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ABSTRACT

A NOVEL APPROACH FOR THE GENERATION OF
TwO-VARIABLE VERY STRICT HURWITZ POLYNOMIALS
AND APPLICATIONS IN THE DESIGN OF STABLE
TwO-DIMENSIONAL RECURSIVE DIGITAL FILTERS

Mohammad A Abin, Ph D,
Concordia University . 108K

A systematic procedure s proposed for the generstion of two-variable Very Strict
Hurwitz Poly nomuals (VSHPS)  Methods and procedures for the desigh of stable two-
dimensional (2-1D) (1-D as special case) filters satisfying preseribed specifieations are
desenibed next, and are then apphed to the desigh of several filters such as lowpass,

highpass, bandpuss, Fan, Lapla »an, and homomorphie filters with low sensitivaty

Its well known that i the area of sighal processing, 2D and m-D fHters which are
ueed are of hittle value unless they are stable and also satisfy prescnbed speafications
2. and m-D filtening are concerned with the extens<ion of 1-D Htepng techimques to two
and more dunensions Recursive fltenng s computationally adsantageons over post
comuolutional methads of filtering However ope mgor staymbling block o the desgen of
2-D oand m-D recurspve fHters s tooepsure ther <talabity . Unhike 1-D tecursive fifters 2D
recursive Blters could hecome unstable gn the presence of pon cscentiad sipgulanities of
the second kiad  Nuother dtfeoulty s the byeh of o Fandamental Theorom of Nlgehrg
for polvnonnals of Yo o mere vartabiles This naplies non Lactoralality of the polyne-
mls i two or more variables which complicatos the checkng of «tabahity - Tlos thesis
discusses the design of 22D 011y ac specpa] o ) recursive digital flters wath guaranteed

stabihity

Part of the work reportad gn this theap o desated ta the stindy of dflorent e thods

for generating ~table twoevarioble Hurwity polyneantals Then a oonel approach which




e e oA = e T Liag—n 2wk aarvc e e m‘v'm""nuv-m;m!amw-zwcw-v. P ——
- fv -

uses the properties of positive deflnite matrices and their application in generating two-
variable VSHPs is proposed. The method considers a passive n-port network /N ter-
minated in n -variable reactances as starting point Based on reahizability of this as an
n-variable reactance network we were able to generate two-variable V'SHPs This
method generalizes and extends the previous techniques, in which only a sub-class of
matrices could be used to generate two-variable VVS!IPs Also, for the same order of the
VSHP, a greater number of vanables is made available, which results 1in low sensitivities

for the designed filters.

The generated two-variable VSHP is then assigned to the denominator of a 2-D
analog reference filter with a properly designated numerator polynommal  The resulting
analog transfer function is discretized by the application of bilinear transformations
Non-linear programming techniques are employed to design recursive digital filters This
is an eflicient method for the design of recursive digital filters to approvimate the desired
magnitude frequency response or the desired magnitude and phase frequency responses
simultaneously . The latter is an important requirement for many applications, especially
image processing. Using this approach. several stable 2-D (1-DD as special case) quarter

plane recursive digital filters are designed

As the coefTicient word-length has an effect on the cost as well as the speed of o
filter, a practical algorithm based on an optimization procedure for the design of recur-
sive digital filters with nteger coefflicients is descrnibed It huas the advantage of being
easy to program. The fllters so designed are free from roundofl errors caused by quanti-
zation of the real coefficients with full precision and accumulation of these errors n
arithmetic operations The numerical performance of the algorithm has been illustrated
by examples

Finally, a detailed sensitivity analysis 1s undertahen whereby the designed filters are

compared with respect to different coeflicient word-lengths  This study is felt to be of
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importance as the required coeflicient word-length of the digital filter derived from the
aforementioned structure has a strong effect on both the cost and speed of the filter
when 1t is implemented First, a sensitivity in terms of the structure of a filter is
defined Then. we concentrate on varwations of the parameters pertaining to the 2-D
recursive digital fliter transfer functions derived previously  This can serve as a sensi-
uvity measure of the digital fllters  The results show that reduction in the coefTicient
word-length has httle effect on the response of the filter. indiweating the low sensitivity of

the suggested techmigue 0 the generation of VSHPs
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LIST OF IMPORTANT SYMBOLS
AND ABBREVIATIONS

Unless stated otherwise, we label the following notations and will make frequent

references to them later:

U

o1
-,—q—. t=1,n
du,

po(or s )= Jw,. 1 =-L.n

w‘.(A,'Q

union
such that

for all

defined as d, +dot -+ - +4dy

defined as

member of

defined as 1=-1,2,3,....,n
defined as column matrix

an n Xn identity matrix

defilned as matrix A

transpose of A
mverse of A
determmant of A

p-th norm of ()

partial derivative wrt pu,

complex frequency variable in aunalog domain for n-

variables

analog domain frequencies i two-variables
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passband edge frequency

stopband edge frequency

sampling periods in two-dimensions
group delays in two-variables

complex frequency variable in digital domain for two-

variables
(I Z xl =1)n(l z2l =1)ﬂ(| znl =1)

complex conjugate of H
real part

imaginary part

The following abbreviations are used frequently in the thesis:

1-D
(BP)
(BS)

e(o)

FIR
(HP)

HP

SHP
VSHP
H(s,.s,)
H(z,.2,)

IR

one-dimensional

bandpass

bandstop

defined as even or odd

finite impulse response

highpass

Hurwitz polynomial

strict HP

very SHP

two-variable analog transfer function
two-dimensional digital transfer function

infinite impulse response
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(LP) lowpass

LSl linear shift invariant

PLSI planar least square inverse
N-D; N2>2 n-dimensional

PRF positive real function

RF reactance function

R (axis.0) rotation about axis by @ degree
Ccw clockwise

CCwW counterclockwise

Sc'f(:,.z._,) sensitivity of I/ (z,,z,) wrt. ¢,

Throughout the text, upper case bold ftalic letters will denote real as well as complex
matrices, vectors that correspond to a column or row of a matrix will be denoted by
Jower case bold 1talie letters with a single subseript.  The subseript will correspond to
the column or the row of the matrix to which the vector corresponds ¢.g . a, denotes the
1 -th column of A . Lower case Greek and roman letters will denote scalars  Elements of
a vector will be dentified by a single subscript and elements of a matrix by a double
subscript e.g. the element in the 1-th row and j-th column of matrix A is denoted by
and the t-th element of a vector b 1 denoted by b, . All veetors are assumed to be

q, ,

column vectors, the 1ow veetors are depoted with a transposition sign
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CHAPTER ]

INTRODUCTION

1.1. GENERAL

For many years, it is known that it is possible to reconstruct a continuous signal
from its sampled version, if the rate of sampling is at least twice the highest frequency
component of the continuous signal. This is the basis of the PAN and PCM communi-
cation systems [1]. It has led to wide spread use of sampled data for transmission and
processing of analog signals. With recent advances in the digital integrated circuit tech-
nology, digital signal processing has become a powerful tool for the simulation of analog

systems.

In general, the most important component in most digital signal processing systems
is the digital filter. The term ‘digital filter’ refers to the computational process or algo-
rithm by which a digital signal or sequence of numbers is transformed into a second
sequence of numbers. In practice, the digital fiiter is implemented in hardware or using

software on a general-purpose digital computer.

Two-dimensional (2-D) digital filters have found numerous applications in areas
such as image processing, seismic data processing. aerial photo, biomedical engineering.
sonar. radar to name just a few 2-7;. For example, lowpass filtering is employed as a
smoothing operation to reduce high spatial frequency components that may be present in
an image. On the other hand, highpass filters are being used in the enhancement of
edges and other high-frequency components within an image. Images that do not appear
clear may be sharpened by highpass flitering. Also, bandstop filters can be used for
reduction of noises in an image, while the Laplacian filter is used in the extraction of
object edges. or boundaries. Pattern recognition algorithms for use in robotics control

often begin processing with a Laplacian operation (8-9;.
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1.2. CHARACTERIZATION OF 2-D DIGITAL FILTERS

A 2-D digital filter consists of arithmetic operations which transform a 2-D array of
real numbers to another 2-D array of real numbers according to a prescribed
specification. 2-D filtering problems can be classificd as linear and nonlinear. In the
linear filtering problem, 1t is assumed that the spectrum of the signal and noise are non-
overlapping. Therefore, with the use of a linear filter (e.g., lowpass, highpass, bandpass,
etc.) the signal can be recovered, eliminating signal contamination such as noise. On the
other hand, nonlinear filtering is used for a specific application, where the spectrum of
noise and signal are not necessarily non-overlapping and generally no specific models for
noisc or signals are considered Removal of the impulsive noise by median filtering, con-
trast enhancement through histogram modification are few examples of nonlinear filter-
ing It should be noted that hnear flitering plays an important role in the arca of image
processing, in general, for preprocessing and postprocessing of the signal through lowass
filtering and highpass filtering whieh are smoothmg and sharpening operations, respec-
tively. This thesis will be mainly concerned with hnear 2-1 digital filters that are shift-
mvariant, where the nput. r and the output, y  satisfly a 2-D linear constant-

coeflicient difference equation of the form  2,3.7,10°

NN alkkpr(ng kny, by 3NN by ey Ly L) =0,
tko ko R, iyl B,

(11)
where Ra and I, are finite sets of spatial grid pomnts, called the anput and output
mashs, respectively  Note that (1 1) applies to sequences with uniforim as well as nonuni-
form time spacings  However, for convenmence, we have assumed exclhisively digital sig-
nals with umiform time spacings, 1e, T =T ,=1 Limecar shift-invariant (LSI) fiters
are classified enther as flmite-extent smpulse response (FHR), or as nflnitesextent ympulse

response (11IR) as defined below
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1.3. NONRECURSIVE FILTERS

An FIR, or nonrecursive, filter is one whose impulse response possesses only a finite
number of nonzero samples. The output of such filters can be determined from its input

by means of the convolution sum. This can be seen by writing (1.1) as

y(nny)= 3% a(k,k)r(n,-k,,n,k,), (1.2)
(kl-kﬂ)e Rl

which is a special case of the difference equation (1.1) with b (0,0)=1. Comparing the
above difference equation with the convolution sum, we see that the output array
y(n],ne) is the convolution of the input array with the array of coeflicients a (kl.k._,).

where a (k,,k;) can be identified as the impulse response of the filter.

For any FIR filter, the limits of summation in (1.2) are finite. In this case the con-
volution sum serves as a computational algorithm for realizing such filters. Taking the
Z-transform of both sides of (1.2) with finite limits on summations yields the z-domain

transfer function of a 2-D nonrecursive digital fllter which is of the form

Y(z2,.25)

HGzvzd =50 75
- ~],h2
k. -k
= %N h{k k), % (13)

(kiko) € R,

For FIR filters, the impulse response is always absolutely summable, and therefore, these

filters are always stable.

1.4. RECURSIVE FILTERS

An IIR, or recursive, filter is one whose input and output satisfy a finite-order

difference equation. This can be seen by rewriting (1.1) as

y(nn)= 339 a(kpnk)x(n-k no-ky) -
(k ke R,

SIS b))y (n -l -L), (14)
(hi) = Ry




iaie
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where 11,12750 simultaneously. Eq. (1.4) implies that the present value of the output of
a recursive fllter is not only dependent on present and past inputs but also on the past
output samples. Therefore, these fliters can produce a large output independent of the
size of input signal and therefore can become unstable. Taking the Z-transform of both

sides of (1.4) yields the =-domain transfer function of a 2-D recursive digital fllter which

is of the form,

Y (z,.2,)
}1(.’.",22) = -\_—(~L~—7
Al

k k.
Y oalkkye, ey,

thki ko R,

1
Y bz ey

(Il R,

l‘.‘

= (1 5)
D(z,.2,)
It has been shown !{11-12 that these filters are stableaf and only If,
Dz z,)70for N |z 2 1. (18)

t 0

1.5. ADVANTAGES AND DISADVANTAGES OF FIR FILTERS

OVER IIR FILTERS

Therte are three fundamental differences suggesting  that designing nontecursive
filters are advantageous to ther recursive counterpirt The first can he viewed as linear-
ity In most of the 2D filtening problems 10as requured for the phase to be either linear
or zero For example hnearty of the phase has been shown to be of importanee an the
processing of mmages 13 Nonrecursive filters can readily he designed to have dinear
phase (econstant gromp debingd as well as presenbed magmtude speafieations  In contrast,
designing a recursive filter to achieve constant group deliay and preseribed magnitude

specifications simultanecusly s dilicult Another advantage of nonrecursive filters s
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that they are free from stability problems (since the transfer function of these filters is
simply a polynomial in two unit delay variables 2z, and 2z,, and therefore possesses only
zeros). On the other hand, recursive fliter design requires stability constraints to be
incorporated in the design procedure; otherwise they may be unstable. Finally, the
design of nonrecursive fliters is easier than their recursive counterpart as they do not

have the stability problem and their approximations are linear in nature.

In the design of 2-D fliters for the same specifications, an FIR fllter requires more
coeflicients than IIR fllter by a factor of about ten [7]. This 1s because, concerning the
pole locations, the transfer function of a recursive filter, which is the ratio of two polyno-
mials in two unit-delay variables z;, and 2, as shown in (1.5). has more degree of free-
dom than a nonrecursive fliter whose poles are fixed at the origin. As a result, recursive
filters are capable of approximating a given specification with lower order compared to
their nonrecursive counterpart. Unlike most of the methods published to solve the prob-
lem of realizing 2-D arrays of data nonrecursively [14-20’, recursive realization, however,
offers greater speed of filtering and smaller memory requirement [7,. Thus. IIR fllters are
more attractive because of less complexity (based on the number of multiplications and

additions) and easier implementation than the FIR filters.

1.6. DESIGN OF 2-D DIGITAL FILTERS

2-D digital filters are initially specified by either the impulse response or the fre-
quency characteristics. The aim in cither the space-domain or the frequency domain
design, in general, is to calculate the coefficient arrays @ and b of a 2-D recursive filter
in (1.4) or (1.5) (or the coefficient array a of a 2-D nonrecursive fliter, (1.2) or (1 3)),
such a way that the impulse response or frequency characteristics (amplitude, phase, or
both), respectively, of the designed filter approximates to those of the desired one In

addition, the stability of the filter should be maintained when designing recursive filters




- - TR I g ST W

There are several approaches for the design of 2-D fllters. The use of a particular
method would depend on whether an FIR or IIR fliter is called for, and on whether the
design specification is given in the space-domain or in the frequency domain. For exam-
ple 2-D nonrecursive fllters can be designed using windows introduced by Huang [21] (a
straightforward extension of the 1-D technique), or by using transformation of 1-D pro-
totype filters to 2-D fliters [5,22]. They can also be designed using straightforward appli-
cation of linear programming due to Hu and Rabiner [23] and refined later by Harris and
Mersereau (24]. However, the latter approach is computationally slow as compared to

the first two methods [25].

Similarly, several techniques have been proposed for the design of 2-D recursive
fliters. One of the earliest methods used to design stable 2-D recursive fliters was the use
of a transformation suggested by Shanks [11] starting with a 1-D prototype in analog
domain [26] or in discrete domain |{27] both resulting in the same coefficients. Ahmadi et
al (28 presented another transformation for the design of 2-D recursive fliters. Chang
and Aggarwal {20 introduced design technique entirely in digital domain where the spec-
tral transformation carries a stable 1-D transfer function into a 2-D transfer function
Chang and Aggarwal considered only the separable filters. However, their method is also
applicable for the case of nonseparable 2-D filters [30] McClellan Transformation [22]
has also been used to design 2-D recursive fllters [31] Several direct 2-D recursive filiter
designs based on optimization techniques have simmilarly been proposed {32-38). This
approach corresponds to the direct approximation of amplitude and/or group delay
(linear phase shift) characteristics of ratio of two polynomials  If the problem is directly
attacked by minimizing some measure of the difference between the actual response of
the filter and the desired response, it leads to a nonlinear problem in parameters which
cannot be solved exactly and requires iterative methods for its solution  This is due to
the fact that it as dificult to obtain a polynomial in closed form, that s, as a function of

the elements of reference matnix  This method is essentially the same as the jterative



scheme being used for the 1-D case. It starts from an initial set of parameters and
iterates towards a solution by minimizing the lp -norm (p =1, 2,...) taken on a dense
grid of points in the 2-D frequency plane by a nonlinear optimization algorithm. This
approach was first used by Maria and Fahmy [32]. It involves minimization of the sum
of squares of the differences between the desired and the actual response by a nonlinear
optimization algorithm which also incorporates stability constraints. The stability
checking at each iteration in the process of minimization is, however, facilitated by
choosing cascaded sections of first and second order sections from the beginning. The
technique of Maria and Fahmy, however, lacks the computational efficiency as the stabil-
ity checking must be applied repeatedly. Based on this direction, Karivaratharajan and
Swamy [36-37] have also proposed methods to approximate quadrantal symmetric fliters
in which the denominator polynomial of the transfer function is separable in 2 and z,.
The advantage of these methods is that once the filter characteristic has been deter-
mined, a single check is required to determine whether or not stability requirements are
met. Also, minimax technique {(p —©0) rather than least-squares technique (p =2) has
been used by Charalambous [38] to approximate prespecified amplitude response. If,
however, a general rational filter of preselected order (the higher the order of the filter,
i.e., the more coeflicients to be computed, the better is the approximation) is to be com-
puted to approximate some prespecified response, the repeated stability checking will
computationally be involved in this approach. Yet there is another approach which
simplifies the stability problem. It consists of deriving 2-D discrete transfer function
from a 2-D analog transfer function by means of the bilinear transformations in conjunc-
tion with an optimization technique This approach is essentially based on the proper-
ties of 2-variable positive real functions [39]. Design algorithms to choose the coefficients
for a 2-D recursive filter, that are based on Koga's result [39], can be found in [40-41].

Although many of the very first design algorithms proposed for 2-D recursive filters were




successful, unfortunately general 2-D IIR filters designed with these methods have several

complications as given in the following section.

1.7. PROBLEMS OF 2-D RECURSIVE DIGITAL FILTERS

1.7.1. Stability

One major difficulty encountered in the design of 2-D recursive filter is the stabil-
ity. The stability requirement has prohibited the wide spread use of these fiiters inspite
of their computational advantages over the nonrecursive counterpart. In case of 1-D
filter the stability is determined by finding the locations of the roots of the denominator
polynomial of the transfer function. However, this stability testing process is consider-
ably more complicated for multidimensional case as it is not possible to factorize a mul-
tivariable polynomial into products of lower order polynomials [42-43]. The stability of
2-D recursive digital filters was first studied by Shanks et al. [11]. Shanks presented a
theorem, based on direct extension of the conditions for stability in the 1-D case, which
can be used for testing the stability of 2-D recursive filters. At about the same time,
using a theorem due to Ansell [44], Huang (12] greatly simplified the stability conditions
of Shanks' theorem that reduced the amount of computations required to check the sta-
bility of a 2-D recursive fliter. While Anderson and Jury [45-47], and Maria and Fahmy
[48] simplified these resuits even further by putting the stability tests in terms of the
root locations or positivity of a set of polynomials in one variable, the stability testing is

still computationally difficult task except for certain special cases (46,49)].

1.7.2. Stabilization

Another problem encountered in the design of 2-D recursive fllters, and not found
with FIR filters, is stabilization of an unstable filter. In the special case of a separable
filter, the 2-D fllter becomes two 1-D fllters in cascade. In that case, an unstable filter

can be made stable by means of pole removal using mirror image technique. However,

_—
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it iIs not always possible to realize the designed 2-D IIR filter as a cascade connection of
1-D fllters because of the problem of factorization. In such a case, stabilization tech-
niques are needed to convert an unstable design into a useful, stable design. Double
Planar Least Square Inverse (DPLSI) [11] and discrete Hilbert transform (DHT) [50] are
two different techniques that have been suggested for stabilization of an unstable 2-D
IIR filter. However, the method of [11] is either a subclass of polynomials {51] or costly

[52], while the technique of [50] faces a counter example [53].

1.7.3. Effect of the Numerator Polynomial on Stability

Unlike 1-D recursive filters, the numerator of a 2-D recursive filter may influence
the stability of the filter. In the 1-D case, if the numerator and denominator polynomi-
als of the filter transfer function are relatively prime, the stability of the filter depends
only on the locations of the poles. However, in 2-D this is not the case. Goodman in his
award-winning paper [54] has shown that given the denominator polynomial of a transfer
function is not zero at a point in the unit bidisk, and there exists a non-essential singu-
larity of the second kind (a point at which both the relatively prime numerator and
denominator polynomials become zerc) on the unit bidisk then the recursive fllter may or

may not be stable. As an example, consider the following three filter transfer functions

[54):
1
H\(z,.2,)=
1 -1
(1-z' B(1-2,1 B
Hy(z,,2,)=
TR U Sy
2”1 o972
(1-z;7' M1-25")
H3(Z l,Z 2)=
PR SRR
2"l 272

We see that the only point on or inside the unit bidisk where the denominator polynomi-

als are zero is at the point z,=z,==1. The numerator polynomials of boch H ,(z,,2,)

ol CERLLETE, et 2]
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and H 4(2,,2,) are also zero at this point. Thus H 4(2,,2,) and H 3(z,2,) both possess
a non-essential singularity of the second kind on the unit bidisk. Goodman established
the stability of H,(z,,2,) and the instability of H,(z,,2,) and H4(2,,2,). It can be
seen that the numerator polynomial of Hz(zl.zz) has played a role in the stability of
the flter transfer function in spite of the fact that the poles and zeros of H ,(z,,2,) and
Ha(zl_zg) are the same. This is due to the special nature of bivariate polynomials,
which could be mutually prime and still have common zeros [55]. Goodman's stability
condition with second kind singularities is a necessary condition which does not lead to a
simple standard procedure to test for stability. However, in a recent paper Roytman et

al. [58] have derived simple necessary and sufflicient conditions for the stability of a

transfer function in the presence of simple non-essential singularities of the second kind

on the distinguished boundary of the unit bidisk.

1.8. HOW TO OVERCOME THESE PROBLEMS?

One approach to the design of 2-D recursive filters, which simplifies the stability
problem, is to derive 2-D discrete transfer function from a stable 2-variable analog
vransfer function (a function with Strict Hurwitz Polynomial (SHP) in its denominator)

by means of the bilinear transformations, in conjunction with an optimization technique.

Bascd on Koga's result [39] that an n x n multivariable positive real matrix can be
realized as multivariable finite lumped passive networks, Dubois and Blostein {40] pro-
posed a method for the design of 2-D recursive digital filters by deflning the transfer
function of an analog 2-variable, passive 2-port network N as a starting point. Given

such a function, the transfer function of a 2-D digital filter is obtained by performing

double bilinear transformation. The response of the resulting filter is approximated
using near minimax optimization technique. In this method, the generation of SHP is
guaranteed if the 2-variable 2-port network N is chosen to be a lossy one. Prasad and

Reddy {57] have modified the approach of Ramamoorthy and Bruton (58] for generation
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of SHP by considering a passive and lossy n-port network N (containing resistors and
ideal gyrators) terminated in 7 -ports and 7 ,-ports by unit s,-plane and unit s ,-plane
capacitors, respectively. In another article [59], the same authors made use of the pro-
perties of bilinear transformations of SHP to obtain 2-D digital filters, in conjunction
with the unconstrained minimization technique of Fletcher-Powell [60], to approximate a
given response. Ramamoorthy and Bruton [41] also devised a technique which is based
on Koga's result and the decomposition of an n x n multivariable positive real admit-
tance matrix for the frequency domain design of 2-D analog and digital fliters starting
with a two-variable passive analog network. These techniques guarantee the stability of
the digital filter except for non-essential singularities of the second kind [61], since the

reference network is passive and absolutely stable.

Goodman [61] showed that not all predetermined 2-variable transfer functions pos-
sessing SHP denominators in the analog domain will yield stable 2-D digital transfer
functions upon application of double bilinear transformation. A sufficient condition for
the resulting 2-D digital transfer function to be stable is that it should be devoid of
non-essential singularities of the second kind [61]. The test for the existance of such
singularities, however, can be carried out directly in the analog domain [62]. To over-
come this problem, Rajan et al. [62] refined the strictness of Hurwitz polynomials and
defined the resulting polynomial as Very Strictly Hurwitz Polynomial (VSHP). Further

information on multidimensional VSHP is available in {63].

Using the technique of 1-D wave digital filter design [64], extension has been made
to the design of 2-D wave digital filters of the recursive type {65]. In this method doubly
terminated LC ladder networks in two variables are considered where different series and
shunt arm elements are replaced by the corresponding wave digital two-ports. Such
ladder structures are particularly of interest because they possess low sensitivity charac-
teristics both as analog and as digital filters [66]. Another method of designing 2-D digi-

tal filters is by applying a 1-D to 2-D analog transformation [of the form § —g (5 ,:8 )
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on existing 1-D LC ladder transfer functions, and then the bilinear transformations.
Erfani and Peikari [67] have used the concept of generalized delay unit (68] to design 2-D
digital filters. By using such an element one can digitally realize any reactance function
placed in the series and/or the shunt arm of a general ladder structure. However, in
order to avoid the difficulties pointed out by Goodman [61] and to get a stable realiza-
tion, the transformation ¢ has been chosen to be a driving point reactance function.

The design technique developed in [67] lends itself to generate 2-D filters with low sensi-

tivity with respect to parameter perturbations, and also with tunable characteristics [69).
In a recent paper [70], however, the same authors have given a simplified algorithm,
based on cascade connections of two-ports, for the digital simulation of RLC structures

which do not require the concept of generalized delay units.

In view of VSHPs, we will review several methods of generating 2-variable strict
Hurwitz polynomials devoid of non-essential singularities of the second kind. First let us

explain certain preliminaries.

1.9. PRELIMINARIES [82]

1.9.1. Value of a2 Two-Variable Function at Infinity

The 2-dimensional biplane, (5,,5,), consists of two complex planes s, and §, and
an inflnite distant point can have infinite coordinates in any one or hoth of these planes

and so there exist an infinite number of points at infinity. They can be classifled into

three categories as follows.
Category 1: s ,==0C, and 5,== finite
Caiegory 2° §,= lnite, and 5 ,=0oC

Category 3. §,=0C, and §,=x
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Applying the transformation s —1/s, which maps the infinity to the origin, to

each variable the value of the function H (5,,5,) at each of the above points, is defined

as
H (00,5,) = lelg, H(1/s,,8,) (category 1)... (1.7a)
81—
H (s,,00) = Limlt H(s,,1/5,) (category 2)... (1.7b)
8"-‘0
H (0c0,00) = Limit H(1/s,,1/5,) (category 3)... (1.7¢)
8,00

1.9.2. Singularities

It is well known that a 2-variable rational function
H(s,s 2) = P(s 1S 2)/ @ (5,,85)

where P and ¢ are relatively prime, may possess two types of singnlarities and they
may be defined as follows:

(i) Non-essential singularity of the first kind: H (s ,5,) is said to possess non-essential
singularity of the first kind at a point (s ,s; ) if
P(s{.s7)#0and Q(sy,55) =0.
(ii) Non-essential singularity of the second kind: H (s;,5,) is said to possess non-
essential singularity of the second kind at a point (5,8, ) if
P(s].s,)=Q(s,,5,)=0.
1.9.3. Two-Variable Hurwitz Polynomials

There are four types of Hurwitz polynomials and their deflnitions in terms of singu-
larities are given below. In the following definitions @ (5,8 ) is a polynomial in s, and

s 5 and Re(s ) refers to the real part of s .
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Definitions 1 & 2

Q (5,8 ,) is a broad / narrow sense Hurwitz polynomial (BHP / NHP) if 1/Q (6,,5,)

does not possess any singularities in the region Dy / D, U D, U D 5, where

>

D, {(sl,s 2)] Re(s,)>0, Re(s,)>0, | 5,| <oo, and | s, <oo}.

>

D, {(31'3 2)| Re(s,)==0, Re(s9)>0, | s,| <oo, and | 5, <°°}'

and

%

D, {(s 118 2)| Re(s,)>0, Re(s,)==0, | s,| <oo, and | 5| Soo}.

Definition 3

Q (5,,55) is a strict Hurwitz polynomial (SHP) if 1/Q (5,,5,) does not possess any

singularities in the region
{(s 152)| Re(s,)>0, Re(s,)>0,|5,] <oo, and | s, <co}.

Definition 4
Q (5,,5,) is a very strict Hurwitz polynomial (VSHP) if 1/Q (s {,5 5) does not possess

any singularities in the region
{(51’32)‘ Re(s{)>0, Re(s,5)20, | s5,| <co, and| sy} <oo}.

1.10. SURVEY OF PREVIOUS WORKS

As far as the stability of a 2-D 1IR digital filter is concerned, it has been shown that
when we start with a passive 2-variable analog network transfer function having a VSHP
denominator and obtain a corresponding digital transfer function by using bilinear

transformation in two variables, the stability of the resulting 2-D digital transfer




-15-

function is guaranteed [62]. Following this approach, it is the purpose of this section to
review different methods of generating 2-variable VSHPs. These methods essentially
start with either (i) a reactance transformation, (ii) a resistively terminated network, or
(iii) a purely reactive network of 2-variables.

Ahmadi et al. [28] introduced a class of 2-variable reactance function, whose sum of
the numerator and the denominator constitutes a 2-variable VSHP, as a transformation
applied to a 1-D analog lowpass fllter in order to obtain a stable 2-variable transfer func-
tion.

Ramachandran and Ahmadi [71] have recently shown how a 2-variable VSHP could
directly be generated. This method essentially considers a structure reported in [41].
That is, a structure consisting of an (n +1)-port lossless frequency independent (gyrator)
network terminated by a unit § -plane capacitor in m -ports, by a unit s ,-plane capaci-
tor in the next m -ports, and by resistors in the (n —2m )-ports. The determinant of the
admittance matrix of such a network yields a 2-variable VSHP. In this technique, how-
ever, certain conditions involving principal sub-determinants of the admittance matrix of

the gyrator network have to be satisfied.

Properties of derivatives of polynomials have also been used [72] to generate

VSHPs. The method starts with a polynomial given by
P, = det[p+G] (1.8a)
where g is a diagonal matrix of order n given by
p = dlag [ty Bar g - 0 el (1.8b)

and G is a gyrator (skew-symmetric) matrix of order n given by
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0 912 913 - - - Gin
~g12 O 923 - - . Qap
“913 93 O . . . gag
G = . ) . B (1.8¢)
~91n ~92rn ~93n - - - O ]

Since the matrix [g+ G ] is physically realizable (any positive definite or positive
semi-definite matrix is always physically realizable {39)), P,, represents the even part,
M, , or the odd part, N, , of an n-variable HP, depending on whether n is even or odd,
respectively. Therefore (0P, /Ou;)/P, is a reactance function. By associating the
corresponding partial derivatives with respect to each variable, which represents the odd
part (n being even) or the even part (n being odd) of an n-variable HP, to P,, an n-

variable HP could be produced. That is

n aP,
Qn =Pn+2K,-—a——— (1.9)

§= §

is an n-variable HP.

From (1.9), a 2-variable VSHP can be generated by putting some of the y's equal to
§ 4 and the rest of the u's equal to 8§, and also ensuring that the conditions of a 2-
variable HP without non-essential singularities of the second kind are satisfied.

Based on realizability of positive definite (or positive semi-definite) matrices {39)
and also on decomposability of any positive definite matrix into a product of the form
PDPT, where P is an upper or a lower triangular matrix and D is a diagonal matrix

with non-negative elements (73], Ahmadi and Ramachandran {74} were able to generate

2-variable VSHPs. In {74] it has been shown that the matrix
Q =ATATs +BABT s,+G (1.102)

with A and B being upper-triangular matrices, respectively, of the form
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1 a2 03
0 1 aq;
0 0O 1
0 0 o
[1 6, byg
0 1 by,
0 1
0 0 O

Qin
2oy
aan

(1.10b)

(1.10¢)

and I" and A being diagonal matrices with non-negative elements, respectively, of the

form

and

A 0 O
0 v O
0 0 A2
0 0 O
L

62 0 0
0 67 0
0 0 &
0 0 0

o

(1.10d)

(1.10e)

and G being a skew-symmetric matrix of the form given in (1.8¢), is realizable as a 2-

variable reactance network. Therefore, det@Q constitutes either the even part or the

odd part of a 2-variable HP, depending on whether the order is even or odd. As a
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consequence, a 2-variable HP can be obtained by associating the corresponding partial

polynomial derivatives of det@ with respect to each variable [72], i.e.,

det@) +K, 0(det Q)

o1
Q (5,5, = det@Q@ +K
ree 1 8s, Bs,

(1.11)

with /C, and K, being non-negative constants is a HP. The required VSHP is gen-
erated using higher-order partial polynomial derivatives as given in [72]. This choice of
reactance matrix of 2-variables, however, required conditions to be imposed in order to
meet one of the requirements {62} that determinant of the 2-variable reactance matrix
associated with its partial derivatives becomes a VSHP. This condition was reported to
be the semi-positive definiteness of the starting matrices A and B. It has been sug-
gested in [75] that the concept of resistance matrix can be introduced in (1.10) to avoid
the lengthy process of calculating the partial polynomial derivatives. That is, if we con-

sider the matrix
Q =ATATs +BABTs,+G+CECT (1.12a)

where A ., B , ", A and G are the same as defined in (1.10b-e) and (1.8c), respec-

tively, and matrices C and K are, respectively,

1 ¢p0 €3 - - clnT
0 1 c¢o3 . . . Cgyp
0 0 1 . . . Cgy
Cc = |. e (1.12b)
0 0 0 1.
and
= q
e2 0 0 ...0
0 ¢2 0 ... 0
0 0 ¢t ... 0
r=1. . . ... . (1.12¢)
[0 0 0 .. ey
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then under certain conditions det@ would yield a 2-variable VSHP directly.

1.11. SCOPE OF THE THESIS

In Chapter II, an alternative approach to the generation of VSHPs will be given.
The emphasis in this work is on a new method for the generation of VSHPs which
simplifies, generalizes, and extends the earlier approaches. Some examples are presented
to illustrate the proposed method. Also, this will provide more number of variables for

the optimization required in the design of 2-D IIR filters.

Chapter 1II describes a systematic procedure to formulate the design problem of
2-D recursive digital filters which approximate either the magnitude or simultaneously,
both the magnitude and constant group delay (linear phase) specifications by applying
the technique presented in Chapter II. A number of desigh examples with amplitude
and/or both amplitude and constant group delay characteristics are reported in this
chapter. Also the design of 1-D recursive digital fiiters with both amplitude and con-
stant group delay specifications are worked out as special case. Further, a procedure for
the design of IIR filters with integer coeflicients is introduced. This utilizes a scheme of
successive integerization and reoptimization. Design example in 2-D IR filter (1-D as

special case) to show the usefulness of the scheme is presented.

Chapter IV studies the sensitivity performance. The effect of coefficient quantiza-
tion is treated here by computing the actual responses under floating-point finite arith-
metic in several third-order filter designs of previous chapter. Several comparisons of

examples of Chapter 111 are then undertaken on the basis of different coeflicient lengths.

The final chapter, Chapter V, presents the conclusions drawn from the work of the

thesis and suggests some further research work which may be conducted.
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CHAPTER II

GENERATION OF TWO-VARIABLE VERY
STRICTLY HURWITZ POLYNOMIALS

2.1. INTRODUCTION

As indicated in Chapter I, it has been shown in [41] how a 2-D stable analog filter
could be designed by using the properties of the immitance function of a lossless fre-
quency independent N-port network. The method, however, has failed to deal with the
possibility of generating functions with non-essential singularities of the second kind
which could result in an unstable discrete filter if double bhuinear transformation is
applied. In {72, 74] methods havz been given to ensure that the denominator of the filter
is always VSHP. This avoids the uncertainty of the method of [41]. Based on the
aforementioned results [72, 74] a new approach for generating VSHPs, i.e., polynomials
whose roots are in the left half plane, and their inverses are devoid of non-essential
singularities of the second kind, will be dealt with in this chapter. The method consists
of the following steps:

(1) A suitable even or odd part of an n-variable 1Turwitz polynomial is generated.
(i) The odd or even part of the n-variable ITurwitz polynomial is obtained by the
corresponding derivatives, associated with it.

(iif) The resulting n -variable HP is converted to a 2-variable VSHP.

2.2. A NEW APPROACH FOR GENERATING VSHPs [76-77]

Based on the aforementioned results {72, 7], the proposed method inakes use of a

square matrix Cn of order n defined as

>

n
C,=5n;6; a;" + @ (2.1a)
=1

¢
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where each L, is a complex variable and each a; is a column matrix of the form

a,yy
Qg

| ani |

and where G is a real skew-symmetric matrix given by

0 912 913
—912 0 g 23
—g13 —9o3 O

[~91n ~Fon —Yan

Eq. (2.1) can alternatijvely be written in the form

or

n
C, = Yo aiT +

{=1

-;l 1 0 O
0 u, O
0 0 p,
0 0 O

We may write (2.3) in its compact form as

C, =ApAT + G

where A is a square matrix of the form

gln}
9on
93n

o

Hy

+ G.

(2.1b)

(2.1¢)

(2.3)
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Q31 Gy Q33 - - - Oy
Ggy Ggp Qo3 - . . Qg
@37 G3p Q33 . . . Qg3,
A = . . . e (2.4b)
_anl an2 an3 s ann J

and g is a diagonal matrix of order n given by
¢ = dlag [u‘ My Mgy . . . Hy ] (2.1¢)

The square matrix A has an inverse if and only if A is nonsingular. Here we assume
that the matrix A is nonsingular, i.e., det A =| A | 520. This implies that the rank of
the matrix A is 7 and there are n lincarly independent rows or columns with 1 being
the order of the matrix. Pre- and post-multiplying both sides of Eq (2 4a) by A ! and

(A TY, respectively, gives

AC, (AT ' = A ApuAT+C AT Y
= p+A'G(ATY!
= p+G (2 5a)
where
G'éA"G(A7')’ 2 5h)
But
” T
(¢ )T = [A '(:(A’)']
=A'GTan
= [A 'G (A ')7']
e (1' (2 “'
stnee Gos o shew-sv et st e AR

Fog (26) showe that G gs aleo a0 shewssvimmnetric mattny We pote that any shew-

avinmetrr matnis G can Le doconposed anto AGA I ) Vool whonldd be poted here
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that the higher the order of the matrix A, the greater the numuier of variables are in
the matrix G . This will enable one to obtain a polynomial of higher order, if a good
approximation is to be achieved. Therefore the number of variables in the matrix C’,,
can be increased by increasing the order of the matrix A . Also, for the same order of
the matrix C,, a larger number of variables are obtained, since A is, in general, a non-
symmetric matrix.

Note: Since G is skew-symmetric the maximum number of linearly independent ele-

ments is a function of the order of the matrix, #, and is given by ﬂ’-l——l—)- Now, when
n(n+1
A is symmetric the number of elements in A is —g—éj-—)- i which case the total
number of variables in C,, is
n(n+1) + n{n-1) n?
2 2 2
On the other hand, if A is non-symmetric the number of elements in A is n2, in which
case the total number of variables in C'n is
n{n-1 n@En-1
g2 a1 n@n-1)
2 2
Now consider
det [A 10, (A T)"] = det(up+G") (2.7)
or
AT C | (ATY] = dey(u+G"). (2.8)

1
Si det(A = . we have
ince ( ) Tord
A
Afe(o)=| Cnl
=|A ] “det(p+G)
—"—“lAle(‘L(W) (2 9.’!)
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where subscript € (0 ) stands for even (odd) part of an n-variable HP when n is even

(odd), and
WA G . (2.9b)

Eq. (2.9b) is a reactance matrix. Any such reactance matrix may always be realized as
an (n +1)port gyrator network terminated in n -variable single reactance function. The
determinant of W represents the denominator polynomial of the input admittance func-
tion of the (n +1)-port passive network (lossless, frequency independent), terminated at
port ¢ of its ports with unit g, -plane capacitor for { =1,2,....,n which is an 1 -variable
SHP. This excludes the degenerate case when some cocflicients of the polynomial are
absent, in which case the determinant becomes a modified Hurwitz polynomial It may
also be noted that Eq. (2.9h) can be written as A 'C, (A Ty ' with A being nonsingu-
lar.

Since W s already known to be a reactance matrix, it follows that the matrix C,
is realizable as an n-variable reactance network ‘307 Thus M,(n) constitutes the
denominator polynomial of the driving function of a Jossless passive netwaork  That s,
the drniving pomnt admittance function of an (1 +1}Fport passive (lossless, frequency
mdependent) network  whose 7-th port s termmated an unt p -plane capacitor,
t=1.,2,3, . n.and the st portas the droving port We may egmivalentlv say tha
M,(w represents either the even polvnomial or the odd polvaomsl of an n-sanable
Feactance funetion (ve for - o o= 2,8, o the resulting polvnomd mop
will have simple zeros on the ymagimansy asis of ge-plane] depending on whether the
order of the mattin A even o odd with the rondition that det A /() The
corresponding derivative witly pespect to the g0 vanable o the other hand gaves the

odd polvnomial o the cven e vnornnd of the dnvig peoant teactanee funeton Plhere.

(/!\{4 //"l, |
fore Veng the raty ol ool oo G vacr versa) parts of Harwaty

\/

.

ot




polynomials (or the ratio of odd to even (or even o odd) parts of a SHP) with respect to
the variable g, has the reactance property ‘39 and has no singularity of the second
kind. In view of HP, generally, all coeflicients should he present, and they should be real
and positive However, all odd terms or all even terms may be missing  Also, HP should
comtan sunple nnagimary axis zeros  On the other hand, for SHP all the coeflicients
must be present, and they must be read and positive  Alss, 1t must not contaln zeros on
the wnaginary sxs  Fop the ratye,

(9M,., /o, )
M.,

being either the eveny to odd o the odd vo even polvuomiale, means that 101 an o449
pesiuve real tunation (PRE ) In view of positive real property, the funevon st con-
tain s zeros and poles alternately o the po-axis 6% and they shall be sunple Conse-
quently,

(;}.1],”/‘/;)/1') ]
., K

with K, beinig a positive coperant, s ales PRE - This leads v o2 pant that

oM, .,

p (210,
i,

1{ == .&{,I,“*Kl

M

st beow SHP o, vanable CThs oy tpue snee .U,,,I ivoa HPP v beeomes gaege, tog

aM, .,
an,

¢ <

J, =0 and therelore 15~ € onn be a factor of A, o, bttt In fan

the presefiee of oopesprtop - v sfpft the joamangs 2010 0 .U,,,, a HE v, the jelr hall ot

Jh, -plane and forees HP v become w SHE A a consequen: o

14 ;j_\/' ty

’}[IJ

(211

1= oan rt-vaniable SHIE2 with B o« being positive canstante o ths rase all the coa e
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shall be positive and noe coeflicients shall be missing. 1t shall be noted that as
det(a, .u,T)=0, (2.9) {and hence (211)) does not contain terms like ;. In fact, the
strictness of HP of (211) and the absence of terms Hke p," are two of the conditions

required that M shall hecome u VSHP

Theretore, (2 9) shows the method of generating the even part or the add part of an
r-variable SHP, whereas (2 11) shows that of an n-varjable SHE from an n-vanable

Hp

Fag (211) can be mpade o 2-varible SHP, <inply by putang some of the jrs equa)

Lo s and the rest of Yhe pre equal to s, That s

¢ M
M= M., 4 Ix), o

P J

elyy

(212)

There will be a latge natnbey of cfiojees to gyaf e

0ot

Jhe requazes Nspgic s generated by ousing bgher ordes gt polvnomniial deopy g

tiveee as fodlewe,

b
K I'f\I'J
' ) —_— 2.
AL, My l\"'u- 2 1.4
Jo J
vl s nlves Yagbet order poagtat denoatioe o8 A Thar prececs cun b vty
unt sl
- I'\/'
\l, AL N K, 12 b
. d ) / 1
) !
s fins,t
. :I\[' ;
1 L A N (R DY
' c i
l- ‘ [ L ./\ ..'IL' .:l‘ 1Ty ' ' et gt
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However, in the special case when some of u’'s are set equal to constants, the

derivatives are not needed for the polynomial Me(o) of (2.8) to become a VSHP. This,
however, requires certain conditions involving principal sub-determinants of the gyrator
matrix G .

From the diagonal expansion of the determinant of a matrix {73}, det C, given by

(2.9) can be written as

n
detC, =|A|?|detG + Y p; G, + ¥ uu; Gy,
=1 1<i <3 <n

+ > Hib g G ik
1<r<y<k<n

+ Z Byl By By G:]k1,11k1+"'+/‘l"2#3 T Ha (2.16)
1I<i<y<k<i<n

where G"-",' is the determinant of the submatrix of G obtained by deleting the { th row
and column and is of order {n-1), G,j‘,] is the determinant of the submatrix of G
obtained by deleting both the 7 th and jth rows and columns, and is of order (n-2). and
so on. In the foregoing procedure two cases could be studied:

1) The even part of a HP as the starting point. in which case Eq (2 16) reduces to

detC, =| A |?|detG + 3 p,u,G,,,

1<i<j;<n

+ 2 Hy B, g ] G'ljkl l]k1+"‘+“lp2"3 Hy, (217)
1<t <j<k<lln

2) The odd part of a HP as the starting point, in which case Eq (2 16) reduces to

n
detC, =|A|*| 2 n, G, ,

1 =1

+ b I TP G s S IV R M. 2 1%
11« J<h<n
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From the diagonal expansion of the determinant of the matrix €, . following pro
perties are noted:
In both case (1) and (2) the degree of any g, (t==1, 11 ) will be unty, te. ;:,”. ;A,'_ el
cannot exist
In case (1) the following additional properties are noted
i) All odd order terms of the type g1, jt, Jt, jiy . et in Kq (217) are nbsent, since the
coefTicients of these terms are determinants of odd order shew-symmetric matrices, which
are zero
it) The determmant and sub-determinants of G present are all non-negative <nce the
determinant of an even order shew-synmimetrie matnn s a perfect squate
In case (2) the following additional properties are noted
1) All even order terms of the type 1, Myo By g pie ete o (2 08) are absent sinee
their coeflicients are determnants of odd order shesw-synmetoe malioes

n) The sub-determinants of G present are wbl non-negative numbers

2.3. EXAMPLES
To tHustrate the proposed method some examples are given below

2.3.1. Example 1

In thys exnmnp b the order of the matrrees A aned G e (2 4 10 conendored G0 e

fWey Jr
. ApA Foa P T

Wliere

[IASE RYE

1
« i B ML




p = dlag [Ml ﬂg]- (2.19d)

By using (2.9), we can write

My = detCy = dyp 49 (2:202)
where
dyy = (0,8 958,50,,)°. (2.20b)
Now using (2.11) gives
, 2 OM,
Mg = M2+ 2 —a—‘_
j=1 OH;
= (d 111100+ 32 )4 (d o+ d 1 11y). (2.21)

This is a VSHP in pu,==$§, and u,=$§, variables.

2.3.2. Example 2

In this second example, we choose the order of the matrices A and G of (2.4) to
be thiee, i.e.,
C,=ApAT+G (2.22a)
where
gy @,y 03

A = |ay Gy Gy, (2.22h)

g @3z (g3

0 g0 93
~Gy3 —923 O

and
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B = dlag [;t, fo 113]. (2 224)
By using (2.9) we may write
Ny =detC,
= d iyt d g gt d g gt d 1 popy (2 28n)
where
dyy={a,,0,50,,0 40,9 12)2'
dyy = (@ 0,5 @220 141059 1)
day = (@4,00,-0 5.0 ;40 4,0 1),
and

dyy = (0,10 ,0,;-0,,0,0 -0 120 2,0 44+

Ml
3000500 20 50y, 0,0, 0,) (22 23h)

As stated carlier, if any one of the prs i (2 23a) is set equal to some constant s alue

the result is already a VSHE and thus we need not to mahe use of the denvatives

Now the use of (2 11) leads to

= (d g bd g vd e vd e s
[ld“ v e td yvd gy itd d“/:,u‘,)}
td gy od g d e od g
[lr/” od ped L oed e /II/I,‘[ll/l.,l] 122

The dast ety can Yo gnede w2 vt b P o by pantting taec ol the e equal te

Sqpand the ool T tovg oot CThere o wall Lo nvansy cheaeee Fog enam

Phoamabang e b e e i b s o W el
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Q(51,50.8,9) & N
= d 4,5 (5,+1)+s, [2d4132+(d 11+d21)]

+ [d3132+(d”+d2,+d31)]. (2.25)

By Theorem (62, 78] (2.25) can be shown to be a VSHP. To show this, (2.25) can

be written as

Q1(81,82,a,g) = g Qlf(s'Z’a'g )8'1

{1 =0
“ {
= 3 Qai(s1.6,9)s;5
t =0
(here, it is assumed that s, and §, are of degrees m and n, respectively.) The polyno-
mial Ql is a VSHP if and only if the highest degree coefficient in both the variables,
s's ], is not zero, Q;(s,,8,9) or @,;(s,,8,9) are single variable SHPs and of the
same order, and @ ;(Jw;.J w,,@,g ) for all finite values of w, and w, is not zero. Let us
express @ ,($,,5,,8,9) as a polynomial in s,
Q,(5,,52,8.,9) = Qy(s,a,9)5,+Qo0(5,.0.9).
‘We have the following observation to make:

1) Qy(s,,8,9) and @Q,;(s,.8 .9 ) are SHPs of the same order without any missing

cocefficients.

2) The highest terms in &, ,.e., the term sl2 , is present in Q,,(s,,8,9). So the

coeflicient of s %s, in @ ,(s,,5,,8,9) is not zero. We now write @ ,(s,,52,6,9 ) as a
polynomial in s,

]
-

Q (81808.9)= Q2(52,8.9)5;7 +Q ,(55,a.9)5 ,+Q o(s,.a.9).

3) Following similar steps as above. we can show that @ |,(s,.@ ,¢ ) is a SHP.

4) As @,5(5,.6,9) and @ ,,(s,.a,9) are sHPs
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Q,(0wpIwsa,9) = Q,(Jw;8,9))w+ Q) w,.a,9)

Q,,(Jw,.8,9) F0since Q,,(5,,a,9) Is an SHP,

and

Q(Jwya.9)
QQ](jwl’a 1 )

Jwot

since Re(Qy0(Jw;,0,9)/Q5(Jw,.@,9))>0 for all finite values of w,. Thus
Q1(J w7 wya,9 )70 \/(wlvwg)-

This, along with the property 1) given above, namely, Q,_,o(s,.a @ ) is a SHP, ensures
that Q (5,,5,.a,g)is a SHP. Properties 1), 2), and 3) establish that @ (s ,,5.,.a.9)
satisfles the necessary conditions for VSHP [62]. In addition, property 4) above shows

that @ (5,5 ,,8.9 ) is also a SHP. Thus, we say that Q (5 ,.5,,8,9 ) is a VSHP

2.4. SUMMARY AND DISCUSSION

In this chapter a different approach in generation of VSHPs is studied It s shown
how propertics of matrices could be utilized to generate 2-vanable VSHES  Fhis new
technigue is based on the extension and generabzation of the earlicr methods 72, 74
Polynomials generated by this techmque have a barger number of varimbles assocgated
with any coeflicient and hence the filters desigied are expected to be of ower sensing-
ties as compared with the previous ones  Also the presented method s spaple o gnple-
ment  When these polvooanials are used an the design of 20 tecqrsive dygatal fifters the
stabihity of the desygned fHter as gyaranteed with nonangulanty of the matisy A as
precondition  Some examples are anchpded to llnstrate the pecthod This appronch can

also be extended ten NoD case (1-1) s specral «ae)

e el
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CHAPTER III

DESIGN OF STABLE TWO-DIMENSIONAL
RECURSIVE DIGITAL FILTERS

3.1. INTRODUCTION

In this chapter, we present a method of designing stable 2-D digital filters of the

recursive type (1-D as special case) starting with a two-variable continuous time transfer

function with VSHP denominator and then using the bilinear 2 -transformations, so that

the fllter will have the desired behavior in magnitude or both the magnitude and phase.

Stability of the recursive digital filters obtained by such a technique is guaranteed since

the original prototype analog filter is absolutely stable. 1t should be noted that the

approximation is carried out in discrete domain (after the application of the double bil-

inear transformation) to avoid any distortion of the phase characteristics. The proposed

approach of Chapter II was used to design a large number of 2-D recursive digital filters,

the results of which are reported in this chapter.

Consider the 2-D recursive digital filter transfer function

3 Sa(m,n)z "

m n

SIS0 (m )z M

m =n

H(z,,2,) =

I

Af(olm Wan e T (01 0s0)

(3.1)

where z;==exp (70, ), 0;=w; T; for ¢==1,2 while 3(0,,,.0,,) = | Il (e T0im g 7620 )

and 0,,. ,0,, )=arg II eje’"‘,ewﬂ" are the magnitude and phase frequency
1m sYon

responses of the 2-D filter, respectively.
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Group-delay response is defined as

-0¢(0,,, ,00, )
To,(olm 'ozn)"A': al;n 2 ,

for 1 =1,2. (3.2)

It gives the envelope delay of a signal in the vicinity of a particular frequency, provided
that the magnitude within that narrow frequency band remains rather constant.

In data transmission it is of importance that the wave shape of a sigunal be
preserved as it passes from a transmitting source to some receiver [1). This requires that
the frequencies which constitute the signal at the transmitting end arrive at the receiv-
ing end with ahout the same time delay; then Ty, must remain constant over the essen-
tial portion of the frequency spectrum. We must also require an essentially constant
magnitude over this band, although this is often less important.

Different specifications for approximating such responses that may be considered
are the following:

(i) Approximation of magnitude or squared magnitude of the frequency response

(ii) Approximation of the group-delay response.

(iii) Approximation of hoth the magnitude and group delay responses.

The cases {i) and (iii) will be considered in this thesis. Methods based on optimization
techniques, linear {34, 70-80] or non-linear [32-33, 35-38, 40- 11} programming. may be

used for designing 2-D filters to meet a given freguency response speeiffeation.
3.2. FORMULATION OF THE DESIGN PROBLEM

3.2.1. Magnitude Function Approximation
A frequency dornain 1,, approximation to the design of 2-I) IR fiters hias been
given for the magnitude frequency specifications whieh are deflned on o diserete set of

freqquency points It s gnen by
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Fuy=¥ % [l Hp(e®m e %) |~ Hy(e?%m e %) ]p

m.n &,

for m=1,2,.,M; n=1,2,...N (3.3)

where §, =w, T;, 1 =1,2; H;(.) is the ideal or desired magnitude frequency response,
Hp) (.} represents the designed filter transfer function, and I, is the discrete set of
M XN frequency points along the w, and w, axes in the passband and stopband of the
2-D filter in which the error is computed. The magnitude error function FM is minim-
ized using a nonlinear optimization technique The optimization problem hecomes sim-
ple for p==2 and the I, error norm reduces to the [, error norm which is called

minimum mean square error (least mean square error) minimization.

The design method employs a 2-D analog transfer function which is of the form

M, N,
kol
Y Y Pusise
k=0 [=0
H,(s,5,) = T —
Y 2 S1S2
k=0 [0

P (s 15 ,00)

= — (34)
Qs 1-S okt )

Assuming that P (s [,s,,pp ) and Q (s ,,8 5,4, ) arc non-separable, /1, (5,5 ,) represents
the transfer function of a generul class of 2-D anulog filter  Q (s 1S 059k ), the denom-
nator polynomial of H, (5,5 ,), should satisfy stability conditions In additon to meet-
ing the degree requirements between Q and P, a sufficient condition for stability 1s that

@ he a VSHP 62, 78, that is,

Q(s,,Sqy)F# 0 Viss4) €S, o
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where
Se0 2 {(5152)| Re(s,)20, Re(s )20, | ,] Sco, and | s, <ool.

An established necessary condition for stability is that @ be a SHP [47], that is,

Q (5,.54q5) # O V(s ,8,) €Si ¢

where

, pay

St = {(s pSa)l Re(s,)20, Re(5,)20, | s,| <oo, and | s, <oo}.
In a special case that the 2-variable analog transfer function, Ha (s 1'82)' is denomi-

nator separable or product separable certamn symimetry restrictions are imposed on

H, (s 1,5,) In the case of aseparable denominator, we can write

P(s,.5,)

Q. (5,)Q 4, (5,)

(s s,)=

in which case the filter is stable if and only it Q. (s,) and @ ,, (5,) are single variable
SHPs  Thus the stabihty test 1s equivalent to two 1-D tests  With this scheme only
quadrantal and fourfold rotational symmetry s possible, depending on the nature of the
numerator and denominator polynomials — For example, [, (5 ,5.,) possesses quacrantal
magmitude symietry 1t and ouly f the numerator polynomial s exprosible as 'S
P (s ,,s.f M (s ,'“' W) where 2 and P2, are 2-variable polvnomals and one of the two
miay he wconstant  However af one requires to despgn o filter with non-syminetne cytoff

boutidaries this snethod fayl

On the other hand when the trunsler function s produet separable, 1

Pts P (s ,)
P - s g (s,
’ - Q (s ,)Q (s ) <.

oy octagonal cvinmerrs and rectangubar svimtnetry s possible o esample, whep the




numerator is expressible as P,,(s,)P,,(s,) and the denominator is expressible as

Q15(51)Q5(s2) with @Q,,(s) being a single variable SHP [81], then H,(s,,5,)
satisfies the conditions for octagonal symmetry. This class of transfer function is a sub-
class of the latter one whereas the latter case is a sub-class of the general form of the
transfer function of (3.4).

In this chapter, the design method employs the 2-variable VSHP given by (2.25) of
Chapter 1I, to be assighed to the denominator of (3.4) while the numerator is left
unchanged. This possesses a general frequency response which can be designed with any
given boundaries.

As can be seen from (2.25) the degrees of s, and s, variables in @ 1(8 118 5,8,9) are
not equal. It is preferred to keep them equal, as this will influence the filter response,
particularly regarding symmetry. The degrees of s, and §, can be made equal when
@ ,(.) is properly multiplied with another 2-variable polynomial.

Following the same procedure outlined in Chapter II, and making the substitution
H,=8,; and p,=MNz=5,, another 2-variable VSHP can be generated which will be of

the form

Qs 152:8'9) = d s (s, +1)+s, [2d423 1+(d22+d3‘-’)]

+ [d12s1+(d,2+d22+d32)] (3.52)
where
d 1o==(a 1129 030~ 1200 1327+ T 1320 120)°
d 90==(a 3129 135~ 0 2229 132+ ¥ 2320 120"
d 30=(0 3,29 230~ 0 3029 130+ T 3320 122)2.
and

d 4o==(0 1120 3220 35— A {120 2320 302~ @ 1220 212@ 350+
2

@ 1308 3120 302+ @ 122 @ 2320 312~ 1300 2024 312)°

(3.5b)

By multiplying @ ,(.) and @ ,(.) we can wnite,
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Qs l’s'_”a'g'alvgl) é Q (8108 2,a.g)'Q2(s 8 2,a'.g') (3.6)

which by Theorem [62, 76} is a 2-variable VSHP as @ (.) and @ ,(.) are both 2-variable

VSHPs.

Now the polynomial @ (.) is employed as the denominator of the 2-D prototype
analog transfer function of (3.4) and the numerator is left unchanged. Using this tech-
nique, a stable 2-D recursive digital filter with the system function [, (z,.2,) could he
designed. The approach consists of applving bilinear -transformations to the resulting
analog transfer function to obtain the digital transfer function Hy (2 ,,2,). and then to
carry out the optimization, with the coellicients pyy, a, g, a, and g/ as vartables, in the

digital domain. The digital transfer function is given hy

Hd(zl,zg) =

P(ss004)

Q(s,5,.a,9.a.9) | -7- S a1

Since the analog transfer function has a VSHEP denominator, the digital transfer function
Hd(: 1+2 o) obtained by using the double bilmear transformation preserves the stabihty

That js
Diz-070tor 0|20 (3%)
ro

In this techmque the relanionship (33 withe o 2 was chinsen as the cast funotion which

I
Fytey = S28 Fyjren form 00,2000,
"o /'
noo0,2,L N (3 0.)
where
Pagre s Do "mo e P (AU
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with 0; =w; T;, + =1,2, is the error of the magnitude response, and the vector ¢ is

chosen as the vector of the coefficients of the filter
¢ =(py.6.9,a,9), for k=0,1,...M,, l=0,1,..,IV,. (3.9¢)

| Hp| can be calculated as
| Hp| =| Hy(2,.25) ¢, ==exp (70, ), (r =1,2). (3.9d)

After we have obtained a measure of error for initial parameters, we want to know
how to change the parameters so as to minimize the error. The error function given by
(3.9) is a nonlinear function of the coefficients, since the objective function to be minim-
ized contains products of unknowns. So a nonlinear technique must be used for minim-

izing the unconstrained function Fys(c ).

Many different computer-aided optimization algorithms that can be utilized to
minimize the error function exist; non-derivative, first derivative, and second derivative
methods. In this thesis, we use the second derivative (second-order) technique, i.e., the
Fletcher and Powell algorithm [60]. This algorithm requires function values and the first
derivative of the cost function with respect to optimization parameters, the filter
coefficients. Here, the first derivatives of the error function (9Fy (c)/dc,) are
evaluated and used as information to indicate how the parameters should be changed 1n
order to minimize the error in the optimization procedure. The first derivatives deter-
mine the gradient of the error function. The gradient js the direction of maximuim local
increase of error function. This can be seen by using the first order Taylor's series
expansion of the objective function. Thus, to minimize the error one proceeds in the
direction opposite to the gradient. This is the basis of the steepest-decent method,
which uses the gradient to predict parameter changes for error minimization The gra-
dient of the error function Fy;(c ) with respect to vanables pgy. @, g, @, and g ¢

is calculated as, 132




aFy(c)

S—— =21 [111,,(e""~.e"’=‘-.c)|-|11,(c”"-.c”’°-)|]

mnél,
1
ll[n(elelm'c]a;--'( )I
. 0 10,
Ay e 7 e 77 e
Re [ (e JU"‘.!‘ 76 .c) b . (310)
e,

where Hp () 1s congugate of My () and Re[ ] s real part of the complex numbet

inside the brachet

The flow diagram for the optunization algorithm s shown in Fig 31, where the
inputs to be specifled are the number of independent vartables N atarting values of the
independent vector € contmining the coeflicients of the filter. the estinmte of the
mimnimum value of the objective function ST whieh i a constant, a prescribhed toler-
ance EPS. number of terations LIMIT | sampling frequenoy o0 passhand edge

»

i

and stophand  edge o0 The algorthm gives the optimized parinetors the final
mimimum Value of the cost function snd the masimogm error e the designe as it outpouts

The digital computers ysed wepe Cyber =q0f) and Var 11 Ts0

3.2.2. Design Examples

In ths subsectpon we shall conpeader obesigns o g e Qi st 2D e g v it

lters whoohe boove apgphieats oo e enhancopent Moo 2 Do arove chgtal ftliter

aipedy oas deavpoees daghp o U [ X 2By reoar v gt b e
Woanrommeryp e and Dap by Torer are o S A T T R TS T O AT PR
rnhabiamny and e ey e I L T T L S L S TR NS O SR 8
S PRI SO I R T A A A e A ar el the poreay e
cubeort e ' ! e ’ P X ! v HCO e LR T
R rle oy, e ‘ ! et ! [ R L L B R




( Start )

Read Data Value:
N, EST, EPS, LIMIT and C

Filter Specifications

Compute Function Value F,
ond Gradient Vector G,
for Initial Arguments

Start lteration Loop

Determine Search Direction

Fig. 3.1. Fletcher and Powell (FMFP Algorithm) Logic Diagram
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<FUNCT(N,5,F,C)>

Equation (3.9)
for
Magnitude only

Equation (3.10)
for
Magnitude only

/

| Return )

Fig. 3.1. Fletcher and Powell (FAFP Algonithm) Logic Diagram (continued).




[ — PRI Symr R g - v 1 « .

- 44 -

filter was chosen to be of order 3X 3 so that the 2-variable VSHP, Q (s .84.€ ). of

(3.6) could be used.

3.2.2.1. Design Example 1

In this example, the problem of designing 2-D recursive digital filters of lowpass
type is considered. As stated earlier they have applications in capturing the majority
of the low-energy components of an image. To apply (3.9) to the design problem,
consider contour plot of Fig. 3.2 in which the filter response regions ol a lowpass type

are plotted in the (u;,,w._,)-plnne The passhand s the region where
p(u.',.wz)é wiaed) <.
The transition band is the region where
R < plwy )<,

and the stopband is the region where

Wy
Ry<playw) S —

™

With respect to Fig 32, the frequeney samples are located on a matinm of M
columns and 2N rowe m the (wyeay)-plane as Shown o P 34

In the nght-halt of the (o, Fplane M2 N Trequency pomts Gl called g
pomts) are chosen The tadims [0 dolines the passhand edge, 4 Whereas the

4
radws ¢ sdefines the stopbuand edge o0 The «anples the tegion

plre  n )?\-' (i) t ! "/I(, for om0 0,20 0

ot

nooo2LL N
are Ived to b ab aoy sabue g mmagnitade winde the <anple o the regaon

Ry ptoen g 17

I L A L A A S A A

R T (T TR L R T2
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Fig. 3.2. Regions in the (w,;,«,)-Plane over which the Filter Response

is Specified for a Low- and Iligh- Pass Filter.
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are restricted to vary exponentially, and the samples in the region
ws
Ry<p(m,n )5—2—

are fixed equal to zero. Formally, we consider a frequency sampling approximation to

the following ideal response:

. . 1.0 for 0.0<p(m,n)<1.0 rad /sec. :
IHI(eJexm’eJezn)l —_ '

w
0.0 for2.0<p(m n)< -—2—5—=5.0 rad /sec.

where
6" =Q)" T" N 1=1,2
The optimization yielded the coeflicients given in Table 3.1(a) and the error performance

given Table 3.7(p. 66).

It should be noted that the frequency grid for all 3-D plots was chosen to be
51X 51 points whereas the number of prescribed samples in the design process were

21X 41 in the right half of the frequency plane as was shown in Fig. 3.3.

Note that the larger the value of Rx' the more spatial frequencies are passed

P AR

through the filter, and therefore the sharper is the image. With this in mind, we con-

sidered a second lowpass filter with double passhand edge. The results of the optimiza-

R O O S

tion for the filter with R ;=2.0 rad/sec and R ,==3.0 rad/sec were with the coeflicients

of the filter given in Table 3.1(b) and the error performance given Table 3.7(p. 66). Figs.

3.4(a-b) show the perspective and the contour plots of the final design.

3.2.2.2. Design Example 2

Bandpass fllters having similar characteristics as lowpass filters may sometimes be

more important in practice. As is well known, in 1-D case the transfer function of a
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Table 3.1(a) Values of the Parameters of the Designed

2-D Filter in Example 3.1

Parameters of the Numerator

P 0o==—6.001664¢ +00 | pao= 1.133959¢ +00 | po,=—3.956801¢ ~01 | poy== 3.082032¢ —02

Pio= 1.340127¢ +00

P 11=-1.335317¢ +01

P 1;=-7.310864¢ —02

P 15=-7.812736¢ -01

P 20=-3.857310¢ 01

P 1=—6.137185¢ 02

pog= 5.023150¢ —01

P 25=-2.906945¢ 02

Pso= 3.585195¢ -02

P 51=-7.756838¢ ~01

p 32::"3.619504 e -02

P 3s=-4.416538¢ -02

Parameters of the Denominator

Section 1

a,,,= 1.34555101¢ +00

Section 2

W

a,),= 1.08933354¢ +00

@ gy== 9.37348944¢ 01

8 ,90=—-1.22449045¢ +00

a5, =~1.17374068¢ -01

5= 1.33152943¢ +00

a,,—-6.42962206 ¢ -01

ag,= 1.13097808¢ +00

@ 99y =-1.75236527 ¢ —01

@ g0,=~2.82203532¢ -01

a 23|="6.l 1087739¢ -01

(1232= 9.47208471¢ -01

ag,= 4.37249657¢ ~01

@ 4;,=—4.48302773 ¢ —01

a55,=—1.26160383 ¢ +00

@ y0,=-1.06202024 ¢ +00

0 33,=-6.71265052¢ ~01

@g3== 1 33458512¢ +00

121= 1.55814711¢ +00

g 129==—8.02652470¢ -01

9,8,= 1.25520513¢ +00

g 132= 6.62765208¢ 01

g2a-= 1.16822653¢ +00

g 230= - 5.37783650 ¢ ~01




- 40 -

Table 3.1(b) Values of the Parameters of the Designed

2-D Filter in Example 3.1

P 00=-1.458960¢ +01

Parameters of the Numerator

P o1==-5 416078¢ +00

P p=-2.113927¢ -01

W

P oy=-1.018117¢ ~01

p 10— 5.889783¢ +00

P, =-8.942051 ¢ —01

P 10— 3.033497¢ -01

P s =-2.829903 ¢ —02

P 20=-1.908147¢ —01

p,=-2.514233¢ 01

P o= 1.084123¢ 01

p ,s= 6.876815¢ —03

P so= 1.107897¢ -01

P =-2.837277 ¢ —02

P 3o=-5.942138¢ -03

P 3s=-5.098582¢ —04

Parameters of the Denominator

Section 1

a,,,= 1.25403272¢ +00

Section 2

I — ——— ——— ————————|

a,10= 1.42015616¢ +00

@ 5= 8.31945627 ¢ —01

8 120=-1.26382461¢ +00

@ 5, = 4.42693380¢ —02

a30= 1.68587132¢ +00

ag,,=-4.52512222¢ 01

@4,0= 9.69903171¢ -0l

a 55,=-3.09806087 ¢ —01

@ 50=-2.32830633¢ —01

@ 53, =-4.06170676¢ —01

8452== 6 13605927 ¢ 01

a4,,= 4.37820288¢ ~01

g,5==—6 49571460¢ 01

@ 45,=--1.16120421¢ +00

8 33p=——7.47372370¢ —01

a 35,=—4.10008752¢ 01

@ 39g= 1.31133225¢ +00

¢ 12;= 1.53400033¢ +00

7 190==~7.97248086 ¢ —01

g ,3= 1.33431227¢ +00

g 30= 4.85500163¢ -01

5= 1.25517334¢ +00

037=-7.55281876¢ —01
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Fig 3 Hu)

I\Iugnnudf~-I~‘r(-quvn(-y Response of the 2-D Lowpass Filter of

Example 3 1 as Viewed alter CCW R tamp 45)R (;,30)

of the Obhject
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Freguency (rad/sec)

Fig. 3.4(b). Contour Plot of the Nagnitude-I'requency Response of

the Designed 2-D Lowpass Filter of Example 3 1.
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bandpass fliter can be obtained by applying the so-called lowpass to bandpass transfor-
mation to the prototype lowpass filter. On the other hand, if only the magnitude
characteristics are of concern, the transfer function of the digital filter can be derived
from that of the analog fliter by the use of a simple bilinear transformation. Lowpass to
bandpass transformation is, however, not applicable in 2-D case. This example, there-
fore, considers a direct design of 2-D recursive bandpass digital filter in which only the

magnitude characteristics are of concern. That is,

0.0 for 0.0<p(m,n )<0.5 rad /sec.

]61m je'.'n —
| H; (e € | = 1.0 for 1.5<p(m ,n)<2.5 rad /sec.

1

0.0 for 3.5<p(m ,n)< —:—=5.0 rad /sec.

The optimization starts with 21 X 41 sampling points using squared error criterion.
The algorithm converged to a value of coeflicients as shown in Table 3.2(a) and the error

performance given Table 3 7(p. 66).

We considered a second bandpass filter with double passhand edge. That is,

0.0 for 0.0<p(m,n )<0.5 rad /sec.

. Jolm Jo‘.‘r.
| 1y (e ¢ ) 1.0 for 1.5<p(m,n)<3.5 rad /sec.

w
0.0 for4.5<p(m,n)< -;)f—=5.0 rad /sec.

-

The results of the optimization for the filter with /2 ,=1.5 rad/sec and [ ;=3.5 rad /sec
were with the coefficients given in Table 3 2(b) and the error performance given Table

3 7(p. 66).
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Table 3.2(a) Values of the Parameters of the Designed

2-D Filter in Example 3.2

Parameters of the Numerator

Poo=—2.203084¢ +01 | po,= 4.641385¢+01 | po,— 1.987760¢ +01 | poy= 8.527046¢ -03

P11~ 4.322579¢ +01

P 1,=-5.549869¢ +01

P o= 1.793286¢ -01

P ,a==-1.153886¢ +00

p o= 2.206771¢ +01

P, =—4.479763¢ —01

P ge= 4.468196¢ +00

P 2s=-2.140576¢ 01

p s0=-5.361302¢ —02

P s1=-1.184249¢ 400

Psa=-1.819978¢ 01

P sa=-5.415111¢ -03

Parameters of the Denominator

Section 1

Section 2

a,,=-1.24729471¢ +00 | a,,,—-4.64810383¢ -01

8 15, =—1.25926168¢ -02

a,5= 1.97461771¢ +00

a 1317 1.20074329¢ +00

a,35=-7.11654643 ¢ —01

a 2= 1 .032470646 +00

8 313==-1.01923858¢ +00

@ g0y= 4.71150997¢ 01

@ g00=—1.18940865¢ +00

@ 23,=-1.71229922¢ -01

@ 330==—1.07289307 ¢ +00

@3;,= 3.80932058¢ —01

@ 30— 2.22982250¢ ~01

0321= 1.97604371¢ 01

@ 4= 6.81935161¢ —01

a33,= 1.96746833¢ +00

@ g3p—=-4.17582961 ¢ —01

g 121~ 9.16873272¢ 01

g 122=—9.89043102 e ~01

g 15, =-6.67321434¢ 0!

9 137=—-1.48178001 ¢ +00

928;= 1.20481638¢ +00

g 235= 5.76970474¢ —01
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Table 3 2(b) Values of the Parameters of the Designed

2-D Filter in Example 3.2

Parameters of the Numerator

P o= 6.510615¢ +01

Po2= 2.057257¢ +01

Pos=

?F_—__——#_'—__—_—__—_————————ﬂ

P 00=—1.462428¢ +01

3.401620¢ —02

P 10= 6.765675¢ +01

P 1=-1.246397¢ +01

P 1= 3.014989¢ +00

P1s=

5.126194¢ -02

P 0= 2.069120¢ +01

P o= 3.022838¢ +00

P 22— 1.948324¢ +00

Pas=

5.058117¢ 03

P so= 3.333198¢ -02

ps,= 5.610374¢ -02

P o= 2.767360¢ -03

= 1.231898¢ 02

Parameters of the Denominator

Section 1

e,,,=-9.09836960¢ -01

Section 2

a “2=—5.46202922C -01

a,,,= 3.70803181¢ -02

a 122~ ? 95680810¢ +00

a 5= 6.63005100¢ -01

@ ,3,=——4.02716029¢ 01

a 211 7.25648393¢ -01

4,,=-7.01500934¢ -01

a4,,== 2 98601886¢ - 01

@ 20,=-1.27585196¢ +00

ao3== 1.56720394¢ -01

@ 23,—=~8.82196919¢ 01

a4;,= 5.49829269¢ 01

a3,,=~-2.40744238¢ -02

@ g0,=-1.92182765¢ 01

@ 300== 7.01027502¢ ~01

a LY.} b 1.56184029¢ +00

@ 53,=-4.03056926¢ -01

[ 121= 9.67914870¢ 01

§120=-1.02722483¢ +00

g 13:=-6.24083673¢ -01

7 130=-1.52374697¢ +00

g 2a1= 1.53201499¢ +00

0 250= 8.66564145¢ -01




3.2.2.3. Design Example 3

The high spatial frequency components of an image, related to the sharp brightness
transitions, have an effect on our appreciation of the edge detail in a picture. Bearing in
mind that these frequencies could be isolated by the application of highpass filters, we
now consider the problem of designing a 2-D highpass recursive digital fliter with the fol-

lowing specifications:

0.0 for 0.0< p(m,n )<2.0 rad /sec.
IHI(e.lolm,e .702n)l —_—

w
1.0 for 3.0< p(m ,n )§—2§—=5.0 rad /sec.

In this example, when random initial values were given for the optimization param-
eters, the convergence was obtained with the coeflicients shown in Table 3.3 and the

error performance shown in Table 3.7(p. 66).

3.2.2.4. Design Example 4

Digital fan or velocity filters are well known as practical 2-D digital filters in geo-
physical industry. These filters are of the type as shown in Fig. 3.5 and can be used for
the processing of seismic-data that contains valuable information about layers. The
technique for generating stable filters discussed earlier is used to produce fan filters of

order 3 X3 in the following. In this example, two fan filters are considered:

i) First a fan fliter with a total angular passband width of #==45° with the follow-

ing specifications is considered,

1.0 for 0.0L] 4| S-g— rad /sec.

077, 02n
| Hy(e?7m e ™) =

0.0 for %SI 0| _<_-72r- rad /sec.
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Table 3.3 Values of the Parameters of the Designed

2-D Filter in Example 3.3

Poo== 5.152210¢ +01

Parameters of the Numerator

P o;=-1.063662¢ +02

Poa= 1.451416¢ 401

Pos=-5.352539¢ +01

P10=-1.119699¢ +02

P, =-1.106526¢ +02

P 1= 6.113085¢ +01

P13=-2.477476¢ +01

P oo= 7.862729¢ +-00

Pay= 7.123247¢ +01

P 2=-4.678191¢ +01

Pos= 7.632517¢ +00

P so==-6.104445¢ +01

P 3,=-3.067774¢ +01

P o= 7.695174¢ +00

P 35=-8.553854¢ +00

Parameters of the Denominator

Section 1

a;,,= 1.66874190¢ +00

Sectjon 2

e — — ——— ————— —————— — — |

8 112= 1.72448553¢ +00

a@,4,=-1.54945542¢ +00

a ,»=-~1 70887345¢ +00

@ ,3,=-9.06602817¢ -01

@ 130= 1.00308205¢ +00

a,4,,=-1.38740988¢ +00

@ 535= 2.32750846¢ +00

@ 50, =-8.86922270¢ -01

@ g00=-2.45504272¢ +00

a 53, =-1.18089931¢ +00

@ 535——-2.10505132¢ —01

@3y, =-1.97851539¢ +00

8 3,0= 1.78740843¢ +00

@ 33, = 9.98068048¢ -01

0 300=-2.12443456¢ +00

@ 93= 1.12041977¢ +00

a 332=— 1.36010209¢ +00

g 121==-2.30094461¢ +00

g 120=-2.20534576¢ +00

¢ 19:=-5.24549120¢ ~02

9130= 4.21013609¢ +00

g 23 = 2.21815819¢ +00
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Fig. 3.5. Fan Filter Response.
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with w, =27 rad/sec.

The final design is reached with the coefficients given in Table 3.4(a), and the error

performance shown in Table 3.7(p. 66).

ii) A 90-degree fan fillter with the following specifications is considered,

0.0 for 0.0<| 4] S-—;—r- rad /sec.

lHI(ejelm'ejaml)l —

1.0 for -}_<_|0| _<_—72r- rad /sec.

with w, =27 rad/sec.

The final design yielded the coefficients given in Table 3.4(b), and the error perfor-

mance shown in Table 3.7(p. 66).

3.2.2.5. Design Example 5 [8, 82-83]

The Laplacian edge enhancement produces an output where high spatial frequency
components such as edges are highly accentuated, and low spatial frequency components
are attenuated sharply. Therefore, they can be generated to be used in the extraction of

object edges, or boundaries. As a design example, consider the following specifications

. . 2 2
' H (C 1 6im e 7 624 )I J— .T_n_i(.?_o._n_), for m ==0,20, (n =0,40)
! 800

In this example, the convergence was obtained with the coefficients shown in Table 3.5

and the error performance shown in Table 3.7(p. 686).

3.2.2.8. Design Example 6 [9, 14]

A scene, referred to as an image, is a 2-D light intensity function whose magnitude
at spatial coordinates (Z ,y ) gives the intensity (brightness) of the image at that point.

We can express an image, denoted by f (z,y ). as the product of two components.
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Table 3.4(a) Values of the Parameters of the Designed

2-D Filter in Example 3.4

P o= 9.973097¢ ~O1

Parameters of the Numerator

P o= 2.108767¢ —01

P og=——2.444763¢ —01

P o= 3.193882¢ 04

P 16=-2.321696¢ +00

P ;= 2.301058¢ +01

P 2= 1.331884¢ +00

P 5= 3.220717¢ -01

P 20=-7.277292¢ +01

p 5, =-9.721841¢ -01

P 2o=-1.388008¢ +01

P os— 1.931532¢ -02

P 30—-4.640635¢ +01

p 5= 3.335079¢ +01

P ap=—3.723885¢ 00

P az= 3.936199¢ -01

Parameters of the Denominator

a,,=-4.71512047¢ +00

Section 1 Section 2

a,,,==-3.99348616¢ +00

8,0, = 6.30271125¢ +00

0 00=-3.17635745 ¢ -01

@13, =-3.95295848¢ +00

a4 ,5,= 1.38853726 ¢ +00

@9, =—1.27869595¢ +01

83,0= 5.05170118¢ +00

@ g0 =—3.29558904 ¢ +00

@ 20,=-3.01577110¢ +00

@ g5y==—1.350380-19¢ +00

ad 230== 1.88135457 ¢ 400

G3,,=—~1.26750828¢ +01

@ 3,97=—8.85024423 ¢ —01

@ 33= 1.58088161¢ +00

@ 39,=—1.48446166 ¢ +00

@ 33, =—4.95589529¢ +00

@ 330= 2.01670183¢ +00

121> 4.45364462¢ +00

d 120=-6.40477019¢ +00

g151=-1.96564491¢ +00

¢ 130= 7.0137381G¢ +00

g 23, =—1.01760391 ¢ +00

g 232==—3.21977438¢ +00
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2-D Filter in Example 3.4

Values of the Parameters of the Designed

P 00=-7.446010¢ +01

Parameters of the Numerator

Poy= 1.050644¢ +02

P op= 3.590641¢ +01

Pos— 1 .346326¢ +-01

P 0= 8.503278¢ -01

P, =—-1.372691e +01

P 1= 2.2920969¢ +01

p 3= 3.446465¢ +00

P 20=-1.534959¢ +01

Po== 7.400303¢ +00

P 2p=-1.176962¢ +01

P 25=—7.560180¢ 01

P 30=-2.969921¢ -01

P sy ==—4.363617¢ +00

P ag= 1.043172¢ -02

P 53==—2.985303¢ +00

Parameters of the Denominator

Section 1

Section 2

@,,,=-7.54304826¢ -01 | a,,= 2.53382151¢ +00

@0, =—4.18409634¢ +00

@ 190= 5.19097694¢ +00

8,3 =—5.17420741¢ -01

@ 130=4.26956408¢ —01

@4,= 6.41551086¢ 01

@ 91==-1.19965966 ¢ +00

(122,= 3-385315296 +00

8 gpp= 9.48253083¢ —01

@ 93— ~5.91097304 ¢ - 01

@ 53,=-2.31834714¢ +00

@ 3 — 6.81642955¢ —01

@ 3127=-1.17496018¢ +00

@4, 5 32478820¢ -+ 00

@ 450=-2.15836893¢ +00

a 331 =-2.79900850¢ -01

@ 3a2=-3.28526279¢ —01

g 121=-3 04888060¢ +00

g 122= 2.40751900¢ —01

g 13=~3.33900991 ¢ -01

¢ 132==-3.401457437¢ - 01

Jua- -2.87217787e -01

g 232=- 1.63814961¢ +00
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2-D Filter in Example 3.5

R I T ey e P R s Y Sy

Values of the Parameters of the Designed

P o= 5.384142¢ +00

Parameters of the Numerator

Por1== 1.990999¢ 401

P os= 1.715001¢ +00

Pos=—9.904415¢ ~01

P o= 1.542240¢ +01

pi,= 1.279347 e +01

P 2= 7.303106¢ +00

Pis= 2.563506¢€ 01

P zo= 2.745601¢ +00

Poy= 6.961423¢ +00

Pgy= 6.894803¢ -0l

P 55=-1.562525¢ +00

pa= 9.880482¢ —01

P ag= 7.057480¢ 01

pss= 7.853305¢ —01

Parameters of the Denominator

Section 1

Section 2

a,;= 5.96732081¢ -01 a,,,~— 7.15166255¢ 01

a 5= 6.51507396¢ —01

a,,,=-2.02025377¢ —01

a,5,= 1.62559456¢ +00

@ 130= 2.81597262¢ ~O1

ag,= 6.37155976¢ —03

a5,,= 1.06158411¢ +00

a 4, = 8.33120379e —01

@ 55,= 5.31816011e 01

@ o5, =-1.33437218¢ +00

@ 250= 8.77104025¢ ~O1

ag,,= 4.14772711¢ -01

a 312=_4.966827196 -01

@ g0, =-5.92286218€¢ 01

@ gop= 3.20-416791¢ —O1

@ 33,=~-2.61889105¢ —01

@ 330= 9.80094063¢ -01

g 121= 1.11914659¢ +00

g 100==-1.07869180¢ +00

J 5= 2.14990721¢ +00

9 130=-3.56080050¢ —02

g 23, = 2.08025686¢ +00

g 252==-0.6T980553¢ —O1
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These are (i) an illumination function (the amount of source light incident on the scene
being viewed), denoted by ¢ (z,y), and (ii) a reflectance function (the amount of light

reflected by the objects in the scene), denoted by r(z,y ). Formally

J(@y)=i(z,y)r(z,y). (3.11)

Two frequently occurring problems in processing f(z,y) are dynamic-range
compression and contrast enhancement. The dynamic rangeis treated as a problem con-
cerning the illumiration function while the contrast enhancement is treated as a problem
concerning the reflectance function. That is, the illuminaticn is directly responsible for
the dynamic range encountered in an image whereas the edges of objects in an image
contribute only to the reflectance component. Thus we can separate the illumination
and reflectance functions, modifying each with different parameters, and then recombin-
ing to form the modified image. With this approach, the modified illumination-

reflectance function is given as

g (z,y)=li@@yN"rz,y )" (3.12)

where ~s are real constants. When 7y, <1 dynamic range in the brightness is reduced,

and when 7y, >1 contrast is increased, lending more sharpness to the edges of the image
[ (z.y)

With this objective in mind, an indirect frequency domain procedure can be applied
to (3.12) in order to operate separately on the frequency components that i(z,y) and
r(x ,y) possess. The illumination and reflectance components of an image are charac-
terized by slow and rapid spatial coordinate variations, respectively. Thus it is assumed
that the low spatial frequencies of the Fourier transform of an image, in the logarithm,
are associated with illumination, and the high spatial freqquencies with reflectance. With
this assumption, and with the desire to process the image according to (3.12), a filter
can be used to multiply the low frequencies by -y, and the high frequencies by v, . A

simultaneous control over the dynamic range and contrast can be achieved by using a

-

[ Rre—




homomorphic filter whose cross sectional frequency characteristic is shown in Fig. (3.6).

With a low frequency gain of 7; <1, and a high frequency gain of 7y, >1, the filter func-

tion will, respectively, tend to compress the dynamic range and enhance the contrast. In
the design example to be presented here, the low frequency gain of the filter is chosen to

be 0.5, and the high frequency gain is chosen to be 2.0, corresponding to a choice of

v, =0.5 for p(m ,n )=0.0 rad /sec.
IH](C"GM,CJBQ" )l —

w
~, =20 for 2.0<p(m,n )< —;s—=.5‘0 rad /sec.

The final design is reached with the coefficients given in Table 3.6, and the error

performance shown in Table 3.7(p. 66).

3.2.3. Magnitude and Group Delay Functions Approximation

This section proposes an iterative method of desighing stable 2-D (1-D as a special
case) recursive digital filters satisfying prespecified magnitude frequency response with
constant group delay. This has proven {13 to be of better use in image processing appli-
cations than the case when only the magnitude specifications are considered. We assume
that the filter is in the form of (3 7). The filter coefficients are calculated to approximate

both the magnitude and group delay characteristics simultaneously.

The frequency response of the filter may be expressed as
0 m .8"7; 6 m .6274 0 m -9:”.’"‘
Hp (e?0m 9% e )y=|H) (e’ P ,e 7% c) 7o ©)

and the group delay functions as

-8¢(01,,, '02n 'C ) . 801
a0, O, |

D, (W sy o€ ) = 1 =1, 2,
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>
0.0

Freq. p(m,n)

Fig. 3.6.  Frequency Characteristics used for Homomorphic Filter
when Simultaneous Dynamic-Range Compression and

Contrast Enhancement are to be Achieved.




Table 3.8 Values of the Parameters of the Designed

2-D Filter in Example 3.6

Parameters of the Numerator

Poo=-1.033655¢ +02 | p,,= 1.887656¢ +01 Poy= 6.876364¢ +01 | pos=-2.004793¢ +01

P 0= 6.358050¢ +01

P, =-1.559820¢ +02

P12= 5.791468¢ +01

P 1= 2.828292¢ +01

P so= 5.579354¢ +01

P ;= 9.091095¢ +01

P oy=-7.273340¢ +01

Pos= 4.147347¢ +01

P 30=-2.464102¢ +01

P sy= 1.376450¢ +01

psg= 4.680384¢ +01

P 33=-2.963128C +01

Parameters of the Denominator

Section 1

a,,,=-1.67439022¢ +00

Section 2

W

a,,= 1.52082699¢ ~01

a5, = 7.65891421 ¢ -01

@ 150== 4.90399743¢ -02

0 ,91=-2.55919860¢ +00

@,30= 1.25426754¢ -01

045,=-9.50162195¢ 01

10— 2.94203754¢ +00

00, = 3.44489352¢ +00

@ 320=-3.55097155¢ +00

@95, =-1.70068554 ¢ +00

@ 535=-3.18021697 ¢ 01

a 811 =-4.,36444393¢ -01

@ 4,,=-1.01510490¢ +00

8 40;= 1.53467806 ¢ 400

@ gpp=—2.04407262¢ -O01

0 35,==-3.62526366 ¢ —01

0332= 1.90789104¢ +00

9 12,=-2.16690658 ¢ +00

¢ 120=—4.40214200¢ +00

¢13,= 3.03771610¢ -01

g 130= 4.95720244¢ +00

g o5 = 4.68487331¢ 400

9 230=-5.70527112¢ +00
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Table 3.7

Magnitude Response Performance for Different Design Examples

of

2-D Fllter

Value of Overall Error Function, F (Sum of Squared Errors)

5 Jterations

10 Iterations

After Convergenoe

Maximum Error

Passband (dB)

Maxtmum Error

Stopband (dB)

Total

Time (Sec.)

Lowpass {1}

Lowpaas (2}

Bandpass (1)

Bandpass (2)

Highpass

45-degree Fan

00-degree Fan

Lasplacian

Homomorphle

0.138159¢ +03

0.256957¢ +02

0.124925¢ +03

0.389457¢ +02

0.809451¢ +02

0.558935¢ +02

0.125251¢ ~03

0.118714¢ +02

0.47252g¢ +02

0.5567121¢ +02
0.197990¢e +02
0.598731e +02
1 0.235438¢ +02
0.411245¢e +02
0.353719¢ +02
0759299e +-02

0.770973e +01
’ -~

0.365098e +0D2

0.326567 ¢ +01

0.320573¢ +01

0.133302¢ +02

0.157343¢ +02

0.638156¢ +01

0.183419¢ +02

0.203571¢ +02

0.218207¢ + 01

0.616935¢ +00

-0.418106¢ +01

-0.215388¢ +00

-0.474118¢ +01

~0.570307¢ -+01

~-0.340969¢ +01

~0.436493¢ +01

-0.627490¢ +01

-0.174705¢ +01

-0.310744¢ +01

~0.834124¢ +01

-0.1333567¢ +02

-0.752158¢ +01

-0.635018¢ +01

-0.977113¢ +01

-0.806800¢ +01

~0.577353¢ +01

-0.147891¢ +02

-0.104357¢ 402

963

1345

2127

896

1011

1265

205

606
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where

06;
&0y 109, ,¢ ) = arg Hp(.) and = T,.

Let the cost function, F (¢ ), be defined as
F(c)=Fp(c)+F,;(c)+F,(c)

where Fj;(c) is the error function of the magnitude frequency response given by

eqn(3.9) and FT, defined as

F,(c) 2 > ¥ E,*e) fori=1,2
melM, neN,

with
E.(c)=T, 1-7p (Wp wopn-c) fori=1,2 (3.13)

is the error function for the group delay. H;(.) and ‘r,‘(.) are the desired magnitude and

group delay filter characteristics, respectively, defined as

e J90m0m) o1 passband

H[(e Jalm,eJOQH ) —
0 otherwlse

and
¢(0,,, ,0271) = arg H; ().

The value of the ideal group-delay response of the filter is chosen to be equal to the
order of the filter £1 (34, 814]. We choose 7;(0;, 0,,)= 3. Hence
1 (Wi Won ) = 71 {0y, 05, ) T, = 3T;. In this case, the Fletcher-Powell algorithm
is used for minimizing the unconstrained nonlinear general squared error, F' (¢ ). Gra-
dient of the error function, [ (¢ ), with respect to parameters of the vector ¢ is calcu-

lated in the same manner as mentioned in Section 3.2.1.
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3.2.4. Design Examples

The above procedure provides the facility to design stable 2-D recursive digital
filters for numerous image processing applications.

3.2.4.1. Design Example 7

A 2-D lowpass filter with the following specifications is designed,

1.0 for 0.0<p{(m ,n)<2.0 rad /sec.
II[I(eJGIm’eJO‘.‘n)l —

w
0.0 for 3.0<p(m n)< —:—=5.0 rad /sec.

The final design is reached with the coefficients given in Table 3.8, and the error

performance shown in Table 3.10(p. 71).

3.2.4.2. Design Example 8
In this example, we consider the design of a 2-D bandpass recursive digital filter

with the following specifications,

0.0 for 0.0<p(m ,n)<0.5 rad /sec.

]elm ]o’ln e
| Hy (e el )| = 1.0 for 1.5<p(m ,n)<3.5 rad /sec.

w
0.0 for 4.5<p(m ,n)< —7)8—-=5.0 rad [sec.

4

The results obtained are the coeflicients as shown in Table 3.0, and the error per-
formance shown in Table 3.10(p. 71). The perspective and the contour plots of the mag-

nitude and group delay responses are shown in Figs. 3.7(a-f).




Table 3.8 Values of the Parameters of the Designed

2-D Filter in Example 3.7

P oo=-2.484172¢ +01

Parameters of the Numerator

Por= 1.835473¢ +00

p °2=-2-022767 ¢ +00

P os= 1.085432¢ 01

P 10= 2.352315¢ +00

p11=-5.150997¢ +00

p o= 1.241865¢ +00

P 13=—1.880569¢ -01

P 0p=-1.986758¢ +00

P o= 1.227040¢ +00

P 9o=-2.666711c -01

Pos= 1.122101¢ -01

P ao= 1.265100¢ -01

pa=—=-1.798422¢ —01

P ay=— 1.106374¢ ~01

P 3a=—4.078500¢ -03

Parameters of the Denominator

Section 1

a,;== 2.04131571¢ +00

Section 2

0= 2.84374842¢ +00

a ;= 2.68858035¢ +00

@ 192——7.59469059¢ ~01

a,;,== 1.43597720¢ +00

a,3:== 1.18868153¢ +00

a 2117 4.75478418¢ -01

@a,= 1.53917343¢ +00

@ g0 = 1.66899726¢ +00

@ 90,==-2.90072912¢ -01

@ 95,= 1.18413314¢ -01

@ g5= 4.91517752¢ -01

@ 5, =-3.61613314¢ —01

a30= 1.47409322¢ +00

a 35,=-2.16404385¢ +00

@ gop=—1.71842180¢ +00

a 33y =-~5.11550352¢ -01

4 33p= 4.25870229¢ +00

g 121= 2.77925181¢ +00

g 100=-1.81040200¢ +00

g 13,= 1.66518432¢ +00

g 133= 6.08442601¢ +00

g 0a;== 1.19245244¢ +00

g 2ag=—1.17973708¢ +00
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Table 3.9 Values of the Parameters of the Designed

2-D Filter in Example 3.8

p 00=—2.6985263 +01

Parameters of the Numerator

Poy= 5.737273¢ +01

P oe= 3.085087¢ +01

P 03=-7.060143¢ -01

P 10— 5.974223¢ +01

P1;=-2.114953¢ +-01

P o= 4.574978¢ +00

P 3= 4.803433¢ 01

P o= 2.874610¢ +01

p o= 2.631738¢ +00

P o= 1.304461¢ +00

p 23=-3.800815¢ -01

P 30=-1.003458¢ +00

Pai= 3.818076¢ 01

P 32=-3.902030¢ 01

P s= 1.914990¢ -01

Parameters of the Denominator

Section 1

a,,,=-8.89894166¢ —01

Section 2

a,,,=-3.98400031¢ -01

a 0= 1.73029556¢ —01

@ ,00= 2.08345813¢ +00

@ 15,= 7.70392301 ¢ -01

@ ,3,=-1.04526495¢ +00

@ 5= 1.12200385¢ +00

@ 10=-5.97528453¢ -01

a 5,= 5.01174282¢ 01

@ 20 =-2.08663127 ¢ +00

@ 93,=-4.36602631¢ ~O1

a 232=— 3.98375179¢ -02

a 3,,= 1.32208488¢ +00

a 312::—1 -53059768 ¢ -01

4 g0,=-3.27285774¢ -01

@ 5p0= 8.78252657¢ ~01

@ 33,-= 8.03051574¢ ~01

@ 33,=-8.80797477 ¢ ~01

g 12,= 8.32836965¢ -01

g 122==-2.20208269¢ +00

9 13=-1.28497682¢ +00

g 132= 2.17033504¢ -02

g 20,= 2.01994708¢ -+00

g 9a0= 4.13334360¢ -01
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Table 3.10

SEVE Lt S T R S e

Design Examples

Magnitude and Group-Delay Responses Performance for Different

Type ‘Value of Overall Exror Function, F (Sum of Squared ExTors) Max Amp Err Max Amp Exr Total
of in in [o 284
2-D Fllter 5 Iteratlons 10 Iterations Alter Convergence Pasband (dB) Stopband (dB) Time (Sec.)
Lowpass: 18895
(Amp & Gdly ) | Amplitude. Amplitude Amplitude:
0.135779¢ +02 | 0.111457¢ +02 | 0.962936¢ +01 | -0.331190¢ +01 | -0.997815¢ +01
Group delay 1 Group delay 1 Group delay 1
0.209425¢ +04 | 0.198002¢ +04 | 0.107747¢ +01
Group delay 2 Group delay 2 Group delay 2
0.133905¢ +04 | 0.139046¢ +04 | 0.129513¢ +01
Bandpass: 3034
(Amp. & Gdly.) | Amplitude: Armplitude. Amplitude:

0.184000¢ +02

Group delay 1:

0.568265¢ +03

Group delay &

0.574545¢ +-03

0.192802¢ +02

Group delay 1

0.330335¢ +03

Group delay 2

0.320099¢ +03

0.116390¢ +02

Group delay 1.

0.163205¢ +02

Group delay 2

0.192124¢ +02

-0.386761¢e +01

-0.888960e +-01

Amp. & Gdly. - Amplitude & Group delay; Max. Amp. Err. - Maximum Amplitude Error.
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Fig. 3.7(a).

Magnitude-Frequency Response of the 2-D Bandpass Filter of

Example 3.8 as Viewed after CCW R (amp ,45)R (w,,30)

of the Object.
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Fig. 3.7(b). Contour Plot of the Magnitude-Frequency Response of

the Designed 2-D Bandpass Filter of Example 3.8.
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Group-Delay, 7, Frequency Response of the 2-D Bandpass

Fig. 3.7(c).

Filter of Example 3.8 with respect to w, as Viewed after

CCW R (amp ,45)R (w,.30) of the Object.
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Contour Plot of the Group-Delay, r,, Frequency Response of

the Designed 2-D Bandpass Filter of Example 3.8.




NG

cettwm vty 3,

il

.

S IR M 3 e MRS AT 7 3% e b <

o aTRe SE N TR ORI

-76-

If,

(0,5)

A saddd

Group-Delay, r,, Frequency Response of the 2-D Bandpass

Fig. 3.7(e).

Filter of Example 3.8 with respect to w, as Viewed after

CCW R (amp ,45)R (w,,30) of the Object.
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3.3. SPECIAL CASE

_In this section, gencration of 1-variable SHP from an n -variable HP may be con-
sidered as a special case. Use is made of analog functions in conjunction with an itera-
tive technique based on nonlinear programming in developing 1-D recursive digital
filters to approximate prescribed magnitude specifications with constant group delay

responses without the need to impose any stability test on the filters.
Consider the 3-variable HP of (2.241) of Chapter {I which may be reproduced for
convenience as

M = (dj,+d g piotd 5 ug+d gy 1y g1p )+
((d - d g4 d ) )+ d g (ot 3+ 1 1+ g gae,)).

By setting p,=p,=[13==5 we get,
Q(s.a, 9)2 M = d, s3+3d ;s 3+(d |, +d5,+d 3))5 +(d |, +d oy +d 3,

where all d's are the same as was given by (2.23b) of Chapter 11 Thi~ 15 a 1-vanable
SHP, i.e., a 1-D stable polynomial in variable § which has no zeros 1n Re s 220 The
procedure outlined here provides the facility to the design of stable 1-D recursive digital
fiiters satisfying a given magnitude frequency response with constant group delay charac-
teristic.

A frequency domain approximation to the design of a 1-D digital filter, usmyg an

Lz-norm (the least mean-square-error), for the magnitude function is given by

<

A M . L
Ey = | Lyl=3 |[Hp(e ™) - [ (e”™)

m =1

in conjunction with a nonlinear optimization techmique. Here 11,(6 j“”) 15 the desired

frequency response while HD(er"‘) represents the appronimation function  The

coeflicients of the latter are to be calculated to yield minimum L y-horn.
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The design method employs a 1-D analog fliter with the overall system function
N {

s

=0

Ila (8 ) = AY l
Yus

=0

P(s.p)

Q(s.q;)

fi

In the following examples, we assign a third order 1-varlable SHP to the denominator of
the 1-D prototype analog transfer function while the numerator is left unchanged. We
then cascade the resulting transfer function with another sectfon of the same type before

the bilinear transformation is apphed  Here 77 ts chosen equal to six,

3.3.1. Design Example 9

In this example, we consider the Jdesign of & 1-D lowpass recursive digital flter with
cutofl frequency equal to one fifth of the Nyquist frequency  The specifications of this

filter arc as follows

He?="Ty=1¢'""T qor 0.0<w,, <10 rad [sec

w'y
0.0 for 20w, < —=00 rad /sec.

)
|

The optimization for the approxunation of this flter was started with 21 sumpling
points using squared error eritenion However, some spikes were noticed in the frequency
response after the fllter was designed To eliminate these spihes, the pumber of sam-
phng points  was  gnereased 1o 31 Now,  the algonthm  had converged  to
Fpp=2.46112005%¢ +00 and F ,=2.31731120¢ 400 with the coeflicients as given in
Table 311 and the filter responses as shown n Fige 3 %(a-b) Tt should be poted that
the 1-D responses were plotted with 64 frequency polnts  In this example, the total ¢ pU

tine was observed to he 163 seconds
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Table 3.11 Values of the Parameters of the Designed

1-D Filter in Example 3.9

Parameters of the Transfer Function

Section 1

@g== -2 27343086¢ +01

Section 2

Qo= 9.15125126¢ ~00

a,,= -2.64210100¢ -02

a,,== -3 37822581¢ ~-00

@4= —2.95915506¢ +00

@g== 1.26074641¢ ~01

ag,= 1.05726470¢ -01

8 4= -1.80470390¢ +01

. —

a,,,= 2 01682818¢ 00

0= 1.55751861e ~00

@ 12y =-2.13967930¢ +00

0 5 ==~1.06820388 ¢ ~ 00

8 ,9,= 1.84074804¢ +00

01

a,3,==-3.99546400¢

5y, 2.34272334¢ +00

8 0,==-2.01767886¢ ~00

a4 ooy =-1.99589749¢ +00

a 22‘2‘4.59985700C -01

@ o3y~ 2.11587757¢ +00

[

G a3p== 2.46080610¢ +00

@ 5, =—8.20290760¢ -01

ag4,,=-1.82827310¢ ~00

@ 30,= 1.18765660¢ -~ 00

@ 3op= 2.13705635¢ +00

@ 35,= 7.45041000¢ -03

8 3g0= 2 00568650¢ ~00

§,2,= 5.56221590¢ -01

9 1za==-1.16789891 ¢ - 00

01a:== 2 00576380¢ -01

¢ 132= 3.06097040¢ -01

0.23,=-1.36153780¢ -01

g az0= 2.072703 3¢ ~00
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This is a lowpass filter, whereas bandpass filters having similar characteristics may
be more important n practice A5 is well known, the transfer function of a 1-D
bandpass filter can be obtained by applying the lowpass to bandpass transformation to
the lowpass prototype filter 1if only the magnitude characteristics is of concern On the
cther hand. the transfer function of the corresponding digital filter can be derived from
that of the analog filter by the use of a simple ihmear transformation  These transfor-
mations are however, not apphicable to the delay charactenisties  Therefore, it s
difficult 1o derve bhandpass filters mowhich both the magnmitude apd delay characternisties

are of anterest The following example cansiders a direct design of 11 handpass fHter

satisiving bath the magnitude and delay charactensties i digital doman

3.3.2. Design Example 10

Constder o 1-D bandpass digital fiiter with the following specifications

0.0 for 007, < 0n rad Jeee,
o7
Hyre ' o1
{ - ru{ 2.0 . <40 Yf(ll /‘ll .
0.0 for 4 o, 7 —— Ol joee,
ML

The aleenthim converyed o Vopre peadio bovadae of Dy RON0ONINES e 0 e
I - 1305780020 OF  watl the coeMigents oo pnven n Chatle 412 and the Nty
respotises as shoswe oan b etee b the evarng e the tet ] €10 tine Was - beoryved

oo bie s v o s

3.4. FILTERS WITH INTLGER COREFFICIENTS
Pnpdomentate oo 0 the Al Bilter o hoardw e b et ne oy to it the
number of Lre pepreser g voare o oo gent o the trane e furete o The e Yoo v

the oty gt word donpth b o oot an the coet e well g st o f the fifter WY
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Table 3.12 Values of the Parameters of the Designed

1-D Filter in Example 3.10

Parameters of the Transfer Function

Section 1

Section 2

ao,= 7.83346605¢ +00 ag;= 2.66604648¢ +00
a,,= -2.20104554¢ +00 a,,== 1.64832811¢ -0
a,,= -3.16957562¢ -01 @50=: -3.11107161 ¢ ~00

a5,= ~1.73756889¢ -01

@ 4,= ~7 80580469¢ -01

a,;,;=-1.91354605¢ +00

a,,,=-6.60962205¢ -0l

a,9,==-1.36940913¢ +00

a,20== 1.838611095¢ ~00

a,5,==-6 15670090¢ -01

,5,="~4.91400354¢ - 01

3,,= 3.77687670¢ -01

@40= 1 03176090¢ ~00

@35 =-9.73127876¢ -01

dg00=—2 TO202816¢ ~ 00

a 23— 2.01054413¢ -01

ag:p}: 3 02226494¢ -01

a5,= K&87418540¢ 0l

dg2= 1 45911901 ¢ 00

a KTl T 2.837668056 + 00

8300= 8 92975791c 01

045, = 3.80299973¢ ~01

a 350==—3 39374699¢ 01

¢121= 5.62774681¢ -01

g 120 ="-2 28717201¢ ~00

¢ 131= 1.02553292¢ +00

g 13:—~9 15998963 ¢ -01

g 23— B.3TR82158¢ -01

guse— 1 41731873¢ - 00
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Frequency (rad/sec)

Fig. 3.9(b).  Group Delay, r. Frequency Response of the 1-D Bandpass

Filter of Example 310
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This leads to the desirable property that the necessary coefTicient word-length be kept as

small as possible

Several attempts to estimate the coeflicient word-length necessary in order to keep
the system function response within a prescribed error have been made by different
authors  For example 86-06 have reported results on the problem of designing digital
filters with hmited word-length coeflicients to meet magnitude specifleations in frequency
domam  In this section we <hall desenbe an aigonthm based on an optumzation pro-
cedure for the design of recursive dagital filters with integer coeflicients It has the
advantage of bemng casy to program - When these flters are implemented they are free
from roundotl errors caused by quantization of the real coeflicients with full precision

and accumulation of these errorsan anthmetic operations in the system

3.4.1. Formulation of the Design Problem

This sectuon deils with the prablem  of designming digital flters with integer
cocthaents to meet magnitude spectfioations i the treguenoy doman

A frequency domsan approsunation to the desigh of a0 2-1) recursive digital filter
using an I._, norm, for the magnitude function s consideored here The design iethod

emplovs i 22D all pode analog filter wath the overadl svstem function

R ] \

h
AR NE

Now the pabvaomial Q () of 14 6) 1% asmigned tao the donominator of the 2.0 protes
tvpe analog transfer functy n Thie will enabide e tao ohitan more number of varinhles
thereby antrodbaogng the ostbality an optimaz e beogde guarantoogng the s taltahity of

the resulting tran<fer fiunotpn The deagn apptroach v o find the o fliopont
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a, g, a,and g of the resulting analog transfer function subject to the constraint

N
D (z,.2,)

Hy(z,2,) =

K

Q(5,520.9.a.9) |nZ L trr=n e

3.4.1.1. Special Case

A frequency domain approximation to the design of a 1-D recursive digital fliter for
the magnitude function is to employ a 1-I all pole analog filter with the overall system

function

H, (s) = K

N

2](113[

l==0

N
Q(s.q)

Based on the procedure outlined in the previous section, let @ (s.a.g ) be a third order
1-D polynomial, generated by the use of 12g (2 24) of Chapter I Then, multiplying this
polynomial with another polynomial of the same type results in a sinth order 1-1 poly.
nomial, Q(s.a.g.a.g ) We assign this polvnomial to the denominator of the all pole
prototype analog transfer function  The desigh approach s to find the coeflicients

a, g. a,and ¢ of the resulting analog transter function subject to the constramt

I

Hd(l ) == -IT(T)-

I |
Q(x.a.9.a.9 )
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3.4.2. Optimization, Integerization, and Reoptimization Technique

In this subsection, we propose an algorithm for designing a recursive digital filter

with integer coefficients.

3.4.2.1. Algorithm [INTCOEF]

Step Q

i) Set Mf =N, where N is the number of parameters
Step 1

1) Imtiahize the coefcients, N (J), ] =1, N

i1) Perform optimization using FMEFP routine

i) If convergence, go to step 2, otherwise go to (1) of step 1, with the results to

serve as a npew 1nitial starung point

1) 1f all the coefhicients have an absolute vilue less than unity, go to step 3, other-
wise go to atep 4

1) Use same weighting function to bring the value of all the coeflicients ta greater
than unity

1) Tahe the coeMckent which has the maximuin abmolute value

1) Round up and round down that coeflicient

n) Calculate the error funetion, l'.'.‘. for the rounded up and rounded down
coeflicient while the rrmmasming coeflicrnts are left unchanged

V) Asagn the value of the coeffioient to the integer value whah tesuite in the

minitnum error funcion
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v) Set M =M -1.
Step 5

i) It N-M 5N, assume that (N -M ) coeflicient(s) to be constant integer(s), go to
(i) of step 1. Otherwise go to step 6.
Remark: A coeflicient can be kept as a constant integer, in optimization process, simply
by setting the derivative of the error function with respect to that parameter equal to

zZero.

Step 6

i) Round up and round down the last coeflicient.

ii) Calculate the error function for the last rounded up and rounded down

coeflicient.

iii) Assign the value of the coeflicient to the integer value which results in the

minimum error function.

iv) Print results.

3.4.2.2. Design Example 11

To demonstrate the method. an all-pole lowpass recursive digital filter 1n 2-D is
considered. The filter is of the type given in the previous section. The design problem is
to find the coeflicients of the filter transfer function to meet a magnitude specification n

the frequency domain as follows

1.0 for 0.0<p(in ,n )<1.0 rad /sec.
|1.{1(e}“'ylmye}“~".‘n)| —_

0.0 for 2.0<p(m .n )S—-f—=7r rad /sec.

The algorithm converged to a prespecified value of FM =0.91197 before integeriza-

tion and to a value of FM =7.13925 after integerization with the coeflicients shown in
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Table 3.13(a-b) and the filter responses in Figs. 3.10(a-d). In this example, the total

CPU time was observed to be 253.22 seconds.

3.4.2.3. Design Example 12

In this example, we deal with the problem of designing a 1-D recursive digital fllter
with integer coefficients to meet a magnitude specification in the frequency domain as

follows.

1.0 for 0.0Lw,, <1.0 rad /sec.
l 11[ (e I m )I

w.‘i
0.0 for 2.0<w, < ——=m rad /scc.

The  results  obtained  were  Fyy = 2,180814578¢ 02 before  integerization,
F_U= 4.00706026¢ 02 with 23  of the coeflicients  bheing  integerized, and
Fy=1.13208869¢ +00, after all the coeflicients were integerized  The coeflicients are
shown mm Tables 3 1#{a-c¢), and the magnitudes of the frequency responses are shown in

Fig 311 1In this example, the total CPU time was nbserved to be 189,13 seconds
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Table 3.13(a) Values of the Parameters of the Designed

2-D Filter in Example 3.11

Parameters of the Denominator

Section 1

a 1= 3717230303 -01

Section 2

a 112= 3.08144705¢ -01

@ 15 =-2.18852682¢ +00

8 ,,= 2.11926881¢ -01

@ ,3,= 5.41110042¢ —01

@ 132=-3.55363591 ¢ ~02

a4,= 7.19419611¢ —01

a 2),=-1.60844556¢ -01

@ 59, =-2.61332848¢ +00

8 500—=-1.10363665¢ +00

@ 55, = 1.17856080¢ +00

@ 930=— 8.6809-4889¢ -02

@ 3,,==-2.70670114¢ —01

@ 5;0=—4.01722643¢ -01

@ 3= 2.81652988¢ +00

@ 320=-1.97390019¢ +00

a 331 =-2.95037965¢ ~-01

@ 350= 1.62168797¢ -01

g 12|=—l .20102312¢ +00

g 120=-2.31337035¢ -01

g 131= 1.45847095¢ +00

g 130= 1.6¥332157¢ -01

g 03;= 5.21832480¢ —01

g 252= 4.98652656¢ —01
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Fig. 3.10(a). Magnitude-Frequency Response of the 2-D Allpole Lowpass
Filter with Real CoefTicients in Exarnple 3 11 in the
First Quadrant of (w,,w,)-Plane as Viewed after

CCW R (amp ,45)R (w,.30) of the Object.

Max. Error of the Design = 0.3032101¢ +00
Max Error from the Top(DB) ==-031371863¢ 4 01

Max Error from the Bottom(DB) -=-0 1038513¢ +02

bt o T
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the 2-D Allpole Lowpass Filter with Real Coeflicients

in Example 3.11.
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Table 3.13(b) Values of the Parameters of the Designed

2-D Filter in Example 3.11

?.
: Section 1
' =1 4,9 =-8 a13= 2
ag,= 2 ag9;=-12 5= 4
! 3, =-2 Aay= 12 a3 ==-2
\ g,0,=-16 g= 32 gou= 4
Section 2
— —
a40=2 00— 3 8,,= 0
0g2==-4 G 18 [PIVE
a3y -3 ayn=: 30 Oy 2
9122~ -36 Gz O g232- 480
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Fig. 3.10(c). Magnitude-Frequency Response of the 2-D Allpole Lowpass
Filter with Integer Coeflicients in Example 3.11 in the
First Quadrant of (w,w,>Plane as Viewed after

CCW R (amp .45)R (w,.30) of the Object.

Max. Error of the Design = 0.3155704¢ +00
Max. Error from the Top(DB) ==-0.3293424¢ +01

Max. Error from the Bottom(DB) ==-0.1001807¢ +02
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Table 3.14(a) Values of the Parameters of the Designed

1-D Filter in Example 3.12

Parameters of the Denominator

Section 1

a,,= 1.96976369¢ +00

Section 2

a,,,— 9.188831908¢ +00

@ 15, =-2.48957899¢ +00

a ,5,=-2.99055596¢ +00

a ]31= 2 -0832984 1 [ 2 +00

a 1327 1.1949090135¢ +01

@g;,= 1.84395472¢ +00

@ 210=-1.88344247T¢ +01

a g,==—2.41608263 ¢ +00

a 50— 1.82687799¢ -02

a231= 1.75817999¢ +00

a 2307 2-306367908 +OO

@ 4,,=-4.41538380¢ -01

a4,,=-1.57420179¢ +00

@ g5 = 6.82410330¢ -01

a 35,—=-1.48657179¢ 01

a 33,=-5.01321660¢ -01

a g3p= 1.29992271¢ +00

q ‘21=—'3 .22340968 ¢ -01

g 120=-1.01931456¢ +00

g 151= 2.20473181¢ -01

g 1a5= 4.00225770¢ —01

g 23;= 8.01105085¢ -03

g n3o= 4.46936476¢ +00

Max. Error of the Design = 0.7606495¢ -01

Max. Error from the Top(DDB) =-0.7154200¢e +00

Max. Error from the Bottom(DB) =-0.2204032¢ +02
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1-D Filter in Example 3.12

Parameters of the Denominator

Section 1

a,;;;= 1.2000¢ +01

Section 2

@1,2= 1.1700¢ +02

@ )5,=-1.2000¢ +01

@ ,39=-3.9000¢ +01

a,3,= 6.0000¢ +00

6 ,3= 1.5600¢ +02

a g;,= 6.0000¢ +00

a9,0==~2.4700¢ +02

@ go,=-1.8000¢ +01

840= 1.3000¢ +01

@ 23, = 6.0000¢ +00

@930= 2.6000¢ +01

a5,,=—-8.0000¢ +00

a3;,—=-1.3000¢ +01

@ 40,= 1.0000¢ +01

@ 359= 1.0000¢ +00

@ 53,=~4.5451¢ +00

@ 330= 1.3000¢ 01

¢ 12;=-2.2500¢ +02

g 125=- 3.3800¢ +02

¢ 1a;== 5.8000¢ +01

7 15=-1.6900¢ +02

g 231+ 5.4000¢ +01

02s= R.4500¢ 4 02

- oo ol

Max. Brror of the Design =- 06356526¢ -01
Max Error from the Top(DB) = 0.5704496¢ 100

Max. Error from the Bottom(DB) - -0 2303560¢ + 02

T R e T e
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Table 3.14(c) Values of the Parameters of the Designed

1-D Filter in Example 3.12

Section 1 '
ay==24 19,=-24 a,5n= 12
g = 12 @ 5p,=-36 aoe,= 12
85,=-16 ag30,= 20 8 33;=-9
g 19y=-900 g a= 232 g oa1= 216
Section 2
a, 3= 117 a g5==—39 @ 33== 156
Gp1=—247 | Ogpo=13 | agp0= 26
G3)=-13 Q300 1 @ 33,—= 13
9120=—338 | §,30=-169 | go3,= 845

Max. Error of the Desigh = 0.2982256¢ +00
Max. Error from the Top(DB) =-0.3076049¢ +01

Max. Error from the Bottom(DB) =-0.1050910¢ +02
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Fig. 3.11. Magnitude-Frequency Response of the 1-D Allpole Lowpass

Filter with Real and Integer Coeflicients in Example 3.12.
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3.5. SUMMARY AND DISCUSSION

_ In this chapter, a minimum p -error criterion with p =2 (minimum squared error)
and a nonlinear optimization technique is usea in the design of 2-D IIR digital fllters. In
this procedure, the approximation function to be muir.'ized was magnitude or both mag-
nitude and group delay functions, using the coefficients of the analog reference filter as
optimization parameters, which makes the control of the stability of the filter easier.
Some modifications to the Fletcher and Powell algorithm was made to facilitate a stable
filter derivation as the output of the optimization procedure. This was done by con-
straining the det A of Chapter II to be as non-zero. Thus the entire procedure con-
sisted in the minimization of the error. Design of stable 1-D recursive digital filters is

also considered to be as a special case to which the method of Chapter Il is applicable.

A practical algorithm for the design of recursive digital fllters, with integer
coefTicients, with reasonable computation time is also given. The numerical performance
of the algorithm is illustrated through examples. From the examples it can be seen that
actual coefficient rounding and reoptimizing will lead to the actual maximum perfor-
mance function (or minimum cost function). The closeness of the last coefficient to an
integer before rounding, however, produced a variety of final solutions, the best of which

is selected, using weighting function, as the final solution.
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CHAPTER IV

COEFFICIENT SENSITIVITY AND EFFECT OF
FINITE WORD-LENGTH

4.1. INTRODUCTION

Despite the many attractive advantages of digital filters over their analog counter-
parts, there are some practical limitations associated with their actual implementation.
The most important limitation is caused by quantization. The three major sources of
quantization errors are: (i) input signal quantization errors, (ii) arithmetic quantization
(round-off or truncation noise at the output of muitipliers) errors, and (iii) filter
coefTicient quantization errors (sensitivity). These errors have been discussed in detail in

the literature [14, 16, 86-96].

It is well known that computer word-length is limited, and that small word-length
i3 desired in special-purpose hardware systems. Ience, when digital filters (algorithms)
are implemented their performance is degenerated. That is to say, in the implementa-
tion of digital filters account must be taken of effects due to the finite word-length used
to represent signal values, coefficient values, and the arithmetic operations performed as

they may alter the response ol the digital filters.

The coeflicient quantization results in a deviation of the resulting filter frequency
response frem the ideal one. This effect is known as the sensitivity characteristic of the
filter. Sensitivity that is independent of the form of the input signal is deflued in terms
of the structure of a filter. For example, if the filter is represented by a transfer func-
tion, the sensitivity is defined on the basis of the parameter induced change of the

transfer function [07].

The coeflicients of the transfer function of 2D recursive digital fliters (1-1> as spe-

cial case) of Chapter III are evaluated to a high degree of accuracy during the approxi-
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mation step. However, when these parameters are quantized by means of rounding or
truncating the frequency response of the digital filter with new coefficients may fail to
meet the desired specifications [85, 96]. In this chapter we will concentrate on variations
in the parameters pertaining to the 2-D recursive filter transfer functions derived from
the siructure of Chapter II (skew-symmetric matrix). This can serve as a sensitivity
measure of the digital filters. This study is felt to be important as the required
coeflicient word-length of the diostal fliter derived from this structure has a strong effect
on both the cost and speed of the fllter when it is implemented [85, 94]. If the word-

length is large, then the cost of the filter will be high and the operating speed low. Here,

the maximum sensitivity is used as a sensitivity measure.

4.2. SENSITIVITY MEASURE

Consider a linear time-invariant 2-D recursive digital filter whose transfer function
H(zl,zg,c ) is a discrete function not only of the complex frequency

z;=exp (Jw; Ty ), i =1, 2 but also of the n X1 parameter vector € ==[C ;,C gyeresCy |7

Let H =H (z,,25¢) and Hy=H (2,,z,,¢,) be the actual and nominal transfer
functions, respectively, and ¢, the nominal parameter vector which is assumed to vary
to ¢ =c¢,+Ac. ¢ is called as the actual (or perturbed) parameter value. In this term

the sensitivity function of the transfer function

_ N(zyz,0¢)

H(z,2,5c) DG oroey)
) Rl S/

P(S 952spkl)
= U rrs o1 (4.1)

Q (3 1S 2y ) S,=%' 11 for r=1, 2

with the vector ¢
c =(p“ ’qkl ), for k =0,1,...,M1, 1=0,1 ""’Nl

chosen as the vector of the coefficients of the filter, of a 2-D recursive digital structure,
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with respect to variations in parameters cj is defined as (97]

- A OnH
SL‘H (Z 112 C ) =
! Blncj .
J0
%
% __ OH/H
‘ - .
E acj/c] ‘.
? o | e
| ] HJO (4.2)
lf i Jew o
:Y With = v, T‘, ) =1,2, we can write
Sc}}{ (e walee J'sz:z,c ) = Re [SC}}I (e jwlT’,e jg,gTQ‘c )J
+ jIm [Sc’)’ (e T g1l ¢ )]. (3

If
H(e“"T‘,e J%Te'c )=I H(C JWlTn'e 1‘4’27'2'C )' e J dwiwg.c)

with é(w,.wy,¢ )= Arg Il (.), then

H T jwe T , . Pluyw, © )
S (e el e ) = S (wywy€ )47 8w wpe) S0 (wpaye ).
(144)

Comparing (4.3) with (1.1}, we see that
.‘w"_l} Hj (Wyw € ) = Re [S'r.ljl (¢ J'*.’T’.(: i “c )} (15)

This is called the sensitivity function of the magnitude of I Sinee the transfer fune-

tion of the filter under consideration 15 a rational function comprising two polynomials,

N and D, thesensitivity can be written as
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N
Oln (<=
Sél(cijTl’ejszz,c) (D)

dlnc; |,

dinN _ dinD
5lnc]- alncj

Cro s

Therefore, we may write the sensitivity as

‘o T . . .
— Sclj\f(elwl 1,er2T2’c)_ Sc? (erle’ersz,c ).

SH(ef‘*’ITlej“’ﬂT2c)— aN(erlTx’ersz’c) . Cjo
c LA 9 - .
! 8(:]- ¢ N(e leTl’e szTa,ca )
oD (e 71T g 79:Ts ¢ _ Cjo
dc;

J Cjo

In terms of the sensitivity function of the magnitude of H, the function

n
s=31s)m|

j=1

D(C jwlTl,e JweTe

(4.6)

(4.7)

(4.8)

can be formed where n is the number of the parameters in the transfer function. This

guantity can serve as a sensitivity measure which can be used for the comparison of

results obtained of rounding or truncating the coefficients of a transfer function.

4.3. EXAMPLE

Given a 2-D recursive digital filter described by the transfer function

P (51,8 0P)

2 2,-1
S 148 01 y =
Q( o2 q“) N T z,+1

H(z,,z5¢c)=

(4.9a)

3
2

ey

S S i e Lok S8

P e

e Tt o nh -

o m e Y

3

B e L L e S
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where

33 ko
- P(sySapu)= 3 Y Pusis2
k=0 1=0

= PootPo1S2+Po28 £+PosSs

+ P10S1HP 118180+ P 125155 +P 138,55

+ PooS L +P oS LS o P 208 285 +P 23S 55

+ P30S +Pa18 8 ot aa8 P85 +P 38 85 (4.91)

and

3 3 kol
Q(spSadu) = 3 Y usis2
k=0 1=0

_ 2 3
= @o0t 901520252 T 90352
+ §1051+G1151504+G 105,52 +4 135,55
§1051+9115152+G 125152 177135152
2 2 2.2 . 2.3
+ G2051 TGS 1SotqoSy Sy t493552

3

3 3 3,2 3
+ 3051 t9315152FHg3251 59 +qagSyse

2 QG 152:6.9.8,9 ). (4.9¢)

The polynomial @Q (.) is defined as

Qs 1S Qva'gva,'g’) é Q (5,8 2:@,9) Q.(5,.5,0 :'g/) (-1.9d)
where
Q(51,55,0.9) = dy(s,+1)s [ + [2‘141""2“’1 1|+’{:11):|"‘|
+ [d.,,s'_.+(d,,+d,‘,,+d ,,)] (1 9¢)
with

d iy =(a 100 @y 0yt 09 )%

dyy=(a,,903 Qon¥ 1+ 8oy y2)%
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_ 2
d3,=(0 3119 2319 3219 131+ 3319 121 )

and
dg; = (01170200331~ 1,8 2310 35, 190 27,8 33+
2
13100118301+ 1218 2310 311~ @ 1318 221 % 311)
and
7 /, — 2
Qo(s 528 ,9)= dy(s,+1)s5 + [2d423 1+(d22+d32)]32
+ [d 128 1+(d 12+d22+d32)]
with
_ 2
d 10=(a 1129 232-8 1220 132+ 1320 122)°
— 2
€ 25=(a 2129 2328 2020 132+ 8 2220 122)°
— 2
1 30=( 3129 232~ 3229 132+ 3329 122)°
and
d4o = (@108 2000 330~0 1128 2320 390~ 1220 2120 339
2
+ @328 9198 300 @ 1928 9320 319-8 1328 222@ 312)"
With
A
a, = dyy+d,y,
A
@y = d+d g t+dg,
A
By = daotd 3,
and

A
By = dptd gptd

gu's, k = 0,1,2,3, [ = 0,1,2,3 are given by

Goo = 0 X[

(4.91)
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= oy X1 +d gy X B,

= @, Xd p+0, X dg

= dg;Xd

= 0y Xd p+0, X B,

= 2X 0, X d ot d 5, X d p+0, X B, +2X d 4y X 52
= a, X d +2Xd 5 Xd o+, Xd ,+2Xd X,
= dalxd42+2xd4lxd42

= oy Xd p+d 4y X5,

= 2X ;X d 4o +2X d ;X d o +(B+8,)X d 4,

= o, Xd ,+5Xd, Xdo+d 4 XB,

= 3X d;; Xd,

=dyXdy,

= 2Xd4,)(d42+d_“>(d12

=3Xd, Xdy

= d4lxd42‘

BRI R HASE F e, SROptonTL st o

N
B g R,

R R

TR ‘rﬂ’&:‘ﬂiﬂﬂ‘

We wish to consider the effect of coeflicient quantization of various 2-D recursive

digital filters. For the sake of comparison, coeflicient quantization has been applied to

the lowpass, bandpass, highpass, fan, Laplacian and homomorphic filters of Chapter il

with the transfer function given by (4.9). In (4.9), theoretical values of the parameters

“pu ", 'a”, g”, "a ", and g’ " are the same as given in Tables 3.1-3.6 of Chapter

111, The coeflicients were assumed to be in floating-pownt format and the quantization hy

means of rounding.
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n
The sensitivity performance S= 37 | z;=exp (Jw; T; ) 1 =1,2

Sc| H(z,zp0) [
i=1
for w; such that 0.0<w; <w, /2=5.0 rad/sec for different unsigned mantissa of the
coefficients of the above filters ( 0.0<w; <7 rad/sec for the case of fan filters) is com-
pared in Table 4.1. In calculating the sensitivity for different design examples, the frac-
tional part of the value of each coefficient, expressed in the decimal form, is rounded to
an accuracy of 8, 6, 4, 3, and 2 decimal places. As can be seen from the Table 4.1, the
rounding of the coeflicients up to 4 decimal places does not affect the sensitivity of the
filters. In most of the cases except for the Laplacian and homomorphic fllters, a very
poor performance has been noticed when the coeflficients are taken with an accuracy of 2

decimal places. For the exceptional cases of filters, the accuracy can be taken up to 1

decimal place without affecting their frequency responses.

Figures 4.1(a-d) to 4.5(a-d) show variation of peak value of the sensitivity, S, with
angles 0.0<w; <w, /2=5.0 rad/sec, { =1,2 and the actual amplitude responses of the
bandpass filter discussed in Example 3.2(b) of Chapter III. In these figures, respectively,
the coefficients have been assumed to be of either with full precision or with an accuracy
of six, four, three, and two decimal places. The plots showing the sensitivity perfor-
mances are quite similar and so do the plots of the magnitude frequency responses.
However, in the case of one decimal place, the magnitude frequency response is not quite

good as can be seen from Fig. 4.6(c,d).
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Table 4.1

Sensitivity Performance for Different Design Examples

2-D Filter Full Precislon Six decimal places Four decimal places Three decimal places
Lowpass (1) | .20e+01 < S < .120483e+03 | .200+01 < S < .120470e+03 | .20e+01 < S < .130460e+03 | .20e+01 < S < .120220¢+08
Lowpass (2) .20e+01 < S < .812838e+02 | .20e+01 < S < .812021¢+02 | .20e+01 £ S < .810001e+02 | .20e+01 < S < .142304e+03
Bandpass (1) | .20e+0t < S < .130526e+03 | .20e+01 < S < .130627¢+03 | .20e+01 < S < .130408¢e+03 | .20e+01 < S < ,125460e+03
Bandpass (2) | .20e+01 < S < .630200e+02 | .20e+01 < S < .6302032+02 | .20e+01 < S < .632400e+02 | .20e+01 < S < .661376e+02

Highpass .20¢+01 < S < .520853¢402 | 206401 < S < .520653¢+02 | .20e+01 < S < .520587¢+402 | .20e401 < 8 < .620885¢+02
45-degree fan | .20e+01 S < .114206e+03 | 206401 < S < ,114204¢+03 | .20e+01 < S < .114165¢+03 | .20e+01 < S < .114368¢+03
00-degree fan | .20e+01 < S < .217540e+03 | .20e+01 < S < .217552¢+03 | .20e+01 < S £ .217400e+403 | .20e+01 < S < .2123032+03

Laplacian .20e+01 < 8 < .283453e+402 | .20e+0) < S < .283453¢+02 | .20e+01 < S < .283414e+02 | 20e401 < S < ,283207¢+02
Homomorphlc | .20e+01 < S < .280778¢+02 | .20e+01 < S < .280770e+02 | .20e+01 < S < ,280600e+402 | .20e+01 < § < .270802¢+402

Note:

in some of the examples are as follows:

Lowpass (2): 0.20e+01 < S - 0.138348¢ {03

Bandpass (2): 0.20e401 < S - 0.129367¢+-03

Highpass: 0.20e {01 « S < 0.530755¢ + 02

Laplacian: 0.20e 101 - S - 0.279006¢ + 02

Homomorphic: 0.20¢ 101 - S < 0.2806071¢ 1 02

Sensitivity performance for two decimal places of unsigned mantissa
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Fig. 4.1(a). Sensitivity-Frequency Response of the 2-D Bandpass Filter

in Example 3.2(b) with Full-Precision Coefficients.
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Fig. 4.1(b). Contour Plot of the Sensitivity-Frequency Respone
of the Designed Bandpass Filter of Example 3.2(D)

with Full-Precision Coeflicients



4([,}; IQ

'3,

I
\\ “‘l "l ,l Il
‘\'452, i a\\

\\ \ ‘

II/I \\\\ ““\

"'," ”" M‘\\ } ,0
‘ “\\Q\\ T
0

‘ “ ‘ \\ \\\ \\ \§$§§§_;§;§:‘
" “‘ ' “ :‘ &\\\ k\\\k\\\“"'
.0 '

\ \‘\\ .
/\ \
>
> :
N::§§£>
( ) Mag i )
in mpl (b) w | >



o

(oes/pea) Aouoenbougy

W B STV BT TS T TR YA D T NN ARG S S By & ST IR G AT T T g f R A

- 116 -

Frequency (rad/sec)

Fig. 4.1(d). Contour Plot of the Magnitude-Frequency Respone
of the Designed Bandpass Filter of Example 3.2(b)

with Full-Precision Coefficients.
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Fig. 4.2(a). Sensitivity-Frequency Response of the 2-D Bandpass Filter

in Example 3.2(b) with Six-Decimal Places of Coeflicients.
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Fig. 4.2(b). Contour Plot of the Sensitivity-Frequency Respone
of the Designed Bandpass Filter of Example 3.2(h)

with Six-Decimal Places of CoeflTicients.
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Fig. 4.3(a). Sensitivity-Frequency Response of the 2-D Bandpass Filter in

Example 3.2(b) with Four-Decimal Places of Coeflicients.
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Sensitivity

Fig. 4.5(a). Sensitivity-Frequency Response of the 2-D Bandpass Filter in

Example 3.2(h) with Two-Decimal Places of Coeflicients.
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Example 3.2(b) with One-Decimal Place of CoefTicients.




. - \
Gty L e HEE B L GIRTETE WA A AN, e A E T (e e IS Y S ~"/~..~..~M'~id

- 133 -

P s |

- 4 = mesvesnns warsonss ssee oy s

SR ISR —
m -2f S
1
0 H
Ko} .
[ R —— -
o - 1
pe
4]
n<
or
_—
-
W
Q e
N 1
0
0
0

Im
(7%

12.5
4 3.0
3.0
5 L g 1
-6 -4 -2 0 2 4 6
Wy m———t

Frequency (rad/sec)

Fig 46(b). Contour Plot of the Sensitivity-Frequeney Respone

of the Designed Bandpass Filter of Example 3 2(h)

with One-Decimal Place of Coefhicients




— o - PR Lo

-134-

Amp.

T

e
~\\\\
=" 2
el ——

(|
]

i \

i | 050

f }4”,//( \Q‘\

g !
N )
1 2 \\ N

/ \\\“\.\\\ \
N (5.0,0)
“t 0-5.0]

“y

Fig 4 6(c) Magnitude-Frequency Response of the 2-D Bandpass Filter in

Example 3.2(b) with One-Decimal Place of Coeflirients




¥ -~
ot o A o br e e o A M A e g g ﬂ»vvmﬂﬂim

e T

-135-

Aouonboay

(pos/peu)

frequency (racd/sec)
| SO PR o e e N e e e Beor. v
LR IVEES VA B E S Forer 8 varng e 320




- 136 -

4.4. SUMMARY AND DISCUSSION

_In this chapter, we have considered the effect of coeflicient quantization of 2-D
recursive digital filters designed in Chapter 1II, under floating point arithmetic. By using
the maximum sensitivity § as a sensitivity measure, a sensitivity comparison of the
parameters of various designs with different word-lengths has been undertaken. The
results show that the suggested technique in Chapter Il (skew-symmetric matrix struc-
tures), requires very low precision up to 3 (in some cases only up to 2) decimal places of

unsigned mantissa.




CHAPTER V

CONCLUSIONS AND I"UTURE WORK

5.1. CONCLUSIONS

In Chapter II, a new technique for the generation of two varpable VSHEPsS has beep
presented. The technique is based on the extension and generalization of the previows
methods. This has been possible heeause of the recognition of some useful properties of
the matrices encountered i the development of the techmque  Polvnomials generated
by this technique have more number of varmbhles assocrated with any coetlicient and
hence the designed fllters are expected 1o be of lower sensitn ity as compared with the
previous ones.  Also, the number of vanables an the polvnomials can be increased by
increasing the order of the mutoin' A Farther, the presented method i simple to anple-

ment,

The apphieation of such polvneanials for the despgen of stable gquoarter plane twos
dimensional recursive digital fillters were constdered an € hapter 10 Phe design tech-
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order of the filters that can be designed using this technique is not limited.

_ The Chapter III of the thesis, also considers the design of 1-D recursive digital
filters to be as special case to which the method of Chapter Il is applicable. This will
enable one to obtain a large number of variables, thereby introducing the flexibility in

optimization.

The coefTicients of these filters were initially based on full precision approximation.
A practical algorithm is described in Chapter III for the design of 2-D as well as 1-D
recursive digital filters with integer coefficients to meet arbitrary response specifications
of the magnitude characteristic. Unlike most of the other techniques of discretization of
coefTicients of a filter having full precision word-length (called continuous problem) the
proposed algorithm is very efficient although it might be suboptimal. For example the
application of the ‘‘branch and bound” technique for nonlinear discrete optimization due
to Dakin {86]. for choosing the coefficients of a digital filter with finite word-length is
very much time consuming as one might have to search its entire tree structure. The
numerical performance of the algorithm is illustrated through examples both in 2-D as
well as 1-D. In our design examples the value of p =2 was used. However, any value of
p in the range 1<p <oo can be used, but in general it will require much more time to

reach the optimum.

A sensitivity analysis given in Chapter IV has shown that another advantage of the
proposed design technique for the desired filters is that the fllters are less sensitive to the
parameter perturbations. This implies that rounding of the coeflicients of the fllters in
Chapter III does not alter the performance of the filters appreciably

5.2. EXTENSIONS

This thesis has presented a technique of generating 2-vartable VSHP to be used 1n
the design of stable two-dimensional (1-D as special case) quarter plane recursive digital

filters. As an extension, one can examine the use of this technique to the design of 2-D
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half plane recursive digital filters. The change in the frequency grid polnta for these
filters should be taken into account. One might also consider the application of 2-D
recursive filters in the area of digital image processing. The Fletcher-Powell optimization
technique {60} used in this thests is one of the best known second-order methods  How-

ever, the main drawback of this method is that it requires a Inrge amount of core

memory if the number of optimization parameters i3 large 08 This deflciency can be
overcome by adopting the conjugate gradient method developed by Fleteher and Reeves
[99]. In all the steepest-descent methods, the gradient of the error function plays an
essential role in the optimization process  Since at each teration the gradient must be
computed, the computation time could be quite large. even for moderate npumhber of
parameters.  To circumvent this problem, one can jmplement the properties of the
adjoint petworhs 9%, 100 to compute the gradient veetor of the error function  Jt s
worthwhile to consider the design of separable denominator 22D filters with circulbarh
symimetric responses where the numerator coeflicients are
a(rv.p)= alN 1.3) ate.N ) a(N o N g oand octagenally syt responses
where the coeflicients ure ale.3) aly.0) ‘Thiee term <sepatable denopnnator 13 °7<h)
Dz DyzpD(z0D (2000 2D Mers can alea be desgned Further the oxten

ston of the technigue presented here can be explored 1o e design of 3 1) e s
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