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ABSTRACT

The thesis deals with canonic realizations of the
minimum reactance biquadratic driving point impedance

functions,

s+ A1S + Ay
s+ B;S + By

z(s) =

by a five element RC, RL or RLC bridge structure
consisting of three resistors and two reactive elements.
Realizability conditions, as well as the component values,
are derived for one RC, one RL and five RLC bridge
structures. These realizability conditions ére also
presented in the (A;,B:) plane, defining certain regions
where z(s) may be realized by one or the other of the
bridge structures. It is shown that if Ay, = By, then
the minimum reactance impedance z(s) can always be realized
by an RLC- bridge structure. It is also shown that if

Ag + By, then z(s) can be realized only under certain
coefficient conditions; but where these conditions are

satisfied, there are always two realizations for z(s).

ix



CHAPTER 1

INTRODUCTION

1.1 General

One of the important problems in passive network
synthesis is to obtain canonic structures for a given
driving point function (DPF). It is known that such
canonic structures exist for DPF's realizable by two ele-
ments kind networks (RC, RL and LC). However, a gener-
al solution to this problem does not yet exist even in ﬁhe
case of a second order biquadratic DPF, not realizable by
two elements kind networks. Recently, some at;empts have

been made in this direction.

(1) (2)

Kim and Van Valkenburg have shown that a

minimum biquadratic function z(s) satisfying

z () 4 z (o)

or z (o) 4 z () (1.1)

can be realized by a five-element bridge structure consist-
ing of two resistors and three reactances, as shown in

Fig. 1.1.

’

(3) (4) pointed out that to

Subsequently, Seshu
realize such a minimum biquadratic DPF at least two
resistors and three reactive elements are essential, and

that in general, seven elements are necessary.
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minimum biquadratic impedance z(s) satisfying
conditions (l.1).
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Fostcr(s) later derived conditions under which a
minimum biquadratic function may be realized by a bridge
structure, consisting of two resistors and three reactive
elements, where the opposite arms of the bridge are of the

same kind, but of unequal magnitudes, as shown in Fig. 1l.2.

The realization of a non-minimum positive real
biquadratic function using predistortion technique was
given by Barlev(G); however, the synthesis requires more
than five elements. A five-element bridge structure con-
taining three resistors and two reactances, as shown in
Fig. 1.3, realizing a non-minimum biguadratic impedance,
was given by Foster and Ladenheim(7). Coefficient

conditions for realization were derived, and a discussion

of its relationship to the ladder type network was given.

1.2 Scope of the Thesis

This thesis is concerned with deriving some canonic
bridge structures for minimum reactive biquadratic driving
point functions, where these bridge structures consist of

three resistors and two reactive elements.

There are totally thirteen possible five—element
bridge structures, including dual networks; which consist
of three resistors and two reactances. These structures
are shown in Fig. 1.4. Structures VIII and IX have

respectively a zero at the origin and at infinity, and
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hence, will not realize a non-minimum biquadratic function.

Structures XII and XIII have respectively a pole at
infinity and at the origin, and hence they also will not

realize a non-minimum biquadratic function.

We are now left with Structures IV and V, VI and VIZI,
X and XI, II, III and I, of which Foster and Ladenheim(7)
have analyzed Structures VI and VII. However, for the sake

of completeness, these structures are included here and

the conditions for realization are derived.

In Chapter 2, we shall give general conditions for
the realizability of a biquadratic positive real function
by RC, RL and RLC networks. In Chapters 3, 4 and 5, we
shall derive coefficient conditions under which the bigua-
dratic function may be realized by Structures I and II,
III, IV and V, respectively. Explicit formulas to calcu-
late the element values directly from the given biguadra-
tic function are also given. In Chapter 6, the realiz-
ability conditions for Structures VI and VII, as given by
Foster and Ladenheim(7), are derived and the results are
given in a more general way. Chapter 7 contains the

conclusions, based on the results derived in the earlier

Chapters.



CHAPTER 2

BIQUADRATIC DRIVING POINT FUNCTIONS

2.1 Reduction to a Simple Form

Let the given non-minimum biquadratic driving point
function be

Ap? + Bp + C
Dp? + Ep + F

(2.1)

z(p) =

where A, B, C, D, E and F are all positive. Let us scale

the frequency p ‘by

p = VF/D s ’ (2.2)

Then (2.1) reduces to

s? + a;s + ag

z(s) = H (2.3)
s? + bys + 1

where

a;, = (B/A)/YF/D

as, = (c/a)/vYF/D (2.4)

b, = (E/D)/VF/D
and

H = A/D

] v

In (2.3) we may assume, without loss of generality,
H = 1. This corresponds to an impedance scaling. Thus,
instead of considering (2.1) we may just consider the

simple form of z(s),



2
Z(S) = S + a;s + =¥} (2.5)

s?2 + b;s + 1

which contains only three unknown coefficients. Once a
canonic structure is given for (2.5), we may scale that
network both impedance and frequency-wise and obtain a
canonic realization for (2.1).

2.2 Basic Coefficient Conditions for RC, RL and RLC
Networks

The impedance z(s) given by (2.5) has to be a
positive real function (PRF) in order that it may be

realized by passive elements. Hence,
aib: > (vap-1)? (2.6)

Let us now deQelop z(s) as an RC-ladder by the

continued fraction expansion of z(s).

s? + bys + 1) s + a;s + a, (1 Step A
2
s + bi;s + 1

{a;=-bi1)s + ao—l)sz+bls+l(aT%BTs Step B

sz+a°-l

al—Bls

ai-b,

k15+l)a1-b15+ao"‘l( kl

Step C

ai-bista-b;
k)

kz) kis+1l (k]/kzs Step D

kis
k2 (k2



where
- . ag— 1
3 a;-— b1+ bl
a,;~b
k, = (ag- l)‘*%ETL

We see that for z(s) to be realized as an RC-ladder,

(ay-bi) > O (2.7a)

(ap- 1) > O (2.7b)

ki >0 (2.7¢)

ko= (ag- 1)ki1 - (ai-bi) > O (2.74)

From these we see that the condition k;>0 is con-
tained in the other inequalities and hence is superfluous,
Now from (2.7d) we have

(@ - )by - 2e=B)l

a5,y (k1) > 0

Since a;>b; we have

(ag- 1l)bi(a; -bi) - (apg- 1)? - (a;=b;)* > O

or,
(ag- 1)%- (a,-b;) (agbi-a;) < O.
Le tting
og = (ao- 1)?- (a1-bi) (agbi-a1), (2.8)

we have that 2z (s) can be realized by an RC-network if,
a, > 1
ar > b (2.9)

and g < O
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Similarly it can be shown that for z{s) to be

realized by an RL-network,

a, < 1 (2.10)

and

Thus for an RLC realization of z(s),

g £ O (2.11)

If ayp =0, the continued fraction of z(s) would
end prematurely (at step C), showing that 2z (s) is not
biquadratic but that it is a bilinear function; in other
words, there would be a linear factor common to the
nunmerator and denominator of (2.5). That is, for a

biquadratic function,
4y O (2.12)

Also, if a, = 1,

i

Qo (a;-b;)2 > 0

(2.13)

That 1s, the realization of 2z(s) will have to be by

an RLC - network.

Summarizing these results we have,
1. For z(s) to be realizable by passive elements, it

has to satisfy the positive real condition,

aib; > (1/-8-?5“" 1)2



For

For an

For an

For an

If aog

be realized by either an

0L0+O

RC - realization of - z(s),

ag < o ap > 1, ai1> b,

RL realization of z(s),
0g <0, ap <1, ar < b,
RLC realization of z(s),

og >0
l, then oy >0 and hence

i [N

\J

11

z(s) to be a biquadratic function,

z(s) cannot

RC or an RL° network.
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CHAPTER 3

CONDITIONS FOR REALIZATION OF NETWORKS I AND II.

3.1 Introduction

In this Chapter we shall derive the coefficient
conditions under which a minimum reactive biquadratic

positive real function

2
s+ a;s + aj
s“+ bi1s + 1 (3'})

z(s) =

may be realized as a driving point impedance (DPI) of the

structures I and II shown in Fig. 1.4.

These coefficient conditions give rise to different
regions in thef(a,,b;)plane. Explicit formulas will also

be given for the element values for these structures.

3.2 Conditions for Realization by Structure I.

By straight forward analysis, the driving point

impedance of structure I (Fig. 3.1) may be shown to be(s)
g2 +[l RiRg l IR ]S+R1(R2+R3)
z(s) = R, (R;+R3) L R1*+R; C Ry (R1+R3) Rz (R1+R3)
LR s2 4+ 1 R3(R1+R2)s + L
L LR LC

, (3.2)

Using the transformations
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_ RyRj3

= TR,
= RiRs3

2 IR, (3.3)
= Ri1R»

s LR,

equation (3.2) may be written as

s? + l_zif_l_]:_.l.;. l....__.l_._. s + Iotlrs
z(s) = (Ir+1,) L mtys C IJIrS rites
s? + -:IL‘—(r1 + Y)s + o :
(3.4)

Equating (3.4) to (3.1) we have,

IC = 1
r; + r3 =1
r2 + rs _ .
r1 + ra a0 (3.5)
1
E(rl + ry;) = by
% Lrirs + % 1 = a,
r)y+x; ri1+rs
Solving these we have
a1r§ + 202r3 + a3 = O (3.6)
{
orxr
ry = —%2 *v07-0103 (3.7a)

O]

provided a; ¥ O (3.7b)




r, =1-1%; (3.8)
r, = ap= ry = (ap-1l) + r, (3.9)
c by (3.10)
ri,+xa, !
L o= % (3.11)
where

oy = bi - 4 _ (3.12)
o2 = 2(apg+l)=-aib; (3.13)
a3 = a1b1(a0+1)—aobi—(ao+l)? (3.14)

It can be shown that
az-a1a3 = biao . (3.15)

Also, since network I is an RLC type, we have
0.0>O

and hence, roots of r3; are real.

The values of Ri, Rz, R; may be determined by

using the inverse transformation.

Lrix

R; = r]1:12
R, = LEiIz 3.16
2 r2 (3.16)

rIrir

R3 = ———;32

We shall derive now the coefficient conditions for
z(s) to be realized by structure I by assuming

(1) ag > 1, (ii) ap < 1, and (iii) ao = 1.



3.2.1 When ap, > 1. It may be observed from

equations (3.9) to (3.11) that if ¥; and ¥, are
positive, then automatically Y, and hence L and C
are positive. We will now find the conditions
under which ¥; and ¥, are positive. For this
purpose, we will examine all the possible sign
combinations for «a;,a;,and aj3, assuming o; + 0,

a2, ¥ 0 and o, > O.
(1) oy > 0, o, > 0O, as > O.

Then from (3.7) there are no positive roots for Irj.
(i1) a;y > 0O, a, > 0, a3 < O.

Then there is one positive root for rj; namely

-0y, + /O5=0103

s

O]
For ¥, = 1-r3 to be positive,
-0, + Vo3-a.0
r, =1 - 2 270103 > 0
(O]
Since a3 > O we have
o1+ o2 > VYasz— o103
or a? + 20,0, + o033 > O
1
i.e. ay + 202 + a3 > O since a; > O

Substituting for wo;, a, and a3 we have

(ag-1) ay > O



where
ay = b,(ai-bi1)-(apg-1) > O (3.17)
Incidentally o) + 20 + a3 = (ap-1l)ay - (3.18)
and oy + 0oz + ay =  (apg=1) (3.19)

Thus, we get the first set of conditions for

realizability of structure I (when a,>1l) as :

ag > O
oy > O
a2 > O (3.20)
a3 < O
oy > O

oy < 0, ap > 0, a3 > O

In this case, there is one solution for r; > O,

namely

ry = =02 — vO2—0Q3103

*1 (3.21)
r, =1 -1, = (a1taz)+V/o%=a 03
01
Let a; = -p where p > 0, then for ¥, > O we should
have
(02-p) + YaZ+pas 0
_p!

or . (p-a2) > /as+pas > O (3.22)
that is, p?-2po, > pos

Hence ai + 20302 + 0303 > O

17



(iv)

Since o1 < 0O, we have

0y + 202 + a3 = (ag=1l)ay < O

or ay < O since ay > 1 (3.23)
However, from (3.22), p-a, > O or o+ o < O

Now from (3.19), ay, = (aps-l) - (ai+a) > O

which contradicts (3.23).

Thus, there is no realization when a, > 1 and
o > 0, a; < O, az > 0, ag > O
a1 < 0, a2 > 0, a3 <O

Let =-0; = p >0 and -as =g > O

Then there are two values of r; given by

-0z2*vasz-ocias . Q23Y032-Pg

r =
3 03 P

a) Consider first the solution,

r, = inéﬁélﬁi (3.24)

Then r; > O, if

(p-az2) - Va3-pg > O
or (p-az2) > Yaz-pq > O
Hence, (p-az2) > 0 or o; + ap <O (3.25)

and !

p? - 20:p > - pq

18
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Thus
op + 202 + o3 < O

and hence ay < O

which implies (o; + a2) > O for a, > 1. This is
in contradiction with (3.25). Thus, there is no

realization corresponding to (3.24).

b) Consider now the second solution of «r 3,

r,- %2 - Yo3-pq : L
P

Then

pri = (p - a2) + Voi-pq

J
will be positive if

/o3-pq > (az2-p) (3.26)

—~

Since its LHS 1is positive, (3.26) will automatiéally
be satisfied if (a,-p) < O and hehce (o+02) < O.

But since
oy = (ap-1) - (aj+ay)
we see that oy > O.
However, if (a.-p) > O 1i.e. (a1+a2) > 0; then L

(3.26) will be satisfied if

a’ = pq > o’ -2azp + p*



(v)

or if
o; + 202t a3 = (apg-l)ay > O, since a; < O,

~

Thus, we see that whether (a;+a,) £ O or > O,

there is always a realization provided,

g > O, a3 < 0O, a2 > 0, a3 < 0, ay > O

However, from (3.18), ay > O, a3 < O and o; < O

implies a2 > O. Thus, a realization exists if
ag > O
oa; < O
a3 < O (3.28)
oy > O

a; > 0, a, <0, az >0

Let =-a2 = gq > O, then there are two solutions

for rj3; namely

q + Yg =010 3
o1 (3.29)

a) Considering the first root, we have

(01-q) - /g=aia3

* 5]

r

Thus r; > 0 if

i

(a1-q) > vYg“-o0i03 > O
Hence for r, to be positive

@1 = q >0 or a3 +az >0 (3.30)

20



and a? - 2a:q + g2 > g?-ai103

that iS, o; + 2&2 + 03 = (ao‘l)au >0 (3.31)

since (a; + az) > O and o, < O we conclude that
a; > O is a superfluous condition. Thus, we

have a realization if
Oo >

Qs <

(3.32)

(o4
+
Q
N
v
O O o o o

b) Now considering the second root for r; we have

that r; > O 1if

(@ - a1) < /gZ-a,03
(3.33)

If (g-01) € 0, i.e. (a;+0z) > O, the above
condition is always satisfied, and no restriction

is to be placed on ay.

However, if (g-o;) > O or (a;+0) < O, then

for r; to be positive, we should have

(g=01)? < g?-ai103

or o3 + 205 + o3 = (ao-l)du < 0

This is impossible since from (3.19), (a1+az2) < O

implies a4 > O.

21



Thus a network realization exists if

Qo

>

0]

a2 < O

a1t a2 > O

asg > O

22

(3.34)

From (3.32) and (3.34) we see that there are two

realizations if

>

>

O O o o O

while there is only one

Oo

02

o1t a2

- Q3

Oy

It should be noted that in (3.36),

>

<

O O O o

0]

realization if

(3.35)

(3.36)

(a1taz2) > O is

a superfluous condition, since a4 < O implies

(1+02) > O.

Now ay < O, a2 < O implies a; > O from (3.19).

Also a3z > O, ay < O implies o, < O, which comes

from the following arguments,

a3 > O gives a;b; - 2(ag+l) > aobi + az - apga;b;- 1



(vi)

or a2 < (l=ag)? + agb:(ai-by)

But oy < O gives Db;(ai-b;) < ap-1
Cooaz < (l=ag)? + ag(apg=1l) = (l-a,) < O

or a, < 0}

Hence (3.36) are equivalent to
ag > O
oz > O
(3.37)

a, < O

02 + (0]

o; > 0, a2 <0, az <O

Then there is only one solution for rj;, namely

=02 + VY0O2=01073

Y3 = o (3.38)
Letting -a2 = p and —dg = g where p,q > O
we have that for r; > O,
(a1=p) > /pFoiq
Hence
01 =p = a3 + az >0 (3.39)
and
(a1taz) > Yaj-ojos
or
a1+2a2+a; = (ag=l)ay > O ' (3.40)

The condition (o;+a;) > O is contained in a, > O

since ’

ay = (o1taz) + (aztoas) and

23




(vii)

24

o, and a3 are negative.
Thus we have a realization, if
ag > O
o1 ?
(3.41)

Oz <

oz <

o O O o

Oy >

a; < 0O, o < O, as > O.

In this case, there is one solution for rj;

ry = 'QZ‘L?Z“alaa (3.42)

For r; > O we have

(ai1+az) + voasz=-aj 03

o)

> 0

" or (a1+02) + Yos=a103 < 0, since o; < 0.

Letting =-a; = p > 0, -a2 =g > 0, we get

(ptgq) > YqZ+pa s
Since both sides are positive, we have
(ptq)* > g’+pas
or,

o1 + 20, + a3z = (ao‘l)au < O

But ay < O implies (oi1+a2) > O which contradicts

a1 < 0 and oz < O.

Hence, there is no realization when .

o1 < 0, a2 <0 and a3z > O.



25
(viii) o6y <0, o <0, a3 <O

There is no positive solution for r3; and hence,

no realization exists.

In the above discussion, we have assumed that
o1 ¥ 0, o ¥ O. Combining (3.20), (3.41) and (3.28),

we see that there is a realization if

OL1+O, 02#0

and the value of rj3; is given by (3.38).
Also, from (3.28) we have a realization if

ag > O
as > O (3.44)
ay, < O
a1 ¥ 0 ax ¥0
and the value of r3; is given by (3.21).
From (3.32) we also see that there are two
realizations if

0o >

(3.45)

o O o O

oz <
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o1 t+ 02 > 0O

a1 + 0

and the values of r 3 are given by (3.7a).

We see from (3.45) that the condition o, # 0
need not be included, since in that case,dz < 0
and q; + a, > O cannot be simultaneously satisfied.
We shall see what happens to conditions (3.43) and

(3.44)’ if al = O-

If o, = O, then rs ='%§; (3.46)
and r, = 1 + %3 = 202703

202 202 (3.47)

In addition, if o < O, oy > O, we see from
(3.18) that o > O and 20, + a3 > O, and thus
ry, > O, r, > O. Hence, in conditions (3.43),

a1 + O is not required, however, the value of r;

is now given by (3.46). Similarly, if asz > O,

ay < O, we see from (3.18) that o, < O, and

20, + a3 < O, thus showing that r; > 0, r; > O.
Hence, in conditions (3.44), the restriction o; % O
may be removed, but the value of r3; is not given by

(3.21), but by (3.46).

!

It may also be shown similarly, that the restriction
a; * O may be removed in (3.43) and (3.44). We do
not have to worry about both a; and a; being zero

simultaneously, since in that case, ay = O, which is
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3.2 Coefficient Lonﬂltloas in the (a b ) plane for
the realization of z(s) by Structure I, when
a_ > 1
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contrary to our condition %o > O.

In conclusion, we see that if a, > 1, aq > O,

then there is always a realization if o3 and a, are
of opposite signs, however, if o5 > O, .aq > 0,
then are two realizations provided, a, < O and

a; + az > O. All these results are tabulated in
Table 3.1. These results are also presented in tﬁe
(a;,b:) plane defining certain regions where the
biquadratic function (3.1) may be realized by

Structure I, when a, > 1 (see Fig. 3.2).

3.2.2 When ay < 1l. Just as in the case of

(ag > 1) we will look at all the possibilities for
a1, oz etc., such that r,, r,, r3, L and C are posi-

tive. If r3 > 0, r, > O then

r; = (l-a,) + r,
will automatically be positive and so also will
C and L be. Thus, we have to find the conditions
under which r; and r, are.positive, when a, < 1 and
ag > O. First, we assume that a3 and a, are not

2€ro.

oy >0, az >0, a3 > O.

Then from (3.7) there is no positive solﬁtion for

rj.



(i1)

0,1 > O, CLZ > O, (13 < O.

Then there is one solution for r; namely

- Qy *t /a%-alaa

r
3 a1
since r, = g - r3 we have
_ (aga, + ap) - Vaj-ojas
r, =

G
Thus for r, > O we should have

+ dp) >

(agay YO3 =010 3

Hence

a?0? + 2ajoi03 + aias > O

0 1
Since a; > C we get

azocl + 2a502 + a3z > O

0
Substituting for o;, a, and o we have

aZOt]_ + 2a()OLg_ + 03 = (l—ao)as
0

where
s = a;b; - aobi - (l—ao)

It may also be shown that
aay + oz + as = (l-ap)
Thus ¥, > 0 if oas > O.

Summarizing these results we get

30

(3.48)

(3.49)

(3.50)

(3.51)



Q
v
-

(3.52)

[®]
w
A
o O o

o1 <0, a2 >0, a3z > O.

In this case, there is one solution for r,

“O02 —- Y0O2-031013

Y, =
3 a1

(3.53)

Hence

(aoa1+a2)+va2_a1a3

01

rp; =

Letting -gq; = p > O we see that r, > O if

(agp =az) > Yai+ Pa,

Since the R.H.S. is positive, we have that r; > O

if
(agp = az) > O or (aga;+a) < O
(3.54)
and
(agp = a2)2 > a: + Pa,
which may be simplified as
: a§a1+2a°a2fa3 = (l-aglas < O (3.55)

But from (3.51) we see that g5 < O anda, < 1
imply that (aga;+a,) > O, which contradicts (3.54)

Thus there is no solution when' ¢, < O, g, > O and

31



(iv)

a3>0.

61 <0, a2 >0, a3 < O.

In this case, there are two solutions for r,

namely,
r; = -0z * Yoz<0o1073 =02 I Yosi~Pd
- s 5
where =-q; = p > o and -g; = g > O.

a) Considering first the solution for r,

!

ry = oz + Ya3-p9g

3.56)
5 (
we see that r, > O if
(aop - Otz) > vaz ~Pd
Hence we should have
(agp = az) > O or (ao; + a, ) < O (3.57)
and
/
(3gp - ap)? > az‘ Pq
which when simplified gives
,azu,l + 22002+ 03 = (1 - ag)as < O (3.58)
0 -
But as < O impliés (aga; + az) > O,'Which
contradicts (3.57). Hence, there is no solution

corresponding to (3.56).

32



b) Considering now the second solution for 13

02 -Va%-pq
p

r3=
we have
pr, = (a,P - a,) +/a3-pPd

Thus, r, > O if

vos-pq > (ap;-a,p) (3.59)

This is automatically satisfied if dz2-aop £ O

or a0 * a2 < O.

It should be noted from (3.51) that if apja; + o>

it then automatically follows that

Gs > O

However, if (G2-aop) > O or (aoc¢itaz) > O, then

for r, » O, we should have

d%—pq > (02-ao0p)?
or
ajor + 2a002 + a3 = (ag-1l)as > O
Thus we see that whether (acoi1taz)< O or > O,

there is always a realization provided

o > 0O, ¢1 < 0O, 02 > O, a3 < O, as > O

However, from (3.49), as > O, a3 <« 0, and

S

N

O,

o; < O imply ap > O. Thus, a realization exists if

33
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(3.60)

Q
Ay
o O o o

o1 > 0, a2 <0, oz > 0.

Then there are two solutions for rs3 namely

_ —G2 * vajz-0103 _ g *Vg -0103
o1 01 (3.61)

where =-d2 = g > O

a) Considering the first root,

a3

w

I
Q

—

—~~
w
()}
[\
~

This will be satisfied if

(agG1 - gq) > O or aopoi1 + az >0

(3.63)
and
(ao01 - q)2> q2 - G103
which may be simplified as
aiOl.l + 2agq0s *+ a3 = (l-ag)as > O (3.64)

Since (apa; * a2) > O and a2 < 0, we conclude

that o3 > O is a superfluous condition.
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Thus we have a realization if

Op >
O <
acay + o > (3.65)

o3 >

© O O O o

s >
]
b) Now considering the second root for r, we have

that r, > O provided,
(@ - ago;) </g?-0103

If (g - agoay) < O, that is if aocq, + o, > O the
above condition is always satisfied and no restric-

tion is to be placed on g5-.

But, if (@ - agay) > O or (aja,+ az) < O, then

for r, > O, we should have the condition,

(@ - aga;)?2< g? -aja;3

which may be simplified as

aiql + 2ag0z + a3 = (l-ag)as < O
This is impossible, since from (3.51), (aga;+az) < O
implies g5 > O.

1

Thus, a network realization exists if



(3.66)

From (3.65) and (3.66) we see that there are

two realizations if

asa; + a2 > O (3.67)
03 > O
0s > O
While there is only one realization if
Gy > O
G2 < O
(aog1 + a2) > 0O ’ (3.68)
a3 > 0
os < O
It should be pointed out that in (3.68),
(aga1toz ) > 0O is a superfluous condition, since

as < O implies (aco®1 * a2) > O,

Now as < O, Oz <O imply @1 > O from (3.51). It
may also be shown that ¢3 > 0 and as < O imply
o, < O. Hence, inequalities (3.68) are

equivalent to

36



03 > O
(3.69)
0s < O
az * 0O
(vi) 01 > 0, a2 < 0O, a3 < 0.
Then there is only one solution for r,
0, + V05 -~01073
rs3
G1
Letting -02 = p > O and -03=qg > O, we have

that for r, > O, we should have
(a0 - p) 2 Yprtaig > 0
Thus, r, > O provided
(aod1= p) > O or a1 * ¢z > O (3.70)
and
(agar- p)* > (p® + c1q)
which simplifies to
.azocl + 2aq02 + a3 = (l-ac)as > O (3.71)

The condition (agoi1t w2) > O is contained in %s > O
since
as = ag(aoc1t az2) + (aoc02t a3)

and o, and a3 are negative.

Thus, we have a realization if
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oo > O
\ o1 > O
a2 < O (3.72)
a3 < 0
as > O
(vii) 061 < 0, 62 < Q0,03 > O

In this case, there is one solution for r,

-2 -/&7_ ~0103

= >
r, o1 0 (3.73)

For r, > 0 we should have

(aga:t az) + vas~oi103 < 0O, since 01 < O,

14

Letting =g; =p > C, =0z = g > O we get
(aop + q) > ;/qz+ PO 3
since both sides are positive, the above inequality
reduces to
{a,p * @)? >q"t pos
or

a§a1 + 2a002 + €3 = (l-ao)as < O

But as < O implies (aopcit @2) > O which contradicts

a; < O and o2 < O,
Hence there is no realization when

a; < 0, a2 <0 and o3 > O,
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(viii) 0y <0, 0 <0, a3 <O

There is no positive solution for r, and

hence no realization exists.

In the above discussion, we have assumed that
o1 ¥ 0, o2 ¥ 0. Combining (3.52), {(3.72) and

(3.60), we see that there is a realization if

g > O
g3 <0

(3.74)
as > 0O

01 + O , Q2 + 0]
and the value of r, is given by (3.48).

Also, from (3.69) we have a realization if

0o > O
a3 >0
(3.75)
o <0
oL1+O,OL2+O

and the value of r; is given by (3.53).

From (3.67) we also see that there are two

realizations, if

(3.76)

Oy <

e O O

Agoy *+ g >



0‘1+O

and the value of 1r,; is given by (3.61).

We see from (3.76) that the condition q; % O
need not be included, since in that case, o, < O
and “ga1+ 02 > O cannot be simultaneously
satisfied. Following the same procedure as was
‘used for the case ao, > 1, we may show that in
conditions (3.74) and (3.75), the restrictions
a1 + o, a2 + O may be removed. However, when
%1 = O the value of r3 is no longer given by

(3.48) or (3.53) but by

ry = >3
3 202 (3.77)
The condition oi1=0; = O need not be considered
since in that case ag = 0, which contradicts the

conditions & > O.

In conclusion, we see that if a < 1, ay, > O, then
there is always a realization if g3 and o, are of
opposite signs; however, if ay > O, ag > O, then
there are two realizations provided, o, < O and
ag0y + a2 > 0. All these results are tabulated
in Table 3.2. These results are alsd‘presented in
the (a;,b;) plane defining certain regions where
the biquadratic function (3.1) may be realized

by Structure I, whenao < 1 (see Fig. 3.3).

40
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a1
a = 1
o > 0 ' _
.ﬂz.__o A.- (2, ao+l)
W, =0 ao+l
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_ s217b;
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Fig. 3.3

Coefficient conditions in the (a _,
for the realization of z(s) by strudture I,

when a
o)

< k.

b

) plane

1
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3.2.3. When apo = 1. When a = 1, we see from

(2.6) that the positive real condition reduces to

aibi1 > O and since ai + 0, by + O, the condition

becomes

airb1 > O

Also

% = (a1- b1)2 > 0

As a result, the impedance z (s) given by
can only be realized by an RLC structure.

more, the different 0's reduce to

= 2 -
01 b1 4

G2 = 4 - aibh:
03 = 2a1bi- bf - 4
ay = as = by (a3- b;)
and
ai - Q103 = bi(ax-b1)2 > 0

From previous derrivation we have

. =0y t Yoaf-0103
ry = 2 ~ 1

= (a1 b1_4) + b1 (al -bl)
01
2a1b1— bZL_ 4
o= 4

1

= 1,

The first root will result in r; = r,= O

and hence, b; = O from (3.10). 1In this

(3.78)

(3.1)

Further- —



(1)

(ii)
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case z(s) is not a proper biquadratic function.

Hence, r3 = 1 is not a valid solution. Taking
ry= 2a1bi— bz- 4 _ as —
1 - 1 —_
we have
r, = ry = -E%f

Thus, for ri, r. and r3; to be positive, either

61 > 0O, ag > 0, oy < O

or
61 < 0, a3 < O, ay > O (3.79)

Now, when as = 1 from (3.18) and (3.19) we have
01 = 20, 03 (3.80)

Hence, if oy > O and a3 < O then a; < O while
if oy < O and &3 > O then a; > O. Thus (3.79) may

be reduced to

and
(ii) a3'< 0, ay > O
Hence, when a = 1, z(s) can always be realized

by Structure I provided

030y < O (3.81)
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that is, if a3 and as=os are of opposite signs,

and the element values are given by

_ _ —-204

r, = ra2 = o1
o
rs = g (3.82)

_ b
¢ = 2r1 .

_ 1
L=z

The regions defined by (3.81) are shown in Fig. 3.4,

in the(a:i , bi) plane.

4

3.3. Conditions for Realization by Structure II.

t
By direct analysis, the D.P.I. of Structure II,

(Fig. 3.5a) may be shown to be

», Ri+R, 1 _
s2+ s +
2(s) = LRiRs CL R, R, LC (3.837
Ri+R, j2, LFCR Ry R, + R, .

R+R  ° T ICRAIR)

Using the transformations

9 T IRR = 1G

= Ry = 86
% = R R - 1IG - (3.84)
g5 = R _ GG
3 IR R LG
or equivalently _ -
- G = 29 9
R 9



. 3.4 Coefficient conditions ia the (a,,b,) plane
for the realization of z(s) by Structure I

£
when a_ = 1.
0
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(a) The five element bridge Structure IT.
() The duval of Structure II.
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§2£= Gy = L9 (3.85)

g3

and comparing (3.83) with (3.1), and simplifying, we

get
f
Blgz + 282g3 + B3 = O (3.86)
g, = l-g, (3.87)
9'2— a_:- - 93 (3.88)
L= 21 . (3.89)
9 91t+9
1
C=f (3.90)
where
Br = (ai"4a°)a0 (3.91)
B, = [2(a+1)-a;b;]3a, (3.92)
By = abfla+l) - al - (a;+1)2 (3.93)
and Bz - BiBs3 = aoaiao (3.94) .

It may be seen that eguations (3.86) to (3.90) are similar
to equations (3.6) to (3.11), as also equations (3.91) to
(3.94) and (3.12) to (}.15). Thus, we may gerive the
coefficient conditions for the realizationAof z(s) by
Structure II, by adopting procedures similar to the onés

used in Sec. 3.2 for Structure I.
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However, we shall derive these conditions in an
entirely different way, by observing that the dual of

Structure II is Structure I (Fig. 3.1) with

Rl = GIQ
*
R2 = GZQ
*
Ry = G4 (3.95)
*
L = C Henry
*
C = L Farad

where R{, R¥, Rf, L* and C* correspond to the different
elements of the Structure I, which is the dual of Structure
II. This is shown in Fig. 3.5b. If we now define

r*, r* and r* by
1 2 3 !

* * %

rl = BZ_Rl.Z R* _
* * -

*

r, = TRF (3.96)

* * %

r3 = ZR*

We see from (3.95), (3.84) and (3.96) that

*

) o} = g0 .

*

1.72 = gzﬂ

*

L = g0 (3.97)

L* = C Henry

C = L Farad
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Since structures of Fig. 3.5(a) and (b) are duals
of each other, we know that if the network of Fig.3.5(a)
*
realized the impedance (3.1), then the impedance z (s)

of the network of Fig. 3.5(b) is

2 .
- s° *+ bis + 1
z*(s) = s F a5 ¥ a; (3.98)
Scaling the complex frequency s by ) ——
p = -2 (3.99)
Yao
we get
"(p) = pI + aip * av (3.100)
where
* _ 1
a = =
0 a
0
a = (3.101)
R
b1 - a
Yao

In Seétion 3.2, we have already derived conditions
as well as component values for Structure I, to realize
a D.P.F. of the form (3.100) for at % 1. These condi-
tions may directly be used to obtain corresponding |
conditions for z(s) to be realized by Structure II for

a, $ 1. Also, since the component values of Structure I

may be found in the p-plane using the results of Sec. 3.2,

* *

*
they may be suitably frequency scaled to obtain rl,rz,ra,

* *
C and L , and hence, g,r 9,0 9,0 L and C, using (3.97)
and (3.95).
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In order to find the coefficient conditions for

the realization of Structure II by this method, we need

. * * *
to find Gl,az,

oo corresponding to ® %, /%, used in

Sec. 3.2. Now from (2.8)

or

or

or

or

or

or

where 31,32,

*
0o

B“ and Bsare given

Bu

Bs

]

by

Il

x 2 * * x * *
(ao—l) - (al—bl)(aob -al)

1
a7 0o (3.102)
b124
1, 8, (3.103)
ao

* * %
2(a0 *t1) - aib1
1 g, (3.104)

ag
* * % *x x, * i
(ag+l)a b, = agb,“=(a,+1)
gg Bs (3.105)
* * * *
b,(a;-b,) = (a;,-1)

a_ Bu (3.106)

= Bs (3.107)
0

B.are given by (3.91), (3.92),(3.93) while

a;(b,-a;)=-(l-a,) (3.108)

aoalbl- a%- ao(ao-l) (3;109)
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It may also be shown using (3.15), (3.18), (3.19),(3.49),

(3.51) and (3.101) that the following relations hold

B3~ Bi1Bs = atasa (3.110)

B1 + 282 + B3= (l-ag)Bu (3.111)

Bi1 + B2tagBy = ag (l-ap) (3.112)

B + 2aB.+ ajBs= ag (as-1)Bs (3.113)

By + @gB2 + aoBs = aj(a,-1) (3.114)

We shall now derive the conditions for the case ao < 1.
In a similar way, conditions for'ao > 1, ap = 1 may be

derived.

*
ag < 1 corresponds to a, > 1 for Structure I, the

dual of Structure II. We know from Table 3.1 that if

*

Og > (0]

*

agp > 1

*

4y < O (3.115)
*

Oy > (0]

Structure I exists. Hence, using (37102), (3.105) and

(3.106), we see that Structure II may be realized if

ogg > O
ap < 1
By < (3.116)

(0]
Bs > O



Also, from Table 3.1, we see that in the p-plane, the
component values of the network in Fig. 3.5(b) correspond-

ing to the coefficient (3.115) are,

*
* _ -—0p + Ya¥=aTa3 = _By+vB3-Bi183
o* B1

* *
r = l-r3
1
* * * 1 *
r2 ao 3 7 ,
*
C*____ bp _ _a ‘1
r*or* /— I*r*
1 2 as 1 2
1
* =
L "C'T
. -~ S . .
Since p =-—— , the corresponding values in the s-plane
ao -
are
* - By +vVB5-B1B83
rs - B
1
* *
rn = l-rs
* *
ra = ;L—- - r
a
0
*
ai 1
C = — * %
a r*. r
0 1+t 72

Hence, using (3.97) we get the component values of
Structure II corresponding to the coefficient conditions

(3.116) to be:
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_B2 +VB3-B1B3
B1

g,= l—-g
2 ao 3
g = 1 - g3 (3.117)
L = &1 _1
ap gl+g
1 1
C =37 T

Once g , g and g are known, Rx' R2 and R3 may be
1 2 3

determined, using (3.85).

Similarly, the other coefficient conditions under
which Structure II will realize (3.1) when a; < 1 may be
found using the results in Table 3.1 for the case of
Structure I, when a, > 1. These results are presented in

Table 3. 3.

The coefficient conditions to be satisfied in order
that Structure II may realize (3.1) when a, > 1 and a, = 1
may also be derived using the corresponding results of
Structure I for the cases of ag < 1 and ao = 1l,respectively,
by using the above technique. These results are presented

in Tables 3.4 and 3.5.

Figures 3.6, 3.7 and 3.8 present thesejresults in
the (a;,b;) plane, concerning the coefficient conditions
for the realization of (3.1l) by Structure II. It should
be pointed out that there are certain regions, just as in

the case of Structure I, when two realizations may be found.

izt
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TABLE 3.5

Coefficient conditions for the realization of
z(s) by Structure 1II, and the corresponding
component vValues

ag =1, a9 >0 -
Region Coefficient Comments - Element Values
Conditions
1 Bs > O One network g1 = gz = =284
realization. B1
By < O
B3 -
g3.= —
B1
2 By <O One network i a
realization. C === 321 -
By > O L 2g9;

NOTE: The values of R1i, R2, R3 may be determined = ——

using (3.85)



A= (2, ao+l)
a +1
ay B={2—, 2/a'o"}
Ya
o
a_ < 1
o
gy > 0

Fig. 3.6 Coefficient conditions in the (a ,bl) plane
for the realization of z(s) by S%ructure 11,
when aj < 1.
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CHAPTER 4

REALIZABILITY CONDITIONS FOR STRUCTURE III.

4.1 Introduction [

Since Structure III is an RLC bridge network,
(see Fig. 4.1), conditions derived in Sec.2.2 regarding -
0p, namely

ag > O

have to be satisfied. We shall derive in this Chapter
additional coefficient conditions to be satisfied in order

that z(s) may be realized by Structure III.

4.2 Conditions for Realization by Structure III

It may be shown that for Structure III,

s?2 + Ri1RoR3C +(ZR)L s + R; (R2+ R3)
z(s) = R, (R1+R3)RLLC (R1+R3)R,LC (4.1)
s2 4+ L+ (AR1R3)C | Ry + Rj )
(R, + R3)LC (R; + R3)LC

Again comparing (3.1) and (4.1) and simplifying,

we have
R1 = Qg (4.2)
s Rz = 1 r (4.3)
Yle + 2Y2R3 + y3 = O (4.4)
(ag+ 1 + R3)b;- a; (4.5)

c= (a0 + R3) (ao+ 1)



z (s ) ——————3p—

4.1 The five

element bridge Structure III.
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_ 1+ Rj
LC = T R, ) (4.6)

where
Y1 = bilai(as+tl)=aogb;] = (aopt+l)? (4.7)

2y2 = agaibi+[ (ap+l)bi-a ]l (ac+l)ai=aob, = (as+l)?
= 2aga;bi-(ag+l) (ag+day) (4.8)

Ys = aol{(ap+l)b;-a;}ta;-(ac+l)?] |

= ao[aobi‘(ao+4ao)] (4.9) j

It may be shown that

Y2 = vavs = 3ag(ap+l) ® (ao+dao) (4.10)
Y3 = Y1 = aobj - ai . (4.11) .
Y1 = 2Y2 + Y3 = (ai-agbi)? (4.12) »
and |
ain - 2apY2 + Y3 = az(al'bl)z (4.13)

Now, solving (4.4) we have

Y2 t TS

Ry = (4.14a)

Yi

with Y1 ¥ O (4.14b)

Since it has been shown in Sec. 2.2 that for a
minimum reactance biquagratic z(s), ap + 0. and for an:

RLC structure ao, > O,
Yz - yiys > O (4.15)

and thus R3 is real.



If Yy, and Y3 are of opposite signs, then
No-Yivs > vzl (4.16)

and hence, Rj3; has only one positive solution, whether

Y2 is 2 O or < O . But if vy; and y; are of the same
signs and Yy, of opposite sign, then there are two solutions
for Rj3. Let us now consider the sign combinations for
Yi1,Y2 and yi3; with the condition o, > O. Also, we

assume, first vy; # O.

(1) Y1 < 0, vys > O.
Then
Ry = '“‘Y’Tz'l”—s (4.17)

From (4.11), (aobi -ai) > 0

or aobj > ai (4.18)

If a; > 1, then a?b? » agh? > ai
0 1 1

or apgb; > a; (4.19)
While, if ag < 1,
b? > ayb? > a?
1 1 1

or b: > a; (4.20)

Hence

(ag+l)b; - a;h + R3b; > O (4.21)

whether ag > or <1



(ii)

(iii)

Thus for all values of a,, from (4.5) and (4.21)

c >0

and hence L > O from (4.6).
Hence, a network realization exists if

og > O
Ys > O

Y1 <O

Yi >0, ys >0, y2 < O.

Then, there are two roots for Rj.
Since vy3; > O, from (4.9)

2apab: < (ao+l)(ao+ da,)
and since vy, < O, from (4.8)

aobf > (ao+4ao)

Thus
(ag+l)b; > a;

and hence C> 0.

Thus, there are two realizations, if
ap > O
Y > O
Ys > O

Y2 <« O

Y1 <0, Ys <0, Y2 >0

65

(4.22)

(4.23)
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Since Y1 = 2y2 + y3 = (a1 - agb;)?

Y1 < O and vy3 < O implies Y2 < O which contradicts

the assumption. Hence, there is no realization.
(iv) Y1 >0, Ys <O

Consider the two cases, namely, y2 € O or vy2 > O.
Case (a) Y2 <0 :

In this case, R3; has one solution,

Y2 + /YT = Yivs
R; = 2 (4.24)
Y1

For C > 0O, we should have

bil(ae+l)y: - v2 + VYZ‘YlYa] > ai1va
or

bl/?jIVij > [a1 = (ap+l)bily:i + y2b1 = ys5(4.25)

where

Ys [a; = (ao*+l)bily: + b (4.26)

Let Yu (a1-b1) (apgbi-a1) (4.27)

If ys € O, then (4.25) always holds. If now

Ys > O, then from (4.25), we have by squaring

b2 (y2 = yivs) > y? (4.28)
y 2 s ;
which simplifies to

Now, from (4.26), since vy > O,y2 ¢ O for

Ys > O, we should have



[ai= (aoe+l)b;] > O

That is
ai- by > 0
and

a;- agb:y > 0

and hence

Yy <O

Thus, the condition vy, < O is automatically

satisfied if vys > O. Hence, whether vys ¢ O or.

> 0, there is always a realization, if

ag > O

Y1 > O
ys < O (4.30)
Y2 £ 0

Case (b) Y1 >0, y3 <0, Y2 > O :
Again, Rz is given by (4.24). For ¢ > 0, we
should have from (4.25)

b1VY2‘Y1Y3 > Ys (4.31)

If vys < O, then this condition'is automatically
satisfied. However, if ys > O, we get as in

Case (a), that

We shall now show that +Ys > O implies (4.32) and
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hence that (4.32) is superfluous.

%

It can be shown that

2'Y2 = 2aga1b; - ap (ao+l)bi + (;a—g—:-:—l:l- Ys
Since y2 > 0, y3s < O, we have
2aoa1b1— ag (ao'i‘l)bt > 0
or (ag+1l)b;: < 2a; ) (4.33)

Also since Y5 > O we have from (4.9) and (4.33)
that
b, (ai-aeb:) (a1-b1) > O
or Yy < O
thus whether vYys < O or > O, we have a.realization
if
Ogp >
Y1 2

Vs < (4.34)

o O O o

Y2 >

Combining (4.30) and (4.34) we see that there is

always one realization if

oap > O
Y1 > (0] (4.35)
Y3 < O

and the corresponding Rj; being given by (4.24).

In the above discussion we have assumed v, * o,

Ys ¥ O. Let us first consider when y; = O, y3 ¥ O. 1In
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this case,

= -3
R; s (4.36)

If y3 < O, for R; > 0, y2 > O. But from (4.12), we see
that this is impossible, since y; = 0, y3; < O imply
Y2 < 0. Thus, there is no realization of y; < O, y:= O.

However, if y; > O then for R; > O, Y2 < O. 1In order that

C > 0, we should have

{(ao+l) - F£-}b1- a1 > 0
or
{(ao+1)2y2 = valb1 < 2yza; < O
which is true, since ¥y, < O, ys > O. Thus, there is a
realization if
| Y1 =

Y3 > (4.37)

o O O

Y2 <

and the value of Rj3; is given (4.36).

Let us now assume 7Y; * O, y3 = O. Then the value
of Rj3 1is

Ry = - 2X2 (4.38)
Y1

Let us assume first that y; € O - then from (4.12)

‘Yz < 0, which makes R3«< O. Thus, there isfno realization
if vy <0, vys = O.

But if vy, > O, then for R; to be positive, vy, < O. It
can be said that if y, < O, y:1 > O, and y3 = O, then

automatically C > O. Thus, there is a realization if
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Yys =0
Y1 > O (4.39)
Y2 <O

and the value of Rj; is given by (4.38).

All the results are tabulated in Table 4.1 for
ap ¥ 1 and ap, = 1, and are also presented (Figs. 4.2 and
4.3) in the (a,,b:) plane, defining certain regions where
the impedance (3.1l) may be realized by Structure III.
Note that the region defined by Case 3 of Table 4.1
corresponds to one or two realizations, when aj # 1. Aiso
when ao, = 1, the points A, B and C in Fig. 4.2 all coin-
cide as shown in Fig. 4.3 and as a result, there is no

realization for Case 3 when ag = 1.

4.3 Conclusions

Thus we have shown that whenever vy; and y; are of
opposite signs z(s) can always be realized by Structure
III, if oy > O, while two structures exist if y; > O,

Ys > 0, y2 <O, ag > O, and ao ¥ 1. Also, there is one
realization if ap # 1, vy, < O, with one of y,,Ys being
zero, the other being positive. It should be noted that in
deriving the coefficient conditions, it was. not necessary
to consider the different cases corresponding to a, > 1

or ap € 1, and this is due to the fact that Structure III

is the dual of itself.
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a +1
B =] —>—, 2/a_
e e}

Fig. 4.2 Coefficient conditions in the (a ,bl) plane for
the realization of z(s) by Struc%ure III, when

ag # 1.
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Cceifficient conditions in the (ai’bl) nlane for
the realization of z({s) by Struciurd III, when
a = 1.



CHAPTER 5

REALIZABILITY CONDITIONS FOR STRUCTURES IV AND V.

5.1 Introduction

In this Chapter, we shall consider the coefficient
conditions under which the impedance function z(s) given
by (3.1) may be realized by Structures IV and V (Fig.5.1).
We have already derived in Chapter 2, the conditions
under which (3.1) may be realized by an RC or an RL
structure. In fact, it is well known that when those
conditions are satisfied, z(s) may always be realized by
the Foster and Cauer canonic structures. We shall, in
this Chapter, show that under certain additional coefficient
conditions, z(s) may also be realized by the canonic bridge

structures IV and V.

5.2 Conditions for Realization by Structure 1IV.

For Structure IV, z(s) may be shown to be

sz+R3(R1+R2)C1+(ZR1R3)C2 s +RITR
z(s) = Rz R3 RiR2R3C1C, Ri Ry R3C;C,
+
Re¥Rs 0p BRIC + (Rt RsICp 1
R: (Rz+ R3;)C,C» R; (R,+R3)C; C,

* (5.1)

Comparing (3.1) and (5.1), we get

Ro Ry = Rz + R3



A C) P

Rl% = cC
T
i
P C .
R2 ? 2 §R3
{
|

(a)

[s 2
O~
z(s) e
.,
E‘ig. 5'_1_ (a) lI«he
(b} The

(D)

five element bridge
five element bridge

Styructure IV.
Structure V.
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R; (Rj+ Rz )C; + (ZR1R3)C2= aiRiR2R3Ci1C2

(R1+ Rz) = aoR1R2R3C1C2

(ER)CI +(R2+ R3)C2 = b1 (5.2)
Ri (R + R3)C1C2 = 1
From the above equations, we may derive the
following relations,
Sle - 262R2 + 63 = O (5.3)
- R,
Ry = Ry= I (5.4)
R, = aps=-Ry (5.5)
(1 + ag - Rz)bl - ai
C1 = Ge + 1R, (5.6)
and
R1R2R3C1C2 = 1 (5.7)
where
8§, ==b;[agb;-(ag+ 1)a;] - (ap+ 1)2 (5.8)
26, = [a;-(ag+l)b;][a¢b,~-(ao+1l)a;l+asaibz=~(ac+l) ®
(5.9)
§3 = aga,[b,(ag+l)-a;] -a,(ao+l)? £5.40)

Recalling the results derived in Chapter 2,
regarding the realization of z(s) by an RC structure, we

have



apg > 1

ar > bi
and ap < O .
since ao = (ag=-1)2- (a;-bi) (agbi1-ai1)< 0O, and a1 > bi
we should have

(agb1-a1) > O (5.11)

Thus, for any RC biquadratic function,

ap > 1 (5.12)
agb:y > a1 > bin (5.13)

and
ap < O ~ (5.14),

Since o6tg < O we also have,

6§, > 0, 62 > 0 and §3'> 0 (5.15)

It may further be shown that

S, > &, (5.16)
apd; - 82> 0 (5.17)
§1-28, + 83 = (agb1-a1)? > 0 (5.18)
aia1 - 2a,6; + 63=a§(a1-b1)2 >0 (5.19);
and
52 -~ 8183 = % (ao+l) %0 (ao+dan) (5.20)

From (5.3) we have

R, = S, iV62-3163
8,

Thus, if

62-5163 > 0



or ag + dag £ O (5.21)

R exists.
Case (a) : (oog + 4ag)< O

If the condition (cg+4a,) < O (5.22)
is satisfied, then there are two values for R,.

Let these be R a and R hence
2

2b’

(32 + V62‘6163

Ra =
2 5

R - 82 = vV85-6,83
2b 84

: S .
Obviously R2a sz

From (5.19) we get
a’s2 - 2396,8, + 6183 > O

0 1

or

52— §185 < a‘zéi +8%2 = 238,68, = (a,8,-6,)2
2

hence 62—6163 < Jagdy = 8,
Using (5.17) we get

/§j:§T§§ < 61 ~ 8,
or,

So + V658,83

=R < Q
81 2 @
Using the above inequality, and the fact that R p <R 4
2 2
we get R < R < a (5.23)

2 b 2 a

78



similarly, we can show by using (5.18), that

> >
R2a sz 1 (5.24)

Combining (5.23) and (5.24), we have

1< sz < RZa < ayg (5.25)

From (5.25), (5.4) and (5.5), we see that

we have realizable

corresponding to Rza and sz,
R; and Rj3. We shall now show that whether R;= R2a
or sz,' C, is always positive.
Let 84 = [ai-bi(ag+ 1)18:+ b6,
Then it can be shown that
284 = (aog+l)b; (a,+4ag)-2a;(ap+ 1)2
Using (5.22) we conclude that
§, <O (5.26)
Now, C; > O if
(l+a0"R2)b1 > a) (5.27)
Letting R, = R a (5.27) 1is satisfied if
2
Sy
V§7=§.83 > —
2 b].
which is true, since §y < O.
Now, letting R, = sz, (5.27) is satisfied if

-/5TE8s > Sy
b1
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or

- — > Y6 - 6163
2

Since both sides are positive, the above condition
becomes
§2 > p2(8%2-8i683)
L 1 2
Substituting for ¢&1,82,83 and &s this reduces to
(ai1-b1) (aobi-a1) > O

which is always true, in view of (5.13).

> = .
Hence, C, 0 whether R Rza or sz,

consequently, from (5.7), C2 is also > O.

Therefore, there are two realizations in the

ja—
~—

form of Structure IV, 1f conditions (5.12 to (5.14)
and (5.22) are satisfied. However, the condition (5.21),

namely (0o+daos) € O implies the conditions (5.13) and

(5.14).

Thus, for the biguadratic impedance 2z (s),
two realizations may always be found, if
ag > 1
and (5.28)
og + 4aO < 0
Further, the component values are given by (5.21) and
(5.4) to (5.7). The region in the (a;, b, plane, where

z(s) may be realized by Structure IV, is shown in Fig. 5.2.



81

2(ao+l)/32
aj, - 1

Fig. 5.2 Coefficient conditions in the (a,,b,) plane for
the realization of z(s) by Structure IV.



Case (b) : (0o + 4a,) = O

In this case, 6: - 6183 = 0 and there is only

one value for R2 and is

S2
R, =37

It may again be shown that
§2 > &,

and hence, Rz > 1. We now see from (5.4) that

R > 0.
3

- &b -6,

Now Ri1 = ag - R2 53

which may be shown to be positive. Also,

- [(IHag)81-62]by - 8,4,
(aot 1)R;

C
which will be positive if

[(1+a)81 - 682]b; > S1a;

which simplifies to 64 < O, which is always true

(5.26).
Hence if a, > 1
and (oo +4a,) = 0, there is one realization of

in the form of Structure 1IV.

All the above results are presented in

Table 5.1.

5.3 Conditions for Realization by Structure V.

(5.29)

(5.30)

(5.31)

(5.32)

from

For Structure V (Fig. 5.1), z(s) may be shown

82
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TABLE 5.1
Coefficient conditions for Ehe realization of

z(s) Dby Structure IV, and the corresponding
component values

(ag > 1, (oot 43,) < O)

Component (ao+ 4ap) < O fag+ day ) = O
Va}ues
R, apo - Ra as - R,
R, 8§ = V65 - §;:683 _(2&
(51 1
R3 R» R,
(R,-1) Ro-1
Cl (ao + 1 - Rz)bl = _aj (ao + 1 - Rz)bl—al
(ag+ 1)R: (a0 + 1)R;
c, _ 1 1
Ri1R2R3C RiR2R3C; - .
Two network One network
realizations realization




84

to be
g2, (IRGRGIL 4R, (Ry+Rp) L, . RiR,R
P2 o (RptRI L+ (FRIL, . Bi(R,4R )
AL A 1 \R,+R 4
L)L, L,L,
(5.34)

By following the same procedure as in Sec. (5.2), we
can derive the conditions for realization of =z (s) by
Structure V, and also the different component values.
However, by observing Structure V to be the dual of
Structure IV, we may derive these results by adopting the
technique discussed in Sec. 3.3. The realizability
conditions are :
a, <1 (5.35)
ag + 4a, <O
in which case, there are two realizations, or
a, <1
o, + 4a, =0
in which case, there is only one realization. The

component values for these cases are given in Table 5.2.

5.4 Conclusions.

We have shown that if (g, + 4a,) ¢ O and
a, £ 1, the given 2z(s) may be realized as a canonic
bridge RC or RL stfucture. If a, > l,j it corresponds
to an RC structure (Fig. 5.la), while a,; < 1 corresponds

to an RL structure (Fig. 5.1lb).

It is also shown that there are two realizations of



TABLE 5.2

Coefficient conditions for the realization of
z(s) Dby Structure V, and the corresponding

(ao < ll

component values

(o + 4a0) < O )

Component (g + 4day) < O (g + 4ay) = O
Values
R, 1l - R> 1 - R2
R §, = V85 - 6,8, é&
2 61 61
Rs Roay R»
Ro-ag ZRz—aos
L R, R;
! (ag+l)-Rz)bi-a) (ap+l -R2)b =-a)
L2 R) (R2+ R3) Ri1 (R2+R3)
L, L,
Two network One network
realizations realization.
NOTE: §1,62 and §; are given by (5.8), (5.9) and

(5.10) .
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these structures if (oot 4a ) < O, while there is only
one realization if (o9 + 4a,) = O. Thus, for the region
enclosed by ag¢ < 0, and oo + 4a, > O, the bridge canonic
Structures IV or V, do not exist, even though the

Foster and Cauer canonic forms exist.
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CHAPTER 6

CONDITIONS FOR REALIZATION OF STRUCTURES VI AND VII.

6.1 Introduction

(7) have shown that, under

Foster and Ladenheim
certain coefficient conditions, z(s) given by (3.1) may
be realized by Structures VI and VII (Figs. 6.la and

6.1b) respectively, if ao < 1 and ap > 1. However,

they have not given explicitly the regions where more than one

realization may be found for z(s) in the form of Struc-

ture VI or VII. In this Chapter, we shall not only derive
the coefficient conditions for the different regions where
z(s) may be realized by these structures, but also present

these results in the (a;,b;) plane.

6.2 Conditions for Realization by Structure VI.

It has been shown that z(s) may be realized by

Structure VI, if the following conditions are met:

(1) ap < 1, ap > O,
(ii) M1, M2, U3, all do not h&ve the same sign,
(iii) Uy > O,
where
U1 = (l-ap) - bi(ai-aobi) (6.1)
2uz = (l-a) (1-3a,) + (ai-bi) (a1-aghi) (6.2)
s = agl(l-ap) + a;(ai-bi)] (6.3)
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Uy = -U: = UiU3 = 0ol(l=ag) (1-9a0 )* (ar.-b1) (a1 -ao b1)

+ 4apaib1)]
(6.4)

They have also shown that the component values are given

by
U1 R?® + 2u,R3+ w3 = O (6.5)
\ ,
(ao+R3)Rj-(ao+Ra)(1—R3)R1 -(1 —ao)Rj = 0 (6.6)
_ aop (RitR3) _ (1-R1)Rs
Rz - (R1+R3)—ao - (R1+R3)"l (6.7)
R: (R1R2+ Ri1R3+R3) =
L (Rz¥R3)[ b1 (RitR3) -a1] (6.8)
c = ZR[b; (Ri1+ R3)-a1l (6.9)

R; (R1R2+ R3)

We shall first show that this bridge structure

does not exist if ao > 1.
Case (a) : ap = 1

In this case, equation (6.5) becomes

(1+ R3-)R§—(l - R::)Rl = 0 (6.10)
Hence, R; =0, R; + R3 =1 or Ry=o from (6.7).
Thus, if ay, = 1, Structure VI is no longer a bridge
network and hence, we shall not discuss this special case

any further.
Case (b) : ao > 1

From (6.7) for Rz, > O, we should have,

(R1 + R3) > ao (6.11)
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%or a, > 1, (6.6) Dbecomes

(a0+R3)R§ - (ag+R;3) (1 = R3)R; + (a,- 1)R§ = 0 (6.12)

Since the coefficients of R? and the constant terms
1

are positive, equ. (6.12) will not have any positive real

roots if Ry 5 1; hence we have the necessary condition

R, < 1 (6.13)
Therefore (1+R3) < 2a, (6.14)

Now, R; is given by

(a0 + R3) (1 - R3) =/ A

where A = (a,*R;)?(1 -Ra)*-4(ac*Rs) (a0 -1)R,
(6.15b)
Therefore, to satisfy (6.11)
_ (ao+R3) (1 + R3)X/ A
R;+ Ra = 2(a°+R3) > ap
or |
2a, (apg+R3) < (ag+R3) (1 +R3) = vV A
Hence, we should have _
(a+Rs)[ (2a0 - (1L +Rs)] < = /4 (6.16)

Since 2ap, > (1 +R;) from (6.14), the above equation
cannot be satisfied with the negative sign for the R.H.S.
expression of (6.16). Taking the positive sign, for

(RitR3) > ap we should have

(ap+R3)% [2ap - (1 +R3)]* < A —(6.17)

which simplifies to
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4 a3 - 4a?2< O
0 0

or ag <1

which contradicts our assumption that ay, > 1. Thus

|
z(s) cannot be realized by Structure VI if a, > 1.

Let us now consider in detail the realization of
z(s) by Structure VI when ao < 1. First, we observe
from (6.5) that if u1 and U; are of the opposite

signs, then

and

Meo = AT-uus > e

whether U2 is positive,zero or negative, and hence there
is always a positive solution for Rs3 . If u; and wujs
are of the same sign, but us3 of the opposite sign and

Hy > O, then there are two real roots for R; both of
which, are either positive or negative. Let us now

consider these cases, separately.
(1) W1 > O,ug < O

Then 1y, > O 1is automatically satisfied and the

positive solution for R; is

—“H2 +YUZ-U1U3

R
3 Ha

(6.18)

(ii) W1 < O,us > O

Here again, 1y, » O 1is automatically satisfied and
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R; 1is given by

. UA].
>/ C

It can be shown in this case, that

. 1
u, < O 1if (=
’ 9

< a, < 1)
and
]Jz > O if (ao < "')

Thus, there is no network realization if a, < l,ul s 0,
9

U3 > O and U > O. However, there are two realizations

if
H1 > O
H3 > O
Hy > O

l < a, < 1
9

The corresponding values of R, being given by

R, = U2 i VUZ'UIUS (6.20)
1 —_—

While there is only one realization if

wp > O
U3 > Y
, Hy = 0 |
% <a; < 1
the corresponding R,; being given by ‘ _ -
R, = "Mz : (6.21)

H1



93

(iv) u; < Osus < O,uy 3 O

(d

In this case, it can be shown that

up, < O 1if (£<ao< 1)

9 1
and u, > O 1if (ag < =)
9

Thus,there is no network realization if

1
—9— < ao < l'Ul < O, H3 < OrU’-} > 0.

However, there are two realizations if

pr < O
us < O
Hy > O
a,<

o |+

The values of R, being given by (6.20), while there

is only one realization if

u1 < O
us < O
uy = O
1
a0< -
9

the value of R; now being given by (6.21).

In all. the above cases, once R3i is known, the
other component values of Structure VI may be found using
(6.6) to (6.9). The different coefficient conditions

and the component values of Structure VI are given in Table

6.1.
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In order to present these results in the (a; b;)
plane, it is necessary to consider the following five

intervals,

(i) $ca <1
- 1
(ll) 4, = -j-
(1ii) L ca, < %
9 0 3
. 1
(iv) a = g
1
(v) a, < )
This is due to the fact that py, = O changes from an

ellipse to a hyperbola as a passes through the value

0
‘%, while the shape of 4, also changes as a, passes

through . Figures 6.2, 6.3, 6.4, 6.5 and 6.6 show
different regions where the biquadratic z(s) may be
realized by Structure VI. It should be observed from these

figures that whenever u;us; < O, there is always a

realization, whatever be the value of a (as long as

a < 1), and M2 . It is also to be noted that except
when ap = l, there is always a certain region where two
9

realizations in the form of Structure VI may be found for

z(s).

6.3 Conditions for Réalization by Structure VII

It may be observed that Structure VII is nothing but
the dual structure of Structure VI. Hence, we may adopt

the technique used in Sec. 3.3 in deriving the coefficient
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Fig. 6.2,
the realization of z(s) by Struc
1/3 < a, < 1.
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Coefficient conditions in the (a +by) phase for
%u when




97

A= [1,1]
a =1/3 B= [V3, 1/V/31]
(V1+v/3, J1/3+1//3] =0

[]

Q
v
o

Q

i

2/V/3

i a

Fig. 6.3 Coefficient conditions in the (a ,bl) phase for
the realization of z(s) by Struc%ure VI, when

a, = 1l/3.




to
|

l/9<ao<l/3

ao>0 c

Fig. 6.4

Coefficient conditions in the (a,,b,) plane for
the realization of z(s) by Structuré VI, when
1/9 < ag < 1/3.
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1
A= (2,2/3)
ao=l/9 B = (2,2/3)
a >0 C = (2,2/3) al=bl

Fig. 6.5 Coefficient conditions in the (a ,bl) plane for
the realization of z(s) by Struc%ure VI, when

a, = 1/9.
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—a
. N R A
a_ < 1/9 1l-a l-a ‘
a, > 0 B={3/20'/2 }
C=iﬁl-l//a—o',‘/ao+/5—}

Fig. 6.6 Coefficient conditions in the (a,,b,) plane for
the realization of z(s) by Structuré VI, when

a, < 1/9.
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. conditions, as well as the component values for Structure
VII from those of Structure VI. These results are
tabulated in Table 6.2. The values of v;, v, vj3;, and

vy , used in Table 6.2 are given below.

vy = ao(ao-1l) - ai(aobi-ai)
2v, =(ap-1) (ag-3) - (a;-b;) (a,b;-a,)
vy =(ag-1l) - b;(a;-b;)

Vi =v§-v1v3
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CHAPTER 7

CONCLUSIONS

In the preceding Chapters, we have derived the
coefficient conditions under which the biquadratic minimum

reactance 2z(s)

s?+ a1s + ao ) e

z(s) = Sy ps ¥ 1

may be realized by Structures I - VII. We have already
mentioned in Chapter 2, that knowing the realizability
conditions in terms of ai,b1 and aos, we may obtain the
realizability condition for a general minimum reactance,

.

biquadratic function.

2
- » St A1S+A,
z(s) K S7F B,s¥B, (7.1)
by noting that
AL o al
v Bo
(7.2)
Bio= b1
Bo
Ao
_5? = ao

Substituting for ao,, a1, b: in the gquantities oa's, B8's, Y's,
's,u's and v's, we may define a set of modified a's, B's,
etc., in terms of A,, B;, A, and B,; the necessary

modified a's, B's, etc., are given in the Appendix.

The results obtained in the preceding Chapter,
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regarding the conditions under which z(s) may be realized
by one of the bridge structures (I-VII), are, for the-sake
of compactness, presented in the (A,;, Bi) plane in Figs.
(7.1), (7.2) and (7.3) respectively; they are also tabulat-

ed in Tables (7.1), (7.2) and (7.3).
It is seen from Table (7.1l), that if

ag + 4A¢By € O
and (7.3)

Ay > B

then z(s) given by (7.1l) may always be realized by the

RC - bridge structure IV. It is to be pointed out that if

ag + 4A¢Bo < O
there are two realizations of Structure IV, while if
0o *+ 4A¢Bo = O

there is only one realization. Thus, if conditions (7.3)
are satisfied, then in addition to the Cauer and Foster
canonic forms, we may find Canonic RC - bridge networks in

the form of Structure IV.

It is observed from Table (7.2) that if
! ! i

Go + 4ABo € O
and (7.4)
Ay <Bog -

then z(s) given by (7.l1) may always be realized by the
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Fig. 7.1 Coefficient conditions in the (A ,Bl) plane for
the realization of z(s) by Structureé I - VII,
when Ao > Bo’
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Fig. 7.2 Coefficient conditions in the (A ,Bl) phase for
the realization of z(s) by Struc%ures I -VII,
when AO < Bo'




O
O

T

Fig. 7.3 Coeifficient conditions in the (A.,B,) plane for
the realization of z({s) by Structurés I - VII,

whan A = B,
o) s}
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TABLE 7.1

Coefficient Conditions for the Realization of
z(s) by Structures I-VII, when A, > Byg.

Regions

A B C D E F GH I J KL MNP Q

Og + +
oy - 4+ + - - - + '
oy + + + - - - + -+
B3 -+ - + - - 4 + o+
Bs - - - % + o+ + - 4+
o2 \ - -
ai1+o; +

BoB1+A¢B2 +
Y2 Co-
Vi + +

Coefficient Conditions

Vs . -
Go+4A 3By - 6]

I 1 1 1 1 2
II 11 11 2
III 1 1 1 1 2
IV ' 2 1
v
VI -
VII 1

Structure
|...J
'_l
’._J
—
'._l
N
N

NOTE: The values of different a's,g's etc., are given
in Appendix
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TABLE 7.2

Coefficient Conditions for the Realization of
z(s) by Structures I-VII, when A, < Byg.

Regions

A B C D E F G H I J K L M N P Q

Coefficient Conditions

o0 + +

a3 -+ + - - -+
Os + + + - - - + - +
B3 -+ - + - - 4 + o+
By - - - + 4+ ) + -+
Q2 - -

B1+B2 o

AgaitosBy
Y2 -
Uy +
Hs -

ag+4A¢B, -0

Structures

I 1 1 1 1 2
II 1 1 1 1 2
IIT 1 1 1 1 2
v
\Y 2 1
VI 1 1 1 1 1 1 2 2
VII




TABLE 7.3

Coefficient Conditions for the Realization of

110

z(s) by Structures I-VII, when A, = Byg.
Regions
A B C D E --F
T
i
[ p
(Gm
t 0 Q o3 - + + -
‘e O
inS,
G| B - + + - T
y - O —
85 ou + + - -
‘00
;
I 1 1
II 1 1

4 |III 1 1
0

- o

wol IV

Vi

Sag| V

PN

55| vI

q ©

£ 0

0 yIT
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RL - bridge Structure V. It is to be pointed out that if

6o * 4A0Bo < O !

there are two realizations of Structure V, while if

there is only one realization. Thus, if conditions (7.4)
are satisfied, then in addition to the Cauer and Foster can-
onic forms, we may find Canonic RL-bridge networks in the

form of Structure V.

Finally, it is seen from Tables(7.1), (7.2) and
(7.3), that if Ay, = By, 2z(s) may be realized by one of
the RLC- bridge structures I, II or III,and that this
circuit is unique. It is also seen that if A, # B,, then
z(s) "~ can be realized, provided certain coefficient
conditions are satisfied. Furthermore, once these
conditions are satisfied, there are always two network
realizations for z(s), either in the form of two different
structures, or in the form of two different realizations of

the same structure.

Thus, we have shown that under certain conditions,
a minimum reactance biguadratic impedance z(s) may be
realized by a canonic bridge structure, coﬁsisting of
three resistive and two reactive elements. It would be
of interest to find the coefficient conditions under

which (7.1) may be realized by RLC- structures, other




than the bridge networks;

ing the possibilities of such canonic realizations

higher order

RLC- driving point functions.
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further it is worthwhile examin-

for




APPENDIX

Modified a's, B's, etc., in terms of
the coefficients A;,Bi1, Ay and By.

(Ag-Bo)? - (A¢B1-A1Bo) (A1-B1)
B%-4B,
1

2(Ao+Bo) - A1B;
B1B1 (Ag+Bo) = A¢B? - (A¢+Bo)®
B; (A1-B1) - (A¢-Bo)

BoA;B; - AoBi - Bo (Bo-Ay)
Ai - 437,

2(Ag+By) - A;B; = o
A1By (Ro+Bo) - BoA? - (A¢+Bo)”
A, (B1-A;) - (Bo-Ay)

AgA;B; - BoAi - Ay (Ag-By)

AgBoA;B; +[ (A¢+Bo)B) - A1BJ[ (Ag+Bg)A; - A¢B;]-(Ag+B,)?

(BO-AQ) (Bo"ng) + (A]_-Bl) (BOAI_AOBI) + 4AOA1B1

BQ - 9Ao

(AO-BQ)(AQ-QBO) + (Bl"Al)(AoBl-BoAl) + 4BOAIB1

Ao - 9Bo
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