(2) (X,A)€D_. whenever X€D, ;

D A’
3 ([\,(u,v))EDD wherever p,vECon.D; : o . 3 e

» . <

(4) ¢€Cony ; ) ' o -
-(5) , u‘U{AD}E Con.D whenever: uEConD ;- ) .
t6)/ {(X,A)l‘)'(éw}GConD‘ whenever wE€& Con, ; ' S .

. . € ‘
(7 {(, Ch VO)')' ceen (2, (un_1 ’,vn-l))} Con,y \‘provided -
ui-,viECon.D. for all 1 <n and whet:ever }E {0,.... ,n-1} and K ' o ©
U{uiI}EI}.§ConD, then U{viliéI,}eConpw;W”_u_ﬂw- S
@ wbye amaye . 0 T T
9) uU{AD}I—D'Y, 'whenever~ ul—DY. P, ‘ R ': T ]

. 3

(10) {(x,8)|X€w}f [ (W, 1) whenevef wh W ; 7

11) {(, (110 s VO)), cee (8 (a1 v, )))t}D (b, @,v") ’w}menevei'

¥] L. . | ' - Y
{viLu }-Dui}}-Dv and the set’on the left+is'in Con .
'

. 2

Proposition 4.2.2 ’

¢ N . .
Let A be an informatjon system. Then D is also an information

" system. ' e

Proof: ' ’ . ‘ . N
v

Must show that consistency and ehtailment for 'D sa};isfy the axioms

of 3.1.1.\«ﬁ1€\prlm( will be aided by noting that the cases in (&) -

(7) and (8“) - (11) are disjoint - eiccept for a trivial overlap between

0

¥
k]



(8) and (9). L
(1)° Must show that u66onD whenever u-C v& Con .
(a) If v=4¢ it is obvious

(b) If v=‘v'U{AD} where v'EJConD and-u’GCQtLD whenever

°7

u' Cv' 1is the induction hypothesis, then u C v ™ either ug v'
or u=u' U{AD} for some u' C v' = uGConD . !
(¢) If v = {(X,A)|X€w} where w€Con, , then . '>‘
uS_v"u={(X,A)|X€w'} for some w'Sw"‘u*{(X,A)IXEW"}.forx/
! « [~
some w'€ ConA"ﬂ u COl:lD ’ |
‘ . v
@ If v={@, f‘;p s Vg))s aee s (8, (u_yu v 1))} where
uy ,viEConD for all 1 < n and wheever I C {0,...,n-1} and
. ' L.
U{.ui!ie I}ECorn.D then U{vi]iE I}EConD , then u E”v\" u , without
loss of génerality, is of the form . R
— : - .wi‘{(A v—,—éluof',%'—ﬁ}) ;;ﬁ.—;(ﬂT.(uk_l 5 vk_l})} “whete < n—and-we have:
u, ,vi&' ConD "for all 1 < k and whenever I C {0, ... ,k~1} and , -
. , [ P *
U € e U € . . :
‘ {ui|i I}€Con, then {vili 1} € Cony ‘ \\Thus u € Gon,y ‘ N
(11) Must show that {Z}EConD whenever ZEDD .
\"
¥ 4 v
. € .2. .2,
, (a) k{dD} ConD by 4.2.1(4) and 4.2 l('S)
*f “ + - () If (X,A)€D, where XE€D,, then ’ o
. {x,0}= {(x,8)|x€{x}} and {X}€Con, , so by 4.2.1(6),
vc - - t
g K {(X.A)}&'ConD & 4 .
- .- ’ (¢) 1f (&, (u,v))€D,, where u, v€Con, then by 4.2.1(7), \
>,
{(AJ(U’Y))}GCORD o . .
{ :
(111) Must show that u\/{2}€Con, whenever uf 2z.
S ‘ (’a). 1f u}-D-AD ‘then by 4.2.1(5), uV{a}€Con,
“(b) If uU{ADH—DY where ul-DY and uU{Y‘}EConA is the
’ - ' n
£ .




A ] -797.;‘&
e

. ¢ I3

ipduction hypothesis, then by n 2"1(5), "t‘iU{Y} U{AD}EConD
,.(c) 1f (J(x A){Xew}}* (w 8). where wl— W, them °
w-u{w}ecim 0 by 4.2. 1(6‘5 ((x A)]):Ew}u{(w 8)} =

(., bixew . {W}}ECOnD | o ~~

@ 1 (s, (dé.v ) IO N RN ) S T YR |

whfare : )U {Yi[u' ‘.Dui}"‘Dv" and the set op the lefr\. is 1in Cfm,D "
then U{vilu'}-Dgi}U{v"}e Con, by “the induction hypothesis, and ‘
for the set \{"('a ‘f‘”;(uo ) PPN (N (un_:l VNIV, ', v} =,
{(a > (ug vo))/, s (8, (uo g ;”vn_l)) s (4, (u , v) )} where \

(u ,v) = (‘il.' wv') »; we haver . i . 3

u v ﬁaCon.D for all i < n and whenever R3S {0, ... ,n} and C ]
U {u, [151.}e on.D then U{v [iGI}ECon.D so by 4.2.1(7)

{(As (U ’;r, )); g e ’(A’(un 1 ,V_A))}U{(A, (u » Vv ))}ECOILD .

&

.Z—{AD} ut:ﬂz; or\Z-“-{AD}"u'— Z by421(9) of 4.2.1(8) X '

i
giv% "'s “"—Cr for all »AECon.D by 4.2.1(8) . , [ '
(v) 'Fot all uEConD must show u|— Z whenever Z€u . = ‘
(a) If u=-¢ it is obvious . o ,

v

u' U {ay} where u'E€Con and u'I—DZ whenever

() If wu

26 u' 'is the induction hypothesis, then Z&€u = either Z€u' or

(c) If u= {(X, A)]XGV} where wECon , then
(X, 8)Eu = xew»w|- X = u}- (X,8) by 4.2.1(10) T
(d) If u-= {(A; (u ,vo)), oo s (b, (un_l,vn_l))} where
Uy, y ECon.D for all { < n and whenever I g {0, ... yn-1} and b

U{u {iGI}GConD then U{v IiGI}GConD then

. (' , (0, v ))Gu"v'EU{vilu }-D i U{v [u’ I-Dui}l- v' by the

+induction hypothesis, = uf—D ,wW, v )) by 4.2.1(11)

<« ' L
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{(vi) For all u, vGCon.DA and ZE€D must show that if ,v}--DY ’

D
for all Y€u and u}—DZ‘ then VI—DZ .

t

(a) If 2 AD then v}-DZ f'or all vECon.D by 4.2.1(8) o

o

B If z= (X' , 4)- where X'€D then v}-DY for all .

N
YEu" and u|—D(x' ,A)"_vl-DY‘ for.all Y€u and
u = {(x,A)IXEw}l-D (X', 8) = vl (x{, A) for all (X,4)€u and
ur (X, 0)[x€wH | (X, 8) *v = (X, ) [xEu"}} (X,4) for all
(X,4)€u and u= {(X ,A)IXEV}I-‘D (X', a) -:wﬁ}—Ax for all
X€w and vk, X'=w'| X'= vl (X', 4) | .

| "(c) If 2= (o, (u*,v*)) where u*y, v € Con , then ;l}-DY

‘for all Y€u and up_ (8, (u*,v%) = vk Y for all ‘Y€ ‘and

R L O P o D S e
vl—-D (8, ,v,)) for all (4, (u ,v,))€u and
S (N R A 1 S
vE LG8, (), vE))s eee s (8,0 s v N8, Gy v))  for all
(&, (ui ’ Vi))‘Eu and '

RN G U 0 ) R (. I ,vn_l))}l-D(A , (uk , vh)) =
'U{v:'lluil-nu:']}}—Dvi and the set on the left is in Cony -for all"
1i<n, and U{vilu*I-Dui}I-Dv* and -the set on the left ‘is in
Cony = U{vj'lu*}-Duj'}}-Dv* b} the induction hypothesis =

vho (, (ux, ). ' . -

Prop!osition 4.2.3

Given an information system A, let D be the information system
defined by 4<2.1. Then D= A + (D + D)
Proof: ' oo o T x

Take an object A' in neither D, mor D and let

D+

A




'(3) If (X, A)iXEw}GConD vhere wE&Con

- {(A",(uo', Vgh)s <ve 5 (87, 4{u
_Moreover w(}-D)= -

- 99 -

= (A' ,A"). Define ¢: D

| -
Sa+ (D) p ” Pa(opy VY

() olty) = Spipap) .
(11) m((x,a_)); (X,4') whenever XEDA

(111) @((a, (u,v))) = (4',(u, v)) whenever u, vEConD .
Then, acco‘rd’mg‘to definitions 3.4.6, 3.4.9, and 4.2.1, ve have that

(p(D) Also w(ConD) Con,' because:

A+ (D+1)) A+ (D+D)

(1) .1If ¢€ConD then o¢(¢) = ¢EC°“A+(D+D)

(2) 1f uU{AD}'EConD where uGConD and w(u)ECon A+(D+D) is the

induction hypothesis, then ©(uU{ap}) = ¢ (u) U{o(ay)}

= @u)U{a 1€ Con

A+ (D+D) A+(D~D)

A ? then

o({(X,8) [XEw}) = {w((X,a))|XEw} = {(X, ") |XEw}E Con T+ (D+D)

(4) If {8, (uy, v en s (8, (w ,vn_l))}GConD where

B ] '
u ,viGCo% for all 1 <n and wvhenever I C {0, ...,n-1} and

i
U{uifiEI}E\CoﬂD then U{v Iiél}GConD, then

QL (ug 5 ¥y vne (8, (o _ 1Yo 1))})
))} Con

n-1""n-

because:

A+(DD) °

A+(D+D)

(5) 1t u}—DAD where ue’ConD, _ then ®(u) €Con

A+ (D"’D) and

PO F oy Sarody b 50 S 4 agy ®Cp)

(6) 1If uU{AD}I-DY- where u}-DY and where ©(u) |-

A+(D+D)Q(Y) is -

the induction'hypothesis, then ©®(u) V{4 oY) ; so.

A+(D-D) }ITA+(D->D)

o(uU (b o(¥)

At(D+D) . .
(7) 1t {(X,A)IXEW}I- (W, &) where wl— W , then
{((x, A)]wa}}-M(H) (W,a"); so o({x, A)lxew})l—A+(M)w((w A))

(8) If t{(Aa(uo’vo).)""!(A (u lbv l))}i- (A’(u V))
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vhere U{vilu']-oui}l—nv' , then ' ~ -
- ‘((A‘,(uojvo));--- ’(A"(un-l’vn-l))}I-A*'(D-*D)(A"(h' ,V'));’ 8o
" w({(A,(uo ) vo)). cor s (A‘.(un‘;1 s vn_l))}) .}-A+(D+XD) o (b, (u',v"))).
Hence D= A + (D+D) . ' a

Proposition 4.2.4

There exist apgroximsble mappings £: D + A + (D + D) and

f_]': A+ (D - D) +D such that

S -1 -
’ fof " = IA+(D+D) and f- of ID.
Proof:

1

Define f: D +A+ (D D) and £ : A+ (D+D) +D by the formulae:

wf v 1iff o(u)f and

vl oy 1ff vk

A+ (D-D) ¥

for all u€ ConD and vEConA._,_(M) .

l: A+ (D+D) - D are clearly appro;:-

Then f: D+ A+ (D~+ D) and f
imable mappings and we have:
(1) for all y&€ [A+ (D ~ D)

(£o£h(y) = zedy, oo lv (fof-ll) (z} for some vCy) -

{zeD )Iv £l y and u £ (2} for some

A+ (DD
uEConﬁ;, and v Cy}

{z€D {z}

A+ (DD) v A+(DD) ¥ (u)
for some uEConD and v Cy}

and o(u)f A+ (DD)

{ZEDA+(D+D)IVFA+(D-'D){Z} for, some vC y}

= {ZEDA+(M)]V I;\+(D+Ig) {2} for some v C y}

]

Lty O

Hence fof T = Also

Lt (op)

e B - b e, v e m



oAt ot 4y A e e e

i ) '-101"

(41) for all x€ |D|

/q(f-l o f)(x) {YEDDIu (f-l o £f) {Y} for some u C x}

{YGDDIu fv and v g1 {Y} for some

vE Con and u C x} , >

A*(D+D)

Yenyfolw b oy pupy ¥ 884 VE yypupy @ (YD

for some v€Con

C
a+(ep) %04 v S :.:}

‘{YEDD|¢(u)l- ¢({Y}) for some u C x}

At (D-D)

[

{YEbDiul—“D {Y} for some u¢C x}

' {YEDDIu I, (¥} for some uC x}

LG . ’ "

Hence f-lo f= ID . ]

. Proposition 4.2.5

Let A,B,-and C be information systems. Then for all ap;roxim-
able mappings h: A+ (B + C) there is ‘a unique approximable mapping
uncurry h: A x B -~.C such ‘that

funcurry h)(x,y) = h(x)(y) ,
for all x€[A| ‘and y€ [B].,
Proof: ‘ b

. - \
Let h: A+ (B + C) be an approximable mapping. Define

pncurry h:A x B - C by the equation:
o ' W

o u\nc:rry h = SAXB,B,C (hofst)(snd) ,
where SAXB,B‘,C is/ given in 3.4.15. Then uncurry h:A x B +C 1is.

clearly an approximable mapping, and for all x€ |A|, yE€ |Bi we have:

“

]

4

.
B et L g . R R ......_E’ Samo -t b et meey
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.(uncurry h)(x,y)

Finally uncurry “h:

) Definition 4.2.6

Let D be the

f: D+A+ (D+D),

- 102 -

—~—

(SA;B B ,C(HO fst) (snd)) (x,7)

(curfy (((curry cp;np) (apply)o p'air) (ho fst) (lsnd)) (x,y)
((((curry comp) (apply)) o pair) (h o fat,snd)) (x,y)

((curry comp) (apply) (pair(h o fst,snd)))(x,y)

.((curry comp) (apply) (<h o fst,snd >)) (x,y)

(comp (apply, < ho fst,snd >))(x,y)

(apply o <ho fst,snd > ) (x,y) |

apply( <ho fstj,snd > (x,¥))

a:ppIY((h 0 f_sc) (x,y) , snd(x,y))

apply (h(x), y) ;' ‘
h(x)(y5 . ' o

A xB + C 18 obviously unique, a

4
* s -

information system defined by 4.2.1, and let

£1oa+ (D+D) +D be the approximable mappings

" defined in 4.2.4. Then x€ |D| Gsaid to be functibnal iff

x= £ 1(iar(z)) for some z€ ID + D| . Otherwise x€ |D| 1s not
. A

functional.

If x€ |D| is functional, let x

x = £ (inr(x)).

Proposition 4.2.7

-

¥ be the elepent of D + D| such that

-

There exists an approximable mapping apply": D - (D + D) such that

apply'(x) =

for all x€ |D] .

xf if x 1s functiomnal

const J—D otherwise ,




t

\
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Proof: L
um. ' . ¢ .
Define apply¥: D + (D + D) by the equation: .
, . +
"// . apply" = [const (const iu),(curry apply)l gf .. ‘.
] Then apply": D+ (D - D) is clearly an approximable mapping, and for
- . ' '
’ all x€[p| we have:
) //(i) if x 1is functional then
~ : ' r
' apply”(x) = [ const (const _LD), (curry apply)] (£(x))
\: = f const (const _]_D), (curry apply)] (inr(xf)) e
! _ = ([ const (const -]-D)" (curry apply)] o inr) (xf)
’ = (curry-apply) (xf ) , ‘
_ f
=X
(11) 1f £(x) = inl(z) for some z€ IAPthen, &
apply"(x) = [ const (const _{_D)', (curry apply)] (£(x)) )
| = [ const (const _LD), (curry apply)] ’('inl (z)) |,
= ([ const (const _|_D), (curry apply)] o.inl)(z)
= const (const _LD) (z)
= const J—D * .
(L41) 1f £ = |y, then - ,
- apply"(x) = [const (const J-D)’ (curry apply)l (£(x))
- = [ const (const _]_‘D), (curry apply)] (~|-A+(D+D))
= Lo : N
= const J-D . ’ . n]
Proposition 4.2.8 i
51 . %_
There exists an approximable mapping apply' = * : D xD~+D
such that ) : - . /
L A ’ Y
' ] /WJ ‘ -»

e o o o

PSR SN PSR TR S
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. ’ 3
) : '
a?y(xf,y) = :l‘:f (y) if x 1is functional .
o N appfyt’(x’y> = ‘x . y == P . . .
b : g, -LD otherwise ,
| - for all x:, y€ |p| . . ‘ i o
| ' . DN ’
\ Proof: R . SRR 1

. . . o
Define apply' =.:D % D'+ D by the equation:

N ~ apply' = un&rr}; apply:‘ .
Then apply': DxD + D 1s clc;.arly an app'roxi\t'nable mapp‘in'g, and for Coe !
" all x, yé |D| we have: | '
’ (L ';l.f x 1is’ fun;tiona'l s ’ - ) ‘ 3 .
‘apply' (% y) ;&(unc“}xrry apply")tx,y) 2) o . \ - e
e - o | = apply"(x)(y) "
R = xfly) . \ h

E ( (11) 1f £(x) = inl(z’) for some ‘z€ |Al tl;én . . ,
5 ‘ 7 apply () (uncurry apply") (x,y) . L Yo
E ) | = a?ply"(x) () - \ ‘ . ;-
| . | = (cotst [ ) () L
{ ’ \ ’ | \ . - _LD - | . o . " . ‘ _
{\L . S (1141) if f(x) = 1A+(;)w) 'th‘m ‘ : q}' | o ,
| , apply' (x,y) = (uncurry apply")(x,y) - ' . .
i : LT = ey @) T S A0
T C | ' = (eomst [ DG . , S ‘u " m
‘[ ' : o _-l-D . ‘ o o g
t .\ Note that we omit parentheseé b; association_ to the left as in - : s

T it T T T T

‘, ) - , C -‘ | - . - - ‘, o,
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ﬂ'pgosition 4.2.9 o - K
- . ’ g
There exist K, %e IDIP so that < [D|,-,K, S> is a combinatory ,
. e . . .
algebra.
P.roof: e P < : / |
Define - . g 3
. _ -1." -1 : .
K= £ "(inr({(f “odinr) o const, D)). .
Then cleafly Ke [D| and K '{s functional, and for all x,y€ |[D| we
0 - ' [ '
have: * '
_ Ll -1 '
K«x:y=f ({dnr{{f o inr)oconstD D)) + X+ y ,
1 v s ' A
v = ((f]’1 o inr) o const, )'(x) ' vy
-~ * D'D “
A . ' _ . .
. : f (inr(c;onstD,,D(x))) y\ . . .
!’L N
) = constD’D(x).(y) .
= )

X . -

Now let hl: pxD-=+ (D> D x D) be the spproximable mapping defined

by the ;quation:

. .
hl = § ((curry pair) o (apply'" o fst)) (apply' o snd),

. * @,
wl}ere s = sD><D,D—+D,D+D><D , and let h2: D + (D - D) be the approxim- |
able mapping defined by the Tquation: - .
‘( e T . R E
h2 = curty ((f ~o inr)o(((curry comp) (apply'))o hl)) . N\
Then define ‘ | / L
L e

s = £ L(iar((f o 1nr) ohy)) .

Then clearly S€ ID|> and S 1s functional, and for all x,y,z€ ID]

we have:

. S ex+y . z= f-l(imi(f—loinr)ohz)f ‘X .y -z . -
_l , . ) e . M .
= f "(dor(h,(x))) +y - 2 '

BICICEEI - .

[ OT RN | . . JR— P .
— e : - .t 5 i B Lo ———
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=

Thus, according to 1.2.3, < ID!, +,K,S > is a combinatory algebra.

g‘ _ ' -‘1osa

.
(curry ((£"'o tar)o(((curry comp) (apply'))oh ) (X (y) - 2
(£ 0 tar)o(((curry comp) (apply'))oh))) (x,y) * 2 '
(£71 o 1nr) ((((curry comp) (apply'))o b (x,y)) - 2 -~
£} (tnr ((Ceurry comp) (apply")) (hy (x,1)))) - 2
(((curry comp) (apply')) (h, (x,7))) (2)

(comp(app‘iy' » 1y (x,7))) (2) 6 T

(spply’ o b, (x,7)){2) | .
apply' (h, (x,¥) (2)) ‘ E

apply' (S*((curry. pair)o(apply" o fst))(aﬁply" o snd) (x,y) (z))

apply' ((((curry pair)o (apply"' o fst)) (x',y) ) ( (:apply" o snd) (x‘, y))(z))

apply’ ((eurry pair)(apply” (x)) (apply"(y))(z))

apply’ ( < apply"(x) , apply"(y) > (2))
apply’ (apply"(x) (2) , apply"(y)(z)) ’ /
apply'(x + z,y + 2)

x+z . (y:* 2)

@

Proposition 4.2.10

There exists € ‘Dl such that

(1) £ +x+y=x+y and

s

(1) 1f x - z=y . 2z for all 2€ D] then % - x=121 -y,

- forall x,y€ |D|

Proof:

Define

-

l‘-=.Sv' (‘S : (K‘- S§) *K) - (K« (S +K+K).

Then £€ |[D| and 2 is functional. Also for each d€ |p|

OV ——

]

.
e s s 1o - - )
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g -

is functional because

d=8§ - (S -

(S+( -8k .4 -

g -

= K -

=

(K -

< 10_7\- _

-

(R < 8), K)(K + (s - K- K))

S) -K-d- (S -

Sed - (K+d) *. (5 -

S+ (K - d)- (s, K + K)

K

K -

R+ (S+K -

+ X)

K-

K)

- d

L)

S:x-y= hz(x) (y) = f-l(inr(gr(curry comp) (apply'))(hl(x,y)))y {s func-

tional for all x,y€ |D|. . Then for all x,y€ |D| we have:

1 -

(11)

v

X

*y

=
.

.

Xy (5K -K-.y)

suppose X °

S+ (K ~x)-(8 -

K*x-

x - (K Ty . (K .

x‘y-'

d=y . d
RN

are functional we have:

- of@=21-x.

for all d€ |D|;

go L - X= &

thus

2+ x)

l.y .

Proposition 4.2.11

<|pl,*,K,8;¢

Proof:

£

By 4.2.9 and 4.2.10 it

d=y-.d

]

d=x .

= (- ypf

K -

K) -

¥))

by 3.3.4(i1)

S
S

9

y

vy (S~ K'- K:*y)

v

-

L

for all dEbD]; since £ ~x , L'y

gy -d=@-piw, -

> 15 a Scoﬁt—Meyer A - model,

e

+

is ohvious that the 'quintuple < ]DI »*,K,8,8>

gsatisfies definition 1.2.6.

Now, according to theorem 1.2.8,

Id

"<|p|,*,K,5,2 5 80

-

hY

that < |D|, -,

- .

|

- - D N

]l can be defined in -

b s e s

¢

J > 18 a A-model in the
\

» 2
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\

B : * hb
sense of 1.2.4. ‘

+

Proposition 4.2.12

‘

«jp|,,0 10> is not an extensional X -model.

. ¥

Proof: o .

Let x€|D| such that f£(x) = inl(z) for some z€ |A| . Then

A
a4

N eyl =Ly 4
for all yE€ |D| . But x ¥ 'J~D . Thus < |[B|,*,[f 11> is not an.
A - . . U

extensional ) -model. \\\ o 4

The domain-theoretigc modal fails to bJ extensional because D ~+'D

* ,is not isomorphic to D’, If definition A.ZK were modified in the

obvious way to delete all references to A ,f then D + D-.would be iso-

‘ mor§h1c~ to D and heace D would be.an extensional A -model by

- 3.3.4(11) (because every element of D would be "functional").

- s

3 v Vel |
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-and Scott, D.8., A Comﬁéndium of Continuous Latftices, Springer-
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