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ABSTRACT

. S o .On the Stream Function Solution T I
- of Inviscid Transonic :
Flow Problems

) Viswanath Rao Tata

! " The numerical calculation of the transonic flowfields encountered in aircraft

A ]

and turbomachinery applications is essential in predicting the aerodynamic behaviour of
A\
these components. In this Thesis a stream function based method is presented for the
{

. ~solution of inviscid transonic flows for such geometries. It has the advantage over the
0

velocity potential method in being able to calculate rotational flows with strong ‘shock

N

. waves.
Son}e aspects of the strca;n function formulation are adhrcssed in order to
make it a‘more efficient and practical method. The difficulty of obtainin g the density dug
to the double-valuedness: of tl}c mass flux versus Mach number for transonic flows is ‘
overcome with three different approaches. In the first method the density is 6btained by
: ] . . -

: solving the first order vorticity definition equation. In the sécond approach the first order

vorticity equation is fécast as a second order equation. In the third, a second order

equation for pressure is solved and the density-is obtained from the energy equation

-

thereby 'avoiding the d'ouble-‘valucdness.problcm.

Efficient solution methods-are addréssed and.the Zebroid method, an
altem:clting horizontal line relaxation algorithm, is'developed in the finite element coptc;(t
and reduces the comﬁutatibnal effort for the solution.

The results obtained for transonic flow over isolated aifoils and unchoked

compressor cascades show that the stream function method is an effective approach.

)
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1.1

.CHAPTER 1
K " INTRODUCTION

> . _—_

0

The.use of computational methods to simulate the behaviour of fluid flows *

15

The Transonic Flow Problem

" has increased rapidly during the past decade. This is due to the rapid progress in °

computer technolégy and the ever-increasing requirements to improve the aerodynamic

efficiency of aircraft and turbomachines. While the motion of a fluid that is unsteady,
aQ Y

. threexdimensional, viscous and ;6mprcssiblc is governed by the Navier-Stokes
N N -~ .

to be one of;.}}c most efficient regimes of flight, and it is this feature that makgs the *

the free-stream Mach number increases beyond the optimum performancé range, adverse

effects in the form of increased drag, shock-induced separation, and ‘buffet are °

Mach number range of airplanes, helicopter rotors, propellers, inlets and compyessors. It

» N .
equations; many flow situations of practical interest can be well approximated by the -

interaction of inviscid and bouhdary layer solutions.

This Thesis addresses in particular two-dimensional ‘transonic inviscid flow

J
problems. Z'he Mach number range just above the drag-rise Mach number, My, is known

no

analysis of transonic flow fields one of the most studied problems in fluid dyna}nics_. As

encountered. The onset of these phenomena can ~‘{'npose limitations on the operating *

_ is thus clear that understanding and predicting this behaviour is important.

transonics involved the solution of the transonic small disturbance (TSD) equation for

Some of the early pioneering work done in the area of compltational

e

the velocity potential, given by: ' .
[1-M-(+ D)@ JO_ + g =0 (1.02)

Yy v

This equation applies.to airfoils with small thickness-to—choré} ratios. Murman and '

Cole's blpakthrough in 1970 [1] involved a mix'ed'ﬁnitc-diffe'n:pce scheme applied to the S

] . °
. ’
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) They also successfully adapted a turbulent bmmdary lagcr model mtogthelr FPE %o ode -

-

TSD equano;\ In theu- n?ethod eentral dxfferences were apphed in subsomc flow

regions and bat:kward dnfferencesL i supersonic ﬂow reglons in Qrder to satlsfy the -
domam of dependence restncnon for the parual}ﬁferent:al equation. Furthermore, their

’ lme implicit formulation helped to avoid numerical instability problems in supersomc'
~ ' . .) ‘ ,l/ . ) . P ’
Zones. Y .

- - “,r;, &«
- i
O

The 1ntroduct10n of the shock pomt operator by Murman [2] yxelded d f ally
flux-consérvative scheme for the TSD equatxon with shocks that were stronger and \

farther downstream than those of nom- conservanve approaehes Non conservauve‘ ! \

y
results however, seemed to bear a clqser rescmb,lance to the physxcal ﬂow than “
L
conservatlve ones, as shown. by Newman and Southin [3). *. N L .
- ’ R . . < -
’ This original research led the way to rapid progress in the field. In the carly to

]
Imd-sncues, expenmental aerodynamlexsfs such as Pearcy [4] of NPL and Whitcomb [5]

of NASA began developmg airfoil secnons which produceg essentially, shock fre \‘

flows, leadlng analysts such as"Garabedxan, Kot and Bauer [6] to deal wkn

supercntxcal airfoils having round noses and peaky pressure dlstnbuuons by tacklmg the

full potential equanon (FPE) in non-q)nservanve form T ) . o '
o ,

(a -<D)<D 2¢x¢y¢xy ( ¢)¢ 0‘ 5 ' (I.Ob). :

e need to apply tﬁe El’%mfpractxcal swept, three- dxmensnonal wmgs l&d to the ,° -+
/.

r\

mgmfxcant contnbubonb eson in his rotatcd-dxfference scheme (7). In that schemc,

. ot & )r 4" ’ " * ~—
‘the FPE is rewrittén m«cpj\servanve fcgrm in a* local Cartesian coordmatc system (s,n)
d S e
onented along the streamlme and np{mal o it! L D E

-
""h, \ ) . .

. PR LI . ‘ ] ‘ﬁ*M,
-. (- M’)cn +¢ S0 e  (1.0¢) -
. ) ) . ERON X
. . . ~ , . ‘_., v .
where “ ) .
. ’ . . 0\ 1' _ "
L4 - o ] " '
"/ - . *
, o . ) . .- .
- Co . . ) _
: . ."..'. M "‘ . a



Ceﬁt@d‘diffcrcn'cﬁcs are utilized for all terms except when upwinding is used for P, at

points&.hcrcM > 1.

. % © ]
Steger and Lomax were among thefirst to produce solutions to the FPE for

’

o : ol . . '
two-dimensjonal lifting airfoils [8], while some of the earliest results for
e

ducc-'dim'c'nsi;onal flows came from Steger and}B'ailey [9). Efforts directed at improving

" the solu;ionfcfficicncy included algorithms such as the multigrid (MG)Mme:thod

"mtroduccd by South and Brandt [10] and the approximate factorization method by

Ball'haus et al. [11] Eberle [12] agd Hafez [13] were the f1rst to mcorporate the

dzssxpanon nccded in thc schemc via an’upwmd shift of the densxty, the first in a -

fmltc-clcmcnt approaqh and the latter in finite differences. At about the same nmc,

" finite-difference fom'lulations of this method were also introduced by Holst and Ballhaus- .

[14], and Purvis and Burkhalter [15]. /
) . . q-ﬂ A
The stream function approach to the transonic flow problem was successfully

<
mmatcd by Emmons [16], who solved for rotational flows using the stream
funcuon/vor{xcuy approach and shock fitting. Shock capturing attempts to solve the
' stream functxon equation failed, however, because the densxty is not umquely deterxmnqd
in terms of mass flux; therc are two solutions, one is subsonic and the other super;oglc
With a squarc root smgulanty at the sonic pomt The stream functlon solution is
Ve

preferred in 4pplications where the exact conservation of mass is 1mportant such as in

internal and‘turbomachinery flows. Furthermore, the capability of .the method to

calculate the vorticity generated by shock waves is another advantage of the stream

/ function over the vclog'ity potential. THE pionecring paper of I:Iafez and Lovell [17]

. prescntcd a method of overcoming the singularity problem for finite difference solutions
s S € . )

-

v



o.

of external flow problems. The 1mpctus behind.the current: work is to extend the

-
./

applicability of the method to mtcmal flows , in a finite clcmcnt contcxt

*

-
&

© 1.2 Governing Equations for Two-Dimensional |

Inviscid Transonic Flows

» O

The governing equations for two-dimcnsional compressible, inviscid flow
are the contmulty and the vorticity deﬁnmon cquatlons whcrc

¢)) Contmurty Equanon

. P Q '
3 () +ug,(_pv) -0 S 2
(é) Vorticity Definition Equation: : ) ¥
du . aV v ) o
5;-;‘-._& N €1.2)
with the vorticity @ given by the Crocco relation , W .
‘ N . , I
g.0=T— | s (1.3),
- on - - '

¥

This expression yields the vorticity in terms of the gradient of entropy across

,SUcamlines. Equations (1.1) and (1.2) have been dcrivéd Q/’om the equations for

e - t
conservation of mass, momentum and energy for steady, isentropic flow of a pcrfcct

gas In-this Thesis, thc vortxcxty generatcd by the presence ¢ of strong shock waves has

been neglected Thcrcfore, cquation (1 2) may be rcwnttcn as: . e
P .

, ——-ﬁ’-= 0. - : - oo ‘ (1.4),

ay ax L

,)

Th° energy equatmn provides the relationship between the dcnsxty and Mach
numbcr as follows: B ;

1/(y-1)

i [1--—-1-M2] o . Cas
P,

[0



A} »\ «..

where M, = q/a,, the Mach number with Tespect to the stagnation speed of sound,‘ -

o

In summary, thc systcm of governing cquauons to be solved are (1. 1) (14). -

b

L]

and (1 5).

1.3 The Stream Function Approach .

»

[

. : . . SRR

The stream function, ¥, is defined to satisfy the continuity .equation
~ o -

identically: . _

LY. I : - (1.62) -
Py | o ‘

v e -low . (1.6b)

[ aX‘ i ‘ . . .

- =

The goveming equation is thus obtained upon substitution into the i;orticity equation

Ay, )
2. (1 ﬂ’.) 2. (1 ﬂ’iﬁ) =0 : (L7
ox dy ' p Oy " -
"~ The cnergy‘equatmn, rewmten m terms of ‘I’ is hence: | .

2 - [y e

Po

'_l'he stréamfunction scheme, thcn, lies ig the solution of cquat:ion's (1.7) and (1.8). The,

main advantages of this formulation over the Euler equations in pripmitive variables form

4

[18] are:

‘ -
b . I

(1) onlyone Qariable,rather than four, need to be solved for;
i . |
(2) the second-order stream function equation has simpler boundary

conditions than the set of first-order Euler ones.

14

(3) the stream function guarantees the exatt conservation of mass.
' {

-



The strong points of this method whcn; compared to the velocity potential

approach. [19] are in its ability to iﬁqlude the rotational ft‘fects due to entropy gradients
behind cr:trved shocics, and to its Dirichlet boundary corgciitioné over solid bodies.
However, this model is not without its'difﬁcultics ' For transonic flows, the
density-mass ﬂux relation becomes double val@;i. a; shown in Figure 1.1. For a given
value of mass flux (pq), two values of dcnsxty are possible, one corrcspondmg toa
subsonic Mach number and .the other to a supcrsonic one. For the nonlinear problcm at
hand, tﬂis leéds to convergence difficulties i;’l the iterative scheme at high Mach
numbers. .
This non-uniquencss issue has bc.en resolved in [20] for the finite différcncc
solution of extemal flow problems The first-order vornmty equanon is used to calculate

the velocity q once the stream function distribution (her_;da,,@hc flow oncntatlon) ns

known. The flow angle, 6, at Wt}n the fiéld can be e;(pressed as:
Y ' ant (2 -1 (-x) _
0 = tan (u) ( ) = tan ( (1.9) 2

The vorticity definition equation can hence be-rcwntten as:

du ov .9 . 0 X \

_— - —— = =—(qcos0) - (qsin®) = 0 (1.10)

By ox o ox i .
where q = VuZ + v2 and the only unknown is q. - &

Equation (1.10) is integrated to evaluate q marching in the general direction of the
characteristic.. The solution must start from an initial data line other than a characteristic,
and, for isolated airfoils, this data line can be taken to be the far-ficld boundary
‘reprgscnting the free stream. Once q is determined, the density is updated usin{thc
energy equation (1.8). For internal and cascade flows the problem of the initial data line
is obviously more complex and Chapter 3 presents a new algorithm suitable to intémnal
flow problems. ’

A brief mention of the.classification of partial differential equations. at this



14

point is essential. The general characteristic form of a second order partial differential. -

gquation is: | ‘

AW g + By, #CLuy = DO . (L11)

Hcrc, A, B, C, D are functions. of X, ¥, Uy, Uy and the coefficient (B2 - AC) determines

the nature of the equatxon, i.e., the existence or not of characteristics. Characteristic lines
possess the folloﬁving properties, among others: . -

(1) These are the directions of propagation of siginal_s, i.e.,; while across

these the function u is continuous its slope is discontinuous. * . ]

(2) If initial data is given on a characteristic, it is hence impossible to

continue the'solution by stepping off this line.

The direction of the T\ﬁo characteristifs corresponding to- the general

second-order PDE is:

(&) . _BB% AC | S L12)
, dx 7L :

A
andif  B2-AC <0 PDE iselliptic
" B?-AC =0 PDEisparabolic
-. . -B2-AC > 0 PDEishyperbolic. -

For elliptic equations the characteristics are imaginary, i.e., they do not exist.
Physically, this means that disturbances propagate equally in all directions and an
observer standing somewhere in the flow can feel disturbances emanating upstrearr; and
downstream of his position. In the case of hyperbolic equations, two ;eal chuacteﬁsﬁcs
exist, across which a discontinuous' slope is permitted. Two imporiant regions can be
defined: )

(1). dgmam_gf_dmdm any disturbances felt by the obsérver originate

from downstream points contamcd within the rchon defined by the two
charactcnsncs arriving at his pos:txon

Q) dmm_qﬁnﬂnm any disturbances createdsby the obscrver can only



be felt at upstream points contained within the region defined by the two

characteristics emanating from his position.
. Finally, for parabolié equations, the two characteristics collapse ontc‘> one.
Thus, an observer standing in a flow described by a parabolic equation is affect By all
' disturbances created previously and his zone of influence extends to all points\in the

, ups'tream domain.

" Transonic flows are elliptic‘in subsonic regions, parabolic ‘across the sonic
line, and hy;érbolic at supersonic points. The gox;erriing equations are hence said to be
of "mix:éd" type. In order to illustrate this, let us recast the stream function equation in

non-conservative form:

 pavy T opawrq P2 W

R R R B R L.
' \

For this equation,

B®-AC < 0 if q < a ; SUBSONIC FLOW, equation i$ ELLIPTIC

= 0 if q = a ; SONIC LINE, equation is PARABOLIC

> 0 if q > a ; SUPERSONIC FLOW, equatjon is HYPERBOLIC
14 Finite Element Discretization

In this section, the finite element formulation of the two-dimensional stream

function equation will be presented.

J 1.4.1 The Galérkin "Weak" Formulation

»

Let us consider a general partial differential equation (PDE) of the form:
L-=f . : (1.13) -

In the method of weighted residuals, the desired function u is replaced by a




,; finite series approximation d,

wo=d o= %uij e o 114

j=1

' In general, the set of functions Nj, j= 1_‘)2,....,N, known as the basis or
intcrpo}ation f’unctiorﬁs are defined over tﬁe element dorﬁain and,uj, j=12,.,N, are
the undetermined coefficients. Even when th'c basis functions are chosen to satisfy all
boundary conditions imposed on a problem, they will not normally satisfy the IfDE as
well, Substitutiori of 4 into the PDE, L(u) - f = O, results, in a residual, li, -

L@ -f=R (a5) -
. The objective is to select the undetermined \coefficients u; such that this residual is , /

chd in some sense. This can be a;:complished by setting-the weighted residual to /

' zero as:
L ”[L(ﬁ)-f]widxdy =0 ' - (1.16) /
< A ' . s

/

“In the ‘Galerkin Weighted Residual Method, the weighting functions W}-ée

.chosen to be the basis functions N; themselves. Thus one obtains: /
' /
_[ [L@-f]N,dxdy = 0 . /(117
A /(

/

The finite element approximation to (1.17) is in breaking thg/(ntegral into its

sum over all the elements: - /
y -

i H [L@)-fIN,dxdy = 0 / (1.18)

im] A‘ //’ N N -

, y
/
- where E is the number of elements. 7 l
/
1.4.2 Isoparametric Elements s / / ‘ )

/
/

/

i . In the isoparametric finite element approach, elements of irregular shape are
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[}

transformed or mapped into elements of regular geometry to facilitate integration,

. \
Consider an irregularly shaped four-noded quadrilateral element as shown in Figure 1.2.
This can be transformed into the regular-shaped element illustrated in the same figure

using mapping functions. Within an element, the function f and the coordinates (x,y) are

given by:

DOF ) y o

f = z M, (&,ﬁpfi : : (1,192)
=l . '
DOF .

= Y NG, | S (1.19b)

il -
TOF . ‘

y = 2 Ni @,Tl) yi . ‘ (1.19¢)

im]

. Here (€, n) are the non-dimensional coordinates (_)f the undistorted element, (x;, y;) are
the global coordinates of node i, and DOF represents’ the number of degrees of freedom.
Isoparametric elements are ones in which the order of the geometric interpolation
s

function N; and the field interpolation function M; are the same. r

In the case of four-node isoparametric bilinear elements, the geometric

interpolation function N; can be expressed as:

CONGW = 30+ER A (1:20)

It\is re@'ly apparent that N; is unity at node i and varies linearly along

" E(M'=%1), and along 1 (£ £ 1). The variation within the element, however, is

bilinear.

1.4.3 Stream Function Equation in Discretized Form »

4

Applying the Galerkin Weighted i{csidual Method to the stream function

equation (1.7), we obtain:
L 3 V
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This can be integrated by parts using Green's theorem:

J‘J.u.VkvdA; fu(v.n)ds - Uv.VudA

”[18?3‘1 1 oy ON;

to get:
1 0¥

TT g‘:Jy—?—]dxdy + J‘N —Tds = 0

$ .

. Using the fact that -

v faN
T &wN S

oW ¥ oN .
T oaeTh ol

11,

— /
2 (L21)

(1.22) |

(1.23)

(1.24a)

(1.24p)

and assuming that the density is constant over each elcment, equat}ipn (1.23) becomes

4]
o jj[%N_a?: ?91: aaN]d"dy {¥} + J.N —.gds -

0 (1.25)

Asscrﬁbly of the area integrals at the element level yields the element influence matrix

k], whichis a sq\h[g&matnx of order four with elements
1 oN. BN oN, oN, ]
= || ['r T T A SY

(4
1

The derivatives are evaluated numerically at the local, or element level and

.'subseque\.mly mapped to the global coordinate system: S
r-ai- -91‘. | 2}’_ N, | N,
ot ] & & 9 T{'_'[I] ox
- | N, 1ox ay| 9N e A1
3:\- ] jon - an 2 .L-“’_y—.

where

(1.;75
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[ J ] Jacobian matnx . !

The glob!d-deawgvcs are given by:
,._(_’NJ ]
o | ox 1] % " S L

| {..]-= [1] N, B (1.28) "
28 3? - |

* The elément integrals may be evaluated by.wsing (2 X 2) Gaussian quadrature

21} -
11 '

“ Fem !dgdn .
. ' o .
=) ) wWw, F(§1,n )l J(él,'n )I o am

im] jul

where NG is the order of intcgration (2 in this case)

[

W;, W; are weighting factors (W; = W; = 1 for (2 X 2) integration)

(N nj) are the local coordiﬁétcs of the Gaussian integration points

-

The traditional finjte element assembly technique is applied to form the overall <

¥

- global influence matrix, yielding the governing matrix system:

, K J{¥} = {F,} o 'ﬂ ,(1.30)‘
1
with , _
R = i; “ui | |
J'-Nl-a-d
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The iterative problem is subsequently handled using the methods described in Section |

16. '

1.5 Some Aspects ¢f the Nymerical Treatment of Transonic Flows

Certain aspects of the transonic flow problem necessitate the use of special
) A . .

§

3

numcricg treatment, and these are introduced here.

e £

1.5.1 Artificial Comipressibility Method ’ /
. - .
The physics of supersonic flow di;tatc that the effect of a moving particleis
felt only within a zone bounded by Mach lines upstream of the particle. This is in
contrast to sub'soniq flow, in which the disturbance caused by a particle is sensed in all
directions. Therefore, numerical schemes for transonic flows must account for the fact .
that the domain of<influence in supersonic regions i$ limited to upstream pointé.
So-called backward or upwind differencing must be applied at all supersonic points.
Another way of looking at this is by first considering the full-potential equation writtén

in nop-conservative form:

2 2 o .
@-u) By - 2u0v0 + @-V)ID = 0 a3y
, ‘
where : ] - ‘
" SR
o ox dy

Since this equation is symmetric, it admits reverse flow solutions as well.
:I‘him. a solution utilizing central differences for transonic flow over a symmetric airfo’il
may admit two shocks, one of which would be a non-physical expansion one. Only
when backward differences are used forsupersonic points will the solution be limited to\/f

compression_shocks. It can be shown that the use of backward differences in the

Y
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supersonic region introduces a viseous-like terry similar to the right-hand side term in the

full Nagier-Stokcs equatioris [1]. This "artificial viscosity" is-a necessary ingredient in

all transonic flow calculations.

1

] A ndvel approach suggested by Hafez et al [22] to introduce the necessary
anxﬁcxaLmosxty has béen termed the Art1ﬁc1a1 Comprcssrbxhty Method (ACM). Here,

the arufld;_gymcosity is introduced via the density, and equauon (1.7) is rewritten as

follows:
- 1 9¥ - -
L !) + .57( %1) L (1.32)
were 5 is the Zrtificial density, given by: . .
’5 = p - Hp, As o _ . (13
and .
"p,As = (uwq) PyAx + (v/q)p, By o (1.34)
= max(0,1 - IMZ, (1 - UM2 ) | - (135)

v u ,
. a switching fufiction whick vanish¢s in the subsonic region
(cis a factor rangmg from Otol)

ﬁ

<" This method allows the govcrnmg equation (1.32) to retain an cfliptic form
throﬁghout the flowfield, and is currently in widespread use due to its ease of

* implementatton [23], [24], [25].

-

1.5.2 Stability of the Iterative Scheme «
AN . ¢
In practice, the solution to the compressible flow problem, in delta form,
' i
involves a matrix system of the form: - - .
[A]{8¥} = {R} ‘ (1.36)
yy)

This procedure will not converge for transonic flows, however, since a Laplacian
- ‘ “ \ .

The.matrix [A] is usually taken to be the incompressible operator (9, + J
- -

.
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. _ B Bt
operator isnota sufﬁcxcry approxxmanon to. the rmxcd~typc govcrnmg operator Results
may only be qbtamcd if th¢ supersonic reg1on is small and/or the artificiat v1scosxt)? is 4~
grcatly enhanced. Even in this instance, convergence problems will emerge if the
computational grid is refined. ) - , ' " D

We wish to construct an iterative schemc that 1s based’ on the f)%yswal
u;stcady process with the inclusion-of transient stabilizing terms~wh1chkvamsh when : .
s?cady state has 'becn x"cachcd. Considé.r}he followigg form wof the unsteady transonic?‘
equation of one-dimensional flow: | ' | i ' .

YG, + 2uaG, = @-W)G, , - : < 13D "

It can be shown [13] that for equation (1.37¥"to represent a well-posed -

& . . T,
problem for supersonic flows, the coefficient of the G, term must be positive and la}—g‘cr

- e .

than V1 - 1/MZ, Therefore, addition of a G )  to an iterative scheme qr ehhanciné it, if it
already exists, means the addition to.the iterative matrix tcrms such as: '

‘Axs;(Gl) =‘Ax'Atj-(5G) (66“*‘ SG;";I) 138

It should be mentioned that only VLSOR, marching with the flow, has a naturdl G, ~ Yo
term in it, Other schemes such as point Ja¢obi, HLSOR, Zebroid, AD], etc., do not have‘
L. a G,, term in them, thus it must be added expligiﬂy. '

1

1.6 Iterative Techniques for Transonic Flows

-

The finite elemen} discretization of the governing partiai differ'ential équatidns‘
results in a matrix systerﬁ of the form: ' - ) , - . E
. [K1{¥} = {f}. ¢
 where ~ [K] isabanded, symmetric matrix - ‘ o
" {¥'} is the vector of unknowns

{€} is the forcing function.



- Fa
. Stream funcngg solution by one iteration. Cbnveggenc; is attained when the L-2 norm -

f
-
)

RLy) has reached a specified value, say of 108, where .

L

\ . ’
1.6.1 Line Implicit Methods )

)
. -* )
s ¢ s .
9 .
N o, . R
/ 1 .

(A) Vertical Line Successive' Over-Relaxation (VLSOR) Method

-
(R

VLSOR is a line- 1mphclt method°m which thc solution at one vertical column

ABKY

" of nodes is obtained using the most recent solution at the prcvxous line and the prcvnous

-

soluuon at thc ﬂextaimp as boundary conditions. The method procccds by mai'chmg

downstream in the direction of the flow. 'I'hc rcsulung matnx system is mdxagonal and

the solution change, 0¥ is over-relaxed by a factor rangmg from 110 2 as follows:

[K][S‘P .= {R(&\P?‘;‘,‘Pm)} S S 1)
The transient ‘I’  term, as dlscusscdprcvxogsly, is mhcrcnt in thc scheme,
N L \J ) i |

A

leading to astable convergence:  ° . C.

- ® ZebroidMethod - .
(B) Zebroid M o

* This method is essentially a horizontal line over-relaxation. Applied to each

‘ line, however, it producesma ¥, term of varying’ sign, dcpcnding on the local flow

direction. To prevent this, the scheme is apphed to altcmate lines and thus two horizontal
sweeps are required to complctc an ucrauon AY,, mustbe cxphcxtly added to ensure
stability. Morc will be saxd about this method in Chapter 2, as n is one of thc main focal

-

pomts of this Thems




. T .‘ o .1.6.2 Field Solvers - - ‘ .
) . - (A) First and Sccond Degree ImpllCIt Methofgis
“ 'I'hcsc mcthods can be written, in the case for the stream fuﬁuon, as
Y AU E[L]5‘P+a[L]5‘i‘ = B{[K]{‘I’} -{f}3} (1.43)

T

‘o
’ . whcrc €= O 1 for first (¥ ) or second (‘i’m) methods rcspectwcly and o, B are

accelcrauon factors. [Ig} is an operator approxxmahng the compressible ﬂow one. Once
- B :}gam a ¥, term is needed for stabiliity. An asymmetric operator [A] can bc constructed
for the supersomc region as [A] = [L] [1], where [T] is an elémgnt transforrnation matrifx‘
zeroing out the conmbuuon at a supersonic point from downstream nodcs: within an -

- . cléMent while d6i1b1ipg the contribution to that node from the upstream nodes in the:
. " £ , :‘ A .
element [26]. Figure 1.3 illustrates this procedure. ’

’

-~

A & A Scope of Thesis I ‘

+ . ,

5 .
-~

\f - This Thesis.addresses seme aspects of the stream function solution of
* ® - . o .

transomc ﬂow problcms _ ) oos

. + The problcm of theffouble-valuedness of mass. flux vs Mach numbér is .

’ o investigated .by thrce différent approaches. It is applied to intemal flow problems.

Agﬁmtc cl¢mcnt version of the honzontal line relaxatlon algorithm (Zebrmd) is
' deveIOped m order to accelerate the convergencc rate of the iterative process.

Results from cxtemal and mtemal flow geometncs are presentcd in each and

[y

dxscusssed in each chapter. o

o~
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CHAPTER2 - °©

_ THE ZEBROID ALGORITHM APPLIED
TO THE STREAM FUNCTION EQUATION .

. ¢ . .

4

LY

In this Ehéi)tcr, a horizontal line-implicit relaxation (Zebroid) method to solve
the transonic flowfield is presented. This scheme has a faster convergence rate than
VLSOR methods since solving the flow in a direction parallel, rather than perpendicular
to, the flow direction results in ‘ﬂow information being sprcad more rapidly throughoht

the field, especially in the presence of discontinuities. The Zebroid scheme is even

%

shown to converge faster than implicit ones.

2.1 Description of Zebroid Algorithm

The Zebroid algorithm is a ho;izontal 1inc~ relaxation in which only every
second line is up&‘ated'during ne sweep. Thus, one iterative step requires two field
sweeps, fermedt th\e "odd" and'"evep" sweeps. This two-step procedure is necessary,
otherwise a transient ‘¥ ; would appéar in the governing equations, causing’convergence
difficulties at high Mach numb::rs. During each sweepa ¥, term mrust therefore be
added explicitly, to help the convergence of transonic calculations. Figure 2.1
demonstrates this method for isolated airfoils. Here, thé "odd" sweep is performed ,ﬁrst, .
staning' at the airfoil and moving outward towards the far-field boundary. At the first
station, only oné row of elements is assembled, since there are no elements below the

¢ .

airfoil. All other stations’ include two rows of elements, above and below the row of
unknown nodes. In the diagram, the term "dynamic bounda;'y conc;itions" refers to
values which are ke’pt constant only during the solution at one particular station. A

In Figure 2.2, the application of the method to a compressor cascade is

"shown. In this instance, the direction of sweep is reversed during one iterative step to

v




.
A "
o 1‘1 )
- ' >

allow for a more rapid exchange of flow information between the suction and pressure

Surfacc's of thé airfoil. . ‘ | | : |

A djstinctivc feature of the Zebroid algorithm is brought out here. In other
solvers, the periodicity condition is maintaing:d only bg;wgen two li'n‘es, such as AB and
EF, shown in the same figure. While this guafantees,periodicity in ‘P, it only imposes
velocity pcrriodicityi ina mcan. sense. The implementation c;f a Zcbroi‘d,sol'ver necessitates B
the use of an additional row of elements'above EFGH and another one below ABéD.
Therefore, periodicity in ¥ can be imposcc_l between t_h;ce lines centered on EFGH anq

ABCD, guaranteeing periodicity in {rclocity. -
22 . Boundary Conditions

As stated in Section 1.5, the goveming equation to be solved for is:

la‘P

1 a‘l’ .o
¢ . where: T, \ : | o | -
~ ap ‘~ . N ‘ an ’
P = Pohyghs ‘ IR 1

=P - “(pe - pe~1) ’

and g = max(0, 1-1/M 2e(l- lle))
, The boundary condmons are statcd below for isolated airfoils and cascades. -

-

. 22.1 Isolated Airfoils : &
4 ' . .

Figure 2.3 illustrates the boundary conditions for flow over an isolated,
symmetric airfoil. They are: . ; '
on AB : Y =0 . o - , .

FRS
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W

through a compressor cascade. They are: *

,31 e, e 3 * ,‘
N . B - .
Itan o : ‘

such periodicity lines.

Flows at Mach numbers higher than 0.8 were evaluated by altcrnatmg the soluhon of the

on DC T =1

.on DAandCB : ¥ wvarie§ linearly.

«
]

222 .Compressor Cascades

- .

The second part of Figure 2.3 shows the boundary conditions for flow ~

onBC - . ¥ = 0 (blade suction surface) -
onGF- -~ ¥ =1 (blade pressure surface)

-

oninlet andexit : W is unknown, and a contour integral is evaluated as

.
v

In addition, flow, periodicity is maintdined between AB and HG, as well as

between CD and FE. One should note that the contour infégrals cangel one another on

4
Y

Numérical Results

The Zebroid algoritlim is applied to the solution of subcritical and supcrcritical

flows flows over a NACA 0012 symmcmc airfoil. Fxgurc 2.4a shows the results of the

o

computanons at various free-stream Mach numbcrs from subcnucal to supcrsomc

stream funcuon equation thh the integration of the first order vox:gcuy definition

/ -

equation (1.10), at each iteration. The grid used consisted of 1008 nodes, with 31 points

on the airfoil and 15 subdivisions across the ﬁe1q. ‘ ) ' -

In Figure 2.4b, the application of the method to a cascade oi'?nul;iple circular

arc (MCA) airfoils at M_ = 0.76 is shown. The shock on the suction surface is sharp

5 LS

o
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and well defined. To dcmonstra{t;z the accuracy of t}xe method, the results over an isolated
" NACA 0012 at M= 0.80 and 0.85 are compared with a reference velocity potential
| solution in Figures 2.4c and 2.4d. The grid used for the MCA solution employed 855
nodes and is shown in Figure 2.5. ° T

Finally, the rates of convergence of various iterative techniques for flow over
- an isolated NACA 0012 at M_= 0.85 are compéred in Figure 2.6. The Zebroid.method
is shown to be faster than VLSOR and even the implicit methods. The scheme is
particularly attractive when one considers ;hat each individual iteration is also more
) computatignally efficient sil)cc t}‘w matrix system is tridiagonal, compared to the larger

globa.l‘mauiccs used in implicit methods and their associated core requirements.



CHAPTER 3

THE STREAM FUNCTION AND SECOND
ORDER VORTICITY EQUATION ALGORITHM

Y

As demonstrated in the previous chapter, successful results can be obtaided
for t;énsonic flows over isolated airfoils: using the stream function equation in
conjunction with the first-order vorticity equation. In this instance, the solution started
froin the far-field boundary, at which the flow velocity is known. A problem arises,
however, if this approach is applied to a cascade where the 'ﬂow at the airfoil suffac"c is
* unknown and equciaily for choked cascades in which a shock may extend across the

full width of the channel and an initial data line along which the solution is known does
, not exist.

Om; therefore must strive to construct a scheme in which an initial data line is
not required: This chapter it}troduccs a second order formulation for the flow velocity,
q, whereby we turn the vorticity equation into a field one in order to overcome the
double-valueginess problem. This new method is first applic:i to isolated airfoils, so that

its applicability to more complicated cases such as cascades can be justified.
31 Description of Algorithm

Let us reconsider the first-order vorticity equation:

du ov ‘
5 - 0 | (3.1)
Defining: ,
@ = = = cos® | - (3.2a)
q '
v . ,
-B = a- =' sin 0 . (3'2b)




\Th/cn (3.1) can bc(ewrittcn as:

0 d - .
W(qa)+3;(qﬁ) =0 | : 3.3)
or | _
o .dp : , i
[&+ 3 1Ha} =0 S o
Multiplying by the following operator in order to make the eciuation seco;1d-order: _ -
L d 1[0 @ !
[-a%-ﬂ;;][;;wg] {a} =0 (3.5)
Expanding:
“ o o 3’ F
B-a';z‘(BQ) + 0‘;};(0“1) * am(ﬁ‘l) + Bm(“q) = 0 (3.6) '
This can be expressed as: i | L (
Aq,, + 2quy + quy =D 3.7
where i e ,
A = P2 ﬂ
C = q?

The classification of this PDE is found by evaluating (B2 - AC) as:
", (B2-AC) = o2p? - 02p? = 0 '
thus the equation is parabolic. . )
By treating the problem as a field one, we eliminate the need for an initial data
line. The Galquin finite element discretization m;xllﬁplies equation (3.6) by the shabe

fuhctiori, followed by integration by parts, yielding the following: : !

[[ € cup, @B+ v, (@, + 09, (o), + OVB), (ae), } dxdy.

- [ B (aB), ay +N @ (o), ax+ N (g, dxe NP @), &y } = 0 6:8)

- The contour integral term can be rewritten as:

+
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J'Ni [8 @B),+B (@] dy + N[ « (qo), + o (B dx (3.9)

]

0 on all boundaries where q is not specified, since the first-order
vorticity equation is identically satisfied. ‘
= 0 onall boundaries where q is fgecified, sinceN; = 0. ",
Thus, the boundary conditions are satisfied by ignoring the contour integral.
This of course presents great advantages on airfoils and on cascades blades. One note
ﬂma£ the vaiﬁé of q must be specified at least at one point of the flow.

The finite element integral to be evaluated is hence given by:

[[{owp, @, + N, @, o

+ Moo, @), + (NP, (@), }dxdy = 0 610
The flow angles P and o are’known from the solution of the stream function

equation. The overall procedure for this scheme is shown on the flow chart of Fj&urc
3.1

(3:2 Boundary Conditions for Isolated Airfoils » '

A C-grid of the type shown in Figure 3.2 is used to discretize the domain.
The appropriate boundary conditions for an isolated airfoil are:

¥ equation (eq. (1.7)

onABand BC : W = u,y _ (3.11a)
on AC ¥ = u.y (3.11b)
on airfoil surface : ¥ = 0 o | (3.11c)
q&qga&ism(cq. (33)) ) I )
. onABandBC : q = u, (3.12a)‘
onAC : q = unknown, natural b.c. satisfied - (3.12b) .

on airfoil surface : q = unknown, natural b.c. satisfied (3.12¢)



-

3.3 Numerical Results

Following the steps of the algorithm shown in Figure 3.1 results for the

, flow over an isolated NACA 0012 airfoil are obtained. The flow angles o. and B are first

evaluated at the nodes knowing the stream func,pon dlstnbunon Equation (3.10) is -

subsequently apphed to calculate q usmg an xmphcxt method i m which the global
boundary conditions for q are used to "drive" the solution. ’ ‘

Unfortunatciy, the proposed method has proven to b;: ineffective for the
problem at hand. The results obtained indicate a Mach number distribution that is too
low and displaced significantly downstream compared to reference test cases, even for
purely subsonic flow. With some effort, the cause for tl.xis behaviour became apparent.
In scctioﬁ 3.1, the nature of the governing equation for q was determined to be parabolic
and a different solution was deemed nccessa;y and a line iml;licit approach is adopted.
| Starting at mc:outemo;t line of elements defining the "C" in the grid, the soluti'on. is
advanced by marching inwards, assembling only one row of elements at a time. While
marching in the general flow direction, the most recent values of q at the preceeding
nodes are utilized. This process is nothing but a horizontal line successive overrelaxation
(HLSOR) ;schcme applied to a C-grid. |

In this instance, preliminary results for subsonic (M_= 0.72) flow over the
NACA‘ 0012 show good cogclation with‘thc reference stream function case (Figure
3.3). “ ) N p

Further work was not carncd out after this stage, since this HLSOR method

" as apphed to the second ordcr equation contains no advantages compared to the first

order vorticity equation. _

tooh -



CHAPTER(4
THE STREAM FUNCTION AND PRESSURE EQUATION ALGORITHM

The first order vorﬁci% scheme, although §_uccessful for transonic flows over
isolated airfoils and unchoked cascades, cannot be applied to choked cascades. The
second ordgr method presented in Chapter 3 seemed to provide a compromise but was
shown to be re;uicted in its applicability and presents no partisular advantages.

In this &chapter, a third approach is undertaken for the same problem, whereby
the stream function equation is solved in conjunction with a pressure equation. Knowing
thé flow velocities from the stream function field, as well as the pressures, a.n energy

equation is used to determine the value of density.

4.1 = Description of Algorithm

L

Let us consider the two-dimensional form of the Euler equations for steady,

inviscid flow in the absence of body forces:

puy, + pvu, = -p, ' | ‘ ) (4.1a)
puv, + pvvy = -p, (4.1b)
Recalling the definition of the stream function, \¥':

u = -1:%3;-' , v o= -{-%\ii 4.2)
Y ) P :

Using these, equations (4.1a) and (4. ll;) can be rewritten as:
pptf=0 | ‘ ‘ (4.32)
py+g =0 (4.3b)

whefc f = ‘I’yux -‘quy
8= Py - ¥y,

<
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Adding the x-derivative of the X-momentum equation to the &-dcrivativc of the
y-momentum equation and applying the Method of Weighted Residuals to the resulting
Poisson equation yields:

[[% @, +0,+®,+p)da =0 ‘ @4
Upon integration by parts, we obtain:

[[ov @, +0+ W, 60, + 2008 = [Wo,+Dey- 0 +01ax) @5)
Equation (4.5) is used to evaluate the pressure distribution oncg the ¥ field has been

established. Subsequently, the density is obtained from the conservation of enthalpy

relationship:
H, = CONSTANT = CT, (4.6)
or, for an ideal gas,; l
2 2 ‘
H, = (.;J_l) (%) + 22Y _ CONSTANT 47

Since the enthalply is constant in the far-field, the density at an arbitrary point is
determined from equation (4.7), i.e., H°'= H_ = CONSTANT.
The overall procedure for this scheme is shown on the flowchart of Figure

4.1. : , ' . .
4.2 ' Boundary Conditions for Isolated Airfoils
Once again, a C-grid of the type illustrated in Figure 3.2 is employed, The -

boundary -conditions for ¥ are identical to those stated in section 3.2. The pressure

boundary conditions are as follows:

onABand BC . : p= P ', (4.8a)
on AC : P = unknown, but contour integral vanishes (4.8b)
~on airfoil : p = unknown, but contour integral vanishes (4.8¢)



28
As in the second order q tase, the contour integral in equation (4.5) vanishes
even on boundaries where the pressure is unknown because the governing equation

itself is identically satisfied.

R Y

4.3 Numerical Results

. Mach number distributions obtained from the present method for the NACA

0012 are illustrated in Figures 4.2 and 4.3, for free-stream Mach numbers of 0.80 and

XSS respectively. Plotted against them are the reference results from a velocity potential

and an Euler equation solution. The correlation is s;:cn to be good, verifying the

* . applicability of the method. The only drawback of this schcm‘c is in its relatively slow

‘convergence rate when compared to, say, the velocity potential equation. This is due to

the slow convergence of the pressure field. Research is currently underway to accelerate
the solution.

Figure 4.4 compares the prcs’surc coefficient distribution at Mach number

0.80 obtained with the present scheme with the experimental results given in ref. [27].

. The shock is displaced downstream compared to the experimental data but the correlation

* is remarkable given that the analysis does not account for the boundary layer effect.



CHAPTERS
” . ~ 'CONCLUSIONS -

. This Tth1s has’ addresscd and solved some of the problems that comphcate
fhc use of thesstream function approich for the solution of 1nv1sc1d transomc ﬂow
problems. A finite element line-implicit computational algonthm has been developed
‘which reduces the non;bex: of iterations required for convergence of the nonlinear
problem. The algorithm proves panicuiar!y appropriate for cascé‘do problems. It has also
subsequentl); found.épplioa:tions in other approaches such as the \;elocity‘pot‘en'tial. '

Secondly, three distinct methods of tackling the doublé-valuednes§ of mass
flux for transoruc flows havé béen proposed with two of them successfully applied to

the solution of. cxtemal and internal flow problcms

.
ve



&
.

(1]

{2

(31

4

51

(6l

(7]

‘.

-

-[8]

,* | o

Murman E.M. and J D. Cole, "Calculation of Plane Steady Transomc Flows." ‘

AIAAM Vol.9, 1971(pp 114-121.

Murmar;, EM, "Analysm of Embeddcd Shock -Waves Calculated by
Rclaxauon Methods "AIAA_,IQnmal, Vol. 12 No. 5, 1974, pp. 626-632.

4

NeWman 'P A.and J.C. South" "Influence of Nonconscrvative Diffcrcncing on

Transonic Strcamlmc Shapes, AIAA_Journal, Vol. 14 No. 8, 1976, PP.

1148—1149 “
\" |
& -

Pearcy, H,"H., “The Aerodynamic Design of Section Shapes for Swept
Wings,"' A_dmg_gs_m_AgmnammLngm, Vol. 3, Pergamon Press, 1962.

thtcomb RT and R. Clark "An Airfoil Shape for Efﬁment Flight at

’ Supercrmcal Mach Numbers," NASA’I’M X-1109, 1965.

Bauer, F. et al., "Supercritical Wing Sections,” ' '
.o < - I S t’ ems Vol. 66, SPﬂngcr-Verlag, 1972. .

-

) Jaméson, A., "Numerical Calculation of Three Dimensional Transonic Elbw

E - Over a Yawed Wing," Proc, AIAA Computational Fluid Dynamics Conf,, Palm

Springs, Calif., pp. 18-26, July 1973,

.ol .

Steger, J.L.-and H. Ldm'a;x, "Transonic Flow About Two-Dimensional Airfoils

) . by Relaka.tion\Procpdure's,'-'.AlAA_J_Qnmal, Vol..‘lo; No. 1, 1972, pp. 49-54.

4




31

9] Bailcy,'F.R. and J.L. Stc_gcr,"'Relaxation Techniques for Three-Dimensional

= ' . Transonic Flows About Wings," AIAA Paper 72-18%%¥an. 1972,
. - . : .
. il ] f10]  South, J. C" and A. Brandt, "Apphcauon of a Muln-Level Grid Method to

o ' Transomc Flow Calculauons," Transomc Flow Problems i in Turbomachmery,

(cd T.C. Adamson), Hermsphcre Publ. Corp., 1977, pp. 180 208.

. .
)
-~ - .
N ’
. N N ¢
- o * > . ~
» .

o C[11] Balﬁaus, W.F. et al,, "Implicit Approximate Factorization"Schemes for the '
N ‘ lEfficient Solution of Steady TranSonic Flow P_roblems," Proc. 3rd AJIAA
€ - T Computional Fluid Dynamics Conf., Albuquerque, N.M., June 1977, pp.
| .- 2134, i
¢ ‘ _ J
v . I3 A ) .

-~

"~ [12]  Eberle, A.p"Eine Method Fin?ier Eler;xcnts Be@chhungdcr Transsonicken
N Eoté;ntigl-smpng un Profile," MBB 1352 (0), 1977. |
R R 3
f13] Hafez,'M. et al., "Artificial Compressibility Method for Numerical Solutions of
, Transonic Full Potential ,Equ'ation,"' AIAA Journal, Vol. 17, lh\Ib. 8, 1979,
A pp. 834844, -

r

‘ . ' .
Lo ’ * ’
114] Holst, T.L. and W.F. Ballhaus, "Fast’ Conservanve Schemes for the Full

. Potcnnal Equation Applxcd to Transomc Flows," A]AA_.[Q_umal Vol.- 17

"No 3, pp. 145-152, 1979, ) |
Hge i

1‘0 . . ’ ) 1y - . .« 2
* : 1
. [15) Purvxs, Iw. and J.E. Burkhalter, "Prediction of Cnncal Mach Numbers for

Storc Conﬂguranons," AIAA_,[QumaLVol 17, No ll 1979 pp,»-l’f‘m 1177,

4

i



(e *

un

[18] -

[19]

- 32.
Emrhons HW., "The Numerical Soluuon of Compressible Fluid Flow
Problems,” NACA TN 932, 1944. , o

Hafez, M.M. \‘ld D. Lovell, "Numerical Solution of Transonic Stream .

Function Equation,”" AIAA Journal, vol. 21, No. 3, 1983, pp. 327-335.

Jameson, A., "Transonic Airfoil Calculations Using the Euler Equations," |
Numerical Methods in Aeronautical Fluid Dynamics, (ed. P.L. Roe), Academic -
Press, London, 1982, pp. 289-308. '

[y

Habashi, W.G., "Potential Flows," Finite Element Method in Fluid Mechanics

. and Heat Transfer Course Notes, Concordia Umvcrsnty -Pratt and Whnmey

- [20]

[21]

[22]

l'—-“
¢ ’
&|

o
I{ir,, N

Canada-Purdue University, 1983.

w0

Habashi, W.G. and M.M. Hafez, "Finite Element Stream Function Solutions of

Transonic Rotational Internal and External Flows," Journal of*Mumerical

Mﬁmmmmmmm Vol. 1, No. 2, 1985, pp. 127-144.

H

Burden, R.L., J.D. Faiges and A.C. Rcynolds, Numencal Analysis, Prindle,
Weber & Schmidt, Boston, Mass., 1981

Hafez, MM., J.C. South and E.M. Murman, "Artificial Compressibility
Methods for Numerical Solutions of Transonic Full Potential Equation,” AIAA"
Journal, Vol. 17, 1978, pp. 838-844,



33

~

1y .

[23]- Habashi, JW.G., E.G. Dueck and D.P: Kenny, "Finite Element Approzich to
‘ Compl:éssor Blade-to-Blade Ca,lscade Analysis," AIAA Joumnal, Vol. 17, 1979,
Pp. 693-698. ’ '
”1‘24] " Deconinck, H. and Ch. Hirsch, "Finite Blefncnt Methods for Transomdc .
Blade-to-Blade Calculation in Tu;bomaqhines," ASME Joumnal of Engineering #
/ . - .
for Power, Vol. 103, 1981,.pp. 665-667.
[25] - Habashi, W.G. and P.L. Kotiﬁga, "Numerical Solution df Subsonic and
- Transonic Cascade Flows," International Journal for Numerical Methods in
Fluids, Vol. 2, 1982, pp. 317-330.
{26] ~Habashi, W.G., (Editor), ‘Advances in Computational Transonfcs, Pineridge
! . o .
Prcgs, Swansea, U.K., p. 680, 1985.
. . /
(271 Thibert, J.J., M. Grandjacques and L.H. Ohman, "NACA 0012 Airfoil,"
. Experimental Database for Computer Program Assessment, AGARD Advisory
: ' " )
Report, No. 138, 1979.
g
‘ - »
¢ A
-
‘l



"ry

[

D I G G G T S I RS SEND SN SRS ALY TR S aab otmw Gy
- ,

!

| .
_

|
!
|
_

5

Mass flux.

2

3

v

1

.

Mass Flux vs. Mach Number

ig. 1.1




~ - e mr L e pRRSTap T F, WITOLRS 4 .,;7‘,“..‘_“'-:- ,,nnr_”'y‘:‘ _w;.,.
. N . yAm e e, T - : L a5 . £ o LI B S A Sy
BET T 0 [ . LA TN . PR N N .
L . : ) i 5
‘ ' h ' . 3 v
: ‘ - . . - 3 .
‘ ' ' ' 35
fet .
' LY Rl ) . . .
; ' 0 st
3 - - - ° N
\ ~ . . y . X , ’ . o )
Ll . y
N . . 4 v
4 - * -~ 4 » N .
= ’
’ . ,
.
I N f ‘ . o . ) )
‘. \' . ‘
' - . R - .,
. . - , .
e -
" . . . ' )
.r" . R
: . ) . ] o .
I3 . )
o .
oy \ .
¢ - . N
‘ M . N . N v
! . - Y .
. .
b : ' ' . \ 2} .
A N r 5 v
’ El N .
-
C ACtU&' element (

e

ok
.

e . 5 * 7 . . o
X o ' ) ' . . ) [
2"' ! . ‘ ¢ -— - N . N N :
g':u ' : . ' ' ) ¢ ’ + " . ‘ ) .. R ‘,g
fi’" ) ” ’ . : . . . ' X
L R . . b . ‘ ‘ ' o
o o . ‘ o e
G S | -elemen o o
v ' S ' | : : : ‘ L
7 Lol . . . *

‘

.
o
A,

5

=
®

by
o
>
(2]
e
B,
8.
a
]
o
2

.
3
. '
-
]
. .
i
.
¢ .
s s
- s,
vt had v
p K hbAL A L B

. , - . . :i‘ ,‘ , L .
.
e g D - N

Lae -
,»\! K thH

: o N K - L
sy s WMM‘M TN L mm;ammmmm@w

it &&m PR ";,m&xwﬁz GEN



36

U1 . } ‘ ' . D1'

w ‘Suéers_onic':' node __ @ | @ ; |
U2 T~ — D2

U3 — I p3

. .~ Double  Zero .

Fig.13 ¥, for a Field Solver



37
i
n
’ I
. ]
2
; 1 :
Station o ' - direction
number . - ‘ ‘ of
’ | sweep
SI I' I . /
(1) at airfoil <
F—e—e—=e > 06— ¢
1
(2) all other stations

- . -

O unknown value
¥ dynamic boundary' condition ‘
O Dirichlet boundary condition ’ .

_Fig. 2.1 © Zebroid Method for Isolated Airfoils




P

38

direction
E F G H ofeven
n lswecp
2
v T
1
Station A - B c D girection
numtger of odd
, sweep
(1) at airfoil ) .

!
!

O unknown value ‘
X dynamic bou& condition

(] Dirichlet boun

Fig. 2.2

condition

Zebroid Method for Cascades



39
Isolated Airfoil
Sl ¥=1 c
linar linear
' variation ¥-0 , variation
.  of¥ ¥ =0 j:\? —_ ¥=0 of ¥
) . B
Staggered Cascade 0
F ¥+l ,
- A2
X H ¥ +1 G
: ¥ =1 (on blade) : ‘
o ¥ is unknown . . ¥ is unknown
? ‘. ¥ = 0 (on blade)
: ' . ;f D
: | *
CAL |
_ . Fig. 2.3 Boundary Conditions for Stream Function - . -

A . . -~



¢

MachA Number

Fig. 2.4a

1 Il S

o - 3
-3.0 -2.0 -1.0 o 1.0 20 3.0 4.0

Chord Length

Mach Number vs. Percent Chora for NACA 0012 Airfoil, ¥ Solution

Mach Number

'Y { 1 1 1 j
0 20 “ 0 0% 1w
N oo !
Pergont Chere

Fig-2:4b  Mach Number vs. Percent Chord for MCA Cascade, ¥ Solution,

M,.= 0.76 .. o
o .

40



MACH NUMBER

1.4

@ (Ref.[26])

1 v
021
0.0 | — T pmimey— T )
0. IQ 20 30 40 50 60 70 80 90 100
PERCENT CHORD ‘
' ¢
Fig.24c  Mach Number vs. Percent Chord for NACA 0012 An-fonl

¥ Solntnon, M= 080

“»

41 -

Y .



0.4 - . ® (Ref[26])
_____ Y
0.2 -
0_0 .l‘ T 1 1 T T. T . T | - 1
0 10 20 30 40 50 6 70 8. -9 100
' : PERCENTCHORD
\

~ - % ' . . 42

L g 244 MachNumber vs Percent Chord for NACA 0012 Airron,

\ ¥ Solutlon, M., =0.85



1]
.
T4
_ .
,
.
A\
.
£ N
3
.1
‘
| ‘
.
:
.
, _
®
: n
.
.
. ‘
+ .4 ~
‘ ,
, Fig. 2.5
\
. ‘
‘

i




44

' M&._Me_m (Rcf[19])

LEGEND!

— s e -VLSOR

First Degree Soiver® ©
- = = =Second Degres Sotver
— < = Zobrold

ol

o 100 | 2oo:"’3oo . 400 500
| No.  OF ITERATIONS Rt

P . Fig.2.6  'Ratesof Convcrgence of Various Solvers
: -at M 0.85, NACA 0012 G

.



iV

. Solve eq. (1.7)%
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