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ABSTRACT

Experimental Evaluation of Distributed
Rollback and Recovery Algorithms

Chris Passier

One of the aims in the design of Distributed Ccm'ptxter‘Systems (DCS)
is to achieve relatively better system reliability. Software
reliability is an essential part of the total system reliability. One
way to gain software reliability is through the use of rollback and
recovery, a method of fault tolerance. The bulk of the literature
pertaining to distributed rollback and recovery is more theoretical than
practical, in nature.

We have designed and implemented a Rollback and Recovery Kernel
(RRK) , used in the experimental evaluation of two rollback and recovery

algorithms. In this thesis, we discuss same of the critical design

issues and implementation details which must be addressed in a work of

this kind. The implementations of the rollback and recovery algorithms
are evaluated through the use of a distributed application program.
Results of the experiment are presented and interpreted.

Distributed computers are often crucial to such real-time

applications as avionic control, nuclear power plants, and various other

process control tasks. The importance of these tasks requires that’

real-time systems be designed to gquarantee very high reliability. With
this in mind, we examine the real-time computing envirorment with
respect to the use of rollback and recovery as a means of providing
Ljeal-tizre software fault tolerance. This aspect of the thesis needs
further study.
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Chapter 1

Introduction

1.1 Software Fault Tolerance

The reliability of computer software has long been of interest to
computer scientists. Essentially, it is the presence of residual design
faults which can cause a software to be considered unreliable. To make
more reliable software, either the occurrence of these faults should be
prevented or techniques must be incorporated into the software to ensure
an acceptable level of performance in the presence of such faults.
These two approaches have been termed "fault intolerance" and "fault
tolerance" respectively [3].

Fault intolerance is practised o' all coamputer programmers, to
varying degrees. Through various software engineering methodologies, we
try to produce programs which are free of faults. However, even the
most carefully planned and tested systems are destined to contain some
residual design faults. Only through rigorous mathematical proofs of
correctness can a software be guaranteed to be void of design faults.
Such proofs, due to their difficulty, are only feasible for very small
programs. Therefore, for most software systems, fault tolerance
techniques must be added in order to achieve a greater reliability.

Two methods are used to implement software fault tolerance,



"forward error recovery" and "backward error recovery".

In forward error recovery, the system attempts to cancel the
effecl;s of a fault which has occurred, by following alternate modes of
camputation. The most common approach used for this method of fault
tolerance is N-version programming.

In N-version programming, a specified task is computed
concurrently by two or more programs of independent design. The results
of the computations are frequently compared and scme criteria (e.g.
"majority rules" or some other easily implemented criterion) are used to
determine the correct result. With this arrangement, it is presumed
that if a fault should occur in one of the software modules causing an
error in its computation, its result would be rejected on the basis of
it being different from the others'.

The advantage of this method 1lies in its uniform speed of
camputation in the presence or absence of faults. Not surprisingly,
this is the chosen fault tolerance method in many critical real-time
applications. The disadvantages of this approach are the high cost of
the additional hardware modules needed to run the different versions of
software, the logistics of making sure that the software modules are
properly synchronized into identical communication and computational
patterns, and the difficulty of developing programs of independent
design.

The last point is perhaps the most important since recent
publications have pointed cut that making programs of truely different
design is difficult, and that some of the same design faults appear
coincidently in independently designed programs [17,18]. Therefore, the
robustness of fault tolerance through N-version programming is
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questionable; it is conceivable that two versions harbouring a common
design fault could override a correctly executing third version.

In backward error recovery, the state of the system is saved, at
regular intervals, in stable storage structures c;alled "checkpoints".
If a fault occurs and the system fails, the state can be restored to an
error-free condition by selecting and loading one of the saved
checkpoints and restarting the system. This action is referred to as
"rollback and recovery". Following the rollback, during reexecution,
an "alternate software module" may be substituted for the faulty
"primary module™ as is described in the "recovery block" model [14]. If
the alternate software module should prove to contain the same or
another design fault, a second alternate, of more primitive design, may
be employed. This second alternate would offer a degraded service but
would be guaranteed to produce a satisfactory result.

The time required to checkpoint, select and load a checkpoint, and
reexecute the rolled back computation is a definite overhead incurred
in this approach. To minimize the checkpointing overhead, a process may
record only the changes made to its data rather than saving the full
process state. Upon rollback, these changes would be undone to regain
an error-free state. Alternatively, if there is a greater knowledge of
the program behavior, optimized checkpoints may be used which contain
only the data which will be altered between checkpointing actions.

The checkpointing frequency is application dependent. A suitable
rate is achieved by weighing the need to minimize the amount of
camputation to be rolled back, or "rollback distance", against the
overhead of checkpointing. The more frequent the checkpointing action,

the shorter will be the distance from the fault to the last valid




checkpoint.

The advantages of the rolback and recovery approach to fault
tolerance are that no extra hardware need necessarily be added, and the
detection of faults can be actively pursued through special-purpose
fault detection software.

In this thesis, we are concerned with rollback and recovery,

particularly in the distributed processing envirorment.

1.2 Fault Tolerance in Distributed Systems

A Distributed Computer System (DCS) is made up of a finite number
of sequential processes, which communicate only via message passing.
This interprocess communication takes a finite, but variable, amount of
time. The processes do not have a shared memory, nor do they have a
global clock.

Like all parallel processing arrangements, a DCS offers a potential
speedup in computation. In addition, a DCS adds the ability to connect
geographically separate' processors. This latter characteristic enables
a DCS, with a dynamic task allocation mechanism, to exhibit a graceful
degradation in computation upon the occurrence of such hardware related
faults as local power failures. However, for the purpose of this
thesis, it is assumed that the hardware is dependable and that the
nurber of processes remains static for the duration of a camputatior.

In distributed systems, the faulty state of a process, may, through
the transmission of erronecus data, contaminate the computations of
other processes. 1In this case, more than one process may have to be
rolled back in order to undo the effects of the fault. If the

checkpointing actions of the different processes are carried ocut in an



unrelated manner, the rollback of a process might result in an avalanche
rollback of the entire system, known as the "domino effect". To
illustrate this effect, we refer to the Space Time Model (STM) [1],
shown in Fig. 1.1. Here, the progression of three processes is depicted
along the time axis and the messages exchanged between them are
represented by directed arrows. If, due to the detection of a fault,
process P2 should roll back to its third checkpoint, it would force
processes Pl and P3 to roll back, to their second and third checkpoints
respectively, since the messages M8 and M9 may have been sent in error.
However, due to the interaction between P2 and P1 through messages M6
and M7, P2 is forced to rollback to its second checkpoint. This
continues until, in this case, the three processes are forced to roll
back to their initial states, undoing possibly a large portion of valid,
error-free computation. A systematic study of the causes of the domino
effect, as well as a summary of the approaches which can be used to
prevent it, are given in [23]. 1In general, to prevent the domino effect
fram occurring, the checkpginting actions of the processes must be
coordinated in some manner in order to form consistent global states
called "recovery lines", which can be used during subsequent rollback
operations to minimize unnecessary rollback.

Distributed rollback and recovery algorithms can be classified into
two broad categories, "preplanned" and "unplanned" recovery algorithms
[27]. In the former case, recovery lines are cbjectively formed at the
time of checkpointing, while in the unplanned case a recovery line is
deduced at the time of rollback ard, as we have seen, this may result in
the damino rollback effect.

Ancther way in which these algorithms can be classified is based
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Figure 1.1 Uncoordinated checkpointing in a distributed system



on their mamner of checkpointing. The checkpointing can be enforced
intrusively or non~intrusively. When done intrusively, checkpointing
perturbs the underlying application program. For example, in Randell's
"corversation" scheme [22], checkpoints are taken in a predetermined
synchronous manner and inte.rproces.s cammunication is restricted to pre-
set patterns. While with the non~intrusive variety of algorithms,
checkpoint creation is coordinated dynamically with no restrictions on
interprocess communications.

The rollback amd recovery algorithms studied in this work are of
the preplanned recovery, non-intrusive checkiwninting variety.  These
algorithms create checkpoints dynamically, in response to application
messages, and are hence referred to as '"dynamic checkpointing"
algorithms.

1.3 Real-Time Computer Systems

Nowhere have camputers become more indispensable than in the real-
time domain. The evolution of real-time computing technology and, more
specifically, Real-Time Distributed Computer Systems (RTDCS) has not
only enabled the solving of problems which are too complex to be handled
by conventional electrical or pneumatic analog devices, but has
actually opened new avenues in the fields of science and engineering
[24]. Today, RIDCS is crucial to such applications as avicnic control,
hospital life-support systems, military systems, nuclear power plants
and various other process control tasks.

The importance of the tasks to which real-time systems arc
typically assigned require that they be designed to guarantee very high
reliability. As was outlined earlier, both fault intolerance and fault
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tolerance must be practised in the design of reliable software. In the
real-time domain, both of these design approaches are made more
difficult by the introduction of timing constraints.

In the non-real-time enviromment, the execution speed of a process
need not be considered in order to determine its validity. The validity
of a sequential program can be deduced from the static program text and
the set of possible input data. With the addition of synchronization
signals and mutual exclusion the validity of coordinated program
modules can be similarly established. No assumptions about the speed of
execution need be made other than it being greater than zero. 1In the
real-time enviromment, however, a computation is deemed valid if, and
only if, the result is correct and it is produced on time [26].

This timing constraint, and the fact that real-time systems often
carry out several tasks concurrently (9], requires that, in attempting
to design fault-free real-time software, i.e., fault intolerance, one
must take into account such things as the raw processor speed, the
processor scheduling policy of the operating system and, in the case of
RIDCS, the delay of interprocess communications. These additional
considerations make the designing and the debugging of real-time
software especially difficult [12], and has resulted, for the most part,
in ad hoc solutions for individual design problems [20].

Any approach to fault tolerance in this enviromment must cope with
the same design o>roblems as in the case of fault intolerance. With
respect to rollback and recovery, the real-time systems must be able to
detect a fault and reexecute the computation before a response is
required by the controlled cbject. The matter is further complicated by

the fact that any errcnecus results which have been output to the
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enviromment cannot be rolled back, and the resulting effects cannot be

undone.

1.4 outline of the Thesis

In this thesis, we are more interested in the practical, as opposed
to the theoretical, aspects of rollback and recovery as a means of
software fault tolexrance.

In the non-real-time enviromment, we first describe (in Chapter 2)
a Rollback and Recovery Kernel (RRK) designed to offer the following: a
practical test-bed envirorment for the implementation and testing of
dynamic checkpointing algorithms; a flexible rollback and recovery
software which may be easily used by future application programmers.
Ironically, before one can use a fault tolerant RRK one must get the
bugs out of it. For this purpose, we developed a distributed version of
J.H. Corway's "Game of Life" [11], called "N-Life". This test-bed
application program proved to be a flexible, and an easy to use,
debugging and testing tool (Chapter 3). We go on to describe the
camparison of two dynamic checkpointing algorithms, RLV (23] and BCS
[5], to gain insight on their relative performances as well as to gain
some experience on the overhead due to rollback and recovery in general
(in Chapter 4).

With respect to real-time camputing (in Chapter 5), we offer a
brief discussion on the more salient aspects of this enviromment, in
particular with respect to rollback and recovery as a means of software
fault tolerance. We also introduce a new model for real-time fault
tolerance, the "Coexistence Model". The impetus for the latter is what

is seen as an ineffective treatment of the occurrence of sporadic
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events,
We end the thesis (in Chapter 6) with some conclusions, and

suggestions for future work.



Chapter 2

Design of a Rollback and Recovery Kernel
for a DCS Environment

The primary goal of this work is to construct an envirorment in
which we can implement and experimentally compare rollback and recovery
algoritlms in order to gain information on their relative performance
characteristics. This work marks the beginning of a series of projects
to be carried cut in the area of distributed computing. Future
endeavors will incrude research in distributed debugging, real-time
fault tolerance, and discrete event simulation. Since some of these
efforts will build upon what is achieved here, a second objective of
this work is to design a Rollback and Recovery Kernel (RRK) which could
be used in future applications.

In this chapter, we first present the design enviromment of the
RRK, namely the chosen DCS architecture and OS software. Then we
describe the particular type of rollback algorithms to be implemented.
Finally, the top-down design considerations used in the design of the
RRK are systematically presented along with the solutions adopted in
this thesis.

11
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2.1 Design Environment

The DCS Architecture

The distributed system architecture, used for this work, is
camposed of twelve Sun 3/50M-4 diskless workstations connected through a
high~speed local area network (IAN) to a central file server.

Each diskless workstation is based on the Motorola MC68020 32-bit
microprocessor and the 32-bit VMEbus, and is equipped with 4 megabytes
of RAM. The non-volatile memory is provided by the remote network file
server, the Sun 3/160s, which can be accessed by all the nodes in the
system. Interconnecting the workstations and the file server is a 10
Mops. Ethernet. Fig. 2.1 shows a block diagram of the system.

This, diskless workstation, type of arrangement has become popular
with a range of network-based research applications. The centralized
file server avoids the problem of each node in the system maintaining
its own file systems and thereby duplicating resources, while the high-
speed LAN enables low file access times.

Same aspects of this architecture are of particular impcrtance to
our RRK design. "Internet" is a multi-network communication protocol
developed by the Defense Advanced Research Projects Agency (DARPA).
The inter-node comunication in the Sun system is based on the internet
concept. In this protocol, each inter-node communication is accompanied
by the translation of a network-node-name to an internet address. The
tables needed for these mappings are maintained in a "Yellow Pages"
read-only database. In our diskless workstation enviromment, the lack
of disk space on each node requires this database to be kept exclusively
on the network file server. The unfortunate result of this arrangement

is the creation of a communication "bottle-neck" at the point of access
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to the Yellow Pages database. 1Its effects are further discussed in
Chapter 4.

Also, the workstations have no local stable store which could have
been used for the saving of checkpoints. Since our primary goal was to
gather performance measurements, we did not want to exacerbate the
bottle-neck situation mentioned above by making the file server also
handle the saving and retrieving of checkpoints. We therefore decided

to use the workstations' own volatile memories for the storage of

checkpoints.

The DCS System Software

The s/stem software used in this work, Sun UNIX, is an enhanced
Berkeley (4.2BSD) release. Berkeley UNIX is recognized for its support
of standard networking rrotocols such as the DARPA internet family of
camunication protocols.

Inter process communications (IPC) are realized through ''sockets".
Sockets can be thought of as a generalization of pipes, a more familiar
UNIX concept. Sockets have the advantage of being able to carry data in
both directions and the ability to connect processes running on two
different machines. With sockets, one can use both the Unacknowledged -
Datagram Protocol (UDP) and the Transmission Control Protocol (TCP), at
the transport layer.

UDP or datagram sockets enable a fast but unreliable form of
cammunication which retains message boundaries. On the other hand, TCP
or stream sockets enable reliable FIFO message passing, but may take
longer than datagram messages and do not retain message boundaries.

Ancther IPC facility, available in Berkeley UNIX, which is useful
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to researchers is the "select" system call. Among other things, this
select facility allows one process to test for the presence of input
from one or more sources before actually attempting to read any data.
BSD UNIX also offers a more robust "signaling™ mechanism. Signals
are modeled after hardware interrupts, and this mechanism permits
processes to detect and handle signals at any time. The signal

handling mechanism can handle multiple signals.

2.2 Type of Rollback and Recovery Algorithms Implemented
The two algorithms implemented in this work are the RIV algorithm,
due to Radhakrishnan, Li, and Venkatesh [23], and the BCS algorithm due
to Briatico, Ciuffoletti, and Simoncini ([5]. Both algorithms are
dynamic checkpointing algorithms, as classified in Chapter 1. These
algorithms place few constraints on the distributed application. The
application program is viewed as a collection of interacting
asynchronous processes, which have the ability to roll back their
camputations. A reliable and FIFO message passing mechanism is also
assumed. ‘
Two sorts of checkpoints are taken by these algorithms, Self
Induced Checkpoints (SIC) and Response Checkpoints (RC). SICs are
established in response to an explicit request from the application
program. The application makes this request at its own convenience,
with no knowledge or concern for checkpoints taken by other processes
in the distributed system. RCs, on the other hand, are taken
implicitly by the RRK upon receipt of messages containing information
about newly established SICs on other processes. The RCs are taken

transparently without the awareness of the application program. The
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rules governing the creation of RCs are specified by the particular
algorithm being used (e.g. RLV or BCS) .

The characteristics which distinguish one dynamic checkpointing
algorithm from another are found in their rules for RC creation, the
manner in which the algorithms use SICs and RCs to form their preplanned
recovery lines, and the way in which they execute their rollback and
recovery upon detection of a fault. The latter includes the use of some
sort of special rollback control messages.

In Fig. 2.2, a ST™M is shown where three processes exchange
application messages. Here, the SIC established by process 2 and the
resulting RCs on processes 1 and 3, due to messages M6 and M5
respectively, form a valid recovery line. This recovery line may be
used by the system during rollback.

Two typical characteristics of dynamic checkpointing algorithms are
exhibited in this figure. Firstly, we see that RC checkpoint creations
coincide with the reception of certain application messages. Secondly,
the figure shows that some messages (e.g. M3 and M4) intersect the
recovery line. These messages would not be re-sent upon rollback to
this recovery line. However, the notion of their being sent exists in
process 1. To retain consistency among the rolled-back processes, these
messages are stored in a checkpoint of the receiving process (e.g. the
SIC of process 2) to be "played-back" during the rollback procedure.

It will be seen how these characteristics affect both the design
of the "K described in this chapter and the choice of a test-bed

application described in Chapter 3.
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2.3 Design of the RRK

Ideally, the RRK should be considered by the user as a module 'of 0S
software, hence the usage of "Kermel" as in UNIX. In this work, we have
endeavored to make the RRK a convenient receptacle for the dynamic
checkpointing algorithms mentioned earlier, while keeping it easy to use
by future users.

In order for the RRK to determine when an RC is to be taken, same
control information reflecting the global checkpointing status must be
conveyed from one process to another. With the transmission of each
application message in the system, the RRK at the source node of the
message piggybacks control information just prior to the sending of
that message. The RRK at the destination node strips-off this data
before delivering this message to the local application process.

This piggybacking/stripping-off behavior necessitates the RRK to
be logically situated between the cammunication layer and the
application program. There are basically three ways in which this
could be implemented as is shown in Fig. 2.3.

(i) One approach would be to have the RRK exist as a unique process
on each node in the system (Fig. 2.3a). This arrangement would require
the creation of additional communication channels to integrate the RRK
and a message routing protocol which may be difficult to hide from the
application. Also, since a message passed between two nodes in the
system would be associated with multiple process switches in the two
CPUs, the added time delay would be a definite overhead.

(ii) A more desirable tack is illustrated in Fig. 2.3b. In this
case the RRK is integrated as part of the existing OS software (i.e. Sun

UNIX), where it could have easy access to the lower levels of the
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Figure 2.3a RRK as a separate process

Application

Application Application

Program Program Program

) () )
)

C Communication Layer
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Figure 2.3c RRK appended to application
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cammnication layer and function transparently with respect to the
application. This would involve a major development, involving the UNIX
source code‘, which we chose to defer to a later stage.

(iii) In our design a copy of the RRK software is appended to each
participating application process as is shown in Fig. 2.3c. In terms
of true fault tolerance, this option is not very robust since execution
errors causing the OS to interrupt the application may also result in
the RRK itself being aborted. However, for the purpose of performance
analysis, this is sufficient to reveal the overhead cost in rollback and
recovery, bearing in mind it could be reduced further if approach (ii)
is followed.

Fictitious faults are "detected" by our own Error Detector Médule
(EM) which then alerts the RRK through a user-defined signal. This
arrangement serves the purpose of a performance analysis enviromment,
which is our primary goal.

As far as making the RRK into a resident facility that could be
used by other application programmers, we can ask the féllwing: What
is a reasocnable amount of effort to be expected of the application
programmer, in order to make his program fault tolerant? Should it be a
simple matter of him pushing a button marked "Fault Tolerance"? Or,
should it be that somecne wishing to use this facility be well-versed in
the intricacies of distributed fault tolerance and on whom we can place
the lion's share of the fault tolerance programming responsibilities?

- Neither extreme seems feasible. The, oversimplified, first
approach would require a very general RRK design. In computer science
generality begets enommity and, in this case, would result J.n a RRK

which would cause an unacceptable slow-down in the execution of the
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application. The other extreme would result in only a select grcup of
users being able to use the facility, wﬁich is not our intent.

In ocur design, an effort was made to make it possible for the
application programmer to use the services of the RRK through a
relatively simple and well-defined procedure, while still retaining a
rollback kernel which could perform efficiently. This was achieved
through a breakdown of the design into two sections. The first is
composed of those parts which are application invariant (the RRK
proper). The other deals with the tasks to be carried out by the user

in order to link his program to the RRK.

2.4 Application Invariant Part of Design

In this section we find those parts of the design which are
application invariant. The application programmer wishing to use the
RRK facility treats this as a "black box", but he respects the proper
interface requirements.

The invariant part is made up of two modules, the Checkpointing
Module (CM) and the Rollback and Recovery Module (RRM), as shown in Fig.
2.4. Messages are sent onto the commnication layer via the M. All
incoming messages are first filtered by the RRM, for rollback control
messages. The application messages are forwarded to the QM through the
RRK's Input Channel Buffers (ICB).

As seen in Fig. 2.5 and Fig. 2.6, both modules (M and RRM)
contain portions of Algorithm Specific software, symbolically denoted
as AS. This software contains the constructs which are changed when
implementing the different dynamic checkpointing algorithms (e.g. RLV

and BCS). Therefore, the AS software is algorithm specific hut

- |
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application invariant. The AS software will be shown in more detail in
Chapter 4.

The M, shown in Fig. 2.5, is activated by the application program
through one of four function calls: Kwrite, Kselect, Kread and Chckpnt.
The first three perform essentially the same functions as their
namesakes (Write, Select and Read) as far as the application is aware,
and are infact substituted for the originals within the application code
on a one to one basis. The actual role of these RRK interface functions
will now be briefly outlined.

Kwrite accepts messages from the application program, to which it
appends the checkpointing control information before sending it on to
the camunication layer. Depending on the rollback algorithm in use,
Kwrite may make use of AS functions, as will be seen later.

When Kselect is called, it examines the ICB for the presence of
messages and the source ID of messages, and then relays this
information on to the application program.

If the application chooses to read any of the messages in the ICB,
it executes a call to Kread. This function strips off the appended
control information. In conjunction with AS software, it also
determines if any RC checkpoints are to be taken. The AS software also
decides if copies of this message should be stored into previously
saved checkpoints (e.g. in the case where it crosses recovery lines).
Kread finally delivers the application's portion of the message to the
application program.

Chckpnt is called when the application wishes to take an SIC.
More information on the use of the Chckpnt function is found in the

following section.
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When a checkpoint is to be taken, whether it is a SIC or a RC, the
application's process state must be saved as part of the checkpoint. To
do this, the AS software calls the Save  ps function. This function is
actually part of the application dependent software, as wil be seen
later.,

The rollback and recovery module or RRM, shown in Fig. 2.6, is
responsible for rolling back the application program upon the detection
of an error in the system. This rollback and recovery procedure is
governed by AS software and can be triggered by one of the two
following means. The local EIM, when it detects an error, may activate
the AS software by an interrupt mechanism, in which case this node is
the "initiator" of the distributed rollback procedure. Alternatively,
the RRM may learn of a rollback, initiated by some other process in the
system, through a rollback control message, and hence activate the AS.

Both scenarios require the RRM to quickly respond to the
triggering mechanisms in order to minimize redundant application
coamputation. As was mentioned earlier, BSD UNIX allows for immediate
handling of signals, so, in the case where the local EIM triggers the
RRM, the AS rollback logic may be instantly activated. The EIM's error
detection signal may, however, be temporarily blocked by the RRK if the
RRK is already executing some other action, such as checkpointing,
storing of messages, processing a control message from a simultaneocus
rollback procedure etc.. Such RRK actions must remain atomic in order
to retain consistency among the RRK's data structures.

In the case where the RRM learns of a rollback through a rollback
control message, one of the following two methodologies could be

implemented to enable the timely detection of such messages. Either the
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application interrogates the communication layer through frequent
polling; or the cammnication layer itself raises an asynchronous
interrupt to herald the arrival of a message. In either scenario, the
Low Ievel Control Procedure (LICP), shown in Fig. 2.6, is activated.
This function uses the "select" system call, mentioned earlier, to
determine the source channels of any queued messages. The LICP then
calls the Sock peek function, which analyses these messages. If a
message is an application message, it is stored in the ICB for later
use. If a message is a control message, it causes instant activation
of the As.

If the rollback logic in AS determines that the local application
process should roll back, then the application's process state is
loaded via a call to Load ps. As with the Save ps function, Load ps is
an application dependent part of the design.

2.5 Application Dependent Part of Design

This section deals with the steps which must be carried out by the
application programmer who wishes to link his prngram to the RRK. In
steps 1 through 3, it will be seen how the link-up procedure has been
facilitated through minimal interface requirements. Regardmg
checkpointing, all decisions imvolving the placement, and frequency of
the SIC creations, and the size and composition of both the SICs and
RCs, have been left entirely to the application programmer. Although
these steps, 4 through 6, require a larger commitment on the part of the
user, the arrangement allows for a more tailor-made RRK design which
makes no assumptions on the checkpointing needs of the application

programmer.
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Once these steps have been completed, the application program can
still be used in a mammer as if the RRK were not attached. All
chieckpointing, and rollback and recovery mechanisms will be executed by
the RRK without the awareness of the user.

The following assumptions were made about the application program
that uses the RRK: the number of processes in the system is static and
their topology of interconnection is known to every one of them; each
process is assumed to have a unique process identification.

What follows, then, is a step by step outline of the link-up
procedure along with some hints on implementation.

Steps to Link-Up an Application Program to the RRK

Step 1: Application Specifications
Application specific data is required by the RRK and should be
defined within the application, using a specified nomenclature. These

include the following...

APP MSG SZ - the size of an application message in bytes

PROC - the number of processes in the distributed
application

my_job = the ID mumber of the local application process

fd(PROC] - a vector of commnication socket file descriptors of

size PROC, indexed via process ID
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The need for the specification of the application's message size
is required for FIFO message passing using sockets. The reader will
recall that stream sor’. .cs are used for FIFO communication, and that
these sockets do not retain message boundaries. Therefore, unless the
application programmer informs the RRK of the size of application
messages (APP MSG_SZ), the RRK will not be able to find the appended
checkpointing control information within the queued stream of
concatenated messages.

"PROC" is used to dictate the size of many of the data structures
used by the RRK. The "my job" data is needed to distinguish the local
application process from the others in the system. With "fd[PROC]",
the processes' IDs are used as an index to the vector. The vector
elements contain the socket file descriptors, which are used to address

the camunications to the processes of the distributed system.

Step 2: I/0 Functions

In the application program, all occurrences of the following
system calls: Write, Read and Select, should be replaced by their RRK
equivalents: Kwrite, Kread and Kselect. To facilitate this
replacement, all arguments normally supplied to the original system
calls are also supplied to the RRK versions. These RRK functions also
behave as the originals with respect to the application program (this
includes all error flags returned) and no special action need be taken
to incorporate them within the code.

In this way, the RRK duties, such as the appending and stripping-
off of the checkpointing control information and the interim storing of

the application messages in the ICB, are executed transparently with
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respect to the application program.

Step 3: LICP Insertion

As was mentioned in the discussion about the RRM, the rollback
control messages can be detected by either frequent polling or
asynchronous interrupts. If the former method is used, then calls to
the LICP function need to be interspersed within the application code.
Althouch the frequency of these calls is not specified, they should be
often encugh to quickly detect the presence of a rollback message, yet
not so often as to degrade the perceived performance of the
application. For iterative applications, one or two calls to LICP per
cycle should be sufficient.

Step 4: SIC Creation

At chosen points in the execution of the application, SICs will
need to be created. This is done through calls to the RRK's "Chckpnt"
function. The question of where to place these function calls may prove
difficult to the application programmer.

Since this checkpointing action will entail the saving of the
application process state, which is in itself a user defined action (see
step 6), it makes sense to have the calls to Chckpnt coincide with
points in the computation where the contents of application's data set
is predictable and, preferably, small. In an iterative application,
this would correspond to the beginning of a new cycle.

When trying to decide upon the frequency of calls to Chckpnt, the
particular needs of the application program must be considered. A

campromise must be reached between minimizing the rollback distance and
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minimizing the overhead of checkpointing, through more and less

frequent checkpointing, respectively.

Step 5: Setjmp/Longjmp Usage .

The Setjmp and Longjmp system calls are supplied by UNIX.
Together, they make it possible to "jump" to a position in the code
where the program has been previously executing. It is the
responsibility of the application programmer to insert a call to Setjmp
directly after each call to Chckpnt. Setjmps saves the stack position
in a buffer which is supplied as an argument.

Later, upon rollback, a call to Longjmp is made by the RRK. The
previcusly mentioned buffer is supplied as an argument. This action
restores control to the position immediately following the call to
Setjmp by popping the stack to the saved level.

This facility is of cdbvious value in rollback and recovery.
However, the Setjmp/Longjmp constructs introduce a design restriction,

which is summarized in Apperdix A.

Step 6: Definitions of Save_ps and Load_ps

The actions of saving and loading the application process state are
handled by the application programmer in the functions Save ps and
Icad ps. This arrangement allows for the most efficient use of the
RRK. If these duties were left to the RRK, the entire UNIX-defined
process state would have to be saved. No optimized data set could be
used for fear of amitting data which is needed by the application. Nor
could the packing of data be generally applied, since the extra cost in

terms of execution time may not be warranted (e.g., in an enviromment
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with a wealth of stable storage).

The ease with which this step is implemented depends on the
expertise of the individual programmer and the degree of his
familiarity with his code. Only he would know which data is likely to
be altered, and must therefore be saved, and whether any space saving
tactics (e.g., packing) should be employed.

All that is requlredby the RRK is that a call tc Save ps should
save the appropriate data and then return the address of this saved
data. This address is stored by the RRK in the checkpointing action.
The address can be later used as an argument in a Load ps call during a
rollback to the selected checkpoint.



Chapter 3

Selection of a Suitable Test-Bed Application

A distributed application program is required for experimentally
testing the rollback recovery kernel. We will refer to such a program
as a '"test-bed application program”. Although there exist numerous
published distributed algorithms, experiences in the development of
distributed programs are not much. There are no established guidelines
for the selection of an appropriate test-bed application.

In this chapter we address the question of what constitutes a good
test-bed application program. The answer to this question is more
qualitative in nature than quantitative. The distributed application
program selected, in our case, is developed based on the "Game of Life"
proposed by J.H. Corway [11]. Throughout this chapter we discuss the
desirable characteristics of a test-bed application program using this
example. However, it is not to be concluded that the Game of Life is

the most suitable candidate in every respect.
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3.1 Algorithm Simplicity

Normally, one expects the application program to be considered as a
"black box" by the underlying RRK. Then it does not matter, as far as
the RRK is concerned, how complex the distributed application program
is. However, debugging a distributed program is quite time consuming,
not to mention exasperating, and the burden could be lessened if the
algorithms involved in the test-bed application are simple.

The Game of Life is a simple simulation game. It simulates the
lives of cellular automata which live and die by certain rules. The
game is normally played on a two-dimensional rectanqular grid of
unlimited size. A location on the grid is termed a cell, each of which
has eight neighbors. Given an initial pattern of living cells, the
successive generations or cycles of the game can be computed using the

following rules (4].

Birth Rule : A dead cell having exactly three living neighbors

will be alive in the next generation.

Death Rules : A live cell having four or more living neighbors will
be dead in the next generation due to overcrowding.
A live cell with less than two living neighbors will be

dead in the next generation due to loneliness.

Survival Rule: A live cell having either two or three living neighbors

will remain alive in the next generation.



35

The surprising results achieved with the above set of simple rules
have made the Game of Life very popular with computer enthusiasts over
the past many years. Examples of same of the classic "Life Forms" are
shown in Fig. 3.1, where we see the Life Histories of various patterns
followed through five generations.

Figs. 3.la and 3.1b are examples of "Spaceships", Life Forms which
travel across the playing surface in one direction. The first one
(Fig. 3.1a) is a "Featherweight" Spaceship which moves diagonally at one
quarter the "Speed of laght" ( 1 cell/generation in any direction) and
is called a "Glider". Fig. 3.1b shows a "Lightweight" Spaceship which
moves orthogonally at one half the Speed of Light. In the next figure,
we see scme examples of small "Oscillators", i.e., "Blinkers", which
alternate from vertical to horizontal three-celled lines. The final
figure shows a few examples of "“Still Lifes", Life Forms which stay

"unchanged from generation to generation.

Spaceships and Oscillators are periodic. That is, their patterns
repeat themselves after a certain number of cycles. This fact was of
particular use to us during the testing of the RRK, as will be seen
later.

Our initial task was to adapt this algorithm to construct a
distributed program called "N-Life. The full grid or global matrix of
the game can be divided into rectanqular subregions of various shapes
and sizes. Each of the processes in N-Life can compute successive
generations of one or more of the subregions. Processes, whose
respective regions are adjoining, commnicate with each other about the
status of cells on their joint boundaries.

We assume "wrap-around" (both horizontally and vertically) in the
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Figure 3.la A "Glider": a featherweight spaceship of
period 4, (moves diagonally at 1/4 the speed of light).
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Figure 3.1b A "Lightweight Spaceship" of period 4,
(moves orthogonally at 1/2 the speed of light).
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Figure 3.1d "Still Life" examples: a "Beehive", a "Snake",
and a "Loaf".
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global matrix so that each cell, even those on the edges, has eight
neighbors. This allows Life Forms such as Spaceships, which move in one
direction, to remain active for the duration of the game. Conceptually,
the playing surface can be viewed as a three-dimensional donut rather
than a two-dimensional plane.

These modifications to the Game of Life are illustrated in Fig.

3.2.

3.2 Ease of Verification

’ The execution of the test-bed application should be made easily
verifiable in order to monitor the RRK during its development. An error
in the RRK could possibly affect the N-~Life. It will be very desirable
if N-Life possesses characteristics which could make an error at its
interface with RRK easily and quickly visible on the screen to the
programmer. In this way, the development, debugging and installation of
the RRK can be facilitated.

To illustrate how errors in the RRK could affect N-Life we first
recall the behavior of the rollback algorithms described in Chapter 2.
Fig. 3.3 shows a SIM of three commnicating processes along with a
preplanned recovery-line which has been established. In this example,
process P2 must store messages M2 to M5 in its SIC checkpoint, so they
may be played-back during rollback. If we suppose that these messages
were initially received by P2 spread over four generations, or
iterations, of N-Life, then during rollback, the RRK should replay the
messages in their proper sequence and during the correct iteration.
Messages, containing information on neighboring cells, which are lost,

duplicated, or corrupted result in aberrant Life Forms. The presence of
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which can be immediately observed.

The potential effect of improper RRK execution on the behavior of
N-Life can be seen by comparing the patterns depicted in Figs. 3.4a to
3.4c. Here, we see how the faulty introduction of a message (Fig. 3.4b)
or the omission of a valid message (Fig. 3.4c) results in the
destruction of a Glider. With visual feedbacks such as this,
researchers familiar with the normal Life Form behaviors are able to
detect and track down certain bugs in a systematic manner.

Therefore, the ease of verification of proper N-Life execution has

made it possible to monitor the RRK for errors during its development.

3.3 Flexibility of Behavior

The test-bed application should allow sufficient parametric
changes so as to fully exercise the algorithms employed in the RRK. In
N-Life, a range of behaviors can be exhibited through the manipulation
of two parameters: the "task-assigrment map" and the "initial pattern
file". These will now be briefly explained.

As was mentioned earlier, the global matrix can be divided into an
arbitrary arrangement of subregions. Each of the processes in the
system can then be allocated cne or more of these regions as their
camputational responsibility. This assigment information can be
predefined and saved in numbered task-assigrment maps. By specifying a
map number at run time, a particular arrangement of processes can thus
be called forth. The regions allocated to different processors remain
static for a given game but can be altered from run to run.

The second parameter is a file containing data on the initial

pattern of Life Forms to be used during a run. The row and column
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Figure 3.4a A normal Glider

Figure 3.4b A faulty cell is added

Figure 3.4c A cell is omitted
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positions of the Forms' cells are saved in named files which can be
specified at run time. It will be seen how these two parameters can

combine to mould N-Life's behavior in the testing of the RRK.

In a distributed enviromment, the events occurring in one process
that affect another are of particular interest. Causal relationships
between send and receive events are typically cbserved in message based
systems. During the development of the RRK, the designer should have at
his disposal the tools and means, ideally speaking, to create whatever
message passing behavior is required. For instance, suppose it is
necessary to be able to produce an arbitrary pattern of messages that
could be drawn on a space-time diagram. Consider the example shown in
Fig. 3.5. The question is, can this message pattern, or an acceptable
approximation to it, be generated by varying a set of parameters on the
distributed application test-bed?

In our experimental work, a two-part approach has been used to
achieve the desired flexibility: by varying the communication topology
through different task—assignment maps, and the message frequency
through different initial pattern files.

Communication Topology

Depending on the interests of the RRK designer,it may be necessary
to simulate a range of network architectures. These may include
anything from a thin strip layout [10], where each node has at most two
communicating neighbors, to a fully-interconnected arrangement. In N-
Life, task-assigmment maps enable the designer to dictate which

processes will share boundaries. Processes which control adjoining
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regions communicate with each other. Therefore, by specifying a
particular task-assigment map, one 1is in effect specifying a
particular channel arrangement, or cammnication topology, as well.
Figs. 3.6a and 3.6b show how simple hierarchical and fully-
interconnected topologies, respectively, can be realized.

Message Frequency

Given an appropriate ocommnication topology, by varying the
message passing frequency one can generate the message pattern of a
space-time diagram.

Many iterative distributed algorithms communicate in a predictable
pre-set manner which does not allow for the degree of flexibility
required. N-Life was made more malleable by having a process send
information for only its live cells. The receiving process, then, can
deduce the camplete boundary picture by what has and has not been
canmunicated. This, for example, could result in two given processes
not commnicating for many iterations and then exchanging in a burst of
messages.

Armed with a modest arsenal of Spaceships, Oscillators and Still
Lifes and having the ability to subdivide the global matrix as one sees
fit, the designer is well equiped to simulate a wide variety of message
patterns using N-Life.

To 1illustrate how a given space-time specification may be
similated using N-Life, we refer to Fig. 3.7. In the top of the figure
we see the space-time diagram shown earlier. Added to it are
orthogonally drawn lines which separate the diagram into four iterative

regions. Below, a series of four iterations of N-Life are displayed.
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Figure 3.6b A fully-interconnected arrangement
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Messages passed between processes are illustrated as arrows. We see
how information is only passed for the live cells which touch borders.
By selecting a suitable task-assigmment map and superimposing an initial
pattern file upon it, the processes have been manipulated to communicate

in the manner specified by the space-time diagram.

Number of Processes

The ability to vary the number of processes in the system is
required for the performance analysis of the RRK. In the area of
speedup analysis, for instance, this would be of particular use.

In other test enviromments, the ability to dynamically add and
delete processes may be required. However, in our work, it was assumed
that the number of processes will remain static. Although, the number
could be changed from one test run to ancther. This was easily dictated
by varying the task-assigrment map parameter.

In Fig. 3.8 we see how a given global matrix, which is to be
calculated, can be subdivided into first two, then four and eight-‘

process arrangements using different task-assigrment maps.

Problem Size

In the performance analysis of the RRK implementations, varying the
problem size, or CPU workload, for the individual processes may also be
desired. In N-Life, by adjusting the size of the matrix the workload is
proportionally altered. So, to change the problem size one simply has
to redefine the matrix dimensions. Once again, by specifying a suitable
i:ask—assigmnem: map this can be easily done. o

As was the case in varying the mumber of processes, the ability to
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Figure 3.8 Varying the number of processes via task-
assignment maps
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dynamically change the problem size may be regquired in certain
enviromnents. But it is not required in our case. The question of
whether N-Life could be altered in order to offer dynamic task-
assigmments has not yet been addressed.

As we have seen, the problem size, or CPU workload, is determined
by the matrix size, and because a process cammnicates information
pertaining only to its borders, the message passing overhead is roughly
proportional to the perimeter of the region it has been assigned.

OCbserve that the global matrix is decomposed into regular regions
i;x Fig. 3.9a. The CPU workload and the commnication overhead for the
individual processes can be summarized in t~ of "cell units", as
shown at the bottom of the figure. In Fig. © “ = s-e that by varying
the relative sizes of these regions, one could ... 1 particular process
more message-bound or less message-bound, in relation to the computation
done by that process.

3.4 other Considerations

Every distributed algorithm seems to have certain inherent
synchronization and communicaticn requirements. Same require "fully-
synchronous" blocking sends and receives, as available in ADA's
"Rendezvous" [13]. Others need only the "half-synchronous"- constructs.
That is, blocking sends with non-blocking receives or, more often, non-
blocking sends with blocking receives. Truly asynchronocus algorithms
require no explicit synchronization and can be implemented using
strictly non-blocking send and receive primitives. Finally, there are
algorithms which employ both the blocking and non-blocking receives
during normal execution. These algorithms, termed "loosely-
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Process 1 2 3 4
Perimeter (P) 24 24 24 24
Area (A) 40 40 40 40
Ratio (P/A) 0.6 0.6 0.6 0.6

Figure 3.9a Cell unit data for regular regions
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Figure 3.9 Cell unit data for variably sized regions
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synchronous", only block for messages when their local requirements so
dictate.

These types of properties are likely to be invariant for a given
application program. In this context we can ask the following
questions when selecting a suitable test-bed application:

Ql. Is the application algorithm basically synchronous,
asynchronous, or loosely-synchronous?

Q2. What assumptions are made by the RRK in regard to the
synchronization properties of the application?

Q3. How rigidly must the application comply with these
assumptions and what are the consequences of an inexact
match?

The dynamic checkpointing algorithms, implemented in this work,
view the distributed application as a collection of a;ynchronously
communicating processes. Although processes which are synchronous could
use the RRK, it is in the fully-asynchronous envirorment that these
types of rollback algorithms are of the most use.

N-Life is loosely-synchronous. While processes compute the next
generation of their respective regions, messages containing information
on bordering cells are received, and the data stored, asynchronously.
Before a process can complete one iteration and proceed with the next,
all of the incoming messages for the present iteration must have been
received (we saw earlier how messages received out of turn could result
in aberrant Life Forms). If the full complement of messages have not

been received the process will block, thus exhibiting the loosely-
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synchronous behavior.

Since the RRK we implemented accepts applications with varying
degrees of synchronization, N-Life served as a test-bed application.
However, since the RRK should perform best in a fully-asynchronous
enviroment, the loosely-synchronous N-Life is not the best choice, from

a synchronization point of view.

In this chapter we have presented some of the desirable
characteristics of a suitable test-bed application to be used in the
development and testing of the RRK. N-Life, a distributed test-bed
application, which was designed using J.H. Conway's Game of Life as a
base algorithm, was used throughout as an illustrative example.
Algorithm simplicity should be considered when selecting a test-bed
application; the simpler the algorithm the quicker its implementation.
Ease of verification of the test-bed application was determined to be a
very desirable trait when tracking—down bugs in the RRK. When one
wishes to thoroughly test the RRK a selection of variable parameters
should be made available in the application. In N-Life, two parameters,
the task-assigmment map and the initial pattern file, were used in order
to give the application a flexibility of behavior in such things as
cammunication topology, message frequency, number of processes and
prcblem size. Finally, it was concluded that the relative
synchronization properties, assumed by the RRK and exhibited by the
prospective test-bed application, respectively, should be compared for
their campatibility.



Chapter 4

Comparison of Two Rollback and Recovery Algorithms

Very 1little is known about the practical performance of
distributed rollback and recovery algorithms. One of the aims of this
thesis is to gain some understanding of the experimental performance
for selected rollback and recovery algorithms. We also wanted to
explore the relative strengths and weaknesses of two specific
algorithms, the RIV [23] and BCS (5] algorithms, through experimental
implementations and evaluations.

In Chapter 2, we discussed the general characteristics of the type
of rollback and recovery algorithms which we are concerned with, the
dynamic checkpointing algorithms. In this chapter, we will first look
more closely at the two algorithms we have chosen to compare. Then we
will briefly show how these algorithms were integrated into the RRK
design. Next, we will outline the measurements taken, along with the
special measurement software designed for this purpose. Then, the
measurement results will be presented and interpreted. Finally, we will
conclude the chapter with some remarks and conclusions on what we have
learnt.

33
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4.1 Two Rollback and Recovery Algorithms

The algorithms are described to a level of detail suitable for the
purposes of this thesis. For detailed discussions beyond this level see
[5] and [23]. Although both algorithms allow for simultaneocus rollback
(the occurrence of two or more separately initiated rollbacks during the
same time frame), the specific actions to be taken in the case of the
BCS algorithm are not presented in full by its authors. We have,
therefore, decided to amit simultanecus rollbacks in our study.

In fact, upon further examination, we found the BCS algorithm to be
deficient in its treatment of the rollback procedure. In order to
implement and to make any performance measurements of rollback and
recovery, we therefore had to make the appropriate augmentations to the
BCS algorithm. In this context, we pondered the merits of any
measurements which would be obtained, since the changes we would make
may not be exactly what Briatico et. al. [5] would have wanted.

It was decided that, since our intent was not to make judgements
about the absolute superiority of one algorithm over another but rather
to gain same valuable insight on the relative performances of
algorithms of their sorts in different enviromments, we would proceed
with making the alterations to the BCS algorithm, in as fair a means as
possible.

What follows, then, is a brief sumary of the two algorithms,
followed by a description of the changes made by us to the BCS
algorithm.
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4.1.1 RLV Algorithm

Checkpointing

The application processes create SIC checkpoints at appropriate
points in their execution. In the RLV aigorithm, each SIC created in
the system is uniquely labelled by a two-number identification tag
<p,¥>, where p indicates the ID of the process which created the SIC,
and q indicates the ordinal number of the SIC, within that process. For
example, <2,7> correspords to the seventh SIC created by process number
2.

The creation of a SIC may, through the passing of application
messages, cause the subsequent creation of a RC in one or more of the
other processes. For each process P, the RRK maintains a local
checkpoint vector or "CCP" camposed of n counters, one counter for each
of the n processes in the distributed system. The counters indicate the
SIC counts of the individual processes, as perceived by P. One may note
that, at a given time, the only counter which is guaranteed to be up to
date is the one corresponding to P itself. The processes inform one
another about newly created SICs by appending their CCP to each
application message sent out. When a process receives a message, it
strips off the received CCP vector or "RCP". It then compares the
counters of the RCP with the corresponding counters of its own CCP. If
RCP(i) > CCP(i) then the following actions are carried out: CCP(i) is
set to RCP(i): a RC is created ard the RC is assigned the two-number tag
of the SIC which caused its creation (i.e., <i,RCP(i)>). This RC is now
regarded as being owned by process i. In this way, a SIC and the set of

RCs which it caused to be created on the different processes form a
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valid recovery line. This recovery line is identified by *he same two-
number tag used by its checkpoints, and is owned by the process which
created the SIC (e.g., process 1i).

However, if RCP(i) < CCP(i) then this message intersects cne or
more recovery lines and is stored in all local checkpoints owned by
process i with an ordinal number greater than RCP(i). If the process is
later rolled back to any of these checkpoints, this message will be
played back.

Fig. 4.1 shows three communicating processes and the creation of
three recovery lines. One sees how a recovery line, and the RCs which

it contains, inherit the two-number tag of the instigating SIC.

Rollback and Recovery

Upon detection of an error, a process P initiates the rollback and
recovery procedure by rolling back to its most recent SIC, <p,g>, which
precedes the occurrence of the fault, as determined by an "“error
handler module" (see Section 4.3). It then loads the saved application
process state variables, deletes all checkpoints created after <p,,
inserts any saved messages to the head of their respective ICBs, and
then sends out a rollback control message, R<p,@>, on all its outgoing
channels. The application program is then allowed to resume execution
with its new error-free stata:.

When anocther process receives its first R<p,g> message, it
searches, beginning with the first checkpoint created, for the first
checkpoint with an ID of <p,r>, where r is great :r than or equal to q.
If such a checkpoint exists, then this process is involved in the

roliback. The application process state is loaded, <p,r> and all the
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Figure 4.1 RLV checkpointing
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checkpoints following it are deleted (since <p,r> is a RC and will be
recreated after rollback, it must also be deleted), messages are
inserted to the head of their ICBs, and the rollback control message
R<p,> is sent out by this process on all its outgoing channels.
Control is then returned to the application program.

Referring to Fig. 4.2, we see how a fault F1, detected at time T1,
has caused process P1 to roll back to the SIC <1,2>. Processes P2 amd
P3 have also rolled back, to their corresponding <1,2> RCs. All the
processes have deleted the appropriate checkpoints (symbolized as shaded
checkpoints), carried out the other 1ollback actions described above,
and have resumed normal execution. One sees that two application
messages sent after the recovery line was created, M7 and M8, had not
yet been received at the time the fault was detected. These messages,
called pre rollback messages (since they were sent before the rollback
began), must be purged since they represent the result of computations
which must be redone. To distinguish between pre and post rollback
messages, each process sets all its input channels, except for the c¢ne
(if any) on which it was informed of rollback, to the "cautious" state.
While in the cautious state, a channel examines the RCPs on incoming
messages, if RCP(p) is greater than or equal to q (i.e. for R<p,q>) then
this message is discarded. Otherwise, it is a post rollback message and
is processed in the manner described in the checkpointing part of the
algorithm. Once a rollback message is received on a channel in the
cautious state, the channel is reset to the '"normal" state, since all

pre rollback messages must now have been flushed through.
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Figure 4.2 RLV rollback
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4,1.2 BCS Algorithm

Checkpointing

As was the case with RIV, processes create SICs at appropriate
points in their execution and the creation of a SIC may result in the
creation of RCs by other processes. However, in the BCS algorithm, all
the checkpoints that a process creates, be they SICs or RCs, are
assigned ordinal mumbers from a monotonically increasing counter, called
the "K" counter. An RC does not, therefore, inherit the ID of thg SIC
which caused its creation, as was the case in the RILV algorithm. 1In
this scheme, a recovery line q is made up of the checkpoints in the
system which have the same g ID, be they SICs or RCs.

Each checkpoint of a process contains a list of process IDs called
the "PEset". The PEset represents the set of processes to be rolled
back, as far as that process knows, if the checkpoint in question is
used in rollback. The PEset is implemented as an ordered list of
process IDs.

Every process appends the number of its latest checkpoint,
indicated by K, to every application message it sends out. When a
process receives a message, it strips of the received checkpoint counter
R and compares it to its own K tally. If R > K then the process
creates (R-K) RC checkpoints, in order to bring its checkpoint count up
to that of the sender. In cur implementation, the first of these (R-K)
checkpoints contains the process state. The remainder of these
checkpoints simply point to this stored state, and hence are referred to
as "dummy" or "hollow" checkpoints.

If, however, K > R, then this message is stored in all previously
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taken checkpoints with ID numbers of i, where i > R. In addition, for
every message received, all the checkpoints with ID numbers less than or
equal to R, append the process ID of the sender to their PEset.

Fig. 4.3 shows the same application process behavior, in terms of
SIC creations ard messages passed, that was depicted in Fig. 4.1. Here,
we see how the BCS algorithm has caused a different set of RCs and

recovery lines (RLn) from those created by the RLV algorithm.

Rollback and Recovery

The rollback and recovery procedure is described as a two-phase

operation. In the <Zirst phase, the process which 1nitiates the
rollback, from here on referred to as the "rollback initiator®, selects
a recovery line, and then constructs a rollback "Offer" nmessage. Thas
Offer includes the number of the recovery line, and the LPlset, which is
a list of the processes wnvited to rollback. lhe L[Plset initially
contains the PEset of the rollback irutiator's "rollback checkpoint',
that is, the checkpoint to which it s rolled back. The rollback
initiator then sends this Offer message to the first process, listed 1n
the LPIset, and then enters a "wait" state.

The process which receives this Offer, examines Lts Correspond.irxy
rollback checkpoint. It then updates the Offer's LPIset by adding any
processes, contained in the PEset of its own rollback checkpoint, whiich
were not previously included in the Otfer's LPlset, and then propagates
the Offer to the next process listed in the updated Lablset. It
process then enters a Wait state. This procedure is tepeated until tie
Offer message reaches the last process listed in the LPlset.

The last process in the [PIset changes the Offer to an "Accept"

—
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recovery lines (RIn) from those created by the RLV algorithm.

Rollback and Recovery

The rollback and recovery procedure is described as a two-phase
operation. In the first phase, the process which initiates the
rollback, from here on referred to as the "rollback initiator", selects
a recovery line, and then constructs a rollback "Offer" message. This
Offer includes the number of the recovery line, and the LPIset, which is
a list of the processes invited to rollback. The LPIset initially
contains the PEset of the rollback initiator's "rollback checkpoint",
that is, the checkpoint to which it is rolled back. The rollback
initiator then sends this Offer message to the first process, listed in
the LPIset, and then enters a "Wait" state.

The process which receives this Offer, examines its corresponding
rollback checkpoint. It then updates the Offer's LPIset by adding any
processes, contained in the PEset of its own rollback checkpoint, which
were not previously included in the Offer's IPIset, and then propagates
the Offer to the next process listed in the updated L*PIset. The
process then enters a Wait state. This procedure is repeated until the
Offer message reaches the last process listed in the LPIset.

The last process in the IPIset changes the Offer to an "Accept"
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message, and sends it to its predecessor in the LPIset, and enters a
second Wait state. The Accept message finds its way back to the
rollback intiator by reversing the path taken by the Offer message.
Once the rollback initiator receives the Accept message, the second
phase of the rollback procedure begins.

In this second phase a "compensation action" is carried out on the
input buffers of all the processes involved in the rollback. This
action is necessary to purge the pre rollback messages which may be in
transit. The phase begins with the resending of the Offer message along
the ILPIset path. Each process receiving the Offer will compensate its
input buffers by waiting for messages in transit, and then inserting the
messages stored in the checkpoints to the head of the ICBs. Neither the
length of time required to wait, nor the specific actions used for
purging messages is specified by the authors of BCS.

The need to have a second Offer message start the compensation
action results from the authors' assumption of the possible occurrence
of simultanecus rollbacks. By the end of the first phase, only the
rollback initiator would be aware of the global acceptance of the Offer.
The rollback initiator must, therefore, inform the other processes that
the offered recovery line is now to be used, at which point they can
begin their campensation actions. Since simultaneous rollbacks are not
studied in this thesis, the processes should be allowed to start their

campensation actions upon completion of their duties in the first
phase.
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4.1.3 Augmentations to BCS Algorithm

There are two areas where the BCS algorithm is incomplete. The
first irvolves the potential for incamplete PEsets and, therefore, the
possibility for the existence of a faulty process not participating in
the rollback operation. The second incompleteness lies in the input
buffer compensation action.

To illustrate the first point, we refer to Fig. 4.4. The fiqure
shows four cammunicating processes and the creation of a valid recovery
lire RL1. A fault F1 has been detected at time T1 by process P2, and it
must now access the PEset contained in its rollback checkpoint to begin
the propagation of the rollback Offer message. We recall that, during
the checkpointing, a process updates its PEsets upon the reception of
application messages. Accordirgly, P2 has included process P3 in its
PEset due to the checkpointing information it received through message
M3. Similarly, P3 has included process P4 due to message M5. P2,
therefore, sends the Offer to P3, which, in turn, sends the Offer to P4.
However, none of these processes have been made aware of the need to
include process P1 in the rollback. Ofcourse, Pl itself knows it
should be included in a rollback to RL1, unfortunately it is unaware
that this rollback is in progress. The problem originates in having the
PEset updates based only on receive events. We see that if P2 had
included P1 in its PEset on the basis of its sending message M1, that a
caplete rollback, including Pl1, would be possible. Accordingly, we
have altered the BCS algorithm so that, with every application message
sent, the sender adds the ID of the receiver to its PEsets (if it has
not been previcusly included).
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The second area where BCS exhibits a weakness is in the input
buffer compensation action. This is illustrated in Fig. 4.5a. The
figqure shows three processes which have already gone through the first
phase of the rollback procedure and are now carrying out the
campensation actions. The process Pl is the rollback initiator. We see
that each process, beginning with Pl, waits for a specified period of
time d, considered long encugh to ensure the reception of any in-transit
messages (e.g., Ml and M2). In the figure, P1 has finished its waiting
and sent a new application message M3 to P3, which is received before P3
has finished its own wait period. This message is incorrectly
identified as a pre rollback message by P3, and is purged. We see that,
the weakness in the compensation action lies in its inability to select
a proper value for d. If too short a waiting period is specified then
the pre rollback messages may be allowed to slip through. If, on the
other hand, a waiting period long encugh to catch all in-transit
nmessages is specified then valid post rollback messages may be purged.

In our implementation, a three-part solution was used to solve the
above problem. First, during the passing of the first Offer message,
the extent of pre rollback checkpointing is established. To do this,
the rollback initiator includes its pre rollback K counter with the
Offer message. Each process, in turn, compares its own K counter with
that in the Offer and leaves the greater of the two in the Offer
message. By the end of the first phase, the largest pre rollback K
counter, say n, has been established, and is known to all the processes
irvo.ved in the rollback to recovery line r.

Next, each process, after having deleted all checkpoints created

after r, creates a series of (n-r+l) "hollow" checkpoints, starting at
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rmumber r+l. ‘These hollow checkpoints are checkpoints with no saved
process state. of their own, but contain pointers to the checkpoint of
the recovery line r. Additionally, each input channel of the rolled
back process is set to a "cautious" state. After setting all its input
channels, a process can return control to the applicaticn program. It
does not have to wait for the duration 'd’, as shown in Fig. 4.5a.

The third part of the solution is carried cut during the execution
of the application program. W®hile a channel is in the cauticus state,
each incoming message is examined. The appended checkpoint counter c is
campared with the last hollow checkpoint number h and the recovery line
r. If c is greater than or equal to r and ¢ < h, the message is a pre
rollback message, and is purged. When the channel receives a message
with a checkpoint number c, where c is greater than or equal to h, the
channel is set back to the "normal" state.

To illustrate what has been described above, we refer to Fig. 4.5b
ard Fig. 4.5c. In Fig. 4.5b, two messages, Ml and M2, are sent prior to
rollback and carry checkpoint counters of 2. The extent of pre rollback
checkpointing is established as being ¢ and, as is shown in Fig. 4.5c,
the processes make hollow checkpoints up to and including mumber 3.
Accordingly, the post rollback message, M3, carries a checkpoint counter
of 3. We see how pre rollback messages, ML and M2, can now be
distinguished from post rollback méssages, such as M3, on the basis of
their appended checkpoint counters.

These modifications to BCS, make its implementation possible
without degrading its performance. In fact, as we will see in Section
4.4, the removal of the second Offer message from the rollback procedure

has probably resulted in an improved performance, since serialized
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roilback control messages, such as the Offer message, cause a definite

overhead in the distributed computation.

4.2 Algorithm Specific Software

In this section, we briefly ocutline the AS software used for the
RIV and BCS algorithms. Fig. 4.6a shows the Checkpointing Module's AS
software, in the case of the RLV algorithm. Among the functions
included in this software, we see the Create chpt function, which
carries ocut the actual creation of a checkpoint and calls Save ps to
save the application process state. The functions Save msg, Insert msg,
and Create msg slot are responsible for the storing of messages which
cross existing recovery lines, into the checkpoints of those recovery
lines. When this AS module is campared to the corresponding software of
the BCS algorichm, shown ir Fig. 4.7a, we see that the BCS version is
more campact, due to its simpler algorithm logic. We aiso aobserve that,
in the case of BCS, the Kwrite function interfaces with the AS software
through calls to Update PEs. The latter is a direct result of the
augmentations to BCS, described in the previocus section.

As far as the Rollback and Recovery Modules of th. AS software are
concerned, we see, by locking at Fig. 4.6b and Fig. 4.7b, that the
overall structure is quite similar for both RLV and BCS. Once again,
due to the fact that the algorithm logic is more complex, we see that
RLV requires the use of more functions. However, it should be recalled
that RIV fully supports the occurrence of simultaneous rollbacks, and
the mechanisms for this are incorporated into this design through the
Scan ARM and Append ARM functions. We see that many functions in RV

have their namesakes in BCS. These functions carry out the cammon
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rollback actions; such as the loading of the checkpoints, inserting
stored messages to the head of their ICBs, deleting obsolete checkpoints
etc. There are, however, a couple of actions carried out during
rollback which are unicque to BCS. These are the need to wait for an
Accept message, handled by Wait for Accept, and the augmented manner in
which BCS hardles the purging of pre rollback messages, which are
handled by the Create chpt and Sensitize functions. Here Create_chpt

handles the creation of the hollow checkpoints.

4.3 Measurement Software
The initial goal was to collect the following measurement data

with respect to execution time overhead:

D1 The overhead in taking a checkpoint within a process

D2 The overhead in coordination of cneckpointing, with respect to
message traffic

D3 The overhead in RC checkpointing under specified SIC and
message passing enviromments

D4 The overhead in rollback and recovery as a function of the
number of processors participating in rollback

D5 Rollback distance under specified SIC, message passing, and
error latency envirorments, and its dependence on the process
(initiator/non~initiator)

D6 Unnecessary rollback distance under specified SIC, message
passing, and error latency enviromments

D7 The overhead due to rollback and recovery control messages

with respect to message traffic
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However, the measurements dealing with message traffic (D2 and D7)
are not feasible in ocur DCS. The system is sensitive to the number of
messages passed and, perhaps more importantly, the number of different
sockets used during a given time span. Once these two factors combine
to pass same (as yet undetermined) threshold, the system performance, in
temms of execution time, becomes very erratic. The execution times
fluctuate wildly from run to run. The range of measured times becomes
far greater than the cbserved differences between RIV and BCS. This
erratic behavior, we believe, is due to the bottle neck in inter-node
communications mentioned in Chapter 2. For this reason, not only were
the measurements for D2 and D7 not possible, but the other measurement
taking had to be designed using a level of communication which did not
perturb the systenm.

Before we introduce the software used to gather the measurement
data, a brief explanation of what we mean by unnecessary rollback (D6)
is required. In Fig. 4.8, we see 4 comunicating processes, a recovery
line, and a fault F1 detected at time Tl. The rollback initiating
process, P2, should roll back to a position prior to F1 in order to undo
its faulty camputation. In rolling back to its checkpoint, P2 undoes
some non-faulty computation U2, referred to as "unnecessary rollback"”.
Of course, in the rollback initiating process, there will always be some
unnecessary rollback, the amount of which is inversely proporticnal to
the rate of SIC checkpointing. As for the other processes involved in
the rollback, Pl rolls back a distance R1l. all of which is necessary
since it was affected by the fault through message M2. P3 rolls back a
distance R3, all of which is unnecessary since it never received a post

fault message. P4 rolls back a distance R4, same of which, U4, is



74

rl

Pl

- am o e Em owe e e oem e e w

P2

P3
P4

rd

SIC

RC

Figure 4.8 Explaining unnecessary rollback




75

unnecessary since the process only became affected by the fault through
message M3. We will see later what effect the different rollback and
recovery algorithms, RIV and BCS, have on the amcunt of unnecessary
rollback incurred by the processes.

In order to activate the RRK (to initiate a rollback) we need to
first produce the detection of a "pseudo-fault", determine the time the
fault occurred, and then select a SIC which was created prior to this
fault. As was mentioned in Chapter 2, the error detection was handled
by a separate process, the EIM, in the testing of the RRK. This module
is basically a random number generator. Once seeded and activated, it
randomly signals the appiication/RRK process through a user-defined
signal, and similates the detection of a fault. Since the occurrence of
these faults was unpredictable with respect to the RRK, this arrangement
served as a suitable test envirorment. However, when it came to the
measurements, we found that a given fault distribution could not be
reliably reproduced with such an arrangement. Therefore, for the
purpose of obtaining measurements, tlhie role of the EIM was handled by
specific function calls placed in the application program. In this way,
we could reproduce exactly the same occwrrence of faults for both the
RLV and the BCS algorithms.

Once the pseudo-fault is "detected", a timestamp for this fault
must be produced. This is handled by an "error handler module" or EHM,
which is linked to the RRK as shown in Fig. 4.9. The EHM first
produces a timestamp for the pseudo~fault, through the use of another
random rmumber generator. The randam number produced, symbolizes the
time elapsed since the occurrence of the fault, or "fault latency". It

is, therefore, subtracted from the present time in order to produce a
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timestamp for the pseudo-fault. When a fault latency of zero is
required, the random number generator is inactivated and the EHM uses
the present time as the timestamp.

Given the pseudo-fault timestamp, the next step is to find the
latest SIC which precedes this time. To facilitate this, a new data
structure, the SICtbl, is used. It holds a list of the IDs of all the
SICs created, along with their times of creation. The data is added to
the SICtbl by the EHM through calls from create chpt. The EHM uses the
timestamp created to find a suitable SIC for rollback, and then it
activates the AS rollback function by passing it this SIC/recovery line
ID.

Referring to the measurements to be taken, we are now able to
measure D1, D3 and 4. In addition, the calculations for rollback
distance (D5) and unnecessary rollback distance (D6), with respect to
the rollback initiating process, can now be done by the EHM since it has
access to the present time, the time of the pseudo-fault, and the time
of creation of the SIC used in rollback. In order to measure D5 and D6
with respect to the other processes involved in rollback, some
additional software is required. If we refer again to Fig. 4.3, we see
that to get this data for Pl, P3 and P4, each process would require a
record of the time of each send event (i.e., those send events which may
affect it), the time of each receive they execute, the time of creation
for each RC they create, and the timestamp of the pseudo-fault, Fl.

To enable these measurements, some additional measurement software
had to be integrated into the RRK design, as is shown in Fig. 4.10.
Each process P maintains a vector (TVEC) of n time counters, one counter

for each of the n processes in the system. The idea is like the CCP
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vectors of the RIV algorithm, only these counters register the time of
the latest send event for each of the processes, as perceived by P.
These vectors are appended to each of the application messages. The
receiving process strips off the TVEC and compares it to its own copy.
For each rew send event which occurred on another process (including,
of course, the one which sent this message), the receiving process
creates a new entry in the time table or "TTBL". The table is organized
into n lists of entries, one list for each sender in the system. Each
entry contains the time of the send event and the time of the local
receive event.

In addition, each process also maintains a “RCtbl", similar to the
SICtbl of the EHM, only it contains the times that local RCs were
created, along with their IDs. This table is updated through calls from
create chpt. It is used to determine the rollback distance for the
processes other than the rollback initiator. The reader may recall
that, in the case of the BCS algorithm, these processes may roll back to
a SIC, as P4 does in Fig. 4.8. Accordingly, for BCS, the RCtbl imports
all the SICtbl information in addition to collecting information on the
RCs created.

Finally, during rollback, the initiator appends the time of the
pseudo-fault (as determined by the EHM) to the rollback control
message(s) .

With this additional measurement software, we can now carry out the
D5 and D6 measurements for the non-initiating rollback processes. Upon
being informed of a rollback through a rollback control message, the
rollback function, carries out the following actions: it strips off the

timestamp for the fault; determines the time of creation of its rollback
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checkpoint by accessing the RCtbl; searches the appropriate list (which
corresporxis to the rollback initiator) in the TTBL, for the first send
evert, if any, which follows the pseudo-fault timestamp. With this

information, and the present time, the process can determine D5 and Dé.

4.4 Measurement Results and Interpretations

All the data presented in these measurements are in tems of CPU
secords, unless otherwise indicated. Test cases were run for 200
jiterations of N-life. These test cases, illustrated by space-time
diagrams, exhibit certain message passing and SIC checkpointing
behaviors in which the two algorithms will be compared. Two N-life
global matrix sizes were used, a small (10 x 20) matrix and a larxger (50
% 20) matrix. In the case of the small matrix, the checkpointing action
packs 1630 bytes of information, belonging to the application process,
into 82 bytes before storing it into dynamically allocated memory. With
the larger matrices, £030 bytes of information were packed into 282
bytes before being stored. This large reduction was possible because
the bulk of the checkpoint information is camposed of simple on/off data
for the individual cells of the matrix. In N-Life this data is in an
integer format. The RRK packs each of these integers into a single bit.

In most tables (except Table IV) two processors, Pl and P2, are
shown for the RIV and BCS algorithms. The reason for listing only two
processors here is as follows: as stated earlier, the workstations do
not have their own local copy of the Yellow Pages directory, and they
must, therfore, access the central file server in order to carry out
inter-node communications. In this enviromment, a given inter-node

camunication, may be competing with other currently executing
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routines, or even other communications due to the same distributed
application, for the single Yellow Pages resource. In earlier attempts
at collecting measurements, we used various kinds of distributed test
cases. For example, in one such experiment, we used three processes
which were carrying out checkpointing, and which communicated
frequently, and ran them for a thousand iterations. 1In Fig. 4.11, we
present the execution times of one of these three processes. Twelve
measurements were made over about a three hour period. The execution
times range from a high of about 290 seconds to a low of 230 secords,
which corresponds to more than a 20 percent variance. As we will see,
BCS and RV normally differ by only a few percent, in terms of
checkpointing overhead. The wide variance in the measurement error
swamps the comparison of the measurement values between RLV and BCS. .To
aquire meaningful data we, therefore, progressively trimmed-down our
test cases to 2-process models, which communicate to a minimal degree,
the results of which follows:

Checkpointing Overhead -

In a system where all processes take SICs, the following things can
be cbserved. In BCS, the maximm number of checkpoints taken by a
process is bounded by the system-wide maximm number of SICs taken by a
single process, times two. In RLV, the maximm number of checkpoints
taken by a given process is bounded by the sum of SICs taken in the
whole system. In BCS, the minimum number of checkpoints taken by a
process is bounded by its own count of SICs. RLV is more reflective of
the nature of the message traffic, but, if a given process receives no

messages then its lower bound on checkpoint creation is also its own SIC



Execution Time (secs.)

82

350 _

300

250 _|

200 _j

150

<€>

0

—
—

L
2 8 9 10 11 12

1

~J—

r
3 4 5 6

Measurements Taken (over a 3 hr. period)

Figure 4.11 Execution Times: for one process of a
3~-process, 1000 iteration, large problem size, test
case.




83

count.

More specifically, there are three factors which affect the
checkpointing comparisons between RLV and BCS. These are...

i - The relative SIC counts of processes
ii - The flow of messages between processes

iii - The rate of message passing compared with the SIC rate

BCS causes the least checkpointing overhead in an enviromment with
uniform SIC counts between the processes in the system. Any message
passing behavior, in this SIC scenario, will favor BCS. RLV, on the
other hand, out performs BCS if processes exhibit the following:
heterogeneous SIC counts; lopsided flow of information from the process
with the higher SIC count; a message passing rate less than the SIC rate
for the process with the higher SIC rate.

With these general observations, we will now examine three
different checkpointing scenarios, in which the two algorithms will be
campared.

Case C1l:

Fig. 4.12 shows the first test case to be examined. Here, Pl
creates a SIC every 4 iterations, and sends a message to P2, 1 iteration
after the creation of each SIC. P2 creates no SICs and sends no
messages. This is a case where both algorithms behave the same, since
they both cause P2 to create a RC, upon the receipt of each message. In
this enviromment, we can determine the overhead incurred by the two

algorithms, due to single SICs and RCs. In Table 4.1, we see that the
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Table 4.1

OVERHEAD IN TAKING SIC AND RC CHECKPOINTS

Small Checkpoint large Checkpoint
RLV BCS RIV BCS
Pl P2 Pl P2 Pl P2 Pl P2
1. No ¢thckpts. 3.89 4.09 3.88 4.08 18.50 18.66 18.48 18.67
2. hekpts. 4.30 4.51 4.33 4.52 20.01 20.16 20.14 20.35
3. Overhead 0.41 0.42 .0.45 0.44 1.51 1.50 1.66 1.68
4. SICs 50 0 50 0 50 o - 50 0
5. RCs (0] 49 0 49 0 49 0} 49
6. Ov./Chckpt. 8.2 8.6 9.0 9.0 30.2 30.6 33.2 34.3
(msec. )
Table 4.2

CHECKPOINTING OVERHEAD IN AN UNEVEN-SIC ENVIRONMENT

Small Checkpoint large Checkpoint

RLV BCS RIV BCS

Pl P2 Fl P2 Pl P2 Pl p2

1. No Chckpts. 3.89 4.09 3.88 4.08 18.50 18.66 18.48 18.67
2. Chckpts. 5.47 5.59 5.55 5.69 24.04 23.98 24.19 24.38
3. Overhead 1.58 1.50 1.67 1.61 5.54 5.32 571 5.71
4. SICs 200 50 200 50 200 50 200 50
5. RCs 0 49 0 148 0 49 0 148
6. Poll.(in 1) - 0.04 - 0.04 - 0.07 - 0.07
7. Poll.(in2) - 0.65 -  0.59 - 2.22 -  2.01
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overhead due to checkpointing, row 3, is calculated by subtracting the
times without checkpointing (obtained with no RRK attached), row 1,
from the corresponding execution times experienced with checkpointing,
row 2. By dividing these overheads by the number of checkpoints taken
by the process, either SICs or RCs, the overhead per checkpoint, row 6,
is obtained (shown in milliseconds). We see that, for both the small
and large checkpoints, SICs and RCs take about the same amount of time
to create. Also, RIV seems to take a slightly lesser time in the
creation of its checkpoints than does BCS. For example, in the case of
the small checkpoints, RIV takes 8.2 msecs. for a SIC as compared to 9.0
msecs. for each SIC taken by BCS. This marginal difference may be due
to the updating of the PEsets which BCS must carry out for each message

sent and received.

Case C2:

In this test case, seen in Fig. 4.13, Pl takes SICs more often, 1
per iteration, than does P2, 1 per 4 iterations. This causes P2 to
create RCs with the reception of each message. We see that, in Table
4.2, row 5, BCS causes P2 to take about 3 times as many RCs, 148, as P2
creates with RIV, 49. This is due to the need, in BCS, for each process
to keep the same number of checkpoints. Which causes P2, in this case,
to create two "dummy" checkpoints in addition to one "real' checkpoint,
with the reception qf each message, in an effort to catch up to P1. The
extra overhead incurred by P2, due to the dummy checkpoints, is not as
much as one might expect (e.qg., in the case of small checkpoints, 1.61
secs, for BCS vs 1.50 for RLV). This is for two reasons.

First, the dummy checkpoints are implemented as hollow checkpoints;
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they contain no process state of their own, but contain a pointer to the
real checkpoint's state. This results in much less overhead in a dummy
checkpoint than in a real checkpoint.

The second reason requires a little explanation. Observe that the
overhead experienced by P2, with RIV, is much larger in Case 2 than it
was in Case 1 (e.qg., for the large checkpoints, 5.32 secs. in Case 2
campared with only 1.50 secs. in Case 1). Even if we account for the
SICs taken by P2 and the messages it must store, the overhead seems
excessive, since the same number of RCs are taken in each case. This
anomaly is explainable if we look at, in Case 2, the time spent polling
for messages when no checkpoints were taken, row 6, as conpared to the
time spent polling with checkpointing, row 7. We see that, for both
algorithms, a large portion of the overhead experienced by P2 is due to
polling! Using the same example of RLV and the large checkpoints, 2.22
secs. of the total of 5.32 secs. of overhead is due to polling. The
reason for this excessive polling is due to the loosely-synchronous
nature of N-life, discussed in Chapter 3. That is, since P2 needs the
information from Pl to proceed with its portion of N-life, and since Pl
is slowed down due to the large mumber of SICs created (200) P2 is

forced to wait for P1 at each point where they communicate.

Case C3:

In this case, Fig. 4.14, an iso-SIC sample application is shown.
This is an enviromment where BCS causes less RCs than RLV, no matter
what the message passing behavior. In this particular case, RLV
creates a RC with the reception of each message, while BCS creates no

RCs. In addition, RIV stores each message to the preceding SIC, while
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BCS does not. These extra actions cause an overhead of 1.3 secs. for
RIV, in P1 with small checkpoints, vs 0.59 secs. for BCS, as seen in
Table 4.3, row 3.

In conclusion, we have observed that, in general, checkpointing
does not cause a large overhead, e.g., about 10 % in Case Cl. RIV was
ocbserved to take slightly less time than BCS, in the creation of a
single checkpoint. Also, both algorithms incur about the same cverhead
due to checkpointing in uneven-SIC envirorments, with perhaps a
marginal advantage experienced by RLV. BCS causes less overhead, in the
iso-SIC enviromment, than does RIV. ) Finally, the synchronization
properties of the application were seen to have a large effect on the
performance of the distributed application, which in turn may overshadow
the relative performances of the checkpointing algorithms.

Rollback Overhead

Case Rl:

In this case, we will demonstrate the relative overheads
experienced by the two algorithms, due to their rollback control
messages. The BCS algorithm uses a serialized form of rollback control
messages which causes a momentary "freezing" of the processes during the
rollback procedure, while they wait for the return of an Accept message.
In an enviromment where the processes run on separate processors, a
marked slow-down can be cbserved. In Fig. 4.15, we see that with the
addition of processors to the rollback procedure, the rollback initiator
is required to wait for longer and longer periods of time. In contrast,

the RIV algorithm does not cause any freezing of the processes during
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Small Checkpoint
RLV BCS RLY BCS
Pl P2 p1 P2 Pl P2 Pl P2
1. No Chekpts. 5.17  5.18 5.19 5.18 19.86 19.86 19.72 19.70
2. Checkpts. 6.47 6.48 5.78 5.81 22,81 22.81 21.66 21.66
3. Overhead 1.30 1.30 0.59 0.63 2.95 2.95 1.94 1.96
4. SICs 50 50 50 50 50 50 50 50
5. RCs 49 49 0 0 49 49 0 0
Table 4.4
ROLLBACK OVERHEAD AS A FUNCTION OF THE NUMBER OF
PROCESSORS INCLUDED IN ROLLBACK
RILV BCS
Pattern # 1 2 3 4 1 2 3 4
1. No RBs. 4.20 4,52 4.52 4.54 4.22 4.54 4.55 4.55
2. 10 RBs. 7.72 8.15 8.16 8.26 7.72 9.47 9.90 10.28
3. Overhead 3.52 3.63 3.64 3.72 3.50 4.93 5.35 5.73
4. Ov./RB. 0.35 0.36 0.36 0.37 0.35 0.49 0.54 0.57
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rollback; it returns control to the application program immediately
after sending its rollback control messages.

To measure the overhead incurred by the serialization of rollback
control messages, we have arranged the four different test patterns
shown in Fig. 4.16. With these patterns, the four pz"ocesseﬁ, running on
separate processors, go fram a non-cammmnicating envirorment (pattern 1,
at the top) to an enviromment where each process is involved in some
camunication (pattern 4, at the bottom). The increases of
commnication will cause more and more processes to be involved in the
rollbacks, which are initiated by process Pl.

In Table 4.4, the different execution times for process Pl are
displayed. When no rollbacks are initiated the relative times for BCS
and RLV are equal since the checkpointing behavior is the same, as is
seen in row 1. There is a small increase of about 0.3 seconds from
pattern 1 to pattern 2, which is maintained through patterns 3 and 4.
This is due to the messages which Pl must send in the latter patterns.
For the data in row 2, 10 uniformly distributed rollbacks have been
initiated in each of the four patterns. We see that, the execution
times are equal for RLV and BCS when only Pl is rolled back (pattern 1),
since, in this case, BCS sends no rollback control messages. However,
as more and more processes are added to the rollback nrrocedure, Pl
begins to display a marked slow-down, in the case of BCS. To more
clearly illustrate this effect, we refer to row 3, which shows the
difference of yows 1 and 2. The calculation removes the slight slow-
down of P1 due to message passing and isolates the rollback overhead.
This is illustrated in Fig. 4.17. The last row shows the overhead due
to a single rollback.




92
P 1 -\ Ottt — b
P 2 1\
P 3 A\ e e
P4+

4 6 8 10 12 14 16 180 184 188 192 196 200

Pl

AU 0 0 AU 0900 0 Y
P 3 A\t
P‘ll2 4

6 8 10 12 14 16 180 184 188 192 196 200

S 00 00 0T 0000 90 0
P2
PBI—'—H—HSH—*&—HMM—HL—H&—&—'

P 4 H-HHHHHHHH\ et

2 4 6 8 10 12 14 1lse 180 184 188 192 196 200

P21
P31
P4+

4 6 8 10 12 14 16 180 184 188 192 196 200

Figure 4.16 Increasing message passing in order to increase
the number of processes included in rollback and recovery



93

0

0 '\

()]

Q

(o]

N

s 9}

o

.

M 5

1]

o

4

-

<

~

&

u N 4—-
[¢p]

> 0

a0
wn

'v S’

(]

4

5

0 34~

=4

~

o

i}

2 é

9]

0 | | | 1

) | | | |

Number of Processes Included in Rollback

O RLV
A BCS

Figure 4.17 Algorithm rollback overhead




94

Case R2:

The factors which cause BCS to exhibit less overhead in
checkpointing also cause it to incur a larger overhead in rollback and
recovery. That is, since BCS does not employ dependency tracking in its
creation of RCs, as does RIV, it causes the processes, other than the
rollback initiator, to roll back a farther distance, in general. In the
following cases, only the larger (50 x 20) matrix size was used.

In Fig. 4.18, we see a test case where BCS exhibits a lower
overhead due to checkpointing and a higher overhead due to rollback and
recovery, this is an iso~SIC enviromment. In Table 4.5a, the number of
checkpoints taken along with the time of execution for checkpointing
(row 1) is shown. Table 4.5b shows the rollback overhead due to 10
evenly spaced rollbacks with an error latency of zero seconds. We see
that most of the overhead due to rollback, row 5, can be attributed to
the rollback distance, row 2, that is, the computation which must be
redone. In the case of the initiator process Pl, BCS exhibits a higher
overhead, mainly due to its serialized rollback control messages. In
P2, BCS again exhibits a slightly higher overhead, due to the fact that
it rolls back farther.

To obtain the data in Table 4.5c, an error latency, uniformly
distributed between 0 and 1 second, has been used. We see that, as the
error latency increases, so does the rollback distance, in both RLV and
BCS. Furthermore, it appears as though the increased overhead, when
capared to Table 4.5b, is directly proportional to the increase in
latency (i.e., about 0.5 seconds per rollback), although further
measurements should be taken to verify the linearity behavior. It would

appear, then, that latency has a predictable effect on the rollback
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Table 4.5a

CHECKPOINTING IN AN ISO-SIC ENVIRONMENT

RIV BCS
Pl P2 Pl P2
1. Control (No RBs) 20.01 21.35 20.14 T 20.29
2. SICs 50 50 50 50
3. RCs 0 49 0 0
Table 4.5b

ROLLBACK OVERHEAD IN AN ISU-SIC ENVIRONMENT
(0s. error latency)

RLV BCS
Pl P2 Pl P2

1. With 10 RBs. 23.48 24.98 25.05 25.15
2. RB. Distance 2.62 2.67 2.64 2.77
3. Unnecessary RB. Dist. 2.62 2.67 2.64 2.77
4. Iterations Repeated 29 29.6 29 40
5. Overhead (rowl-Cntl.) 3.47 3.63 3.59 4.86

Table 4.5c¢

ROLLBACK OVERHEAD IN AN ISO-SIC ENVIRONMENT
(max. 1ls. error latency)

RLV BCS
P1 27) P1 P2
1. With 10 RBs. 27.78 28.80 29.56 29.68
2. RB. Distance 7.00 6.36 7.04 7.13
3. Unnecessary RB. Dist. 2.15 3.38 2.19 3.69
4. Tterations Repeated 72.2 68.8 73 83.2

5. Overhead (rowl-Cntl.) 7.77 7.45 9.42 9.39
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distance regardless of the rollback and recovery algorithm used.

Table 4.6 (a to c) is similar to Table 4.5, except that the message
pattern and SIC pattern are unfavourable to BCS, depicted in Fig. 19.
By comparing row 2 in Table 4.5b with the corresponding row in Table
4.6b, we cbserve that the initiator process Pl experiences about the
same rollback distance. However, in the case of the non~initiator
process P2, the rollback distance is much worse for BCS.

The unnecessary rollback distance (row 3 in Tables 4.5b, 4.5c, 4.6b
and 4.6c) is smaller in RLV because of its way of taking RC checkpoints.
When the checkpointing is uniform, as in iso~SIC (Table 4.5), BCS incurs
a relatively low overhead of unnecessary rollback. However, if the
message flow and SIC pattern is uneven, such as in Fig. 19 (Table 4.6),

the unnecessary rollback could become substantial in the case of BCS.

4.5 Remarks and Conclusions

The storage cost for a single checkpoint depends upon the
application program, the size of the problem, and the way in which the
RRK packs the information for the sake of the internal storage. In the
case of N-Life, for the smaller (10 x 20) matrix, 1630 bytes of
information was packed into 82 bywes for each process, before being
stored. Similarly, in the case of the larger (50 x 20) matrices, 8030
bytes are packed into 282 bytes of data for each checkpoint. 1In
general, the total storage cost for checkpointing will depend upon the
space required per checkpoint and the number of checkpoints taken. We
have indicated, in the various tables, the number of SICs and RCs taken

in our experimental study. N-Life is a simple application program and
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Table 4.6a

CHECKPOINTING IN AN UNEVEN-SIC ENVIRONMENT

RIV BCS
Pl P2 Pl P2
1. Control (No RBs) 20.04 25.34 20.08 25.07
2. SICs 50 . 200 50 200
3. RCs 0 49 0 0
Table 4.6b

ROLLBACK OVERHEAD IN AN UNEVEN=-SIC ENVIRONMENT
(0s. error latency)

RLV BCS
Pl P2 Pl P2
1. With 10 RBs. 23.38 27.16 25.26 43.61
2. RB. Distance 2.63 1.07 2.63 15.88
3. Unnecessary RB. Dist. 2.63 1.07 2.63 15.88
4. Tterations Repeated 29 13.6 29 140.2
5. Overhead (rowl-Cntl.) 3.34 1.82 5.18 18.54
Table 4.6¢c
ROLLBACK OVERHEAD IN AN UNEVEN-SIC ENVIRONMENT
(max. 1ls. error latency)
RLV BCS
Pl P2 Pl P2
1. With 10 RBs. 27.79 30.32 29.75 48.13
2. RB. Distance 7.04 3.92 7.08 19.70
3. Unnecessary RB. Dist. 2.19 2.41 2.23 19.70
4. Iterations Repeated 73 39.8 73 168.3

5. Overhead (rowl-Cntl.) 7.75 4.98 9.67 23.06
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it was relatively easy to decide when to take a checkpoint (the SICs are
taken at the beginning of an iteration).

With respect to measurements for more complex test cases, we are
in the process of adding local stable stores to the diskless
workstations and modifying the communication subsystem to have a local
copy of the Yellow Pages directory. Then we should be able to include
several processors under all cases of message flow. At this stage, we
store the checkpoints in the local RAM of the diskless nodes, which
limits the size of the application program we can run. This constraint
will be relaxed when local stable stores are added. However, the
overall results and trends reported in this paper will not be affected.

Until the above improvements are made, we can offer suggestions on
carrying ocut measurements in the present enviromment. From the graph in
Fig. 4.11, we see that the execution times seem to vary with respect to
some slowly changing system overhead. This overhead may be caused by
system routines or other application programs. To limit the effects of
this overhead, we suggest the following: design test cases which can be
run in less than a couple of minutes; run the measurements in pairs
(e.g., RV vs BCS, or with checkpointing vs without checkpointing), one
after the other, so they will experience about the same system overhead;
express the results in terms of relative differences rather than
absolute times. To limit the time of the test cases, one can reduce the
number of iterations and/or reduce the problem size (matrix size). The
latter should be done with care, however, since shortening the cycle
time may increase the frequency of commnication, and result in
competing commumnications within the distributed application itself.

In Case C2, we saw how the loosely-synchronous nature of N-Life has
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a masking effect on the relative performances of the rollback and
recovery algorithms, in terms of checkpointing overhead. Although no
data has yet been acquired, it is expected that a similar masking effect
is experienced during the rollback operation. To illustrate this, we
refer to Fig. 4.20. Here, we see that P2 has rolled back a distance of
d3, which correspords (disregarding algorithm overhead) to its rollback
overhead. Pl, on the other hard, rolls back a distance of only d2,
which would imply that Pl should experience less rollback overhead than
P2. However, Pl immediately blocks for message M1, and remains blocked
for period of dl seconds. Onecanseet.:hatthesmnofdlarddz is
equal to d3. The conclusion which can be drawn from this, is that the
campletion times for the processes of a distributed application, which
is either loosely-synchronous or synchronous, are bounded by the
slowest process in the distributed system (in this case the rollback
initiator). Furthermore, the time saved in using one rollback and
recovery algorithm over another may be overshadowed by the slow-down due
to the synchronization needs of the application program. An algorithm
such as RLV, which minimizes the rollback distance through the use of
dependency tracking, is severly hindered if the application test-bed is
not well suited. 1In order for RIV to be of the most use, it should be
used with either fully asynchroncus applications, or in an envirorment
where each node in the system supports multiple processes, in which case
a blocked process would be exchanged for ancother process which is ready
to use the CPU.

The time overhead due to the use of a rollback and recovery scheme
has several components: (i) checkpointing time, (1ii) time required to

rollback upon the detection of a fault, (iii) rollback distance. They
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are dependent on the application program, the distributed computing
system, the rollback and recovery algorithm, and the design and
implementation of the RRK software. For our experimental study the
checkpointing time and the rollback distances were presented in the
various tables. The average time taken for the N-Life program to
rollback is found to be about 71 milliseconds for RV and 255
milliseconds for BCS. When more processes participate in the rollback,
this time will increase linearly for BCS, whereas it will stay constant
for RLV. The difference is due to the way in which the two algorithms
coordinate and disseminate the rollback control messages.

The question of whether such an RRK, as has been described, can be
of practical value as a means of fault tolerance, can only be answered
by the individual application programmer himself. To illustrate this
point we use the foiiowing hypothetical example.

Iet us assume that a programmer has distributed a program between
four processes, and that the processes take a maximum of 100 seconds to
complete 1000 iterations, in the absence of faults. The programmer
wishes to use the RRK in order to make the program fault tolerant, but
only if the RRK adds no more than 20 percent, i.e., 20 secords, to the
execution time of his program (disregarding any overhead incurred due to
an error detection software). He predicts that a maximm of 2 faults
might occur during one run, and that the maximum latency of these faults
could be 0.9 secords. He is told that, each checkpoint takes 30
milliseconds to create, and that, due to the liberal message passing of
his program, each SIC taken by a process is sure to cause the creation
of an RC on the other three nodes (here we assume RIV as the RRK

algorithm). Finally, he is told that, upon detection of a fault, the
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RRK takes 100 milliseconds to perform a rollback. Can he use the RRK?

If so, what SIC checkpointing rate should he employ?

We assume that each process creates the same number of SICs and

that a constant SIC checkpointing rate is used. Furthermore, we

calculate the overhead with respect to the rollback initiator, i.e., the

process which should experience the largest rollback overhead. The

problem can be solved as follows:

(1)

(i1)

(iii)

Checkpointing Time:
Iet n = the number of SICs created. Therefore, the number of
checkpoints taken by each process is 4n, i.e., 1 SIC + 3 RCs.

=> Checkpointing Time = 4n x 0.03 seconds.

Algorithm Rollback Time:
We assume the maximm of two faults.

=> Algorithm Rollback Time = 2 x 0.1 secords.

Rollback Distance:

This is made up of the sum of the error latency, and the distance
between the fault and the rollback checkpoint. Assume a maximum
error latency, i.e., 0.9 seconds. Furthermore, assume that both
faults occur just prior to the taking of a SIC, which causes the
maximm rollback distance, e.g., to the prior SIC. Therefore, the
distance between the fault and the rollback checkpoint is the
inter-checkpoint distance, i.e., the total execution time divided
by the number of SICs taken.

=> Rollback Distance = (2 x (100/n) + 2 x 0.9) seconds.
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We see that..
i. (4n x C.03) + (2 x 0.9) + (2 x 0.1) + (2 x 100/n) <= 20
ii. 0.12n + 2 + 200/n <= 20
iii. 0.12n - 18 + 200/n <= 0
iv. 0.12n2 - 18n + 200 <= 0

Solving for this quadratic equation, we get.. n = [ 12.08 .. 137.89 ].

Therefore, the programmer can indeed make use of the RRK, and, by
Creating anywhere from 13 to 137 SICs on each process, he is assurred of
a fault tolerance overhead of no more than 20 percent. If the rollback
distance is not crucial to the application (it is in the real-time
envirooment) then the particular rate of SIC checkpointing chosen
depends on whether the programmer is more interested in throughput or
uniformity of performance. The lower the mumber of SICs, the lower the
average time taken per run, assuming faults don't often occur, and the
higher the throughput. The higher the mmber of SICs, the smaller the
rollback distance upon the occurrence of a fault, and the more uniform
the performance of the system, with or without faults.

Based on cur experience with this experimental project, we wish to
state the following for the benefit of other experimentalists: The
proper selection of a distributed application program is important,
especially when it is used as a means for the evaluation of rollback and
recovery algorithms. The limitations and flexibilities of the
cammmnication suk ystem play an important role. The error latency is
one of the important factors that will determine the practical

usefulness of a rollback and recovery scheme.



Chapter 5

Towards the Design of a Real-Time RRK

In the preceding chapters, we outlined the design of an RRK, based
on a certain category of non-real-time rollback and recovery
algerithms. In this chapter, we examine the unique aspects of the real-
time envirorment. which must be addressed in the design of a real-time
RRK. Since, as we have seen, the design of the RRK depends on the .
nature of the rollback and recovery algorithms nsed, we must restrict
our design to a particular type of algorithm, or model. 1In this thesis,
we introduce the "Coexistence Model" for real-time fault tolerance.

The chapter begins with a loock at the properties of real-time
applications. Then, we will discuss the difficulties of designing
reliable software for this envirorment and look at some approaches to
real-time fault tolerance. After which, we will outline the proposed
coexistence model and see how it may affect the design of the RRK.

1Ne
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5.1 Properties of Real-Time Applications

By "real-time" we mean those applications which deal with ongoing
physical processes of the real, or natural, world. In the world of
camputers, time is parceled in the currency of CPU seconds; we
conveniently allocate it, divide it, share it, stop jit, even roll it
back. When the interruptable digitized time of the computer world must
interface with the non-interruptable continuocus time of the real world,
same compramises must be made, we must adapt the computers to function
in real-time.

In this thesis, we deal with closed-loop process control systems of
the hard real-time erwvirorment. The term "closed-loop" refers to a
system, as seen in Fig. 5.1, with an unbroken flow of information
between the controlled object, i.e., the physical process, and the
controlling system, e.g., the Real-Time DCS, or RIDCS. As we see in the
figure, same input from a human operator may also be received by the
controlling system. The controlling system monitors the behavior of the
controlled cbject through input from sensors such as thermocouples,
optical scanners and contact probes, and effects physical changes on the
controlled cbject through actuators like heating elements, servo-motors
and valves. Applications where the input from the sensors or the output
to the actuators must be carried out according to strict real-time
limits are referred to as "hard real-time" applications or tasks. Hard
real-time tasks are often safety-critical tasks, e.g., avionic control.

For the sake of clarity, we may refer to the real-time application,
i.e., the controlled object, as the "physical process(es)", and the
controlling camputer system as the "software process(es)". It should be
understood that the controlling system is only the computer itself, any
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mechanical apparatus which interacts with the computer is viewed as part
of the controlled cbject.

In Chapter 2, we saw how the application program and the RRK could
be viewed as separate modules in the non-real-time envirorment. This
enabled the design of a more general RRK which could be used with
different applications. Fault intolerance, in the application program,
and fault tolerance, in the RRK, could be handled separately. In real-
time, the time constraint imposed on the computer system makes it more
difficult for them to be treated as separate concerns. Time taken by
the application program and the fault tolerant software nust both be
accounted for in order to meet deadline requirements. To facilitate the
design procedure, the application program and the RRK should be designed
concurrently rather than in sequence. To do that, we must first
understand the nature, or properties, of the real-time physical
processes in order to see how a RIDCS can be used to control it.

Cbviocusly, the most important property of real-time systems is
their timing constraint, scame examples of which are borrowed from (19]
and shown in Table 5.1; but what other properties do real-time
applications have?

A cocmmon property of real-time applications is that the physical
processes are made up of several, geographically or physically separate,
related camponents. For example, in avionic control, the global task of
flying the plane is made up of several separate components such as
engine control, wing control, control of landing gear, and cockpit data
display. Each separate site or component is, in turn, composed of one
or more physical processes which may or may not be directly related to
each other [9].
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Table 5.1

EXAMPLES OF TYPICAL REAL-TIME CONSTRAINTS

Application Required Response Time Intervals Between
Times Sensor Inputs

Radar Scanning 0.3 - 0.6 msec. 0.3 = 0.6 msec.

Jet Engine Test Bed - 5 msec.

Missile Impact Prediction 100 msec. 50 msec.

Scientific Data Collection up to 1 sec. -

Production Control System 1 - 50 sec. 10 sec. upwards
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For example, in the wing of the plane, there are such tasks as the
movement of the control surfaces of the wing as well as the monitoring
of the wing for excessive stress and the checking of the level of the
fuel. With respect to the controlling system, the RIDCS is made up of a
network of interconnected camputers (processors) .. Each camputer is
called a node. ©On each node there can be one or more software
processes. They are the controlling processes. For the closed-loop
system, the simplest case, with respect to realizing processor schedules
which guarantee time deadlines, would be to run each software process on
its own dedicated node. Unfortunately, cost, weight, and space
limitations may make it impracticable to support many processors at each
physically separate site. More often, a single processor might have to
handle the execution of several software processes, each controlling a
separate physical process. For example, a single microprocessor may be
required to handle the tasks to be carried out in the wing of the
airplane, described above.

The behavior of the physical processes cited above can be
sumarized in terms of states and events. The state of a physical
process usually changes in a regular and predictable manner, due to the
inertia of the physical process and its inherent laws of nature. These
state changes may proceed in one of two ways: periodic (cyclic change),
and aperiodic (start-to-finish smooth—-curve change), as shown in Fig.
5.2a and Fig. 5.2b respectively. Examples of physical processes which
exhibit cyclic change are disk memory access, radar scanning, and
heart-lung machine contxol. Smooth—curve change is seen in such
physical processes as chemical reactions (e.g., temperature or

pressure), and missile guidance (e.g., altitude or velcocity).
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The events can also be classified into two categories: predictable
and non-predictable, or sporadic. Events are predictable if we know
when they will occur. For example, the ejection of a stage of a rocket.
As for sporadic ;avents, we do not know when they will occur or, even if
they will occur. Examples of sporadic events are: a crack formation in
the cooling module of a nuclear power plant which causes coolant to be
lost and a critical temperature to be reached; lightning strikes a jet
engine and causes it to fail; a worker, wanting to go for a coffee,
pushes the 'off' button on his automated punch press.

The occurrence of an event may alter the nature of the process'
state behavior (state trancition), as are illustrated in Fig. 5.2c and
Fig. 5.2d. For example, in the nuclear power plant, the loss of a
functional cooling module may cause the remaining cooling modules to
work harder in order to keep the core temperature safe. In this case,
the frequency of the engine cycles of these cooling modules may change
in the manner depicted in Fig. 5.2c.

Before we see how the behavior of the physical processes, outlined
above, is handled by the coexistence model, we will first look at some

of the existing approaches to the design of reliable real-time software.

5.2 Design of Reliable Real-Time Software

Scme researchers are introducing more formalism into the design of
real-time programs in order to create fault-free software. ADA supports
such modern language concepts as (i) data abstraction, (ii) modularity,
and (iii) machine independence, ard introduces the "rendezvous" concept
which handles both the synchronization of and communication between

parallel software processes [13). Wirth [26] suggested using separate
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processors for each software process of a real-time system in order to
respect time deadlines. Mok [20] uses a type of process-based model,
the '"graph-based model"”, as a high-level scheduling tool in an
enviromment where a processor must handle more than one software
process. Zave [28] uses a more general view of the real-time system
where both the physical processes and the software processes are modeled
as interacting "asynchronous" entities. In her model, human beings are
considered as part of the system. Faulk and Parnas (9] describe a two-
level approach to synchronization in hard real-time by separating the
low-level concerns, the "extended computer", from the high~level
concerns, the "state transition event" (STE) variables. Considering the
camplexity of the task of designing fault-free real-time software,
absolute success is virtually impossible no matter what the approach,
and a robust fault tolerance mechanism must be added to real-time
software systems.

In Chapter 2, we saw that the non-real-time RRK was required to
reproduce consistent cause-effect relationships between the distributed
send and receive events, upon detection of a fault. Although the
overhead due to the RRK was considered, and efforts were definitely made
to minimize it, the criteria for determining whether the RRK performed
quickly encugh were not set by any controlled object. In hard real-
time, the fault tolerance mechanism must perform its duties within
strict time limits determined by laws of nature rather than man.

A comon approach to real-time fault tolerance is N-version
programming {7]. Its desirability stems from its uniform time of
camputation, whether faults occur or not, but, as was discussed in

Chapter 1, this approach is hindered by the difficulty in designing
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unique versions of software. Furthermore, some real-time applications,
e.g., the on-board CPUs of missiles, may not be able to support the
extra hardware, needed in N-version programming, because of restrictions
on space and weight.

If rollback and recovery is the chosen means of fault tolerance,
the system must be able to detect a fault and reexecute the computation
before a response is required by the controlled object. An erronecus
output sent to the enviromment cannot be rolled back. An elegant
solution to these problems is supplied by Anderson and Knight in ([2].
Their approach is based on a variant of Randell's "conversation" scheme
[22].

Randell proposed that communicating parallel processes be grouped
into conversations in order to synchronize the creation and the
discarding of checkpoints. Processes involved in a conversation may
communicate freely among themselves, but cannot communicate with other
processes in the system. Processes may enter a conversation at
different times, but must all exit at the same time. The information
regarding which processes may be permitted to participate in a given
conversation can be defined at a pre-run time, so that all the
processes may have the ability to accept or reject any message, based on
the sender's ID. Upon entering a conversation each process takes a
checkpoint. Before exiting, each process performs an acceptance test on
the results of its computation. Only if all the processes pass their
respective acceptance tests are they allowed to discard their
checkpoints and exit the conversation. If a fault is detected in any of
the processes belonging to a comnversation, they are all forced to roll

back their computations to the beginning of the conversation.
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By further restricting the interprocess communication, Anderson
and Knight group processes into fault tolerant "exchanges". A process
enters an exchange as it is initiated and exits when all the processes
of the exchange, including itself, terminate. Therefore a process,
throughout its execution, participates in a single exchange and cannot
camunicate with processes belonging to any other exchanges. This
differs from the conversation model, where processes may participate in
more than one conversation, i.e., either in sequential conversations or
in nested conversations. Anderson and Knight argue that, although
conversations are more flexible, they would require more synchronization
points on each of the participating processes, and that the basically
iterative nature of real-time systems can be easily modeled through
exchanges if one views an iteration as being equivalent to a process of
an exchange.

In both the conversation and the exchange models, the favlt
tolerance is based on the "recovery block" model [14], discussed in
Chapter 1. In order for it to be possible for the processes to meet
their time deadlines, the alternate software which is used upon rollback
must be of a simple enough design so as to be able to run in a fraction
of the time taken by the primary version. Due to this simple design,
the alternates can only offer a degraded service. A trivial example of
an alternate software is the so called "skip-frame" strategy, where the
results of the previous iteration are used for the iteration in which
the error occurred. An error history is maintained to determine the
severity of the fault. Basically, if a fault appears in consecutive
iterations the primary module is swapped for a stand-by primary version.

One should note that the design of the real-time recovery block
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need not be limited to the primary module and one alternate. Two, or
more, alternates may be incorporated into the design as long as there is
sufficient time, between the start of the recovery block and the time
deadline, for the primary module and all the alternates to be executed.

Also in Andexson's and Knight's paper, the distributed computations
are modelled in the form of "Synchronization Graphs", an example of
which is borrowed from their paper amd shown in Fig. 5.3. These are
acyclic directed graphs with two types of nodes: those representing
processes, ard those representing timing constraints. Each process node
1scom1ected{:otwot1mmg nodes, by arcs. A process must be initiated
at, or after, the time indicated by the earlier of the two timing nodes,
to which it is connected, and terminate at, or before, the time
indicated by the latter of the two timing nodes. By modelling the
system in this way, we see that a single timing node can serve as a
comon point of initiations and terminations of several processes, which
greatly simplifies the logistics of processor scheduling.

A limitation of Anderson's and Knight's model, which is shared by
virtually all real-time software design methodologies, lies in the
treatment of sporadic events. To explain this, we must digress.
Regarding the properties of real-~time applications, we recall that their
behavior is made up of predictable changes of state along with the
occurrence of predictable and non-predictable, or sporadic, events.
Typically, real-time software systems handle the predictable behavior
through the use of iterative processes. The period of the iterations
depends on the nature of the physical processes' behavior as well as the
priority of the tasks. For example, in Fig. 5.4a, we see that, for the

controlling system to keep pace with the controlled object, the period
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of a cyclic physical process, Tc, determines the period of the software
process, Ts, i.e., Ts = F(Tc), where F is a function determined by the
system designer. In Fig. 5.4b a smooth-curve change of state is shown.
In this case the period of the software process would depend on the
critical nature of the task as well as the rate of change of the curve,
e.g., if the task is of a low priority or the rate of change is slow,
frequent interaction may not be required. In avionic control, for
example, the level of fuel in the wing may be seen as a smooth curve
state change, which changes quite slowly. To monitor this change, a
microprocessor may check the fuel sensor at a rate which is determined
by the rate of fuel consumption, e.g., maybe once every 2 minutes.

In the literature, the sporadic events are either handled through
periodic monitoring of sensors, or they are assumed to be of a lower
priority and are handled on a time-left-over basis ({20]. The first
approach, periodic monitoring, is at best inefficient, since a process
is allocated CPU time even if an event never occurs, and may even prove
to be infeasible in an envirorment where several sporadic events must be
accounted for in a system with limited processing power. Either
approach, periodic monitoring or handling on a time-left-over basis, may
not be quick to respond to the occurrence of a critical sporadic event.
Referring to the same avionic control example, if there is a sudden
dramatic loss of fuel, due to a ruptured wing structure for instance, it
may go undetected for up to two minutes!

5.3 Coexistence Approach to Real-Time Fault Tolerance
A more general approach to real-time fault tolerance is needed to

handle sporadic events, especially in an envirorment with strict
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limitations on the allowable space and weight of the RIDCS hardware. We
introduce the coexistence model for real-time fault tolerance. The
objective of this model is to hamdle the sporadic events in a way that:
(1) is more efficient than periodic monitoring, i.e., the amount of
special action needed to handle sporadic events should be proportional
to the frequency of their occurrence; (ii) is more responsive than
either periodic monitoring or handling on a time-left-over basis, i.e.,
the response to sporadic events, especially critical ones, should be
almost instantaneocus.

In the coexistence model, all predictable physical process
behaviors are handled through Anderson's exchange/synchronization graph
approach, while the handling of sporadic events is facilitated through
the use of aperiodic interrupt-handlers and a rollback and recovery
scheme which is similar to the RIV algorithm described earlier. The
particulars of Anderson's approach have already been briefly described.
In this section, we will first outline the approach to the control of
sporadic events. Then, we will describe how the two approaches can work
together, i.e., coexist, to form a more camprehensive approach to real-
time software fault tolerance.

The sporadic events may or may not be critical events. The more
critical the event the more severe the effect on the changing state
behaviors of the physical process, The sporadic events are handled by
apericdic processes. Even though the occurrence of the sporadic events
is unpredictable, the manner in which they are handled by these
aperiodic processes can be well thought-out and known a priori.

Although part of the duties of these processes may be to produce some
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responses to be ocutput directly to the enviromment, their main function
is to alter the arrangement of the periodic processes and, thereby,
affect the controlled object. The aperiodic processes must properly
diagnose the sporadic event and then update the schedule of the periodic
processes that follow. We can, therefore, view the aperiodic processes
as a state of flux in the controlling system, which acts as a sort of
coarse control of system behavior, while the periodic processes carry
out the ongoing fine tuning of this behavior. Since these aperiodic
processes, like the periodic processes used for the predictable
behavior, should produce results within a certain time and must have a
quick means of detecting errors, the software is arranged in recovery
blocks. The complete aperiodic action could be made up of several
recovery blocks in the distributed system, as is shown in Fig. 5.5. The
determination of the size of these recovery blocks will be addressed
shortly.

The respective tasks of the distributed aperiodic processes are
initiated, i.e., the nodes become aware of the sporadic event, through
one of the three following means: (i) critical timer alarm; (ii)
asynchronous stimulus from the envirorment; (iii) asynchronous message.

The first option, critical timer alarm, occurs when a pericdic
routine has failed, i.e., passed its deadline without producing a
satisfactory result. In this way, the coexistence model can offer an
extra layer of fault tolerance over the model proposed by Anderson and
Knight. They point out that often the system can tolerate belated or
erronecus outputs for a cycle, since the inertia of the physical
equipement may absorb the temporary failure of the software. However,
in their model, chronic failure could be disastercus. In the
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coexistence model, if the task is critical or if the malfunction
persists, the inclusion of an aperiodic routine could act as a "fail-
safe" mechanism.

The secord option, asynchronous stimulus, is the more common type
of sporadic event described throughout this chapter. It occurs when a
sensor is activated due to a predefined threshold being exceeded by the
physical process.

The third option, asynchronous message, happens when a process
learns of the sporadic event from another process in the system. To
enable a speedy response to these messages, their implementation may
require some sort of out-of-bound message passing, perhaps with special
channels dedicated to asynchronous messages. Also, to more easily
inform the receiving process of the nature of the sporadic event, these
asynchronous messages may be "typed" according to event.

In the RIDCS, the first process initiated due to the sporadic event
is labelled the "Response Initiator" or RI. The RI becomes initiated
through either a critical timer alarm or an asynchronous stimulus.
Whether the identity of the RI, for a particular sporadic event, is
predetermined or not, is not critical to this design. The RI is
responsible for at least the first stage of event diagnosis, that is,
the broad classification of the event to one type or ancther.
Subsequently, the RI may require the help of other processes to more
campletely diagnose the event and come up with a schedule for the
periodic nrocesses. As we see in Fig. 5.5, processor P2, the RI,
becames aware of the sporadic event through an unexpected input from a
sensor via stimulus S1. The eventual responses needed to control the

controlled object may be produced by the RI itself or another
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participating process. The first action taken by the RI is to send an
asynchronous message on all its outgoing channels to inform other nodes
about the particular oradic event which has occurred, so that they may
begin their respective duties, if any. Referring again to Fig. 5.5, we
see that process P2 informs the other nodes in the system by sending
out the asynchronous messages, M1, M2 and M3. In this case, processor
Pl has no duties to perform for such an event so it carries on with
whatever it was doing, that is, the execution of periodic processes.
Processors P3 and P4, on the other hand, respond by initiating their own
aperiodic processes.

In Table 5.1, we saw that the I/O between the controlling system
and the controlled object often occurs quite frequently, e.qg., a few
times per second. Not surprisingly, the periodic processes designed to
handle this predictable behavior usually take a fraction of a second per
iteration. On the other hand, the aperiodic processes may have to carry
out detailed event diagnosis and processor scheduling, requiring
extensive camputation which may be infeasible to roll back in its
entirety. Furthermore, since the processes are not iterative, trivial
alternative software modules, such as skip~frame, can not be as easily
designed. For these reasons, the exchange model proposed by Anderson
and Knight would not be suitable as a means for fault tolerance of the
aperiodic processes. A more appropriate model would enable a
minimization of the rollback distance, perhaps through dependency
tracking and the creation of timely RCs, i.e., a dynamic checkpointing
algorithm like RIV.

In the coexistence model, each aperiodic process first takes a
checkpoint, an SIC, before beginning their respective tasks. These SICs
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mark the beginning of their first recovery blocks. To handle the
logistics of the creation and discarding of the SICs and the subsequent
RCs, we refer to Kim's "PIC/LCN" scheme {16]. This algorithm, a dynamic
checkpointing algorithm, is very similar to the RIV algorithm in terms
of its creation of RCs and recovery lines. Unlike RV, however, Kim's
algorithm is based on the recovery block mechanism, which is seen as
being more appropriate for the real-time envirorment since it can place
a bound on the execution time of, and the error detection for, a
process. Kim, himself, does not view his algorithm in the real-time
context. More detailed analysis of the suitability of the PIC/LCN
scheme should be carried out in this sense. In this algorithm, RCs may
be formed when a process receives a message within its recovery block.
Before exiting its recovery block, and discarding its SIC, each process
must pass an acceptance test. A SIC can be discarded if the recovery
block acceptance test is passed and either no RCs were established
within the recovery block or all the RCs established have been discarded
by their owners. A more complete discussion of the PIC/LCN algorithm
can be found in [16].

The size of the recovery blocks depends on two things: (i) whether
a response is directly output to the enviromment (in which case it would
force the execution of an acceptance test just prior to the response,
since the response cannot be rolled back); and (ii) the amount of "slack
time" between the deadline for the completion of the process and the
execution time of the primary algorithm. In the latter case, the sum of
the executions of the altermate modules should never exceed the slack
time.

The periodic processes of Anderson's scheme must coexist with the
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aperiodic processes described above, whether faults occur or not. We
recall, from section 5.1, that the occurrence of events may cause a
change in the otherwise predictable behavior of the controlled cbject.
Accordingly, we can classify the aperiodic tasks into groups, according
to the degree to which they affect the behavior of the controlling
system. For example, low priority, intermediate priority, and high
priority tasks. The low priority tasks are those that either mpfesent
sporadic events which are not too important, or there is no action that
can be taken to remedy the situation and the tasks carried out are
merely for book-keeping purposes, i.e., to record the occurrence of the
event. In either case, the tasks can be hardled on a time-left-over
basis and need not interrupt, nor affect, the execution of the periodic
processes. The intermediate priority tasks are those which may alter
the behavior of the system, but not at the expense of turning off the
ongoing periodic tasks. These tasks are of a higher priority than the
primary algorithm of the periodic tasks, that is, they either interrupt
it or prevent it from beginning, but are of a lower priority than the
alternate algorithms and, therefore, cannot affect them. The high
priority tasks are those which will so radically affect the behavior of
the system that further periodic execution is both wasteful and
redundant. These tasks interrupt and/or prevent the execution of the
periodic routines. Finally, the priority of a given aperiodic routine
may vary, that is, it may be regarded as a high priority task in
relation to same unimportant periodic routines, but only as intermediate
priority when compared to more crucial pericdic tasks.

To achieve fault tolerance, we view the two types of processes,

periodic and aperiodic, as separate atomic actions. To enforce this
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view, the aperiodic processes should be designed so that they do not
directly communicate with the periodic processes (aperiodic processes
my set the initial state of newly arranged periodic processes,
however). Although this may at first appear to be a rather severe
restriction, it is believed that it is quite naturally realized, since
the functions of the two types of processes are quite different. If
these restrictions can be enforced, then, as Campbell et.al. point out
[6], "If a fault, resulting error propagation, and subseguent successful
error recovery all occur within a single atomic action they will not
affect any other system activities". Therefore, in the coexistence
model the fault tolerance of one type of process, e.g., periodic, can be
treated completely separately from the other. To illustrate this we
refer to Fig. 5.6. In this figure, we see that a given processor,
during a given time frame, may have an ongoing aperiodic routine which
has interleaved within it one or more periodic routines. In this
example, should any of the periodic routines mll back due to the
detection of a fault they would have no effect on the aperiodic routine.
If, on the other hand, the aperiodic routine should roll back, its
recamputation may alter the behavior of future periodic routines, but it
cannot force a periodic routine to roll back.

With the coexistence model, a host of aperiodic routines can be
defined without affecting the performance of the system, since a given
aperiodic routine is only activated upon the occurrence of a particular
sporadic event. Also, depending on the critical nature of the event, an

aperiodic routine can respord right away.
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Figure 5.6
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Interleaved processes in the coexistence model.,
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5.4 Considerations for a Real-Time RRK

The following points should be cansidered in the design of a real-
time RRK:

(i) In the real-time process control enviromment, each node in the
RIDCS may have to support several software processes. Although these
processes may or may not be directly related [9], they are all
indirectly linked by their common controlled abject. Therefore, unlike
the RRK described in Chapter 2, the real-time RRK must support more than
one application process at the same time.

(ii) The Real-Time RRK (RTRRK) should be divided into two separate
modules, one which handles the rollback and recovery for the periodic
jobs and one which handles the rollback and recovery for the aperiodic
jobs. This coincides with their treatement as separate entities.
Obvicusly, the RIRRK could not be appended to an individual process,
even for the purpose of performance analysis, as we had done for the
non-real-time RRK, in this thesis. It would have to exist as part of
the OS software.

(iii) In Chapter 2, the design of the RRK, the application program,
and the OS software were treated as separate concerns. In the real-time
damain, these three softwares must be designed together. It is not
feasible to allow the application programmer to design his program as he
wishes, without paying attention to the design of the other softwares.

(iv) On each node in the system, there must be a "watch-dog" timer
which keeps track of the passage of real time. This timer would be
responsible for ensuring that each process respects its time limits. If
a process should pass a deadline the watch-dog timer will alert the

appropriate RRK module.
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In summary, we find that sporadic events seem to be handled
ineffectively in most existing real-time software systems. An approach
to real-time software fault tolerance has been described which appears
to offer a more efficient and responsive means of handling sporadic
events. This approach, the coexistence model, also incorporates a means
for allowing for more immediate responses to the occurrence of the more
critical events.



Chapter 6

Conclusions and Suggestions for Future Work

In this thesis, we examined same of the important issues in the
practical implementation of rollback and recovery in the distributed
canputing envirorment. In particular, we were interested in a specific
type of rollback and recovery algorithm, the dynamic checkpointing
algorithms. These algorithms employ preplanmned recovery, are non-
intrusive checkpointing algorithms, and place few constraints on the
behavior of the application progran.

In Chapter 2, we discussed same of the aspects to be considered in
the design of a Rollback and Recovery Kernel (RRK). This RRK was meant
to provide a practical test-bed envirorment for the implementation and
testing of two dynamic checkpointing algorithms, RIV and BCS. Also, an
effort was made to design an RRK which would be easy to use by future
application programmers. It is felt that the resulting design, made wp
of an application invariant part and an application deperdent part, is
one which allows for a relatively easy 1link-up with application
programs while retaining a rollback and recovery software which can
perform quite efficiently. To support this claim, future work should
include the use of the RRK with other applications other than N-Life.

Also, the RRK should be integrated with the OS software, as described in
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Chapter 2.

While implementing the RRK, we had to choose an appropriate
distributed test-bed application program. Since we could find little
literature on the subject, we evolved same of our own criteria for the
characteristics of a such an application program. Our own particular
choice was a distributed version of J. H. Corway's "Game of Life", "N-
Life", which was developed by us. Althouwh N-Life was found to be a
very flexible and easy-to-use testing and debugging tool, its
synchronization properties (loosely synchronous) were concluded not to
be ideal for our purposes, i.e., the performance measurement of dynamic
checkpointing algorithms, which are essentially asynchronous. A worthy
subject for future research would be a more rigorous examination of the
differrent synchronization characteristics which may be exhibited by
different classes of application programs, and the development of a
totally asynchronous test-bed application program.

Once the RRK was implemented, we proceeded with taking measurements
on the two algorithms mentioned above. Unfortunately, we discovered
that the DCS architecture we had chosen harboured a bottle-neck in
communication due to its use of a central file server. Because of this,
we limited most of ocur measurements to a two-process model. When the
bottle-neck 1is resolved, future work may include more elaborate
nmeasurement examples. No absolute conclusions could be reached on the
algorithms, either individually or as a class, since the overhead they
incur is based on such application dependent characteristics as rate of
checkpointing, size of checkpoints, message passing behavior, and error
latency. However, we did observe that the overhead due to

checkpointing, at least with N-Life, was not much (often less than
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10%). In most cases BCS caused less overhead in checkpointing, although
the difference between the algorithms, in this regard, was negligible.
With respect to the overhead due to rollback and recovery, RLV was shown
to rollback a shorter distance than BCS in most cases, although, once
again, this depended on the particular message passing behavior of the
application. Since the amount of error latency was seen to cause a
proportional increase in the rollback distance, it was concluded that,
ultimately, the error latency in a particuler system may determine the
feasibility of using rollback and recovery as a means of fault
tolerance. Future research may include methods of speeding-up the
actions of saving and loading checkpoints, and perhaps distinguishing
between the actions taken for SICs vs. RCs. Since SICs are more or less
predictable, same sort of economization may be implemented.

The real-time computing envirorment is one in which software fault
tolerance is most crucial, due to the critical nature of the tasks.
However, it is also an enviromment where the implementation of fault
tolerance through rollback and recovery is very difficult, due mainly to
the inherent timing constraints imposed by the controlled ocbject. In
Chapter 5, we discussed some of the characteristics of real-time
applications and summarized some approaches to the design of reliable
software for - is envirorment. We also introduced a composite model for
software fault tolerance, the "Coexistence Model". The impetus for the
latter was, what was seen as, a weakness in the treatment of sporadic
events by existing approaches.

However, several important factors remain to be addressed in
order to realize a complete fault tolerant model. Firstly, the reason

previous approaches have avoided such a dynamic software model is that
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periodic jobs are more predictable, in terms of their resource
requirements, than aperiodic jabs. Consequently, a simpler scheduling
scheme can be used if all the processes are periodic. Faulk and Parnas
point ocut [9] that a more effective approach to real-time scheduling can
be achieved by using both a pre-run-time and a run-timé scheduler. The
pre-run-time scheduler can map ocut the predictable periodic scheduling,
which forms the bulk of hard real-time camputation, while the run-time
scheduler is only used upon the occurrence of unpredictable external
events. They describe how, even for the run-time scheduler, the
overhead can be further reduced by having the "worst-case" scheduling
decisions made before run-time and saving the resulting schedules in
tables. The camputation of the run-time scheduler is, then, merely one
of selecting a schedule from a list of alternatives. In the coexistence
model, the task of run-time scheduling must be considered as part of the
overhead due to the aperiodic routines.

Each time a process preempts the execution of ancther process a
context switch must be made. If the number of processes running on a
node in the system is large or transfer of control takes place often,
the time overhead due to context switching as well as the memory space
needed to save interrupted images may be too costly. Faulk and Parmas
describe how a scheduling program can consider the information on the
timing .onstraints and sequencing of the individual processes, and then
output a single object code made up of the different tasks, which has
embedded within it the schedule of task execution. Other researchers
(8,21,25] describe the use of software interrupt-handlers, which can be
used to handle the occurrence of asynchronous communications. The

ongoing periodic routines could be defined within the main body of the
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program code, and the aperiodic routines defined in the interrupt
handlers. Since such an approach would not require the use of separate
processes for the aperiodic tasks it would also result in a decrease in
the overhead due to context switching.

The limited utility of the acceptance test approach to fault
detection must also be addressed. Jackson showed how the addition of
cther forms of fault detection to that of the acceptance test increased
the number of faults detected [15]. Anderson also declared that the
"mositive acceptability checks", i.e., acceptance tests, should be used
to supplement, not replace, the more rigorous specific malfunction, or
"negative", checks. However, he does not go on to outline how the
ongoing error detection routines, necessary for malfunction tests, can
be incorporated into the exchange model. For his part; Kim describes a
variant of the method described earlier. In this algorithm, PTC/LCN-2,
the fault detection mechanism of a message-receiving process can accuse
the sender of having exported faulty information, in the case where the
sernder's acceptance test failed to catch the fault. However, since the
additional means of fault detection is again an acceptance test, it is
doubtful whether there would be a significant increase in the mmber of
faults detected. In order to realize a truly fault tolerant real-time
system, some sort of ongoing error detection mechanism, one which need
not be encapsulated within the recovery blocks, must be added.
Undoubtedly, such an error detection mechanism must ensure a low error
latency in order to be feasible in the real-time domain. For, as we saw
in Chapter 4, an increase in error latency results in a proportional
increase in the overhead due to camputation reexecution.

Finally, the models used throughout the thesis, e.q., the Space
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Time Models, are process-based models. In any field of research, the
use of a single type of model, to represent a problem, may result in a
rather restricted perspective of the task at hand. Future work should
investigate the use of alternative modelling schemes, e.g., cbject-based
models. Especially with vrespect to research involving real-time
distributed computing, a more formal model must be developed.
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Appendix A

Setjmp/Longjmp Design Restriction

The Setjmp/Longjmp constructs introduce a design restriction. Only
one return pointer can exist at any one time. Thié has two
ramifications in the use of these C-lanquage constructs in a rollback
and recovery kernel.

Firstly, since limiting the user to a solitary checkpoint would
obviate the usefulness of a RRK, the application program is required to
be of an iterative nature with, at most, one call to the Chckpnt
function per cycle. As was explained in Chapter 2, this occurs at the
beginning of an iteration. Since the multiple iterations are the result
of a single segment of code, all the SICs created are the result of a
single occurrence of "Chckpnt() ;" in the program code. This allows &
lone return pointer to service many checkpoints.

Secondly, the reader may recall that, along with explicit Chckpnt
calls, i.e., for the creation of SICs, there also exists implicit
checkpoint creations in response to received messages, i.e., the
creation of RCs. Since we only have the use of a single return pointer,
a rollback to the latter type would result in a Longjmp to the unique
return pointer location, already used for SICs, rather than tc the place

in the code where the Kread, which caused the creation of the RC, was
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actually executed. To remedy this, a "fall-through" mechanism was
employed. In this mechanism, certain program variables, e.g., indices
used in for-loops, while-loops etc., which indicate the extent of the
computation at the time of checkpoint creation, are saved with the other
checkpoint process state information. During rollback, these variables
are reloaded and control is returned to the position in the code where
the call to Chekpnt occurs, that is, at the top of an iteration. If the
checkpoint in question is a RC, then the control would "fall-through",
as it were, to a place within the code which corresponds to the value of
the reloaded variables. This is ensured by the existing programming
language logic.

The arrangement, however, is not ideal since, for example, the
granularity of the "fall-through" mechanism is limited by the size of
the innermost loop construct. A rollback to a RC causes the repetition
of any instructions located between the Kread instruction and the top
of the innermost loop construct in which it is situated. Future code
updates should include a more general scheme with low-level access to

the system's process state information.



