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ABSTRACT -

New Imbrdved Structures for Recursive Digital Filters

‘Paulo Sergio Ramirez Diniz, Ph.D.

Concordia University, 1984

A Higiga]-filter<synthesis p;ocedure is developed by applying
the concept of wave characterization to an analog configuration which
realizes a continuous-time biqqadratic transfer function by means of
vol tage-conversion t}pe generalized-immi ttance converters (VGIC's).
Then through the u;e of tfansposition a digital structure (TVGIC) is
obtained which realizes simultaneously a lowpass, a bandpass and a
highpass transfer function. This structure also realizes a transfer
function with zeros on the unit circle using the minimum numberrof
multipliers. In addition, a universal digital biquad is derived,

which realizes simultangous]y all the standard second-order transfer

" functions.

A special case of the TVGIC structure is shown to be amenable to
the application of eﬁror spectrum shaping (ESS). ESS brings about a ‘
dramatic reduction in the output roundoff noise.

A systematic procedure is proposed which can be used for the
generation of low-sensitivity digital filter structures which are
amenablento ESS. The procedure is jllustrated by the generation of
several new ;tructurés.

fhg VGIC and TVGIC structures are shown to be freé of zero-input
and overflow 1imit cycles. Then a theorem is proved which establishes ’

J ' K
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sufficient conditions that will ensure freedon from constant-input
1imit cycles in a general digita]-fifter structure in which zero-input
- 1imit cycles can be eliminated. " The application of this theprem to
the TVGIC structure to a sub-class of the VGIC structures, and to the
universal digital biquad 1eads to efficient elimination of

constant-input limit cycles.

A Y

i
Conditions for efficient elimination of constanf input limit -

cycles in second-order state-space structures are deriy;d. These '
lead to new and more economical state-space structures. A design ///
procedure is then descr1bed~based on thpse structures which yields
near-optimal noise performé;ce

A detailed noise analysis is undertaken whereby the proposéd
structdres are compared with the direct-canonic and section-optimal
structures. The results show that reduction can be achieved in the
output noise by usi}g some of the new structures.

Finally, several sensitivity aspects pertdining to the YGIC and | ,
TVGIC structures, the low-sensitivity struétures.and the new '
state-space structures are considered in dgtail. Techniques for the
reduction of the sensitivity in the VGIC and TVGIC structures are
presented. Then an optimal subset of the low-sensitivity structures
is identified. ' )

A sensitivity comparison of the proposed structures with the - \ |’S\\:'u}f“
direct canonic and sectipn-optimal,structureg sths that some of the

v

proposed structures lead to 'significant improvements in the

sensitivity. ¥
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CHAPTER 1
\ .
INTRODUCTION
1.1 General l
PR The rapid development 6f'digita1 integrated circuit technology

in tﬁe last two decades has made digital signal proceésing not only a
tool for ﬁhe simulation of&ana1og syétéms but alfo a technique for the
implementagion of very cbmplex systems,~ It has found applications in
many[areas such as picturefprocessing, speech analysis and synthesis,
biomedical engineering, soﬁar, radar, seigmolbgy and many others.

The main advantages, of .digital systems relative to analog
systems are high reliability, ease of modifying the f11tbr;s
characteristics and low cost.” These advantages led to the digital
implementation of many sig?al processing systems, which were usually
implemented with analog circuits in the past. Also some new

applications became viable after the development of digital

19

-

fﬁtegrated-é%rcuit technology.
The digital filter is in general the most important component in
.most digital signal processing systéms. In this thesis, we are
primari]y'éoncerned with linear, shift-invariant digital filters which
are realized using finite-precision arithme;ic. . | h
In practice, a digital filter is‘implemeAted using software on a’
genera]—purbose digital computer or by using special:purpoFe %ardware.
th both implementations quantizatiop efroré afe inherent-dug'to | -
finite-precision arithmetic. These errors can be categorized as ™

follows: <’




: ) . -2-
1. Roundqff errors commitie% whgp the internal data like
outputs of mu]tiplief§ are qhantized before or éfter .
summations. s g
2. Errors in the amplitude response que to th%’gse of finite ‘
woéd1ength for the represenfation of multiplier constants. e
3. Errors due to,the quantization of the input signal into a sat
of discrete levels. ‘
The errors described above are dependent upon the type of
arithmetic used in the implementation. If the digital filter is
implemented on a general-purpose computer, floating-point arithmetic
is in general available and so this type of arithmetie is the natural
choice. However, if the filter is implemented by means of
¥ special-purpose hardware, fixed-point arithmetic is in general the
best choice since it ;s,simp1e to perform and less costly<in terms of
hardware. In this thesis only fixed-point arithmetic will be
considered.

\

1.2 Quantization Effects in Digité] Filters

The choice of a digital filter structure for a given app]icatioﬂ'
is .based, on eva]uating‘the performance of known ‘structures and
choosing the most suitable one. The effects of quahtization are

important factors to be considered when assessing the performance of

L4

dig\{tal filter struct;;gsz
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«1.2.1 Product Quantization

B

I - Raundoff Noise

k2

A finite-word]engkh muTtiﬁfier can be modelled in terms of an
ideal multiplier followed by a sing]e’nbise source e(n) as—shohn in
Fig. 1.1(a). -

[f product quantization is carried out by rounding and the /
signal levels throughout the filterfare much larger than the
quantization step g, it can be sh&wn [1] - [2] that the power spectral

density (PSD) of e.(n) is

) . .
Se.(2) =9 (1.1)
j 12

that is, ei(n) is a white-noise process. Also ei(c)\and ej(n+k) are in
practice statiiﬁicalJy independent for any value of n or k (i#j). As
a consequence the}P?D of ei(n) + ej(n) is equal to the sum of -their
respective PSDs; i.e.

Sei+ej(l) = Se;(z) + Sej(z) . - ‘ (1.2)

Eqn. 1.2 indicates that superposition can be employed in the

‘evaluation of the output PSD in a digital filter in which several )

noise sources ei(n) are embedded.
In a fixed-point digital-filter implemeﬁiation, the PSD of the

output noise is given by [1] -[2]

(=22 § 6 sz | (1.3)
S (z) = —— G.(z) G,(z 1.3
y 12 =1 ! !

where Gi(z) are the transfe:/ﬁynctions from eachhmultip1ier output
g(n) to the filter output a ‘gbown in Fig. '1.1(b). The wordlength,
. §

‘including sign, is b+l bits and k is the number of multipliers of the

filter.
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The relative power spectral density (RPSD) of the output noise

in decibels (dbs) is given by

- T s (edoT)
, RPSD = 10 log,y ¥—r o (1.4)

1

=

The RPSD is a useful measure for noise performance of digital
‘filters, because it e]%minates the dependence of the output noise on
the wordlength. Hence the RPSD is a measure of the extent to which
the output noise'depend;iypon the internal structure of the filter.
Another useful pérfofmance measure for thkassessment of

roundoff-noise in digital filters is the noise gain or relative

variance of the noisq giyen by ~ f L B
2 w /2 kK .
o . 2. 5Ty |Gi(e‘]“’T)|2 s - (1.5)
a Ye =1 .
o

11 Granularity Limit Cycles

On many 'occassions, signal Tevels in a d{gital filter can become
constant orlvery low, at least for short periods of time. Under such
circumstances, the noise signals become highly correlated from sample
to sample and from source to source. This correlation can cause

B autonomous o;hillations called granularity limit cycles [1] - [3]. In
effect, the filter can become unstable under certain circumstances.

Limit-cycles oscillations can occur in recursive digital filters
implemented with rounding, magnitude truncatian and other types of

! quantization [4] - [5]. -
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In many applications, the presence of 1imitAcyc1es can be a
serious problem. Thus, it is desirable to eliminate limit cycles or
to keep their'amplitude bounds low. \

For wave structures and some other secondf%rder structures,

- the stability can,be demonstrated in the linear gase (jnfinife
precision arithmetic) as well as in the non]%near case (finite

—

precision arithmetic) by means of the second method of Liapunov [6].
In the nonlinear case nwgn%tude trucation is applied to quantize ’
suitable.signals inside the structure such that a defined positive
definite pseudo-energy funcéion is proved to be a Liapunov function
[7] - [9]. -

The concept of pseudo-energy function was first applied for the
elimination of zero-input 1imit cycles in [7] - [9]. More recently
some papers dealing with the control of constant-input limit-cycles
have been published [4], [10] - [12].. In [4], [9] and [10],
controlled rounding arithmetic was introduced and appliedqguccessfu11y
" to certain types of wave structures and in [12] the concegi of
pseudo-energy has been extended to the elimination of constant-input

limit cycles in a particular second-order structure.

™~

~ T

1.2.2 OQverflow Limit Cycles

Overflow limit cycles can occur when the magnitudes of internal
signals exceed the available register range [13]. In order to prevent
the increase of the signal wordlength in recursive digital fi]teri,
nonlinear signal operations, referred to as overflow nonlinearities,

must be applied. Since overflow nonlinearities influence the mo;:\\\\
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significant bits, they cause severe signal djstoﬁtion. An overflow
may start self-sustained, high-ampli tude osci][&tions called overflow
Timit cycles. ;

A structure is considered to be free of overflow limit cycles or
has a stable forced response if the error which i§ introduced in the
filter after an overflow decreases with time ,in s&ch a way that the
output of the nonlinear filter converges to the output of the ijdeal

linear filter [13].

Oggrflow can.occur in any structure in the presence of an input

i N

signal, and input scaliné is ‘generally required to reduce the
probability of overflow to an ac®ptable level. In order to maximize
the dynamic range in fixed-point digital-filter 1mp1éhentations,

signal scaling must be applied so as to ensure that the probabiTlity of
overflow is t@é\kgme at each node. '

The scaling technique proposed by Jackson [ 1], which is applicable
to one's-and two's-complement implementations, requires only the

mdltip]ier inputs to be scaled. IP this technique a scaling multiplier
. R

1
\

\ - .
is used at the input of a filter section, as depicted in Fig. 1.2. ¢The
constant A.can be chosen on the basis of the’Lp norm of F.(z) [1] -{2],
depending on the properties of the input signal. The Lp norm of Fi(z)

is defined asj

. @ ;
°'||.F,-||p=} (;,1—5105 ffi(e““’T)|p d) 1P ‘ | (1.6)

w?ere Fi(Z) is the transfer function from the fi1§9r input to the input
of multiplier Pi‘ The scaling ensures that the amplitudes of multiplier
inputs are bounded by M if lx(n)‘ < M. Therefore, in order to ensure
that all multiplier inputs are bounded by M, we must assign {/

v -
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A=

1
/ (1.7)
SN TR X IR IER IS

where m is the number of multipliers in the section.
The order of the norm p is usually chosen to be » or 2. The L

norm is used for inpyt signals which have some dominating frequency
component, whereas the Lzrnonn is most commonly used for filters with
-

a random input signal. )

It is common in practice to use powers of 2 for the scaling
coefficients, provided they satisfy the overflow constraints. In this
wayy/ the scaling multipliers can actually be implemented by simple
shift operations.

In the case of cascade or parallel realizations of digital
filters, optimum scaling is accomplished by applying‘one scaling
mu1t1p1ierlper section. In some é;scade designs, the scaling

multiplier of each section can be eliminated by incorporating it in

" the output multipliers of the previous section [1], [14]. This, in

general, leads to an 1mprovem¢nt~1n the roundoff noise performance.

1.2.3 Coefficient Quantization

K

During the approximation step the coefficients of a digital

j1ter,are calculated with high accuracy. If these coefficients are
quantized, the frequency response of the realized digital filter will
deviate from the ideal response. In féct, the quantized filter may
even fail to meet the desired specifications.

It is well known that the sensitivity of the filter response to

errors in the coefficients is highly dependenf on the type of
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structure used‘[15] - [1%]. This fact motivated many researchers to
develop ‘Tow-sensitivity structures [16] - [21]. .

In [17) and [ 18], low-sensitivity structures are obtained by
tranﬁforming equally-terminated, LC-ladder filters into corresponding ‘ s
dvgita1 filters. The low sensitivity of the digital filters is due to
fﬁe inherently low sensitivity of the equally-terminated LC %i]ters.

In many instancé; digital filters are realized using a cascade
or parallel connection of second-order sections. If the sections are
realized using the direct canonic form of Fig. 1.3, the sensitivity
prob]ems\becoﬁe serious when the poles are close to the unit circle
|z| = 1.- In order to solve this problem, Agarwal and Burrus [ 19]
proposed a delay replacement scheme whereby z'1 is replaced by
1/(z-1), which yields low-sensitivity structures. On the other
hand, Nishimura, Hirano and Pa1‘[20]‘introduced a delay replacement
scheme whereby z'1 is replaced by z/(z-1), which was-q]so shown to
be useful. s

Agarwal and Burrus [ 19] also proposed modifications to the
recursive bart of the direct canonic form of Fig. 1.3 such that the
absolute values of“m1 and m, become as small as possible for poles
close to z = 1. In this way, the sensitivities of the transfér
function with respect to m and m, become lTow. However, when the
poles are\not close to z = 1 the sensitivities of the structures

proposed in [19] and [20] are no longer low._

k] ]
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1.2.4 Input; Quantization. ;

N
Input quantization is similar to product quantization and can

be represented by including a noise source at the input of the
gtructure. The output PSD due to inbux noise can be evaluated by

using an equation-like Eqn. 1.3. ' L

x
[3

»

“1.3 Digital Filter Structures

Many types of digital filter structures have been proposed in
the literature [1] - [3]. The choice of the structure for a
specific ;pplication must be based on the cost and performance under
finite-precision arithmetic. In this section some important types
of strdétures are briefly described.

T

‘1.3.1 Wave Structures

Wave structures are obtained By applying the concept of wave
characterization [17] - [18] to an analog prototype filter.
Capacitances and inductors are transformed into delays characterized
by z’! and -z'l, respectively. These components are interconnected
through parallel and series adaptors [2], [17] - {{QJ’ [22]. The
synthesis of wave digital filters is described in detail in Chapter 12
of [2]. "

——
1.3.2 Cascade and Parallel Direct Canonic Structures

The realization of high-order digital filters by using a

connéction of direct canonic second-order sections in cascade or in

N
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paraf]el, as depicted in Fig. 1.4(a) and (b), is quite popular.
These realizations are attractive because they are simple and
economical with respect to the number of delays,.multipliers and
adders.

-~ |

1.3.3 State-Space Section-Optimal Structures "~

A synthesis method for obtaining low-roundoff-noise
state-space realizations of recursive digital filters has been
_developed independently in [23] - [24] and [25]. For an nth-order
filter, this syhthesis results in a structure which reguires
(n+1)2mu1tip1iers. The number of multipliers is, therefore, large
and hence these structures are avoided in practice. In order to
eliminate this problem, some authors proposed that tﬁe state-space
approach be applied only to the individual second-order sections of
the cascade or parallel design§ [21], [23], [26]. The simplest
design of optimal second-order state-space structure was provided by
Jackson, Lindgren, and Kim [21].

The structure of Fig. 1.5 is characterized by

5(nﬂ)=§ghf+§uh)

- L4

(1.8)
y{n) = C gﬁn) +D uln)
where ﬁ(n) is a column vector, y{n) is a scalar and
R CE SR PY by ,
L N R N CEP R B R
21 22 2
° /
- - " e ————— : [
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It can readily be used to r{eah‘ze an arbitrary segond-order transfer

function of the form ‘ . r
Bz +8 '
Hz) =d+ 22, (1.9)
) 2 - N '
2% 2h ‘ )

Minimum,@%ndoff, noise can be achieved by using the follewing

' procedure [21]: )

- ! .
1) Define an unscaled system represented by 5', B', ¢, D' such

that
L a
) - ] . 1 /
aj, = ah, = - —
7% "ty |
bt =13 (14,); b .= : (1.10)
1 S WBpls D= o8y :
. By _‘ .
T - 1 .

/7 e = B () gagp )t /ﬁg'ﬁﬁe"l*ﬁfaz]
. -1 - /7 7
291 = (1) (8, Fep T onppmin,]
@ =d.

'

. \ ’ N -.
2) Obtain an opmﬂ °Lp-sca1ed system, re%sented by A, B,-C,

A

Q, as
AT g=11 g
~ T T - _ (1.11)
¢=cT ¢=q |
where .
Fi(z) 0 ‘
. 1= il . (1.12)
: ' 0 HFé(z)Hp '
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F'i(z) are the transfer functions from input node x(n) to the state

variable node xi(n+1) in the system Qﬁ',,g'} C', D') and are given by

Y

- blz+bla| -blal
(2 - : 12¥D581,-01359
z"-{a))*ay,)z+a 1 a59-2) 52y
(1.13)
blz+blal.-bla!
a2 - 2EtD 185,703y .

‘2 1 ] ] ] .l i
z7-(a) 4ay, )24} a5)-21 585,
The transfer functions from the state variable nodes xl(n+1) and x2(n+1)
to the filter output are given by

C12¥351Cp"355C1

Gl(z) =
T 2 *

z27-(ay)*ay,)z%ay 8,02 58,

(1.14)
c,2+a,.,C,-d,,C !
() - 27*a1,¢1-31Cy .
2
z —(a11+a22)z+a

11%227%12% ‘ :
These are needed for noise analysis. -

The resulting second-order structure is optimal for LZ scaling.
However, it may be scaled in terms of L_ scaling which yields a
near-optimal structure. ?he optima] second-order state-space section
is often referreqmas sed;ion-optima]lstructure.

Another important class o state-space sections are the normal
sections which gatisfy the relation [26] - [27]

AN =AT A

In section-optimal and normal sections, overflow and zero-input

Timit cycles can be_ eliminated by applying magnitude truncation to the e

state variables [28] - [29].
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1.3.4 Error Spectrum. Shaping Technique

fhe error spectrum shaping technique (ESS) comprises of the
generation of an error signajs and the application of local feedback
for the purpose of forcing zeros in the PSD of the output noise [30] -
[35]. The technique is implemented by replacing each and every adder

whose inputs include at least one nontrivial product¥ by the recursive

‘sub-structure shown in Fig. 1.6(a) or (b). The complexity of hardware

increases if the number of adders of the type described is increased.
This fabt makes the cascade or parallel connection of direct canonic
sections particularly useful for ESS aﬁgljcation, because it requires
only one ESS sub-structure per second-order section.

"The choice of the coefficiJﬁEi\Eg and b1 must be made sgch that
the output PSD is minimized. The optimum values of b0 and b1 for a
given pole position, where b0 is restricted to 0, + 1 and b1 to 0, +1
and + 2 are given in reference [35].

The values of bij and b . that minimize the output noise in a

0j ‘
cascade design are given by solving the following optimization

problem:
m
2, -1 2
win |[(27%g;#27 b j+1) x Ho(2)|]5 - (1.15)
bo3+1y o

Thg optimum value of coefficient bOj for first-order ESS is given by

i
,
7

*A,signal muitiplied by a noninteger constant
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Fig. 1,6% Application of ESS

(a) First-Order ESS
. (b) Second-Order ESS

’._\ .
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whereas the optimum values’of‘boj and b1j for second-order‘ESS are
given by [34]
P.P,-P,P

b = 12713
15—
2 .2 ~
P5-P7 .
) (1.17)
2 i .
b o T17PaPs
1} R @
P3 - Py ’
where
m JuT 12
Py= [P m W (@D coslw) do,
- L=] . 1

. m : :
Py = /* | o H ()] cos(u)du,
L=J .

-R J
x | M juTy12 b
Py= [ | m (] *a /7
. -1 L=j Y -
s -
and Y o ‘
T=1
The~01tput RPSD s given by ' °
- m -1 -2 M 2
RPSD = 3+ § [(1/n ) (1sb 27 +bp.27)) M (2)] (1.18)
1=1 . L=1

where z=e‘j“’T and Ay is the scaling constant for section i.
Limit cycles are likely to occur in structures using ESS.

However, their amplitudes are expectet to be low [36] - [37], and for

~
some choices of coefficients b, and bl’ zero-input granularity Eﬁmit /’

0

cy¢les can be eliminated ﬁfﬁ].
A

i
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1.4 Scope of the Thesis

| A number of different approaches to the realization of digital
filters have been proposed in the literature. However, no general
agreemept has emerged so far as to which rea]ization.is the most
advantageous. quyapproaches that seem to have attractive features in
the realization of high-order digital fi]teté&:re the cascade and
parallel realizations, where second-order sections are connected in
cascade or in parallel. tThe main advantages of these realizations are
their higher modularity, which simglifies VLSI implementation, the
simplicity of roundoff-noise and sensitivity analysis, and the ease }
with which 1imit cycles can be studied. In addition, when fixed-point
arithmetic is used, these rea]izaiions can [be less noisy and/or ’
sensitive when compared with other forms of realization, shch as
ladder-based wave structures [16] - [18].

The motivation of t ks work is to generate second-order

digitalg%ilter structures, which present several desired

1

characteristics together, such as reduced roundoff noise and ,
sensitivity, elimination of overflow and granularity limit-cycles,
reduction of the number of multipliers, and simultaneous realization
of different types of transfer functions by one and the same
. structure. . )
K]though all of thé above desired features are unlikely to occur
‘in the same second-order structure, we have been able to develop some
structures that aEhHeve most- of these features. ‘
In Chapter 2, we begin by developing a digital-filter synthesis

based on the analog voltage-conversion type generalized jmmittance -
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converter (VGIC) by using the wave characterization. By means of this

synthesis, several VGIC structures are obtained which are canonical

with. respect to the number of multipliers and delays. Through the

capp]icatioﬁ of Tellegen's theorem, a transposed VGIC structure (TVGIC)

L s .
is obtained which realizes simultaneously a lowpass, a bandpass, and a

'highpass transfer function. It can also realize a.transfer function

1

‘with zeros on the unit circle lz‘ = 1 using the minimum number of

“multipliers. A special case of the TVGIC structure is shown to be
' I

ameﬁab]e to the application of ESS technique. Subsequently, a

universali!@gita] biquad is developed which realizes all the standard

-traﬁ;{s;AfUnctions simultaneously.

Chépfer 3 describes a systematic and exhaustive procedure for
thg géneré%ion of’secondrorder, low-sensitivity, digital-fi]ter
structures wﬁich are amenable to ESS. The procedure is used to
generate two sets of structures which include many new as well as a
few known structures. Collectively, these structures can realize any
stable second-order transfer function. The emphasis is placed on
generating second;order structures which can be used in cascade or in
parallel for :h% realization of high-order transfer functions.

Chapter ,4 begins by showing that zero-input and overflow limit
cyg]es can be eliminated in the YGIC and TVGIC structures. A new
théorem is fhen proved which establishes sufficient conditions that
will ensure freédom from constgnt-input limit cycfes in a general
strdcturé‘in which zero-input limit cycles can be eliminated. By
using this theorem, it is shown that Eonstant—input limit cycles can
be e]i;inated in a subset of the VGIC structurés, in the TVGIC

structure, and also the universal digital biquad proposed.

o

\

~
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In Chapter 5, the theorem propoged in Chapter 4 for the
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elimination of constant-input 1imit cycles is applied to a general

state-space second-order structure, and the conditions for efficient

elimination of constant-input limit cycles are established. Thése
T;onditions lead to three different state-space second-order
structures. In ad&ition, a design procedure is describedlwhich'
yields, near-optimal new state-space structures.

Chapter 6 studies the effect of product quéntization in the,

« VGIC and TVGIC structures and ayso the TVGIC structure with ESS

incorporated, and several comparisons are made withdthe diréct
canonic and section-optimal structures. Aﬂéo the Tow-sensitivity
structures of Chapter‘3 are compared with the section-optimal
structure. Subsequently, the new state-space and section-optimal
structures éke compared. The various comparisons are made on the
basis of output-noise spectra in several sixth-order filter designs
which include lowpass, highp%ss, bandp;sé and bandstop filters.

In Chapter 7, a procedure for iuproving the sensitivity

P \ /

performance of the VGIC structures is described. ”The sensitivity
properties of the low-sensitivity structures of Chapter 3 are then
discussed. For every transfer function, a choice of at Teast two
structures is available but, through a sens{tivity analysis, Fhe ‘,
optimum one can always be identified. This chapter also Hea1§ with
sensitivity properties of the new state-space -and sectioﬁ-optima]
structures. The effect of coéfficient quantization i§ treated at

length by computing the actual amplitude responses under fixed-point

finitg arithmetic in several sixgk-order filter designs.

i
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4

"Exteﬁsive comparisons ‘are then undertaken. The VGIC structures of

Chabter 2 and the low=-sensitivity structures of Chapter 3 are compared
with the direct canonic and section-optimal structures. In aadition,‘
the new state-space structure of Chapter 5 is compared with the
section-optimal str;cture.

' The thesis concludes with overall comparisons of the structures
proposed relative to the ponventiona] structures. Specifically, a
“table is constructéd which gives the advantages and disadvant@ges*ﬁfah.

J

the various structures.’

s
A‘(Mf4 .t
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CHAPTER 2
YGIC-BASED STRUCTURES

P

2.1 Introduction

Given an ana]og-fi]ler configuration, a corresponding
digital-filter structure can be obtained by utilizing the method
proposed by Fettweis [ 17], [18]. In this chapter, the method of
Fettweis is used to generate a -general biquadratic digital-filter
structure from an active analog-filter configuration which is based on
the voltage-conversion generalized-immittance converter (VGIC) [38].

Then severaT'sggcific structures are deduced which collectively can v
realize most of the standard £ransfer functions encountered in the
design of cascade or parallel digital filters.

Through the application of Tellegen's theorem [2], a transposed
version of the general VGIC (TVGIC) structure is derived which offers
several advantages. First, it realizes simultaneously a lowpass, a
bandpass, and a highpass transfer function; second, it realizes a {/ﬁ
transfer function with zeros on the unit cifcle using the minimum
number of multip1iers;‘and third, it is amenable to the application of
error spectrum shaping (ESS), which is a technique for the reauction

of roundoff noise (see Sec. 1.3.4).

4

The chapter concludes with a comparison of the coﬁbutationa]
complexity en;ountered ip YGIC and TVGIC structures relative to that
in the direct canonic and the section-optimal structures [21]. The
latter is considered as a very-low-noise structure and is in direct -

competitiori with TVGIC structures incorporating\ESS.

»
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‘2.2 .Generation of the Active Analog-Filter Configuration (\x\,/

The analog voltage-conversion type generalized-immittance
converter (VGIC) [38] is a two-port network as depicted in Fig. 2.1.
(
It is characterized by the voltage-current equations
4
Vi (s) 2 ris),(s)

Il(s) = - Iz(s) (2.1)

\.,‘

where r(s) is SQ}d to be the conversion function and the pairs (Vl,
Il) and (VZ, 12) are the voltage-current pairs of the VGIC at ports 1
and 2, respectively. .

The VGIC has not been used extensively in the design of
RC-active circuits, because it is di::;g&Tt to implement with
conventional active devices. However, no such difficulty is
encountere& 1q using the VGIC 1in the design of digital filters.

The analog configuration shown in Fig. 2.2 realizes a

- continuous-time biquadratic current transfer function of the form

= 2
Il(s) K,R,s“+K,R s+K0R0

. 22 171 \
1.(s) 2
i %s+%smo
2
czs +cls+c0

= 9 (2.2)
st +Rls+R0 ,

v
~ ~

where r(s) has been assumed to be equal to s. Since I0 = 11 = Ié,

according to Eqn. 2.1 and Fig. 2.1, the same transfer function is

~ ~

obtained when current IO or I2 is taken as the output.
The motivation to start with the configuration of Fig. 2.2 has

been based on the fact that several equivalent outputs are available,

~ L4 ~ ! ‘
namely, IO' Il and 12, and additional equivalent outputs can be

‘l
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located after the prototype is converted into a digital structure.
This property provides a design flexibility which will allow us to

generate some interesting structures in Secs. 2.3 - 2.4.

2.3 Digital VGIC Structure

[

if is well known that any analog n-port network can be
characterized by using the concepts of incident and reflected wave
quantities. Through the -application of the wave characterization, and

the use of the bilinear transformation, digital realizations can be \

!

J

: | .
obtained for passive and active elements as described by Fettweis [17]
4

€
]

- [18]. By this means, analog n-port networks can be converté& into™
corresponding digital networks. In order to obtain a digfta]~%ilten ’
structure from the netwprk of Fig., 2.2, we need only develop an
economical digital realization for the VGIC.

The VGIC of Fig. 2.1 can be described in terms of the wave

L4
characterization as

1 I
A=V, ‘A, = ¥V, +.°2
R 2= Y2tk .
1 2
B, =V, - I, B, = V, - Ly (2.3)
‘ % Gy
11 = - 12, | V1 = r(s)v2 )

wﬁere A; and B, (i=1,2) are the inéident and reflected wave -
quantities, respectively, and Gi is the port condutance assigned to
port 1. h

After some manipulation, we obtain the values of B1 and B2 in

terms of Al’ A2’ Gl’ G2 and r(s) as
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r(s)G,-G 2r(s)G
B, = mreyre Ay * 2 A
1 7 FUsSIG, 4G 1 r(s)G;+ 2
172 172
(2.4)
2G G,-G,r(s)
B = 1 A+ 271 A .
2 r(s)Gl+Gz 1 r(sIG1+Gz 2
‘Now by applying the bilinear transformation
s > z-1 \
- Z—+r : : b4
and by letting G1 = G2 and r(s) = s, we obtain
- =1 40 -1
B1 -z 51 + (1-z )A2
(2.5)

-1 -1
B2 = (l+z )A1 +rAzz .

In this way an economical digital realization of the VGIC can be -
derived from Eqn. 2.5 as shown in Fig. 2.3.

Now by usipg known digital realizations for current and voltage
sources and series interconnections [22], a digital structure for the
analog network:. of Fig. 2.2 can be obtained as shown in Fig. Z.jg

Outputs yo(n). yl(n) and yz(n) correspond to the cases where currents

»

~

10, I1 and I2 are taken as outputs, respectively.
The actual transfer function realized turns out to be a

-. transimpedance and is given by

Yz 2R Yj(s)
. (2.6)
X-‘Z) ‘ Iilsf

1

where j = 0, 1,2.

o

. NN P VAU,
L T rea— - g > .
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(b) Digital VGIC with r(s)=s
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The structure of Fig. 2.4 can assume several forms, depending o6n
the type of series adaptor used. If the adaptor reported in [22] is
used the digital-filter structure of Fig. 2.5 is obtained, where yo(n)
to y7(n; represent the various equivalent™outputs. The equivalence of
outputs y3(n) to y7(n) with respect to yO(n), yl(n) and yz(n) Ean bg
demonstrated by inspection. »

The availﬁbility of several equivalent outputs in Fig. 2.5 leads
to a reduction in the number of adders. In addition, through the use
of transposition, a digital structure can be obtained with several
equivalent inputs. By choosing the input appropriately, structures

AN
can be obtained in which either Timit cycles can be eliminated or the

level of quantization noise can significantly be decreased thtoudh the
use of error spectrum shaping (see Chapter 3).

If signal y3(n) is taken as output in Fig. 2.5, the number of
adders is decreased and, furthermore, the scaling of the filter can be
simplified. The transfer function in this case becomes .

Y5(z) ) (c0+c1+c2)z2 + 2(cy-cylz + FO'C1+C2

X(z7

4
i z +(m1-m2)z + m1+m2—1

e (2.7)

/ Fig. 2.6 shows the different types of digital sections that can
obtained from the general st}ucture Fig. 2.5, in the cgie where‘
signal y3(n) is taken as output. The new structures arémcqnonica1
with respect to the number of multipliers and unit-delays, except for
the allpass structure which is not canonical with respect to the

number of multipliers. The number of adders is always comparable to

that in the corresponding direct canonic second-order structure.
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:

An alternative, two-multiplier allpass structure can be

generatedlas illustrated in Fig. 2.7(a) and (b) and is characterized

1l

by

Y,o(2) = HBP(z) X(z) - X(z)

2
= [(2-m,-m,) 2 -1
172 zz+(m -m, )z+m -1
1M B Mg
(l-ml—mz)zz-(ml-mz)z-l

= X(z) o (2.8)
z +(m1-m2)z+m1+m2-l ‘

The YGIC bandpass structure in Fig. 2.7(a) can be generated utilizing

AP
-1] x(z)

yl(n) as output in the general structure of Fig. 2.5. ) s

/ ¥

/

/

2.4 Universal Digital Biquads with Simultaneous Outputs

An interesting property of the general VGIC structure of Fig.
2.5 is that three different types of transfer functions can be
obtained by setting any two of the input multiplier constants, Cyr
and <, to zero. That is, a Towpass transfer function with zeros at
z=-1 is obtained if c1=c2=d; a bandpass transfer function with zeros
at z = + 1 is obtained if c0=c2=0, and a highpass transfer function is -
obtained if c0=c1=0. This is a very useful feature because if the ) \
é}ansbose of the VGIC structure is formed [1], a second-order section
can Be gererated, as illustrated in Fﬁg.mpz.s, which realizes
simultaneously a lowpqis, a bandpass, and a highpass transfer
"~ function. This structure also realizes a transfe; function with zeros
anywnhere on the unit circle using the minimum number of multipliers.
Such a trapsfer function is useful for the design of elliptic filters.
In addit$6CT an allpass transfer function can be obtained, which

unfortunately is not canonical with respect t6(ta§ number of

multipliers. The various sjmultaneous outputs of this structure are
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illustrated in Fig. 2.8, where y 5(n), ygp(n) and y,o(n), indicate the
lowpass, bandpass, and highpass outputs, respectively. Output yN(n)
corresponds to the transfer function with zeros on the unit circle,
while y(n) corresponds to a general biquadratic transfér function.
Note that only two inputs are indicated in Fig. 2.8, namely, xl(n) and
;z(n), although eight aregpossib]e. This choice appears to be optimum
at this point since limit-cycles can be eliminated by using xl(n) as
input (see Chapter 4). Alternatively, the output noise can be reduced
by using xz(n) as input (see Sec. 2.5).

An élternativé universal digital biquad which rea]ize§7 \
simu]taﬁzously a lowpass, a highpass, a bandpass, an a11pass,'and a
general biquadratic transfer function can be derived by combining the

VGIC bandpass and allpass structures of Figs. 2.6(b) apd 2.7(b) with !

the Towpass and highpass structures of Verkroost [ 11] as depicted in -\
Fig. 2.9.
™~

)

2.5 meGIC Structure With Error Spectrum Shaping

By examining further the available inputs of the TVGIC structure
of Fig. 2.8 it is noted that xz(n) is incident to a node where the
outﬁuts of multipliers P1 and P2 are also incident. This property can p
be explored further by noticing that if a filter is realized as a
cascade ‘connection of TVGIC ;eﬁtions, the outputs of multipliers P3,
P4 and P5 of one section are incident to the same node as the outputs
of multipliers P1 and P2 of the fo]]owiné section. This is % very

important property because it leads to a very efficient application of

\

o
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}

\ N ,
e

X, (n)

Fig. 2.9: Universal Multiple-Output Biquad
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error spectrum shaping AESS) [ 4] (see Chapter 3). The TVGIC structure

- 42 -

with a second-order EAS can be obtained, as illustrated in Fig. 2.10.
/

Its application leads to a considerable reduction in the roundoff

noise, as will be demonstrated in Chapter 6.

2.6 Comparison of Computational Complexity "

The number of arithmetic operations in a digital structure is an
important factor in evaluating its effiéiency. Table 2.1 shows the
number of arithmetic operations in the various VGIC-based, in the
direct canonic and in the section-optimal structures. As can be
noted, the difference of the VGIC and TVGIC structures relative tohthe
direct canonic struZ%hre is marginal. The TVGIC with ESS is always

more economical than the section-optimal structure, because the latter

structure utilizes an excessive number of multipliers.

A .

>

2.7 Conclusions

In this chapter new second-order digital filter structures have
been obtained, by’applying thé concept of wave characterization to an
active analog-filter configuration comprising‘res}stors and VGIC's.

The TVGIC universal digital biquad realizes simultaneously a
}owpass, a bandpass and a highpass transfer function. It cén also
iea]ize a transfer function with zeros on the unit circ]e(SSing the

?nimum\ﬁymber of multipliers. Furthermore, this structure was shown

to be amenable to the application of error spectrum shaping.
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TABLE 2.1 ®
Arithmetic Operations
Arithmetic Operations
T.F. with :
Lowpass Bandpass Highpass |zeros on General
" .the unit Biquad
circle
;
+ X T+ X |T)+]X + X TH+ ] X
VGIC 52| 2|4f2|2]5]2 713]2(8]5
5121214122152 7131 2})18]65
1st-
TVGICforder } 7 | 3} 3163131713 9141 3] 106
ESS .
2nd-
order | 8 | 4} 417414184 100 51 411} 7
_ ESS
Direct
512t21312)2(|5|2 4 131 2414]65.
Canonic ]
Section-
6191 21619)2)16]9 61912619
Optimal !
+ = Additions ‘
X = Multiplications
T = Unit delays :
) !
l »
- Ry PO
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~-The VGIC universal digital biquad obtained in Sec. 2.4 by using”

L]
the bandpass and allpass sections of Figs. .2.6(b) and 2.7(b) realizes
simultaneously a lowpass, a highpass, a bandpass and an allpass
transfer function, in addition to a general biquadratic-transfer

function. y

<

The flexibility provided by the TVGImg\IJéIC universal digital
biquads in terms of the availability of multiple outputs' renders these
structures attractive for the fabrication of a universal VLSI chipm
which can be used in a multiplicity of digital-filter applications.

The VGIC and TVGIC structures weretcompared with the direct‘

1]

canonic and the section-optimal structures from the point of view of

\

computational complexity. It was found that the VGIC and TVGIC

" structures are comparable to the direct canonic structure except for a

small difference in the number of additions. The TVGIC structure with
ESS, on tha other r{and, was shown to be more economical than the

low-noise section-optimal structure.
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CHAPTER 3

LOW-SENSITIVITY STRUCTURES WHICH ARE AMENABLE TO
ERROR-SPECTRUM SHAPING

Y%
3.1 Introduction

Roundoff noise can be reduced in recursive digital filters by
increasing the wbrd]ength [2], by choosing the structure aeg;opriately
[16] - [17], or by applying error.spectrum shaping (ESS)'TéO] - (35].

As was mentioned in Sec. 1.3.4, ESS is a quantization technique
which involves the generation of an error signal and the app]ication
of local feedback f6r the purpose of forcing zeros in the power
spectral density of the output noise. The technique can be
implemented by incorporating a quantizer and a correspon@ing
sub-structure between the output and input of each and every adder
whose inputs‘include at least oneqnontrivial product, but its
application entails an increase iQ the complexity of hardware.

The application of ESS to the direct form tends to bring about a
dramatic reduction in the output roundoff noise [30] - [35]. :
Unfortunately, however, the sensitivity to coefficient quantization is
not affected to any significantlextent by €SS and, as is“wel1 known,
it cam be large, in particular if the poles of the transfer function
are close to the unit circle of z plane [19] - [20].

In this chapter, a systematic procedure is described which can
be used for the generation of low-sensitivity digital-filter

structures which are amenable to ESS. The procedure is then used to
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generate a set of stryctures which includes several new structures as
well as some known structures like those of Agarwal and Burrus [19],
and Nishimura, Hirano, and Pal [20]. The emphasis is placed on
generating, economical second-order structures which can be used in
cascade or iﬁ parallel for the realization of high-order transfer =
functions.

Y28, Synthesis Procedure

The application of ESS in a second-order structure is
economically attractive only if product quantization can be achieved
by using no more than one quantizer. Consequently, a second-order
structure is amenable to £SS only ; all nontrivial signal-coefficient
products in the structurqyaréfgnputs to only one adder.

A general sécond—order structure can be constructed as depicted’

" in Fig. 3.1, and if coefficients m; are assumed“to be nonintegerl
constants and substructure N is assumed to be free of noninteger
multipliers, a general second-order strucéure is obtained which is
amenable to ESS. By applying a systematic and exﬁausiive search to
the general structure of Fig. 3.1, all possible low-sensitivity
structures can be generated and appropriate design formulas can be
deduced. ‘ o

In this section, the above approach is used for the realization
of allpoie transfer functions. The realization of biguadratic
transfer functions is accomplished through zero-placement techniques

and is considered in Section jtj&j ?
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The simplest structure that can realize any second-order allpole
transfer °f~unct1'on must have three nodes [39,] where each node may
represent a distribution or a summation point. Thus“;‘ the st/ﬁ/c‘ture
shown in Fig. 3.2 is the simplest special case of the.gener'a.‘ﬂ
structure of Fig. 3.1. Branches A, B,*%%D and E represent unit
delays or .int‘eger multipliers whose multiplier constants are

restricted to O, + 1, + 2. TK® structure of.Fig. 3.2 realizes the

.

following characteristic polynomial -
o

y 2
1A+ABE+m2AB+ABCD+m1ABD)z

D(z)=(1-BD-AC-m
=2% +az +a, (3.1)

1 2 ’
In order to avoid delay-free loops [2] and maintain the number

of delays to the minimum ?/two, the following constraints are needed
1 1

A=z andBor D=2z ". ' (3.2). ~

Therefore, two cases are possib]e,' as follows:

Case I: A

Case [1I: A

D_

L]
™~
.

The corresponding structures are illustrated in Figs. 3.3 and 3.4.

) |
o Y

Case I: - \

For Case I, the cha\r\aqteristic polynomial of Eqn. 3.1 becomes
2

Nz) =z —z(C+D+m1)+CD+mlD+m2+E (3.3).
In order to obtain low-sensitivity multipliers C, D and E must be
) L
chosen as follows [19]
C+ D= Int, [-al] ) (3.4)

B =2z -
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and ’ 2 )

E = Int. [az + @y D + D] (3.5)
where Int. [x] means the closest integer to x. Eqns. 3.4 and 3.5
force the values of my and m, to be low in order to ensure low

sensitivity of the transfer function with respect to changes in m and

m &

2° ,
" The choice of structure tends to depend heavily on the pole

positions. Therefore, several possibilities must be examined.

If the poles are close to z = 1, then ai = - 2 and ay = 1 and so

‘c+D=2. ! ~ |

We chn thus assign

D=1, C=1 andE=20-
This choice of coefficients yieﬁds a structure due to Agarwal and
Burrus [19], which will be referred to as structure I-1.
Alternatively, if

D=0, C=2, andE =1
another structure due to the same authors [19] is obtained. This
structure will be referred to as structure 1-2. A third‘pgssibi]ity

is obtained by letting N ‘\
" D=2, €=0, andE = 1. :

rd

This structure will be referred to as structure I-3,‘and is to the
author's knowledge new. « ' 2 |

By considering poles which are close to the unit circle, several
othef new structures can be obtained for different ranges of values of

a; as shown in Table 3.1. d &



Specific Structure
‘ Struc

TABLE 3.1
Based on the General
re of Fig. 3.3

o
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COEFFICIENTS
[-1 1 1 0
"2-0<a1<‘105

[-2 0 2 1
I-3 2 0 1 -2.0< <-1.75
1-4 2 0 2 -1.75¢q <-1.5
I-5 0 1 1

— . -1.5¢a<-0.5
I-6 1 0 1 -
-7 0o 0 1
I-8 1 -1 2 -0.5<a1<0.5

K

I-9 -1 1 2 o
[-10 0 -1 1
I-11 -1 0 1 0-5<a1<1.5
[-12 -2 0 2 1.5<a1<l.75
1-13 0 -2 1

- 1.5<a1<2.0
1-14 -1 -1 0
1-15 2 0 1 1.75¢1<2.0
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Case II: ' .o
For Case II the characteristic polynomial of Eqn. 3.1 becomes

D(z) =22 -z (B+W+m - mB - BE) + BC +mB .. (3.6) .

1 2 1
In order to obtain 1dw sensitivity, dhe multiplier coefficients B, C

and £ must be chosen as

B=1, C=1 ‘ (3.7)

£E'= I?t. [al ta, * 1] (3.8)
for poles with positive real part, and

B=-1, C=-l , - (3.9)

E=Int. [« +a,+1] (3.10)

for poles with negative real part.

[f the pé]es are close to z = 1, we cah assign

B=1, C=1, andE = 0.
This choice of coefficients yields a structure due to Nishimura,
Hirano and Pal [iq], which will be referred to as structure II-1.

As for Case I, several new structures can be generated 5y
considering poles which are close to the unit circle. The structures, -

obtained are summarized in Table 3.2.

3.3 IZero Placement

The general second-order trangfer function

2
P AR 4 z+
// ‘\H(z) _ Y(z) . Yo Y1 Yo (3.11)

X{z) 12 + alz + Ly

can be realized by modifying the low-sensitivity sections generated so

far as depicted in Fig. 3.5. The design equations required to
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-
TABLE 3.2
Specific Structures Based on the General
Structure of Fig. 3.4
X
GQEFFICIENTS
{
STRUCTRE | RANGE OF ¢
e B C E 1
I1-1 1 1 0 - -2.0<q1<-1.5
[1-2 1 1 1 -1.5¢q1<-0.5
11-3 | 11 2 -0.5¢a1<0
11-4 -1 -1 2 0<q1<0.5
CI-5 -1 -1 1 0.5¢q1<1.5
11-6 -1 -1 0 s 1.5¢ay<2.0




‘ »
%
5 r
¥
{ ¢ N
iJ N B | v ) i o0
! S | |
: .
L » t
, . |
.
§. .
o} ' ’
L
H
'
ks
!
;
L
: ’ |
o
— *
L ]
:g. —
’ 1]
. \
:
t
y(n)
)
N
N
f 4
i
;
.
)
| L]
-
]
»
‘ °
| A ,
@
.
1
Al . “
Al
*
. P | i
| 1
- | | |
L ] re »l‘
¥
y
o ' A
> :
. | . %
(4 ‘L%A
- -'”i‘
-
j N
.
.
i



[ "
S | - 58 - '
complete a design can readily be derived as shown in Table 3.3.
An alternative possibility is to take signal yo(n) just after
the input adder as shown in Fig. 3.6. In this case, the design
equations for the feedforward multipliers are given in Table 3.4.

9

3.4 Application of ESS

s

ESS can'be applied in the structures of Figs. 3.2 to 3.6 by

including quantizer Q and an appropriate substructure between node
: 40
Yo(n) and the input adder as illustrated in Fig. 3.7.% In this way,

. the power §pectra1 density of the output noise can be properly shaped.

w

vIn effect, error feedback is applied, which can be adjusted to force

. N
zeros in the power spectral density of the output noise, and by

¢

choosing coefficients bO and b1 the output noise can be reduced or

L5

minimized.

Y

In Chapter 6, the proposed structures are compared with other
known high-performance structures with respect to output roundoff

noise. The sensitivity performance of these structures is considered
a
dn detail in Chapter 7. "

|
\

3.5 Conclusions

‘ A systematic and exhaustive procedure has been descri%éa for the
generation of low-sensitivity digital-filter structures which are
amenable to the application of. ESS. The procedure has {hen been used

v to generate structures I-1 to I-1H and IT-1 to II-6 as Symmarized in

Tables 3:1 and 3.2. .

/

e
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TABLE 3.3

Equations for the Design of
Biquadratic Transfer Functions

Case 50 51 62 ml m2
I vo |vitro | varv 0% | gD | agrage0?eE
i . /
Y2 Y1, Y2 | @2 ap o
Il - + = + L £ ~-C 1+ 2+ % - E
- Y0 B 073 2| B -2
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TABLE 3.4

Alternative Equations for the Design of Biquadratic

Transfer Function

Cﬁse 60 61 \—-—J 52
I Yo | ritvoltvod Y 2y 10-v E*y g0
Yo Yo Y
II‘_‘ YQ Yoc- ﬁ-z- _% +.—1 -YQE"'YO
B
o - \
'
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-
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. v
Structures I-1 and I-2 are due to Agarwal and Burrus [19] and .

structure I1-1 is due to Nishimura, Hirano and Pal [20]. The
remainingqstrucfhres are to the.author's knowledge new.
In addition, formulas. have been dgfived which facilitate the
realization of biquadratic transfer functions in terms of
tow-sensitivity structures which are amenable fo ESS. The pole
positions can be 1ocateq anywhere in the unit-circle of the z plane. *
It should be mentioned that the’structures presented are also
suitable %qﬁ implementation based on ROM-accumulator arithmetic [40].-
[41] or on stored-product arithmetic [42]. In a&qitiop, the internal K
scaling strategies applied in [19], [Zolyand [41] can also be applied

to the proposed structures, as an alternative to the use of ESS.

LS /
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CHAPTER 4"\

ELIMINATION OF LIMIT‘bngES
L ~ ", N R \
4.1 Introduction . \ ’

1

’

zero-input and overf]ow 1imit cycles in VGIC and TVGIC structure

[

\
In this chapter, methods are explored far ﬁhe elimination :f

The approach used enta1ls 3 suitable quantization scheme? based~on
magnitude truncation. A positive-definite pseudo-energy function is
defined and is then shown to remain a Liapunov function [6] - [12]

- upon the application\ofnfithe-grecision arithmetié.' In this way, it

is demonstrated that zero7input and -overflow Timit cycles can be 4

eliminated in all the VGId and TVGIC structures of Chapter 2.

~ This chapter a]po deals with the‘e1imination of constant-input -
1§mit cycles, wﬁich can often occur in certain appliéations.
specifically, a theorem is' proved which establishes suffigiért
conditiong. that w1ll ensure freedan from cons{ant-input limit cycles
in.a general digital- filter structure in which zero-input 11m t cyc1é:
.can be efﬂn¥rated [¢3] Direct app]icat1on of this théorem/shows that
a]\ types of known limit. cycles can be ek?m1nated¢4? some VGIC
Sections al well,as the TVGIC and VGIC universal mult1p1e-output
" biquads of Chapter 2.° [

-

M i

- 4,2 Stability of VGIC Structures .under Infinite-Precision
“r . Arithmetit &)\ LT
The characteri;tic polynomial in the VGIC and TVGIC structures
of Chapter 2 is given by. |
> = 2 - : ..‘. ° | .
D(z) = z ﬁ‘(ml ma)z + mi+m2-1 . ‘ (4;1)

-‘\
»
’ . P
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Under infinite-precision arithmetic, the rangé of values that the

multiplier coefficients my and m, can assume is constrained by the

.inequalities

£

-

m>0, m>0, and m *m< 2 | (4.2)
if stability is to be assured. The permissible region of the'm2

versus m, plane is the shaded region in Fig. 4.1,

4.3 Stabi]ity of VGIC Structures under Finite-Precision Arithmetic

Consider the second-order structure 64 Fig 4.2(a). This

. stricture 1s the recurs1ve part of all the VGIC structures under

zero-input conditions. nghtizers Q are used for the elimination of

© 1imit cycles. The same structure can be interpreted as a wave digital

network comprising a.serjes two-port adaptor terminated by a ’

unit-dela& at the 1gft-hanﬁ port and a unit-delay in,seFies with an -

" inverter at the.right-hand port as depicted in Fig. 4.2(b). "It is the

digital implementation of a closed loop containing a series capaci tor
and a ser1es inductor.
The state difference equation of the structure of Fig. 4. 2(a) isv

given by

k+l ’

where [ . /

A 1 -m  m ' : ‘ o
~ - m, mz-l .o ‘ o -< '(/
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and from Eqn. 4.2, T}, m, > 0. From'Eqn. 4.5,

LA -

and with quantization applied to x'(k), we obtain

M) =[x 0eD)]y = [Ax (0] (4.4)
r\ !

Iifpsitive-definite quadratic function (or pseudo-energy

e
- function) can bef defined as

2 2,,
- (k) x5(K)
plx(k) = xT(KIG x(k) = i + 2 CL (4)

1 My
Q l/m1 0
§=1 09 1/m,

where

b po(krl) = plx' (k#1))=p{x(K)) IR ‘

u

X Ter1) 6 x'(ke1) - xT(K) G X(K)

n

X1 (AT 6 A - 6 x(K)

1 2
(ml + my-2), (xl(k) - xz(k)) . (4.6%-
In order to guarantee stability under infinite-precision

arithmetic, my + m, < 2 and hence we conclude that (;

A po(k+1) <0 if xl(k) # x2(k) L (4.7a)
and |
1 - 3 -

A po(k+1) =0 if xl(k) = xz(k) . (4.7b)
In the case where x; (k) = x,(k), Eqn.4.3 yields -

xl(k+1) = xl(k), xz(k+1) = - xz(k) ~(4.8)
that is, ’

xl(k+1) # xz(k+1) \

<
\ ) ¢
’ /
3
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3

and, therefore, from Eqn. 4.7(a)

A p,(k+2) <0
In effect, the conditipn . y

A pylk+l) =0 ‘ |
can be satisfied in more than one cycle if and only if‘

xl(k) = xz(k) =0

Now if magnitude truncation is applied to quantize the state
variables, then Qﬁg(k)) < p(x'(k)) which implies that

a plx(k)) = plx(ke1)) = plx(k)) < 0.

We thus conclude that pix(k}) is a Liapunofﬂfunctiqgg[ﬁ].

If no quantization is applied in the structure ?f Fig.@Ma), ,
osciliations cannot occur if the structure is assumed to satisfy the
stability constraints of Eqn.-4.2. If quantization ts applied as
shown in Fig. 4.2(a) then limit cycles oscillation would occur when
Ixi(k)l < Ix%(k)l. Under these circumstances the Liapunov function
would Aecrease during the fol]ow?ﬁé cycles by a posfti»e amount and
eventually it would become’ negative. However, this contradicts-the
fact that p(x(k)) is always greater than or equal to zero ang,
therefore, we conclude that ‘

X =[0 o -
is ;he only equilibrium point possible. Consequently, the |
quaﬁtization scheme of Fig. 4.2(a) can be used to e]iminate zero-input
limit cycles in all the VGIC structures of Chapter 2. ‘

Claasen,. Mecklenbraiiker and Peeszia] showed that in a digital
filter in which the condition |xi(k)| < lx{(k)| is sufficient to
guarantee zero-inpyt st&bility, then the forced response stability to

overflow oscillations can also be guarantted if the quantized signals
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are restricted to the shaded regions shown in Fig. 4.3. By
incorporating the nonlinearity implied by Fig. 4.3 in the quantizers
used, overflow limit-cycles can also be eliminated in the VGIC
structures of Chapter 2.

The resu]ts‘aiscussed so far hold for any pre of .
finite-precision arithmetic. Herver, by dsing f%xed-point two's
complement arithmetic some advan}ages can be échieved in the
implementation of lxi(k)‘ < |x%(k)|, such as simple rear and front
chapping operations (7], [9]-

The TVGIC structure of Fig. 2.8 undér_zero-input conditions can

- be descgibed by the state-space difference equagjon

XD L [RlK . |
[;gkk+1) T Xy (k)| < | (4.9)

where .

AT-m m
A= —m1 m2—l )
. 1 2

By applying the same form of quantization as for the VGIC structure of
Fig. 4.2(a) and then following the procedure outlined above, one can
prove that zero-input and overflow limit cycles can also be eliminated

_in the TVGIC structure. \

~

4.4 Elimination of Constant-input Limit Cycles
- , —

S
&

Theorem 4.1: o

Assume that the digital-filter structure of Fig. 4.4 is free of

L4

zero-input limit cycles and that
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x(k+1) = [Ax(k) + Bu(k)], ©

¢ . (4.10)
y(k+1) = Cx(k) + Du(k) ‘ .
wherem[o]Q is the quantized value of [e]. . k.
?‘ . Constant-input limit cyc]es‘can be eliminated by Todifying the

structure of Fig. 4.4 as depicted in Fig. 4.5, where P is given by

Po=lpy ppee bl = (I-AhE (4.11) -

and is machine representable.

Proof
Since the structure of Fig. 4.4 is assumed to bé free .from
) zerééinput Timit cycles, the equation ’ |
. / x(k+1) = [Ax(k}], o (4.12)
describgs a stable system ;uch that.
Lim () = [0 0...0]". ' N
koo

If the input is constant, i.e. u(k) = “0; the modified structur€e of

Fig. 4.5 is characterized by

x(k+l) = [ﬁé(k) - Buofgqo]o + Puy ' ) ’

and if Eqn. 4.11 hole, we have 7 ¢K
xre1) = [AXUO-T(I-A) T BugH(1-A)(1-8) gl By M

= [A{(x(K)-Pug}]q + Pug e AN
Hence . . a A .
L flel = [AR0]g o (4.13)
NS where _ 1' \
"3(12.) = x(k) - Pug o >
- ' fw'. ) -
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Evidently, Eqn. 4.13 is_the same as Egn. 4.12, except‘for the T “
' transformation in the state variables and, therefore, it represents a
stable system. Stability can be guaranteed if Eqn. 4.11 is satisfied
exactly and, therefore, P is ‘requirgd, to be machine representable .
(QED). . P
It should be mentioned quantization in Fig. 4.5 is
carried out by means of magnitude truncation, aﬁ 1mb1emen;ation of the
controlled-rounding arithmetic proposed by Butterweck [4] is
achieved. . o ] \ s

An apparent limitation of the above stabilization technique is

imposed, by the requirement that P be machine representable. 7
Nevertheless, in many second-order structures as well as higher-order
o wave structures this requirement is easily satisfied.
- 4.5 Elimination of Constant-Input Limit Cycles in VGIC and TVGIC
Structures
In this section Theorem 4.1 is applied to a subclass of the VGIC
' structhes and to the TVGIC structure of Fig. 2.8. |
The VYGIC bandpass structure of Fig. 2.6(b) and the improved
allpass sfruc;gre of Fié. 2.7(b) with a constant input xi(k) = ﬁo can
be described by ’ | | :
\ ‘ A ‘
xl(k+1) xl(k) -my )
l:x?_(km}.i‘ [xz(k):‘ ¢ [m;], s " (4.14) '1
N _—




.

where

A l-ml m . ‘
Ly -m,  my-l | ' | @

From Eqns. 4.11 and 4.14

‘ -1
m - -m -1
— ,B ) [:m; 2-m;:' [—m;] - [0] s (4'%5)
and since zero-input limit cycles can be eliminated, and P is'machine
representable, constant-input limit cycles can also be eliminated in
these structures according to Theorem 4.1. Fig. 4.6 illustrates the
application of Theorem 4.1 in these syructures. o
It should be mentioned that any second-order section which has
the structure of Fig. 4.6 as its recursive-part #is free of limit
cycles. Two such examples a;;‘the general second-order-sections

described by Verkroost and Butterweck [10], and by Verkroost [11].

The universal TVGIC digital biquad of Fig. 2.8 with a constant

« input xl(n) = U, can be described by

where -
' ¥

: A l-m1 m2 ]
~ -m, m2-1 :

From Eqns. 4.2 and 4.16

[y

| )
m -m Vo-m -1 .
N I =l el (4.17)
~ M M7 1 ol :

and since zero-input limit cycles can be eliminated and P is machine

representable, constant-input limit cycles can also be eliminated in

.

X, (k+1) x; (k) -my . : .
X, (k+1) =A xptk) | *] -np | Yo (8.16)
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this structure according to Theorem 4.1. Fi
\

application of Theorem 4.1.

L 3

4.6 Conclusions

i

It has been shown that both zero-input and overflow 1imit cyclps///

H

can readily be eliminated in the VGIC and TVGIC structures generated j
in Chapter 2, by utilizing an apﬁropriate quantizatfon scheme. f

A theorem has been proved which establishes sufficient ‘5

b

conditions that will ensure freedom from qonstankainput 1imit cycles E
in a general digital filt;f structure in which zero-1ﬁput limit czflsiv'
can be eliminated.

Upon application of the aforementioned theorem, it was found
that constant-input 1imit cycles can also be eliminated in a subclass
of the VGIC second-order sections as well as the VGIC and TVGIC
universal digital biquads of Chaptér 2, that 15: all known types of

=

1imit cycles can be eliminated in these structures.
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CHAPTER 5
NEW IMPROVED STATE-SPACE STRUCTURES "

B
¢

5.1 .Introduction P

This chapter presents an alternative procedure for the
realization of second-order digital-filter siructures. The procedure
is based on the state-space characterization and leads to structures
with several important advantages such as reduced number of
multipliers, and e1iminatio&rof'overflow oscillations and granuﬁarity
Timit-cycles both under zero-input as well as under constant-input
conditions. * .

In Sec. 5.2,'the conditions that lead to winimum roundoff noise
and to the elimination of zero:lnput Timit cycles and overflow
oscillations in a particular class of state-space structures are \
reviewed. Then in Sec. 5.3, Theorem 4.1, which establishes sufficient
conditions for the elimination of constant-input limit cycles, is
applied to a general state-space second-order structure. The
conditions for the elimination of constant-input limit cycles are thus
established. These conditions lead to three new state-space @ '
structares. The design aspects of the three new structures are
considered in detail in Sec. 5.4. It is shown that under certain .
‘circumstances two of the new structures Tead to optimal designs with
respect to roundoff noise. The application of one of the new
structures for the design of high-order parallel and cascade filters
is considered in Sec. 5.5.

The chapter concludes with a comparison .of the computational

compiexity of one of the new structures relative to that in the
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section-optimal structure described in [21]. This comparison

- demonstrates the new structure to be more economical with respect to

1

the number of multipliers required. Yo

i

The roundpff noise and sensitivity properties of the new

structures are ngZiEsed in Chapter 6 and 7, respgétively.

¥

5.2 Elimination of Zero-Input Limit Cycles

quph a second-order transfer function,

2
H(z) I%f_:[lfflé d + E%ffﬁg___ ¢+ (2) (5.1)
z = = = zZ .

a digital-filter structure can be obtained which is characterized by
the state equations

x(k+1).= A x(k) + B.u (k)
. T ~ (5.2)

y(k) = € x(k) + D ulk) ' | >~

where A, g, C and D are given by ‘ ¢

[} B

C=lcyscpls D

>

The sufficient conditions that ensure minimum roundoff noise in
a second-order state-space. structure have been established in [21] and

are given by

/ :
1 T ¥ . (5.3a)
| b %, ' — (5.3b)
b, &

The state-space structure in which these conditions are satisfied is
referred to as the section-optimal structure. Its transition matrix A

is of the form [21], [26]

-/ —_— -



.- B2 -

-@ .
A=l : n (5.4)
€a a . '

where a, e, and o« are constants.

It is well known [8] that zero-input limit cycles can be
eliminated in a recursive digital filter if there exists a .-
positive-definite diagonal matrix G such that & - AT G A is positive
definite. This condition is satisfied if [28] i

319 359 > 0 or (5.5)
if a;,a, <0 and |a11-a22| + det(A) < 1 -

Matrix A given by Eqn. 5.4 satisfies these ;onditions and, in effect,
zero-input limit cycles can be e1im1naféd in the section-optimal
structure. (

Zero-input limit cycles can b61,1iminhted by quantizing the
state variables such that [8] ‘

ER IR PRSI (5.6)

where [o]Q is the quantized value of [-].h Overflow oscillations can
also be éliminated as in wave digital-filters, by using the approach

described in [13].

5.3 Elimination of Constant-Input Limit Cycles

In a structure 1n)wh1ch zero-input 1imit cycles can be
eliminated, according to ?heotem 4.1 constant-input 11mit cycles can '
also be eiiminated if the vector P of Eqn. 4.11 1is machine
represéntab]e. For a second-order structure the following forms of P
are possible:

Case I: P

Case II: P =[0+1
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Case 1I1: P =[+1+1]% X
In order to force f to assume any one of these forms, vector g ¢
4

should be chosen as
=7 a

Case I: b1 =+ (1 -a

11 2 21
Case II: by aj, and by = + (1 - a,,)

+ and b
r

(g

Case III:

"
|+

by (L - a115 + ajp and b, = F ay; + (1 xay,) .

The structure for case I is shown in Fig. 5.1. A% can be seen, -
coefficients bl and b2 can be formed without the need o€\mu1tip11ers
and thus the structure requires fewer multipliers relative to the
section-optimal structure. The structurﬁ for case Il is depicted in
Fig. 5.2. As for case I, no mu1t1p1iers\are needed to form
coefficients b1 and b2' The structure for case III is depicted in
Fig. 5.3. Although no m&ltip]iers are needed to form coefficients bl
and bz,‘five extra additions are required relative to the number of
additions in the structures for cases I and II. This structure will

not be considered further because of its higher computational

complexity.

5.4 Design Considerations

If A is of the form given in Egn. 5.4, the transfer functions

Fi(z) from the input node x(k) to the state-variable nodes xi(k+l) }re

given by : ' . . \\%%
2) 3 :" ° .

(l-a)z + (ez-a+a

Fo(z) = .

! zz-Zaz+a2+é?47 (5.7)
_ -eZ t e _ i

Fz(z) - a 2 2 2'— - Qa Fz(z)

1--2azta +e
for case I and by
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respectively. By using Egns. 5.7 to 510, it can eas11y be shown 'that

Tt pemre by g

4!1%
jxiﬂj e
- 87 =~ ///\
- Y
Fila) = 2 2228 =g Fi2) ~
@ SCoaz+a +e” ..
, (5-.8)
*OF.(z) = (1- a)z + (ez a;a )
z -2azta +te ; 4

for case II. Parameter ¢ is chosen such that the Lp normsfﬁf transfer
\ |
functions Fl(z) and Fz(z) are equal. This choice of o leads to a

distributed dynamic range’ of the state variables 5{(k), and also to a
. 1

.t

simple éca]ing procedure. For cases | and II, « is given by
_Fy@flp

Hrytzie (5.9)
[|F5(2)]|p

and /
. ] HFi) e . ' e

—e _(5.10)
HF,(2)|]p

&

a for case I is the inverse of o for case II and, as a consequence
the two ‘structures turn out to bé equivalent. From now on only the
structure for case I is discussed.

The» elements of vector C, namely <y and C, are given by’
B1+ﬁ2.~ . . ) M v

172

: T (5.11)
cl- "‘a"’a N . ’ ' tee

(- aple s ’2")'32

€2 ° (Th fa,1€ a (5.12)

Although structures obtained by the method presented here are

-

not optimum with respect to roundoff noise [21], one of tnhe conditions
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/

N

7

for optima11ty,'1.e. a1 = 84 is sat1;f1ed."ln addition, the
distributed d%pamic range that is also a property of the sc;1ed
section-optima1‘structure is prederved. The optimal normal design,
i.e. a=1, proposed in [27] also has distributed dynamic range for L2 .
sca1;ng.

An important feature of the structure of Fig. 5.1 can, atlthisg

point, be identified through the fo]iowing theorem.

' Theorem 5.1

The new state space structure is optimal with respect to

roundoff noise if the zeros of the transfer function H(z) are located

:at z=1.

A Proof:

The' first condition for optimality, namely Egqn. 5.3(a) is always
satisfied since A is of the form given in Eqn. 5.4 in the new \
state-space structure. |

The second condition, namely Eqp. 5.3(b), can be shown to hold
as follows. From the values assigned to b, and b, for Case I, and

Eqns. 5.11 and 5.12, we have

b1 1+ al/Z

oo (5.13)
’ ! -y ay ‘

P Sl L S i I | (5.14)
© G 18y*8) ew

If the zeros of H(z) are located at z=1, then from Egqn. 54 it can

*

éasi]y be shown that

Bl = - Yo(2+al) , (§t£5)
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»
and
ﬁz = Yo(l-az) . . ) . (5-16)
_Now from Eqns. 5.13 to 5.16 g N\
, % '
b o~

.and, therefore, Egqn. 5.3 holds (CQD). |

This theorem indicates that the design of Butterworth and
Chebyshev highpassifilters by means of parallel sections of)the type
shown in Fig. 5.1 results iR a structure which is optimal with respect

L

__ to roundoff noise.’ i
The fact that an optimal structure has been obtained using fewer
multipliers relative to the section-pﬁtimal structure, 1eads'us to
believe that economical solutions exists when the zeros are located at |
z=-1 or z=+1. However, if a solution exists it may not be possib]e to

4 . eliminate constant-input limit cycles.

5.5 Design of High-Order Filters

”“ﬂ/ﬂ\\\_,,/" y The design of high-ordér parallel or cascade filters using the

structure of Fig. 5.1 can_;é accomplished as follows:
]

Parallel Design:
7 .
1) Express the transfer function of the filter as °

m
T2 = ] Hy2) «
i=1

where each Hi(z) is of the form given by Egn. 5.1. Then for each

@

-

Hi(z) compute

a,=‘-a1/z . ' (5.17)
. . ~
and ) {

s
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If the L, norm:is used for scaling, a is given by

‘ : Z Z ’ .
(T, /207 (14, ) (1000) 24 .1 .
a = f 1/2) 1=, 1] ) (5.19)

2 .
. 2e (1+u1+a2) ) | .
where ¢ 8 *
a2+a1/2 ' “. s
TR . ~ P
2) Compute the scaling parameter A, andva12 as well as 35y 35
follows
P ¢ .
_ 1 [ egpileag) .
A R erm—— = 22 N (5-20) )
||F2(wz)|]2 2e“a o
a12 = - E/a, \‘ . (5021)
a,) = € ) ‘ ' . (5.22)

3) Comput‘e‘:cl and c, by using Egns. 5.11 and.5.12,

respectively. In order to restore the signal'ievé] at the output of .

the filter let . \ ~
Cc
SR '
45.23)
c
[ . 2 \ -
2 % ] |
where c; is the value of cs after scaling.
~

4) The design i3 comp1etbd by ‘connecting the scaled sections 1n‘

parallel. - -

*

If the L norm is used for scaling, a is given by’ X
' 2, .2
Fll lﬁzllz‘/(cos wytF) sl

- e
AlFy ],

a - 2
- +¢i
{cos Wy ;) sin Wy

.
o ~
3 v

2 T

T SRS
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Cascade Design:
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+

where ¥, is the angle of the pole and ‘
f . ez N (ll .
I+a172 2

The scaling parameter in ‘this case is given by

2 .
1+r°-2r cos 2w
1 1 r 0
”Fz(z)H J 2(’1-cos.wo) i o (5.25)

Cyqs Cppdiid d, as follows i

The transfer function is expressed as

T(2) -?vl Hy(2) . ; (5.26)

where each Hi(z) is of the form given by Eqn. 5.1. Then compute a,
and e, by using Eqns. 5.17 and 5.18. Next compute a« and A for’each

section as follows

||( a Hj(z)) Fyoll,

J=1 : .
x = -1 (5.27)
||(jr=x1 Hy(2) Fpla) || Vs
and s
A —— co (5.28)
”‘jEl ETIC | P N

-

The design is completed compiting 104» An1¢s Cyy and Qéi*xzjjng-Eqns.
5.21, 5.22, 5.11 and 5.12, respectively. x

Ry
Y

The scaling multiplier M is placed at the input of the f1123¥\\\§\\“:
while the remaining hi s are 1ncorporated 1%Tthe output multipliers

!

!
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f i+1 .
ST Ty : (5.29)
ns ‘ . "
- i+l
21 T X, . (5.30)
A
d = d, 1 (5.31)
1 )\i'
[N

5.6 Comparison of Computational Complexity .

Table 5.1 shows the number of arithmetic operations in the
section-optimal structure ghd the structure of Fig. 5.1 for nth-order
filters realized in parallel or cascade forms. As can be seen for an
éﬁgﬁiorder filter, the new structure reduces the number of multipliers
by n/2 ip a parallel design or by n-1 in a cascade désign, relative to

the number of multipliers in the section-optimal structure. The.

number of adders, however, is increased by n/2.

5.7 Conclusions

H

In this chapter, Theorem 4.1 has been used to develop three new ‘

state-spaéé strutures in which zero-input and constant-input limit
cycles as well as overflow oscillations can be efficiently
eliminated.

The design aspects of the new structures have been examined in

*

. aetail: It was found that\one of the three structures is somewhat-

- - »

uneconomical whereas the othdp two turn out to be equivalent, if

optimum signal scaling is applied. These two structures, like the

. section-optimal structure are optimal with Yespect to roundoff noise

if the zeros of the transfer function are located at z = 1.

e
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TABLE 5.1

-Parallel Cascade
‘n=eyen n-odd n-even n-odd .
> -

8| matipliers | I0 41 Tn+l In vy Tin-1) + 4
-8 2 2 2 2
L)

+ | Adders In 4 In.3 In I(n-1) 4 2

4 2 2 2 2 2

) ‘ R

E 9n 9(n-1)

+ | Multipliers 4n + 1 4n + 3
: AN

5

3 B

9 | Adders 3n +1 3n -1 3n 3n-1
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‘ A procedure has then been developed for the desidn of high-grder
parallel .and cascade filters by means of the state-space structure of
Fig. 5.1.' This approach yields designs which are more economical

" relative to designs -based on the section-optimal structure. For an
nth-order design, the number of multipliers is reduced by n/2 for a
parallel design or by n-1 for a cascade design, although the number of
adders is increased by n/2. This fepresents a significant saving in

the amount of computation and the cost of hardware.
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CHAPTER 6

ROUNDOFF NOISE ANALYSIS
. v :

6.1 Introduction

; In order to assess the quality of the structures proposed in
Chapters 2, 3, and 5 and also to compare their'performance with that
of other known structure§, several. sixth-order filters are designed.
Cascade des{gns are obtained with the proposed structures and also the
direct canonic and section-optimal structures. Signal scaling is
applied and the ordering of sections is chosgn to minimize the
roundoff noise in each design. ) '

~  This chapter deals with a roundoff noise analysis which fnvolves. A
the computation of output-noise spectra for the various designs.
Two's complement, fixed-point arithmetié is assumed in all examples.
Extensive noise comparisons are then undértaken; Sec. 6.2
compares the VGIC and TVGIC structures of Chapter 2 with the direct

canénic and section-optimal structures; Sec. 6.3 bompare; the

1ow-sensit1V1ty structures of Chapter 3 with the section-optimal

. " -
Structure; and Sec. 6.4 compares one of the state-space structures of

Chapter 5 with the, section-optimal structure.
A sensitivity analysis for these designs is reported in

Chapter 7.

6.2 VGIC Structures

The transfer: function in a cascade realization is givén*by

°

b 'n m ; .
H(z) = H, 'Hl Hj(z{ ] ‘ (6.1)
J= '
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where
2, . !
211577 2 i

'H'(Z) = —'2—‘_'_

J
The partial transfer functions of a second-order section,
denoted by Fpi(Z) and Gpi(Z)’ ére defined in Fig. 6.1. These are
needed for scaling and roundoff noise analysis. The partial transfer
functions for the VGIC and TVGIC strucfdres are given in Table 6.1.
For a realization comprising m cascaded VGIC sections, the

relative ®ower spectrum density (RPSD) of the output noise can be

shown to be
RPSD = gle (e‘]“’T)lz}!x ", 1 oaeT2 (5.2)
, iz 1 1 =1 i1 9
where n is the number of multipliers ﬁer second-order section, Aj is
the scalihg constant of section j and
H
_ 0
km+1 - m " ) « 7
n xi
i=1
=y . ) . )
The scaling constants xj are galculated by using the formula
Ay = - . (6.3)
RN AR AT
. max Fo(e™') o a; Ho(e™ ) |p
g=l,n = P =1 VT q
Simi]ar1y, for a corresponding cascade TVGIC design
H
}Pso HG (eJ‘*’T)I - 0 Hy (0T |2 (6.4)
i= l 1 =] i J i+l
“where
m
mooH ey =1, . “
j=m+l J '
1

A, = S . (6.5)

gl .
JoT JuT
xrﬁfn{HFP‘(e- )121‘ H, (e%7)] | p} ‘

A
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o TABLE 6.1

- :Tr“aris‘fer"Functions for
VGIC and TVGIC Structures

N~
e i(z) - (C0+c];c2)22+é(c0-c1)z+c0—c]+c2'
D(z)
Fm](z) = sz(z) = H(z)

. & *
24 .
B (z) = 0(z) )
] T S
{ N

: Fo(2)=F (2)=F_ (2)=1
] (21?2 CO(Z) C1(Z) C2(Z’) -

VGIC Structure of Fig. 2.6

2 .
) K[(c0+c]+c )z +2(c0--c1)z+_c -c]+c2]

2
H(Z) - D(Z) 0
A7 6y (@) = 6, (2) = Wz
_ k(z+1) S :
Fm](z) B Dzlzﬁ

TVGIC Structure * of Fig. 2.8 and 2.10

sz(z‘f REA eco<z>=é;](i)=ec2(z>_=1’
Fe, (@ =~5%%§}13
SORL SR
Fcz(z) =-5%%§%13 :’.
D(z)=zz+(m]-m2)z+m1+m2-1

*K=1 for the TVGIC structure that is amenable to’ ESS
K=-m; for the limit-cycTeafree TVGIC structure

1

! ' 4
. , .



and

It should be mentioned that in the TVGIC desiqn, the output
Cmultiplier cogffiéients Coj Cij and °2j of section j are replaced by ‘
COjkjll/xj’ Cljkj+l/xj and czjxj+1/xj,brespectivély, inﬁorder to avoid N
the use of scaling wultipliers [1].
For the sake of comparison, the cascade approach was used to
-design several sixth-order filters as follows:
1) An elliptic lowpass filter
2) An elliptic bandpass filter
3) A Butterworth bandstop filter ”
4) A Chebyshev highpass filter.
Y Designs were obtained with the VGIC and TVGIC structures, with the
direct canonic structure (1], and with the section-optimalwgstrycture
described in [21].

The specifications assumed are summarized in Table 6.2 where

Ap: ) maxjmum passband loss

Ay minimum stopbahd'ioss

W “p2f lower and upper passband egges _\\
Yowgys wapt lower and upper stopband edges (
vt sampling frequency. ?

TQe transfer function coefficients of the lowpass, bandpass,
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TABLE 6.2

-

Elliptic

Elliptic Butterworth | Chebyshev

Lowpass Bandgass Bandstop Highpass
Ap’ db 1.0 0.5 2.0 0.6
Aa‘ db K" 72.9 65,6 32.4 48,5
gy » Tad/s 250.0 980.0 | 500.0 ° 4000.0 |
W, rad/s ——- 1020.0 1000.0 -

p2 .
CRD rad/s 4Q0.0 850.0 650.0 3300.0
Wy2 rad/s - 1150.0 850.0 -
w , rad/s 10000.0
B r

a3
n

P srmmie s AL

. - o .7
vggrgéi‘wr
N

P AN o W
B et
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1) VGIC structure of Fig. 2.6
2) TVGIC structure of Fig. 2.8 with xl(n) as {nput
3) TVGIC structure of Fig: 2.10 with first- and second-order
ESS
4) Direct canonic structure [ 1] ;

5) Section-optimal structure [21].

Signal scaling was applied in all designs, and the scaling
constants xj were chosen on the basis‘of f:ﬁe L norm. All possible
section sequences were scaled and the optimum section sequence from
the point of view of signal/noise ratio was chosen for each design.
The implementation was assumed to be in terms of fixed-point ,
~arithmetic, and .quantization of products was assymed to be performed
after the'=h1tip1ications, except for the structures with ESS where
product quantization was assumed to be performed after additions.

The RPSD of the output roundoff-noise for the various designs
was then computed. In this analysis roundoff errors were assumed to
be uncorrelated from sample to sample and from oné’source to another.
These assumptions were shown to be valid by several experimental
results presented in [1]. ‘ <

For a better exposition of the results, the RPSD plois are
divided in two categories:

(i) Plots for medium-noise designs like the VGIC, Timit-cycle-

free TVGIC, and direct-canonic designs, as illustrated in
Fig. 6.2. ’
“(ii) Plots for low-noise designs like the section-optimal

design and the TVGIC design with ESS incorporated, as
illustrated in Fig. 6.3.
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The roundoff-noise plots of Fig. 6.2 show that the VGIC and the
direct canonic deéigns are very close in terms of inband noise, while
the limit-cycfe-Free TVGIC design is somewhat noisier. Fig. 6.3 shows

that the TVGIC design with first-order ESS is comparable with the

section-optimal design yhije the TVGIC design with second-order ESS is

'definite1y the best. -

Table A.3 gives the multiplier constants for the bandpass

designs for the same structures used in the lowpass design described

WY
- i

=4

above. -

Figs. 6.4 and 6.5 show the RPS® plots for the medium- and Tow-
noise designs, respectively. The airect canonic design ?s shown to be
the best among the medium-noise designs followed by the VGIC design. ~
In the 1o§t;;:;e cT3§s the TVGIC des1gn with second-order ESS, has a
much lower output noise than the’ section-optimal design and TYGIC
design with first-order ESS.

Table A.4 give§ the multiplier constants fo} {ﬁe bandstop
designs for the same structures compared above. The RPSD plots of the #
varfous designs are depicted in Figs. 6.6 and 6. 7 The VGIC design is
clearly better. than the direct-canonic design,’while the limit-eycle-
free TVGIC design is the worst. }he section-optimal design'in this
caseuoutpqrforis the TVGIC design with ESS because ESS is not very
effective for‘#ilters with wide passband(s]. .

"Table A.5 g1ves the multiplier constants for the highpass design
for the same structures discussed so far {\)he RPSD plots of these
filters are depicted in Figs. 6.8 and 6.9. Fig. 6.8 shows that the -

VGIC design is the best followed b} the direct canonic design.. Fig.
6.9 shows that the TVGIC design with second-order ESS is the best
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followed by the section-optimal design.

Final]y% the average noise for each of the designs considered so
far is given in Table 6.3. Average values are tabulated for each
design, one with the scaling based on the gn norm and the other with
the s;a]ing based on the L2 norm. This table 6onfirms the results
based on the RPSO plots described above. It should be mentioned the
choice of scaling norm, either L of L2, does not affect the choice of

the optiwum design.

6.3 Low-Sensitivity Structures of Chapter 3

In this. section, the low-sensitivity structures of Chapter 3 are
compared with the section-optimal.strucuture. v '
Transfer functions Fpi(Z) and Gpi(Z) (see Fig. 6.1) for the
various low-sensitivity structures are given in Table Gaﬁ'
For a realization comprising m cascade Tow-sensitivity sections
with ESS incorporated, the output noise RPSD can be shown to be
m H "L . m .
RPSD = 3 + § | =2 (1+ b, e 0 ep 7200y gy (J9T)|2 (4.6)
PRI 11 o} s X
i=1 %1 L=1
L
where N is the scaling constant of section i, bli and bOi are the
parameters of the ESS substructure of section i. The scaling

constants are given by .
}\.‘- = 1 . (6-7)
. i-1 .
max_{]|F,  (e%T) w oweRD] )
.2=1,3 Li j=1 no

As in the TVGIC structure, the output multipliers 84 611 and
éz}of section i have-been multiplied by A;,,/r; in order to avoid the
use of scaling multipliers constant. The scaling constant Ml of the

last section, is given by Hy
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TABLE 6.3

Average Noise in dbs

Desi Lowpass Bandpass Bandstop” Highpass
esign Elliptic Elliptic Butterworth Chebyshev
Scaling L L2 L. L2 L, L2 L, LZ'
VGIC | 50.00 | 35.04 140,29| 19.27 | 30.92 | 26,19 | 32.12| 23,16
Limit-

ﬁ{g;e“ 52,37 | 37.08 }43.05| 21.25| 38.09 | 28.09 | 37.92| 29.02
TVGIC (:

TVGIC
with

Tstordue| 23-41 | 13-08 [35.43| 13.95 | 34.89 | 24.89 | 22.04| 12.39
ESS
TVGIC
wi th
hdeorder | 21-44 | 9.41 | 9,94 4.87|34.77 |24.74 | 14.50| 7.16
ESS !

Direct  149.06 |33.44 |38.43| 16.85 | 34.27 [ 24.00 | 35.84 | 26.93
anonic

L)
Section- |, g4 110,74 {31.43| 11.24 | 17.12 [ 11.46 [ 19.47 ] 11.00
Optimal
n
)
- - -—m . -
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) . ,
TABLE 6.4

Transfer Functions in the Low-Sensitivity Structures*

-1 \)«0 ((z . .
' Fm](z) = Fé](z) =3 ;
T
sz(z) FGZ(Z) (],
~ Feso (z) = z FSI(Z)
S Gm](z)' = sz(z) = H(Zz)
Gao(z) = Ga](‘z) = Gdz(z) =1
D(z) is given by Egn. 3.3 . .
N _ (2-8
K Fm1(z) = F51(z) e
. .
IACRRAUES [
Fo = zF51(z) C—
0 ' '
: Gm](z) S sz(z) = H(z) ‘
GGO(Z) = G61(z) = GGZ(Z) =1
D(z) is given by Egn. 3.6

*These formulas are valid for the design aquations of Table 3.3

("
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Several sixth-order filte}s, namely, a lowpass, a bandpass, a
bandstop, and a highpass filter, were designed using the fiew
structures and the section-optimal structure. Specifications and
transfer functions for the lowpass and highpass fiTters are the same
as %n Tables 6.2 and A.1, respectively. The specifications and
transfer functions for the bandpass and bandstop filters are
summarized in Table 6.5 and A.6; respectively.

As was demonstrated in Chapter 3, two or more low-sensitivity
structures are possible for each second-order transfer function ana
according the analysis in Sec. 7.4, it is possible to select the least
sensitive structure. On the basis of this analysis, the leasg
sensitive structures for the lowpass, bandpass, bandstop, and highﬁass
filters were found to be structures II-1, I-5, 1-7, and 1I-6,
respectively.

The multiplier constants for the lowpass design, which was based
on structure II-1, are given in Table A.7. The RPSD plots for this
design with first- and second-order ESS and for the section-optimal
design are depicted in Fig. 6.10. The superior performance of
structure II-1 is clearly observed.

Table A.8 gives the multiplier constants for the bandpass
design§ which were based on structure I-5 and on the sectioﬁ-optimal
structure, respectivel;: In Fig. 6.11 the output noise RPSD plots for
these designs are depicied. As can be seen the design based on

~structure I-5 is superior relative to the design based on the

section-optimal structure.

4 ar mmeama s s e . - — - PPN, 12 A Wittt e e e
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TABLE 6.5

Filter Specifications

Elliptic Butterworth

Bandpass Bandstop
A, db 8.5 2.0

p
V.
Aa’ db 66.2 33.9
mp1’ rgd/s 1180.0 2300.0
wpz,’rad/s 1220.0 2700.0 -
W rad/s {1050.0 2450.0
Wos rad/s |1350,0 2550.0
’ ¢

W s rad/s {10000.0

L

N rmeoids W g
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. The multiplier constants of the bandstop designs, which were
based on structure [-7 and the section-optimal structure, are.given jin
Table A.9. The RPSD plots for these designs are shown in Fig. 6.12
for this design. The section-optimal structure gives better results
than structure I-7.

Fina1]j, the multiplier constants of the highpass design, which
was based on structure 11-6, are given in Table A:?%i The RPSD plots
for the design based on strﬁcture II-6 and that based on the .
section-optimal structure are depicted in Fig. 6.13. The design based . ////

_on structure 11-6 is clearly superior. | ) \\\\\

In terms of roundoff noise, all the st;uctures of Chapter 3 are
similar because the noise transfer fuhctionsxgr the same in all cases
and the doﬁinant transfer function needed in the scaling process is

Sgiven by 1/D(z). ‘

Th(javerage noise for e Ih example presented in this section is

given in f;b]e 6.6 for signal scaling based on L and L2 norms. %he

{

new structures are superior in the lowpass, bandpass and highpass
"./ o !

13
filters, while the section-optimal structure is better in the bandstop

- case.

6.4 New State-Space Structure v

The transfer functions from the state variable nodes of the new
state-space structures presented in Chapter 5, to the output are given

]

by ‘ v -

(6.8)
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"TABLE 6.6
Average Noise in -dbs
Lowpass Bandpass Bandstop | Highpass
Elliptic Elliptic Butterworth | Chebyshev
Scaling L, b | L, L | L, L, L L,
Low ) ﬁﬁﬁ;i;
Sensitivity |
Sﬁg‘égt“”e 17.63 |6.12 125,09 | 7.09]21.59 | 11.9 [12.52 | 6.03
1st-order
ESS U g \
Low
Sensitivity ' .
St;f‘gﬁt”’”e 10.65 {5.26 | 6.31 | 4.79{ 21.57| 11.95 | 6.61 | 4.99
l;?Zd-ord&r
ESS -~
Section- , ‘
Optimal 25.54 110.74 | 31.77 (11.92) 18.01{ 11.321{19.47 {11.0]
Structure | °

AR AT G e e o
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and . = .. . ‘
* 2

G,(z) = ¢ ' (6.9)
2" 222+aIZ+a2' )

where .
£ - '(a1/2+ﬂ2)61+(lﬁ1/2)62 -
Bi*B)

For a design comprising m cascade state-space structures, the

output noise RPSD can be shown to be

m . ! . m .
RPSD = T 5 {2f6y;(e3)|22f6, (e Bah | m m (2T |
§21 2 j=i+1
m+1 ‘ (60’10)

-~

(3 ) (3 3 » .
where, Hj(%3(1§ given in Eqn. 5.1, A, is given by Eqn. 5.29 and A,

is given by !

The coefficient mu]tibliers di for i =1,2,...,m-1, should be

!

determined as v
= o 1
d; = ¥ 1 Y | (6.11) /~
n Hy(z)
_ j=r 4 Co o
in order to satisfy the required overflow constraints at the output of
each section and - , 1
A " | |
d_ = ° . " (6.12)
m-1 s
n d,
i=1 !

The sixth-order filters described in Tables 6.2 and A.l were
designed using the state-space structure proposed in Chapter 5. The
multiplier constants for the lowpass, bandpass, bandstop and highpass

designs are given in Tables A.1l1 to A.14, respectiuglz.

s -
.
.
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In Figs. 6.14 to 6.17, the RPSD plots for the new design and the<\\\,/
section-optimal design are depicted. The new design is better in the
lowpass, bandpass, and bandstop examples, while the section-optimal is
better for the highpass example. The examples show that the
difference in noise performance between these structures is marginal.

\jhe average noise for each of the examples in Table 6.2 1is given
in Table 6.7. Thi; table confirms the conclusions based on the RPSD

plots described above.

6.5 Section Ordering -

J,
Although the problem of section ordering has not been studied in

depth, some techniques proposed in the 1it€;gfure were found to be
applicable i: some of the proposed designs.

In designs based on the structures of Chapter 3, section
ordering can be accomplished by using theatechniqge proposed in [45]
for the direct canonic design with ESS incorporated. This is possible
owing to the fact that the noise transfer function is the same in bopp
designs and the scaling constants have in general the same values.

Our computer simulations on various designs have shown that noise
outputs for differently-ordered sections using ESS vary less in

percentage when scaling constants are calculated on the basis of the

L norm as opposed to the L  norm. When the scaling constants are
2

chosen on the basis of L norm, the ordering of sections becomes a

very %mportant step in the design process.

=
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TABLE 6,7 -
- Average Noise in dbs
Lowpass Bandpass Bandstop Highpass
Elliptic Elliptic Butterworth Chebyshev
- Al ( ’.
Scaling L, L2 L, L2 L, L2 L, L2
New ) .
State-Space |24.30 /110.10) 30,83 110,56 |16.,92 | 9.1322.03} 12,37
Structure '
Section- )
Optimal 25.54 | 10.74] 31,43 | 11,24 [17.12111.46 |19.47| 11.01

Structure
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In [46] an analytical procedure is described for the pole-zero
pai;ing and sectioﬁ ordering for the section-optimal cascade design
such that a reduction in the output noise level is achieved. This
procedure has been found to be equally useful for cascade dgsigns

based on the new state-space structure of Chapter 5.

6.6 Conclusions "

The effect of proQuct quantization in the proposed structures
has been examined by evaluating the RPSD of the output n@fse in
several cascade designs. The various designs were thenrggmpared with
corresponding desigﬁs based on the direct canonic andasection-optimaT

¥ L 3

structures. \

The VGIC structure has been shown to give comparable results as
the direct canonic structure, while the limit-cycle-free TVGIC
structure gives inferior results.  The TVGIC structure with
second-order ESS is better than’ the section-hptima] structure, except
in the bandsto& deéigng The TYGIC structure with first-order ESS is
comparable witﬂ,Fhe ;gstion-optimal structure,gexcept for the bandstop
design where the latter is best.

The low-sensitivity structures proposed in Chapter 3 with ESS
incorporated gave the best noise performance among the structures .
proposed, except for the bandstop design where the secEion-optima]
structuré led to comparable noise performdncé?

The new state-space structure proposed in Chapter 5 was shown to

give comparéb]e results as the section-optimal structure for all the

designs considered. ]
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( CHAPTER 7
SENSITIVITY ANALYSIS
7.1 Introduction ? 8

\ :
In this chapter the sensitivity aspeefs pertaining to the VGIC

and TVGIC structures of Chapter 2, the low-sensitivity structu§§§ of
Chapter 3, and the new state-space structure of Chapter 5 are studied

'

in detail.
The techniques of Chapter 3 are used to reduce the sensitivity

in YGIC and TVGIC structures.
- o A}

The maximum sensitiQity § is used as a sensitivity measure, and \\ Jtu
an optimal subset of the low-sensitivity structures of Chgp;er 3 s f{ii \‘%
identified. These structures can collectively realize aﬁy .
second-order trarfsfer function. ’
Finally, a sensitivity comparison of the proposed structures
with the direct canonic structure and section-optimal structure is

undertaken.

7.2 Sensitivity Measures

The sensitivity of the transfer function

N(z)

bzl ‘ = )
of a digital-filter structure with respect to variations in multiplier

H(z) =

constant my is defined as

N (2) ) ' o
R TEA I I T 1. (£ 1 (7.1)
m, Dm~1_(z) Atz 3m; e
T If - .

Ty = mip)ed® (@)

the function
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JuT :

H(e™ ’l (7.2)
¥

can be formed where k is the number of multipliers in the

5= | S
1

structures and

H(eJ“’T‘)r= (SM(w) 2y o j20200 7 V2,

m.
it o

|s

[f the poles of the structure are close to the unit circle
\lz‘ =1, and m, is a noninteger denominator multiplier constant, .

theﬁ for w clpse to the pole frequency W,
[0 > ] el
and hence A
JuT
.rsg:e“ | = ISm:‘”)\ . . ‘ (7.3)

In addition, if my is a numerator multiplier constant then

JwT ij ' &
|SH(e ),>>|53(,e )i | (7.4)
J f
and, therefore, for ¢ = w, Eqns. 7.2 - 7.4 yield
. . r
kg T kg -
LS | SH(e )| l SM(w)‘ : (7.5)
¢ 1' 1 m'i ~ o

where kd is the number of denominator noninteger multiplier
constants. This quantity can serve as a sensitivity measure
which can be used for the comparison of different

high-selectivity structures.
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7.3 VGIC Structures

1 - -

By using the techniques of Chapt®y 3, improvements can-be
brought about in the sensitivity performance of the VGIC and TVGIC
structures of Chapter 2. Such improvements can be achieved by‘forcing
the values of‘m1 and m, to be Tow’in order to ensure low sensitivity ‘
of the transfer function with respect to changes in 0} and m, . For
example, the sensitivity in the TVGIC structure of Fig. 2.8 can be
reduced by modifying its recursive part as depicted in fig. 7.1(a) to
(c). These modifications do not affect the output roundoff noise or

the limit-cycle behaviour of the structure, although the number of

additions is increased by two.

H(z)

m

Table 7.1 gives the numerator polynomials of S and the

design equations for the original as well as the improved TVGIC
structures. - t
The optimum structure for a given transfer function with poles
;]ose to the ynit circle can easily be determined because for xy = 1;
m,= m, for all three improved TVGIC structures. The optimum structure
1s~the one }n whfqh Wml\ is closest to zero. The structure of Fig.
7.1(a) has lower sensitivity than /e structures of Fig. 7.1(5) and
(c% for a pole angle w, such that 0 <\wo < n/3, the structure of Fig.
7.1{b) is the best for 2x/3< wb'; n, while the structure of Fig.
7.1(c) is the best for =73 < w, ¢ 2n/3.
Fig. 7.2(a) to (d) shows the maximum sensitivity g for pole
angles Wy between 0 and n/2 for @ ,= 0.985, for the TVGIC, improved
TVGIC of Fig. 7.1(a), ﬁhe dtrect canonic, and the section-optimal
structures, respectively. The direct canonic structure is the worst
for pole angles wo'sma11e(\fiii about /3. The TVGIG-and
' )

ER -

i

%)

\

<
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Fig. 7.1: Improved TVGIC Structures
(a) For Pole Angle 0 < w

o = m43
(b) For Pole Angle 2m/3 < w <
- - (c) For Pole Angle /3 < w < 21/3.
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TABLE 7.1

Numerator Polynomials of

Sensitivities and Design Equations

N (z) N, (2) Design
™ 2 Equations
i a1+a2+1
m1 -
\ ,
TVGIC \m](z+1) : -m2(2-1) _ maptoytl
m B e—————
2 2
&
a]+a2+1
Improved m = 5
TVGIC :
Fig. my (z+1) m,(z-1) gyt
' 1-0,~0
Improved m = 2 1
TVGIC ~-m,(z4+1) m,(z-1) ! 2
Fig. 1 2 1+a. -
7.1(b) no= 12
2 2
Improved - 3-a) -9
. TVGIC -m,(2+1) -m,(z-1) 1
Fig. 1 2 lea. +a
7.1(c) mo= 12
; 2 2

Vs

L e
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section-optimal structuL:s are quite similar, while the improved TVGIC
structure is the best/ for pole angles W, smaller than =/3, as
expected.

A factor that seriously affects the performance of the TVGIC
structures lies in the fact that its zeros are formed by a linear
combination of Tlowpass, bandpass and highpass tr&&??er functions. As
a result, the sensitivity to numerator multipiier coe?ficients can be
as high as four times the sensitivity in the direct canonic structure.
For example, if the zeros of a narrowband lowpass elliptic filter are
realized by a combination of a lowpass transfer function with zeros at
z=-1 and a highpass transfer function with zeros at z=1, the sensitiv-
ity to variation ;k\mu1tip11er Cy is 22 + 2z + 1 (=4, for z=1) times a
corresponding sensitivity in the direct canonic structure.

For the sake of comparison, coefficient quantization has been
applied to thg\]owpass, bandpass, bandstop and highpass designs' based
on TVGIC, dire&t canonic and secfion-optimal structures isee Tables
A.2 to A.5). Coefficients were assumed to be in fixed-point format
and the quantizqtion was‘by means of rounding. Then actual amplitude
responses were obtained for the various designs as illustrated in
Figs. 7.3>to 7.6. The coefficient wordlengths were assumed to be 11

bits in the.lowpass designs, 9 bits in the bandpass designs, 7 bits in

{\fhe bandstop designs and 8 bits in the highpass designs.

“ The section-optimal design performed better in the lowpass and

.= highpass filters followed by the TVGIC.  The direct canonic design was

the best for the bandpass filter. In the bandstop case the section-

optimal and direct canonic designs presented similar performance while

w— AR5 v o0 o ammrmAias eontnis e v 4 = —
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the TVGIC design presented a poor performance.

Very Tittle improvement was obtained by using the improved TVGIC
structure in the }owpass and highpass examples, while a poor
performance was oftained in the bandpass and bandstop examples.
Examples using the improved TVGIC were not included, since variations

in multiplier constants ¢ <y and c, were found to have more

0’
1nT¢ue€fe~§€an s My
AR : , .. ,

ThéQVGIC and TVGIC structures are quite similar, that is they
have the same characteristic polynomial and the zeros are formed in
the same way. These facts lead us'to believe that their sensitivity

properties are also very similar.

7.4 Low-Sensitivity Strudgures ¢f Chapter 3

In Chapter 3 several low-sensitivity structures have been
developed in which ESS can efficiently be applied: For each
permissible range of denominator coefficieht s at least two
distinct structures are possible as can be seen in Table 3.1 and 3.2.
By using the maximum sensitivity § as a sensitivity ﬁéasure, it is
possible to identify an optimal subset of these structures.

A
The maximum sensitivity S is assumed to occur at y = Wy where

w, 1s the angle of the poles. It gan be determined from Egn. 7.1 by
#

0
H(z)

m,
1

using the numerator polynomials S given in Table 7.2.

For —l.5<a1<-0.5, the structures to be compared are I-5, I-6, *
and II-2. Assuming that a, is close to unity, Eqns. 7.1 and 7.5, and-

I

I-5 °

’

Table 7.2 yield the sensitivitiej/gf these structures as

- S
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TABLE 7.2 \
Numerator and Denominator Polynomials
of Sensitivities Z
, , . '
Case N"’I(Z) Nmz(Z) . Dmi(z)
el .
I m1(Z-D) -my 0(z)
# ¢ ' p
‘ I1 m](z-B) -m,B2 0{z) »
=
- 3
A .
[ 0

I
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4 1-6 -

SI-6 E :r——f——;
|D(er° )|

)

N
a 1I-2
S11-2 ¢ P )
wo ~
[ote” ° ]
where -
: o

& w

[

g = || 1 g} (2-2c0s0 )
NIi-é : ‘“1*‘12|+|1-a2|/‘(_2-_2;;§:;) .

NI-S = -(az‘.nl) ( .

NI-G = -(al+u2)-(1+u1)/ (2-2co§»0)

"

% e

NII_Z = ‘((11"‘&2)""(1"“2)' (2‘2(:05(00)

and hence ﬁ \

" A A

Sp-5 < mn {Sp Si1-2t ¢

A

For -l<a1<-a2

S
NI-5 = 2-a2+a1 *
NI-6’= -(a1+ué)+(1+u1)¢ (2-2cos»°) N

NII_Z = "(al"uz)""(l‘ﬂz)V (Z'CO&QO .«

(7.6)

(7,7)%

(7.8)
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Evidently, '~‘A

L A
and, in addition . ~\\\\

Nig <15

as can be shown by adding (a,*,) to each-of Eqns. 7.6 and 7.7, and
: g fey™y \

}

then dﬂvfding each by (l+ulf. As a consequenge

-

g <Min {Sy g Syl
Similarly, for -a2<a1<~0-5

Njg = 2maj*w,

1

Npog = (@gtuy)+(la) W/ (2-2c080, )
NII-Z = (a1+u2)+(1-az)v (Z‘ZCOSO)O)

nd as above we can\show that
' SIL-Z < min {51-5’\51-5} * . \':j , (7.9)

In effect, the choice of structure tends to depend heavily on

the relative values of coefficients al°and . For example, if a = -

0.9 and ap = 0.985, I-5, I-6, and II-2 are possible structures, and
according to Eqn. 7.9 the optimal one is II-2. Thi$ result is

confirmed by the sensitivity plots of Fig. 7.7.

:

» The above appréach has been applied for the femajning range of
ag- The optimum. structures identified are summarized in Tabple 7.3..

The sensitivity performance of the structures of Chapter 3 is
. t ,, .
compared with that of section-optimal and direct canonic structures in

I
/

'Figs. 7.8 to 7.11. These plots sﬁow-actdal amplitude responses with

the mulitipliers coefficients quantized. As in previous examples, the °

“coefficients are assug?d to be in fixed-point representafion‘and the

quantization is agsumed to be by rounding.

gy i
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TABLE 7,3
Optimum Structures
Range ofa‘] Struc-ture .Condition for Optimafity
A .
-2%,<-1.5 I1-1 -2<a,<-1,5
I-5 -1.550,<-1.0 '
®
-1.5§a1<-0.5 ) I-6 -1.O§a]<-a2
-~
I1-2 -a2591<-0.5
-0.&p1<0.5 1-7 -0'53ﬁ<0'5
I-10 ].O<cx]<1.5
O.an]<1.5 I-1 a2<a151.0
11-5 0.5<0, <0,
1.5%a, <2 11-6 154042
-
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Fjg. 7.8 shows the amplitude dg;ponses of the lowpass designs
degpribed in Tables 6.2 and A.1. The coefficient wordlength was
asgﬁmed to be 8 bits in each case. The amplitude response of the
section-optimal design is close to the desired response. Similarly,
the response of the design based on structure II-1 is close to the
desired response’ except for a Ishift in the gain.

ng.\7.9 shows the amplitude responses of the bandpass designs
described 'in Tables 6.5 and A.6. The coefficient wordlength was

ssumed to be 8 bits. The better performance of the new structure is
::Eéyly noted. .

Vot

\\,//\ Fig. 7.10 shows amplitude responses of the bandstop designs

e

L,

1\; described in Tables 6.5 and A.6. The coefficient wordlength was"
assumed to be 5 bits. As can be seén structure I-7 and the direct
canonic structure yield similar results, while the section-optimal
structure is worse. The reason for the good performarice of the direct
canonic structure in thjs example can be explained by the fact that
the poies of this particular bandstop filter are very close to z = +
J, where the sensitivity of the direct canonic structure reaches a
minimum value (see Fig: 7.2(c)).

Finally, the amplitude responses of the highpass designs
described in Tables 6.2 and A.l are depicted in Fig. 7.11; The
coefficient wordlength was assumed to be 5 bits. The response of the

design based on structure II-6 is the closest to the ideal response,

“except for-a shift in the gain, which can easily be corrected.

L)
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7.5 State-Space Stryctures N

~
The sensitivity S of a second-orde;\Btate-space structure
characterized by matrix A in the form given \mggqn. 5.1 can be

obtained as

S = 2|s§(”|+z|sg,(i)_p1 (7.10)

The use of this formula gives the maximum sensitivity S as

S ='{2e2 + 2a /1+a%-2a cosw, | 1 (7.11)
6/Q2-6)2+4c052w0(571)
where
6§=1-r,
e=rsing ’\\
and o
a=rcosuw,.

Now if the poles of the transfer function are close to the unit

circle, i.e., 6 is very small, Eqn. 7.11 can be simplified as

A

S

1]

1 ,.2 .

3 (r® sin W, + r cos wo)- (7.12)

. (2] . ‘
This equation is very accurate when the value of Wy is mueh greater -
than § if the poles have positive real parts, or when (ﬁﬂno) is much

greater than 6 if the poles have negative real parts. The peak value
~ e
of S is reached when tan Wy =T i.e., if the poles are close to the

unit circle this peak occurs when'wO z x/4. On the other hand, when
the value of uois much smaller than 5, the pgak value of S can bhe
deduced as

A

ot ro
o

S =

. j (7.1

=
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If a, = 0.985 and w, is assumed to vary from O to 0.1§ rad/s,
Egn. 7.11 shows § to remain almost constant with a value of about 132
for u3>é whereas Eqn. .7.12 gives the peak value of g as 265. These
results are confirmed in Fig. 7.12 where the exact value of g is
plotted versus'wo.

In Figs. 7.13 to 7.16 the new state-space and section-optimal
designs are comparéd on the basis of actual amplitude responses with
the coefficients quantized. The filters considered are the Iowpasg;
bandpass, bandstop and highpass filters described in Tables 6.2 and
A.l. The coefficient wordlength was assumed to be' 8 bits for the

;;>ﬂowpass, 9 bits for the bandpass and 7 bits for the‘ban&stOp and
highpass designs. As can be seen, the performance of the new
state-space structyre is very similar to that of the section-optimal
structure in all examples.

The new stafg-space structure is not as insensitive as the
low-sensitivity structures of Chdpter 3. Nevertheless, it may
sometimes pe preferred because limit cycles can easily be eliminated
and the output roundoff noise can be kept low without the application
of ESS.

- " -

7.6 Conclusions h

Several sensitivity aspects pertaining to the VGIC and TVGIC
structures of Chapter 2, the low-sensitivity structures of Chapter 3,
and the new state-space structure of Chapter 5 have been considered in

detail.

0
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’ ' v
It has been shown that the technique of Chapter 3 can diso be

used to reduce the sensitivity in VGIC énd TVGIC structures.
’ By using the maximum sensitivity S as a sen;itivity measure, an
optimal subset of the low-sensitivity structures of Chapter 3 has begn
identified. These structures can' collectively realize any

second-order transfer-function. ~

Finally, a sensitivityéiomparison of the various structures has

been undertaken. The results show that the Tow-sensitivity structures
of Chapter 3 are almost always superigr relative to corresponding L

direct canonic structures and also relative to the section-optimal

steucture. The few state-space structure has been shown'to have

=N

similar performance as compared with the section-optimal structure ,,/",

while the TVGIC structure presented higher sensitivity relative to the

remaining structures proposed in this thesis.

.

N2
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CHAPTER 8
CONCLUSIONS
8.1 Introduction

Thé‘main objective of this thesis has been the'generation of
high-performance recursive digital filter structures. The emphasis
has been placed on generating second-order structures which can be .
used in cascade or in parallel- for the realization of High-order
transfer functions. ‘This objective has largely been met and several o
alternptives have been proposed for the design of low-noise,
1ow—sen51tiv{2y, and 1imit-cycle-free digital filters.

In this chapter, the main contributions of this thesis are
sumﬁar1zed and suggestions for future research/are pointed out.

8.2. Results of the Thesis ; '
\ >
. In Chapter 2 new second-order digital-filter structures have

heen developed by applying éhe concept of wave characterization to\aﬁ o
analog cqnfiguratibn.\ This configuration realiz65 a continuous-time
biquadratic transfer function by means of voltage-conversion type
gegggg]jzed-immitanée converters (VGIC's). The new VGiC-pased

==

structures are canonical with respect to the number of multipliers and

delazs while having a reduced number of addérs. In addition, through ’
thgyuse of transposition a digital structure (TVGIC) has been obtained 3
which rea1i%gs simultaneously a lowpass, a bandpass and a highpass d
transfer function. This structure also reai.izes a transfer function

. v !

////' ' 4
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with zeros on the unit 5}ncle using the minimum number of multipliers.

J

In addition, a unive>§§1 digital biquad_was derived which realizes

—

§1multaneous]y all the standar econd-order transfer functions.. >
- A spéﬁia],caée of thé/;VGIC structure has been shown to be
amenabie to the applgcation of error spectrum shaping (ESS). ESS
brings }bout a dramatic reduction in the output roundoff noise.
) In Chapter 3 a systematiéraiacedure has been described which can
be used for the generqtion of Tow-sensitivity d%éita]-fi]ter
" structures which are amenable, to ESS. (Ihe\procedure was then applied
for the genera£1on o% several new as wg]] as some known structures.
Chapter 4 showed that zero-input and overflow 71mit cycles can
be eliminated in the VGIC and TVGIC structures. Next a theorem was
proved which establishes sufficient conditions that will ensure
freedom from constant-input limit cycles in a general digital-filter
structure in which zero-input 1&mit cycles can be eliminated. By
applying this theorem to the TVGIC structure, to a sub-class of the
YGIC structures, and to the univer§$1 digital-biquad, constant-input -
limit cycles can éfficient]y be eliminated. “
In Chapter 5 conditions have been derived which lead to the.
elimination 5; constant-input 1im1t'cyc1es in second-order state-space
structures. Ffom these éoﬁdit;ons new and more_economical state-space
§$tures/me generated.  Specifically, a nev) state-space structure
was derived in which the number of multipliers is reduced by two

relative to that in the section-optimal structure. A step-by-step

procedure was then given for the design of parallel filters..

4

-
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In Chapter 6 the effect of product quantizaiion'in the various
types of structures has been considered and several comparisons were
underggken. The VGIC and TVGIC structures were compared with the
direct;c;Ronic‘;nd section-optimal structures, by evaluating the
relative power spectral density of the output noise in several

\Hesigns. The VGIC and: TVGIC structures were shown to be comparable to
the direct canonic structure in terms of output roundoff noise. The
TVGIC gtructure with secongzgrder ESS was shown to give better results
than the section-optimal structure, while the TVGIC structure with
first-order ESS was f;und to be comparable to the section-optimal
structure. In a&dition, the low-sensitivity ‘stFuctures proposed in
Chapter 3 have been shown to/have improved noise performance as
compared to the section-optimal and TVGIC designs. The only type of

, transfer function in which the seétion-optimal design outﬁerformed the
TVGIC and the low-sensitivity designs is in the bandstop ddsign, :

| because ESS is not effective in filters with wide paséﬁénd(s).‘\A
comparison of the new state-space structure with .the conventional
section-optimal structure has shown the performance of the two types
of structures to be very similar.

In Chapter 7 several sensitivity aspects pertaining to the VGIC

. and TVGIC structures of Chapter 2, the low-sensitivity structures of

s

Chapter 3, and the new state-space structure of Chapter 4 have been
considered in detai].. In addition, the‘techniques of Chapter 3;have
been used to réduce the sensitivity in VGIC and TVGIC structures. By
using the maximum sensitivity S as a s?nsitivity mehsure, an optimal

subset af‘fﬁe.1ow-sensitivity structures of Chapter 3 has been

"
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identified. These structures can collectively realize any
second-order transfer function. Fipgally, a sensitivity comparison of
the various structures has been undertaken. The regu]ts have shown
that the low-sensitivity structures of Chapter 3 are almost always
superior relative to corresponding direct canoﬁic structures and also
relative to the §ection-optima1 structure. The new state-space
structure has been shown to have similar performance as the
section-optimal structure.. The comparison has also showq that the
TVGIC‘structure presented higher sensitivity relgtive to the other
structures proposed in this thesis.
) o .
Ay

8.3' General Comparisons

.

In the class of meaium noise structures, the VGIC and TVGIC
structures, have the advantage over the direct canonic structure that
zero-input, constant:input andAEVérf1ow limit cycles can be _
eliminated. Furthermore, in the fVGIC structure simultanequs
realization of‘severa1 transfer fuﬁctions is possible. In‘terms of
roundoff noise the VGIC structure is very similar to the direct
canonic struéture but the TVGIC structure is somewhat noisier. In

\ierms of cost the YGIC and TVGIC structures, like tﬁé direct caronic
stfucture, are both very economical.

-

In the class of low noise structures, the TVGIC and the

. A
. Tow-sensitivity structures of Chapter 3 both using ESS present lower

output noise as compared with the section-optimal structure, except

for bandstop filters. The low-sensitivity structures of Chapter 3 .
‘ " i , R L] == A

<
»
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[4?i present the best seﬁsitivity and noise performance amongta11
structures presénted in this thesis. The new state-space structure
presents sensitivity and output noise which are comparable to the
corresponding quantities in the section-optimal structure. However,
the new structure allows elimination of constant-inpuf 1i&it cycles,
and reduces the number of multipliers by two per second-order section.
This structure is unique in the sense that it is the only Tow-noise
structure in which all known types: of limit cycles can be eliminated.
The structures with ESS are expected to have low-amplitude 1imit
cycles [36] - [37]. Zero-input 1imit cycles can be eliminated fors

. some’ choices of the ESS parhﬁ%ters [36], but the optimum noise

. performance may not be assured.

In terms of cost the TVGIC, the low-sensitivity and state-space
structures require fewer multipliers than the section-optimal
structure. However, the most economicaf structure will depend on the
“type of hardware available for the implementation of the filter.

The properties of the various structures described in this
thesis as well as those of the direct canonic and section-Optimal

structures are summarized in Table 8.1.

8.4 Suggestions for Future Research
7 Although some, significant resu]tsghave been obtained in this
thesis, several outstanding problems remain. ]
The TVGIC and low-sensitivity structures of Chaater 2 and 3;

respectively, seem to be suitable for implementation using
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7/
ROM-accumulator and:s@pred-product techniques such as those described

in [40]‘-[42]. The applicability and implementation of these
technique; shou]d‘be investigated.

By using different adaptors in .the VGIC structure proposed in
Chapter 2, new se;onq-order structufgs can be obtained which would have

the desirable f%atures'hresented by the proposed VGIC structures. ,

“The generation of these structures is an interesting topic for future

research.

The limit-cycle behavior of t?e TVGIC structures of Chapfer 2

“and the 10Q-sensit1vity structures of Chapter 3 should be investigated

for the case where ESS is incorporated. Although limit cycles ma}
occur in these structures, the amplitude of the 1imit cycles is
expected to be Tow agiﬁpresumably it can be reduced or eliminated by
choosing the ESS coefficients properly.

The generation procedure of low-sensitivity structures which are |
amenable to ESS &s presented in Chapter* 3 can be applied for the
generation of 1ow-sensig?;1ty structures of higher-order, or to
generate second-order stguctures Raving more than three noges in their
recursive part. These probiems should be investigated further.

Another topic for\future research would be the application of
the internal scaling procedures described in [19], [20] and [41], to

the structures proposed in Chapter 3. This method can be used as an

alternative to ESS in order to reduce the output noise.

\ \ ‘ ’




-170 -

[ ~

The sensitivity performance of‘the structures of Chapter 3 when
thf filters are implemented by using floating-point arithmetic should
be investigated. It seems that more significant improvementg in the
§epsif1vity performance can be obtained in this case.'

The theorem of Chapter 4 for the e)imination of constént-input
limit cycles should be applied to some other important structures in

whichAzero-fnput limit cycles can be eliminated such as lattices and.

*

orthogonal structures.
Another interesting topic for future investigatjon is the
desigh of nth-order state-space structures having a sp;rse matrix A,
sﬁEh that zero-inbut Timit cycles are e]imina;ed. In this approach,
' it might be possible to obtain a machine fepresentable vector P by
forcing vector B to have a desirable form. Then it might be possible
. — to choose vector C so as to place the zeros of the transfer func;¥gh
at desired positions. Since the choice of"matrix A would allow ébme
free parameters, it shoula bé possible to use an opt1mizatioﬁ
algorithm to de;grmine matrix A such th;t ze;o-input limit gycles are

eliminated and the output noise is reduced at the same time.
‘ - T2 .
: : o
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TABLE A1

Transfer Functiof Coefficients
of Filters Described in Table 6.2

[

]
Y13 Y23 Gj 99 5
% ,
-1 . 3586005 1.0 -1.918829 0.9225768
o -1.8893746 1.0 -1.936830 0.9518912
S
3 -1.9337187 1.0 -1.960636 0.9809357

= 2.5992172 x 10-4

0
0.0 1.0 | -1.605156 0.9841072
-1.4798344 1.0 -1.596076 | 0.9920225
A
S -1.7224138- 1.0 -1.626727 0.9923016
o = 1-391269 x 10-4
1 -1.8042262 1.0 -1.566901 0.7369230
-1.8042264 1.0 -1.512319 0.8278297
(=% R
o
o -1.8042257 1.0 -1.792957 0.8963944
S
o = 0.73949244
2.0 . 1.0 1.648927 0.7011856
" 2.0 1.0 1.575104 0.7808699
w
(1]
£ -2.0 1.0 1.546503 0.9172177
=

, = 5.8128711 x 10- 3
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TABLE A.2 h#
M tiplier Coefficient; for Lowpass Desién
“_A.2 (a) VGIC Structure of Fig. 24.6
N T
5 " "2 ‘03 “ E
1 .00753 1.94436 .00170 .00000 .05978
2 .00187 1.92070 .00194 .00000 .01015
3 .01215 1,97279‘ .00582 .00000 . 34515
A= 10
A.2 (b) L'im'it-Cycle-Freg TVGIC Structure of Fig. 2.8
j ™ 25 “0j “ ‘23
1 .00753 1.94436 - 1.16390 .00000 .. 40,92057
2 .00187 1.92070 . 32069 .00000 1.67926
3 .01215 1.97279 1.48963 .00000 ' 88.40768
M - 3.43522 x 10-8
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( . | |
A2 (¢) TVGIC Structure with Second-Order ESS of Fig. 2.10
‘1
J M 3 ™ 5 9 1 5 25
1 .01215 1.97274 .ooa%s . 00000 22843/
2 W 1.94436 | .00676 .00000 23764
3 .| .o0187 | * 1.92070 1.01547 | .00000 | 5.31738
ESS Parameters ///

\ e ——— . '/
J\ b, by
1N -1.98749 90616/ ¢

\ /
2 T1.98423 98854

ig
,
3 -1.41480 41841
/
My =7.22898 x 10~4 N
‘ -/
x| ,
—_
( ! //
Qy‘-// / .r’
' -/
. /
9 / y -~



A.2 (d) TVGIC Structure with First-Order ESS of Fig. 2.10
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¢

<

m

C

mlj % - ch , ¢ %
] .00753 1.94436 .00153 .00000 .05365
2 01215 1.97279 . 00817 .00000 .48488
3 .00187 1.92070 1.01547 .00000 5.31738
ESS Parameters |
J b]j \
1 -.99566 \
2 | -.99628 -
3 | -.99746
A, = 1.50859 x 10-3
A.2 (e) Direc‘t Canonic Structure
J | m 5 M fo'j. €15 €5
1 -1.93683 .95189 i07864 -.14858 .07864
2 -1.91883 .92258 .02443 -.0331? .02443
-1.96064 j98494 44 .69215 -8€.42205 44,69215

3

. 3.?722 x 10-3
Qe
Ay
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- A.2 (f) Section-Optimal Structure
. B. C. )
A; B £ %5
.96842 - =,11195 .04757 .03067
.0614832
12562 ,96842 .00151 .96870
.95941 -.02870 .10382 03262
' .0120918
.07320 .95941 .00346 .97885
,98032 -.15979 .10297 ,04570
. .349620
.14965 . 1,98032 .00499 94292 ‘
{
’ »
a
o
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TABLE A.3
Multiplier Coefficients for Bandpass Design

A.3 (a) VGFC Structure of Fig. 2.6

L)

7

t

f'

L
‘ B\
J m3. Mo 5 ) o oF C2j
/ T ’
1 .18948 1.79463/ .00000 " .00795 .00000
é .18797 1.79405 .00938 00000 .06277
3 .18279 1.80951 .01684 .00000 .22580
A1 = 1,0
-
/
x
3
A.3 (b) Limit-Cycle-Free TVGIC Structure of Fig, 2.8
j mj Mos Coj CTJ' C2j
1 .18948 1.79463 .00000 .02036 .00000
2 .18279 1.80951 .09501 .00000 1.27£07
3 .19797 1.79405 3.65186 .00000 24.43041

A =1.777347 x 107
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% $
- A.3 (c) TVGIE Structure with Second-Order ESS of Fig. 2.10
i

J T1j 23 0 1j €2;

1 .19797 1.79405 .02379 .00000 15912

2 .18279 1.80951 ,02441 ..00000 32733

3 18948 1.79463 .00000 1.61805 00000

N ESS Parameterfd
]

. °

J b]j Oj -~

1 -1.61757 .99978

2 -1.60762 . .99975

3 -1.58832 .97845

A = 1.336472 X 10°

3

I



- 186]-

.

4

A.3 (d) TVGIC Structure with First-Order ESS of Fig, é.lO 4,

-

¥

J mg "2d €0 “ €2
B 18279 | 1.80951 .01908 - | .00000 25586
2 19797 | 1.79a05 .| 0313 | .00000 22166
3 | .1848 | 1.79463 | .00000 | 1.61805 00000
ESS Parameters
J L’lj ,
l - 80887
2 -.81376
, _
L3 - 80281
x]&=m1.227435 x 1073 . ‘ ’
Ve '
. - )
i L
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A.'S (e) Direct Canonic Structure

1%
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—~ . . ;
! ™ "23 %3 13 €23
- : < B a s
11 -1.60516 98411 . 00555 ,00000 -.00555
2 -1.59608 a=..99202 .18367 Z.27180 .18367
43 | -1.62673 99230 17.17636  |-29.58480 17.17636
* [
/ A = 7.946004 x 1073
{rj_ r [} ﬁi
# I}
A.3 (f) Section-Optimal Structure
; A - . '
J ~J §J 93 ‘ Qj
.80258 -.59107 .00721 .88394 .
1 ‘ .0079464
.57518 ﬁozss .01416 .45038
.79804 -.59633 014248 | . .29455 '
2 ' 072156
.59557 .79804 .00442 .94881
.81336 -.57522 01304 | -,88822 ;
3 242683 |
.57498 .81332 -.03782 . 30695
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Multiplier Coefficients for Bandstop Design
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TABLE A.4

A.4 (a) VGIC Stfucpure of‘Fig, 2.6

|

>
n

2.279712 x 10°

4

I My "2 3 $oJ © €2 3
1 .08501 1.6519] 04251 .00000 .82596
2 .05172 1.84468 02098 .00§00 40767
3 | 15776 1.67007 09722 .00000 | 1.88923
A = 1.0
k) ]
A.4 (b) Limit-Cygle-Free TVGIC Structure of Fig. 2.8 .
] ™ M €. €5 °2;
‘ p“k‘“{\\‘
1 .08501 *1.65191 .38363 | ~-80000 7.45455
2 15776 1.67007 .63930 .00000 -%{2269
3 .05172 1.84468 , | 1.55069 N .00000 | 30.13252™
_ o
i T

AN

43
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A.4 {c) TVGIC Structure with Second-Order ESS of Fig. 2.10
F [y
J ™ 'y Coj “ €23
1 .08501 1.65191 ,06052 .00000 1.17600
2 15776 +1.67007 .03306 .00000 .64249
|
] 05172 1.80468 | 1.55069 00000 | 30.13252
ESS Parameters
J . blj boj
1 .10504 .07280
2 .03443 .04585
3 _ -,20511 -.23729
- »
A = 2.794126 x 107°
i‘ .
. ©
&
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A.4 (d) TVGIC Structure with First-Order ESS of Fig.‘2.10

I ™3J 23 €03 i €2

1 08501 1.65191 .06052 | .00000 1.17600
2 15776 \\1.57007 .03306 .00000 64249

w <
3 .05172 1.84468 | 1.55069 .00000 | 30.13252
ESS Parametent

i b. . "E

i 13
1] 09791

2 L Z032;2\\\

“ =
3 | I-.26892
A, = 2.798126 x 102 )

1
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A.4 (e) Direct Canonic Structure

M3 23 €0; ; €23
-1.56690 | .73692 1.31591 -2.37419 | 11,3159
¥
-1.51232 | .82783 .62338 -1.1247 .62338
-1.79296 | .89639 15.50610 | -27.97651 | 15.50610
A, = 5.813693 x 1072
/ ;
A.4 (f) Section-Optimal Structure A
J A .
f~j EJ Ej 93
’ .78345  -.24320 .21968 -.46912
1 - .868461
.50628 .78345 -.13844 .74441
F{
.75616 -.47955 .15194 -.68389
2 .711927
.53395 .75616 -.22147 .46918 -
.89648 -.30535 .48871 -.01379
3 ' ‘ 1.19605
.30366 .89648 -.00894 .75385

Sy s i
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TABLE A.5
Multiplier.Coefficients for ‘Highp‘ass Design

A.5 (a) VGIC Structure of Fig. 2.6

j My q'ij Coj CU €3
1 1.67799 .10288 .00000 .00000 .02617
2 1.67506 02613 .00000 00000 .02515
3 1.73186 . 18536 .00000 .00000 .08833
A = 1.0
1

A.5 '(b)\Lim'it-Cycle-Free TVGIC Structure of Fig, ;.8

il Tmy M €0 ©j %23

N 1.67799 10288 .oovooo .00000 .01501
‘ L ..

2 1.6750f; 02613 .00000 ' |  .00000 .05100
3 1.73186 | .18536 .00000 [ 00000 99999
\ = 7.593438 3 1072

t
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A

T

A.5 (c) TVGIC Structure With Second-Order ESS of Fig., 2.10

™ M2 j 3 “1j €25
1.67799 .10288 .00000 " .00000 .02604
2 1*.73186 .18536 - .00000 .00000 ,08529
3 1.67506 .02613 .00000 . 00000 .99999
" ESS Parameters
~ j " b] j bOj
1 1.80314 ©.94708
2 1.7823) .91163
- T
3 1.84261 ¢ .88821
A = 2.617315 x 10°
Y
K
) \l/‘ ~
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A.5 (d) TVGIC Structure With First-Order ESS of Fig. 2.10

proy

N
o1 oMy ) M - %o 3 %
1 1.67799 | .10288 QLén .00000 ,00000 02604
L\":.m .
2 1.73186 | .18536 .00000 00000 08529
3 1.67506 -| .02613 .00000 .00000 .99999
ESS Parametqrs.
: /
J by 5
1 .92894 ! , \ %
2 .93235 | )
'\ /
i | 3 | °.97585
-2 )
A = 2.617315 x 10 ;

.udqqkh

e



A.5 (e) Direct Canonic Structure
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\

17325

i M. 4 \\ﬁ’- C s Cqs c
J 1 el 0J 1] 2j
] 1.57510 .78087 .02515 -.05029 .02515
2 1.64893 | .70119 .08833 -.17667 .08833
S L :
3 1.54660 91722 .9999 -1.99998 .99999
‘f gl SO S Au f
A = 2.616669 x 1072
¢
* ,
A.5 (f) Section-Optimal Structure
J A, . . .
9 " ~J EJ . "C'J 9\]
f-.78755  -.38630 21927 | -.21334
1 ‘ .0261701
.41582 -.78755 -.05101 91714

82446 -.08931 38151 | -.12025 '

2 ) , ' .0251457
.24012 - . 82446 -.05021 91369 |

..77325  -.58000 54475 | -.28754 |
3 ~ S R Lk 4

55052 © - -.16912° 92617 | -

N
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TABLE A.6

Transfer Functions ,‘C/;yeffi cients
of Filters Described”in Table 6.5

AV

J L3
. ' 1 .,
J " j Y23 * 3 % 5
' ] 0. 1.0 | -1.446678 0.9842731
" 2 | -1.2999169 1.0 | -1.434637 0.9921319
é R
5| 3| -1.5851062 1.0 | -1.469855 0.9923436
! ¥
Ho = 1.35997 x 107
_ Y
1| 8.68097 x 1078 1.0 7.78194 x 1078| 7928745
N 8.68096 x 1078 1.0 .1886429 .8918090
13 , :
z 3| 8.68096 x 108 1.0 -.1886427 .8918090
[e0]
, ‘ H = 0.7940989
?
o - W PP _—

;
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TABLE A,7

Multiplier Coefficients for
Lowpass Design (Structyre II-1)

J ™ M S 8y

] -.02811 .01506 .05503 | -0.5503 .00609
2 -.01506 .02430 .49306 - -.49306 .03268
3 -.07742“ .00375 1.59225 -1.59225 | 1.02127
ESS Parameters: | 2" o rder 15t order
3 by . b3 "3

1 -1.98749, ° .99616 -.99566

2 | -1.95175 .95904 ' -.99628

3 -1.41480 .41841 : -.99746

A = 6.016012 x 1073

1

H

——Tw —— .
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TABLE A.8

Multiplier Coefficients for Bandpass
Design Described in Table 6,5

A.8 (a) Structure I-5

—
J ™ 25 %; 5 %;
1 .43464 -.00787 18980 -.20673 18980
2 .46986 -.00766 1733® -.27877 17331
3 .44668 -.01573 75627 ,00000 | -.75627
T
ESS Parameters 2"4 order 15 order
J b]i 0j b]j
1 ® .1.45780 .99979 -.72898
2 -1.46903 .99966 . -.73464
3 -1.43550 .98412 -.72354
A = 5.466735 x 1073 B
7
A.9 (b) Section-Optimal Structure
i . A. B. .
’ vl ~i 5 5;
.72334 -.68692 .00625 ,91043
1 ‘ .00786488
.67119 72334 ,01444 ,39406
71732 -.69113 .01388 .35468
2 .0730954
.69102 717 .00529 ,93139
.73493 -.67266 .01511 -.90244
3 .236563
.67229 .73493 -.03631. .37548
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TABLE A.9

Multiplier. Coefficients for Bandstop
Design Described in Table 6.5

A.9 (a) Structure I-7

; . . -8
X ™ 23 0j 43 %3
1 .00000 -.20713 .72349 .00000 .72349
2 | -.18864 -.10819 1.57708 .00000 1.57708
3 | .18864 -.108}19 - | 4.75400 .00000 | 4.75400
ESS Parameters: 2nd order 15 order
J by b0i Byj
2z <\
1 .00000 -.08179 .00000 .
2 ,00000 -.02242 .00000 .
3 -.19637 ,09540 ~.17927
A, = .1463953 .
A.9 (b) Section-Optimal Structure
J A. . L
~J 53 EJ QJ’
.00000 5.07820 .20713 .00000
1. ' .896437
1.00000 .00000 | =000 .89644
-.09432 -.92357 4338 | -.39449 |1 |
2 .599687
.95598 -.09432 -.07529 .75130
.09432 -.83717 .38308 . 36371
3 < 1.47717
1.05464 .09432 .22190 .62788
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) ¥ 2
“ TABLE A.10
Multiplier Coefficients for Highpass
‘ Design (Structure [I-6)
3 ™ W | % - 93 %;
1| .21913 .20577 .02490 .02490 .09962
2 | .os78 | 37071, 08585 08585 .34338
~3 | .29881 .05226 .27350 27350 | 1.09398
ESS Parameters: 274 order 15 order
] by B i,
. 1.80314 94108 '] .92894
2 1.78231 .91163 .93235
| 3 1.84261 .88821- 97585
A = (994158 x 107! — s
&
\ N
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"TABLE A.11

Multiplier Coefficients for
Lowpass Design (New State-Space Structure)

.
\

.

A. . .
: -3 % £ %
g2 -.sd | .omsy | 1.86061 |
| ' .293238
12214 ,96842 -.12314 .36722
95941 . -.03650' .04059 69867
2 , T 1 .000410644
.osasswu\‘\\ .95941 -.05755 .45276 \
.98052 - 14851 7 .01968 .94723 ‘
3 ‘ ’ 548276 ¥
16101 .98032 -.16101 .02413 ,
A ‘{ - : /)
A = 393693
Ay (\Y’j
- ‘
! i
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Bandpass Design (New State-Space Structure)
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TABLE A.12

Multiplier Coefficients for

1

Wi

?

h] A, .
~J §J EJ' P.j
80258 -.58295 1972 | -.00726 |
1 | 0075870
58320 80258 | -.58320 |  -.02244
79804 59537 20196 06330
2 | I 201773
59653 79804 | -.5953 | -.01789
- .813%  -.5753% 18664 |  -.88216 ,
3 3.66522
| 57484 8133 | -.57484 32369
A, = 2.591733 x 10° (

!

0
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Bandstop Design (New State-Space Structure)
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TABLE A.13

Multiplier Coefficients for

;
A. B. C. D,
23 =i i =
.78345 -.29575 .21655 .10133
669042
41632 .78345 “\x\€163z 43410 .
~ 75616 -.50931 203884 | -.81343
214340
.50275 . 75616 | -.50275 .84999 )
.89648 -.28032 ,10352 .74690 )
: .836687
.33077 .80648 | -.33077 .26226
Ay = 6163300
/

PO

SRR it
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TABLE A.14 ,
Multiplier Coefficients for '
X Highpass Design (New State-Space Structure) ,
' 3
/. \
- 1
J A A < ~J
- . 78755 -.38630 1.78755 ~.04461 .
1 .0846118 |,
| .a1s82  -.78755 -.41582 19178
- -.82466 -.08931 1.82446 | -.,03694
2 .0369422
.24012 -.82446 | -.24012 .28069
‘L ~.77325 -.58000 1.77325 -.28754
| 3 J /| .287538
- 55052 -.77325 -.55052 ‘.9261/
. " A = 122666 | ' ' i /
. /
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