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HEURISTICS FOR CONSTRUCTING NEAR OPTIMAL
TRIES FOR PARTIAL MATCH RETRIEVAL

3

CHRISTINA LUCIA SOOCHAN

~ ABSTRACT .

°

The fbnspruction of tries for storage ,and retrieval of

records for partial match queries 1is stﬁdied. The main
objective has been to improve the'aVeragevretrieval time cand
lower the worst éase behaviour under given query
distributions. If the queries’ are, uniform over the query
space the chdracteristics of the 'records aléne influence thé
shape \and size of phé trie, whereas when non-uniform
distribution of queries ‘is given, it i§ shown how this can
influence the selection, the 6rder of tesfing of the
attributes and hence the shape,. size and ‘unbalance cof the
resulting collapsed order containing trie. The "tries are
compargd on the Basis of their performance i.e. the averaée.
number of buckets (leaf nodes) examined to answer a partial
match query. Superimposed coding schemes andiponcatenation of
. ;odes are emblbyed to transform non-binary files 1ingo Dbinary
filés; Both sequential and trie based search of the coded
data base are studied and their performance compared. The
results obtained by exhaustive construction of tries for
record¢$ with a small number éf bi;ary attributes (3 - 6) and

simulation for large files indicate that tHe constructed tries

are close to optimal,
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- INTRODUCTION

o

Industrial and scientific developémen% of the 1last few
A »
deaades Lhas caused accumulation ' of large amounts of
‘informatio% in every aspect of life. In governments, schools
and in‘\ﬁmafl businesses there is a growing need to automate
é;e storage ana’retrieval of information. As the volume and
complexity of data has grown over the years, efforts have been
channelled towards reduciné‘the physical stgrage .required by
the information and the time‘required to access it. With the
‘advent of electronic coaputers a whole new fikld of research
that addresses .this problem has evolved. This we call data

t ! '

base studies.

In data base studies it is important to have a good fi13

design as well as efficient algorithms for performing certain

v

tasks on the information stored in the data basef such’ as

2

‘accessing the data and updating it.

In several problgms in <computer scﬁenoe.the design and
evaluation of algorithmst can be done indepenpent of the
characteristics of the storage media and the structuring of
the file, as is the" case 1in some numerical applications
(e.g. solut}o&g to differenkral aquati®ns, integrgtion, etci).

r

In commercyal and administrative data bases  the requirements

are di;%;rent and a good file design is of paramount

. . . .
¢ \ . .
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importance.

In this thesis we address ourselves to both file design

and algorithm design whgn searches have to be made in a data

base for queries of*a special type. Each record stored in. a

data base has g unique key which identifies it. This‘is

called a primary key. For instance, the primary key field in

~a file of ta;payers' records is the social insurance number.

Besides the primary key field, a record may éontain other

fields, generally known as "secondary keys" or "attributes'".

Aysecondary key can be viewes aé a k-tuple (i],...,ik) where

il,...,ikis a subset of the attributes of a record. In the%ﬁ\

example above, the ,attributes of each record, besides the
social insurance number, may be:

- NAME, ADDRESS, YEAR OF BIRTH, SEX, MARITAL STATUS,

OCCUPATION, EMPLOYERS'S NAME and SALARY.
\ ‘ . -
There are many algorithms to perform efficient searches on
the primary key of a file. As an example, if the records’'in a
/ .
/
file are sorted on the primary key value and’ the size of the
file allows it to be kept in core,'then the cost of searching
for a record using binary search is at most log2N primary key

‘ . ASN

comparisons, where N is the number of records.
A small fil® may also be stored in a binary search tree
structure, where each node contains a record and pointers to

the left and right sons. A left son is a record whose primary

key value is "smaller" than the primary key value of the
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record. in the father node. The right son i86 a record whose
Al
primary key value is '"greater" than that of the father node.

Here ‘Ysmaller" and "gr?ater" are used in the lexicographical

sense. @
‘!

The advantage of a binary ‘search tree over the sorted
seguentiél file is bpét insertions and deletions are easier to
perform in é binary search tree. Searching for a record whose
primary key value is known is just a matter of comparing its

primary key value with that in the root node, taking the

appropriate branch and repeating the procedure until the

. recond ig found or there are no more branches. For insertion

of a record, the same procedure.is followed and the record 1is

"inserted as the son of the corresponding node. For deietipn

the node to be deleted is found with the search algorithm and

the links are restructurgd.

!

Y
kS

¢
In the case of large files which cannot be kept in core, a

B-tree structure can be wused. Wiﬁhout"going into much detail,
we describe the search method on a B-tree. A node in a B—treé
contéins several primary:key values and pointers. The primary
key values within a node are ordered increasingly and they
alternate with pointers to secondary storage locations and
thus provide a partitioning of thé file into several subtrees.
In order to locate a record with a given key, the r;ot of the
B-tree is searched for the occurreﬁce of the first key which

is pgreater or equal to the given key. The address associated

with this key - is the §tarting address of a block of secondary




storage in which the required record may be found (if it

exists).

There are however situations in Wh§ch it is necessary to
perform searches based on secondary keys. As an example

consider a file of student records in a university. While the-
™~

primary key is the student number, a typical query to this

file may be a request to search for "all the students with
unpaid fees", or "all the students in Computer Science major
'
who will graduate in May 1980". %
{)

Clearly the standard methods of whole key comparisons
cannot be used in such situations and the complexity measures

:

for' these search problems 1involving secondary Keys are

different and depend on the design and storage medium of the

file.

Generally a . data base-that allows searching on secondary
keys will have an index mechanism which should decrease the
cosk oficonducting transactions. A naive approach 1is to
provide a separate index for each attribute in the file, such
as an inverted file or a multilist structure. Alternately
attributes may be combined or query types restricted.

Although an inverted file 1is invariably necessary‘iq a
system that allows general boolean queries, the time and spgze
required to maintain and update the file suggest that this
approach is not worthwhile in more specific situations. In

this thesis we study only restricted query types and our
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. methods can be looked upon as optimal indexing strategies for
accessing a file. . ) e

!
t

It has been shown by }Comeﬁ'[10]-tha£ in ggneral it is '
difficult to select a subset ¢f the attriﬁufeq'ﬁor inaexing a
file; which would be qptimal for'a,giVen Sgt of transaptions;
Séhkolnick'[28] has given aH algo;ithms‘for selecting . a~

'near—optﬁmal subset of attributes for indexing a file .under
' |

4 -
the following assumptions: ‘
1) attributes are not to Ae combined} r
) 2) the .statistical proéerties of the - transactions

o

- (i.e. the probabilijties of querying) are known.

~
~

*
- J .
However the usérs’ requests may change in time and thus

alter the distribution of queries. ‘Hence a system such as the
one proposed by Schkolnick must keep statistics about the

transactions 1in the recent past (folowing the - last

'
¥

recomputation of the index set), which would ‘enable the

. P

recomputation of indices for future use. It seems therefore
that there 1is no optimal solution that is pe;manent over the

entire life of a data base in the most general situaiionsn

¢

In this thesis we consider file designs for data bases:,

i -

that allow ohly partially specified queries (i.e. queries in

which not all of the attributes are specified). Once again °

»

the justification for this is that the more genenal situations

fall in the category of intractable (NP-complete) problems,

»

Moreover partially specified queries are quite common., We

?

-

el U

- e 2

i) " BROLRS S
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éive below some’'important ihstances of Spartial match retrieval
. t ' * t ’ . '

‘problems.

: i i ] »
"~ EXAMPLE 1. A8 4 practical example of a system permitting

partially specified queries, consider a data base ,of a
¢ .telephone directqry. In %his data base each record consists

of NAME, ADDRESS and TELEPHONE NUMBER. The TELEPHONE _ NUMBER

P

is the primary key for the file, but normally the queries

i if-‘ . L3 ¢ . . e
: ! specify the NAME only, or the NAME and ADDRESS. Under- certain

L X3

éircﬂmsténceS?mone may know the NAME, ADDRESS and the firs£.3
' dlglts in® the telephone number and wish Yo find the _whole
. number , In this case we may consider the {elephone number as

. - " . * o "
d . being made up of two fields and so any one of them may be

specified; in. a partially sbecified query. For ' example,

suppose'the query is . - e
- . ‘: ‘

N ‘ (NAME = SMITH,, EXCHANGE = 935)

- . ~

. where EXCHANGE represents the first 3 digits of the telephone

e

,nuﬁber. . The resp&nsg to ;ﬁhis query will possibly contain
".several records, all of which satisfy tne NAME” and EXCHANGE
fields.

4

/

EXAMPLE 2. Consider a data base used E; the Canadlan Taxation ) ’

Q

A L)

.

Buyeau. Each record contai N\lnformatlon about a taxpayer and

the pﬁimary key islthe SIN (social insurance number). Besides
. the prlmary key each record stores some pertinent information

on each taxpayer such as NAME, ADDRESS, MARITAL STATUS,
. Cr

. . . ™
% OCCUPATION, INCOM&ﬂ NUMBER_OF_DEPENDENTS, etc. A subset of .
N ’ b ' ) s
;;‘. N ) 7
E‘, .0 . . - ]
S s ) . ‘ _
. g . ) ) |
? ’ C ’ ! 1
t_;:;::___________.~__u;¢M--;_ - -




‘
~

these attributes such as NAME, OCCUPATION, MARITAL_STATUS are

secondary keys and may occur in queries. Frequently it is

required to extract ,inﬁormétion on certain catecgories of,:

taxpayers (e.g. OCCUPATION=LAWYER, INCOME=$50,000 per yeér).
. . ] . .

Typically these queries are partially specified, hence. there

is the need for a good file design capable %o handle -such

requesksT

>

EXA PLE'3; ) Apother / example of a ‘&ata base permitting
péﬁti%bly specified queries is a file of 1licence numbers of
_«j/;tolen ‘cars used by "Police and Customs and ‘Immigratian
departments. Suppose that a licéncé plate number has f
dﬁgits. Each record in the file has the licence number as the

-- primary key, and the secondary keys are the individual digits

. e X . CL
in the number. One can imagine the situation when search is-

to be done given a licence plate numbe:‘in which only some of
the digits are known. 'This migh@ be the case when a witness
to a hit and run accident reports to the police: ftrying to
recall the licence number of the car that caused the accident,
but cannot remember all the digits. A éimiiér example is a
file of lost or stolen credit cards used by a department

L4
store. . R
s

L5
In the examples given abov§4//;11 the data bases allow

partially specified qfi:}eéi as well as fully specified
queries., . : . '
R

8
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restricted to uniform query patterns. . L)

a B

In general all the queries permitt?d by -an information

retrieval system do not occur with the same probability. Thus
the system must handle the most probéble queries in an optimal
manner. in order to optimize the total cost.

In this thesis we examine several algoriLhms‘for peforming
pqrtial match searches (i.e. searches for partially specdfied

queries) on a direct access file and we make a.compafative

stu?y on the achievable efficienéy of the algoritmgiJ

Partial and best-match queries 'arg usually considered
paradigﬁs Ld{ assoéiative' gueries. Several resegrchers have
addressed thgs problém in the péstﬂ Mgst notably Rivest [25]
and ¥Burkhard [7]) have considered hashing and trie-based

¥
methods., . .

Rivest [25] has introduced "several classgs of "~ ABD's
(associative block designs) in which hash functions are used
to select "record, bits to wuse as list® index. This has
suggested the wuse of tries as alternative data structureé,

which have 1later be¢n studied by Burkhard [9] as well.

“ However the studies conducted by Rivest and Burkhard were

~

We repert in this thesis results on the construction and
performance of tries for non-random data and non-unifSrm query
patterns. Rivest [25) has suggested this as an open problem.
Jhe\ concept of non~uniformity is the realistic approach to

everyday transaction§. Thus our methods can be looked upon as

/
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"notions concerning querying.
)

&<

-

probabilistic retrieval and probabilistic analysis for partial

mateh queries, -

The thesis is organized in the 'following‘ wa&. In
chapter 2 we give .a general outline of an information
retrieval system. 1In chapter 3 we discuss partial match query
types and review the past work done. in this area. In
cigapter 4 we define modes of fet%ieval, complexity measures

consistent with these modes of retrieval and probabilistic

\

Chapter 5 contains a discussion of tries as general data
structures, giving the construction and search of tries. We
will emphasize the difficulty of <constructing a trie to

B h
satisfy a given set of conﬁtraints.

_Four methods of trie construction, similar in conception,

yet different in the way they influence the shape and

L3

structure of the resulting tries are given in chapter 6.

In chapter 7 we conduct a cbmpakative study of two methods
of coding a file and retrievai on a coded file. These are:
1) superimposed <coding with sequential search versus

stiperimposed coding with trie construction and search.

2) Concatenation of cddes (partitioned hashing) with random _

access versus concatenation of codes and trie Search.

N b
Finally in chapter 8 we compare ‘our results with the best
L]

previously known results,

~

-

Iy
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A significant_pontribution of this thesis is to show tries

“as'useful file designs for partial match qderfes even. when

] “
queries are non-uniform,

-

The results presented in this thesis are mainly empirioal,
yet exhaustive. Statistics have been' gatheréd on the
performance of these methods for different assumptions on the
probability distribution’of the quefy‘space.

* The results show that the averagé retrieval cost 1in ~any

-
~ *

method prevails almost everywhere over the query space and the

probability of wolst-case behaviour is very low (see chapter 4
p ' ’

for probabilistic notions).

Hence we are lead to conclude that the tries constructed

in chapter 6 are either optimal or near-optimal.

\
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CHAPTER 2 ’ :
t ’ :
QUERY TYPES, FILES AND NOTATIONS

o { ©, , -

In this chapter we formalize the concépts of files and
” . ‘

»

query types. An information retrieval 'system consists of"

several components, namely:

quéry types. In the next chapter we will diséuss file deéign

and search methods. ' . v
) i " <y i
A file F is a collection of N distinct records where each )
record R is an ordered k-tuple (r],rz,..I,rﬁ). A component

1

take values from a domain Di’ 1<1i<k. Each domain Diis an

rr,of R is called a key or-attribute. Each component rican

1) a collection of information, called a file;

2) a procedure for storing the file in a given storage )
. , .
medium;
vt /7 .
3) an access mechanism which enables accessing and reading

a file; ' : ‘ 3
4) a search algorithm consistent with the file design;
5) a user who is armed with a piece of information and is - y

» v
seeking more information from the system. ;

First we present some iformal definitions of files and

'

3

;

alphabet containing % values, such that the set U formed by

© . the

and

cartesian produgt D] X D2 X....X Dk has m= | dielements,
' i=]

H A
it represents the universe of k-component records, each

'

A L ) .
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component having values from the correspohding domain. Thus a

file F is a nonempty subsct of U, with N X m records.

As an example, suppose that k=3 and:
7 /

o

P]:DZ:D3={A,B,C,....Z}.

3

Then a file F represents a- tollection of 3-tuples of letters

and U contains all the possible 3-tuples of letters. The
cardinality of this set is_263:17576.0
J

This model of the file is the 'well known relational model.

See Hsiao and Herary [18) for a generalized file model, where
a record has been considered as an unordered collection of
(attribute, value) pairs,.

The user of an information retrieval system may or may not
) '

have a priori knowledge of the information in the sfstem.‘ The

Juser communicates with fhe system in a form predetermined by

the system designers. Every request from the user asking for

[N
information from the data base can be considered as a query.

The information retrieval ' system receives the queries,

analyzes them, searchéds the data base by possibly making use

of an auxiliary file and outputs an answer to the given query.

A

- The structure and format of a query are the concerns of a
query language designer. A good query language must be based

on the data description model and should avoid machine

dépendent concepts.

P2
§ v
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»

In "this thesis we do not discuss the design of a query
1anguage;‘our'o%l§ interesﬁ is to attehpt,a cléss&fication ‘of
the quer;es' on the basis of the information thap Has to be

\manipplakéd-in the data base.

) - X

l . fn'geheral a query must have two parts. One of them 1is
calléa the "qualification part" and the other is known as
";érgeb.{bért". The qualification part 1is the piece of
infor&ation which .the use; has and the 'target part spécifies
the type and amount of information that the user wants to have
from the system. For example consiJer'the query "give the
names of Computer Science faculty‘members with more than 10
years eXxperience", The‘ part of the query "Computer Science
faculty members with more than 10 years experience"™ 1is the
qualification part and "names" 1is the target panrt. The
response to this query is a subsct: (may . be empty) of the

Computer Science faculty member file.

+

The complexity "'of a query depends upon the number of

attributes and the mode of specifichtion ofﬁihe value of each

attribute. A query in which only one attribute ;s specified,

in the qualification part is a simple query. If a single

value is specified we can say the query is much™gimpler than
when the mode of sbecification is a range. The qyery "give
the names of Computer Science faculty members with re than
10 years experience" is an. example of a range query; the query

"give the  names of faculty members who are unmarried" is an

example of the simplest type of query,




I

o

\ i . }
The qualification part in a query is a predicate-

expression and hence 2ll predicate calculus operations can be

extended to a query. The qualificakion part may spegify

.several attributes and for each attribute. a value, a set of

values or a &qnge may be speccified. The following example
illustrates a few kinds of .queries which may be asked in a

relational data base. ’

'Y

EXAMPLE 1. Consider a sample student file, The attributes

are: . ‘ ’

v

NAME, AGE, SEX, COURSE, GRADE.

-

Let the data in the file appear as:
NAME AGE SEX COURSE GRADE

e e e e T o

’ JOHN 200 M C3211 B

4
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’ ‘ 8
The following queries are asked:
| . « ~ TARGET QUALIFICATION . | RESPONSE
1. NAMEAGRAbE’ ' (AGEfZO)A(COURSE:C8211) (JOHN;B)
2. AGEA%FX \\\‘kCOURSE:CSZB1)A(GRADE:By 4 P )
;3. GRADEAAGE- n (NAME=HELEN) i ‘(B,20),(B,18)
4. GRADEAAGE  (NAME=HELEN)A-(COURSE=CS211) (B,20)
- 5. NAMEASEX ~ (AGE»20) (JdHN;M)
. ﬁ (MIKE M) .
P ‘ . c .
’ . s . (HARRY, M)
} (HELEN,F)
' . " (BILL,M)
y * In fhish example the qgalifi;ation part of the queries 1is
N ' represented by a predicate expression. fhe predicates '&e.g.

NAME=HELEN) are connected with boolean operators "A"(and),

"V"(Or‘) , (not).

\ : Below we give a.classification based on the . qualification

|

parts ofqueries.

Let Q represent the set of gqueries that are allowed in an
information reirievél system consisting~of a file.- F of N
records. Given a query q€Q, q(F) denotes the set of rgcords

representing the proper response to q ; q(F) is a subset of F

* [

. and it may be empty.
v N ' ’ . ! ’
‘ _There are two .major classes of queries: intersection

queries and best-match queries. The most general class 1is

< “

1

P = ol
\
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;‘ /
that of interscction queries. Such queries have as a comuon

characteristic the definition of the response.. A record in F

may be retrieved if and only if it is also in a subset q(U)<SU

so that q(F)=F Nq(U), or, more concisely,

R € q(F).<:> q(F)=F nq(u)

where U is the universe ofi records (see Rivest [251]).

LY

N

al{F)=q(U) which is consistent with the above definition.

In the special: cadé when F=U, it can be seen that

Naturally the presence of a record REF in g(F) is quite

independent of the other records in the file.

.

o

There are several important subclasses of the ‘cléss of

intersection queries, namel¥y:

1)
2)
3)
)

5)

of

exact match queries;

single key queries;

partial match queries;
boolean queries;

range queries,

the second class, the

restricted distance are more common.

each class of queries.

\S

1. EXACT MATCH QUERIES )

best-match queries

-

with

Below. we explain briefly

2

, ““Such a query specifies a vplue f6r each of the k attriputes‘

and the response consists of at most one record from the file.

\

v
o

v

P
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Thus an exact match query asks f8r the presence or absence of

a specific record.

2 2

2. SINGLE KEY QUERIES
~The qdery'Specifies a key (éttribute) and a value and it .
; h

requires retrieval of all the records with the same.value for

the key that is specified.

" 3. PARTIAL MATCH QUERIES

The query type based on a single kgy mentioned above is a
particular case of the partial match query type. A query that
specifies s attributes, srg k, 1is called a partial match
qdery. The response to such a query will contain all the
records in the file which match exactly the § specified
attributes., A partigl match query is usually represented by a
k-tuple in which s keys have values from their respective
domains, while the 'remaining (k-s) key positions have "¥*"s,
meaning a "don't care" condition. This thesis is concerned

with file designs and retrieval for this kind of queries. e

The set of all partial match queries with s specified,

attributes will be represented by Qs'

[y

In the special case where D,=D,= ..... =D - ) and the

17727
{\ N
cardinality - of the alphabet y is o, we have |Q5|: os(t ) for

=

0<s<k and thes” universe U= zk, ’Xklf ok. Furthermore
if § =(0,1), such that a record is a k-bit string, we note

Sk k k : '
that lQS 1 =2 S ) and |E ] =2 . 4
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\

i, BOOLEAN QUERIES
A boolean query is ,defined by a boolean function of the
atttributes. Boolean queries are a generalization of the

other types of intersection Queries since any intersection

-

query may be expressed as a boolean query.

5. RANGE QUERIES -

They are similar .to partial match queries in the sense that
s<k attribute positions ar pecified butg, instead of
specifying a value for each 6f the s attributes, a range of

values may be given for each one.

- The response to any intersection query must havé a recall
. T
factor of 1, meaning that all the records in the file which

agree with a query will be contained in the system's response.

o .
6. BEST-MATCH QUERIES
For th}s class of queries the'response contains 5hose reéords
which are "closest" to the gquery in some sense. For
, best-match queries with restricted distance a function d is

defined on the universe U. Such a query specifies a set of k

keys and a distance 6, indicating that the response must
contain all those records in F which have at least k-6 keys

/agreeing with those in the query.“.This distance function is

the Hamming metric.

The notion of best-match can be applied to partially

specified queries as well if we allow no more than & out of

the s specified attributes to differ in the reéponse.

L
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Some examples of the foregoing 'query types are given below. p

e

EXAMPLE 2. Let us assume that k=3 dnd D4=Dy =D3= I

={A,B,C,...2]}. Thus U =Z3 and it ‘represents aYXl:- possible

3-letter words.

L}

Let the file F contain 8 words from-ZB:

F= (DOG, LOG, BAT, NAP, DIG, TAB, SAG, BUT)

i. egact—match queries:
a) q=(DIP)--> no match .
b) q=(NAP)--> match

ii. single key queries:
L}

"a) q=(all the words in F .starting with D) 4

4

\ .
--> (DOG, DIG
1 \i? ( , )
b) q=(all the words.in F with second letter E)

--> no match

iii. partial match queries:
3
a) ssg, q=(*0G) --> (DOG, LOG)
b) s=1, qf(¥A*) --> (BAT, NAP, 'TAB, SAG)

R

s

iv. boolean queries:
\ a) g=(all the records in F-with first letter B °
\

g 1
-and second letter not A) --> (BUT)

b) q=(all the records in F with first letter (ﬁ or 8)

-

and second letter not (G or P) --> no match

‘”"(M

9
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As an cxample,of rénge_q&eries; consider the file F -toi’be a-

set of records of employees of a gompény. Two of the keys are
SALARY énd SENIORITY.. A query may be formulated as

( all the regords for employees with

a

2
'

($15,000 < SALAR < $20,000) and .

(2 years < SENIORITY ¢ 3 years )) . (
{ /", ’

For best—mifch queries what betteri,ex?mple can th;re exist
than qherieé asked in a dating service?0<Supposé*€hét the file
of male candidates contains their physical, psycholqgidal ?pd
vocational description. A quéry might request a person of
(AGE=40, HEIGHT:é‘\O",_ WEIGHT=160 LB,“ PERSONALTITY=kind,
CAREER:professional)& such that no candidaté should differ in
bore than twp\aspects given in tpe quefy profile.
X

From the examp}es shown above it is obvious that the size
of the response (i.e. the number of records in the response)
oPtained to,q query dépendé very much on the iype §f7'query

(apart (from the type of redo}ds).

of" all query types, only the exact match queries produce a

unique response, but ﬂg:; of the time formulation of such a

query may be impossible or undesirasble. The amount of work

that a system~has‘tofdo to respond to a query varies from one

quér& type to the other. For example, each intersection query
reqﬁires a total recéii@ that is eveéry record in F satisfying
the requirements must béﬂfetrieved.-ylf'the requirements of”
the user are sSpecified,rather loosely in the qﬁery, then the

oy

1}

(>4 \N ,
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system invariably has to do a lot of work in order to meet the
. | . \
user's request, The classification given here is on the 1line ‘
o suggested and outlined by Rivest [25]; by no means is this

exhaustive, yet it covers a wide range of query ﬁypes. There
s .

. 3
may be however query instances such as:

1) "Find the names of all students whose reports are less

than the average report of the students in year TII ‘
. ‘ Q‘:”‘,
computer science',

<

2) "Find the minimum height of all students 10 years
younger tharn the instructor for CS4g1",

3) "Find all train stations within 200 miles of Montreal'.

. .

z A 4
These queries demand) a computation to be performed on the
gé

value of the attri s specified 1in their qualification }
‘Q;part. Naturally these qderies are more complex and probably“
would be relevant in more specific data bases.

/ . -
ALl  information retrieval systems are set up to answer a

class of queries. In some.cases the class of queries maéP be
~ genéral and in others they are restricted. Usually the
restrictions are imposed from the point of view of efficiency

|
~ and practical considerations.

The simplest - query types have been long studied and
efficient - algorithms are available. The most general
intersection queries and computational queries alhays require
a lot of computing time. Queries which specify only a subset

i . of the attributes are more common in Data Base Management

/ o
o
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Systems and library information systems.

consider queries of such restricted type.
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CHAPTER 3 '

FILE DQSICNS AND RETRIEVAL STRATEGIES

Looking for an object or a set of objects to satisfy a

particular identifier br a given set of characteristics is an -

*

wold and frequently encountered problem. It has often been

e s

said 'that in order to“find an object one must know not only
where it canﬂbe but also where it cannot be located.d Thus fo

-

look for a book written by D.E. Knuth one must’ search under
] ‘ .
"Computer Science" ﬂcategoriesv and not ‘%under "“The Art of

CooRing™".

Although it is difficult to, state a general theory of

/ .
gearching, under certéin real'istic aséumptions and
restrictions, efficient compqter oriepted:search methods <can

b% given for well tailored problems.

[ N

"In  ‘the previous chapter we have defined the general form
of a file. Thus in the context of retrieval we’assume that a
record has seyeral fields and a query is of one éf the types
mentioned in chapter 2. 1In general we may say that a query is
either ‘"key based"{e in the gense that the primar§ key that
identikies the record uniquely appedrs in .the qualification
paft, or "characteristic (attribute) basedJ, in the sens; that

(attribute, value) péirs occur in the qualificatién‘part. We

" shall discuss file' designs and measures of complexity for the

-

»
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associated retrieval methods for thesc two instances.

0

[ 4

A search is initiated by a usez.whoAhas'a seéréh keyz— the
value of a primary key field of a target record. Search
process is dependent on the file design, storage medium and
other auxiliary tables of information. Typically the, search
key would be comﬁared with a subset of the file before the
target record is retrieved. The time thét elapses from the
.instant the key specified by thé user is transmitted to the
storage médium containing the file, -fto the instant the record
is read completely fFom the file is calledh§e%rch time: To a
large eftent the search time depends on:

P 1) the file design and storage medium;
2 2) the algorithm used for searching;

3) the access mechanism for the storage medium.

In key based retrieval on the file stored in the internal

memory of a computer it is usual to measure the search time in’

~terms of the number of comparisons made on the primary key
fields of records. Such a measure is meaningful when whole
key' comparisons are feasible and are actua}ly done. MWhen the
file is stored externally on typical secondary storage ¢ >vices
such as maéqetio tape or disk, the search.time would bg
doﬁinated by the number of accesses té secondary storage;
hence the search time should be measured in terms of the

, v 4
number of secondary storage accesses,

o
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' The significanc;\of Lthe search time is also dependent ‘on’

—

the mode of retrieval.

An informatiom retrieval system ‘bap accumulaté eﬁough
queries to make one pass over the entire f;Le and answer all
the queries. This mode is known as the batch mode. When the

. - user sits at a terminal and inkeractively uses the'system, it
‘ is important -'to minimize the waiting time. This is known as
. on-line mode and the usability of anintépactive‘system depends

Oy

on the design that would minimize the on-line measure.

When the file 1is 1arge' and 1is 'stored on a secondary
'storage device such as disk, the time taken to search for a
set of items is dependent on two ‘quantities, namely: ‘

’1) the number of accesses (i.e. read/write commandgs)

2) the transfer rate of data.

In this thesis we consider only the number of accesses
. required to answér a characteristic based query. We do not
| .

consider the transfer rate for it would be machine dependent. '&fQ

We do not consider the amount of storage re?uired, nor the

= 1

time required for updates. However, for one of our methods we

'

remark how the update OperEtions can easily be performed (see

chapter 6).

We will give a brief description of- primary key baseq

i

) retrieval methods followed by search methods based on

secondary keys.
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Sequential search is well understood. Wwhen the reccords
are in corc the té;k of searching for a record for a given
search key involves examining the keys of each record starting

from the’fiﬁét one, until the ta}get key is found and the

record is retrieved. When all the search 'keys are assumed to

”

be equally likely to occur and the search 1is initiated from
the first record in .the file, it can be shown that the average
search time is proportional to the number of records 1in the
file. . The situation remains the same when the records are

) .
stored in a magnetic tape .and serial scarch is performed.

If the file is sorted (in either ascending order or

descending order) on the primary.  key, "a technique called
H

binary search may be used to locate a given key in the file,

The binary search algorithm operates by comparing the given
. g

4

I

key with that of the record in the middle: of the” file and
determining in which half of the file the key may be located.
The procedure is repeated until the key is found or it 1is
decided that‘}t is not in the file at all. The maximum number
of key comparisons for-bﬁnéry search is logzN where N 1is the

number of keys (regords) in the file.

'{ A major drawback of a sequential sorted file is that for
every insertion or deletion the records in the file have to be

moved such as to  maintain the file sorted. This is a time

consuming operation.
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.For a small but dynamically changing file, an explicit
binarQ tree strudbure allow; fast insertions and deletions of
records and also enables efficient search. Construcéion of :a
binaryisearch tree does not involve sortiﬁg the physicai file,
but_father setting up links between records. A record 1is
either . the "root" of the tree, or the left (right) "son" of
some other record. The left son of a record’has a primarx key
value smaller than that of its "father", while the rigﬁz son

has a primary key value larger than that of itséfather. In a

_general binary search tree one of the sons may have the same

key value as the father, but we assume that a2ll primary Keys
in  the file are distinct. Note again that "smaller" and

"larger" refer to the lexicographical order of alphanumeric

keys. . . |

As an example consider a file 5f studéﬁ%/records having
the student number (STUDENT #) as the primary key. Two
adaitional fields" (LEFT, RIGHT) are set up in each record to

point to their sons.

ADDRESS STUDENT {# NAME ' COURSE GRADE LEFT RIGHT

e e e - e e B W e W WM R WA WD W VIR S IR GED e A D (e S AR W G M S M T N IR GG R G RS SR e e e Gmn T W e W e S W e

1 7314556 MIKE cs211 A 32
2 8014329  JANE cs241 A 5 -
3 - 7146557 MARK  CS211 B 4 .
Y 7134321 ERIC €s225 ¢ . .-
5 1572753  JOAN  cs2u1 - B 6 -
6 + TH29293 CARL  CS211 C - -
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When representing the tree nodes, only the priﬁary key values

{ ¥
will be shown.

r

7314556

716557 8014329

(7131;321)’

]

An inorder traversal of this binary search tree will prQ?uce a

file of records sorted in increasing order by the STUDENT #

field,

FEY

There are algorithms for constructing an "optimum" binary
search tree for a file., For non«uﬁiform files (where not all‘
the records have the same probability to be queried), the most
frequently requested r?cords should be placed as high as
possible in the tree (near the root). |

When the frequencies»gf segrching on a given binary search
tree are known, efficient algorithms exist for constructiné
optimal ‘trees. Such methods are applicable in problems 1like
linguistic analysis and searching in a census file:’ (See

Knuth [22]).

]
There are situations when certain conflicting requirements
have to be met, namely to minimize search time and

L
insertion/deletion time, Search trees that accomodate,

Vi
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frequent insertions and deletions which still retain optimal

search time are known as AVL-trees (refer Knuth [22]).
<

Optimal trees are usefulA when the file is stored
intern%lly. For large files on which insertions and deletions
are rare, é three-level tree is appropriate, where the first
level of branching determines the cylinder number, the second

level determines the appropriate track and the third level of

branching‘givés the records. Such a method of organization is
L

called an 1index sequential method [14] and search based on

such a three-level tree is known as index sequential ~search

method.

For illustration of the index sequential method, cons%der
a file, sorted on the primary key K field. The keys are as
follows: ’

13, 16; 19, 21, 27, 30, 49, 53, 55, 58, 62, 67, 71, T4,

76, 92, 98. )
Four groups of keys are created, with sizes n1=H, n2=3, ~n3=5,
n4=5. fhe following table shows the groups of keys.and their

sequential indexes:

L4

KEYS GROUP-SIZE SEQUENTIﬁL INDEX

13,16,19,21 : Y R 21
27,30,49 3 49
53,55,58,62,67 . 5 : 67

71,74,76,92,98 ' 5 ‘ 98

i

oy

o 1<'7>



1

30

Suppose the scarch key is 7U, This key is compared with each
of the Sequent;al indexes. In tHis dase 74 is larger than 67
and smaller than 92. Thus it is dectermined that it can only
be ﬁin thé fourth group. . Then 74 is compared with each of the
keys in this group and the second comparison reveals equality,.
Had the search key been 75, for example, then upon comparison
with the third key in thhe fourth group (76), the search would

terminate unsuccessfully. Six comparisons were necessary to

locate the key 74, and seven to determine the absence of tﬁe

key 75. These numbers should be compared with 14 comparisoﬁ%’

fo; the key 74 and 15 comparisons f&r the key 75 in serial
search. Thus index -sequential search achieves a considefaale
reduction in the number of comparispns in-thiP cgse. It 1is
not always better than binary search, however. For this

example, Q}nary search of key 74 would have required U4

Fd

comparisé;s. Using the index sequential search method for the

key 16 requires 3 comparisons, while binary search requires U

. !
comparisons.

Q

If there are M groups of keys and there are N keys in

total, under the assumption of uniform querying, the Laverage

.

number of comparisons for index sequential search can be shown

¢

to be f(M)+f(H/M) where (M) is the average number of
comparisons on the index and f(N/M) is the average number of

comparisons on a list of keys. The function f(n) 1is defined

as:
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a) f(nmy= W+ 1)/2 for serial search

b) f(n)= log,n for binary scarch
For sequent;al search of both index -and list the result is
[M+N/M+21/2; when both index and 1list are sesrched using
binary search, the result is log N, the same as if the file
had been stored sequentially sorted and binary search had been

performed on it. (See S.P. Ghosh [14] for proof.)

The problem of inserting new records in a _file organized
by the index sequential method does not 1ehd itself to a
satisfactory solution,. Usually some tracks are reserved as
overflow areas and appropriate pointeré are set up indicating

the groups to which the overflow records belong.

An efficiént data structure that almost guarantees
efficient search as well as efficient updates has come to be
known as’ a B-tree. (See Knuth [22].) A node in a B-tree

contains j keys and j+1 pointers as follows:

%)points to a node which contains keys smaller than \KL;

\

Ptpoints to- a node which contains keys smaller than Kt+lfor\

1€t j=1. Finally Pjpoints to a node containing keys larger. ™\

than\Kj. The' properties of a B-tree of order m are: \\
L

a) every node has at most m sons;

b) every node except the root and leaf nodes has at least

\

\ -
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m/2 sons; ‘ ¢

c) the root has at least 2 sons (unless it 1is a leaf
node)

d) all 1leaves appear 'on the same .level and carry no

A ]

e T

information;
e) a non-leaf- node with k sons coﬁtains k-1 keys,

m/2 <k<m.

-

It has been shown in [22] that the search }ime of a B-tree

of order m is  bounded by 1+1ogb[(N+1)/2],b=fm/2]and the

average amount of work per insertion is bounded by 1+ (N~-1)/(b-1).

Another method for storing and retrieving a record is to
do .some arithmetic calculation on the érimary key and obtain
én address at which the record is stored; +this 1is known as
hashing. Unlike the search, tecgniques descriBed ear%}er,
hashing is not applicable td disk storage’unless the following
conditions are met:

1) éhe records are grouped into bucketé ang the addfesses

of the buckefs are computed usiné hash functions;

2) more time 1s spent in computing‘phe addresses since a

careless computation might result in a collision
causing a whole bucketdto bé brpughi in and examined

3

before a decision is made.

‘Hash coding . seems immensely suitable for several

.

applications. Given S storage\locations, we' can define a hash

function as a mapping H : K -->{1,2,...,5} where K is the set

»




"the records pertinent to a query g=(A

J/

of keys in_ them file. " The hash function H must be easily
comﬁutable and, preferably a random funétion éf ltﬁb ‘input,
i.e. each key is mapped onto a different storage location.
Unfortunately such a function hardly exists, Easy methods
such as chéining enable several records to be sté}ed in a
single liét (bucket). A record R with key K will be stored in

list 'i if H(K)=1i, 1<i<S, where S is the number of buckets. To

- search for a given key K we compute H(K) and examine all the

records from that buckeg. Such an examihétion.can be done

serially if the .length of the list is small on the average.

For a good hash~€unction this is* the case, v ’ hS

So far we have consideréd file designs and search methods
based only on the primary key. When the’ queries specify
values for several attributes, more " sophisticated filing
schemes and search methods are needed to -achieve reasonable

retrieval time for queries., For example, suppose there are k

-

attributes A], oo Ak in a record and the set of dueries
allowed in a system are those that sﬁecify values for two
attributes, A]and AZ' It is possible to organizé\ twSd" index
sequ?ntial files Fy and Fywhere F is based on the values of the
at%ribute A]and Féis based on the valueélof A2. In retrieving

17Y7 A2:V2) the file

ﬂ is searched. first to 1locate the set Syof records

corresponding to the value v]and the file Féis searched for

i
.

locating the set 820f records corresponding - to The

Vo
intersection .of these two sets % and %Zis thé set of records

w

! ’



'keep n-distinect ﬁash funttions- H],Hz,i..,Hn and n sets of

keys, both,stora&e and ‘update requirements grow as the file

34 B

B ~

“

<

pertinent to the€ given query q. &ué for thiﬁ filing scheme

two files Ffandnféhave been searched and an intersection needs
to be perforhed. Such a method which keeps several indexes

usually stores redundant information,
. ) » J ' x \\
It. is possible to speed up the retrieval time ?} combining
’ At
hashing and index sequential organizations. The 1idea 1is to

A

1ists L~ 1<i<n, 1<¢j<¢s, where s is the number of buckets in

» 37
each 1list. A record R is stored in n lists L, p.,“p.=H.(R.),
171 1 1 1

where Riis the i<th attribute in record R. Although' this

- \ y <
methods is an eff;ﬁ@ent solution to searching on secondary

N

G - v
grows. e 4 .

-

, 0
) The two methods mentioned above are known as inverted 1list

techniqﬁes since a separate list is maintained for all the

¢

records '’ having a particular value for a particular attribute.

For illustrgtfon of inverted files, suppose the file given'

-+

is an employee file, with attributes:

£

EMPLOYEE # (E#), OCCUPATIDN, SALARY, SEX. ~

Pe

- .
- +

The following table represents a file of 8 émployee records,

v

N

o el el




ADDRESS Ef OCCUPATION SALARY SEX

e e wn et G e B e e e e S e e e S e T - T = o
.

1 256  ANALYST $15,000  F _

2 / 350 PROGRAMMER  $12,000 M

3. . 676  OPERATOR $10,000 M
739, ANALYST _ $17,000 \

i s 757" OPERATOR $13,000

(o))
Vel
O
O

M
M
PROGRAMMER  $14,000  F
7 fmg/lpzé/ ANALYST $20,000 M
8 1256 KEYPUNCHBR  $10j000  F

- ot St e " o D A o (e - s "t > . v S T v = M e e - = = = . - -

An index is kept for-each of the attributés of the records:

OCCUPATION INDEX SALARY INDEX _ SEX INDEX~
ANALYST ° 1,4,7 $10,000 3,8 F 1,8 ‘
PROGRAMMER. 2,6 $12,000 2 ' M 2,3,1,5,6,7
OPERATOR 3,5 $13,000 5 )
KEYPUNCHER 8 $14,000 6

$15,000 1.

$17,000 4
S $20,000 7.

- &

for E# since this is the prihqry key.

. ,Note that 1in this case it is not nécessa}y,to keep an index

A "boolean query q=[{OCCUPATION=ANALYST)A(SEX=F)]  will

F scarch  the index for OCCUPATION and ‘extract the 1ist (1,4,7).

.
.
.
-

i " . -7
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¥ v
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- .
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i" ’\
-~ Then it searches the index for SEX_ and extracts the 1list
(1,8). The intersection of these two lists, address 1,
r N ’ constitutes the response to this query. 4 A ’
R ‘ ‘Inverted lists may be represented by bit strings. The

length of the bit. string is equal 'to the number of records

. stored in the file." For a particulér attribute value in an
index,ﬂ the bits_corresponding to the records which have- that

attribute value are sét to- 1, while the others are 0. Through

careful programming and space allocation,'it is possible to

. réduc% greatly the time required to answer a bqolean query for

a file stored on disk with the.use of an inver£ed file of bit

string inverted lists.

Y

¢
14 In §evera1 instances it is possible to save the storage
 lrequired for the>inverted file by k eping a sparse index. 1In
‘a,spaﬁse indexing schem;.\not all the key values of an
. attribute would be stored, but rather a selected set of values®
.which specify range information. Such an orgapization ﬁay

prové to Dbe quite advantageous for range quefies in addition

to -being useful for generel boolean queries.

For an information retrieval system oriented mainly

ftowards raqge“queries or boolean combinations of ramge queries,
tree structures seem to be more suitable. Queries of the type
[(vl$A $va) (uKA uy)]  where Vl,VE,ul and u, arée values of

Ajand A,, are called orthogonal range queries.

a -

e I
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. " There are several methods which can be wused for systems

which allow such queries exclusively. In one method the set
of all possible values for Aland Azis partitioned coarsely and
inverted 1lists arc created for pairs of Aland Ayvalues. This

is in g sense a tree structure with two-dimensional branching

at each internal node.

1

A multi-dimensional binary search tree has been suggested
by Bentley [5], in which an internal node on an odd 1leval
compares attrrgbute Aland an internal node on an even level

J compares attribute Az. The average path fength of such a tree

is the same as that of a one-dimensional search tree.

this problem, a node stores 2 values, i.e. city and test

radius. The left subtree of this node contains cities within
the radius, while those in the right subtree are outside the
radius. The radius diminishes uniformly from one level to the

next, up to some tolerance limit &.

o

"In some instances it ig,possible to combine two or more
attributes 1into one super attribute and constéuct an inverted

. file for each of the super attributes. In this way a boolean
query, may be satisfied by taking the. union of several shorter

» .
lists rather than the intersection oftlarger lists.

N
-y
)

wv oy g AR TR L B

A tree-structured approach ¥ is suitable for
distance-oriented queries also, such as "what is the nearest.
\9ity» to Sudbury". In .a binary search ee corresponding to

=4
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AnQther technique for combining attributes is to obtain a '

super attribute for each permutation of the set of attributes,
along with ordered inverted lists for each super attribute.
This organ}zation makes it possible to satisfy queries baséé

on any combination of the attributes which were used in the

permutations.,

’

'
)

JFrom our discussion in this chapter it is clear that each
file design has a trade—iMT‘between access time and redundant
storage space. In a purely inverted.file design there is a

great amount of redundancy of storage, whereas search time can

be minimized,. , '

There are many techniquéé fo¥areducing storage overhead,
for\example secondary indices éan be ‘created which would
.reduce redundancy in the actual file, -but this approach
qinherently‘ requires storage for these secondary 1indices.
Unless the query set 1is well defined énd the pattern of
querying remains stable, it seems difficult to construct, a
file design that guarantees minimum retrieval pime. Even
under certain p%obabilistic assumptions, the selection of
attributes to  form an index seems a hard problem (sece
Schkolnick [28]). This is precise1§ why we want to restr;ct

the qflery set in addition to imposing probabilistic

assumptions on the transactions of a file and examine

" retrieval algorithms.-

A\




CHAPTER 4
- ] “

!

PARTIAL MATCH RETRIEVAL - REVIEW

/

Knuth [22] is one of the earliest to describe partial
match filé designs}in an exhaustive manner. Although many of
the file designs that we described in chapter 3 can handle
partially specified qderies, they are not efficient. The
first efficient file design for partial match retrieval was
proposed by )Gustafson [16]1; he was soon followed by
Burkhard [7,839] and Rivest [25]. 1In this chapter we giveqa

review of the various methods and discuss their relative

efficiency.

i ‘

L In an inverted 1list organization a separate 1list is
[ ' maintained of all the records having a particular key value.
| This technique 1is appropriate for retrieval for key based
| queries or when the number of secondary attributes which are
l Specified' is small. The reason for this restriction will
r> become clear when we see how queries are processed .in an

inverted file system.
) !

For the discussion below, the following notations apply:
g

A —dpnotes the set of all the attributes in a record,
A={Ay, Ay, 0oy AL ) . '
A' -denotes a subset of these attributes for which there

exist inverted files,uA'z{Ai,...,Aj}, Arc A, j&k;

39 .
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B -is the set of attributes which are specified in a

query, B={By,B,,..,B},B.€ A, 1<i<s, s<k;

s

B'-is a subset of B, containing those attributes for which
there are inverted files, B'= {Bf,Bé,..,Bé}; <3,

B'=BNA',

A query with s specified attriﬁptes will be processed  as
. follows: '

1) for each attribute B} € B', 1<i<t, and a vaiue v}in the

domain of definition of B'i’ construct a list
L(B% ’vi)‘ This list contains the addresses of all,the
records in which the attribute denoted by @{'has the

value Vi
/

2) for each 1list L(B{,vi), 1{igt, form the intersection
f t
list L= n L(Bg,vi).‘ Note that this list contains the
i=1 , '
addresses of all the records in which the attributes in
\

the set B‘,have the same values as the corresponding
attributes specified 1in the query. The recprds in L
match the query as far as the /attributes in B! are
concerned, but nothing can be said about the remaining
éttribut@s in B, for which there are no ‘inverted files.
"3) bring into ﬁemory the records from secondafy storgge
whose addresses are given in L. Compare the value} of
the remaining specified attributes for which there is
no inverted index, with ‘the correspondiné attribute

values in the records (tfthe set B-B')., This can be

done, say, by sequentially searching the actual



4

/ rccords,
&

Sinée the ﬁumber of lists formed in gtep 1 would increase
as s increases, the amount of work to read these inverted
lists 1into memory and form Lhe intersection list L in step 2
also increases. However the size of I (the expected number of
records) would decrease as s increases. Thus one has to do
more work to obtain fewgr records. This seems to be the main

drawback in any inverted file system.

‘

It would be }easonablg,po consider algorithms tﬁat would
do an amount of work proportional to the size of the response
(the number of records pertinent to the query). The firsp
attempt to find an algorithm in this direction was madé by
Wong an? Chiang [30]. However this algorithm is not striétly
lineag and moreover it uses an exorbitant amount of storage.
Their basic strategy was to use a large number of short lists
and construct the response to avquery by taking the wunion of
many such ghort lists. This is opposed to the phylosophy of
the inverted iﬁdex, where a small number of 1argq" lists © are
usually set up, and each list corresponds to é value of some
attribute. Inathe technique of Wong and Chiang each ’shorﬁ

(list corresponds to records of a partially specified query.
But in order to accomodate all partially specifiéd queries,
tﬁis system‘would\invariably require é large number of lists,

proportional to the”cardinaligy of the cartesian product of

all the attribufa domains.

LS



- 42

To explain this better, assume the notation given above.

-

f there arc k attribute domains, .and ¢ach attribute domain Ai
has cardinality a. 1< i<k, then there arc a maximum of H(l+ai)
different attribute combinations, and hence lists. Thus we can

sce why this technique is not practical. Either the number of y

possible partial match gucries must be restricted or a compro-

mise must bhe made on storage demands.

Setting an upper ‘bound T on the number of specified

. attributes, one can limit the number of lists required.. This

is achieved by reservipg one bucket for each possible

L

) combination of T attributes. The number of buckets that are
needed 1is (%)VTwhére V is the maximué 6f the cardinalities of
the domainé. It should be noted that each record must be S
¥ ‘ ?stqréd in (E) lists . For.any query in which s¢T attributes
are specified, the response will consist oé the union of some
or all of the existing 1lists. This file design known as

"algebraic filing scheme" was first introduced by Ghosh and .

Abraham [15]. ‘

A class of file designs that-avoid redundancy of records
‘to .a great extent and are efficient will be known as
superimposed coding. This “technique is quibe similar to
hashing. The basic ideg is to map ;ach attribute into‘ an
m-bit code and 'superimpo§e the «codes of each attribute to
obtain an m-bit code for the whole record. Harrison [17) has

given' a superimposed coding technique to speed up text

searching. The first efficient adaptation of superimposed

S g
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coding to partial match retrieval - was develdped by
Richard A. Gustafson [106]. We will describe his method in the

following simple situation, -

\ \

Consider a document retrieval system where each record is.
a technical article and each attribute is a keyword descéibing
the article, Suppose there are 8 attributes Al,...,A8.
Let H be a hash function which maps each attribute into a.
number between 1 and l16. In Gustafson's method a
16-bit address byby...byc is computed for each record where
by=1 1iff H(aj):i for some 1<€j<8, %E Aj’ 1$i$}6. Let p be the.
number of bits in the 16-bit string Yhich have the value 1.
If p<8,’,then ‘éssign the value 1 to B8-p positions chosen at
random from among the remaining 16-p bits which are O. The
aim is to have a code with a weight of 8 (i.e. 8 bits have the
value 1). Since there are ( ga) such bit codes, there will be
(15 ) buckets, The address of each bucket will have exactly
8 1's in it. On the‘average N/(Ef) records will be mapped
into each bucket, after computing the bucket address for each

record (N is the total number of records in the file).

A query which specifies, say, 3 attributes, A], A3 and

A; will be processed as follows:

1) compute H(a]), H(a3)and H(a§), ’where a]eA], a3€A3,
aSGAS;

2) if these values are distinct, we need to examine
(]g:g) = (12 ) bucketé, which represents a3 proportion
of the file of (13 )10 ),
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In general, if b is the number of bits in the code and T
is the number of 1's gencrated in the bit pattern, for a query

)

) : . b-s
that spegifies s attributes out &f T we nced to examine (T—s

out of (;)) buckets.* Thus the amount 6f work decreases as s
increases. 1In addition to this, each regord 1is stored only
onéc. But the union of the lists (buckets) formed in response
to a query may contain undesirable records, thus forciné a
sequential pass over these 1lists in brdé} to extract the

relevant records. However we note that all the relevant

records will be retrieved in this,methqg.

A  hashing methéd differs from superimposed coding only in
the way the address of a bﬁcket is computed. . If 1,2,...,D
dgnote the addresses of buckets and F is the file of records,
a hash function H maps F into (1,2,...,b). In the case _of
superimposed coding the bucket address was computed from up to
k different hg;;h codes, where k is the number " of attributes.
In a pure hashing scheme there is only one function that is
made use of. However, what is common to both methods 1is the

mapping of. a se

f records onto a bucket so that relatively

few buckets need{tTDe retrieved for a query. Below we review

some hashing mef{hods which are useful in partial match

retrieval. '

\

Assume that each™ecord consists of non-binary values.
4

Let k :be the number of attributes and assume that each

Ettribute is a character. If there are B buckets such that

L]
’




k < w= log B

-

then it can be §hown, [25]) that the hash function

H(r)=H(c e, .. .ck>=-h'<cl>h(c2> ...hey)

‘is a "good function", where r is the record and h(ci)[ is a
hash - function mapping the i-th character onto w/k bits. 'The-*
bits obtained from hashing each character are concatenated
such that H(r) mabs a record r onto k(w/k{gw bits, which give

the address of the'bycket where r is stored. :

A\

¢

When a partially specified query is posed, with 3
‘characters specified oué of k, s<k, then several bucket
addresses are computed for the query. The number of buckets
which have to be fetched depends on how many of the characters

are unsbecified. For each unspecified character cj, h(oj)

w/k

represents‘ a set of 2 bit strings of length w/k. Thus for

a query with s characters specified, there are k-s which are

unspecifiéd, which requires
w/k k-s w{l-s/k) Bl—s/k

’ (2 =2 = buckets

to be fetched.

The importance of this result: can be seen through the

following example:

Suppose that the file contains 1,000,000 records and k=9. -Let
18 - , '
there be 2 buckets, (that is 262,144), such that w=18. Then,

according to the scheme described abbve, each record will be

mapped . into ‘an 18-bit address, and each character (aFtribute)

\
A

)

Py
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into a 2-bit address.

' The query A*AL*X*T*¥G has 4 -unspecified characters. ' The

number of buckets which need to bé examined is<
l-s/k 18(1-4/9) 10
B = 2 =2 =1024,

-
Ad ?

&

Since there are approximately U4 records per bucket, this means

that anly about 4000 records will be fetched.

Rivest [25] shows that the hashing scheme given above is

optimal in the average cése for non—bidary:attributed records.

" For binary records, when k>»log,B, Rivest shows that an optimall

hash function 1is one which merely extracts the ﬁ{rst log,B.
bits of each record for the list index.  Sacerdoti [27] has

also suggested this approach for partialimatch retrieval,

BAlthough these Egshing methods are optimal on the average,

it is important to consider hash functions which are not only.

optimal on the average, but which have- good worst—cése

)

performance as well.

Rivest [25] has developed a “hashing  method in which a
duery with s specified attributes co}responds approximately to

1-s/k .
N hash addresses, where k is the number of attributes and

N the tatal number of Véecordé\\xq‘ the file. This method
requires no inverted lists and, for large values of N, is

faster than the previously discussed methods.

~

The . underlying idea of this partial match file design has

been to place in each bucket records contgined in a "suchbe"
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", ) . of Ry, where Rp=87 X Ag X....X Ak “(cartgﬁian ‘ﬁroduct of *
attribute domains). .Below we briefly review Rivest's method.
- See [25] for details.
; A"partial match file ' design (PMF) iééga table with k -
. W - ! )
o columns and 'b=2 rows with entries over {0,1,*¥}such that:

. PR . - t
1) each row contains exactly w digits and k-w "¥n"s; '
2) given any two rows there exists at least one column in

which the two rows have different values. !

o

i ; L ‘
Such a PMF design is called PMF(k,w). -

(9 N -~
As” an example of a (4,3) PMF assume the following table:
‘ : 1 %000 e
111 . -

0%¥01

= W o

1#10
01%0 ' o o

10%1

110%*

@@ N o v

001¥%

~ o

’

Each row. in the table corresponds to a partial match query .

Ca " with U attributes of which 3 are speci%ied. It is also th? ':
address of a bucket in which at ﬁost 2 records will be hashed,
For instance, in bucket 1 records 0000 and 1000 will be stored
(if they are %i the file). This shows that a 4-bit record is

3

mapped into a 3-bit address. . C e

o
T PS8 2 V1 erigosg
\ .
[y
N
4
i3
=
pu

P - o 4o v

"



IR

.\'
“~

48

‘
RN

- "1In order*tg obtain the response to the query *0¥1 it is

‘

necessary ‘to examine the buckets 3, 6 and B.

- Burkhard [9] remarks that the PMF design .of Rivest [25] is

restrictive . and proposes Lri%es as a data structure for

indexing and. hence partitioning the file intor buckets.

-

A trie i§ a tree such‘tﬁég: n
,a) each 1leaf node cor;esponds exactl} to one record and
conversely} \
" b) each internal node i specifies an attribute position.j
uniquel& oﬁ the path from the root\po Qode ij :
¢c) the node 1i in which attribute poéition j is specified
a,.has one subtﬁie for each valué of attribute J.
This definition of tries was first given by

de la Briandais [12] and Frédkin [137.

A

£

and it
a)

®
Co )

'

: /
generalization of the notion of tries as applied by

Burkhard [9] to binary attributed records’is a (k,w) PMF trie

! * 0
differs from the one above in the following points:
" . . wtl R
the trie is,a full binary trie with 2 -1" nodes;

v

eéch leaf node corresponds to one bucket;

the left subtrie of a node i which specifies bit

.position j contains records having 0 in bit j and ~the

fight subtrie contains records with a 1 in-bit j,

20

1€ 35K, Kyw. ‘ -
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This implies that on any path, from the root to a 1leaf
node tbucket) -exactly w attributes are "tested out of the k

that each record has.

\

This definition can easily bé éxtended to non-binary PMF

/ ~

tries.

«

-

~ .
A (k,w), PMF{ trie corresponds to a (k,w) PMF design. The

a

. . .
converse is not always true.

' The following is dn example of. a PMF trie and the
corresponding PMF design. ) //
IR ' 1 Q00%

‘ 2 001%
T | BE 3 01%0
| ‘ 4 01%1
. i 4 3 5 10%0
ht 7

v ©6 10%
7 110%
! 8 111%

FIGURE 5.1

"~ ! foa
N,
To' obtain the response ,to a query with ‘s specified

attributes, the .trie is traversed as follows, The attribute
which is  specified  at the root ,i§ tested with the
corresponding attribute in the query. If it is 0, the left

branch is taﬁen, if it 1is 1, the right branch. When the

3
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attribute is * (undefined), both left @nd right subtries are !

traversed. This is repeated at each level,

Rt L T R
’

4

Various classes of PMF tries can be defined, notably the \h.

~

family of (2n+1,n+1) PMF tries, Theé outstanding featuy€§f‘;f

e A e e Ve

such tries are:. ,

’

1) all- the nodes specifying bit position j, 1<j<2n+1, are
4

oy b e S

in the same level of the trie;

2) the direct descendants of any node specify different

attribute positions.

EXAMPLEy n=2 | R )

- (5,3) PMF tries | y

FIGURE 5.2

1 '

The éverage number of buckets which have to be examined . N

for a query with s specified attributes is the "~ same as for

w({l-s/k) w

(k,w) PMF designs, i.e. 2 where 2 b = the number

-

of buckets, in the case of uniform queries. . Y

/

.
RSV S——— [N



Rivest [25] also~ﬁentions the use of tries and der;ves a
formula ’for the average cost. The study of Burkhard has been
gssentially restricted to tries. \Burkhard show& that @&very
PMF design corresponds to a trie in the class he considers and
shows the generality of tries. Moreover the class of tries

considered by Burkhard [9] has better worst-case performance.

,«(
To summarize, both Rivest  and Burkhard have given

efficient solutions to partial match retrieval. Both have

I

i v \ -
considered tries as suitable data §kructures. Under the

assumpﬁion of uniform querying(i.e. all partially gpecified

queries are equally likely to occur), Rivest has shown:
: . “

1) the existence of a hashing scheme in which a) the
N

v
average cost of ,answering a query with s{k specified

w
attributes is close to but greater than (2-s/k) , where

w , . .
2 is the number of buckets and b) the maximum cost is
- —[WS/k-l ¢ ’
A bounded by 2 | ) ‘
. 2) the existence of a trie for which the average cost of
. e logs (2-s/k)
searching 1is N where N 1is the number of

records in a file;
»3)-finally he has conjectured that the expected number of

records which have to be examined to answer a query

v

with s¢k specified attributes has a greatest lower
1l-s/k '
bound of N , where N is the number of records.

/

Burkhard's . remarks are similar except that his tries have

a much better worst-case performance.
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‘ In practice it does not seem natural to assume uniformity

for queries. For example, {n the case of a telephone

directory, most of the time a query will specify the name of a

L4

person whose telephone number is requested. Thus it would not

be realistic to assume that the attribute NAME has the 'same

probability of unspecification as any other attribute.

1

Therefore it seems more desirable to consider file designs,
4

that are efficient in handling '\non-uniform queries.

Rivest [25] has bosed this as an ope%'problem. The methods
given in this thesis answer this problem ‘in the following

sense:

a) tries ‘age good file designs even when the queries are

1

non-uniform; s
/ b) the shape of tries and hence the search time should be

made dependent on the query distribution as well as the

}ecord distribution

(

and

J

i

given file, whose averagde performance seems to be

optimél (in the sense conjectured by Rivest).
o

¢) there exists a method of constructing:é trie for any

e W, ala TR
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CHAPTER 5 ﬂ’

PROBABILISTIC CONSIDERATIONS
> AND

COMPLEXTTY MEASURES

In this chapter we will discuss probabilistic notions that
affect the design of an information retrieval system. It is

evident from the work of Schkolnick [28] and .Comer and

Sethi t11] that the selection of ; subset of atﬁr%%utes to
form an index of‘a file so ®&s to answer all booleah queriés in
minimum amount of time is "NP-hard"; that is this problem is
intrinsically difficult and belongs to the class of NP-
complete problems, It appears 1likely that none of these
problems can be solved in polynomial time. Several
researchers, especially in combinatorial investigations, have
examined polynomial time algorithms that are approximately
optimal to solve an Né—hard problem. However it is reported
by Karp.[20] that in several pr;blems such approximation
methods fail. As such probabilistic approaches to solutions
of difficult problems have been attempted. Several 'problems

and their probabilistic solutions have been discussed -most

notably by Karp [20] and Rabin [24].

Simplisﬁically a probabilistic approach will assume a

suitable Yprobability measure" associated with instances of a

)1 93

.. ‘l ‘s& /
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specific problem type and attempt a solution that is- a

possible '"best solution" . We will make precise the notions

of "probability measure" and,"best solution".

3}

In analysing an algorithm it has been a tradition to
Jonsider average case analysis and worst case analysis. In

attempting average case analysis it is usual to assume uniform

distribution, on the space of instances of a given probleﬁ..

For exanple the average time of a sorting algorithm is usually
studied under the assumption that all possible N! instances of
the input sequences are equally 1ikelf. Similarly the average
search time of an item on a binary search tree is usually
studied under the assumption that all keys are equally 1likely
to appear in any input order. Such an assumption usually
amqunts to unifarm labelling of the nodes in a tree subject to
the property that the label of every node in the left subtree
of the root is smaller than the label at the root and t;;
label of every node in Ehe right subtree of the root is {arger
than the label at the root; moreover this holds for the '1ébe1

of every node in the tree. (See [1) and [22] for the analysis

of scveral problems based on this notion.)

From a praétical point of view an algorithm which takes an
inordinate amount ‘of time on a small number of instances and
}emains fast .on most other instances can be considered useful
and hence an average case anglysis is a proper measure of the

perfdérmance of the algorithm. Although the assumption of

uniformity that 1is wusually made in the analysis rives s5ame
J

—r



g insight iato the algorithm, it may be misleading, especially

i

when the actual problem instances are statistical]y'biaséd.

As an example. of a probabilistic method in computer
science; consider the problem of constructing a tgee on which
a given set of keys are +to be searched. Assuming
probabilities Pis...pp and gy -+ +Qp wﬁere Py is the
probability that the given search key is Ki and qi is the
probability that the given search key lies between K;_.; and
Ki; Knuth [22] ;nd Hu and Tucker [19] have given "optimal"
algorithms for constfﬁbé&ng a biﬁary search tree storing the
keys. Here "optimai" meghgu‘that the cost o€ searching the
tree remains smaller than or equai to the cost that would be
incurred on any other binary search tree which stores the same
key values. This partiéular brobiép is an example that

|

illustrates -the strength as well as the weakness of a

probabilistic approach.

The strength of this method lies in the fact that the tree

constructed

%Jin this way guarantees minimum retrieval time as
long as the?relative frequehcy of the keys remains stable,:

%

"that is the key set as well as the underlying probabilistic

assumptions&yemain unchanged.
i)

igf |
The weaQ?ess of this method is that the assumption about

the distr%iution of queries (frequency of search keys)

«

\

b

o

overldoks th¢ possibility that the problem (i.e. the keys) may

be changing in time in an unpredictable manner. Hence such
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methods are quite useful for a static file for which the

assumed probability distribution 1is dlso static.

For dynamically changing situations it is important to
conceive a randomization process in the algorithm itself which
changes according to the problem instances. See the article
ﬁy Rabin [24] for an‘EXCellent description of problems where

#
probabilistic algorithms of .this kind are most useful and
AN

effective.

In this thesis we give methods that have a strong bearing
on the characteristics of the records ’in a file and that
assume a knownlprobabi}ity distribution of the query patterns.
We assume thé relative frequency of* instances. of query

patterns in the query space. The sample of query instances

gtually appearing over a period of time might be estimated in
ag

an unbiased way and these are incorporated in the design and

evaluation of our methods.

For example, if our data base is a telephone‘directory; we

may assume that a particular attribute that is specified in a

s

query depends on‘its significance as seen by the user of the

-

data base. Let us assume that each subscriber record in the

data base consists of five attributes: last name, first name,

middle name, street address and telephone number. A query

might spceify the 1last and first name, or perhaps only the,

street address. The answer is a 1isting of all. subscribers

who match the attributes specifiéd in the query.
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Assume the following probabilities of attribute specification:

_ﬁIIE}BUTE ‘ PROBABILITY

last name .9 \
first name ,.8

middle name | W1

street address 2

The"probability that a particular field 1is speéified‘

depends on the field but -is independent of whether other
fields are specified as well. The probability of any query

(type) can be obtained by multiplying the appropriate

\

probabilitié§ of the assdciaﬁed fields. Thus a query that

spegifiesxthe last and first name only has a probability of:
' P R ' \

(.9(.8)(1-.1)(1-.2)=.5184

The query with no specified fields (1ist all subscribers) has

a proﬂability of occurrence of:

N (1-.9)(1-.8)(1=.1)(1-.2)=.014L4"

PR A

Althéugh it is unrealistic to assume the possibility of such a
guery, it does not affect the design too much; yet it would

somewhat influence it. ' !
]

t
)

p . , 16 o
Assume a fixed number of buckets (2 ) and that there are

20
2 records., Each bucket contains 16 records, According to

3

Rivest's optimality criterion, a fixed set of bits must be

# .
/

on U R ATIG
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sclected from cach record in order Lo determine the address of

the bucket where.it may be stored. In a query either all or

« ,
none of the bits of a field are specified. Thus we need a way

of determining how many bits to extract from each fiecld to
make up the bucket address. Intuitively the fields with the

highest probability of specification should provide most of

the bits,

In one approach, let q;l the bits belong to the fiﬁgd with
the highest probability of specification (i.e. the last name).
If there are are 220 records 1in 216 buckets, the address
requires 16 bits. Choosing these 16 bits from the last name,
90% of the time exactl} one bucket needs to be éxamined. The
remaining 10% of the time all the buckets have to be fetched.

So, on the average, a query will examine:
16
.+ (.1)(2 )=6555 buckets.

In another approach 8 bits ma& be cﬁosen from the last
name and 8 bits from the first name (the tWo most probable
fields). Thus 72% of the time on; bucket is examined, 18% of
the time 28 buckets, 8% of ghe time 286%150, and 2% qf the
time all the buc%ets have‘ to be examined, which gives an
average of; v

Y

' 8 8 16
(.72)(1)+(.18)(2 )+ (.08)(2 )+(.02)(2 )=1378 buckets.

As illustrated by the previous examples, for a given file

desién one can always find a partially specified query for




which the cost of search is maximum. However, if this query X

A . 3

—

ocecurs ﬁo}e often than others in practice,. the file design- §

would be far from optimal even in the average case: Keeping |

this in mind one must design the file suitably so that the

cost of retrieval .would remain as small as possible for~ . :“ ‘
. "almost all" query instances. This notion of "almost all" has

been made cfear in the paper by Alagar and Soochan [41. .

>

Suppose Bs’ As .and wS denote the optimal, average and
worst case-costs (on-line measure) for answering a query yith
s specified attributes. Let Q] contain tﬁe set of queries for
each of which the cest of searching isﬁeither close to BS or |
AS, and Q2 contain those queries for each of which the cqst of

searching lies between AS and ws. We say that the performance .
of the file design 1s near optimal almost everywheré (in

" probabilistic sense) if the following conditions are met:

1. The absolute value of ng.-BS remains small for

‘ all s=0,...,k. Here [ ] represents the ceiling
> , function. o
2. Priql] remains small.
| quQZ ;
3.} Prlql is large. o
L €0,

- i
N

v

The significance of the proposed measures is to imply. the
‘average case behaviour as prevailing "almost everywhere" over
the query space and to imply that the probability measure of

query instances demanding an inordinate amount of retrieval . "
. C.'; .

R4



time is small. As we remarked earlier our probabilistic

notion i meaningful " only wifhin the context of our

assumptions, however it nremains independent of the file

©
c

structure,

Burkhard [8] has discussed non-uniform partial match file
designs; he achfeves)non-uniformity of labels within the tries

\

that he constructs. One obvious accomplishment of this non-
uniform distribution o% labelling has been to obtain‘ analytic
solutions o% certain reccurrencé relations. Our concept of
non-uniformity is differént from Burkhard's in the sense that .’
our .probability space 1is the query space and not the Eecord
space. Howevér the tries constructed by' our methods might
cause” non-uniform ' distribu£ion of labels within the

constructed tries. .

’

In chapter 6 we give four methods for the construction of

tries. These methods assume that the records have binary
. ‘ §
attributes and are well suited to the problem instances:

a) non-uniform data and uniform query pattern;
b) uniform data and non-uniform query pattern;

and ©

Vs
. L) non-uniform data and non~uniform query pattern.

In chapter 7 we .consider ‘'data bases over non-binary '

alphabets. We employ superimposed coding and concatenation

techniques to obtain a binary coded data base. The fethods of

chapter 6 can be applied to this coded data base and, with

L >

.
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suitable.decoding p?ocedures, querx;ng in the original data
base can be handled. 1In sucﬁ’;nstances the coded Qata base-
must be processed in addition to the original data base. The
amount of overhead involved in searching a coded data base
depends on its size. This necessitates £he introduction ’of
?bit complexity" (explained in chapter 7) in aﬁdition to .the

! ) complexity measures we have defined earlier.

Baséd upon these notions of probability and complexity

measures we can briefly summarize the performance of our

methods,as follows:

. 1

The average case performance is improved for uniform query

patterns and,AS satisfies the following inequality for binary

Il

attributed records and queries with s specified attributes:

’

1-s/k ‘1092(2-s/k)
N

N <AL (< for 0<s<k
/ 5

The right side'of.the inequality 1is the best1 average cost
N reported and the 1left side is the conjectured minimum cost.

Qur empirical studies show that for large values of k, and N
close .to %k, AS épproaches NLﬁ/g This only reaffirms the
conjecture on the lower bound. In “the case of non-unifofm
querying we haveiobserv;d in several cases AS lower than.N]-S/k:
iq general AS dscillates on either side of this wvalue.

However , "according to the "almost everywhere" concept, the

average case behaviour prevails almost everywhere. --

1

it g
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Ihe reuults CLted above are for a large/ file kept in

seconl%ry ~storage.  In the case of a small file kept in core,

the predominant factor in éhe cost is the '"bit complexity",

. o
- ]

i.e. the number of bit comparisons which have to be performed

in order to answer a query For a trle structure, if s out of

k attrlbutes (blts) are. §pe01fied in a query, the bit
complexity of answering this query is:
: »
Bg= Cq+k(] N )

O o

where 9 ' : 1 te

C = the number of internal node comparisons: on the trie
14 A '3 t

(that indexes phe?file) for a gquery q; |

. e

. #
k= the number of bits in a record;
s= 'the number of specified bits in the query;
’ =
Lq= the set of lists examined; , ' '

EjeL Nj: the number of records in all the L lists'.
. q ) .

Thus the average cost would be

B
¥

[ ] BP(] /T § Prig)].

qeq 9€Q, .

-~

We \ehall comment on the significance of this measure in

T
E2)

chapter 7 where weediscuss'éuperimposed coding.
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CHAPTER 6

ALGORITHMS FOR TRIE CQNSTRUCTiON

, b

An efficient indexing me®hanism to handle queries based on

Il ) ! . .
secondary keys .was first introduced by de la Briandais [12]
and the . structure was named "trie" (tree  in information

retrieval). Fredkin []131] haé given hardwa;e implemeqution
for tries. Rivest [25] briefly di;cugses aoirié—based 'method
for partial match retrieval. Burkhard [7] Asets up a
correspondance between a generalized partial match file (PMF)
gesign and a trie structure.

/.

r
g

If ¢ is an alphabet of size k, a "fullﬂ trie can be
constructed to disc;iminate between the strings that can be
formed over I . Such a full trie is a‘k—ary Lree who§e leaves
(termina} nodes) correspondbto buckets apd‘each internal node
is a vector with <k components, one for each .element in I°,
Each node on level j specifies the set of all’ strings that
begin with a sequence of at most k-j characters and the node

0

specifies a k-way branch depending on the (j+1)-st character

(or attribute).

. For example, the set of 3-letter words DOG, LOG, DAM, SAM, °

JAM, LEG, DIG, can be represented by the fdllowing trie

structure: . .t

a




}evel character tested

| ‘ 1 A ~
| . <

] ’ 2 = bt 2
| 3 3

; , . Figure 6.1

a

By following .a path fram the root to a leaf node (terminal

node), the word can be reconstituted. In each level a
different charaétgr position is tested. » In this casé

! ) characters are tested from left to right and the resulting

!
.~

trie has 12 internal. nodes. If the characters were tested

) . )
shown below:
¥

& . : / |

level character tested

o

. 21 3
| N
! 2 2 .
L / 3 R
Figure 6.2
We can see that the order of testing the characters iﬁfluences
. the size ‘(number of iﬁte}nal nodes) of;the triey

-

~ from right to left, the trie would have 7 internal nodes, as

bkl

o e sl R
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‘¢

It should be noted that each leaf ‘node in a full trie

' .
stores éxactly one string, each internale node specifies a
character position such that it has not been specified on any

level along the path from the root to ﬁhis node.

If at any level j there is a node nj below which there is

N

1/ v
only one path leading to a leaf node ng, we say that the path
; from nj to the 1leaf node nz isssa "leaf chain”". This means
L ) that all thehattributes (characters) tested below nj are not

‘ " discriminants and thus .the leaf chain can be deleted and the

leaf node n, can be attached +in place of nj. Such an
operation is called "pruning". By pruning all the leaf chains
we obtain a "pruned trie"™ that has a smaller number of

internal nodes than the original full trie.

o

EXAMPLE 1: The pruned trie obtained from figure 6.1 is:

: level character tested

[
1 1
2 -2

. ‘ ~Figure 6.3

The trie 1in figure 6.3 has 4 internal nodes. Note that only
sufficient characters are tésted to* differentiate the given

’
.

words,

T e s g
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4w

[N

EXAMPLE 2: The pruned trie for figure 6.2 is

)

level character tested

1 3 .
2 2
L
3 ! 1
- ~Figure 6.4

with 5 internal qodes.

]

A sequence ny..ng of internal nodes such that n, 1is the
only direcé descendant of N g i:2.1p, will be calléd an
"internal. chain". All the_attributeé (characters) tested in
the nodes n, toAnp_] are not diseriminants, thérefore they can
be deleted. By removing all internal and leaf chains the
nuﬁber of internal nodes necéssary for proper discrimination
of the string§ can be further reauced.‘ Such an operation yi%l

be called !'collapsing" the trie: The resulting trie /@ill be

called a "collapsed" trie. . "

S PSSO P

»

[
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EXAMPLE 3: The figure below rep#esents the#collapsed trie

obtained from figure 6.2:

level

Figure 6.5

This trie has I internal nodes.

”

The t&o perations of deletiné both internal “and leaf
chains from a full trie lead to a compact repreEentation, but
the position and the ordgr of testing the <¢haracters in
variogs 1eve1§ are no longer explicit. It becomes therefore
necessary to store 4in each internal node\ the attribute

'(character) ‘position tested in addition to the k-vector. We

call this structure an ‘“order containing collapsed" trie
" (0-collapsed trie). The O-collapsed trie obtained from

figure 6.5 is shown in figure 6.6.

.

v i e

A e " e~
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level

Figure 6.6

For the trie shown in flgure 6.4, searching for a word

4

involves starting from he roodt and taking the approprlaté

branch for each character position. If at some internal node
there 1is Bo branch for a given character in the word to be

searched, then the word is not present. Thus searching for
) .

- the word DOG is successful, while the word DIP is“not found/as

there is no branch for the character P on the path for the

first 2 characters  DI. 1If the same word DIP was searched on
the trie in figure 6.2, right at the root it could be

determined that it is not present in the file. The search

time for the second trie in this case is smaller than for the

first one. It is not difficult to see”that tries are useful
data structures for searching on partially specified queries.,
What is required is only a small variation on the:search

strategy, namely, if a certain character is not specified in a

T b o Gl

S



| |
certain posqtion and this position is tested 'in an internal

- node of the trie, then we need to search all éhe subtries of
this internal node. For example, if D*G is a partially
specified string and it is required to search and output all
the strings Lith D and G as the first and third characters’
respectively, épen the strings DIG and DOG are retrieved. If
the trie inﬂfigqre 6.1 i: constructed, then the search will be

. performed as sh&wn in figure 6.7 (arrows indicate the paths

followed):

level

s

e

¥,

%
ol
i

i

i

v

b

Figure 6.7 R ‘ Y

>

However, if the O-collapsed trie in figure 6.6 1is

-

1) * - .
_constructed and searched for the same stringb\gij search paths

/

would be as shown below in figure 6.8

1

§ pudwng ! » ¥
e _— - e A i ctnies o a4 P , T
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" level
1
2
3
D '
) DOG  LOG

Figure 6.8
¥

t

From theﬁ?{examples we can infer that the order of testing
the attributes and the collapsing of the trie influence the

Size, height, shape and Dbalance of the trie, and hence the

searqp time.

~

" In the case of the Latin alphabet which has 26 letters, a

Y
)~ ¥
straightforward implementation of a trie is to represent each

internal node by a 26-element array with an entry for each
letter of the alphabet:- Such a.tabular implementation would
allow the test at a node to be made in a constant amount of

time. However many of the table locations would be wasted.

In order to save space any ﬁrie can be implemented in the
form of a binary tree. Theé technique is to link a node with

the first descendant (leftmost son) and to link all the sons
\ ‘ .

of ha node among themselves. Although such a s binary
“ “*
representation of a general trie will save storage, we note

that the time spent in selecting the appropriate descendant of
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a node i3 no longer a constant: in the worst case all the
descendants may have to be examined., Severance [29] and

B Yao [31] have examined the trade-offs between thé storage and

time requircments and have suggested some heuristics that
“ ’Qs .
combine tabul ar and linked 1list representations. More

precisely the first few levels in the trie will wuse tabular :

representation, thus allowing fast directed search, and linked

~

list representation at the rest of the 1levels, which would

reduce storage.

o

a

In'xthis thesis we are "not diregtly concerned with the
s , storage requirements of a trie for two reasons:
| .1)‘we mainly consider binary attributed files and thus thg
’ ’ trie is always binary; .
- 2) any non-binary attributed file will be sﬁitably coded )

before a trie is constructed. ‘ '

As we mentioned in chapter 4 our interest in ﬁhis' thesis

has been to consider file designs that minimize access time

M

for any partially specifiéd query.
, .

i

When the file is small and is kept in core, every 1leaf

node of an O-collapsed trie will actually contain one or more

-

records. In this case we have to minimize the average time

taken to access oneé-record, This average time we define as ‘ L

* follows:

I3

The access time of a leaf node in a trie is given by .the

. N ’
depth (level) of the leaf. The access timé\of the trie is the

' ' \
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sum of the access times of aii the leaves, The average adcess
time of o 1leaf in thé trie is the acce;s time  of the trie
divided by the nuﬁber of lea;es under the assumption that all
leaf noées are visited with the same probability. 1In the case
when the probabilities of the requests are non-un}fonm, the
average access time is 'simplyA the weighted sum of @he
individual leaf access times, i.e proportional to the weightgh'

sum of the number of accesses.

-

When fhe file is large and kept on disk, the feaf nodes in
the trie are pointers to buckets. Assuming that -the ¢trie
itself 1is small and can be kept in core, the access time of a
bucket influences the overall performance of the £rié. Hence
the average access time for a query would be the weigﬁted sum

of the access times of the buckets, ¢

Comer and Sethi [11] have shown that determinig minimal‘
3
size tries 1is an.NP-complete problem for several classes of

tries.. 1In particular they have shown that constructing an

O-collapsed trie for a given file that has a minimal average

access time is also NP-complete.
: 1

3
&

These results have a direct bearing on the trie and 'the

‘file when the file is small. Yet, for large files, these

v

results are not so'significant since the dominating factor is

the number of external accesses during retrieval.
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EXAMPLE U4: Let k=3 and the file F be as follows:

001, 011, 100, 101,

L4 B

of all possible queries for s=2 is Q,:

4

111

!

any regard to the valle of the second attribute. .

Let qz(F)=[001, 011] be the response to tlie query. q,.

LR PRI 1
-

4

query from 02 is 1.25.

queries in Q2 records examined
01* 011.
10% v’ . 101,%01
11% ’ 111
§ , ‘ " 0% nil
: 0%1 . 001,011
P i ' _ 1%0 100"
§ B ‘ 1%1 101,111
g %00 100
§ ) *01, 001,101
§ *10 nil
3 *11 . 011,111
é 00*

001

)

o e e [

The query q =(0*1) requests all the record§ with the first and

third attributgé (bits) equal-to 0 and 1 respectively, without

The set

One can verify that the tbtal number of records which are
—-retrieved from F to answer all the queries in QZ is 15. If.we
assﬁ%e that the queries from 02 occur *with equal - probability,

then the average number of :records examined to answer dny

T b nint e S 2
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The records in_the'gi}e F from this example may be stored

as éhown in figures 6.9 and 6.10. A record may be stored in a

leaf noaé of the trie as soon és it is found that it 1is the.

\

only record in its subtriel

The tries in figures\ 6.9 and 6.10 store the samé file.
Note the difference .in shape and balance .of the two
structures. Both these tries are O-collapsed. ' _ N

[ ’ !

fl P N o~
v
M El
. s

Z "~ (o001) - ‘II" 3 — (111

00} (101 : " °

s
° . ¢ N
. . .

‘Figure 6.9 . -

100

Y Figure 6.10




N . ' |
_ “Assume the queries from the set Q! come more often than

m',

queries from the set Q".

*

1%0 ‘ 0*1
Q' = L3 1) Q" = | %% v
®10 -] %o

; . . P
In this case fewer comparisons need be made in the trie of

of figure 6.10,.
N B T
number of records examined in the latter trie will“be

figure 6.9 than in the one Moreover the

smaller

than the number of records examined in the former in order to

'answer a single query from the 'set Q'.

.
[

In the example discussed above, each leaf node contains

exactly one record, In a more general case & leaf node may

contaiﬁ several records (it is then called a 'bucket'). It

more than one record 'is stored per bucket, the size of the

trie is reduced,

constraints of space by fixing the numbeF of buckets which can

’ stofe the records. For instance, in the file F given in the

previous example, ‘'there are 5 records. If we fix the numbei

of - buckets there are several

to ' A4, possible resulting

structures, ~some of which are illustrated in figurés 6.11a to

~

6.11d.

Often it may be necessary to meet certain_ .

e e e D
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. ‘ y Figure 6.11d , ' | )

' ~ N 3 v ‘s A -

. " 5 - /] ' - 3

. ¢ . . ) t
f o L ' N

. For the set Q, of all queries with 2 specified attributes . a

2
v, l\ . ) N ) %
»and & set of -probabilities Pz.corresponding to the queries in

QZ , the number of buckets-ex’aniinhed by each query in each‘ trie
/ ‘ from figure €.11a to figure 6,11d is shown in table 6-1. . "
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-------------- U0 S g,
query | probability 6,11a ] 6.11b { 6.11c | '6.11d &

_______________________ i___-___-_r-------«----j_--__7_5;_,

| 00 1/30 2 2 2 1
¥01 i/12 2 1 2 2

i ¥10 1724 . 2 1 2 1
11 5/72 . 2 1 2 2

0*0 3/80 2" 2 2 oo

0¥1 |- 1/16 2 2 2 1

1%0 1/80 - s 1 2 1

SRREY 1/ 2 1 R
00# 1/30 C I B 2

o1* | I 1/24 I 1 1 2

o 10% 1/90 1. | 2 1 2
1% | e o 1 2 1 2

UL . i T I RSP e

total  83/180 )

I —— SN SR S SN A—
average (uniform) ‘ 1.6i .4 1.58 ,5.§7 1.578
average (non-unifarm) 1.77 "1.58 | 1.78 1.59

N~ L
‘ S TABLE 6-1 ° ° . ‘
| . . - ,' . X . o
The results of this table indicate that the trie in figure
,§;1ﬁb.hés.the smallest averagc aécqss time 'for the given set
éf probabi itigsf; If Ziassume that all queries are gquélly'
~likely: howeyer;‘tﬁgr 'lifieéiem‘fiégrés g.11b and ?.11d‘are

> * - -
v ' N ' T N ' :
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THE NUMBER OF BUCKETS EXAMINED PER QUERY
IN FIGURES 6.11a to 6.11d
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,the best, Houh having the same éveragc access time.

It

SUMMARY . R

°

In generalvfixing the size of the trie fixes the number of

buckets and conversely. But thb shape and height of the-tries

VaY‘y. “ a

S % i)

The methods that are given below Q;ll cHoose the bits and

impose an ordering for tésting them, thus spﬁittingw the ¢ file

into ©buckets minimizing the access time of quariés. All the

buckqts examined by a search will congain all the recoras 'iqf

php éata base that satisfy the given partially specifiea.

‘query. rHowever, all the records in the buckéts examined are

not necessarily' relévant to the given query. This would
, ,

happen éspeciall@ when a certain.specified attribute in the

query 1is not chosen for testing anywhere along the search path

in the trie.

4
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&.1 METHOD ‘

[N

It is observed in [25) that unbalanced tries have good
. R . ‘ . ’
average wcase performance. Assuming that all partial match

queries are equally likely, the probability that a query will

Lo

ekamfﬁa\ a node at level £ in the trie is (2/3)%; this is
because/;Eere are 223k_£ queries that will visit a node at
level ¢ and there are 2k ﬁartially specified queries in éll.
This implies that a query will less frequently visit the node
that 1is .farthest from the root. This observatiyon suggests

thafthe trie should be constructed so as to maximize the

¥
skewness at every level, hoping to achieve global skewness.

. '

. The notion of skewness or wunbalance at a node can be
defined in more than one way. Recall that a bit pdsition will
be tested at every level and hence the measure of unbalance at

a node is the same as the measure of unbalance of a bit

unbalance.

Consider the file as a table of N row; and k columns,.
Compute C],Cé,...,ck,' where Cj is the j-th column sum. Then
the ratio qj/(N- %) is a measure of unbalance for bif
posi;ion j. If this ratio.is b then all the' records have 0 in
j-th bit position, alternately, if the ratio is infinity, all
the records have 1 in the j-th bit position. Thus such a

measure w}ll accomodate al} ratios in [0,»). If necéssary we

can redefine the, above ratio as (1+Cj)/(N—Cj+1) which would

%

position among the given records. We propose two measures of .

a

i

A Mot A
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force a finite range for the ratios.
. = i"»\
\\.
S/

/ Another measure for the game bit position j would, be the

. { .
absolute value of (N—2Cj)/N. The significance of this measure

is that it reflects the relative difference between the two
g » > -
gvoups of records that are partitioned by the bit position j.
j

Mbreover the range of this ratio will be [0,1]; the ratio is 0

K]

wben the subfiles partitioned on the j-th bit have the same

nbmber of¥records. The ratio is 1 when 811 the records have
" . . ' .

the samé bit value in position j,
|
{

| Whatever be the choice of measure that is consistent with

t%e notion of unbalance, the main idea is to choose that bit

pésition for a level in the trie which maximizes-thé skéwne&s

“at that fével as well as at every level in that subtrie. It

seems advantageous to 1look ahead several levels down in the
trie in choosing\a bit position to bé tested at a certain
level. Such . a look-ahead scheme attempts to avoid those

choices of bit positions that would opdimize locally but not

globally.

£

. Informally we describe the method of trie construction as
. 4

foflows: . . I
For definiteness assume the measure Cj/(N;Cj) for every, bit

position that has not been selec%gd yet for testing in the

LN N

trie. For the full file of N records wegcompute the'k ratios
/.

Cj/(N—Cj), and seleet j, 1¢j¢k, for which Cj/(N-Cj) is

o

makimum. However i" the maximum ratibhis infinity for this

{

N \ . - \
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choice, (whiqy happ8ns when all .the records have thé j=th bit
1 and in this case we need not test this bit position on the

trié), we select the maximal ratio less than infinity and that

is the bit position (say j) to be tested at thejsroot of the

' trie{ Subdivide*® the file 1into 2 pérts so that the left

subtrie will have records which have 0 in attribute,poSition J
and the righﬁ subtrie will have records with 1 in.attribute

position j. We recursively construct the subtries for the

1

partitioned files. The constructed trie is.an d-collapsed

. . A
trie, hgving N-1 internal nodes and the property that the

[3

unbalance at every-level is maximum,. .
’ *

EXAMPLE 6-A: The file is F=(a,b,c,d,e,f) where
a=1011, b=0001, ¢=0110, d=1101, e=1010, f=1111.

The trie constructed by method A for this file is: ..

N

. I
Figure 6,12 * \
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The trie shown in figure 6.12 was constructed‘without using
the look-ahead.scheme.- It is easy to check that the ordering

/

of attributes to be tested at the root is [1,3,4],2, where’ we
have listed within [ ] the attributes that have the same

ratio. If we choose 'l to be tested at the root and insist that .

the.attriblite tested at the root must have an unbalance ratio

at least as high as the parent n8de, and recursively for eyery

~ '

S, level, then we obtain the trie in figure 6.13. L“ o

S

-
. ¢
' i

. . Figure 6.13

EN

Alternately if we choose 3 and use the 1look-ahead scheme in

successive levels, we will get the trie in Figure 6.14. .
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Figure 6. 14

;
We observe that for this particular choice of file the look-

«

ahead has not improved the structure of the trie for thé

reason that each subtrie below the root is split as skewed as

possible in figure 6,12,

'
i

MWhen we have a large file we must{ take into account the
number of available buckets ‘anq the maximum size of each
bucket in pruning the trie to the desired level. This can be

enforced by controlling the splitting process of the file;

i.e. we stop splittipg as soon as its size f% no larger than

N

the maximum size.of the bucket. There are some consequences

of this decision in the deletionm and insertion of records. We

‘shall -comment on this later.

COST OF CONSTRUCTING THE TRIE

There is no: cost 1if only one record is given. 1In order to

compute the rét@%s at any.nqde in level j, we have to make one

N e A

. B . . . *
* N . .
e e e it A > bt 55 A LTRSS A oy B e e : L o o
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pass over the entire file of N records and anokhef pass to
split'the file. Let us aggree that accessing _one ﬁecord is
equal to one unit of work. Let C(N) denote thg’cost of
constructing any trie for N given records. Then
o CIN)=2N+C(NT)+C(N2)
’,

where N1+N2zN, N»2, C(1)=z0."

If the records are such that at.each level the balance ratio

is -.the same, we get a completely balanced trie. The cost of.

¢
constructing a balanced trie is given by: °

C(N)=2N+2C(N/2), N»2, C(1)=0 .

Clearly C(N)=2N Log,N.

At the other extreme, if the records are such that a trie
of the class of the most skewed tries ("one and the rest"

splitting at eath level) is obtained, then we have:

CN)=2N+C(N=1)+C(1)
=2N+C(N=1)
; | 22N+2 (N=1)+C(N-2)
& , 220N+ (N=1)%. . .42]
‘ : Z2IN(N=1)/2 +1]

<

=N -N-2

. This simple analysis shows that most skewed tries are most
expensive to construct. However this is only the worst case.

Let us defineé the class of (p,q) ‘ﬁries, 0<p<a<t, , p+g=1, as

those tries for ecach. of which the property "the measure of '

'
- P

®

ot ' ’ /
.
ar ® i

f
]
!
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"unbalance of each node lies between p and q" is true. The

'
.
% 3 4

records for which such class of tries can be constructed would

& . .
have the property that for every bit position j the ratio of

the number of records having this bit as 1 to the number of
records having ‘this position as 0 will be at most p/q. Thus

the cost C(N) will satisfy the equation:

g

CINY=2N+C(pN)+C(RN), prq=1

+

It can be shown that C(N)=2N log N, where a = p g 0. We

verify this as follows: ’

Substitute in the right hand side of C(N)=2N+C(pNy+C(qN).

2N+2pN 1ogapN+2qN logan

=z 2N(1+p‘logaN+q 1ogan) %
= 2N log ( « pP NP NGy

= 2N log (p~Pq 9 pPqinPna)

= 2N logaN

Y

= C(N)

Lo

r
¥

Thus it is moderately expensive to construct the most
skewed 'trjes. However we remark that only skewed tries are
very effec@ive for partial match success. Although we do not/
have a nice analyEic result for the cost of searching a trie

constructed by this method, {(i.el the most skewed  trie

possible), our results obtéined through systematic and

exhaustive construction and search reveal that the average.

1
i

cost of searching for uniform queries ié'vefy low. In fact we

’

o

N A - o, o

¥ i
RN cw SULE S oo

T e A S A - §



87

3

have computed the average As’ the average cost for agswering a -~

qquery with s specified attributes, which ,satisfies the
ineqpaiity: N
’ nTSIK A, < N109,(2-8/K) g 5 <k

e

where the left hand side is the donjecthred minimum cost for

any algorithm and the right hand side is the best“averége cost

\

reported for a trie [25]. 1In some instances A is actually
. s

equal to the lower bound. One conclusion is that this method

improves the average case performance. However there seem to

dbe only fewer number of queries for which the cost of search

-~ / ‘ -
is far away from the average. Hence, according to the "almost
everywherg" concept introduced in chapter 5§, the average case
behaviour prevails almost everywhere. See the table at the

end of this chapter as well as the remarks following.

When new records are inserted or some of the existing
records are deleted, a trie-constructed for a file using this
method seems to require a total reorganization mos£ of thé

_time. ‘In order to insert a new record a straightforward
approach would be to.search the trie and insert the record as
a leaf‘ node. For example consider’ the trie shown in
figure 6.12. Suppose record g=(001l1) is to be inserted. The
node Y below which 'this record is to be inserted is found and

o
a new internal node 1is created to test an attribute which

distinguishes g from the record in thé leaf node which isf the

left son of Y. This new node is attached as the left son of, Y

and the two records are the 1left' and right’ leaves of Y.

~
N

¢
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Figure 6.15 below

.

A

l Figure 6.15°

A

'Clearly the trie shown above does not pave the property of

maximum unbalance at every noge.

to rebuild the
See figure 6.16 for one of the tries
constructed using method A.
's .
¥ . . -
a ® - .- - ot
- \ ; :
// < ¢ i ! ]
— = 4 . . .
' y .
i Y -
. . - 1 @
A ' ) .

s

This is obvious if Qe

whigh could
“\
e
\\: .f . )
+ Q.' ) n i

were

trie completely, including the new record g.

be
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It is. obvious that the straightforward insertion of a

record in an unbalanced trie tends to increase the balance of . i

!

i

g a node at a certain level. The -best that can be done is to . ’

i . reorganize the subtrie whose root has gotten more bdlanced in '

? the most recent 1nsert10n. Similar remarks apply to delgtion - ,

! ) . )

§ of a récbrq. Thus method A seems more suitable‘tqg situations

i where there lare frequenﬁ’retrie@als and infrequen% updates. - T

{ As we have alread& remarked, uﬁdér'the‘éssumﬁbion of uniform} “’

; ’ querying the average number ‘of records examined is very close )’.
,é § to N1"5/K  for a query w1tH‘s specifleJ bltS; / J ©
gl L C If fpe que;ies are assuqu_ to have a noé-ﬁnifotﬁ i *
&

* “distribution, our empiriéal studies reveal that the expected ”\\

o T
number of records ex.amined for a query with s specifled bits |
oscillates on either side of N]'S/k. This observation leads Lo T
us to conclude that: ) PR . B ‘ .o v e

4 ~

. . ’ )
- e E
T [
N iy 4 —
Lo . ' .
o 4 )
. . .
\

5
~
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1) the conjectured minimum,t\{]\'s/k seems to hold good ‘only
- - L ~
for uniform querying. .
. I ' BN
 2) the optimal%ty of \thé number of r;@ords examined for

.~ I . ‘
<. pon—unlform querying 1s still an open problem.

‘

- > ' -
Further we describe a simple method of trie construction

to handle non-uniform partially speciﬂiéd'queries.

[%

6.2 METHOD B ‘ 2

{
| .

We assume that P is a given probability maérix having k
rows (one for each attribute) and three columns (for the

values  *,0,1). The entry P is the probability that the

1J
i-th attribute will have the value j, 1<i<k, 3=%,0,1.  The

probability associated with any query can be computed from P.

- In real situations the most probable queries are concentrated

in a small subset of ~the query space and the matrix P is

assumed to reflect suceMa situation.

°Thié method is mainly éoncerned witﬁ P and oné may assume
that the record spacer is ‘uniform, i.e. tﬁe N records are
equally likely to be chosen from 2k records. Since a search
on the trie will visit both subtries of a node at level 2 if
the attribute tested there is un§peoified in the quer;, and
the probability of unspecification of that attribute 1is
available in‘the matrix P; it 1is impo;tant to test thqt

attribute in the lowest possible level in the trie; for this

would decrease the number of buckets examined. Towards this

“«
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- wWe choose those attributes with high probability of

unspecification and test them lower in the trie and. choos@)
those with low probability of being uﬁspéc}fied to be tested
highe} in the trie, Hence, we order the érobabilities that:
the attributes may be  unspecified. If (j],...,jk) }s the
ordering of fhe attributes corresponding t? the 1increasing
order of the probabilities of,unspecifiéation, then this is

the order. in whidh the attributes would be tested along any

path from the.root.to a leaf node.: Without any regard to the

[

recora'space, the previous ordering establishes a full binary

Q

trie skeleton. At the root the attribute j] is"tested; in

level 2 the attribute j2 is tested and so on. The records are

4 «

"stored as leaf nodes in this trie .and finally the trie is

collapsed to minimize the internal path\length.

In this method the order of testing 'the attributes 1is -

,

independent of the record space. This trie will retain the
same relative order of testing of the atfributes, 1i.e. ji is
tested higher in the trie than j? if and only if ji precedes

jZ in the ordering obtained from P. Note that in the

: collépsed trie .not all the attribubtes will be tested along

every path from the rooﬂ to é leaf node. We have reason to
believe ¢ from our results that the branching decisions made on
the untésted bit positions are févorablelboth in- thé average
and Mbrsﬁ case énalysis. The trie constructed by thib'method

for the file given in example 6-0 1is giveq in figure 6.17

along, with an assumed query probability matrix.  We call any

A
s
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-

‘ : Vo
| /
trie constructed by this method an "order containing and order

preserving trie", or "OP-trie". 'The prde? piéseﬁviﬁg property
of a trie-has a great imbact on insertion ané deletisn. That
is, insertion or deletion of a record)yi}l not change the
skeleton structure. of the trie. Moreover :our “empirical
nevidéq/ce indicates tﬁat gries constructed by ﬁethod B for any
arbitrary file for ‘various query distributions peform far

superior'to tries that can be constructed by any other method.
- . .4 Vo ]
%

Although the evidence makes us believe that . method B
] ‘ .

constructs optimal tries for a given distribution, we have not

been able Zo establish this analytically.

EXAMPLE 6-B: ; o

* o 1

13 a2 176
p= | 1 130 s/12
1/5 3/10 1/2

1/2 1/5 3710 - T T




. ’
When constructing a trie by this method, no ratios need be

~computed., Since the probabilities of unspeéification have to

be sorted, the.cost for this step would be 0(k logzk). S
. } . » f

k+]~f is small, the skeleton trie can be kept in_ core

If 2

and the records can be inserted in the proper leaf nodes.

This requires one,pass over tﬁg“file and k. comparisons for

) -

each record. Usually k is too large to maintain a skeleton

trie at any one time, but it will be shown that .this 1is 'not

necessary.

t

\

Stériiné at the root ﬁode a% most ode pass pér attribute
is necessary to subdivide the file at every node. T1f one of
‘€¢he subfiles is empty Qor a particular attribute, then the
attribute 1is not tested anq the néxt gtﬁriﬁute in the pre-
?stablished ordering will be chosen for testing. flence
collapsing i; enforced gutomatically. Moreover at most k
attributes ?re tested along any path and at most one pass is

o
. made for every attribute. Thus the - cost of constructing a

collapsed: OP-trie is O(k log,k)+O0(N).
\

v

In practice, when the size of a subfile becomes smaller

2

than or equal to the size of a bucket,'no more splitti?g and

hence no pass 1s necessary. lence the actua]bcost will be -

smaller than the one indicated abovd;“]
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) a
, Whereas method A ignores query distrisationé,’ method B
ig?ores the characteristics "of the record.space. Method C
that we propose below atteméts to exploit both " the non;
waniformity of the reco}d spAce and query épace. In some sensg'
we correlate the structure of most probabie queries with their

most relevant reccords and choose bit positions to test at

‘various fevels of a trie. »

6.3 METHOD C

L )
From the file F considered as a (0,1) matrix and the query

distribution wmatrix P, we form the‘product F¥P, a matrix with
N rows and 3 columns (N iﬁ'the number of records in F). The

entries in this matrix can be 1looked ppon as "similarity

’ ~
\\xneasure" between the record space and query space. The

selection of attributes ’and their order of testing is done as

a &

explained below:

¢

Find' the minimum in the first column of F*¥p and the
maximums in columns 2 and 3. Condider the subset of F
indicated by those row numbers wherein these extremums occug.
‘Noteé that thesc extremums may not be unique. App}y method A

' to this subset of F and select thal attribute number that
maximizes the unbalance aL-theOroob. éParti%ion the file so

- that all reco}ds with 0 in the selecté@,batfgibute pdh&%ion
N ‘r'will be in the 1ef£ subtrie and thésé with 1 will be inﬂthe

right subtrie. The partitioned files gnd the remaining

attributes are used to compute the ;ygilarity measure mabrix

v %
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"’ : ' for the subtrigs and the prbcedure is repeated. The -
| ] . . ) ' ° , ’ .
significance of the bit selected at each node is\that it hag
the least probability of unspecification and max imum ,
- proBability oq finding matéhing records in the file.
[
EXAMPLE 6-C: Take the same file F and probability matrrkgﬂ, ) Co
fro ample %‘F used for’ illustration of method B.  The :
prol® F*p i$ shown below: , :
! !
e 7/6 1 29/30 . “ ‘
2 . . ‘ P ‘

S 172 175 3/10 | ' e

o ol 7712 197300 11712

- F*P = | 13/12 31/30 52/60
co 273 . u/5  2/3 . N
; |72 w730 83/60

=y

Figure 6.18 o

4.

Note ~ that the structur.e of the trie of figure 6.18 is similar

1

TR T e S Y e 2

to that of the trie constructed byfmethod B. Since method C

\
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uses' method A for selection of attribute positions to be

tested, let us

employ

the

conjunction with method A.

figure 6.1§.

.-

L2

6.4 METHOD D

o

. Assuming that there is, one

’

V at a node . that minimizes the average ‘number of buckets

examined

th;t«gives the query distribution. Atuthe level o} the roét
let j-th attri%ute bertested. Let Lj and Rj denote the nbmber "
lot‘ records that have 0 in tHe‘j—th pcsition and the number "of

’, records that have

Regardless of which other attributes are specified in a

/

1

at- that level.

Figure 6,19

in

s

We assume a given probability matrix

the

look-ahead

scheme discussed 1in

The . trie obtained is that of

record per bucket we will

construct a trie in a top-down manner and choose the attribute

o

’

-

j-th position, respectively.

query.

the expected value of the maximum number of records examined ¢

“at the root level is:

A

J

-
_—

P

30

L,

J

+

P

J1

R

J

+

/

P (L, +R.)
Jx J J
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We want to mirnimize A,. Let<N, = L. + R. . Then. we haveja.='L.7R.,
S I B ) S I
Aj = Nj[ Pj* + (aj Pjo + le)/(l + aj)y

Since P, + P.. + P.. = 1, we substitute for P, in A. to ‘get
\ J* 30 J1 - : I* J
\ AR N [1-P. -P. +(. P, + P, l+a.
o Nyll=Pyg=Pyg#ley Pyg + Pyy)/(ltay)]
‘ /
N. (1L 4+ a. - P a. P, 1 + o,
.= Nyt 37 Pye7 %5 Pqn)/ Ry

~ 7

»
~

- = N.[1l - (a; P., + P, 1 + u.
31 (o5 Pyy 30){( 3
>
Thus in order to minimize it is enough to minimize 1 = Bi’ where
- . = (o, P., + P. ))(l + a.) .
. BJ ‘ i P31 % Pyo)/ 5) '

This is equivalent to finding the attribute position j that

» . . .4.
maximizes R.. ’ ‘

Initially Nj=N, the number of records in the file. The

rétio aj , 3=1,...,k is obtainedffor the whole’file. By maxi-
!

’

mizing Bj fér this a] ( 51mplx flndlng.the maximum of the B's),

Dwe}get j, the attribute to be tested at the root level of the

"

trie. The file is split on the j-th attrlbute and the subtries

are constructed recursively. The example given below 1llustrates_

v

thfé method -

EXAMPLE 6-D: : ’

t . ’
' .

Again we use the same file F of 6 records and matrix P from

section 6.2 and example 6-C. In order to compute the l

T

, -

. ) ,

—— e e —————

ad
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ratios Bj' j=1,..,4, the j-th golpmnlsum has to be calculated.

For the'first pass over the file,.the , following results are

4

obtained: T \
- “ ‘
! 'a]n= 1/2 ay = 1 0y = 1/2 Oq = 1/2
N
. A ' " max (Bj )= 82
a
!
2 1 t
. |3 , 3] ’
) ) J
. / ‘
b w| d 1
/ c . /
' e a c - £ .
-l . N ©
: Figure 6.20 - . .

{
7

. The results obtainéd for these methods for a sample data
are shown iﬁ the table .attached: at the end of this chapter.
We~’haye done 5several experiments and the results lead us to
believe that all the methods have better perfogﬁancé than

reported in (251]. Moreover, tries(: constructed -on

a

probabilistic assumpt?bns have good  performance valﬁost

H

everywhere over the query space, :

¥
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Note
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node
valu
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| n 99 _
R R
. ‘ NOTATION FOR TABLES F_g Tb’s-s B
. i ’v ,l ' .
nu@per offbits in a reccord . (“" J 5 '
number of specified bits in a qqery\f\// ' ' ) ,
best case cost
worst case cost , o .
number of queries that achieve B : i -
number of quer&eé that achieve W : ’

- \
average case cost - I

number of queries that exceed the rounded value of A

that the vélues of B, W, A, Tb, Tw angjyh have been

.

aged over all tries with N leaf nodes, where each leaf
is a bucket containing exactly one record. For a fixed

e of k, for eachevalué of s all the queries from Q¢ have

tested.,

J A oap s -
T 1/eX 3 52y
p=11/5 3/10 1/2

(72 /5 3110

LRI TS
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QUERY DISTRIBUTION = METHOD

J -

- —— . - - — - - - ——— " ——
et = . M ™ S G S G WD S P ML S W WS T e WS WS v T W = oW

W Tb Tw A Ta N 1-s/k

2.0  7.81  24.19  1.77 0.0 1.7%

4.0 2.72 7.78  3.06 7.78 3.0

81 1.41 2.29  5.28 3.54 5.2
———————————————————————— U s = o - . . - > M - —— - - mn . D b e S b Mum T S e W o G e e . e .
3 1.0 2 4,16+ 27.84  1.87 0.0 1.0
N:1a, 2 1.87 4.0  2.08  13.58 3.8  13.68 3.46
1 4.9  7.94  1.63 1.5 6.8 4.08 6.45

4 1.0 2.0 17.14  62.86° 1.78 0.0 1.76

k=5 3 1.07 4.0  3.19 31.16  3.17  31.16 3.11
N=17 2 - 2.57 7.9 1.94  3.25  5.59  21.6  5.47
. 1 6.85 12.54 1.30 .86  9.79 3:02  9.6M
4 1.0 2.0 8.3 71.7 .90 0.0 1.89
N=24 3 1.74 4.0  3.31 51.79  3.59 0.0  3.57
5 4.31 8.0 2.k  10.71— 6.78  10.71  6.73

1 10.5 35.08 1.8 1.65  12.77 3.09 12.71

H
TABLE 6-2

. Note that the 1last -column ¢in this table represents the

L

conjectured lower bound.

»
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b Coo 101 ‘ R b
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. NON-UNIFORM QUERY .DISTRIBUTION - METHOD B A ,
s B W o o Tw A Ta
_______________________________________________ O U
_ - o L
\ k=l 3 1.0 2.0 7,74 24.26  1.54 0.0t ,
’ N=9 2 1.32 4.0 2.96 8.52 2.51 8.52
1 3.5 7.0 1.68 2.08 4.6 3.18 ,
______________________ f""""""""""""""’.,"""’"""“"""‘"“"""'""‘
. 3 1.0 2.0 4,10 27.9, 1.75 0.0
N=12 2 1.9 4.0 2.12 14,08 3.19 14.08
. 1 4,92 {:.7.8 1.7 2.5 6.13 4,2
=5 4 1.0 2.0 17.28 67.72  1.63 0.0
N=17 3 1.02 4.0 2.68 33.88 2.74 33.88
‘ - 2 4,18 8.0 2.74 . 13,4 6:27 13,4
1 10.38 15.22 1.62 2.44  12.14 3.16
4 1.0 2.0 8.26 T1.74 1.80 0.0
, N=2b 3 1.74 b.0 4.78 53.44 3.33 0.0 -
. .2 418 8.0 » 2.74 13.4 6.27 13.4 3
1. +10.38 15.22 " 1,62 2.44  12.14 3.16
B * 1
TABLE 6-3 o - Y

R T e e
]
!

Lo e




NON-UNIFORM QUERY DISTRIBUTION .-, METHOD C

- v

_____________________________________ Mmoo
s B W Tb Tw A Ta
--—-————-—--——-...-‘- ————————————— r U — J_-___' ———————————————————
“ksh. 3 .0 2.0 7.79 . 23.96 1.51 0.0
N=9: 2 1.28 5.0 3,11 8.39 2,48 8.39
. 1 3.49 6.98 1.71 2.01 4:53  3.03
T3 1.0 2.0 4,15 27.73 1.71° 0.0
) N=12 2 1.83 3.94 2.18 13.98  3.17 13.98
" 4,78 7.62 1.66 2.42 6.08 Y
k=5 Y 1.0 2.0 ° 17.65 67.U6 1.61 0.0 .°
N=17 3 1.01 "3.97 2.73 33.42 2.69 33.42
5 408 7.96 2787 13.21 6.2 13.21
1 10.27 15,03 1.68 . 2.37 12.11 3.09
. T e
y 1.0 2.0 | 8.37 . 71.59 1.78 0.0
N=24 3 1.63 3.98 4. 84 53.26 3.32 0.0
2 3,11 B.0 2.79 12.97 .19 12.97
"1 10.20  15.09 1.71 2.37° 12.09 3.0
- ‘ TABLE 6-4 ¥ .
> v ’I
”~ ) °
19 “ a
S ’f “
’ :
oy
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- . " NON-UNIFORM QDERY DISTRIBETION - METHOD D
L t .
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CHAPTER- 7

. . CODING TECHNIQUES

R

This chapper discusses coding technidue@ use ful in partial
mateh retrieval. These compaction methodé can be }ooked ugon
aS superimposition and pargitioning of hash functions, One
important: advanﬁage of the method o% éuperimposéd codes seems
to be that it is well suited to an implementation in special

purpose digital hardware and partial maech queries can be

efficiently processéd either in on-line.or in batch mode.

%

When implémen@ed in sdftware, tgﬁ'aethod of superimposed
coding 1is compet%tive'with other”ﬁféernatives; yet it has some
disadvantages as well.s The major portion of the "method of
superimposed coding -can be viewed as a preselection algorithm.
that narrows down the region of records pertinent to a query.
Hence the method  of superimposed codes will achieve
substantial incrcase in execution spced over the straight

sequential search. - The disadvantage of this method is that’

#

- the binary coded file must be kept in addition to the actual

.

fizi; ///// “

When the//cdding is done towards compréésing and hence

saving: storage, only the compressed data base: anq ‘the
dictiéhary are essential for any transaction. Algorithms for

7

performing partial match scarches on a compressed file stored

104 .
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on a direct access device when the elements in a query are
fragments chosen for compression are discussed by Alagar [3].
These methods can hHandle queries that use either whole words

or wvord' fragments operating on a compressed data base through

the dictionary of fragments. e

i

0f the three methods discussed in [%], it has been shown
that the method which exploits tha/ interdependence of
fragments as well as the relevancgﬁgﬁjfragments to thé records

in the file has the maximum design _cost and 1least retrieval

cost. ,
N | A partitioned hash function obtains a code for a record
and the code is interpreted as a bucket &ddress. - The ' hash

¥

code of a record can be obtained as a concatenation of the.

hash codes of the values in the various fields of the records.
The advantage of this method &s that concatenation of codes
has more information cont%nt than the superimposed code of a

record and the coded file is no longer required.

]ﬁ the method of superimposed coding the coded file must

be searched first to find the records which might satisfy a

query, This search can be“Q}ther sequential or hieraﬁchiqaf.

We have found that a trie constructed for the coded data base
is more efficient than sequential search (see section 7.3 for
detailsy. Similarly in the caég of partitioned hash functions
the hash <codes. of the records are used to construct trges.

When the query probabilities are assumed, nthey are uscd in
.

/
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The folldwfng' sections will discuss these methods and

possible refinements,
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7.1 SUPERIMPOSED CODING ° . ‘

So far in oué discussions. we have considered ‘binary
attriputea records, each record cénsisting of the same number
of'bigary attr}butes. For any given fife F consisting of N
records Ry e v By the number of keyé per record need not be the‘
same and the values of the keys need not be biﬁary. /In such a
situatiqn a binary valued record is obtainable tprough a
suyitable mapping. :Although se@eral mappings are suggestive,

\

we develop a "random" maﬁping through a module called “Record

Mask Generator',

During the design phase 6f the system every record in the
file is processed by the Record Mask Geherator and coded so
that all coded records are of the same length. See diagram in

figure 7.1.1. ‘ oo

Y

< FILE —> [R.M. GENERATOR —=> CODED FILE

N
-

Figure T7.1.1

An overall block diagram- for a retfieval system using

} . .
superimposed codes is shown.below in figure 7.1.2.

’ | ) . . ‘ .

Prg
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1
N

Q.M. GENERATOR

. .
. { : / .
N .
; .
,

R .
SEARCH | OBTAIN GET EACH
X ' CODED  |—> | DROPS |—3| RECORD IN
FILE e D
‘\«
[ ]
y ]
COMPARE
/ WITH
QUERY

Figure 7.1.2

_— . !

Let K K n,.'.Ki' be the keys in record Ri'

i] i,
b

J - . + .
LLet H be a mapping such that H: Ki':>(s]...s ) where each

A t
% = 0 or 1.

»

The - vecpor ‘(31’52"155 Q

corresponding to K; and b is the length of the code.
° g

We Pefine the superimposed code word (SCW) of Ry as

Ci= :H(Kit) =(c_,c ,...cb), where % =0 or 1, j=1,..,b.

172

e’

-

is the binary coded

word

(7.17

(X
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The set Sz {G|C.= SCW(R,), i=1,N) is the .coded file.

Although‘the superimposed code method will Qork no maéter
now H is dsfincd: the performance Aacnieved 'by .an'
implement;;ion of this technique’ﬁill critically depggdwon the
choice of H, Moregver the length b of each binary coded word

as well as the gight w (defined to be the number of 1's in

~

¥

each code) will affect the performance.

In the ~ context of partial match retrieval .using

superimposed codes it seems 'aQVantageous to choose H
satisfying the following conditions:
1) The cdmputation of H(Kit),must be acoomplisheq;rapfdly;
2) The number of different (or substantially different)
keys having the same binary coded word should be
‘ '

minimized, v

. ) ’
Clearly there are many candidates for H.and any one function

cannot be expected to be optimal for all systems.
L

' Moreover the value of b critically affects the size of the
ancillary file of sbperimposed code word§x that is the cosf of
extra memory is directly proportional to b. |

However only for large values of b the initial §carbh of
thel coded file for a given query would produge fewer record
identifiers. This 1implies that the number of different
accesses to external storage to retrieve records from Lhe

\
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original .file F is-inversely proportional to b. >

-

1
There is one more-factor that affects ¢the performance, -
namely the number of bits in a binary coded word that have tﬁe

value 1. We call this the weight of the code. This is due to

t

the fact that }//ﬁartial mateh query is transformed by the

Query Mask GenerdBor into a  b-bit binary value (q ,...q ),
qj:O or 1. The Query Mask Generator is identical to the
Record Mask Generator (see 3 details later on) . The

relationship between the query mask and the file S can be

stated as follows: ‘

PROPERTY*D: If a superimposed code word Si € S contains 0 in
any bit position where the query mask computed from a query q
contains a 1, then the corresponding record 'Ri is not

pertinent td the query q. The truth of this statement will be

obvious when we describe the mask generalion process.

.

(\The above property is usecd in searching the coded file to,

obtain record id?ntifiers (we call these "drops"), with the
purpose of narrowing down fﬁe number of possibly pertinent
records in F. The weight w of a Hinary coded wo;d of length b
‘influences the number of "false drops", that is those record
%Qontifiefs selected from S that do not satisfy the query.
)Odr experiments reveal that when w is rouphly H0-50% of b the
sm;lleél number of false drops is obtaiﬁed.

We will fix b and w and generate the dbinary coded word for

a key using the algorithm below:
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ALGORITHM A
Given a key value K, find the corresponding binary coded word

a A

(bcw) S of lengfh b and weight w. "

Step 1. [ initialization ].
Set §,¢- 0 for all =10 b . y
St w'<- 0,
Step 2. [ use the key K to obta{n a numeric equiva}eﬂt R]
Let. NUM bg a function which returns a numeric value for
the key K.
Set R <~ NUM(K). ‘ o -
Step 3. [ use R’td initialize random qumber generatorj
Set x <- RANDOM(R); (0¢x¢1, x is first random number).
Step . [ get a bit 1ocatio£]
Set J <~ [xbj + 1; (1<j<b) .
Set x <~ NEXT(x).
Step 5. [ is j-th bit 1?]¢ . . ' -
ffJsz 1 go to Step M.
Step 6. [set j-th bit to 1] : -
| Set $.¢- 1, w'<- arat. . -
Step 7. [ is w'=w ?]‘
| If w'< w go to step 3
else RETURN (S).

END of Algorithm A. (The vector S is the becw of the key g).

. For each record using algorithm A and ‘the relation [7.1l

the superimposed code word is generated. For any given query

S N



v
, 112 V ) |
. , | ¥
that specifies s attributes we . use the same algorithm to
T gencrate the binary code words and'henéc the query mask; the
¢ uASpecifiod bits are just ignored.
,Fér a given query the seareh strategy is described below:
/
5 ALGORITHM B . ’
. R Step 1. [generate query mask]; )
| Use algorithm A and‘the relation [771] to Eroduce the
query mask q:(q]...qb) where q.=0 or 1, i=1,b.
‘ Step 2, ifigd drops]; 5
§etc D «{sls8;€5 and  for  S;=(sy...5)) qi:1”:>'
‘ S.=1, iz1,..,b).! “
. . Step 3. [retrieval of records];
7 *If D;(Sil""si.) where’ i to ij are  record
! identifiers, thé]records D':(Ri],..,Rij):are retrieved;
Step 4. [pertinent records); } .
Compare -the given query with each record in D' and
' output those that match the specified attributes.
END of Algorithm B. "
There are several_ remarks we wish to‘ make about this
alg;rithm: ' )
If the size of the coded file is'small enough t;j in core
the cost of step 2 is negligible compared to ¥ cost of
) ' step 3.‘ Moreover the 1internal processing of step 2 can be
qupded ub,by construeting a prie'of coded records. However

the cost of step 3 would remain the same.

-

1

-




SN

113

If sequential search is used in step 2 then all the time

all the coded records must be compared with the 'query mask.
Even if the coded file is sorted the relative ordering of the
recocds cannot be used to effectively isolale the drops. An

alternative scheme scems to be to'build a trie for the coded

file. The trie‘const¥uction is similar to the methods that we

described earlier. However, in searching the trie, a 0 in a
bit position in the query mask ﬁust be treated as a *, This
& ' .

is due to property D and consequenfly seems to increase the
search time on the trie that can be const;ubted for the coded’
data, The weight w and the distribution of 1's in the query
mask influence the search time also; yet the search is faster
than a pure sequential search. ' The drops produced in a trie
search would still have to’pe eféqinéd seduentially to produce
the set D. 1In order to coﬁéafg'éhe Sequential and trie based
search, we introduce bit complexity, thatjis the nﬁmber of bip
comparisons necessary to be donec on the file S to produce the

set D. f

In our analysis below wWe consider the set % ‘\Qf-,all

superimposed code words of length b and weight w generated by

~algorithm AT is the cardinality of i, Clearly this

quantity is (). ""For simplicity  of the analysis we also

‘assume that all records have the same number of fields; the

anal ysis for the case of ‘variable® number of fields 1is
difficult even under very simplistic assumptions an the

distributin of the superimposed code words.




ANALYSIS

Let R:(K],KZ,...,Kt) be "a record having t fields. 1In
algOﬁithm A each K, is mapéedhonto a binary vector of length b
"and  weight w and  the sup:rimposed code C . is obtained by
taking logical OR on these vectors. TIf S1 denotes.fhe set of
all binary coded words generated indepéndently on the t

fields, then

ST =001 .. : . [7.2]

Since the binary code words are generated using a gniform
‘random number generator,. we ‘may assume that all codes of
length b and weight; W are "equally likely to occur
independently accross the fields. Although in practice the
data values belonging to the various fields are less likely t%
be random and hence the binary code words are not necessarily
uniform, the analysis based on the assumpéion of uniformity
giveé an approximate validity of the actual results obtained.
Moreover we pin our faith on the random number generator which

" we hope will achieve random codes from non-random data.

The main purpose ofmthe analysis ts to determine:

1) The probability p(b,w,t;r) that r{w specified bits of a
superimposcd code generated from a record R wiil have

A the value 1, u ‘ ¢

'2) The probability q(b,w,t,s) that a record R is a fa}se

drop for a query Q with s specified fields. In other

1
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" words this .is the probability that R is hot pertinent

(IR
“to Q, yeg it passeé the criterion stated in property D.
_ 3) Lbe average weight (the number of 1's) w in a query
mask. ‘
k) The relationship between b and w and, in Barticulaf,
f /
for a fixed b the value of w that minimizes q(b,w,t,s).
We first determine p(b,w,t,r). Let S2 denote the set of all
! binary code words that’have at least one 0 améng the chosen r
"bit positions. Clearly -
. . ot . .
A - " . :
- ~B(b,w,t,r)21-[S2 |/S1] - . (7.31 -«
I . l
9 - * :
Using the principle of 1inclusion and exclusion and simple ’
comﬁinanorial arguments, we can show that
‘ ro, i1 r b-i t
| s2| = (-1) id)Cw )] : (7.4]
’ Substituting [7.2] and [7.4] in [7.3] we get -
' t
r -1 b-1 v
) S EC VA G R
plb,w,t,r) =1 —l—l——__----ﬁ---% ------
[(p)]
r i-1r t L
. = 1-1 (-1 (i) o (b,w,i)] [7.5]
¢ - 1 Lt
! + -
* ' ~ . ( bw1 ) J 1 °
* where o(b,w,1) = ——ee-- . . . ’ .
(5)
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We can rewrite ([7.3] és ' . g o, -
r . ) -
: i, r S 4
p(b,w,t,r) = L (~1) () [a(b,w,i)T, {7.6]
N s 0 .
For the particular 3a§éor:1 we have
t N
plb,w,t,1) = 1 -[ a(b,w,1)]
. . N o
. = 1 - (1-w/Db) PRV YD
v

"This is the probability that in a bﬁnary codeg word generated:

by the algorithm A there is a 1 in any presg;ibed _position.
We can write o (b,w,i) as
w-1 boivi
bi) = ome( 2
a(P,w{lj = g ( By '
So we have . : 1
o M < )
y  (b,w,0) =1 N !
and for i>1 this quantity is equal to . ’ . ‘
. .
.o s _ ) - - .
1wy ‘¥ / P
alb,w,i) = T ( —ooit ) . o
0 -b‘J r
/ i-1 )
' T4 700 b(b-w-3) \ |
> = (1-w/b) g -------- :
! : (b-w)(b-J)
- . i1
P i .
» . Jw
. = (ow/p) 01 - 23 g
- S0 (b-w)(b=J)

o ﬁ - )
Let B=w/(b-w). If w < b/2 then 8 < 1. So we have

N

j
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- § 'i'] J i?’-‘ ,b
diz L -io=2 3 ( o-2 - 1 D)
. STy by T b-
@ ) u
o i=10 1 - A
. = b ( L omeme ) - 1 +1 [
1 b-J
oz b [ Hy-Hpil - 1+ 1 g [7.10]
» e i)
where H =1+1/2+1/3+...+1/n. :
. - Q, . ¢
. ‘ So - L ) i y ; )
. 3 W M : ‘2k :
\ q(h,w,l) = —m———— (1-d]nB4'd28'-"") )
} b] 81 : . (SR
i 2 K
= (1-u/Db) (1-d{B+dsB -, ..) =
_ Since B remains smaller than 1 .and the coefficients
d]...di_];rémain bounded,. we' can ignore all powers of B _and
a J . .
, as a first approximafion we take '
o ' . . . l '
i .
a(b,w,i) = (1-w/b) [7)‘1] |
- ’, Such .a simplistic approximation seems necessary for a

.« tractable anaiysis, Howqyer the actual expression_
for oa(b,w,i) will be quite useful for‘ computing the
v ' :

.

get

.
.&wvﬂ:mwnmh- - - -

B

probabiiity more exactiy.ﬁ Now subsitute [7.11]1 in [7.6]1 to

]
4

r

i t i |
= L (=1 C5) [(-w/b) ] ‘




. . v
~This 1is the probability that any prespecified bit position is

T RN, LTV T T

And using the binomial theorem we obtain

plb,w,t,r) = [ 1-‘(1—w/b§ ]r : . [7.%21

This gives a first approxiTation to the probability that any
\ N
prespecified set of r out of w<b bits in a superimposed code

word will have value 1.

i

L @
Next we find the expected weight of a binary code

@

generated by algorithm A on a query with s fields. In ([7.12]

_if we set r=1 and t=s we éet\

’ )

p(b,w,1,8) = 1 = (1=w/b) .

o

’
/

. 3

1 in a bAnary coded word generated from a query with s
.’ N
specified . fields. Since all bits will have the same

probability of being a 1, the expected value w of the weight

(number of 1's) in a query mask is given by
) )

]

w= b p(b,w,1,s) #

, 3 )
N =b [ 1 -~ (1-w/b) ] (7131

Now we want to find the probability q(b,w,t,s) that a

b-bit record mask generated from a record with t fields 1is a

[

false drop for a query mask when s fields are specified in the
}

query. This is the same as p(b,w,t,¥) since W is the expected

weight of the query mask. Therefore

alb,u,t,s) = [ 1 - (1=w/b) 1" o (7. 141



.where W i's given in [7.13%. S .
/
In the dgscu551on below we will simply denotg q(b w,t,3s) by q

and our aim is to find a relation between w, b .and t which

4
1

minimizes q.

-~ Taking logarithms on both sides in [7.14] we have
@ - ¢

wiln [ 1 - (1-w/1ﬂ%j\ 4 .

s t : S
b1~ (1-w/b)y 3 Inl 1 - (1-w/b) 1

In q

1]

t
Let x=(1-w/b) , then

0

Ing="b[1 - exp(s/t 1nx)] 1n (1-x) \[7.15]

%

4 J .

For fixed b, t and s fe can differentiate [7.15] with
respect to w and establish that there exists a minimuﬁ value
for the function 1n q.-. Therefore there cxists an optimum
value of w tgat minimizgé the false drop probability. Once

r

again we use an approximation sihce 0 ¢ s/t ¢ 1 for a partial

match query. - ' - A

For the case szt we find the optimum value of Q as given by

w==50T( 1 - exp(1/t 1n (1-1/e))]
a 1/t : ©
=b'[ 1 - (1—1/e)/ ] ' (7.16]

‘For 0<s<t a clbsed form expression for w is rather difficuylt

to -obtain. By taking. a first approximation to the expression

in {7.15]) we get )4

In q = -bs/teln x in (1~-x) ' (7.177
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Formally differentiating this we find that the minimum value -

»

|
occurs at x=1/2. -Therefore we conclude that the optimal w is

one which causes 0 and 1 to ocecur with equal probability in

the codc¢ words and this is independent of s

t

Substituting x=1/2 in [7.17] we have

. ) ", | '
ln q = -bs/t!(1n 2) [(7.18]

° . : . \

The optimal value of w is given by

& w b [ 1 - expl-~-(1ln2)/t)] ‘ ' ' )

-1/t ,
:b[1—2*/ ] {7.19]

The expression in [7.19] is a crude approximation. A much

better value for optimum W can be obtained from [7.15] as

AY

‘follows.

\

Differentiating ([7.15] with respect to w and equating the

result to zero we get

LN

s
x L1 = (l=w/b) 3 .+3(1=x) (1=u/B) 1n (1-%) = 0 [7.20]

Observing that 0 < w/b < 1, we expand the left hand side in

J
power serits and ignore terms of (w/b) , j>2. Thus we get

/

{1 - tw/b) + (2tw/b - 3/2)(1 « sw/b)

= 0
Let A =u/b. Then
2 . . -
2ts v - A (it + 3s/2) + 1/2 =Q . f
/ L

. Al
{ - . . . \ . .
. ' s .
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This has real roots given by

- 2 12
(t + 3s/2) =+ (tz- ts + 93‘/H)/
A

A D e e - - ————— [7:21]

For all values of 1<s<t there are two positive roots‘if which

the one that makeés Lhe second derivative of [7.15] positive

i

will minimize q(b,w,t,s). Let us call this value A (=w/b).
: t
Let y=(1-X) . Substituting these values in [7.15] we have

‘ s/t ‘ '
Ing=D59 (1 -y ) 1n g1-y) ,’ [7.22]

This result is a much better approximation than [7.18] and in
ro
particular note that it 1is dependent on s, while [7.18] is

not., It is more realistic to expect the wéight to vary and

"depend on s; yet in a practical information retrieval system

it is desirable to determine w which is good on the average.

Below we discuss this choice in some detail.

This analysis suggests that design parameters be chosen as
explained below: | , l
1) the average number of false dropé 5% tolerated in the

system' must Dbe decided beforehgnd, that 1is Ef&ﬂéq.

Substituting this quantity in [7.22] we can find b as a

-

function of s. '

2) the value of ,A as givenvn [7.21] is a function of S,
i.e. the number of specified fields in a query,. In  the

overall design of ‘the system .we must have a value
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independent of s, unless the system is restricted to allow
only queries 1in which any s fields can be specified. 1In

many real life situations this may be desirable. However,

for the general situation, the ratio can be computed as
t-1 .
A = % (z Pi e Pi') AS \ [7.23]
1 1 S \

H

where XS is given in [7.21], the inner summation is over

all s combinations of t fields and the P 's are the

probabilities with which the fields are specified in the

queries. Here we recall that the probability P; that the

:

i-th fi%;d is specified in a query is independent of

whether other fields are specified or not in the query.

1

‘If the queries are uniform, then | \
DI Ip; | ‘
Py Py wen Py o= S WL U Y [7.24]
1 72 5 m ( Di4-1) '
1<i<k
Jggzzj\ﬁkiijlfhe cardinality of the j-th fi?ld domain. .
3) Thus w="\ b can be computed. 0

[ -

Although this method 1is simple; the analysis beyond the

second approximation scems mathematically complex. If L more

accuracy 1s desired, known methods in numerical analysis may

be employed to obtain the optimal value of A from [7.157.

© Our experiments seem Lo indicate that neither the assumption

of 'uniformity for code words, nor the second approximatian

cause serious errors. See the table of results [7-1] for the

)

i

i

A
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performance of this method, Finally we remark that these
results remain ‘independent of the actual size of the data
bése; it is sufficient to presuppose the  false drop

probability tolerated in the system and _the query

.probabilities,.
7.2 " SUPERIMPOSED'CODING AND TRIE INDEXING

We can improve the superimposed coding method if
sequential search of ¢the coded data is replaced by a trie
based method. Assumﬁng that a fixed amount of storage 1is
available for holding the trie 1in memory, we construct a
binary trie for the codéd.data base. We qsé the Eéthods of ,
chapter 6 for such a construction. However we have to take
into account the fact that a 0 in a query mask has to be
interpreted as a * because of property.D (see section 7.1).
Hence every query mask should be treatéd as an 1inclusive
query. Thus during trie constructiqn we would minimize the

number of left branches. ‘

v

\

Since trielconstructibn and search hav% been explained
previously, it 1is enough to show here the superiority of the
trie approach over‘tﬁe sequential search of cthe coded data
base. Intuitively it 1is clear that a Itrie based sdcarch
requires sequential search of a subset of the coded data base.
In order to ‘establish its efficiency, we introduce "hit

complexity" which 1is defined to be the number of bit

comparisons in a search. , -

AN
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If ﬁ»dcgotes the number of distinct code words, L denotes
the length in bits of a record, N equals the number. of

records in a bucket and D is the number of drops in a

séquential secarch of the entire coded data base, then the bit 4

complexity for sequential search of a query is

e

- LN, ' X
By = Nb «+ L‘jEDNJ , [7.25)

For the same query scarched on the trie tﬁﬁs vould be

§
/

B =T+ (D+E)b+LZX N, [7.261
t JED J

The term I represents the number of internal bit compérisons
and the middle term reflects the possibility that theré are
more drops resulting from a ftrie search; tﬁis is true in
general beéause not all the bits in the query mask wil De
tested along a patlth from the root;of phe trie to a la2af node.
The first term is the number of bit comparisons on the trie:
We rem¥®k that the above expression can be computed for each
query and averaged to, obtain the expected wvalue of the bit
complexities., See tablg [7-1) for our experimental results.
The results indicate that the value of Bt remains §maller than
Bs; in fact Bt is quite small compared to By when

(near) optimal w has been chosen. From [7.25] and ([7.26] we

have
By < Bg if I + (D + E) b < Nb S (7.27)

The code words generated by the Record Mask Generator are

random and thus the bits that get selected to be tested on the

-/
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trie are also randomly chosen (although ‘restricted to
maximiéing the unbalance at each node at yeach level in. the
trie). In [22] &t is shown that in arandoT/%rie the average
number of bit inspections is close to’ log, N. Thus
approximptely

1 = logzN

-

Substituting in [7.27] we have

B, < B, if log,N + (|D| + E) b < Nb K

b w , ‘ ,
Asssuming that N=2 -2 , (note that each code has weight at

least w), we have approximately . - ‘

B, < B if |D|+E<N.-—1+-‘- ------
i.e. the number of trie drops is less than (N-1).”

However this is true for almost all queries as can be seen
from the statements of chdpter 6. A much stronger! statement
based on this result is that on the ave}age the number of trie
drops is Nl_x, where X is given in [7.231. Although the
results obtained promgt this statement,‘ exact analysis 1is
required in proving or disproving this claim. Hence trie
based search is superior to sequéntial search of the coded
data base; however we requiré storage for the trie in addition
to the storgge required for the coded data base. When the

amount of space is limited, the trie constructed for the coded

file can be pruned to the desired level without affecting the

performance,



7.3 CONCATENATION OF CODES

The superimpo®ed coding ¢tmethod requires maintaining a
separate file for the code words and' this scems to be a
disadvantage. However searches, are muech faster than with
associative search and Lrie based search is preferable at an
extra overhead of storage. A definite disadvantage of the
superimposed coding method is that upd ates, requ%re chanéing
the cbded file and the master file as well as the trie index
if theﬁe is one. To a large extent fhese would be eliminated

if we concatenate instead of superimpose the individual codes.

We outline two methods below.

METHOD 1

'Thisrméthod is due to Aho and Ullman (2]. The basic idea here
is to consider all field$ in a record and hash the full record
onto a bucket wherein it can be stored. By suitable choice of
the hash function, the number of buckets Lo be examined in a

v

search for a partially specified query can be minimized.

y

Assume that each record has I[. bits and the file containg
M<<2L records, A query specifies some subset of the L bits.
Let there be 28 buckgtS, each bucket with the same capacity,
i.e. the number of records that can be stored in a bucket is a
constant. Let there be k fields in each record and P; be the
probability that the iith field 1is specified in a query.
Denote by Q=(j yeueig) a query where 1 €ij¢k  indicates
specifieq fields. The essentianl feature of this mebthod is to
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estimate the number of bits Lo be extracted from each field so

that their concatenation produces a bucket address, Certainly

the number of bits b],...,h( to be cxtracted tfrom each field
are {unctions of Lhe Piy's. The by's are found in {21 using a

simple maxima, minima principle.

’

Observe that the average number of bucketbts to be examined to
\ . .

answer a query is

) b
A= L (NP (T QO-P)2")
. Q i .

b ieq (o ’ (7.281]

where Q may ranée over all subsets of (1,2,..,kK). This is

easy to verify if we argue that for each specified field all

the bits are known and for each unspecified field all bits are
b.

not known; in the latter case 2] buckets are to be searched.

Since we must have

B = b] + b2 + ... 0+ q( [7.29]

we want. to minimize A subject to [7.29]. 1t is shown in [2]

]

that the optimal number of bits to allocate to field i is
P, k P

b,c= B/K + log (, ==k~ ) - 1/k I log ( --d- ) © 17.30]
i 1-P 1 1-P, ‘
- J
Since these values are real, one has to obtain optimal integer
solutions, These are also given in [2). For a sample data,

this method was applied and the results are shoun in

table [7-2].
The primary strength of this method is the ease wilh which

\

new records can he inserted into or deleted from the file; the.




N

\

disadvantage 1is the relatively higher number of accesses
needed to answer some queries. Moreover this method gives the

bi's but does not suggest as to which bi bits are to be

selected from the 1i-th field. The following fexample

illustrates this method.

1

EXAMPLE. Suppose we have records with 3 fields

—

LAST_NAME PHONE_NUMBER ADDRESS

and we wish to store the records in 210=102u buckets. Suppose

60% of the queries specify LAST NAME, 10% specify PHONE NUMBER
) . -

and 30% specify ADDRESS. We have Py.=0.6, Pp=0.1, P3=0.3, B=10

and k=3. The b;'s can be computed using [7.30]:

‘ by=d. 41, by=2.12, by=3.47 - '

The optimal integer solutions are obtained by. rounding up the

maximum b rounding down the minimum bi,*and recursively for

-i ’
the rest of them, and if there is one bi left at the end it

will be assigned the remaining bits in B. Thus for the values

given above, the optimal integer solutions are
AN

\,

b]=5, b2:2, b3:3 \

N
AN
We should.mention that in order to code each field i of a\\\

record into bi bits, we have wused a hash function which/y/
i N

computes the value

. . b. .
Zi= (numeric value of field i) mod. 21 \

\

3
e
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which is a number that occupies bi bips." : :

METHOD 2.

It i; relatively easy to write. down the expression for A, the
avérage number of buckets examined to'aAswer a‘query, forhthe
case wheﬁ the bucket address is computed directly from the bit
yalues;' however when the buckets are stored in the leaf nodes
of a trie, it seems difficult té explicitly write down the
bucket address in terms of the bit patterns of the search
paths. 1In principle therefore it remains an open problem to

show the ophtimality of <tries constructed by the-methods in

chapter 6.

We consider a concatenation scheme and build a trie for
concatenated codes and compare fhe results of Aho and Ullman,
Whereas in [2] the number.of bits to be extracted are known
but the actual bits are not known, in our scheme the situation
is rebersed, i.e. the bits to-bé extracteé are detefmined (say
by ‘methods in chapter 6); however we are. unable to show
‘theoretically the result that the number of bits thus selected
for testing 1is oppimal. , Simulation"experiments seem to

- indicate optimality.’

For our method we need the probabilities Py...P, and d
i=1,..k that .are the cardinalitites of the domains. BSet

]

*
k - .

B= % logzdi. Clearly a record needs at most B bits for the
e. A value from the i-th field is mapped onto bizlogZdi

‘cod

bits. We attach a weight Wy to the code generated f{rom the

~_.
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k3

i-th field. . As remarked earlier W, is the number of 1's

included in the bi Qits. The weights Wiea Wy ére chosen‘
proportional to Plz..Pk so that a' field of higher probabilipy‘

will have a larger weigh®t than others. «The Recbrd Mask

Generator is wused to gencrate binary codes of the ficlds and

«

these are concatenated. Using method A of chapter 6, the trie

is built and pruned to have a prescribed number of buckets,

Clearly the address of a bucket is a functiod of tLhe search.

path and the .bits are selected by the trie construction

algorithm, A

1§This method was applied £o the same sampfz data used fér
method 1. The results are given 1in thble [7-3]. These
results indicate that the trie based method 1is superior to
partitioned hashing 1in computation of <fhe bucket address.
Althbﬁgh we have achleved the same kind of results for various
data, Qe are again unable to showﬁLhe superiority of the trie
based method in a theoreticai way. fThe oﬁjious disadvan;ages

of this method are

1) more overhead than in the partitioned hashing method;
: é) insertions and deletions are mére difficult to handlg
without a total collapsing and rebuilding of the' trie

(for preservation of the optimal search time),

- Thus we conclude that there can be no single method that
can be applicable uniformly to all situations; however we have

shown in this chapter that trie based methods outperform many

of the other competitive methods as  long as  bhe datad bake

el
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\ - N
NOTATION FOR TABLES 7-1 TO 7-3 S

N = number of records o

, .
Nb = number of buckets
Xk = number of attributes in each record J -

di: cardinality of i-th attribute domain

s = numBg? of specified attributes in a query

-

// ’
B\: total length of a coded record
b.= length of i-th field code

W = weight of a coded wqrd
Wwi= weight of i-th field code . ™~ ' R

I = number-of inteQnaldbit comparisons (on the trie) .

TD = hquer of codes in the trie drops

ES = number 'Qf codes eliminated in s?quengial searéh ?f thg
coded file | ‘

M = npmber of records that are pertinent to a query

Min.TC/Max.TC/Av.TC = maximum/minimum/average bit compléxity ~p

for trie search |

Min.SC/Max:§C/Av.SC = maximum/minimum/average bit complexity

for sequenktial search of the entire coded file

Av.I = average number of internal bit comparisons '

AV.TD = average humber of codes in the trie drops.

The following informatien applies to all the tables.

'_N:‘IOOG,k:u 0 a : ' T

~ v

The same file and query setohave been wused in all thg

experiments. - ' 0

. ¥

et e
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_in the file. ’

. . -]
.Each record in the master file is of length 40 bits,

133 »

~ v

For each value of s the query set consists of 100 queries,
. ’ : /.

for each of which there exists at least one pertinent record

ﬂ ' ~

The values for I, TD, ES and M representwthe sum of the

results for the 100 queries tested in each case.

rd

The cardinalities of the attribute domains are: |

dl= 57, dy=1%, d3=31, dy= 38

The-probabilitieé/of specification for each 'attribute are:

Plz.‘35, Pyz.20, P3=.50, Pg=.75

a

¢
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SUPERIMPOSED CODING

‘ -

____________________ B = 30

" =6 T w29

- 100 Nb= 100

s 3| T 2
T 2657 3683 5352 234k 3082 5006 .
tD - 1578 2R18 408 1054 1763 3632
BS. au7a 23u6 . 3ug2 938 1500 2398

v w0 15 sun 100 115 i
Min.TC 270 3b2 . T 293 316 911
Yiin.sc ko " ioko. 2160 9i0 1140 1520
Hax.c  tom2 187§ 7252 12uh 2M66 6606
“Max.SC 3080 3260 Y 7720 2780 3680 7260
Th.Tc | 536.31  858.89/ 3135.09  A68.98  926.76 3553.23
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TABLE 7-1 A
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B = 30 B .
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Nb= 98 Nb= 71
s 37 A 2 T
T a2 3661 5302 2836 3316 an7g
TD 868 1586 3439 san 963 2139
ES fses  ean  1wo1 67 16 358
M o0 s sus 100 115 541 -
“Min.TC 736 835 3030 2430 3170 7678
Min.S¢ 420 1000 3780 2940 3420 8300
ax.tc 2342 hzes | 8210 6303 sish | 12021
Max.SC 3960 4580 8800 6520 9120 12360
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SUPERIMPOSED CODING
4

____________________________ B=230___ )
w = 18 "wo= 21
’ Nb= 39 Mb= 16
S 3 2 1 3 > 1
————? ————————————————————————————————————————————————————————— y
T 2085 2295 2828 1500 1500 1500
D 293 522 1298 164 215 589
ES 3 7 18 0 0 0
M 100 115 51l 100 115 541
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o0 115 suy
EEIT 250 250
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. .
CONCATEQXTION CODING - METHOD -2
B=2l w=1l
------------------- T
Nb= 96 Mb= 98

s 3 T 5——m""-'-?'-_"——"—5‘"":-—'“5-"~'-"-—? """"
T s71 2837 © s003  1a2n 2902 5233
10 w43 1us7 3620 u6s  1sh0 3751
SEs 290 995 1701 349 1222 2183
N 100 115 sus 100 115 suy
Min.te | amh 262 vos 2u6 246 253
-QIB_EE'—ﬁféiB """""" suo - 780 . 540 sho wwo
Max.TC 1636 ¥178 1314 1120 3690 13349 -
“Max.SC 3140 5260 13200 2730 5350 13200
TAV.TC | 907.00 1204.66 2668.53  750.84  792.72 2018.89
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R ‘ * CONCATENATION' CODING - METHOD 2
‘ 4 B=2L w=11 . T
- c ’ ( TTTeTTTTTTTTTTT :";'1','5' """""""""""
Nb= 95 .
o jommmereereee
LT3 T 2eus wose .
tp 358 1289 8332
B 226 803 1368 . ‘
M 100 115 544
\’ i E e R :
/ Min.SC 640 540 1020
“Max.TC 988 4081 12766
. '&;QTEE"'EQEB"'T“%586"""?5558"'
o Av.TC  B43.25 1132.40 3114.98
\ hv.SC . 3041.32 3010.49 40UG.16
y “av.TD 6.51  15.36  31.06
“Av,1 . 27.22 36.06  46.9 -
. N | TABLE 7-3 B _ ,
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CHAPTER 8 -

CONCLUSION

This tnesis has been intended to show the suitability of
tries for partial watch retrieval. We Thave restricted
ourselves to partial match queries since exact mat%r queries

are well understood and the more general intersection querjes

demand searching the whole file a{&ost always.

Four methods of constructing tries have been 5:oposed.z
Superimposed coding with sequential ‘search, superimposed
coding with trie search, concatenation of codes with direct
access and concatenabtion of codes with trie indexing havé also
been investigated. Previous research in partial match
retrieval suggested trie as a suitable partial mateh file

design and posed the question of constructing tries for non-

uniform partial match queries as an open problen.

The investigation in this thesis has shown convincingly
that tries are well suited for this problem in the sense that

average retrieval cost per query is small compared toc other

methods. e

We have measured the cost of retrieval in terms of the
most "expensive" operation porfdrmed wﬂich dominates the
overall cost., In the case of large files stored on secondary

. /

-
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storage decvices this has been essentially the number of
accesses (read commands). Fof’sﬁall files kept entirely in
core thé cost is measured in terms of bit oompd;isons. Other
Fa:bqrs-which are installation dependent such as latency time
and transfer rate have not been taken into account as they

would be unavoidable and constant in a given environment. The

cost of updating a file has not been discussed at.length.

The Vmain~ contribution of this thesis has been to exhibit
explicitly how the query distribution and the structure of the
file may be combined to build a trie whose performance, we

believe, is close to optimal.

In the absence of query distributions the algebraic design
of a trie cssentially depends upon the structure of the file
which 1s reflecected in the statistics of the bit patterns; this

characterigtic influences the selection of bits to be tested

at the various levels in the trie. )

Previous rgsevarch has shown that skewed tries have hetter

performance han
measure of skeyness in more than one way. When the queries
are assumed qually likely (and hencgﬁdo not influence the
construction of Nhe trie), we h;ve found'that‘thp begt measure
of skewness 1is the absolute value of the difference’between
the number of O0's and the number of 1's (normalized when

divided by the number of-records). This is begcause, when bits

are chosen.to optimize (maximize) this measure, the average
A |

balanced tries. We have popstulated the
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1 4

1

number of . buckets examined to answer a simple query is
minimum. In fact our results show that this average 1is very

3

close to the optimum conjectured by Rivest [25].

In most roal-1life  5situations, however, queries are not
equally 1likely. Different fields in a query wfll have
differant brobabilities of b#ng specified. Thus the choicg
of bits for testing in the trie has to be made in accordance
with the distribution of query patterns. Constructing the
most skewed trie may not be a good approach sinc; the bits'
that cause most unbalance ’may be those that are highly
probable to be unspécifiéd in queries that are more frequent-
than others. Consequently the average cost of searching such
a skewed trie will be less than bptiﬁal. Hence those Dbits
with ‘high probability of being unspecifiesd in queries must be
tested lower in the trie. Method B is based on this 1idea..
Here the bits to be extracted are determined entirely from the

query distribution and the file structure influences only the

resulting collapsed trie.

This method has a definite advantage in its conceptual
simplicity and, above all, in 1its ) ability to handle
dynamically changing files, since the amount of restructuring

of the trig is minimal and straightforward.

For a given file, the nverage cost of answering a non-
uniform query when searching the trie built by melhod B is

lower than the cost incurred by method A. This ;psult shows

\

3
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that tries constructed by method A are near optimal only when
the query patterns are assumed to be uniform, whereas method B

constructs near optimal tries based only on the query

distributions.

3

wethod C combines Lhe qprabegies of methods A and B _to
construct a trie correllating the structure of the file with

the query space. It is assured in this method that the bits

to be tested on the trie will have both least probability of .

unspecification and highest:. probability of 1isolating the

pertinent records as we progress in a top-down manner.

For a giveﬁ query distribution and a file the empirical
r%§ults obtained show that the cost in method C is much: lower
than "the cost pér query in method B. If we add to this the
fact that fof uniform queries Zn effegt this method reduccs to

method A, we are lead to believe that it is indeed a good

approach,

/

A final attempt to improve trie peﬁformance has been made
in method D. We have sought to minimize the number of buckets

to be examined by suitably choosing the bit positions to be

tested at each 1level in the trie. This incorporates two -

"highly desirable features of a trie structurec: "ma<imum

unbalance and minimum probability of unspecification" at each
level in the trie. 1In effect we have tried to minimize the
worst case Dbehaviour, since we assume at each level the

"worst" fype of query - that which has to examine all the

'
1
- r
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records below that 1level 1in a subtrie. Here again we have

come across better results than those obtained previously.

Naturally, as the criteria for chcosing the bits to be
tested become more cemplex, the tries constructed are more

costly to update, though the cost of searching diminiéhes.

R \
Of - the. four methods described in this thesis, only
method B, which 1s quite ihdependent of the file structu@!‘k
guarantees a trie which is relatively easy to maintain. This "’

is a Qlaséical situation of a trade-off, i.e. method B is

recommended when approximately  optimal performance is

/

tolerated and frequent updates are essential.

©

In the last chapter of this thesis we have atte@pted to

narrow the gap hetween the conceptual aspect of the oclass of

£
)

binary tries' that we have discussed préviously and the’
implementation gspect. These ideas can be directly applied to
almost anyvfile if a record is considered as a long string of
bits. 1In general such a file woula be a very small subset of

all the possible bit strings. It has not been our aim to

study compaction techniques per se, as thesc rarely cause no
loss of information. But rather we have tried to ‘use
compaction techniques as an auxiliary tool for implementation’

of our tries, in order to reduce the cost of scarching.

®

Recall that a query may retrieve irrelevant records by

virtue of the fact that usually not 21l the specified bhits are

actually tested during trie search. Thus it makes sense to

~
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" the precidion factor in order to minimize search time.
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, reduce as much as possible the numbher of records to bes
retrieved for' comparison with the query. ‘We may say that the

cost associated with a query is "worse" than it should be only
'

when the duery retrieves more records than are pertinént,
’ 4
i.e. when the precision factor is 1low. Since the recall

factpr, is always 1 for trie indexing, we must try to impfove
'Y

4

We have thus studied two methods of coding a file. 1In the

a

method of superimposed coding an ancillary coded file is .

obtained which. can be kept in core. We have applied’ the

techniques of trie construction of chapter 6 and have compared

\

tpe cost 6f searching a trie indexed file with the cost of
sequential searching on the coded file. We have found'tgﬁp
trie search on the coded file is a remarkable improvement over
the sequen@i%l method advocated {q.[26]. We believe that the
extra overhééd introduced by building and searching a trie

index is well worth this improvement in the results..

»

The. 'major disadvantage of the superimposed coding method
( . " )
is. that the ancillary file of .coded “words must be

)

maintained  in addition to the master file. This poses Some

]

’

problems for updates as well.

,/' N
" A seemingly better method of coding a file is offered 1by

concatenation of: the codes of the individual fields of a
L )

record. An obvious advén}age of this technique is théh\a code

thus obtained preserves- more information content than a

L] ” ’ v : ‘
J

-

[

&
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superimposed <code, We have “* studied two methods of

]

concatenation coding. )

In the first method [2] a certain (optimals number of bits

are extr?cted from each field of a record and these bits are
) : ~

concatenated .so as to produce a bucket address where the

q%corg is stored. The number of ~bits to be extracted is

\

.determined, but there 'seems to be no way of deciding the best

choice of bits. A file coded in this manner is%’easy to
maintain, but &the cost of answering certain queries may be
quite high due to an increased number of buckets whichfhave to

be examined; however ‘the average is optimal.

Finally a simpler approach isléutlined to determine]both
tﬁeknumber of bits -and.the choice of bits necessary tq code
each ‘field iﬁ a record. The codes of the various fields are
obtained indépendently and concatenatéq to 'p}oduce a coded
record. The weights attached to.the todes of different fields

are determined from the probébilities associated with the

query patterns and the‘code itself is generated randomly. The

various bits to be extracted for determining bucket addresses

'

are automatically decided by trie construction,

.

Although our experiments do indicate better results thhn

-
the one reported in [2], we feel that at 1least three points
must  be clarified before we can convincingly show the

superiority of this method: 1) the set of bits extracted’

q’during trie construction is an optimal choice; 2) the re]aﬁion

i
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betiveen the bit patterns along the various paths on the -trie

and their associated buckets addresses; '3) the number oR\

distinct bits tested on the trie is optimal.

‘ .
.

“

The main conclusion to be d;awn from this research is that

’
2

the methods we have outlined construct %;ies tﬁét are good
almost -everywhere over the query spa;e. #s ‘tﬁis statemeﬁt
rests almost exclusively on the empirical results we have
obtainéd through (most of the time) exhaustive siﬁulation, \q

theoretical analysi remains open far future research.
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