l* National Library
of Canada du Canada

tiibliothéque nationale

Canacian Theses Service  Servica des thases canadiennes

ODttawa, Canadz
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfiiming.
Every effort has been made to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some pagecs may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction infutl or in part of this microformis governed
by the Canadian Copyright Act, R.8.C. 1970, ¢. C-30, and
subsequent amendments.

NL-339 {r. 88/04) ¢

AVIS

La qualité de cette microforme dépend grandement de ia
qualité de la thése soumise au microfilmage Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

S'l_manque des pages, veuillez communiquer avec
l'université qui a contéré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées & l'aide d'un ruban usé ou si funiversité nous a fan
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielie, de cette microforme est
soumise 3 la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

Sel

Canada



Analysis of a Star Local Area Network: Two Approaches, and
Analysis of a 2x2 Banyan Switch

Jean-Frangois Sauriol

A Thesis
in
The Department
of
Electrical and Computer Engineering

Presented in Partial Fulfillment of the Reguirements
for the Degree of Master of Engineering at
Concordia University
Montréal, Québec, Canada

January 1989

©® Jean-Frangois Sauriol, 1989



i+l

National Library

Bibliothéque nationale
of Canada

du Canada

Canadian Theses Service

Ottawa, Canada
K1A ON4

The author has grante ' an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Service des théses canadiennes

L’auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve [a propriété du droit d’auteur
qui protege sa these. Nila thése ni des extraits
substantiels de celle-ci ne doivent &tre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-52138-4

Canada




ABSTRACT

Analysis of a Star Local Area Network: Two Approaches, and

Analysis of a 2x2 Banyan Switch

Jean-Frangois Sauriol

The main objective of this thesis will be to analyze the
performance of two types of networks.

First we present an analysis of a star-connected Local
Area Network. This topology is seen as a valued candidate for MANs
which would integrate future small scale services. The double
embedding strategy used in the model's Markov chain introduces
difficulties solved by a rather complicated transformation glving
a large set of results according to a varying range of parameters
and for variable length messages.

Then, we analyze the performance of a 2x2 Banyan Switch
as part of a larger Banyan Network. These types of non-blocking
networks have often been considered as the central packet
switching fabric of BISDNs. The analysls follows the same approach
used in the star network but applied to the Fast Packet swlitching



F

environment of Banyan Networks. Numerous results are also obtained
for dlfferent varying parameters and for varlable length packets.

Finally another analysis of the same Star Network s
presented. This different approach is based on a Markov chain
embedded on arrival points which allows for general arrival
processes. Due to limited computing facllitles, numerical results
for this analysis could not be obtained.

Conclusions and comparisons with previous works close

this thesis.
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CHAPTER ONE

INTRODUCTION

The Broadband Integrated Services Digital Network (BISDN)
is widely considered as the next generatior. telecommunications
network. This is a result of a growing need for communication
systems that can handle a heterogeneous and dynamically changing
mix of applications.

A general overview of past and present communication
networks will help in establishing the grounds fo. this thesis.

In the past decade or so [5], most small area and low to
medium speed communications needs have been filled by privately
operated Local iArea Netvorks (LAN). Some familiar LANs include
Ethernet, Token Ring and Polling. These architectures have been
sufficiently powerful and flexible to allow each owner (whether it
be Bell Headquarters or smaller scale users) to integrate data and
text transmissions in their organizations. Also, when small area
voice transmission were concerned, PBXs have been the £avored
choice.

When the case of wide area data communication networks is
concerned, the larger throughputs involved created the need for
various Backbone architectures. Common examples of wide area data
networks include Arpanet (US) and Datapac (Canada). It also goes
vithout saying that long range voice cormunication needs have

alvays been filled by the ever expanding telephone netwvork.



Fig. 1.1 summarizes the most common discrete networks

outlined here, and gives the basic inter-relations between them,

It becomes clear that integration of data and voice transmissions
in the same network would eliminate the gqreater costs and lesser

flexibility vhich stems from the present duplicity.

today's netvorks
(low speed transmissions)

LAN [datal
integrated through
small area MANs
PBX [voice] 4
Datapac (Can)
Arpanet (US) [data]
vide area integrated through
narrowband ISDN(s)
Telephone /
System [voice]

BISDN will
interconnect discrete narrovband

ISDNs and will add medium and high
speed services

Fig. 1.1 Representation of today's most common small and wide
area netwvorks and their inter-relations.



The trend in small area networks seems to be towards
Metropolitan Area Netvorks (MAN) which would integrate the
owner's voice and data transmissions under the same network.

Part of this thesis will analyze the pcrformance of a
fiber-optic based, Fast Circuit Switching LAN with a Star
Topology. This LAN would integrate both data and voice, and
possibly video, within the same network. Two different analysis of
this Star Network will be presented. Both Chapter 2 and 4, will
give a performance analysis of this LAN using different
approaches.

The wide area networks future trends involves a more
standardized system. In £act, The "narrowband ISDN" idea of
integrating data and voice wide area networks (which are rather
"low speed" services), is now only a question of a few years [5),
as many trials have been implemented. But when "medium speed”
services (Hi-Fi sound, Videophone, quality Data/Image, ...) or
"high speed" services (Conventional TV, High-Definition TV, high
guality Data/Image, ...) are concerned "narrowband ISDN" falls
short.

A second facet of this thesis concentrates on this larger
aspect of the integration problem. It is important to realize that
the standardized 64 kbit/s rate of ISDN will allov only to
accommodate for the "iow speed" information transfers (Data/Text,
Volce, Data/Image, ...) of the future.

Services in the "medium speed" class are outside the
"narrovband ISDN" capabilities. It is expected that the "broadband
ISDN" vill cost-effectively support switched connectivity (Fast

Packet or Fast Circuit), for these low and medium speed services



as well as selected services from the "high speed™ class which
have much higher bit rates.

Many architectures for BISDN have been proposed. In order
to implement any of these, switching is needed to permit the use
of multiple wvavelengths, or £ibers and to accemmodate the bit
rates and traffic variety of lower hierarchy networks., There we
find the main design bottleneck : switching.

On the transmission side, related technologies have
experienced an explosive growth reaching rates in the Gbit/s and
still increasing. Lagging this tremendous progress in
transmission, however, are the advances made in switching
technology. While in the future the wideband communication
netvorks needs for switching may be met by optical technology, at
present our electronic architectures must be greatly upgraded to
handle the BISDN switching needs.

Chapter 3 will then present the analysis of a Banyan
Network. The BISDN application of Packet Switching Banyan networks
have been widely analyzed in the past [15], (18), (26], [27]. The
analysis will follow the same mathematical development used in
Chapter 2, but vill be applied to a 2x2 Banyan Switch as part of a
larger Banyan Network.

It would seem that the interests of this thesis are very
vast. In fact, this is only because the mathematical model used in
the Star Network analysis of Chapter 2 is identical to the 2x2
Banyan Svitch model derived in Chapter 3. This allovs us to
analyze both systems and obtain various results pertinent in each
field.

Each analysis allows us to evaluate specific aspects of



the respective systems. Then, the Star Network analysis of Chapter
2 allows us to generate the distribution of the number of messages
in the system, the blocking probabilities, the average number of

messages in the system and the mean messace delay according to:

finite buffer sizes between 2 and 10,

variable length packets,

symmetric or non-symmetric arrivals to the system's

source queues, and

equally or non-equally probable message destinations.

Also, these results apply to the 2x2 Banyan Switch
analysis of Chapter 3. From the array of results obtained,
improvements and comparisons with previous works by Jeng [15], and
by Dias and Jump {[18), [27) will be made and presented in
Chapter 5.

Finally, the second analysis of the Star Network,
presented in Chapter 4, allows us to observe the system under a
general arrival ©process (deterministic arrivals, variable
arrivals, adaptive arrivals, ...), and in symmetric traffic.

Results will be presentod at the end of the respective
chapters vhile comparisons with previous works and Conclusions
will be found in Chapter 5.



CHAPTER TWO

AN ANALYSIS OF A STAR LOCAL AREA NETWORK

2.1 Introduction

This Chapter presents a performance analysis of a
star-connected LAN. The central switching element of the network
and its components, referred to as the Cross-Point Svitch (CPS),
provide finite buffers at the inputs and infinite output buffers.
The analysis is based on a Markov chain where the points
immediately following arrivals and departures to and from the CPS
are chosen as the embedded points. The use of tvo sets of embedded
points causes difficulties and requires a rather complicated
transformation to determine the steady state distribution of the
number of messages in the input buffers. This distribution will
provide average delays and blocking probablility for symmetric and
non-symmetric arrivals, for different routing probabilities and

for variable length messages.

2.2 System description

A star-connected LAN based on optical £fiber 1links 1is
currently being developed [1]). The case under consideration for
this analysis is a smaller system involving twvo nodes connected

through the CPS both being able to send messages to themselves as



well as to each other.

The switching technique used in this LAN is a form of
Fast Circult svitching implemented in the CPS. The detalls needed
to substantiate the cholce of the star topology for this LAN are
given in [2) along with an approximate analysis of Iits
performance.

We consider briefly the workings of this network. The
star topology consists of two way 1links from user nodes to a
central switch. (See Fig.2.1l). The switch directs traffic between
the 1links or arms connected to 1it. Note that this permits
simultaneous connections between any pair of user nodes. (Even

connection of the same user node to itself through the switch).

Full duplex
optical links

« Up to 32 stations
at each node

Fig. 2.1 sStar Network Configuration
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We differentiate between the user nodes and user

stations. There may be as many as 32 user stations connected to a

user node. The connection of a user node to itself allows
communication of user stations located at the same node to each
otherx.

As mentioned above the technique 1s a form of fast
circuit switching. When a user node has information to be
transmitted a call set-up request is sent to the central
processor. The call request gives source and destination address
(nodes and statlions). The central switch schedules the transfer
and informs the transmitting and receiving stations. The call
request messages are relatively short and do not need to be
processed on the fly. These factors serve tvu reduce the processing
power that is regquired. When user data i{s transferred it is done

at optical line rate with minimal processing.



Destination A

Source A

2.3 The statement of the mathematical model

The communications protocol implemented in this LAN will

serve messages arriving at each source node on a First Come First

Served (FCFS)

This protocol has been chosen f£for the

simplicity of operation. A representation of the more tractable

two user nodes model is given in Fig.2.2.

Source quous A

Tl

CROSS-POINT
SWITCH

CRL SET-UP RPO{FRT

Destiration
queus B

MESSAGE CIRCUIT
SWITCH

Rource queus §

pr

Fig. 2.2 Tvo User Nodes Star Network Model.

§ uoteuTIsSg

g aomos



Messages arriving to the system may queue-up at elther
one of the source queues. The destination of each message |is
determined in a probabilistic manner according to a routing matrix
in which the i"h,j"h element, G,, is the probability that a

message from source node i will have node j as its destination.

Gaa Gan
G-

= where each row sums up to 1.
Gaa Gas

Note also that the probability that a message will have its
destinaticn as its source is non-zero. This again allows
connectivity of stations connected to the same node.

when a message reaches the head of Iits source queue a
call set-up request 1is sent simultaneously to the central
processor giving source and destination addresses (node and
station). The central switch keeps a 1ist for each destination,
and each nev request is placed at the end of this 1list. Reguests
are also handled on a FCFS basis. When a request reaches the head
of its list, the central switch makes the necessary connection
between the source and the destination pair for the transmission
of the message. Notice that only the message at the head of the
source queue is served even though there may be messages lower In
the queue for which a line is available.

Nov, each destination list may be considered as a queue
with service time taken as the transmission time of a message.
Clearly in the "two users" case, the maximum number of messages in

a destination queue is two, corresponding to the event that both

10




nodes have messages at the head of their queues destined for the
same node (as is shown in Fig.2.2 vhere the head of line messages
in the source queues both have node B as destination). Moreover,
no more than a total of two nessages may be in the destination
queues at a time since only messages at the head of the source
queues nay send call set-up requests.

In the remainder of this chapter, we will dJdifferentiate
between source and destination queues in the £ollowing manner:
messages arriving into a node will queue-up at source queues A or
B respectively. But call set-up requests will queve-up in
destination queue A' or B' according to their routing information.
This should remove any confusion between source and destination
queues since destination queues are "primed".

Also, it is important to realize that messages do not
queue-up in destination queues. Only call set-up requests of the
nead of line messages in the source queues do so. These requests
remain in the destination queuvr 3 until its corresponding message
is fuliy transmitted. At that point, the Central Switch removes
the respective call set-up request from its destination queue and
handles the next request behind it.

It is necessary, now, to 1list the mathematical

assumptions made in this analysis.



2.4 Basic ass..::- lons

In the folloving, it is assumed that:

+ finite sized input buffers are provided in the nodes.

+ practically infinite output buffers are provided at the user
nodes and station. Note the distinction between destination
queues vhich are a representation of the call requests lists
kept at the CPS and output buffers which are the relatively
large storage facilities at the user nodes and stations
which prevent blocking outside the CPS.

- all communications regarding the call set-up/take-down take
place instantaneously, and do not take any of the capacity
reserved for the message transmission.

+ Poisson arrival process at each source queue with paraneters
Aa and Amespectively. Note that if a source queue is full
the respective arrival process is disabled (Aaor Ams= 0).

+ Exponentially distributed message transmission tines with
parameters pa and us

+ Messages choose their destinations independent of each other

according to the routing matrix G.

Now, for the case of exponentially distributed message
transmission times, this system may be modeled by wusing an
embedded Markov chain, vhere transition probabilities will depend
on the system state defined below.

12



2.5 The choice of embedded points

As said earlier, this analysis 15 bLased on a Markov
chain. The choice of embedded points for this Markov chain
presents a problem. There are three 1logical choices: departure
points, arrival points, arrival and departure points. We
demonstrate here that the only viable choice of embedded points is
both arrival and departure points by showing the problems
encountered with each of the other embedding strategies.

The difficulties stem from the :interdependence of one
source queue on the other. Consider the following example depicted
in Fig.2.3: two messages, each at the head of its source queue A

and B, are sent to destination queue A'.

A A’
x x X | XYy |
B B'
Y Y] —1
source queues destination queues

Fig. 2.3 Source Queue Interdependence example.

It is clear that the message from A, X, will not enter
service until the message from B, Y, in front of it has left the
destination gueue A' server. When b h source queues are full the

behavior of the system is fairly straightforwaxd.

13



Now, assume that embedded points 1lie immediately
following departure points from the system. Since theory states
that in a Markov chain the next system state depends only on the
present system state it is easy to show that embedding only on
departures generates difficult situations which would 1largely
compl icate the aralysis.

Consider the following example: source queues A and B
contain na and 0 messages respectively, the message at the head of
source queue A is in service at destination queue A' and

desti:.ation queuve B' is empty (as shown in Fiq.2.4).

A Al
nA messages X x X ] -+ X |
B B!
0 messages ,' |
source queues destination queues

Fig. 2.4 Departure points embedding example (1)

Until the next departure from the system we may have
arrivals to source queues A and B. Then if a message arrives into
source queue B vith B' as its destination it will enter service

immediately (see Fig.2.5).

14




A A

AT —

B B!
_ Y] » Y]
source queues destination queues

Fig. 2.5 Departure points embedding example (2)

Furthermore, this message could depart before the message

already in service at destination queue A' does.

A A'
%X —
B B'
0 messages 1 ¥ ]—
source gueues destination queues

Fig. 2.6 Departure points embedding example (3)

Then the next embedded point would lie immediately
following this departure from queue B' seeing again 0 messages in
source queue B. The departing message would have never been
registered as being in source queue B from where it originated. It
is possible to take this unseen arrival into account but this
again, substantially complicates the analysis.



For the case vhere embedded points would lie immediately
before arrivals to the system, please refer to Chapter 4. We

simply state here that this strategy also has its drawbacks and
that it did not allow us to generate numerical results.

Then, in the face of these difficulties, it was decided
that the embedded points should lie immediately after both arrivals
and departures to and from the system. It is clear that embedding
after departures and before arrivals is impossible since this
would imply anticipated knowledge of the event type (departure or
arrival).

Our embedding strategy has a Jefinite advantage. Since
the embedding events are the arrivals and the departures to and
from the system, the equations needed to obtain the transition
probabilities resemble those in a birth-death process analysis.
This in turns provides a fairly simple transition matrix to
calculate. Any other embedding scheme would have generated a more
complicated set of equations and a 1less tractable transition
matrix.

We can then represent the system's Markov chain using

standard notation in Fig.2.7.

I
I* I I -1 T
-where « are the embedded points
Fig. 2.7 Representation of Svstem's Markov chain.

16




Even though this embedding strategy solves one problem,
it introduces another one. This difficulty lies in the steady
state distribution of the number of messages in the source queues

obtained from the ¢transition matrix. The next sections will

clarify the situation.

17



2.6 MM/1 example

The difficulty encountered 1in the steady state
distribution of the number of messages in the source queues arises
from our embedding after arrivals and after departures to and from
the system.

A more tractable example using a single M/M/1 queue will
be presented here in order to explain the problems encountered
as a result of our embedding strategy used in our more complicated

analysis. The M/M/1 system can be represented as in Fig.2.8.

M/M/1 queue Single server

1] i

Fig. 2.8 M/M/1 system representation

18



It can be shown (3] that, taken separately with their
respective embedding strateqgy, the limiting distribution of the
number of messages in the M/M/1 gqueue Iimmediately following a
departure is equal to the same distribution immediately before an
arrival for any system that changes state by unit step wvalues
{positive or negative).

Now remembering that our Markov chain is embedded after
both arrivals and departures to and from the M/M/1 system we see
that each arrival will include itself in the number of messages in
the queue. In the remainder of this section, let us refer to
arrivals to the M/M/1 queue and departures from the single server
as simply arrivals and departures.

Let us define the probabilities of having "i" messages in

the M/M/1 queue immediately following:

i) a departure as pdi,

ii) an arrival as pa.

Again, since each arrival always includes itself in the
number of messages in the queue, it becomes clear that the
distribution of the number of messages in this queue immediately
following an arrival (mai), is equal to the same distribution
immediately following a departure (pdi), shifted by plus one. This
is easier to visualize through the use of Fig.2.9 which presents
arbitrary examples of both of these distributions.

19



probabilities
folloving a departure

probabilities
followving an arrival

number of
messages

Fig. 2.9 Distributions of the number of messages in

the M/M/1 queue immediately following an arrival
and a departure to and from the M/M/1 system.

We notice that a translation by plus one done on the
distribution following a departure rersults in the distribution

following an arrival. Thus we can write:
pai = p di-0 i>o -(2.1)

We will nov determine both of these distributions. Let «,
denote the number of messages in the M/M/1 queue at the j‘h
embedded point. Assuming Poisson arrivals with parameter A and
exponentially distributed message transmission times with

parameter u, we may write:

20



f ~ - L 1
&, 1 with probability g !
if olJ >0
A
. =19 +1 vith probability Nt (2.2)
! if °‘, =0
Let us define U(aJ) as:
r . t H
1 with probability o !
if aJ >0
- X -
U(aJ) = 1 vith probability el (2.3)
1 ifa =0
. j
Then the above equations may be combined to give:
a = a., + Ula) -(2.4)
ALE) i J
then we write:
a a + Ula )
z Y= 2 ¢ ) -(2.5)
nov let
[« @ k
Q(z)=E[z “]=}:z P[a =k] -(2.6)
J kS0 J

21



and taking the expectation on each side of Eqn 2.5 we get

0
0 (= ¥ %% pla oy ] “(2.7)
e k=0 l' ! J
expanding using Egqn 2.3,
w
- = HZ Az 3 =
0pu =z e[ o =0] + [ w2z ] B efa, e ]
then
2o + 2 *
Qjﬂ(z)=zp[aj=0]+ 1+ p QJ(z)-P[a:O]
-(2.9)
=2
where p = m
Let us define:
Q(z) = 1im Q(z) , and P{(a =Kk) = 1im P(aa = k)
joo0 J Jj»o0 !
then
pz + z *
P(a=0)[z- 1+ p ]
Q(z) = ~ -(2.10)
1 0Z + 2
l+p
P(a = 0) [ L+p)z-(pz+2z")
Q{z) = -(2.11)

(L+p)-(oz+2z?t)
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vhich reduces to:

-4

P(a=0)[ zZ - Zz ]

Q(z) = Y -(2.12)
(1 -p2) ¢+ (p-27)
multiplying by z at the numerator and the dencminator,
Pla = 0) [ 22 - 1 ]
Q(z) = -(2.13)

zZ (1-p2z) + (pz~-1)
factoring the denominator,
Pla = 0) [ 22 -1 ]

Q{z) = -{2.14)
(1l -p2z) (z-1)

wvhich reduces to:

P(a

0) (z + 1)
l-pz

Q(z) = -(2.15)

and finally using Q(1) = 1 we get P(ax = 0) = (1 - p)/2. Ther,

_ 1 1-p 1 {1 -p)z -
Q(z) = ;1._‘—9-5_— + ETPZ— (2.16)

Then we apply inverse "z" transforms and obtain:

1

P(a = k) = -‘;(l-p)pk + }(1-p)p“‘ k=0 -(2.17)

-where negative powers of p are
defined to be zero.
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This is a rather unexpected result as one would have
thought that this distribution of the number of messages in the

M/M/1 queue would have been geometric. This alone, Justifies the
investigation of our embedding strategy which generates this
unexpected result.

Then, except for the % factor, the first and second
terms of Eqn 2.17 correspond to the distributions of the number of
messages in the source queue following a departure and an arrival

respectively, we then write:

ph= (1-p)p', and pu= (1-p)p "

-(2.18)

We see that the distribution following a departure |is
geometric, whi’e the distribution following an arrival is shifted
by one to account for the newiy arrived message.

As for the % factor, it corresponds to the weighting
factor. This value is also in agreement with the observation that
arrivals and departures are equally likely over a long interval
(each arriving message will eventually depart if queue size is not
to grow to iniinity).

It is clear that the steady state probabilities of the
number of messages in the M/M/1 queue are not valid In this
distribution (Eqn 2.17). In fact, the classical approach to
solving an M/M/1 system gives a geometric distribution for the
number of messages in the queue at steady state. We must then
apply a transformation to our results to obtain the correct

distribution.
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Since the problem is caused by the distribution following
an arrival, pei 0 < i1 <N, vhich is not geometric, we vill apply
our transformation in order to obtain the distribution of the
number of messages in the M/M/1 queue which is seen by the
embedded points following only a departure, pdi 0 < i < H. 1In
fact, this distribution is already geometric.

Our more complicated analysis of the 2x2 Switch will also
generate, from the solution of the transition matrix, a weighted
combination of the distributions of the number of messages in both
source queuecs after arrivals ard departures. We will then require
a transformation to obtain the distribution following a departure.

We will now tackle the analysis of the Star Network

itself.



2.7 The analysis

In this analysis eac’. destination queue is to be modeled
as a server of exponentially distributed messages. The object will
be to obtain all the trans.tion probabilities and then solve the
resulting probability transition metrix for its steady state
solution. This will give a preliminary distribution of the number
of messages in the system after an embedded point. Folloving a
transformation the distribution after a departure will be
determined as explained above. Applying Little's result will then
yleld the average message delay.

Next, we are going to 1identify variables required to
determine completely the state of the system for Markov chain
analysis. Clearly, the number of messages in each source queue is
needed, but also one has to krnow the status of the destination
queues. Not only do we need the number of messages in the
destination gueues but their respective source as well.

The system state may be represented by a vector of three
state variables: [ na, ne, K ], where na and ns are the number of
messages in source qQueues A and B respectively and where K
determines the state of the destination queues. The transition
probabilities will then be of the form P(nai,nms,Ks;naz,nezKa2).

We must examine the cases which define the use of the
state variable K used to handle the interdependence between the
two queues. Let us define X and Y as the transmission times
tlength) of messages from source queues A and B respectively.
Then, at any embedding point there is a maximum of 2 messages in

the destination queues vhich are the call requests correspornding
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to the head of line messages from source gueues A and B. Depending

on their destination there

Fig.2.10:

- No conflict:

K
1- X IA'
¥y lB'

- Conflicts:

K
- Y X'
—1»

K
- XY ]a
18

=0

Y IA'
or

X |B'

=1
—]a
or
Y X]m

=2
—Ia
or
XY IB'

are 3 possible cases depicted In

both messz2ges are in different
destination queues

both messages are in the same destination
queue and the message from source

queue A is in front of the one from
source queue B

both messages are in the same destination
gueue and the message from source

queve B is in front of the one from
source qQueue A

Fig. 2.10 Possible values of state variable K.

In case 1 messages do not interfere with each other but

in cases 2 and 3 the latter message must wait for the first to be

transmitted until it can be transmitted itself. Note that if one

or both of the destination queues are empty, K will be defined as

Zero.
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Novw since embedding is at both arrival and departure
points we can only have a single arrival or departure making this
analysis analogous to a birth-death process analysis. As was
mentioned earlier, the simplicity of our state transition
equations provides a falrly straightforward probabllity transition
matrix. Let us then derive these state transition probabilities,

Obviously, many separate situations must be described.
First, we must realize that depending on the present system state,
the next embedding point may correspond to only one of four
possible events, namely: arrival at A, arrival at B, departure
from A', or departure from B'. In some states, some of these
events will be impossible. Then, we will define the total arrival
and departure rates with respect to the present system state.

Ve recal) that if source quewe A or B 1is full, the
respective arrival process is disabled, meaning that Aa or As is
set to zero. Then the total arrival rate, noted Ar, depends on the

state of the source queues, and is given by:

[0 if both source queues are full,
Aa if source queue B only is full,
AT = 4
AR if source queue A only is full, or
AAAR if both source gueues are non-full.
\
-(2.19)
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As for the total departure rate, noted ur, we must
use state varlable K, describing the state of the destination

queues, to properly handle every case. We then write:

0 if K1=0 and both source
queues are empty,

[ K1=0 and source queue A
is non-empty,

LA if or

Ko =1,

HT = 4

-

[ K1=0 and source queue B
is non-empty,

e 2
L K4 = 2,
HA+LB if K1=0 and both source queues

are non-empty.

-(2.20)
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These last two equations allow us to obtain the state
transition probabilities. First defining N as the maximum source

queue size we can get the probabilities that the next @&vent will

be an arrival at A or B from:

Pl arrival at A | nat <N ] = AA -(2.21)
ATH+UT
and
P[arrival at B | nme <N ] = Am -(2.22)
AT+

vhere AT and ur are given by Egns 2.19 and 2.20

Similarly, we obtain the probabilities that the next

event will be a departure from A' or B'. These are written:

P[ departuce from A' | (Ki=1) or (Ki=C and nas>0) ] = __ na
AT +UT

-(2.23)
and

P[ departure from B' | (K1=2) or (K1=0 and n®1>0) ] = u»
AT +UT

-(2.24)

The following example, which represents the first
non-trivial case involving source queues of size N = 1, shows the

simplicity of the probability transition matrix generated by the
above equations.
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The state transition diagram, vhere again each state |is

defined as [m, ns, K ] is shown in Fig.2.11l.

vhere represent each possible state.

Fig. 2.11 State transition diagram of the first
non-trivial case with N = 1.

From the transition probabilities between each state we
obtain the probability transition matrix [P, for our example, in
Egqn 2.26. In order to represent on paper the six-dimensional
transition matrix, possible states are renumbered using the
relation in Egqn 2.25:
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J = 2Nnp + Nnp + K) -(2.25)
To
000 010 100 110 111 112
From -
AR AA
000 0 AA+AB AA+AB 0 0 0
0| A2 _ g 0 Aa 0 Aa
LB A A 2(UB+AA) 2(B tAA)
HA An AD
100 HA+AB 0 0 2(uatAB) 2(Aa+AB) 0
P =
HA LB
110 0 DATHE La+aD 0 0 0
111 0 1l 0 0 0 0
112 0 0 1 0 0 0
L J
-(2.26)

The inherent simplicity of the probability transition
matrix is again obvious. We then solve the equilibrium equation in
Egn 2.27:

g = q P -(2.27)

whereq'=[q"), q;,...,q".]

and M+l is the number of possible states
(in our example M+l = 6)
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This gives the steady state probabilities of being 1in
each state. These probabllities are then returned to their three
_dimensioml states using the reverse of Eqn 2.25. Removing the
dependency on state variable K by taking the summation in Eqn 2.28
ylelds the joint probabilities of having na and ns messages in
each source Queue.

2

q'(na, nm) = ¥ g'(na, n», K) -(2.28)
K=0

Finally, the marginal probabilities of having I messages

in source queue A, noted Q'ai, is given by:

1A
-
IA
4

N
g'ai = § q'(i, nm) , 0 -(2.29a)
ne=

[+

and similarly for source qQueue B probabilities, noted g'mi:

1A
-
1A
=

N
g'm= ¥ q'(na, i) , 0 -{2.29b)

na=o

It is important to remember that the probabilities
obtained in Egns 2.2%9a and 2.29b are weighted combinations of the
four distributions seen by each set of embedded points (following
arrivals at A, folloving arrivals at B, following departures from
A', and following departures from B'). The transformation
developed in the next section will be needed to obtain the
distributions following departures from the respective ‘queues.
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Nov, the mathematical development of this transformation
uses infinite source queues as a starting point. We must then
provide a relation between our finite buffer probabilities (qQ'ai
and q'si), and the infinite buffer probabilities, noted qai and
gei.

In section 2.6, vhere we analyzed a simple M/M/1 queue,
this relation involves a one-dimensional truncation. Fig. 2.12

shows an example when an infinite M/M/1 queue is truncated to N=2,

Fig. 2.12 Infinite M/M/1 queue truncated to N=2,

It is easily shown that these finite queue probabilities
(g'+) and infinite queue probabilities (qu) would be exactly

related by:

g'i = ————— =(2.30)

34



In our case here, vhere both source gqueues interfere with
each other, this is not as straightforward. An extension of the
state transition diagram of Fig.2.11 would clearly show the
intricate pattern of possible transitions that would Intersect a
truncation to finite buffer size. The development of the exact
relation between finite and infinite buffer probabilities would be
quite involved. We will then approximate this relation using

Egn 2.30.

q'ai = — 9 ad g'ei = — B , for 0 £ 1 £ N, =-(2.31)

N

qa; L gsj
i=o

of1%

G

vhere N is the maximum buffer size.

Note that results have shown that as N grows, this
approximation becomes more and more valid. This is due to boundary
effects, which are amplified when N is too small.

The next section will transform the welighted
distributions obtained in Eqns 2.29a and 2.29b to provide the
needed distribution of the number of messages in the source queues

following departures.
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2.8 The steady state distribution of the number
of messages in each queue following departure points

In order to develop the needed transformation, we must
establish a few relations between the different distributlions
arising from the four sets of embedding points in our strategy.
Those £our distributions stem from the embedding points

immediately following:

1) a departure from A',
i1) an arrival to A,
iii) a departure from B',

iv) an arrival to B.

We repeat again that the need for a transformation arises
from our embedding after both arrivals and after departures to and
from the system.

We have stated before that it can be shown [3] that,
taken separately with their respective embedding strategy, the
limiting distribution of the number of messages in the system
immediately following a departure is equal to the same
distribution immediately before an arrival for any system that
changes state by unit step values (positive or negative). But also
this distribution is equal to the distribution seen by any random
observer of the system.

We remind the reader that, in this analysis we refer to
arrivals to source queues A or B as arrivals to A or B and
departures from destination queues A' or B' as departures from A’

or B'.
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Now, it would be possible for us to obtain the Joint
distribution of the number of messages in both source queues
following departures using our transformation, but this would make
the development of this transformation quite difficult.

We shall then develop a transformation acting only on the
marginal distributions g'ai and g's¢« 0 < i < N, obtained in
Section 2.7. Since the system is symmetrical in operation, we will
only examine the behavior of source queue A and extend the results
to source queue B. Then let us define the probabilities of having

"i" messages in source gqueue A immediately following:

i) a departure from A' as pdi,
ii) an arrival to A as pai,
ii1) a departure from B' as pdi,

iv) an arrival to B as Bai.

We will now express probabilities in ii), iii), and iv)
in terms of those in i). Then using similar arquments as in the
previous section we can relate arrivals to A (ii) and departures

from A' (1) using Egn 2.1 giving:

pai = pdii- i>o -(2.32)
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Nov, because the arrival processes are independent of the
departure processes, the arrivals to B act as random observers of
source queue A allowing us to relate these arrivals to B (iv) to

the departures from A' (1) with:

pai = pdi 1>o0 -(2.33)

But because of the interferenc: between the two
destination queues, departures from B' are not quite random with
respect to departures from A'. In order to simplify the analysis
we will assume that departures from B' do act as random observers
of source queue A and wve then relate these departures from B' to

departures from A' using:

Ddi = pdi i»o -(2.34)

Then in summary,

pa. = pdi-n i>0 -{2.35)
pdi = pd. = pai i>0 -{2.35b)
We see here that the distribution after an arrival to A
is the distribution after a departure from A' shifted by plus one.

We also note that the other two distributions are equal to this

distribution after a departure from A'. The transformation to be
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developed here will then provide the distribution of the number of

messages in queue A fcllowing departures from queue A',

First we shall assume infinite buffer (infinite source

queue size). Let us observe the system for a 1long interval and

make the following dafinitions:

NaaA, nda total number of arrivals and Gepartures to and from
source queue A in this interval,

Na®,; nde total number of arrivals and departures to and from
source queue B in this interval,

clearly:

NdA = NaAa and nds = MaB -(2.36)

-whenever the gueues are stable.

Nav, Nd number of times I messages have been observed in
source gqueue A following an arrival and a departure
to and from queue A respectively in this interval,

pav, p probabilities of the above events,

Then, from the definition of probabilities,
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Rai, nd number of times 1 messages have been observed 1in
source queve A following an arrival and a

departure to and from queue B respectively in
this interval,

Pai, pdi probabilities of the above events,
And again,
Poi = Um_ %:—; , Bd o= _UmoToo, 1= 0,0 -(2.38)

We can relate the number of departures from each queue to
their respective mean arrival rates vith:

Bl

vhere T is the interval length under observation

then

-(2.39)
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Now let us relate the probability distributions pai, pdi,
Pov and pdi to the distribution derived in section 2.7. From the
definition of probabilities, the infinite buffer probability of

having | messages in source queue A folloving an embedded point is

given by:
number of observations of i
AL = lim messages in source queue A
qar tggal number of total number of observations
observat Lons 00
-(2.40)
then,
. mL"'Ml"’?lQi.‘,'?]dt
QAL Z A, ndelAA, nass A ¥ Db ¥ haA ¥ Tab i1>0
-(2.41)

vhere the numerator in Eqn 2.41 is the total of the
nmber of times an arrival to queue A sav i messages in queue A
{nai), the number of times a departure from queuve A' saw
nessages in queue A (ndi) and the number of times an arrival +o
queue B and a departure from queue B' sav i messages in queue A
(Rai + Ndi ). The denominator is simply the sum of all

chservations of the four types of events.

And from Egn 2.36:

. Ioi + ndi + Nai + ndi
QA = nd.}ﬂﬂ‘-.m 2( Dda + nam ) i>0 -(2.42)
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Then,

o nai + ndi + Tai + ndi
q‘"m;}m-+m[2(m+m-) 2(MA+ndl)] 1>0
-(2.43)

Factoring nda and nds respectively in the denominators,

QA = AE Nai + ndi + na\. + ndL
nda,fide-s0 ndse nda
2MA[1+m] 2ndn[ +1j
-(2.44)
taking the limits using Eqns 2.37 and 2.38,
AL = p::\. +ndp:t 4 Dot t pdi 150

2[ 1+ E&‘Z] 2( ]

~(2.45)

using Eqns 2.35a and 2.35b to qget the right side in terms of
"pdi", we get:

pd¢i-1) + pdi 2pdt {50

"CAEEYC E)
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and from Egn 2.39,

. ‘ 222 o
{ = _Pdd-t» + pdi AA £50
At An AR
2 1")\7] 2| 5x t1

Finally, replacing the unneeded "3" subscript from the "pdi"
with an '"A" subscript to show that these are the sought

probabilities of having i messages in queue A, we get:

pac-2> + [1 + 2;—‘-:— ]pAl.

, i>0 -(2.46)
AB
2[ 14+ R]

gar =

Egn 2.46 relates the distribution of the number of
messages in queue A with an infinite buffer following an embedding
point (gai) to the same distribution following a departure from A'
(pdv or nov pai).

Nov, using Egn 2.31 to return to finite buffer results,

wve get:

. A
g = PAci-4) + [1 + Zﬁ ]pm.

l=is<sN -(2.47)

AD N
=0
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Clearly, the boundary cases (i=0 and i=N) must be handled
separately. As mentioned earlier, an arrival to queve A will
never see queue A as ¢npty meaning that in Egn 2.41 mnoo = 0.
Folloving the same steps used to arrive at the gensral case, we

get:

A
[l + 21-:-)1)“:

2 A» N .
141—‘ ZQAJ

j=o

q"‘o - "(2.‘8)

Also, when queue is full (i=N) a departure fron this
queue will never see a full gueue, meaning that in Eqn 2.41 ndn=0.

Again folloving the same steps as in the general case, we obtain:

’ AB

PAIN-1) « ZX- DAN
g'aN = : ~(2.49)
2[ 1+ %] T ga,

j=o
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Then, in summary, the transformation relating the
distribution found in Sectlon 2.7 (discribution of the number of
messages in finite queue A followiiig an embedded point), to the

distribution of the number of messages in finite queue A following

a departure from queue A' is:

AD
[ 1+ 2{: ]pAO

q'ao = -(2.50a)
N ) N
2[ 1+ A ] : qA;
i=o
pAci-1y + [ 1+ ZQ—Z ]pA\.
q'a. = v - 1<3i=N -(2.50b)
AD .
j=o
Am
PA(N-1) + 2-7\_‘" pAN
QAW = = ={2.50c)
A .
2[ 1+ x;—] z gaj
j=so
N
-vhere ¥ qa; is also a function of pa. from Eqn 2.46.
Pl

-and where gai 0 < 1 < N are known

-- and conversely for queue B probabilities.
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Eqns 2.50a, 2.50b and 2.50c form a set of N+1 1linear
egquations (vhere unknowns are "pai"), which, vhen solved give the
probability distribution of the number of messages in finite queue
A. The queue B distribution is obtained using exactly the same
approach.

It is important to realize here that the distributions
obtained, pai 0<i <N, andpei 0=<4i £ N, are those seen
immediately following departures from A' and B' respectively and
for finite buffers. Infinite buffer probabilities were used only
as a means towvards this objective.

Taking the expectation from 0 to N, using Eqn 2.51 gives

the average number of messages in both source queues.

na = ipa,and nB = T i pm -(2.51)

Then using Little's result adapted to finite queues of

Egn 2.52 gives the average delay.

n

B = T -(2.52)

-~ where Pb is the blocking probability equal
to the probability of having a full source
queue (panN or peN respectively),

- and vhere n and A are na and Aa or nB and A»
respectively for each queue.
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2.9 Results

Note that for results presented here, mean transmission

(service) rate is 2.5 messages/msec for a mean message
transmission time of 0.4 ms.

The first five plots will give results for the case where
both destinations are equally likely (Gaa = Gam, Gea = GaB)
for each message. On the other hand, the last plot will examine
the case where messages will choose destination A with a greater
probability than destination B (Gaa > Gas, Gesa > Gs»).

We shall present steady state probability distribution of
the number of messages in the input buffers, average delay and
blocking probability for symmetric and non-symmetric arrivals and
variable length messages for both cases.

Then the £irst plot represents mean delay with respect to
total mean arrival rate for symmetric traffic and is showvn in
Fig.2.13. This graph {is somevhat misleading. Looking at
At = 5 mess/msec we could believe that delay grows as N greovs,
vhich is not plausible. In fact, this graph does not account for a
fev particularities of the system.

First, we recall that for this £finite buffer analysis,
messages arriving to a full buffer are lost, meaning that average
delay may increase irom N = 2 to N = 10 but, §or the same total
mean arrival rate, many more messages are lost vith a smaller
qQueue size,

Second, finite buffer analysis are really truncations of
infinite buffer analysis. Then let us assume that the system is
not overioaded or that the utilization factor (wvhich is hard to
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(ms)

Single Queue Average Delay

visualize here because of the interfering queues), is less than 1.

Then increasing maximum queue size (N), would allov the average
delay to eventually taper-off and stabilize at a £inite value
(with minimal number of lost messages).

What must be seen from this graph is simply that delay
grows with mean arrival rate and maximm buffer size. This
demonstrates the dependence of the two input gqueues which

interfere with each other's transmissions.

4.5 Y . - .
Buffer Size N=10
41 4
3.sr 4
N=8
ar 4
|
2.5fF Symmetric Traffic . 4
(AAa = AB = A) e N=6
2 /,/ -
- N 2 4
- N=4
1 A
0.5 N=2 4
o 1 1 [ Il 1
() 1 2 3 4 L3 6
Total Mean Arrival Rate (AT = AAa + AB) (mess/msec)

Fig. 2.13 Mean message delay against total mean arrival

rate for symmetric traffic and mean message duration
of 400 us.
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{ms)

Queue A Average Delay

In Fig.2.14 the increasing delay for the more heavily
loaded queue, queue A, is demonstrated in non-symmetric traffic.
We then plot mean delay with respect to queue A mean arrival rate
for different load ratios between queue A and queue B and with a
maximum buffer size of 8 messages. As the arrival rate of queue B
decreases we see that message delay for queue A also decreases due
to less interference. When Am = AA/100 we notice that Qqueue A
behaves like an M/M/1 queue since transmission interferences
between both queues are practically eliminated by the near =zero

load on queue B.

3.5 T T v T T

= ANA/2
2.5 |
20 N=8 o
1.5 AB = AA/100 4
M/M/1
1 -
0.5 = .
° 1 1 i 1 A
(] 0.5 1 1.5 2 2.5 3
Queue A Mean Arrival Rate {(\a) (mess/msec)

Fig. 2.14 Mean message delay of more heavily loaded queue A
against queue A mean arrival rate in symmetric
and non-symmetric traffic.
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{na)

Number of Messages in Queue A

We can also examine Fig.2.15 vhich represents the average
number of messages in Queue A for the same load ratios between
both queues ani maximum buffer size of 8 messages. It still
indicates that as the load on queue B increases the freguency of
the transmission interferences between both queues is multiplied
vhich makes the buffer occupancy of queue A grow accordingly.

7 ™ T Y T

6t

sf-

4 -

.

5 -

b

0 : : . . ;
0 0.5 1 1.5 2 2.5

Queue A Mean Arrival Rate (Aa) (mess/msec)

Fig. 2.15 Average number of messages in more heavily
loaded gueue A against queue A mean arrival rate
in symmetric and non-symmetric traffic.
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probabilities of the number

Fig.2.16 represents the probability distribution of the
number of messages in both queues in symmetric traffic, for
maximum buffer size of 10 messages., and for two different total
mean arrival rates (Aa and As being equal). We clearly see the low
qgueue occupancy at At = .5 mess/msec. When the total mean arrival
rate is increased to At = 4.0 mess/msec, the distribution changes
showing greater probabilities for the higher number of messages in

the queues.

Ar = 0.5 mess/msecC
N =10

of messages in both queues

AT = 4 mess/msec

P
- -

10

number of messages in both gueues

Fig. 2.16 Distribution of the number of messages in both
queues in symmetric traffic, for two different values
of total mean arrival rate.
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(Pb)

Blocking Probability

We have plotted in Fiq.2.17 the blocking probabllity in
symmetric traffic vith respect to single queue mean arrival rate
for different maximum buffer sizes. This graph clearly shows that

as maximum buffer size increases the blocking probability

decreases.

10°

[
o
-
T TIon T™TTTIY
J
J
-

Lotyegten o pappamg L 11Ny

1073
X Symmetric Traffic
b (Aa = AB) o
10 :E /, 3
E ’ 3
C ’ 3
| / ]
/
107'E N=4
10'55 E
o N=8 3
. -. 1 1 'l
10 [ 0.5 1 1.8 2 2.5 3
Single Queue Mean Arrival Rate (mess/msec)

Flg. 2.17 Blocking probability against single queue mean
arrival rate in symmetric traffic.
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{ms)

Queue A Average Delay

Finally we examine the cases vwhere messages choose
destination A vith a probability that is twice, five times and ten
times as large as destination B. We compare these with the equally
likely destinations case in symmetric traffic (Aa = Am) for
maximum buffer size of 10 messages.

Then, Fig.2.18 shovs that as messages favor destination A
with a growing probability, the transmission delay of messages
from both source queues also grows because more ard moxre messages
are sent to the same destination, queve A, Iincreasing the

frequency of interferences between the two source queues.

6 T T T T T

Destination A is "x" times
as likely as destination
B for each message.

- o ——
- -
-

-

equally likely
destinations

)

N =10,
Symmetric traffic
1 (XA = AB) i
o 1 ol [} 1 1
0 0.5 1 1.8 2 2.5 3
Single Queue Mean Arrival Rate (mess/msec)

Fig. 2.18 Mean message delay of more probahle
destination gqueue A against single queue mean
arrival rate in symmetric traffic.
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CHAPTER THREE

ANALYSIS OF A 2x2 BANYAN SWITCH

3.1 Introduction

Fast Packet Switching has been proposed as a major
architecture in the BISDN (l14]). The Implementation of this
architecture requires a wideband packet switch. Among the swvitches
undzr consideration for this is the Banyan Network which consists

of stages of 2x2 Crossbar switches (see Fig.3.1) (11}.

--V---@'-"—'A--
-' ‘--

‘:\."-

-, - ,---A-

T HINS ~l=l
H == = I =

Fig. 3.1. A 4-stage Banyan network

This Chapter will present a performance analysis of a
finite buffered 2x2 Banyan Switch wusing the same approach
developed in Chapter 2. Even though much of this previous analyzis
would apply directly in the Fast Packet Switching environment, we

will adapt it using the fundamentally different terminolegy and
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constraints found in Banyan Networks.

Then, this Chapter will introduce the Banyan Network
system and the model used in its analysis. Since the assumptions
made here differ somevhat £rom those made In the Star LAN
analysis, an outline of all pertinent assumptions will also be
given.

As for the analysis itself, there is no need to zrepeat
the entire development. of the equations. Sections 2.5 to 2.8
inclusively details this analysis. We will simply give an outline
of the major steps followed.

Banyan netwvorks are flexible, modular and can be extended
to any number of inputs and outputs. At the inputs of each 2x2
Banyan (Crossbar) switch, buffers have been provided. A packet at
the input of a Banyan switch can be moved to the next stage if
there is room available in the input buffer of the next stage
[15). Then the input buffer of the next stage can be considered as
an output buffer to the present Banyan switch.

In this paper we present an analysis of a 2x2 Banyan
switch with finite input buffers and infinite output buffers.

The analysis is carried out using a Markov chain
approach. The points immediately following an arrival and a
departure to and from the switch are chosen as the embedded
poirts. Note that the distribution of the number of messages in
the huffers immediately before an arrival and immediately after a
departure to and from the switch are the same [3], but that these
distributions differ when embedded points are immediately
following arrivals and departures as in our case. Because we are

using two sets of embedded points we need a rather complicated
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transformation to determine the distribution of the number of
messages in the buffers at steady state. Folloving this
tranzformation ve determine the average number of messages in the
buffers, and then applying Little's result gives the average
nessage transmission delay as a function of the load for different

buffer sizes and symmetric or non-symmetric arxivals to the
switch.

3.2 The Switch and its model

The baslc building block of a Banyan network is the 2x2
Banyan switch. In Banyan networks, messages are forwarded to their
destinations using self-routing headers. Fig.3.1l shows a 4-stage
Banyan network interconnecting inputs and outputs. This paper will
analyze the operation of one of the 2x2 Banyan switches as part of
the total Banyan network. Fig.3.2 shows one such Switch with its

finite sized input buffers.

Fig. 3.2. A 2x2 Banyan Switch
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The operation of the Switch is asynchronous as follows:
messages queue-up in the input buffers as they arrive from the
previous stage of the network. At eac.. input, messages are served
on a FCFS basis. When a message reaches vhe head of its input
gueue, transmission begins immediately if the desired output |is
idle. But if that output is busy serving a message from the second
input queue, the message in the¢ f£irst Input queue will wait.
Following the completion of the trarsmission, the waiting message
in the first input gueuve will enter service even if the next
message at the head of the second input qQueue had the same
destination. Thus outputs also serve messages coming to the head
of the input queues according to the FCFS protocol.

Notice here that only the messages at the head of the
input buffers can be served, even though there might be messages
lowver in the buffers for which an output link would Le available.

We now introduce the model used in this ana'ysis which
can still be represented by Fig.3.2: Two finite sized input queues
and the 2x2 interconnecting switch to both output 1link servers.
Again if the two messages at the head of the input queues are
roucted to the same output server the first to arrive at the head
of its queue will be transmitted while the other will wait until
the server is free.

Let us introduce some assumptions made in this analysis.
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3.3 Basic assumptions

In the following ‘% 1s assumed that:

-+ Finite sized irput buffers are provided in the Switch.

#+ Practically infinite output buffers are present outside the
Switch. Clearly, this is true for the last stage of a
Banyan Network and it is a good approximation for
reasonably large finite input buffers in intermediate
stages.

+ Pojsson arrival process at each input queue with parameter
Aa and AB respectively. Note that if an input queue is full
the respective arrival process is disabled (Aa or Am = 0).
Also this is a good apruximation for our 2x2 Switch in a
large Banyan Network serving many inputs and outputs.

-+ Exponentially distributed message transmission times with
parameters pa and us.

+ Messages choose their destinations independently of each
other and both destinations are equally probable for each

message.

Now, for our case in which message transmission times are
exponentially distributed this system may be modeled by a Markov
chain, vhere transition probabilities will depend on the systen
state.
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3.4 The analysis

Sections 2.5 to 2.8 inclusively presents an analysis cf a
Star-connected LAN which can be applied in this Banyan Switch
environment., .’» will simply give an outline of the major steps of
that analysis for sake of continuity.

First, the system's Markov chain is embedded immediately
following both arrivals amnd departures. The state transition
probabilities are then determined in order to form the probability
transition matrix. When this resulting transition matrix is solved
for its steady state distribution, we obtain a preliminary
distripution of the number of messages in the system.

Because of the particularities of our embedding
strategy,thlis distribution is really a weighted combination of the
distributions seen at each set of embedded points. In order ¢to
obtain the distribution of the number of messages in each input
queue, a transformation is applied to the previously obtained
distribution.

By varying the mean arrival rates and by analyzing the
system under symmetric and non-symmetric arrivals, the obtained
steady state distribution of the number of messages in the queues
yields the average number of messages in the input queues and the
average message delay. Note that our variable exponential message
transmission times allows us to obtain results for variable length
packets,

We now present the results derived from this analysis.
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3.5 Results

Note that for results presented here mean transmission

(service) rate is 40 messages/msec for a mean message transmission
time of 25 us. This corresponds to a mean message length of 1 Kbit
at a line transmission rate of 40 Mbit/sec.

Our first plot represents mean delay with respect to
total mean arrival rate for symmetric traffic and is shown |in
Fig.3.3. This graph is somevhat misleading. Looking at
At = 80 mess/msec we could believe that delay grows as N grows,
vhich is not plausible. In fact, this graph does not account for a
fev particularities of the system.

First, we recall that for this finite buffer analysis,
messages arriving to a full buffer are lost, meaning that average
delay may increase from N = 2 to N = 10 but, for the same total
mean arrival rate, many more messages are lost with a smaller
queue size.

Second, finite buffer analysis are really truncations of
infinite buffer analysis. Then let us assume that the system |is
not overloaded or that the utilization factor (which is hard to
visualize here because of the interfering queues), is less than 1.
Then increasing maximum queue size (N), would allow the average
delay to eventually taper-off and stubilize at a finite value
{(with minimal number of lost messages).

Yhat must be seen from this graph is simply that delay
grows with mean arrival rate. This is in some part due to the
dependence of the two input buffers which interfere with each

other's transmissions.
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Fig. 3.3. Mean message delay against total mean arrival
rate for symmetric traffic and mean message
duration of 25 us.

In Fig.3.4 ve wish to demonstrate the increasing delay
for the more heavily loaded queue, gqueue A, in non-symmetric
traffic. We then plot me=an delay with respect to queve A mean
arrival rate for different load ratios between queue A and queue B

and vith a maximum buffer size of 8 messages. As the arrival rate
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of queue B decreases wve see that transmission delay for queve A
also decreases. When AB = AA/100 we notice that queue A behaves

iike an M/M/1 queue since transmission interferences between both

queues are practically eliminated by the near 2zero 1load on

gueue B.
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Fig. 3.4. Mean message delay of more heavily loaded
queue A against queue A mean arrival rate in
symmetric and non-symmetric traffic.
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We can also examine Fig.3.5 vhich represents the average
number of messages in queue A for the same load ratios between
both queues and maximum buffer size of 8 messages. It still
indicates that as the load on queue B increases the transmission
interferences between both queues are multiplied which makes the

buffer occupancy of queue A grow accordingly.

(na)
L

Am = Aa

’, -

Number of ﬁeasaq;s in Queue A

Am = AA/100
M/M/1
: - =
As = Aa/1l0
1 .
°o [ 10 1s 30 28 30 s 40 as
Queue A Mean Arrival Rate (Aa) (mess/msec)

Fig. 3.5. Average number of messages in more heavily
loaded queue A against queue A mean arrival
rate in symmetric and non-symmetric traffic.
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Fig.3.6 represents the probability distribution of the
number of messages in both queues in symmetric traffic, for
maximum buffer size of 10 messages, and for two different total
mean arrival rates {(Aa and Am bzing equal). We clearly see the low
queue occupancy at At = 8.0 mess/msec. When the total mean arrival
rate Is increased to Ar = 64.0 mess/msec the distribution changes

shoving greater probabilities for the higher number of messages in
the queues.

Ar = 8.0 mess/msec N = 10 ]

of messages in both queues

probabilities of the number

Ar = 64.0 mess/msec

number of messages in both queues

Fig. 3.6 Distribution of the number of messages in both

queues in symmetric traffic, for two different values
of total mean arrival rate.
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Finally,we have plotted in Fig.3.7 the blocking
probability in symmetric traffic with respect to single queue mean
arrival rate for different maximum buffer sizes. This graph shows
clearly that as maximum buffer size increases the blocking

probability decreases.
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Fig. 3.7. Blocking probability against single queue mean
arrival rate in symmetric traffic.

Note that in some applications wvhere transient behavior
of the switch could be a factor, the analysis can also provide
results in the case where both destinations would not be equally

likely for each message
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CHAPTER FOUR

A MORE GENERAL ANALYSIS OF THE 2x2 SWITCH

4.1 Introduction

This Chapter will present an approximate analysis of the
Star Network introduced in Chapter 2. The approach demonstrated
here was originally the first one to be investigated. A major
justification for this approach, even if somewhat complicated, |s
that we are able to let the arrival process be general. We can
then examine the system's performance under various arrival
processes (periodic, deterministic, exponential, «es)s  This
analysis, again based on a Markov chain, uses the points
immediately before arrivals to the system as the embedded points.
Using standard notation the system's Markov chain can be

represented by Fig.4.l.

tree + + + T4 +
1 T

-vhere « are the embedded points

]
—

Fig. 4.1 Representatlon of System's Markov chain.

As vas sald earlier, this embedding strategy does not
allow for an exact solution to be obtained. The reason for this

i{s: when state variable K is used with this approach (remember
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that state variable K was introduced in Chapter 2 to determine the
state of the two destination queues), some combinations of
departures between two arrivals points are impossible. It is
therefore necessary to handle each one of these combinations
separately as special cases. But when the maximum source queue
size becomes larger than 2, these special cases multiply to a
point where it is impossible to obtain closed form equations for
each case.

It was then decided that state wvariable K was to be
dropped out of this analysis making it approximate.

We point out here that it was impossible to obtain
results to compare with the analysis of Cgapter 2. This is due to
the amount of computing involved in obtaining even one mean
message delay value, which took more than two weeks on the
computer facilities used (Deervax 780). The mathematical
development is nevertheless valid and could be applied in other
environments and solved with more powerful computing facilities.

lote that the System description and mathematical model
described in Sections 2.2 and 2.3 are still wvalid for this
approach. The assumptions made in section 2.4 remair applicable
here except for the arrival process which can be general with
average arrival rate A in each source queue. As said
earlier, this general arrival process allows us to analyze the
system under deterministic arrivals (fixed arrival instants).

Also, message transmission times will be exponential with
parameter n for both source queues.,

Let us then get right into the second analysis of this

Star Network.
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4.2 The analysis

In this analysis each destination queue is to be modeled
as a server of exponentially distributed messages. The object will
be to obtain all the transition prchbabilitiss and then solve the
resulting state transition matrix for its steady state solution.
This will give the distribution of the number of messages in the
system from vhich the average message delay will be determined

using Little's result. Let us make the following definitions:

X denotes the transmission time of a message from
source queue A,
X' denotes the transmission time of a message from
source queue B.
yx denotes the service time of a message from source
queue A:
X
yx = {or -(4.1)

X + X' (details below )

zk denotes the service time of a message from source
queue B:

x!
zx = {or ~(4.2)
X' + X (details below )

The probability of mutual interference is an important
parameter in this analysis and may be evaluated from the entries
in the routing matrix G, introduced in Section 2.3, assuming that
messages choose their destinations independently of each other.

There are two such probabilities to £ind: a message from source
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queue B may interfere with a message from source queue A and vice

versa.

destination
queue
X --> X'|-->
+ )
yk service time of v = X' + X

Prob that B interferes with A = X is sent to A and X' was in
front or X is sent to B and

X' was in front.
= GAAGEmA + Gan(Cap

And the opposite,

destination
queue
X'-->__ X ]-->
?
Zk service tine of zx = X + X!

Prob that A interferes with B = X'is sent to A and X was in
front or X'is sent to B and

X was in front.
= GRAGAA + GanCaB

We then see that both probabilities are equal. Then
p = Prob that A interferes with B = Prob that B interferes with A

P = GAAGeA + GasGes, -(4.3)

Remember here that a message may interfere with or may be

interfered by one and only one other message!
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and

Now, we define the system state as ([ na, n» ) wvhere na

ne are the number of messages in both source queues

respectively. Our system is modeled by a Markov chain vhere the

transition probabilities depend on the system state. Then If we

let:

I = na1 - naz -(4.4)
and
J = nes - nez -(4.5)
ve get
P( na1, nes; naz, nez ) = P19 ~(4.6)
vhere:
nai, neBi denotes the number of messages in source gqueues
A and B respectively, immediately before the
current arrival.
na2, nB2 denotes the number of messages in source queues
A and B respectively, Iimmediately before the
next arrival.
and,
P19 is the probability that I messages depart from

source queue A and J messages depart from
source queue B between the current and next
arrivals. These will Le used to determine the
entries in the state transition matrix.
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Now, out of the I and J messages transmitted some will

interfere on those in the other source queue and others will not.
Then from Eqn 4.3 we have the probability *(1-p)' that a message
will not interfere with the transmission of messages from the

other source queue. We define:

i as the number of messages out of the I messages
from source queue A which do not interfere with the
transmission of messages from source queue B. Then
the number of interfering messager iz (I-i).

3 as the number of messages out of the J messages
from scurce queue B which do not interfere with the
transmission of messages from source queue A. Then
the number of interfering messages is (J-j).

From these definitions and from the independence of
interferences, we get:

I 8 I~L
P(i) = (1-p)* p -(4.7)
i
and
J ) J-
P(j) = (1-p) p? -(4.8)
3
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In order to get the Pr' vanted in Eqn 4.6 we define the
total service times for the I and J messages and the total service

times of the interfering and non-interfering messages as:

o denotes the total service time of all I messages
from source rueue A:

olI =y‘+yz+ -fyl -(4.9)

(?J denctes the -otal service time of all J messages
from source queue B

ﬁ_, =z + z, + .0 4 z, -(4.10)
and,
ot denotes the total serv.ce time of all i
non-interfering messages from source queue A.
s denotes the total service time of all J
non-interfering messages from source queue B.
Y denotes the total service time of all (I-i) and

(J-3) interfering messages from both source queues.
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At this point we have all that is necessary to obtain the
basic transition probabilities P1J used to determine the entries

of the state transition matrix. We may write:

'm
Prs = | p[ o B, 2tza,n, | t] dA(t)  -(4.11)
o]

vhere

dA(t) is the inter-arrival time distribution,
and o and ﬁx are as defined above.

Next we will rewrite both total service time equations,
Eqns 4.6 and 4.7, in such a way as to show explicitly the messages

vhose service times have been interfered with. Then:

- (g+1) ) _
a =y, t...ty taaty,, e vy, (4.12)
_ (L+1) (D _
/?J-z‘+...+zl +...+zlm AERREE g 8 (4.13)
vhere
y;"’“ to y;:; represent the messages from A which were
interfered by a message from B.
and,

(L+1) <X
Y to 2z " represent the messages from B which w.re

interfered by a message from A.

In the above, the superscripts simply show the numher of

the messages from one source queue which interfered on the




respective messages from the other source queue, but
show their sequence. Since messages choose thelr
independently of each other according to the routing
messages may interfere with one another in any order.

is not important sincc it does not change the sums o

it does not
destinations
matrix, the

This order

and ﬁJ

needed to calculate the basic transition probabilities Pr.». Next,

we express the service times in terms of message transmission

times from Egqns 4.1 and 4.2:

= ' L3N I ' L BN ]
a =X bt X X X, HX 4

= Yy ' '
Ie} X‘+ cos +)(L +XH‘ + .. +)(Lw‘+)(z + .

+ X
x

+ X'
9

-(4.14)

-(4.15)

Rearranging these equations to show the interfering and

non-interfering parts separately, ve get:

o

]
>4
-

+ ...t X +iX + ..o+ X + XY+ ..,
L Led I )

B, = X! .4 X! " T EXEX

J+s +4

+ X'
v

+X
1!

\/—/ \‘———\ I

vhere cu, {31 and y are as defined above.

-(4.16)

-(4.17)

Note that we have arranged the messages in this fashion

to show that the y part is common in both equations.
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Nov since we must f£ind a closed form solution vo
Egqn 4.11, we have to distinguish between three mutually exclusive

cases involving the behavior of the source queues:
A- both source queues remain non-empty during the
inter-arrival period,

E- one of the source queues goes empty during the

inter-arrival period,

C- both source queues go empty during the inter-arrival

period.

These cases will be analyzed separately.

4.2.1 Both queues busy ( non-empty )

The integrand in Egn 4.11 states that exactly I and J
messages from source queues A and B respectively, are served

between the current and the next arrivals. ¥e may write:

> > =
p[ s ﬁJ¢; ztz Cyr ﬁJ I t ]
P[ I messages served from A, J messages served from B in t | t ]

-(4.18)
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Looking at Eqns 4.16 and 4.17 we see that we have
separated the interfering messages from the non-interfering
messages and that the y term appears in both. This allows us to
revork the integrand in Eqn 4.11. If we leave for the common »
part ,vhich includes the (I-i) and (J-j) interfering messages, ta
seconds to be transmitted, the cu and the s part will have (t-ti1)
seconds left since both o and ra‘J have t seconds until the next

arrival. Then we may write:

P[I messages served from A, J messages served from B in t | t,ta ]=

i messages transmitted in (t-t1),
P | J messages transmitted in (t-t1), -(4.19)
((3-3), (I-1)) messages transmitted in t1 | t, ta

Now, from Egns 4..¢ and 4.17 we see that these three
events are independent. Then in each of the above events we can
say that we have three independent queues of exponentially
distributed messages each being served by its own server. Then
during the inter-arrival time the number of messages (i, 3 a3
((I-1)+(J-J))) served will have a Poisson distribution (in fact a
pure Poisson death process) with parameter u asscciated with our
exponential transmission time. Then the above probability may be

broken down and written as:
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P[ I messages served from A, J messages served from B in t 1t,t1 ]=
P[ I messages transmitted in (t-t1) | t, t« ]x
P[ J messages transmitted in (t-t1) | &, ta ]x

P[ (J-3), (1-1) ) messages transmitted i; ts | t, ta ] =

(uie-ta))* e MIEE) (et e HIEH) e yTe0mim s
11 31 (TF3-1-971
~(4.20)

and we vill remove the dependencies in the following order: ta,
then i and j, and finally t and get the P10 wanted.

Integrating w.r.t. t1 from 0 to t, Eqn 4.20 reduces to:

P[I messages served from A, J messages served from B in t } t,te ]

t 2 - -
1 I (ut)™7 7 (u(t-ta))t? eH(2ETH) ge,

it 31 (I+49-i-3)! °
-(4.21)

Rearranging the t: terms gives:

P[I messages served from A, J messages served from B in t | t,te ]=

yha e—2yt
it 31 (I+3-1-3)1

t . o
J t‘(IOJ-\.—J) (t-tt)"+', e}-lts dts
[« ]

\ /
\N 7/
A

-(4.22)
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The integral in Eqn 4.22 which we will call A, can be

simplified using Eqn 4.23:
. e R
(t-t)t*d = 2 [ i+] ] A R L ~(4.23)

Ve get:

' i+] +)- n (I+J-1L- ) t
A=I E[n] AR DA PA -
O n=0

-(4.24)

Interchanging the order of integration and summation gives:

! i+3 - t e OF 2T t
[ 3 ] ML AL J‘ t vegeny o pts G
o

\ /
\N_/
B -(4.25)

The integral B in Eqn 4.25 may be determined to give:

(I+Jd=-1 = jen~-m)

MRS SR AT % W PeRY. ta

B = T
M mo (I+J-1-J+n-m)! ()™

-(4.26)
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Evaluating Eqn 4.26 from 0 to t and substituting the solution

first in Eqn 4.25 and then in Eqn 4.22 gives:

P[I fromA, J from B in t | t, i, :!]=

G e "i" (n" e g
i1 31 (I+J-1-3)! nl (i+j-n)!
ut m  (g-m q
e (-1) t - (-1) _
[ mfo  (g-m)! #cm't) “(qos) ] (4.27)

wvhere q = I+J-i-j+n

Now, before removing the dependency on i and Jj we must
realize a critical aspect of the relationship between these two
variables.

Clearly, if I=5 and J=10 only S5 of the 10 messages £from
queue B can interfere with the 5 messages from queue A since each
message can interfere with only one message. Thus in each case the
maximum number of interfering messages will be min(I, J). Since 1|
and j denote the number of nor-interfering messages in each queue,

the maximums they can reach are:
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~

o]

LsX-min(I,J) j=J-min(I,J )

i = I-min(I, J) l

max if min(I, J) = J
jmax = J J
or -(4.28)
imc.x = I
if min(I, J) =1
3 = J-pin(I, J)
may.

Therefore in the removal of the dependency, the following

cyses are impossible:

P[imp. cases]:i S P[I from A, J from B in t |t,i,j] P(1) P(3)

izo j<o
-(4.29)
vhere K = [:-mmx.-n ”o':;:::::ﬁ ]'
L2 (omincrns ermmrninn ) fom 5 4.28,

and P(i), P(j) and P|I from A, J from B in t |t,i,j] come
from Eqns 4.7, 4.8 and 4.27 respectively.

We will then divide by (1- P[ imp. cases }) to make sure
that the total probability lawv remains valid. Putting it all

together gives:

px"’(buny) -

P[I fromA, J from B in t |t,i,j]P(i)P(.’i)

dA(t)
[1 - P[ impossible cases ]]

~(4.30)
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Eqn 4.30 gives the general case soiution ior vhen both
queves remain busy between two arrival points. Many special cases
come into play and must be analyzed separately. For example when I
and/or J are zero the queues behave differently. These special
cases vill not be analyzed in detall here.

Now that we have the solution when Mhoth gqueues remain
non-empty, we may use this result in handling the cases when one

of the gueuves gces empty.

4.2.2 One of the queues goes empty

This case will be handied with a simple trick. We will
assume that the queue which empties does sc in y seconds leaving
i1 (or j1) messages in the other queue. We then uncondition w.r.t.
y and i1 (or ji1) and get the solution. This can be illustrated

using the diagram of Fig.4.2 for the case when source queue B goes

empty:
B is empty
| (J departures)
——
single
server for
ts 'y the i
€ P1-ig,s —_ messages left
C( busy) in a
< x >
n'" (n+1)*"
arrival arr ival
+ t

Fig. 4.2 Case where Queue B empties during the
inter-arrival period.
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We then uncondition w.r.t. x from y to t, v.r.t. y from 0
to t and finally, w.r.t. t from 0 to .

Clearly, during the first y seconds both queues remain
busy which is handled by Eqn 4.30 and during the remaining t-y
seconds, only queue A will send messages, the service being
modeled by a single server (Poisson process). The egquation

governing this case will be written:

- =

(B emptiem)

L]

[+

t
y rt 18 _-ux
. (pa¢) e
{ [PI-“"’(bu-w ]o J; BT dx} dy| aA(t)

-(4.31)

[¢]

And similarly for the case when A goes empty:

J
Pz, (A empties)

t
Yy pt Jr -ux
. (%) e
JO [ i J { [pI'J-J!‘bu.y) ] J T dX} dy| AaA(t)
ji=0 ° 0o Jy
[ ]

-(4.32)

EqQns 4.31 and 4.32 give the general case solution for the
"one queue goes empty" cases. Here again some special cases must
be handled separately.

Let us then get into the last possibility which cover the

case when both queues go empty between two arrival points.
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4.2.3 Both queues go empty

To analyze this case we will consider two mutually
exclusive events and simply add the results. Surely, if both
Queues go empty within the next arrival, queue A will empty either
before or after queue B. We will solve both cases separately. The
following diagrams will help in visualizing both events. If A
empties before B we get the situation shown in Fig.4.3:

A empties first B is also

' (I departures) empty

single
server for

B ) thes

Wy i messages left
Py “‘(bu.y) | inB
A 4
nth (n +1)th
arrival arr ival
» t

Fig. 4.3 Case where gqueue A empties before queue B
during the Iinter-arrival period.

We then uncondition w.r.t. x from 0 to vy, w.r.t. y from 0
to t and £inally, wv.r.t. t from 0 to .
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On the other hand B may empty before A as shown in

Fig.4.4:

B empties first A is also

| (J departures) empty

- —

l single

ts server for
. the is
. * X mesgsages left
p‘_u",(bu-y) | ina
D 4
oth . (n +1)zh
arrival arrival

+ t

Fig. 4.4 Case vhere queue B empties before queue A
during the irter-arrival period.

Then again we uncondition w.r.t. x from 0 to y, v.r.t.
from 0 to t and finally, v.r.t. t from 0 to w.

Note also that the Pr.Jo-p
are still handled by Egn 4.30.

(buey)
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Writing the equation for the sum of these two mutually

exclusive events gives:

P19 =
(A,D empty)

(uz)3t71 0742 g,
=° I’{ P10~ =3 busy: ] r NET VI }dx dyjaa(t)

° J
+
(uz) ’“z dz
r{ [Px T ] r ez }dx ay]cmt)
o
-(4.33)

Now that we have closed form solvtions for all three
separate cases we can obtain the transition probabilities forming
the transition matrix which will be solved for its steady state
solution. This will then give the steady state distribution of the
number of messages in both source queues. Taking the expecta%ion
from 0 to N (the maximum buffer size) ylelds the average number of
messages in the queues and using Little's result adapted to finite
queues repeated in Eqn 4.34 gives the average delay of a message.

n_ ~(4.34)
X (1-P6)

o
fn

~ where Pv is the blocking probability
equal t» the probability of having a
full source queue.
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4.3 Results

Unfortunately, the amount of computing involved in
calculating the numerical solutions even for a small state space
{maximum of two messages in each queue) is so large that weeks are
needed to come up with data. This is due to the imbedded integrals
and sumations and to the 1limited computing facilities used
(Deervax 780). We are therefore unable to present any results
vhich could be compared with those obtained in the previous

analysis of Chapter 2.
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CHAPTER FIVE

CONCLUSIONS

The main objective of this thesis was to propose and
analyze the performance of two different switching techniques.
A first system used in an integrated LAN (MAN) environment was
designed as a Star Network and was analyzed in two different vays.
A second system, applicable in the BISDN environment, was composed
of 2x2 Banyan Switches as part of a 1larger Network and wvas
analyzed using an adaptation of the first analysis of the Star
Network.

Then, in Chapter two an analysis of a twvo users
star-connected Fast Circuit switching LAN was presented. The novel
approach of this analysis provided results, namely distribution of
the number of messages in the system, mean message delay and

blocking probabilities, for a wide range of varying parameters:

* Symmetric or non-symmetric arrivals to the source

queues,
* Different input buffer sizes,
* Variable length messages

* And equally or non-equally probable message

destinations.
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These results agreeably compare with the approximate
results published in [2] vhich analyzed larger Networks (16 users)
but assumed independence between the source queues and did not
handle finite buffer sizes.

In Chapter four the same Star Network is analyzed using a
different approach which would provide approximate results if
larger computing facilities were used. With this method we could
analyze the system under general arrival process (fixed, variable,
adaptive, ... arrival rates}), and in symmetric traffic.

Even though this LAN application, integrating many
services, mainly extends towards the MAN environment, the Fast
Circuit switching fabric of the PS, and therefore the two
previous analysis, can be extended to wider BISDN architectures
wvhere higher switching speeds would be used.

In Chapter three the analysis of the second chapter was
applied to the Packet switching fabric of Banyan Networks.

The 2x2 Banyan Switch uses small variable length packets
with equally probable destinations. The flexibility of this
analysis allows for many combinations of the parameters in order
to obtain a wide set of results similar to those from the Chapter
two analysis.

It is interesting to realize that our analysis takes a
look at Banyan networks from a microscopic point of view where we
observe the behavior of a single switching element of a larger
network. Other approaches by Jeng (15] and by Dias and Jump [(27],
(18], examine the entire network from a macroscopic point of view.

A significant aspect of the obtained results involves our
capacity to obtain the distribution of the number of messages in
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the system, the mean message delay, the blocking probabilities and
the average number of messages in the system for variable length
packets. In fact, in the fast developing field of BISDN, wvariable
length messages will be part of reality [8], [13]). This is why our
use of variable length packets improves on the analysis published
by Jeng [15].

Also, Jeng only analyzed Banyan Networks using
single~buffered 2x2 crossbars. The results obtained here allow for
buffer sizes to vary from 2 to any value of maximum buffer size
(N). Note that we have computed the above results for values of
N= 2, 4, €, 8 and 10.

In other papers by Dias and Jump [27], (18], again only
fixed sized packets were allowed. But also, they simplified their
network model in order to avoid the complexity and large number of
states in an exact Markov chain analysis. In fact, Chapter three
does follow a Markov chain analysis. An approximation was used
(increasing in validity as N increases), but the entire state
space of the Markov process is generated here.

Furthermore, Dias and Jump used an approximate algorithm
in urder to obtain results for multiple buffers between the
stages. Our analysis does not suffer from such an approximation
since it applies to arbitrary gueue sizes (any number of buffers).

In future works, the Star Network analysis of Chapter two
could be extended to larger topologies where the greater number of
nodes would enlarge the state space (possible wvalues) of state
variable K and vhere it would be necessary to obtain the different
interdependence relations and the interference probabilitles

between the nodes.
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Also, larger Banyan Networks could be analyzed by
obtaining an interdependence algorithm between the stages of 2x2
Banyan Switches which make up the architecture of the Network. The
single 2x2 Banyan Switch analysis of Chapter three would then be
used in conjunction with the interdependence algorithm to obtain a

large scale analysis.

It is believed that the double embedding strategy of the
analysis in Chapters two and three, and the transformation used to
obtain the steady state distribution of the number of messages in
the system could be applied in other Iinstances where a similar

Markov chain analysis would be a viable solution.
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