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ABSTRACT

MMPP Modeling of ATM Multimedia Traffic

Shahram Shah-Heydari

Traffic control in broadband networks has been a topic of interest in many research
projects across the world recently. Due to the variety of the offered services in broadband
networks like multimedia and video, the traffic flowing in the broadband networks is con-
sidered highly bursty. Therefore the traffic control will be very important in preventing
congestion, reducing the probability of cell loss, and defining suitable algorithms for call
admission.

Traffic control cannot be done without having a well-fit model to represent the traffic.
Therefore traffic modeling is an essential part of any network control research project. A
number of models have been proposed to represent various types of traffic in broadband
networks. Among them, Markov-Modulated Poisson Process (MMPP) shows the great
flexibility and analytical tractibility which is needed in traffic control. MMPP model is not
only capable of capturing the interframe correlation in the traffic, but also can be easily
analysed by using well-known Matrix Geometric techniques.

Our research in this project is focused on the study of MMPP for modeling of the traffic
in the broadband networks. We first start with the simplest case, a two state MMPP,
and study its performance for representing the ATM traffic. Starting with a superposition
of voice sources, the performance of various techniques to model the superposed stream
by a 2-state MMPP is compared. Then the techniques are generalized for an arbitrary

aggregated ATM traffic, characterized only from a sequence of traffic samples. A refined
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moment-based technique to derive the parameters of a 2-state MMPP model to represent
such an arbitrary traffic is proposed. Our simulation results show a high degree of accuracy
in parameter estimation. We also present an approximation for the probability of loss in
a 2-state MMPP/D/1 queue. Therefore, based on the measured data from an ATM traffic
source, we can use the proposed technique to model the traffic source by a 2-state MMPP
and then apply the approximation to predict its probability of loss.

There are some cases where two states are not enough for representing the change of
the phases in the traffic. In order to have a more general model applicable to various
types of traffic, we propose a special type of multiple-state MMPP, a superposition of N
2-state MMPP minisources. This model, besides simplicity, enjoys all the advantages of
MMPP models. Its parameters can be found from empirical data. We propose a pdf-based
technique to derive the parameters of the model from the traffic samples. Using several
examples as well as some case studies we show the accuracy of the technique in parameter
estimation and its power to represent ATM traffic. An approximation for the slope of the
curve of the probability of loss versus buffer size is also derived.

Keywords: ATM, Traffic Modeling, MMPP, Markov-Modulated Poisson process, Multi-

media Traffic, Pdf-Based Matching.
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CHAPTER 1
Introduction

1.1 Background

The emergence of Internet as the main future communication medium around the globe
has dramatically enhanced the role of telecommunication technology in the world. Now
the communication networks are not supposed to carry voice telephony only, the role they
performed throughout the 20th century. The start of the new millenium witnesses the great
technical advances which promise future multimedia services including -but not limited
to- voice telephony, video-on-demand, teleconferencing and videoconferencing, various data
services, from low traffic, transaction-based services such as banking on the net and email,
to highly bursty traffic with huge volume of data services such as web browsing and file

transfer, and most important, all of these services must be carried on a unified, broadband

network.

Such requirements, of course, need a lot of research and study in network design. The
designers must take several factors into account, most important of them is the Quality of
Service (QoS) [7] which must guarrantee a certain degree of performance for the end user.
This requires mathematical methods for the analysis of the networks. Furthermore, such
dynamic networks with a traffic which changes its pattern all the time cannot be controlled

in a static way. The traditional public switched telephony networks had a simple, circuit-
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switched network whose traffic could be modelled using Poisson process. The advances in
the queueing theory in the second half of the 20th century made the analysis and design
of such networks straightforward. Such assumptions are not valid anymore for the current
multimedia networks. The circuit-switching, though makes it easy to guarrantee the lowest
possible delay and the best performance, wastes ;uch a huge bandwidth that the broadband
networks simply cannot afford. Therefore it has been replaced by the more efficient packet-
switched approach. The high-level protocol is also changed to internet protocol TCP/IP.
The emergence of Asyncronous Transfer Mode (ATM) technology has changed many issues
in the design too. ATM technology uses a fixed-length cell throughout the network. All
of the above points indicate the need for a comprehensive network design approach which
first of all requires a reasonably accurate, feasible network performance evaluation. Such
evaluation must enable us not only to analyse and predict the performance of the network
at the design stage, but also to predict it on line, in order to activate appropriate network

control and call admission procedures.

Tra.fﬁc modeling is one of the main topics in network performance evaluation. Appropri-
ate l.;ra.ﬂic models can be used in the simulators as traffic generator, or be used in deriving
performance indicators for the purposes of network resource allocation and control in real
time in dynamic netwox;ks [7]. Buffer and switch designs largely depend on the profile of
the traffic, therefore, the traffic models must be capable of capturing the most important

characteristics of the traffic which affect the network performance.

Network traffic is a stochastic process. It means that the intervals between the incoming
cells or packets are random variables because of the uncertainty in the behaviour of the end

users. Therefore the models proposed for network traffic must be probabilistic too. One of



the first proposed model was the simple Poisson Process, first introduced in 19th century
and was found to be a good approximation for receiving calls in a telephony network. How-
ever, the evolution in the telecommunication networks and the increase in the complexity as
well as introducing various type of services, make Poisson Process a poor choice for network
traffic modeling [7]. The most important shortcoming of Poisson process is its memory-
lessness, or independency of the interarrival times. This means that the Poisson process is
unable to capture the correlation between the consecutive frames. In reality usually such
correlation exists. When a user starts downloading a file from Internet, usually it receives
traffic for a specific time interval which varies depending on the network load. Even during
phone calls, usually one talks for a few seconds and listen for another few seconds. This
shows a certain pattern in the traffic and nullifies the independency assumption. Even
more, in recent years several studies have shown traces of the self-similarity phenomenon in
the Internet traffic [8]. The self-similarity property indicates very long-range dependency
in the traffic which repeats itself over various time intervals from miliseconds up to hours

and days. It further complicates the traffic modeling in ATM multimedia networks.

Several models have so far been introduced for various types of traffic. Among them,
the Markov-Modulated Poisson Process (MMPP) shows the maximum flexibility required
for traffic modeling [7]. Using an unlimited choice of the number of phases, MMPP in
the simplest 2-state case or in multiple-state case has been shown to be capable of mod-
eling various types of traffic such as aggregated voice channels and video sources. While
MMPP is not a self-similar model, several studies suggest that it may be used for model-
ing of long-range dependent data traffic under certain assumptions of traffic control. The
main attractiveness of MMPP, besides its flexibility, lays in the analytical tractability of

the MMPP model. MMPP/G/1 queues have been discussed and analysed for almost two



decades and well known analytical algorithms such as Matrix Geometric technique are avail-

able for analysing the systems with this type of the traffic as the input [18].
1.2 Research objectives

Our main concern in this research is ho;av to model an ATM traffic by an MMPP model.
The problem can be described in simple terms: Suppose we have a given traffic stream of
ATM cells, and we want to find the parameters of the model in a way that it can represent
the corresponding traffic well. In other words, the model must be able to be used for the
prediction of the performance of the traffic under various conditions (traffic loads, buffer

sizes, etc).

The given traffic stream is a sequence of samples extracted .from the real data. The
samples may show the time intervals between cell arrivals, and in this case are called the
Time process, or may show the number of arrivals over a fixed observation interval, and in
this case it is called the counting process. Both processes are mathematically equivalent.
However, in this thesis, we have limited our research to the counting process which is easier

to simulate and to work with.

We also divide our modeling task to two separate areas, one for the simplest case, 2-
state MMPP, and the other one for multiple-state MMPP. The reason is that the simplicity
of the 2-state MMPP enables us to use some simpler and more accurate techniques which
are inapplicable in a general multiple-state MMPP case. Nevertheless, the multiple-state

case is studied too because there are cases where a two-state model cannot capture various

phases which exist in the traffic.

In order to assess the performance of the model, we usually form two separate systems,



one a G/D/1 queue for the sample traffic stream and another a..n MMPP/D/1 queue for our
derived model. We assume that if the performance of both systems (including cell delay
and probability of loss under various traffic loads) are the same or close, then the model is
acceptable. Here we use OPNET network simulator [34] to simulate these queueing systems.

The results of the simulation have been analysed by MATLA B software tool.
1.3 Scope of the thesis

In Chapter 2 we introduce the basis for traffic modeling and characterizations. Various
traffic indicators are discussed and several models for video, voice and data traffic are

reviewed. A separate section has been dedicated to study the MMPP model.

Chapter 3 is dedicated to the 2-state MMPP model. We start the study of MMPP mod-
eling with the simplest case, the aggregated voice tra,f_ﬁc.A Several techniques for matching a
2-state MMPP model to an aggregated voice traffic are discussed, and their performances
are analysed and compared by using simulation. Then the matching technique is general-
ized for a general, arbitrary traffic rather than an aggregate voice traffic. The performance

of the model is studied and also an approximation of the probability of loss in the 2-state
MMPP/D/1 queue is derived.
In Chapter 4 a more general model, a special case of multiple-state MMPP is introduced

for modeling ATM multimedia traffic. A new pdf-based technique is proposed to derive the

parameters of the model. An approximation for the slope of the curve of the probability of

loss is also presented.

Finally, in Chapter 5, the conclusions of the work and some suggestions for future work

are presented.



CHAPTER 2
Traffic Characteristics and Modeling

2.1 Introduction

In this chapter we start with the main characteristics of ATM network traffic. We examine
some parameters of the traffic which are more important in the queueing behaviour. Then
we will survey various models proposed for modeling of the traffic sources, for different types

of traffic (voice, video and data). We study our selected model, MMPP (Markov-Modulated

Poisson Process) in detail.
2.2 Traflic source characteristics

Source characterization defines the parameters of the traffic source which are important in
the study of the network behaviour with that traffic. These parameters can be used for
source modeling. They are also used by the network management system to allocate its
resources among different users, in order to avoid congestion and define and maintain a
measure for Quality of Service (QOS) which is negotiated at the time of the connection.
They are also used to determine whether to accept a call into the network or not (Call
Admission Control). According to CCITT, the following parameters are important in source

characterization [3]:



e Peak Arrival Rate: The maximum cell arrival rate or the maximum amount of network
resources requested by the source. This parameter may alternatively be defined as the
reciprocal of the minimum interarrival time between two consecutive cells belonging

to the same connection. It is sometimes called Instantaneous Peak Cell Rate too.

e Average Arrival Rate: The average cell arrival rate or the average amount of network
resources requested by the source. It may be the True Average Cell Rate, the total
number of cells generated during a connection divided by the elapsed time, or the
Estimated Average Cell Rate, the estimation of the true average over a long time

interval T.

® Burstiness: The burstiness can be viewed as a measure of the duration of the activity
period of a connection. One of the widely used definition for burstiness is the ratio of

the peak cell rate to the average cell rate.
e Burst length: The average duration of the active state.

There are some other measures who help in characterizing the traffic and modeling it in an

efficient way. In the next section we will discuss them in more details.
2.3 Performance measures for Traffic modeling

When we try to model the ATM traffic, our ultimate goal is to come up with a mathe-
matical description that can provide us with a prediction of the queueing performance of
the network. Before getting into the details of various models for each type of traffic, we
must know our criteria for deciding whether a specific model is performing satisfactory or
not. Of course in the ideal case, we prefer a model that behaves ezactly in the same way

the original traffic would behave under all conditions. However, one must note that due to
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the stochastic nature of the network traffic, it is almost impossible even to characterize the
real physical traffic, let alone finding an exact mathematical model for it, which is already
difficult enough even for deterministic physical processes. Therefore, like any other case,

we try to find a model which can predict those performance measures which are the most

important to us.

It is generally accepted that the following measures form a rather good criteria for
deciding whether a model performs well or not [7]. A model which predicts these measures

well enough for a given traffic and system, is accepted.

e Quality of Service (QoS) Parameters : These are some general parameters which
“show the performance of the system. Every model must be able to predict the QoS
for the traffic which it is trying to model. Therefore these parameters may be used to

evaluate each model. The main QoS parameters are as follows:

— Average Delay : In general the end-to-end delay, i.e., the average time it takes
for a cell to reach from input to the system to the output of the system, is a
good measure of performance. This includes all queueing delays at the buffers,
transmission delays, switching delays and propagation delays. In most cases the
first one, the queueing delay, is the most dominant. Transmission delays and
switching delays are considered fixed (constant) in ATM networks? because the
cell length is fixed. Propagartion delay, although dominant in some cases such
as satellite networks, but still is considered constant in ATM networks and does
not play any role in network stochastic analysis. Therefore in the analysis of
ATM networks, these types of delay are either ignored or added to the total

delay as a constant. Average delay can be replaced by the queueing delay as a



performance criteria in most of the cases. Based on Little’s formula [11], average
queue length can also replace the queueing delay. Average delay is the most
important parameter in real-time applications, such as voice and video traffic

transmission.

Probability of Cell Loss : In case that the buffer has a finite capacity, the extra
cells may be discarded or lost. Also in some types of switches, such as Knock-
out switch, some of the cells who are destined for the same output port may be
discarded. Probability of Cell Loss is the most important factor for computer
data traffic (such as internet) because losing a cell forces the sender to re-transmit
it based on the communication protocol. We will explain the difference between

real-time and non real-time traffic in more details later.

In order to design a buffer, one wants to know what size of buffer must be chosen
for a required probability of loss (or probabilit;f of buffer overflow, in some texts).
It is very time-consuming to do analysis or run simulation for various buffer sizes
and then come up with a curve which shows the probability of loss versus buffer
size for the design purposes. Therefore network designers most of the time use
an approximation to simplify the job. Instead of assuming a finite buffer and
changing its size and calculating the probability of loss, it is preferred to solve
the problem for an infinite buffer, and compute the probability density function
of the queue length in this case. Then the survivor function of the pdf of the
queue length, Pr(queue length > X), indicates the probability that the queue size
goes beyond a specific length for an infinite buffer. Then this probability is used
instead of the probability of cell loss. Of course there is an approximation here.

The behaviour of large buffers is assumed to be identical to that of the infinite

10



one. However, this assumption is not so off when the buffer size is large and it
simplifies the analysis and/or the simulation noticably. Also, it is not difficult to
show that mathematically the value of the average queue length can be calculated
from this survivor function. Therefore, the survivor function of queue length is a
good measure to replace both the probability of loss and average queue length (or
delay). In this work wherever we point to the probability of cell loss, we mean
this approximated form, the survivor function of the queue length for infinite

buffer case.

o Indez of Dispersion for Counts (IDC): If we denote the number of arrivals over a
time interval of t by random variable X(t), then the Index of Dispersion for Counts
is defined as the ratio of the variance of X(t) over the mean of X(t). By computing
this parameter for different values of time interval t, we will have a curve for IDC(t)
versus t. Although IDC curve is a measure of characterization of the traffic rather
than a measure of queueing behaviour, it has been shown that this curve has a definite
effect on the queueing performance [25]. Any model must have an IDC curve as close
as possible to the origical traffic, to have the same queueing performance as it. We
will show the effect of IDC curve on the queueing performance in the next chapter.
The advantage of IDC curve is that it is computed from the traffic itself, not from its
queueing behaviour. So even without any simulation or analysis of the queue, IDC is
computable from the input traffic itself. It saves us from unnecessary extra work by

looking at IDC curve of the model first before analysing the queue using it.

In our work, we mainly used IDC and survivor function of the queue length as our measures

for the performance of the models.
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2.4 ATM traffic modeling

Several surveys have been done in the past on the subject of ATM traffic modeling. The

reader may refer to (7], [3], [2], [4], [1], [5] or an excellent chapter in [10].

ATM traffic can be categorized from the service point of view. The following services

are available in ATM:

Constant Bit Rate (CBR) : Here a fixed part of the bandwidth is allocated to the
connection. Mainly for continuous, fixed rate bit streams which cannot tolerate delay

or jitter, such as voice. The traffic pattern is deterministic.

Variable Bit Rate (VBR) : Defined with two parameters: average bit rate and peak
bit rate. For those types of traffic who need minimal cell delay variation and have a

bursty traffic pattern, such as video.

Available Bit Rate (ABR) : A minimum bandwidth is guaranteed, and over that up to

the current available bandwidth is allowed. Suitable for bursty, delay tolerant traffic

such as LAN data.

Unspecified Bit Rate (UBR) : No guaranteed quality of service.

From another point of view, ATM multimedia traffic may be categorized into real-time and

non real-time (or jitter tolerant) traffic. The term jitter points to the cell delay variation.

Obviously for CBR such a variation does not happen. Real time services such as voice and

video do not tolerate jitter, so CBR or VBR services must be used for them. For data the

variation in delay is not important. Therefore ABR and UBR can be used for data traffic.

Now let us examine briefly various types of ATM mutimedia traffic and the models
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proposed for each of them.
2.5 Voice Models

Voice services have been and continue to be an important part of any broadband commu-
nication service. The properties of voice ;:rafﬁc depend upon the encoding scheme adopted.
The coding scheme may be fixed rate (such as PCM, DPCM, DPCM or CELP) or variable
rate [5]. However fixed rate coding schemes are those which are widely used. For voice
services the main important QoS parameter is delay, which is not tolerated. However, as

we discussed before, a certain level of the probability of loss is acceptable.

The traffic from an interactive voice source looks like a cell stream modulated by arrivals
during talkspurts and no arrivals during silences. For this reason, an on-off model looks like

natural for voice sources.

2.5.1 On-Off Model

On-off model is a two-state markov model which alternates between phases of activity and
silence phases (Figure 2.1). During active phases, cells are generated at a fixed rate. During
silence phases, no cells are generated. The sojourn time at each state (the time length of
each phase) is a random variable with an exponential form probability density function.
The assumption of exponential distribution for talkspurt phase (state ON ) is in agreement
with the measurement, but for silent period it is not a perfect fit [30). Nevertheless, in the
analysis of On-off sources, the probability density function of the length of the silent phase

can be chosen arbitrarily [17]. The On-Off model can be approximated as a renewal process

[30].
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Figure 2.1: On-Off model

As Figure 2.1 indicates, the on-off model is fully described by three parameters: a
denotes the mean transition rate from state ON to state OFF, 8 denotes the mean transition
rate from state OFF to state ON, and T denotes the constatnt interarrival time in state ON.

The typical values of the parameters for PCM voice source is &~! = 352ms and 8~ = 650ms
[17].

In [17] many of the characteristics of on-off model, including the probability density
function of interarrival time, the moments of the counting process and the value of index of
dispersion for counts (IDC) for large lags have been derived. In the same reference it has
been shown that a superposition of statistically multiplexed voice sources can be modeled by

a Markov-Modulated Poisson Process (MMPP) which we will describe in the next chapter.

One of the advantages of on-off model, besides its simplicity, is its analytical tractibility.
On-off/D/1 queues can be solved analytically by using fluid flow approximation technique

(10].
2.5.2 IPP model

IPP stands for Interrupted Poisson Process. This model is slightly different from on-off

in the way that in IPP model, the cell generation in state ON is governed by a Poisson
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process rather than a deterministic constant rate. So the parameter T here denotes the
mean interarrival time which is an exponentially distributed random variable. Although
on-off model seems more relevant for voice traffic, but IPP can be used for variable rate
coded voice sources. IPP is a special case of two-state MMPP with mean cell generation

rate of zero in one of the states. So it is analytically tractable in the same way as MMPP

is (Section 2.8).
2.6 Video Models

It is expected that video will be a major source on future broadband ATM networks because
of all of the multimedia services. Applications such as video conferencing, video phone, video
on demand are likely to be used extensively on internet and broadband networks. In fact,

the word multimedia traffic mainly points to the presence of video traffic alongside data and

voice traffic.

Today the VBR video codecs are mainly used. The variable-bit rate coding provides a
constant quality and is supported by ATM. There are a number of compression methods

for video, with MPEG (I and II) being the most used technique [12].

VBR video sources are highly bursty. The bit rate depends on the content of the scenes,
the motions, and also the coding scheme. We may expect the trafic stream from a video
conference to have less variation in bit rate than the movie terminator. Usually there is
an abrupt change in bit rate when a scene change occures. Within a scene, only a small
portion of the picture changes from a frame to the next frame. Also the nature of video
data is such that it recorrelates at each frame and line interval. For lines, the reason is that

the data on one part of an image line is very similar (or somehow correlated) to the data
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Figure 2.2: Discrete-state, continuous time Markov chain model for video
on the same part on the next line (which shows the same object). This property is called
spatial correlation. For frames, within a scene the data in one part of the frame is highly
correlated to the data in the same part in the next frame. It is called temporal correlation.
Due to the above correlations, video traffic could not be modeled by a memoryless process

such as Poisson.

There are several models for variable-bit rate video traffic [10]. Some models describe
only the intrascene changes effectively. These models are more appropriate for videocon-
ferencing, videophone or show talk programs where there are not many scene changes. To

model the traffic of high motion movies one needs a model which captures scene changes

too.

Here we briefly examine some of the various techniques for modeling of VBR video. For

more details the reader may refer to [10] or [7].
2.6.1 Continuous time Discrete state Markov Model

This model was proposed by Maglaris et alin [14]. It is suitable for modeling the intrascene

changes although it was later generalized to consider scene changes too.

The main idea here is to quantize the bit rate into finite discrete levels so that a contin-

uous Markov chain as in Figure 2.2 can be formed. Then the chain can be broken down to a

1

superposition of homogenous on-off minisources similar to the one in Figure 2.1 with T =
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If the number of minisources is denoted by M, it is easy to show that for a superposition of

M on-off minisources one can write [14] ! :

P[Mt) = kA] = gl p* 1 - )M+ p= £
E(M)=MAp
(2.1)
C(0) = MA?p(1 - p)
C(r) = C(0) e~(atA)T
Where E(A) and C(7) are the average bit rate and autocovariance function of the superposed
traffic, respectively. Therefore by measuring the average bit rate and autocovariance of the

video traffic, the parameters E(A), C(0) and @ = a + B can be estimated. Then it is easy

to show that:
2
a=a/[1+ 3753

f=a—«a

A=g+EQ

The only problem here is how to choose the number of minisources, M. In [14], the value of

(2.2)

20 has been proposed. However, in [10] it says a value of 8 also yields acceptable results.

Surely the higher the number of minisources, the lower the quantization error.

A technique for queueing analysis of the above model is also presented in [14]. Therefore

the model is analytically tractable.

2.6.2 Autoregressive models

Autoregressive models has been extensively used for modeling of video traffic [14]. In this

class of continuous-state discrete-time models, the next random variable in the sequence is

'The notation here is slightly different from [14]. We changed the notation to keep it the same as
Figure 2.1 and [17]. All of the equations have been changed respectively.
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defined as an explicit function of the previous ones within a time window stretching from
the present into the past [4]. The simplest case will be the linear Autoregressive model

which is defined as follows:

A(n) = aA(n — 1) + bw(n) (2.3)

where A(n) represents the bit rate of the source during the nth frame, and w(n) is a sequence
of independent Gaussian noise. aand bare constants. Assuming that w(n) has mean value of

n and variance of 1, the steady-state average and autocovariance function can be caluclated .

as [14]:
E(\) = 7
1-e (2.4)
b2
C(n)=1Zza™ n2>0
Therefore all of the parameters of the autoregressive model can be found by matching the

average bit rate and autocorrelation function of the empirical traffic data to the above

expressions.

Autoregressive models are suitable for modeling of intrascene changes in video traffic.
The accuracy of the model will increase if the order of the model is increased. Although this
class of models is suitable for simulation, but it is rather difficult to use them in queueing

analysis. So their application is limited to traffic simulation.

A more complicated autoregressive model is ARMA (AutoRegressive Moving Average)
model for video traffic, proposed in [15]. The advantage of ARMA model is in its ability to
catch the recorrelation property, the one in which the autocorrelation curve has a number

of peaks instead of a monotonic exponential decreasing. In ARMA model, the number of

arrivals during ith interval, X}, is given by:
Xi=g(aZicm + Y +v;) (2.5)
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where Z; and Y; are sequences of correlated Gaussian noise random variables with mean
zero, and v; is a sequence of uncorrelated Gaussian random variable. Check [15] for more

information on the model parameter estimation.

Another class of models which fits into the group of autoregressive models is Transform-
Ezpand-Sample (TES) model. The details of this model is beyond the scope of this thesis.

For more information look at [4].

2.6.3 Markov-Modulated Poisson Process

The MMPP model is the main topic of research in this thesis and so we have dedicated an
independent section to this model and two chapters to model parameter estimation. For
more information on the MMPP model refer to Section 2.8. MMPP has been found to be
a good model for representing a superposition of on-off sources ([17]) and therefore can be
used as an alternative to discrete-time continuous-state Markov model which we discussed
in Section 2.6.1. However, it has been shown that the MMPP is unable to catch some long
range dependency effects in video traffic [10]. the MMPP model is short-range dependent,
which means the effect of correlation is within short ranges. In other terms, the IDC curve
of the MMPP model does not increase for long lags. In spite of this shortcoming, the
analytical tractability of the MMPP queues makes them an attractive choice for modeling

of various types of the traffic. We will describe the MMPP model in more detail in this

thesis.
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2.7 Data models

2.7.1 Properties of data traffic

Data traffic is the main type of jitter-tolerant traffic type. It means that unlike real time
video and voice traffic, data traffic can tolerate a certain degree of delay variation, but
it is very sensitive to cell loss, as it forces the sender to re-transmit. Therefore the most
important QoS parameter for data traffic is the probability of loss, not average delay and

delay variance.

Another feature of data traffic is that unlike video and voice, the statistical behaviour
of data traffic is application-dependent. It means that it is impossible to come up with one
universal data model and apply it to every case. Various types of data traffic such as WWW
browsing, client-server transactions and LAN protocols each has different behaviour. It de-
pends on the communication protocol, too. The performance of IP is expected to be different
from X.25 or IPX. Due to the complexity and the large number of various situations and case
studies for data traffic, the modeling of data traffic is still in its early ages. Nevertheless,
there are certain characteristics which distinguish a data traffic stream. First of all, the data
traffic is highly bursty, much burstier than video or voice. It is also long-range dependent.
For more information on the definition of long-range and short-range dependencies refer to
[7). In our research we consider every traffic type with a forever-monotonically-increasing
IDC curve (an infinite value for IDC(o0)) to be long-range dependent. As it was explained
before, the MMPP model is short-range dependent. In Figure 2.3 a comparison between

IDC curves of short-range dependent and long-range dependent traffic is shown.

The new studies also reveal another property in data traffic, self-similarity, in LAN

data traffic [8]. Self-similar processes display structural similarities across a wide range of
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Figure 2.3: IDC curves of short range and long range dependent traffics
time scales. This property indicates the absence of a natural length of burst. At every
time scale, ranging from a few miliseconds to minutes and hours, bursts consists of bursty
subperiods separated by less bursty periods [7]. There are a number of models who show

this property. Here we just very briefly describe one of them, Pareto-Modulated Poisson

Process, or PMPP. For more information refer to [7].

2.7.2 PMPP Model

PMPP is an example of the models that show long-range dependency and so is believed to
be able to represent ATM data traffic [6], [7]. The simplest version, 2-state PMPP, consists

of a Poisson process switching between two average rates A\; and A;. The sojourn time in

21



each state has a Pareto distribution, defined by the following probability density function:

f(t) = ag=(@+) (2.6)

It has been shown that the IDC curve of this model will have a form of 1 + k¢?, hence

monotonically increasing with t [7].

PMPP is one of the models which are capable of catching the effect of long-range de-

pendency. However, it is not analytically tractable yet. Therefore the use of the model is

so far limited to simulations only.

2.8 Markov-Modulated Poisson Process (MMPP)

As we explained before, the main topic of this research is the applicability of the MMPP
model in representing ATM traffic. Therefore here we study the model in more detail to
provide the reader with some important characteristics of the MMPP model which we use

in the rest of this thesis. The best source of information about the MMPP is [18].

The MMPP is a doubly-stochastic Poisson process whose arrival rate is given by an
underlying m-state irreducible Markov chain which is independent of the arrival process.
When Markov chain is in state i, arrivals occure according to a Pt;isson process of rate A;.
The sojourn time at each state has an exponential distribution. In Figure 2.4 the states of

the MMPP is shown for a simple 2-state MMPP.

The MMPP is parameterized by the Markov chain infinitesimal generator matrix @ and
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Figure 2.4: MMPP state diagram

Poisson arrival rate diagonal matrix A as follows:

~01 012 - Oim
g2y —02 **° O2m
Q= (2.7)
Omi Om2 *°° —Omnp J
m
oi= Y o
J=1,#
F -
MO 0
0 ,\2 ce 0
A= (2.8)
0 0 Am
L .
A= (A1 Ay ooy Am)T (2.9)

The steady-state vector of the Markov chain, 7, can be computed from the following
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equation:

Q=0 Te=0 (2.10)

In the 2-state case, 7 is given by

1

" + T2 (1‘2, Tl) (2.1 1)

T = (my, M) =

MMPP is not a renewal process, but it can be considered a Markov renewal process [18].

The superposition of MMPPs is again an MMPP. The generator § and rate matrix A

of the composite MMPP are calculated as follows:

Q=109 - ®Un

(2.12)
A=MOA S --®A,
Where @ represents the Kronecker-sum as defined in [18].
The IDC curve of the 2-state MMPP can be caluclated as follows [17]:
IDC() = 1+ 2rira (A — Ag)? 2rirg(A1 — Az)? (1—e-tritrty  (2.13)

(r1+ r2)2(Mr2 + Aar1) (11 + r2)3(Aarz + Azry)t

2.8.1 MMPP/G/1 queue

The Matrix Geometric techniques have been used for analysis of the MMPP/G/1 queue in

[17] and [18]. Here we just summerize the algorithm very briefly. For more details please

refer to [18].
Inputs:

e The transition rate matrix Q
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e The cell generation rate matrix A
e Mean arrival rate Aoy = 7
e The service time distribution A (z) with finite mean k, second and third moments (2
and k(3 and Laplace-Stieltjes transform H(s)
Algorithm for solving MMPP/G/1 queue:
1. Compute matrix G as follows:

® Go=0,Hop=1,k=0,1,2,---,

e © = maz((A - Q)is),

) n ’
7n=‘/(; e—ex(e_n:z:)'—dH(z)’n=0alf""n*

ﬂ.

where n* is chosen such that E'yk >l—6,6ag<K1.
k=1

e Fork=0,1,2,.--compute
H"+1'k = [I+ %(Q —-A+ AGk)]H‘n,ln n= Oa 1,-.-- n*

n.
Gk+l = Z ’Yan,k

n=0

Continue the above recursion until ||Gr—1 — Gil| < €2 € 1

Set G = G

2. Compute the steady state vector g which satisfies
9G=g ge=1

3. Compute

1 —
zo=-—Lg(A-Q)
/\tat
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4. Compute the system size distribution at departures

e Compute A, matrices as follows:

o0
A, = Z ‘y,,K,(,") v2>0
n=v
KO =1,
o, 21 (2:14)
K = K{V 01 Q ~ A) + 1, v20

K = KPTIO71(Q - A+ N+ K0T, a2 v21

1(;11)=0, n<0, n<v

The summation for A, must be truncated to the number N which is chosen as a

maximum of NV; or N3 where the following conditions are set for N; and Ny:

Ny Nz
Z'yn >1-¢ max;|Y (Awe)j—1| <e (2.15)
n=0 v=0

vn is defined in item 1.

Ap = Ak + A1 G
Br = (A - Q)" 1AA; (2.18)

By = Bi + By G
It is a backward recursion. Therefore one must start at a sufficiently large index
¢ in order that i Age and i Byie are negligible and so A; and B; could be

k=i+1 k=141
set to zero.

e Compute system size distribution at departues as follows:

i—1
zi = [2oBi + ) Ty Aip1-u](1 - 41)7" i1 (2.17)

v=1
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5. Compute

Yo=(1-p)g

6. Compute the queue length distribution at an arbitrary time using the following equa-

tion:

Yi = [Yic1A = Aioe(Zicy — 2)](A- Q) (2.18)

7. The transform of waiting time distribution can be computed from the following equa-

tion:

W(s) =s(1-p)g[sI+Q — A1 - H(s))] e (2.19)

In the next chapters we will present some simple formulas to approximate some part of the

analysis of MMPP/D/1 queue as a special case.

Now we have enough information about MMPP model to start our discussion on MMPP
parameter estimation, first for the simple two-state case and then for a more general

multiple-state case in the next chapters.
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CHAPTER 3
Modeling of Aggregate ATM Traffic using 2-state Markov Modulated
Poisson Processes

3.1 Introduction

In this chapter we introduce some techniques for modeling various types of traffic by a
2-state Markov-Modulated Poisson Process (MMPP), introduced in Section 2.8. These
techniques are widely used for deriving the corresponding model parameters for each type

of ATM traffic, which we call model parameter matching.

We first start with one of the main parameters of MMPP model, the IDC (Index of
dispersion for counts) curve. This parameter was introduced in the previous chapter. Here
we look at it for special case of MMPP model in more detail. IDC curve plays a major role
in queueing performance and therefore is extensively used for parameter matching purposes.
Then we start the MMPP parameter matching process for a special type of ATM traffic, the
simple case of aggregated voice traffic. We study and compare several different techniques
proposed for parameter matching in this case. Then we extend it to a general case of
ATM traffic, known only by its samples. We present a new, refined matching technique for

modeling of an arbitrary ATM traffic by a 2-state MMPP model.
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3.2 The IDC curve for 2-state MMPP model

In the previous chapter we defined the index of dispersion for counts as the variance of
the number of arrivals over an observation interval, divided by the mean of the number of
arrivals over the same fixed observation interval. It has been analytically shown that for a
2-state MMPP model with parameters [ A1, A2, r1, r2 ], The IDC curve is derived as

follows [17]:

2(/\1 - A2)2r1 T2 _ 2(/\1 - /\2)21‘1 T2 (1 _ e—(r1+r2)t) (3 1)
(rit+r2)2(Mra+Az2r)  (ri+r2)3(AMrz+2A2rm)t )

IDC(t) =1+

Equation (3.1) can be re-written in the following simpler form:

IDC(t) = IDC(c0) — I—I?—C%Lla — 1Y) (3.2)

where:

2(A1=A2)2 7y
IDC(OO) =1+ ("x+$'z;2 (/\21)"241-/\2 ry) d=71+r2

Equation (3.2) shows that the IDC curve of the 2-state MMPP source has only two
parameters, IDC(c0) and d = r; + r2. Figures 3.1 and 3.2 show the effect of each of the

parameters on the resulted IDC curve.

The parameters of IDC curve have very important effects on the queueing performance.
In order to examine this effect, we generate some MMPP model with particular IDC curves
and compare their performance in an MMPP/D/1 queue. The measure of performance is
the probability of loss, which we approximate here with the survivor function of the queue
length for an infinite buffer. In all of the following examples, the mean arrival rate A is kept

the same. The traffic load is 90% for all of the MMPP/D/1 queues.
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3.2.1 The effect of IDC(c0)

Let us suppose that we have two models with exactly the same mean arrival rate and d but
with different IDC(co). Assume that the new model has a value of IDC(o0) of K times of
that of the reference model. The parameters of the new model [A; , Az, 71, 2] can be

calculated from the original parameter set by using the following equations:

f=1 =n 1"2 =T (3 3)

i = (VE ri4ra) Mt+ri(1-vE)); do = A1 = VE(1 — A2)

ri+ra

The following table shows a sample case:

{ Process | A1 (cps) [ A2 (cps) [ ry (s7F) [ 2 (s71) ]

P1 6651.7 5359.6 1.7333 1.0783
P2 6107.0 5698.4 1.7333 1.0783
P3 8374.1 4288.1 1.7333 1.0783

Table 3.1: Three MMPP models with different IDC(o0)

In Figure 3.3 the performance of the models in an MMPP/D/1 queue are compared.

A huge difference is noticed. It shows that the larger the value of IDC(00), the higher the

probability of cell loss.

3.2.2 The effect of d = r; + r2

Here we have two models the same mean arrival rate X and IDC(co) but with different d.

Assume that the new model has a value of IDC(o0) as K times of the origical model. It
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Figure 3.3: The effect of IDC(c0) on the queueing performance

is easy to show that in this case the values of A1 and A can be derived from Equation set

(3.3). For transition rates we can write:

7‘;1 = Kr1 f‘z = K‘I‘z (3.4)

The test case model parameters are shown in Table 3.2.2. The queueing performance of the

models is shown in Figure 3.4. Again here, the increase in d results in an increase in the

probability of cell loss.

3.2.3 Models with the same IDC curve

It is also possible to generate two MMPP model with the same IDC curve but with different
queueing performance. The trick is to keep X, IDC(c0) and d the same for both of the models

but to change the value of r{/ro. Here sdppose that we increase the value of r;/r; by a
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[ Process | A; (cps)

Az (cps) | ri (s0) [ ra (577) |

P1 6651.7 5359.6 1.7333 1.0783
P2 13821.0 | 899.705 | 173.3264 | 107.8307
P3 6107.0 5698.4 0.1733 0.1078
P4 8374.1 4288.1 17.3326 10.783

Table 3.2: Four MMPP models with different values of d = r; 4 r; but the same IDC(o0)
and mean arrival rate
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| Figure 3.4: The effect of d = r; + r; on the queueing performance
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factor of K. Then the new model parameters can be calculated from the original parameter

set as fOllOWS:
2 K(r+ A
= r 1"2 fa =

3= Arratdar

ri+ra

A=A
D=8V
M=X+KD

>

(3.5)

:\2 =A-D
In Table 3.2.3 a test case is shown with some 2-state MMPP models with exactly the same

IDC curve and mean. The result of MMPP/D/1 simulation is shown in Figure 3.5 which

indicates a big difference in the performance.

Process | A; (cps) | Az (cps) [ 1 (s71) [ r2 (s77)
P1 6651.7 5359.6 1.7333 1.0783
P2 7841.9 5656.5 2.556 0.2556
P3 6053.8 3868.4 0.2556 2.556

Table 3.3: Three MMPP models with exactly the same IDC curves

The bottom line of the above results is that, while IDC curve plays a very important
role in the queueing performance, it is not enough for the unique identification of the model

parameters. As we are going to show in the next sections, some other parameters of the

traffic must be used too.

Now let us start our model parameter matching. First we study the simplest case, the
modeling of aggregated voice sources. We call it the simplest case because a very well

studied mathematical model for PCM voice source is available: On-Off source.
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Figure 3.5: Models with the same mean and IDC curves but different queueing performance

3.3 Modeling of aggregated voice traffic by a 2-state MMPP

In Section 2.5.1 the on-off model for voice source and its various parameters were described.
Figure 2.1 shows the model. In this section we examine the case of aggregated voice sources

which can be modeled by a superposition of on-off sources.

In most of the cases, a (large) number of voice sources are multiplexed on the same line
before reaching the ATM switch. So the problem is how to solve a queue or switch with a
superposition of on-off sources as input. One proposed alternative is to match a two-state

MMPP model as appears in Figure 2.4 to the superposition of on-off sources.

Several techniques have been proposed for deriving the parameters of the MMPP model
to be matched to the aggregated on-off sources. A range of the charcateristics of MMPP

and on-off sources are used in the matching, such as moments of arrival rates or interarrival
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times. Here we go over some of the more famous techniques briefly. We use the following

assumptions:
- @ The voice sources are packetized.

e All of the voice sources have identical parameters, or in other words, are homogeneous.

Although a few techniques work in hetrogeneous case too.

e Only active sources are considered, in other words, those sources who currently are
holding a call. Usually the process of making a call is modeled by a Poisson process.

Call admission process is not a topic of interest in this research.

The following notation for the parameters for the superposed on-off traffic and MMPP

model is used:
e Parameters of the superposition of on-off sources:

— N : Number of active on-off sources

— a : Mean transition rate from state ON to state OFF
— B : Mean transition rate from state OFF to state ON
— T : Fixed interarrival time in state ON

— A : Fixed cell generation rate in state ON, equals to 1/T
e Parameters of 2-state MMPP model:

— A1 : Mean cell generation rate in state 1
— A2 : Mean cell generation rate in state 2
— r1 : Mean transition rate from state 1 to state 2
— rg : mean transition rate from state 2 to state 1
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The models have been shown in Figures 2.1 and 2.4.
3.3.1 Moment-based matching

The moment-based matching was first introduced by Heffes and Lucantoni in [17]. The
technique has been widely used thereafter and has been extended to more general cases as
well. In this technique, the four parameters of the 2-state MMPP are chosen so that the
following characteristics of the superposition of on-off sources are matched with those of

2-state MMPP model:
1. The mean arrival rate
2. The IDC (variance-to-mean ratio of the number of arrivals in the interval (0,%;) )
3. The asymptotic value of IDC (IDC(c0))
4. The third central moment of the number of arrivals in the interval- (0, ¢2)

Now let us calculate the value of each of the above characteristics for superposition of on-
off sources and 2-state MMPP in term of the model parameters. We just briefly offer the

results of the matching technique. For detailed mathematical derivation check [17].

For a single on-off source, the moments of number of arrivals over an interval which we

denote by random variable N (0 : t), can be defined as:

M,(t) = E[N"(0: £)] (3.6)
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The Laplace transform of the moments, M, (s) can be calculated for the first three moments

as follows:
M (s) = A/s?

Mi(s) = & (1—_%4,{7) (3.7)

- = A [ 144f(5)+/%(s)
Ms(s) = 2 ( a7 )

where A = 1/(T'+aT/B) is the mean arrival rate and f(s) = [1—a T+ TB/(s+B))e*T

is the Laplace-Stjelties Transform of the interarrival distribution. Obviously, M;(t) = At

The IDC curve is defined as var[N(0: ¢)]/E[N(0: t)] and can be derived using M, and

M. In [17] it was shown that the value of IDC at large lags for the superposition of on-off

sources could be calculated as:

Jim IDC(#) = IDC(co) = 1—(;1(,1;.;13’)22 (3.8)

Also the third central moment for the superposition process can be calculated from M;s

defined in (3.7) as follows:

13 (0,8) = n [Ma() — My () My () + 2M3(2)] (3.9)

For the 2-state MMPP, If we denote N, as the number of arrivals of the stationary

2-state MMPP over the interval (0,¢), The moments of NV, can be calculated as follow:

N, = E[N]]) = Ayratdory 4

ritrz

_ var(Ne) _ 2(M=22)2r r 2(A1=A2)2r r —(ry+r .
IDC(t) - ,t =1+ (r1+1('2)lz (z\j)r;:}l-,\;r;) - (r1+r(z)~!’ (z\:rzrz\;rl)t(l — e+ 2)t) (3 10)

— 2(M=r2)2ryr
IDC(c0) =1+ ("1-*"'2)12 (1\21 fz-il-t\: r1).
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E[(N,— )] = ¢®(1, 1) — SN.(N, — 1)!3—%-1‘1‘-) “N(N - )(Ni—2)  (3.11)

¢

where

g@(1,8) = - [-‘%"ta + £2142 4 Agit + Ajate~ ()t 4 44 (1 - e_(r‘+r2)t)]
3
An = ‘—Al(::i;\:)rfl
_ 2rira{0—=22)*( A1 ratdar

A _ rira(M=23)2aritdera—2(Ai1ra+dary)]
31 = (rit+ra)?

— =2r1ra(A1 =223 (ry—ra
Ao = 172 A1=)22)2(Airid4Azre
12 (r1¥r2)*

In the following the algorithm for finding the parameters of the 2-state MMPP model

from the parameters of the superposition of On-Off sources is explained:
1. Parameters of Aggregate on-off sources: «, 8, T, N.
Parameters of the 2-state MMPP model: Ay, A2, m1, 2.
2. Considering Equations (3.7), we define:
a=M0 _ \=1/(T+ oT/B)

b = IDC(z) = 22(-Hi0) (3.13)

beo = IDC(00) = =4=eTr

3. Calculate b; at an arbitrary chosen point t; and find d = r; 4+ r; from the following

nonlinear equation numerically:

d= 1 (_bi:i.(l - e—dtl)) (3.14)
t1 btl

boo —

39



4. Using (3.9), calculate third central moment p(0 : t) at an arbitrary time lag ¢,.

Define K = (A — A2)(r1 — r2), and find K from the following equation:

43 (0 : t) + 3aty(at; — 1)bs, + atz(at; — 1)(at; — 2) =
a®t3 + 3a2(boo — 1)t2 + -31(6%’—11 [—1;(- - a] ts + 3 (boo — 1)(K + ad)tze~%  (3.15)

~%(boo — 1)K (1 — e™%2)
5. Then based on the value of K, we will have:

o If K=0,

WIR

rr=re=
A1 =a+1/2ad(be — 1) (3.16)
A2 =a - }v2ad(be — 1)

o If K # 0 then we define e = %}Lp and write:

=41+ )

ro = d— r
(3.17)
— (ad K
Y= (%-75) (5%
M=

The time lags t; and ¢{; may be chosen arbitrarily. However, it is better to choose them in

a way that we get a good fit of IDC curve.

In [17] a technique for solving MMPP/G/1 queue has been proposed too which we
reviewed in Section 2.8.1. The performance of the moment-based technique against other

techniques will be studied in Section 3.3.4.

The moment-based matching, as we are going to show later, offers a very good matching

between 2-state MMPP model and the superposition of on-off sources. It matches IDC
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Figﬁre 3.6: Birth-death process representing the superposition of on-off sources

curve very well. The main problem with the moment-based matching technique lays in the

difficult, lengthy calculations of inverse Laplace transform.

3.3.2 Overload-Underload Approach

The idea of underload-overload approach has been used in the matching techniques in [23],

[29] and [22] among others.

The approach is simple. Let us consider a superposition of N independant and homoge-
nous on-off sources as we described before. Such superposition results in a birth-death
process whose states show how many of the sources are in ON state. If we denote the state
by J(t), the Markov chain of the process has N + 1 states, from J(t) = 0 up to J(¢) = N.
The probability of being at state j in steady state, is equal to probably of having j out of N
sources in ON state, clearly a binomial distribution. For single On-off source, the steady-
state probability of being in ON state is equal to ;% where a is the mean transition rate
from ON state to OFF state (a~! is the mean sojourn time in ON state) and 8 denotes the
mean transition rate from OFF state to ON state ($~! is the mean sojourn time in OFF
state). Then for the Markov chain representing the superposition of on-off sources, If we
denote the steady-state probability of staying at state j by 7;, we can write:

=g (Ajrw—j)! <af-ﬂ)j (aiﬂ)w-j) (3.18)

Figure 3.6 shows the corresponding Markov chain.
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Now if we want to model the above chain with a two-state MMPP, simple physical
consideration suggests that we can divide the states of the phase process into two subsets:
an overload region, and an underload region so that each of the states of the approximating
two-state MMPP corresponds to one of the regions. The border of the regions (or the
threshold of the overload state) can be decided in various ways. One suggestion is to use
the mean number of sources in ON state as the threshold. In this case, assuming that the

overload region starts from state M+1, we can write:

[ (3.19)

where N denotes the number of active sources. Therefore, the underload region comprises

the states {0, 1, ..., M} and the overload region comprises the states {M+1, ..., N}.

Now in order to find the parameters of the two-state MM PP model from the parameters
of the superposition of on-off sources, we require the mean arrival rate at state 1 of the
MMPP, A4, to be equal to the mean arrival rate in the overload region of the phase process.
Similarly, A; is equal to the mean arrival rate in the underload region of the phase process.
Considering that the arrival rate at each state of the process is fixed (as Figure 3.6 shows

it), we can write:

N M
. o T
A = iIA—— A=) iA— 3.20
where: .
N M
TOoL = Z ;i 7I'UL=Z7T;' (3.21)
i=M+1 i=

where m; is defined by Equation (3.18).

The above equations determine the mean arrival rates at each of the two states of the
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MMPP model. In order to calculate the mean transition rates, several different approaches
have been taken by different researchers. Here we present three techniques. In all of them,

the values of mean arrival rate are calculated by Equation (3.20).

e Asymptotic matching
This technique was proposed in [23). If we denote by random variable  an overload
period duration in the phase process, the survivor function of 7 will have an exponen-
tial form like G+(z) = poexp(Q z)e for z > 0, in which Q is the (N — M) x (N — M)
transition rate matrix for overload region, and p0 = [1, 0, ..., 0] denotes the initial
probability distribution of the transient states. It could be shown that there exists
one dominant eigenvalue of @ which is real and negative. Therefore if we denote it

by n, we will have:

G (z) = De™"% + O(e™7) (3.22)

Using this approximation, we choose roz = r; = 7. Therefore r; can be calculated
from the maximal real-part eigenvalue of Q. Now by equating the mean arrival rate

for MMPP and aggregated voice sources, r; can be easily calculated as:

Te=TrT Y = (3.23)

where A; and A; are calculated from Equation (3.20) and A = N AB3/(a + f) is the

mean arrival rate for the aggregated voice sources.

° Z-matching
Introduced in [29], this technique is very similar to asymptotic matching and is pri-
marily used for heterogeneous case where the parameters of the on-off sources are

not identical but fit into several classes. However the technique can be simplified for
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homogeneous case. Like asymptotic matching, here also the mean sojourn time of
the phase process in overload region is equated to mean sojourn time in state 1 of
the MMPP, and that of the underload region to the mean sojourn time in state 2. A

recursive formula is employed for determining the transition rates as follows 1:

iM-:lia ’k=M

k—M)(14+8/a)
G=MIAB/y, s M +1<kSN -1

U1 =

(3.24)

1
TOL =T1= gy

o
ruL =rz = 72&r;

where moz and 7y can be calculated from Equation (3.21). the mean arrival rates
may be determined from (3.20). In Section 3.3.4 the performance of Z-ma.tching

technique is compared to some other techniques.

Z—matching technique has the advantage of the applicability in the heterogeneous
case. Furthermore, it uses very simple calculations for mean arrival rates based on
overload-underload assumption and a relatively simple, iterative formula for mean
transition rates. However, this technique, as we will show later, does not match IDC
curve. The MMPP model based on this technique will fail to predict the queueing

performance under heavy traffic load, consequently.

e IDC matching
In this technique [22], instead of the time process, the counting process is considered,

so the random variable to be used here is the number of arrivals over a fixed observation

In order to keep consistency in this thesis, the definition of the parameters of on-off source a and 3 have
been changed from the original text ([29]), so are all of the equations.
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interval. The mean arrival rates are calculated from (3.20). Then for mean transition
rates we will need two more equations. We equate the mean arrival rates for both
MMPP and agrregated on-off models, and the value of IDC(c0) for both models.

Therefore we have the following set of equations:

z\_:_rziz\zn=;%NA

ri+r2
2(M—=A2)2rira _ 1-(1-aT)?
(ri+r2)? (Arre+izry) — ZaT+ﬁTi'2

After solving the above set of equations for r; and r;, the mean transition rates are

(3.25)

calculated as follow:

_ — 2!)0L-Aavg!2!/\¢ug-/\llb!

rl - rOL - AQL—AUL z\gug IDC(oc0)—1 (3 26)
_ _ _2(0or=davg)(Qavg—ruL)?

T2 = TUL = (RoL=M0L) dave (IDC(o0)—T1)

where A,y denotes the mean arrival rate for aggregated on-off sources and Ao, = M\

and Ay = Az are calculated from (3.20).

The IDC matching technique enjoys the advantage of simplicity even more than Z-
matching, because the procedure to calculated the mean transition rates is simpler.
Furthermore, the model captures the effect of the correlation in the traffic too, so in
some sense it combines the advantages of each of the previos techniques and avoids
their drawbacks. In Section 3.3.4 we will compare its performance against other

techniques and show its capabilities.

3.3.3 Other matching techniques

In this section we are going to review some other techniques for matching of a 2-state
MMPP model to a superposition of on-off sources very briefly.

45



Most of the techniques simply replace one of the matched qualities. It was mathemat-
ically proved that it is impossible to characterize a 2-state MMPP model only by the first
two moments of its counting or time process. Moment-based matching ([17]) uses three
moments. However, it has been also proved that with a combination of the first and second
moments of the counting and the time process, the 2-state MMPP ﬁlodel is characterizable
[25]. This fact has led many researchers to look into various combinations for matching
purposes.

In [24] a purely interarrival time-based matching technique has been proposed. The
technique matches the autocovariance function and the complementary probability distri-
bution function of the interarrival times for both 2-state MMPP and superposition of voice
sources. The technique is measurement based, means that some parameters must be mea-

sured for the aggregated voice traffic so that a 2-state MMPP could be matched to it. The

following assumptions are made:

¢ The complementary probability distribution function of the interarrival time (Pr(X; >

z)) for 2-state MMPP model has a 2nd-order hyperexponential format like F.(z) =
qe—ulz + (1 _ q) Pt

e The autocovariance function of the interarrival time C[k] has an exponential format

like C[k] = Ac*.

So therefore by measuring the parameters u;, uz, ¢ and o for the aggregated traffic, one
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can calculate the parameters of 2-state MMPP model as follows [24]:

=13 [q(l —o)(uy — ug) + ouy + ug + \/[q(l — o) (uy — uz) + ouy + ug)? — 4a'u1u2]

Ay = -d182[d1 —g(u1 —uz)—uz)
2 Arug=Ar qug—uz)~ujug

r1=ﬂ‘;§§2—_{“§r"\ﬁ

— (Pa—u1)(Agdri—u)
2= Uy —At

(3.27)

The fact that this technique uses measurement for matching, may indicate that one
can use it for a general arbitrary case too (refer to the next section), however, as far as
the issue of modeling the aggregate voice traffic is concerned, this fact will be a major
drawback because the matching process cannot be done without samples from the traffic.
Furthermore, the assumptions which it makes is in general not valid for a superposition of
on-off sources. On-off sources do not have exponential autocovariance function. In [24], the
IPP source has been used in place of on-off source which as we showed is in fact a special

case of 2-state MMPP and is not used for modeling of fixed-rate PCM voice source.

Another technique was proposed in [25] which we will describe in Section 3.4.2.1.

3.3.4 Comparison of the performance of the matching techniques

In this section we compare the performance of some of the techniques for the matching of
a 2-state MMPP to a superposition of on-off sources. We picked three of the techniques,
moment-based technigue, IDC matching technique and Z-matching technique. We use
simulations for our study. In order to compare the matching performance, we build two

cases as follow:
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1. In the first case, we form a G/D/1 queue in which the input consists of a superposition

of on-off sources with known parameters, namely, a, 8, A and N number of the sources.

2. In our second case, we apply each of the above-mentioned matching techniques to de-
rive the parameters of a 2-state MMPP model, and then we simulate the performance

of the 2-state MMPP/D/1 queue in the same way as Case 1.

For Case 1, the parameters of the aggregated on-off sources are listed in the following table:

{ No. of Sources | a B [ A |

100 2.8409 (s~!) | 1.5385 (s~1) | 166.67 (Cells/S)

Table 3.4: The parameters of the aggregated voice sources

The values of the mean transition rates have been picked from [17] and [30] and indicate
the mean sojourn time of 0.352 ms in ON state and 0.650 ms in OFF state. The value
of A (the fixed cell generation rate in ON state) corresponds to a 64kbps PCM voice line,

assuming 48-byte long cells.

‘By applying each of the matching techniques, we get a different set of parameters for
our 2-state MMPP model. The corresponding model parameters for each of the matching
techniques are listed in Table 3.3.4. For the moment-based matching technique, both of the
IDC curve and the third central moment have been matched to those of the traffic from the

superposed on-off sources at t=0.5 s.

As Table 3.3.4 shows, both Z-ma.tching and IDC matching techniques estimate the

same values of mean arrival rates because they both use overload-underload approach. For

48



| Matching Technique | A; (cps) [ Az (cps) [ 1 (s70) [ r2 (s71) |
Moment matching 6670.2 5155.4 2.1858 1.8767
Z—matching 6651.7 5359.6 | 20.9298 | 13.0209
IDC matching 6651.7 5359.6 1.7333 1.0783

Table 3.5: The equivalent MMPP parameters by using different matching techniques

moment matching and IDC matching, who both match IDC, the values of mean transition

rates are close.

Now let us examine each of the proposed MMPP models and compare them to the
reference aggregated on-off sources. In Figure 3.7 the IDC curves for all three MMPP
models and also the reference aggregated on-off sources have been shown. The moment-
based matching gives the most accurate estimation of IDC curve, expectedly, as it matches
the IDC curve at two points. However, it is impossible to fully match the IDC curve for
on-off source and MMPP, because for MMPP the value of IDC at very small lags (¢ — 0)
approaches 1 while for on-off source it approaches zero. IDC matching technique gives a
matching at IDC(c0). As we showed in the previous sections, having the same IDC(c0)
gurrantees the same slope for IDC curve in the rising region too. Z-matching does not
macth the IDC curve. As a matter of fact, the value of IDC for the model deriving by this

technique is closer to that of Poisson (IDC = 1) than on-off source.

We then simulated a G/D/1 queue with each of the above traffic models as the source, in

order to compare the queueing performance and to see how well each of the techniques can
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Figure 3.7: IDC curves for different on-off/ MMPP matching techniques

predict the average delay and the probability of loss. We used OPNET network simulator
for this study. In Figures 3.8 and 3.9 the average delay vs. traffic load and probability
of loss vs. buffer size have been shown. One point here is noteworthy. As we explained in
Chapter 2, the curve of the probability of loss vs. buffer size has been approximated by the
curve of the survivor function of the queue length vs. buffer size for an infinite buffer case.
This is the approximation which we use throughout this thesis wherever we talk about the
probability of loss. The corresponding curves for an M/D/1 queue with the same load have

been presented for comparison.

In the Figure 3.8, the value of delay has been normalized by the service time. The
results indicate that the three matching techniques provide the same performance in low

traffic loads. At loads higher than 0.75, the }_-matching technique gives an optimistic result
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closer to the Poisson model than to the aggregated on-off voice sources. The results of the
moment-based and IDC matching techniques are very close and in a good agreement with

those of aggregtaed on-off voice sources.

Figure 3.9 shows the loss rate versus buffer size for a traffic load of 0.9. The results
indicate a good agreement between the the performance of the aggregated on-off voice
sources and its equivalent derived by the moment-based and IDC matching techniques,
while the 3 _-matching technique gives a rather optimistic loss rate.

The above results indicate the important role of the IDC in parameter matching. Fur-
thermore‘, while a moment-based matching gives the closest results, a much simpler overload-
underload IDC matching could be used to match a 2-state MMPP to a superposition of
on-off sources effectively, in order to avoid the complexity and lengthy calculations of inverse

transforms in the moment-based matching technique.

3.4 Modeling of an arbitrary traffic and parameter estimation

In this section we are going to generalize the modeling technique for an arbitrary traffic, not
a special case of the aggregated voice sources. First we start with a generalized moment-

based matching technique and then we will review the other proposed techniques.

3.4.1 Generalized moment-based matching

Both the } -matching and IDC matching techniques are based on the overload-underload
approach and hence on the assumption that the traffic is a superposition of on-off sources.

For this reason, they are not suitable to model an arbitrary traffic. In this section we will

focus on the moment-based technique.
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With only the first and second moments (or IDC), the four parameters of the equivalent
2-state MMPP model cannot be uniquely determined. Therefore, for an arbitrary traffic we
need to use the third moment. In [17] the parameter estimation is based on the measurement
of one or two points of input parameters (IDC and the third moment). However, the
selection of these points has a large impdct on the performance results because of the error
resulting from the limited number of samples. Consider a simple estimation using the

n
ensemble mean from n samples sy, s3, ..., s,, i.e., % E s;. An accurate estimation requires

=1
a sufficiently large values of n and hence a large observation time interval. Otherwise,
some measured samples with a large variation can greatly influence the captured mean. In

the following procedure, we suggest a filtering approach suitable to an accurate estimation

without requiring a large observation interval.

Establish the histogram of samples using an arbitrary number of bins based on the

maximum and minimum value of the samples

If the peak of the histogram is less than 0.5, decrease number of bins by a factor of 2

and modify the histogram

The process is repeated over until:

— The peak of the histogram is more than 0.5, or

— The number of bins is 2 (i.e. the peak will be at least 0.5).

Select only the samples in the peak bin to compute the sample mean

Figure 3.10 shows how the technique works. It starts with 40 equally-spaced bins and

computes the histogram, then reduces the number of bins and continues. At bin number=5,
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Figure 3.10: The likelihood-based parameter estimation
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the peak of the histogram has passed 0.5, so then the samples will be filtered and only those

who reside in the area specified by the peak bin in Figure 3.10 will be picked.

This estimation technique is used in our matching to compute the values of 7DC/(c0),

d=ri+ry and A = A’—:i{;’\:—"l which is a temporary parameter introduced in the technique
to simplify the matching process. A can be calculated from the third moment of the samples

using the following equation [27]:

3arl 3a It

A={us(0:¢) - (d22———)(1 e )+ = (1+ e %) - 3atI — at}/ (3.28)

{3aIt 1+ —dt) dzl( _e—dt)}

where:

a = mean arrival rate =X , d=r;+7y (3.29)
I=1IDC(0) -1, A=dinthar
Using A and the parameters defined in(3.29), we compute [27]:
K=d()-a),
e K =0,r =r,=d/2
M=a(l+vVdl), g =a(l—+dI)

o fK #0,e= 28]

7‘1=%(1+74—1;_7),7‘2=d—7‘1

— (ad K
Az = T2 )"1+"2 1 AL= Azt "1—"2

r1—rz
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Table 3.6 shows the estimated values of the parameters of the model for 2-state MMPP
traffic with known parameters and generated by simulation. The test cases were chosen
carefully to cover a range of different ry/ry, ry + r2 and IDC(00). The accuracy of the

technique is noticable. For mean arrival rates at each state, the error is less than 1% in all

of the cases. For transition rates it is less than 7%.

Cases A1 (cps) | Az (cps) | r1 (1/s) | 72 (1/s)

Original 6651.7 5359.6 1.7333 | 1.0783

Estimated | 6644.5 5360 1.6298 | 1.0321

Original 4233.4 2239.9 | 3.1522 | 1.9425

Estimated | 4224.4 2235 3.0747 | 1.9616

Original 4574.6 2785.8 | 2.4041 | 0.3271

Estimated | 4541.7 2782 2.2024 | 0.3467

Original 3271.6 2728.4 | 0.6514 | 0.6514

Estimated | 3279.1 2727.1 0.6724 | 0.6908

Table 3.6: Test cases for refined matching technique
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3.4.2 Other techniques

There are a number of other techniques which could be used for fitting a 2-state MMPP

model to an arrival process. Here we briefly review a couple of these techniques.

3.4.2.1 Gusella’s method

Gusella in [25] proposed a moment-based technique for fitting a 2-state MMPP model to
an arrival process. The difference between his technique and ours lays in the point that he
uses the squared coeeficient of variation of the interarrival times instead of the third central

moment of the counting process. The following steps have to be taken in his technique for

deriving the parameters:

1. From the data samples, estimate a the mean arrival time, b the limiting value of IDC

minus 1 (IDC(co0) — 1), and d the squared coefficient of variation of the interarrival

times.

2. Compute the value of IDC at an arbitrary lag, to. Using b and I, (the value of IDC

at fp), find the mean rate ¢ = r;{ 4 r5 in the following equation:

b~ 1 1 — g—cto
- ;° =— (3.30)

3. Obtain a value for Az from the following equation:

2a)} + (2ac + abc — 2) Ay ~ 2¢(b+ 1)
d= (3.31)
2aA? + (2ac + abc — 2) Az — 2¢
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Then find the other parameters as follow:

— 24-abec—2al;
Ay = 2a—2a%);

—_ abc? .
= 2+abc—4aXra+2a227 (3.32)

1

ro = 2c(ara—1)2
2 - 2+abc—4alz+2a% )3

4. Based on the current values of the parameters of the MMPP model, compute the
goodness of the approximation by comparing the estimated IDC with the theoretical
one which is calculated from Equation (3.1). A minimum squraed error test could be
used. Adjust the value of c and repeat steps 3 and 4 until a satisfactory approximation

is reached.

Gusella’s method is in nature moment-based, so not much different from our generalized
moment-based matching technique. However, the technique needs measurements from both

time and counting processes which may be difficult particularly in the simulations.

3.4.2.2 Likelihood-based technique

For a detailed account of this class of techniques refer to [20]. Here we just briefly discuss

a technique introduced by Meier-Hellstern for fitting a 2-state MM PP model to the arrival

process.

Meier-Hellstern’s likelihood-based technique [19] computes the matrices of the model,
defined in Equations (2.7) and (2.8) from the samples of interarrival time. One interesting
point in Meier-Hellstern work is her note that if the data is close to having a Poisson
model, then any MMPP fitting technique may fail because the Poisson model ig normally
a superposition of infinite number of independent processes. Therefore she recommends a

Poissonness test at the beginning. The following steps are taken in the algorithm [19].
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Input parameters:

o {z;}1,: Observed interarrival time sequence from the arrival process

e @Q: Mean transition rate matrix for the MMPP model

e A : Mean arrival rate matrix for the MMPP model

e L: Likelihood function for @ and A given the observed interval sequesnce z;%_,. The

function L for 2-state MMPP is derived as:

L(Q,A|z1,...,zn) = wlIZ_; {exp [(@ — A)zr] A}e (3.33)
o Ji: The phase of the Markov process at kg, interval

The set of the parameters of the 2-state MMPP model, [A; , A2, r;, ro] is réplax:e by the

following alternative set:

e m = r(r1+72)" !, the stationary probability of being in state 1 of the time-stationary

MMPP. Therefore the steady state probability matrix will be 7 = [r; , 1— m]
® X\* = A7 + A2(1 — m), the mean arrival rate for 2-state MMPP.

e Py = A1(A2 + r2)(A1A2 + Air2 + Azrp) 71, the probability of a transition from state 1

to state 2.

e p; = A*"1\;m, the steady-state proportion of arrivals from state 1.

If A2 # 0, these formulas establish a one-to-one correspondence between the new parameters

and Ay, Az, r1, and r;. The model parameters can be calculated from the alternative
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parameters by using the following formulas:

/\1 = z\'plﬂ'l_l
/\2 = /\‘(1 — pl)(l - 7l'1)—1
(3.34)
ri=A{1-p)(1 - Pu)(Pu1—p1)?!

r2 = A2(1 - Pyy)(P1 — p1)7!
The Algorithm:

1. Estimate the mean of the interarrival time from the samples of the arrival process.

The mean arrival rate will be calculated as A* = ”(E z;)" L
=1

2. Test for Poissonness of the data. If the observed stream is statistically indistinguish-

able from a Poisson process of rate A*, then stop the algorithm and use the Poisson

model.

3. Construct an initial estimate (J,So) )2=o of the sequence (Jx)7_o. First smooth the data
using a moving average scheme based on the arithmetic mean. Classify the elements

of (Jx)%=o as 1 or 2 depending on whether the smoothed interarrival times are greater

or less than -:\1—_
4. Set r =0, V() =0.

5. Let:

=13 100 =)
k=1 (3.35)
p(r)

11 = nru(rn + nyg)”!

n
where I denotes the indicator function and n;; = Z I [J,gr) =73 , J,S"_)1 = i].
k=2

6. Let 7“r§r) be the maximum likelihood estimation of 7; given A*, ﬁgr), 131(;), {J,g')};::o,
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and {zx}%_;. Then for 0 < m < 1, the matrices A and Q may be considered as
functions of my, based on Equations (3.34). We use the notations Q(")(;) and A (my)
for these functions.

The likelihood function is defined as:

n
(r) - ! .
logL{")(m) = l; logFJ,(‘,)_lyJ‘(‘,) (r,m1;2) (3.36)

where

F'(z) = [Fj;(2)] = exp[(@ — A)e] A
(3.37)

F (r,m;2) = F' () Q=Q(")(m), A=A (my)

7. Let T(r) be the value of 7; which maximizes log L(')(1r1) using a numerical maximiza-

tion technique. Let @ = Q") (x {r)), A=AW (”Y))-

8. Let:
yr+1) — maxg4 ZlogF_}k_th (r;z) (3.38)
=1 :
where
A= {(J07Jla"'7Jn)l1 SJk 52; OSkSn}
and

F' (r; z) = F'(z)lQ=Q('),A=A(')
and [J("H)]n is defined to be the sequence which maximizes (3.38).
k k=0

9. If|VIr+) _y() | < 6 for sufficiently small values of 4, set » = r 4- 1 and go to step
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#6.

For more details and remarks on the technique as well as study of behaviour and performance

of the likelihood-based technique, refer to [19].

Now back to our generalized moment-based technique, it enables us to derive a model
from traffic samples. Let us introduce a technique to predict the queueing performance of

the model in order to make it easy to use in traffic control algorithms.
3.5 Performance approximation of MMPP/D/1 queue

The MMPP/D/1 queue could be solved by using the matrix geometric technique introduced
in Section 2.8.1. However, this complex, iterative technique needs a lot of computation
power and time. For real-time traffic control we are going to need an approximation which
can be calculated quickly and provides us with enough accuracy. Here we present such an

approximation [27].

The closed form expression for the Laplace-Stieltjes transform of delay for MMPP/G/1
queue is [18]:

D(s)=s(1-p)glsT+Q—-A(1—-H(s))] e (3.39)

Where Q and A are the infinitesimal generator and arrival rate matrices for MMPP model,
respectively, H(s) is the Laplace-Stieltjes transform of the service time and p denotes the

utilization. g= [g; 1 — g1] is determined by solving numerically the following equation for

g1

L —g1(r1+712) 4L

AL — A2 g g- 1) (3.40)

l—g1)\iry—g1A2re =1
(1—g1) g1 (A1 = A2)

+-exp[ (
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For MMPP/D/1 queues, H(s) = ¢e~** where h denotes the cell service time. If we assume
that h is small enough as compared to average delay, we can safely ignore the incomplete
service time upon cell arrival. In this case, the delay is the product of the number of cells
in queue and the cell service time. Consequently, the probability of buffer overflow can be
calculated from delay survivor function as Pr(X > ¢/h)=Pr(T > t). In other words, the
same equation as (3.39) can also be used for Laplace-Stieltjes function of the queue length,
at least for burst region.

Following the same approach taken by [31] to estimate delay’s survivor function, we
approximate the probability of buffer overflow by a single exponential function ae®t %, in
which s; is the largest negative root of the denominator of (3.39) (the closest negative root
to zero. Here we simplify the ai)proa.ch in [31] further by approximating the exponential
form of H(s) with the first three components of its Maclaurin series, 1 — s + 1 (hs)2.
Substituting it into (3.39), s; is the largest negative root (the closest negative root to zero)

of the following cubic equation:
%A1A2h4s3 + hz[%(,\1 + Ag) = At Agh] 2+ (3.41)

1
[(1 - /\1h)(1 - Agh) - §p1'11‘2h] s+ (7’1 + Tz)(p - 1) =0
in which p = Xh. We approximate the queue length by system size (for the burst region),
so o = p and the probability of buffer overflow is computed as:

Pr(X > z)=peh= (3.42)

Figure 3.11 shows a good agreement in the results using simulations and the approximation
given by Equation (3.42) for an MMPP/D/1 queue. Equation (3.42) can be a simple tool

for buffer design.
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Our simulations shows that the approximation for the exponential slope of survivor
function is accurate enough in almost every case. However, there are some cases where the
approximation for the coeficient (p) is not precise enough. We assumed that the system has
a very short cell level. In the cases where the cell-level region is too long or the probability

of loss in this region drops rapidly, the value of probability of loss given by Equation ( 3.42)

may be a bit higher than what we get by using simulation.

3.6 Shortcomings of the 2-state MMPP model

The 2-state MMPP model has been widely used for its simplicity and analytical tractability.
However, there exist some cases where the model is unable to represent the effects of the
high burstiness of the aggregate multimedia traffic. In these applications, the model usually

underestimates the probability of loss for a given buffer size, so cannot keep up with the
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long tail of the loss curve. This problem mainly is due to the fact that a too-simple 2-state

MMPP does not have the flexibility to model all various phases in the multimedia traffic.

One solution is to increase the number of states and to upgrade our model from a 2-
state to a multiple-state MMPP. Many problems arises in this modification, including a
sharp increase in i‘.he number of parameters which must be determined in the matching
process, the complexity of the model as well as the time and cémputa.tion power needed
for solving the system analytically. In the next chapter we will discuss the multiple-state
MMPP models, and introduce a simple multiple-state MMPP that enjoys the advantages
of the 2-state MMPP (simplicity and analytical tractibility) while is capable of representing

a higher number of phases in the traffic in order to get a more precise prediction of the

queueing performance.
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CHAPTER 4
Modeling of Aggregate ATM Traffic using multiple-state Makov
Modulated Poisson Processes

4.1 Introduction

In the previous chapters we showed that the 2-state MMPP is a good model for aggregate
voice sources [17] and analytically tractable for its simplicity. However, it may not be able
to represent the effects of the high burstiness of aggregate multimedia traffic. For example,
an aggregate multimedia traffic stream at the input port of an ATM switch switch can be
considered as a superposition of three components: voice, video and data. If each traffic

component is modeled by a 2-state MMPP, then the superposition will be a multi-state

MMPP [18].

The increase in the number of states causes aﬁ increase in burstiness of the traffic and
therefore the queue length or probability of loss in the multiplexers will also increase. In
the next section we will offer an example to show that. Due to the above fact, there are
numerous studies on the possibility of using multiple-state MMPP models to represent the
long range dependent traffic [33] [35]. 2-state MMPP models usually underestimate the
probability of loss in ATM multiplexers with the long-range dependent traffic at the inputs.

Therefore the multiple-state MMPP are used to represent those traffics.

In the coming sections, we first study the general problem of representing an ATM
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traffic by a multiple-state MMPP model, and we present our model which is a special case
of mutiple-state MMPP. We discuss various techniques to derive the parameters of such

model, and then we study its performance by applying it in a number of case studies.
4.2 Multiple-state MMPP for ATM multimedia Traffic

In general, a multiple-state MMPP model is identified by two matrices, a cell generation
rate matrix A and a transition rate (or infinitesimal) matrix Q. For an N-state MMPP these
matrices are N x N. For the transition rate matrix, one of the elements on each row can
be calculated from the values of others. Therefore a general N-state MMPP has 2 N2 — N
different parameters. There have been some efforts to derive the complete matrices from the
samples of the traffic. However the techniques are often complicated and give inconsistent

results as we explain it in the next section.

To overcome this problem, we decided to use a simpler case. We use a special case
of multiple-state MMPP, a superposition of 2-state homogenous MMPP minisources. The

advantages of this model are as follows:

e The model has only five parameters: Number of minisources, N, and four parameters
of a minisource, A; and r;, A2 and rz, which are the respective cell generation rate
and transition rate in each of the states. In fact this model has only one parameter

more than a simple 2-state MMPP, which is the number of minisources, N.

e In general, the superposition of N 2-state MMPP results in a 2V-state MMPP model.

But for this special case, the number of states reduces to N+1 [18].

e Both the cell generation rate and transition rate matrices can be computed directly

without using Kronecker summation [18]. The computations are simpler for this

67



special case.

The infinitesimal matrix @ and cell generation rate matrix A can be calculated for our

model as follows [18]:

A=diag(iA +(N—35)X) j=0:N (4.1)

QU I)=-iri—(N-3)rs

QUF+1)=(N=-3)r; j=0:N

QUi-1)=jn (4.2)
QUi +i) =0 [ > 1

Now let us see how we can determine the parameters of this model for a given sequence

of traffic samples.

4.3 Estimation of the parameters of Multiple-state MMPP model from traffic

samples

We developed a Pdf-based technique for deriving the parameters of multiple-state MMPP
model from empirical data. But before describing the technique in detail in next section,

here let us review the shortcomings of moment-based technique in mutiple-state cases along

with a few other techniques.
4.3.1 Shortcomings of Moment-based technique in multiple-state case

In previous chapter we presented a moment-based technique for estimating the parameters
of a 2-state MMPP model. Here let us explain why this technique cannot be applied in

multiple-state MMPP case.

In our moment matching technique, we used moments of the counting process of the
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Parameter Source 1 Source 2
N 1 6

A1 3652.1 Cells/s | 800 Cells/s
A2 2447.9 Cells/s | 300 Cells/s
r 2.1661 (s—1) 2.4 (s71)
ra 1.8339 (s71) 1.6 (s71)

Table 4.1: MMPP models with the same moments

traffic samples to estimate the unknown parameters. However, it is not difficult to show
that a 2-state MMPP can have the same moments as a multiple-state MMPP but with
different queueing performance. In particular, for our model of the superposition of N 2-

state homogenous MMPP minisources, it is easy to show that the following relations exist:
IDCy (t) = IDC(¢) (4.3)
B (8) = p3(t) (4.4)

where IDCpn(t) and p3;(t) denote the IDC curve and third central moment of the ag-
gregated model, and IDC(t) and p3(t) the respective parameters of a minisource. It is
even possible to build two models with exactly the same mean arrival rate, IDC curve and
the third central moment, but with very different queueing performance. As an example,
consider two sources: one represented by a single 2-state MMPP and the other by a su-

perposition of N 2-state MMPP’s (equivalent to an N+1-state MMPP) with the following

parameters:

It can be verified by using the above parameters and Equations (3.2) and (3.9) along with
Equations (4.3) and (4.4), that both of the sources have exactly the same first three moments
for a counting process: average, IDC curve and third central moment. The Equations

Figure 4.1 shows the probability of loss (or buffer overflow) versus buffer length of an
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Figure 4.1: Effect of number of states on queueing performance

MMPP/D/1 queue for both cases at a traffic load of 0.75 . The curves indicate a huge

difference in queueing performance between two sources, though they have the same first

three moments.

The above results show that the moments of the counting process do not contain enough
information about the burstiness or number of states. Therefore the moment-based tech-
nique we applied in previous chapter for modeling of an arbitrary traffic by a 2-state MMPP
is not applicable for a general case with multiple states. In fact, it is possible to find an
equivalent-in-moments 2-state MMPP model for a superposition of N 2-state MMPP min-
isources. The procedure is simple. Suppose that we have a superposition of N homogenous
2-state MMPP minisources, each with parameters A; and r;, Az and ra, the cell generation
rate and state transition rate in each state, respectively. Then we want to build another

2-state MMPP model, with parameters Xq, #'1, A2 and 3 so that both processes have exactly
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the same mean, IDC curve and third central moment. We follow theses steps:

e The mean arrival rate of the aggregated traffic is calculated by using the following

general formula:
N (Aira+Az2m)

X =
r1+ 712

(4.5)

e The IDC curve and the third central moment for aggregated traffic are calculated

using Equations (3.2) and (3.9) and considering Equations (4.3) and (4.4).

e Now to build the 2-state model with parameters A;, 1, A2 and 5 with the above
mean, IDC and third central moment, we follow the same moment-based technique

we used in section 3.4.1 for estimating the pa.'ra,mléters of a 2-state MMPP model

from its moments.

The above results show that a purely moment-based technique cannot be used to derive the

parameters of a multiple-state MMPP model.

4.3.2 Histogram-based technique

A histogram-based technique for estimation of the parameters of a multiple-state MMPP
from empirical data was proposed by Skelly et al in {21]. The authors used this technique

for modeling of video traffic behaviour in ATM multiplexers.

The technique is purely histogram-based. First of all, the user chooses an arbitrary
number of states. A number of bins of eight has been recommended in the paper. Then
the traffic sequence is quantized to correspond to the allowable arrival rates. Each of these

allowable rates is corresponding to a state of MMPP model.

In the next step, the transition probabilities are measured from the empirical data.

When the frame period is deterministic, the transition rate matrix may be computed from
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the transition probabilities matrix by applying the following equation:
Q=f(P-1 (4.6)

in which Q denotes the transition rate matrix, P is the transition probability matrix, I is

identity matrix and f denotes frame rate.

The authors have reported agreement between the results of this technique with mea-
sured video traffic. However we found that the technique fails to estimate the transition
rates for an MMPP source, even in 2-state case which is the simplest. We used the sample
results of the simulation of MMPP sources with known parameters. We believe that the
reason behind the failure of the histogram-based technique for estimation of the parameters
of an MMPP model lays in the fact that the quantization of the arrival rates in the case of
MMPP traffic results in a poor accuracy. In each state of a multiple-state MMPP model,
the number of arrivals over an interval follows Poisson process and so may accept any pos-
itive value from zero upto infinity. Therefore, having a speciﬁc. number of arrivals during a
frame period does not specify in which state the process sojourns. In other words, the idea
of quantization in the case of MMPP is meaningless. Consequently, there is no accurate

way to measure the transition probabilities directly from the empirical data.

4.3.3 Likelihood-based techniques

A good review of these techniques can be found in [20]. The idea is to employ a maximum
likelihood .estima.t;ion to find transition rate and cell generation rate matrices from empirical
data. An example of these techniques is the one by Meier-Hellstern [19] which we briefly
described in Section 3.4.2. This technique, which uses samples of interarrival times for

estimation of model parameters, is applicable to multiple-state case too, but as we mentioned
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before, it may give inconsistent results and needs a good initial point [20]. We do not go
into the details for this technique as our concentration is on the techniques which use the

counting process, not time process.

In [36] a recursive, likelihood-based technique has been proposed. The technique is
applicable for base cases of samples of the counting process or time process. Although, for
counting process to give good results, the sampling rate must be much higher than state
transition rates. In other words, the observation interval must be short enough. We explain
more about this limitation when we introduce our pdf-based technique in the next section.
This recursive technique uses the conditional state transition probabilities given the number
of arrivals in a frame or given the interarrival time. However, in this technique the results

depend heavily on the initial point as in Meier-Hellstern technique.

After studying various measures which characterize the traffic, we came to this conclu-
sion that two traffic measures contain sufficient information to uniquely identify the process:
the probability density function (pdf) of arrival rate, and the index of dispersion for counts
(IDC) curve that captures the correlation effect. Now here we will introduce a new pdf-
based technique which uses these two parameters of the traffic to estimate the parameters
of a multiple-state MMPP model for the traffic. The technique is quite easy to implement,

does not need any initial guess about the parameters, very consistent and estimates the

model parameters pretty good.
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4.4 Pdf-based matching technique

4.4.1 Model Parameters

We explained that we want to model ATM multimedia traffic by a model represented by a
superposition of N independent and homogenous 2-state MMPP minisources. This proposed
model is fully described by five parameters [A;, A2, r1, r2, N]. They are estimated from
the probability density function (or histogram) of number of arrivals over an observation

interval, and the curve of index of dispersion for counts (IDC) of the samples.

The IDC curve for a single 2-state MMPP minisource can be calculated using Equation
(3.2). The IDC curve of the superposition of identical and statistically independent pro-
cesses is the same as the IDC curve of each individual process as Equation (4.3) shows. So
that we can estimate two parameters, d and 7DC(o0) from the IDC curve based on the
traffic samples. To make our matching technique easier, we derive the following alternative

set of parameters for our model:
[ X d IDC(0) a N]

where = ry/(ry + r2) is the steady-state probability of staying at state 1, and A=

mean arrival rate. The original parameters could be calculated from the above alternative

set as follows:

ro=ad rn=d-—r

,\l=_§r_+\/%di(1DC’(:roL— 1) (1-a) 7)
¥  [LdX(IDC() - 1)«
W ERX(T22C) (49
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Here A1, Az, 1 and r; are the parameters of the minisource model.

The next section outlines the procedure to derive the five parameters of alternative set

from samples of the traffic.
4.4.2 Derivation of the probability density function

Consider a single 2-state minisource. The probability density function for counting process
can be analytically derived using a complex iterative procedure [18]. In the following, we

propose a much simpler approximation.

In general, we can use any observation interval for counting the number of arrivals.
However, if the selected interval is small enough compared to the sojourn time at each
state, then there will be no state change during an observation inetrval T. In other words,
we assume that we can effectively measure the rate of arrivals at each epoch (a short
observation interval). This assumption of arrival rate instead of number of arrivals over an

observation interval is reasonable in practice and confirmed by our simulation resuits, to be

shown later.

If no state change happens during an observation interval, the pdf of arrival rate can be

calculated using the conditional pdf’s as follows:

P(X=k) = P(X=k|state 1)*P(state 1) + P(X=k | state 2)*P(state 2)

P(X=k | state j) is determined by a simple Poisson process with average rate A, =12

We denoted P(state 1) by « in the previous section, so we can write:

p(X=k)=aM)ch‘!i\l_T_ +(1_a)£:\2£)%!e__'\£ (4.9)
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The above equation expresses the pdf of the counting process over a fixed observation

interval T for a single 2-state MMPP minisource.

The pdf of the traffic from a superposition of N minisources-can be calculated by using

either the convolution of N pdf’s of minisources, or the Z-transform. The Z-transfrom of

(4.9) can be written as:

Pi(z)=aeFNMT L (1_qg)elz-)2T (4.10)

Hence, the Z-transform of the pdf of the aggregated traffic from N independent minisources
is:
Pn(2) =[a eI MT 4 (1 - q) el 22 TIN (4.11)

Denote the total number of arrivals of the aggregate traffic in an observation interval

by a random variable X. By taking the inverse transform of Equation (4.11), we obtain:

N . . k
N GEMTHN =)0 TF g iy
PXN=K =3 gy @ - Pl A L ertian =i e

(4.12)

By substituting A; and A; given by Equations (4.7) and (4.8) into Equation (4.12), we

will have a formula for the pdf of the arrival rate in terms of our alternative set of parameters
[ X d IDC(0) a N].

In Figures 4.2 and 4.3, the results of the Equation (4.12) are compared to the measured

pdf from simulation results, for two cases: a single minisource (N=1), and a superposition
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Figure 4.2: Accuracy of pdf estimation for N=1
of 6 minisources (equivalent to a 7-state MMPP). The analytical and simulation results are

in a remarkably good agreement.

If the observation interval is not sufficiently small to neglect the effect of state change,
Equation (4.12) becomes invalid. On the other hand, the observation interval cannot be
arbitrarily reduced because of the effect of quantization error in the pdf measurement of the
samples. Our simulations indicated that an observation interval equivalent to one tenth of
the average sojourn time at each state provides adequate results. As an example of the cases
where this approximation fail, consider a case of a traffic from a superposition of two 2-state
MMPP minisources with A\; = 2000 cps, A = 1000 cps, r; = 40 s~!, r, = 30 s~! and
Frame time of 25 miliseconds. Figure 4.4 shows the pdf calculated from Equation (4.12)
(continuous line) and the one determined from the simulation (dotted line). The curves

show a noticable difference, due to the fact that here the observation interval is comparable
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Figure 4.3: Accuracy of pdf estimation for N=6

to mean sojourn times.

It is also worth noting that in the above there is no restriction on the hidden regime of
state changes. In other words, the model is just assumed to be a general switched Poisson
process. Hence, the Equation (4.12) is also applicable to other switched Poisson processes

such as DMPP (Deterministic Modulated Poisson Process), PMPP (Pareto Modulated Pois-

son Process), etc.

4.4.3 Parameter Estimation

We select a fixed observation interval of T called frame time, over which the number of
arrivals is counted. Denote the number of arrivals in a frame time by a random variable

Xn. From the sequence of measured numbers of arrivals in a frame time (i.e. measured

traffic samples), we compute:
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Figure 4.4: A test case where the pdf approximation fails

",\‘= EIXN| IDC(t) — VAR!JI:]\G!:#“

Based on the constructed IDC(t) curve, the values of d and IDC(o0) can be estimated

using Equation (3.2). The estimation can be done by the same maximum likelihood ap-

proach that we explained in previous chapter.

Using three derived parameters (X, d, IDC(c0) ), the remaining two parameters (VN
and «) can be estimated from the pdf of arrival rate, based on the minimization of the
mean square error for all of the samples. To solve for N and « in the complex, non-linear
Equation (4.12), we used an iterative optimization algorithm. The problem can have several
sets of solutions for (N, a) which give close results for the pdf. By increasing N from 1

and optimizing for a for the best match, this procedure guarantees an optimum solution
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[ Case [ NTAi(cps) | Aa(eps) [ ra (1/s) | r2 (1/s) ]

Case 1

Reference | 2 2000 1000 2 1.5

Estimated | 2 2024.3 998.3 2.12 1.535
Case 2

Reference | 4 3000 500 2 1.5

Estimated | 4 3027.8 500.9 1.96 1.42
Case 3

Reference | 8 1200 800 1.8 1.2

Estimated | 5 1817.9 1318.9 1.664 1.255

Table 4.2: Test cases for pdf-based matching technique

set with the lowest possible value of N and hence, the simplest model.

4.4.4 Nlustrative Results

We have performed several simulation cases to examine the effectiveness of the introduced
modeling technique. We generated cells from a superposition of MMPP mini-sources with
known parameters and used the introduced modeling technique to estimate the parameters.

We found the technique remarkably accurate as shown in the following table:

In Case 3, the number of minisources in the derived model is different from that of
reference process. The reason is that our model captures the minimum possible number
of states to model the input traffic. In multi-dimentional space formed by parameters of
multi-state MMPP, the solution for matched parameters is not unique. Sometimes there
are several set of parameters with the same pdf and IDC, and our technique selects the
one with the lowest number of states. However, both models show the same queueing
performance. Hence, from queuing point of view they are equivalent. Figures 4.5 and
4.6 show the probability of buffer overfiow at a load of 0.84 and the average queue length

versus traffic load, respectively, for both reference and derived models. The results are in a
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Figure 4.5: Buffer occupancy for both models

remarkably good agreement.

In Section 4.6 we will examine some case studies to show the accuracy of our pdf-based

technique.

4.5 Approximation of the Slope of the Probability of Cell Loss for a multiple-

state MMPP

In Section 3.5 we estimated the probability of loss for a 2-state MMPP/D/1 queue. Now
here we extend it to calculate the slope of the probability of cell loss for our multiple-
state MMPP model in a /D/1 queue. The same as Section 3.5, Equation (3.39) may be
used for Laplace-Stieltjes funstion of the queue length in the burst region. For our model

of a superposition of N homogenous 2-state MMPP with parameters [A;, Az, 71, T2, N],

81



10 n T T T T T ¥
+

= 10°: - Reference e
2 1
-]
-
3 + Derived Model
3
@
o
[
s
<10't 5

1 oo 1 1 1 1 1

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Server Utilization

Figure 4.6: Average queue length vs. load for both models

matrices Q (transition rates) and A (arrival rates) can be easily computed as follow [18]:
A=diag(jA1+(N—-35)A) j=0:N (4.13)

QU =—-dr—(N-3j)r
QU+ =(N=-j)rs  j=0:N (4.14)
QU,F-1)=jn
Now assume that the queue length survivor function consists of summation of exponen-
tial terms. Obviously, the term having the largest negative exponential factor determines
the slope of the survivor function in burst region. Therefore, the slope is the largest negative
root of the denominator of D(s) (or the closest one to zero) in (3.39). The poles of D(s) can

be computed by equating the determinant of the matrix [s] + Q — A, (1 — H(s))] to zero.
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Therefore if s; denotes the slope of probability of loss, we have:
|%1+Q—A(1—H(%))|=o (4.15)

For MMPP/D/1 queues, H(s) = e~*"* where h denotes the cell service time. Using McLau-
rin series to represent H(s) = e~*", we can approximately use the first three terms, i.e.,

eh=1-hs+ 1 (hs)%. Equation (4.15) can be re-written in an approximated form:

1
%1+Q—A(sl+§s§)|=o (4.16)

The value of s; can be numerically calculated from Equation (4.16).

To assess the accuracy of the approximation, we compa.réd the analytical and simulation
results. We considered MMPP/D/1 queues; We first obtained the simulation results for
the reference cases. Next, we modeled the traffic sources by the proposed multiple-state
MMPP, and derived the corresponding parameters based on the traffic samples generated
by the reference sources. Using the derived parameters, we subsequently approximated the

slope of the probability of cell loss using Equation (4.16).

In Figures 4.7 and 4.8 two examples are shown. The traffic samples are generated by
OPNET simulator from an MMPP source. The probability of loss for G/D/1 queue is
obtained using simulation. The solid and dotted lines show the simulation and analytical
results derived by Equation (4.16), respectively. For Case 1, the reference source is a
superposition of 8 homogenous 2-state MMPP minisources with parameters {A; = 1200
cells/s, A; = 800 cells/s, r; = 1.8 s71, ro = 1.2 s71}. The traffic load is 0.9. The slope of
survivor function calculated by our technique is s = —0.011. For Case 2, the reference source
is a superposition of 4 homogenous 2-state MMPP minisource with parameters {A; = 3000

cells/s, Az = 500 cells/s, r1 =2 s7}, r; = 1.5 ;s’l}. The traffic load is 0.8. The slope of
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Figure 4.7: Probability of Cell Loss: Comparison of the analytical and simulation results
(Test Case 1)

survivor function calculated by our technique is s = —9 x 10~4. Figures 4.7 and 4.8 indicate

a good agreement between the analytical and simulation results.

We noticed that the approximation works fine for a model with fewer states and under
heavy load. In particular, as the traffic load decreases, the accuracy of the results reduces.
This effect can be explained by this fact that our approximation was valid for burst region
of survivor function. When the load decreases, the queue mainly stays in cell region instead.
Also when the number of states increases, due to the increased number of corresponding

poles of the transfer function and the effect of nearby poles, the accuracy is also reduced.

Now let us have some examples which show the power of our technique in modeling

ATM multimedia traffic.
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Figure 4.8: Probability of Cell Loss: Comparison of the analytical and simulation results
(Test Case 2)

4.6 Case Studies

Here we will study two different cases and show how our technique can effectively model
the traffic in ATM networks. The first case is a simple ATM multiplexer where voice, video
and data traffic are mixed [28]. We try to model the aggregate traffic by a multiple-state
MMPP. In the second case, the traffic inside ATM switching networks is studied [26]. For
this case we build a network consists of multiplexers and switch and use simulations to show
how well our model predicts the queueing performance. In the last case we get a sample of

video traffic and represent it by our multiple-state MMPP model.
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Model Reference Model N+1-state
Parameters || Video | Voice | Data || MMPP model
N 1 1 1 3

A1 (cps). 7512.4 | 7404.1 | 7612.7 7557.2

A2 (cps) 5996.9 | 6091.0 | 5925.7 5986.1

r (s71) 1.5453 | 4.2262 | 0.2857 0.8745

ry (s71) 1.5510 | 4.3368 | 0.2857 0.8441

Table 4.3: Model parameters for case study 1: ATM Multiplexer

4.6.1 Case study 1: ATM multiplexer

Here we evaluated the performance of a G/D/1 queue representing a multiplexer by simu-
lation. The input to the multiplexer is an aggregate multimedia ATM source considered to
be a superposition of three components: voice, video and data. We investigated the queue-
ing performance for two cases. In the first case (considered as the reference case), each of
the traffic components is represented by a 2-state MMPP with different sets of parameters
corresponding to their specific characteristics (voice, data or video). In the second case, we
modeled the aggregate multimedia ATM source as a multiple-state MMPP. The parameters
of this multiple-state MMPP are derived using the above mentioned procedure based on
the measured traffic samples generated from the model in the first case. The parameters of
the models in two cases are shown below: As Table 4.6.1 indicates, the aggregate traffic of
voice, video and data has been represented by a superposition of 3 identical 2-state MMPP

minisources, hence a four state MMPP model.

Figure 4.9 shows the simulation results for the two cases. A good agreement for the
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probability of loss in both cell and burst region is noticed.
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Figure 4.9: Comparing the buffer occupancy for the model and the ATM multiplexer

4.6.2 Case study 2: ATM switching network

Let us consider an example of multimedia ATM traffic modeling shown in Figure 4.10.
Two types of real-time ATM traffic, voice and video, are multiplexed and routed through
a 16X16 switch [32]. Each of the aggregate voice and video components are represented
by a two-state MMPP with different parameters. All of the links are independently and
identically distributed. At each multiplexer, the cells that cannot be served during a frame
time will be discarded, so at the start of the next frame time the buffer is always empty. The

traffic load at each multiplexer is kept around 0.63. The switch is assumed to be internally
non-blocking.
The parameters of the MMPP minisource models for inputs to each switch input link
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Figure 4.10: The block diagram of the system for case study #1

are listed in the table 4.6.2. One set of parameters has been used for voice and the other

one for video.

We applied our technique to model the traffic at the output of each of the multiplexers,
and each of the output links of the switch. From the collected simulation results on traffic
samples at each point, we applied the proposed technique to obtain a model of N homoge-
nous 2-state MMPP minisources. In the Table 4.6.2 the parameters of the dervied models

for multiplexer output and switch output are shown:

Note that after the switching, due to the large number of inputs and outputs, the
generated model is close to Poisson: a single 2-state MMPP with close values of mean
arrival rates at each state. It is quite expected that when a large number of independent

traffic streams are switched and mixed, the correlation decreases significantly and so the
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Type || A1 (cps) | Az (cps) | r1 (s71) | r2 (s71)
Voice 7404.1 6091.0 4.2262 4.3368
Video 7512.4 5996.9 1.5453 1.5510

Table 4.4: Input parameters for case study 2 : ATM switching network

Model N (Number of minisources) | A; (cps) | Az (cps) | r1 (s71) | 12 (s™1)
Multiplexer output 2 7455.2 | 6067.3 | 2.2531 2.1647
Switch Qutput 1 13733 13212 1.9443 2.5774

Table 4.5: Model parameters for case study 2 : ATM switching network
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Poisson model is more applicable. In Figure 4.11 the IDC curves for the traffic at the

_multiplexer output and at the switch output have been compared. As the figure indicates,
the value of IDC, which is a good indicator of interframe correlation, decreases after the
switching.
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Figure 4.11: The IDC curve for the traffic at the input and the output of the switch in the
case #2

Now, by using the obtained models in a separate G/D/1 queue, we performed the perfor-
mance evaluation and compared the results to those of the reference model in Figure 4.10.
The performance comparison is shown in Figures 4.12 and 4.13 for the outputs of the in-

put multiplexer and the switch, respectively. As the figures indicate, a good agreement is

noticed.

However, one must note that in some cases, especially when the correlation is still too
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Figure 4.12: Comparing the buffer occupancy for the model and the output of the multi-
plexer

high after the switching, our simple model cannot represent the traffic in an efficient way
and a more complicated multiple-state MMPP which does not comply to our simplifying

assumption of the superposition of 2-state MMPP minisources, might be used.

4.6.3 Case study 3: Video VBR traffic

s a final case, here we are going to study the performance of the model to represent Video
VBR traffic.

We have two streams of video VBR traffic which we call STRM#1 and STRM#2. The
first trace, STRM#1, is a soccer game and STRM#2 is a movie. The files are available

for public use on ftp://www-infod.informatik.uni-wuerzburg.de/pub/MPEG/. In Table 4.6.3

you can find the technical specifications of the streams [37].
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Figure 4.13: Comparing the buffer occupancy for the model and the output of the switch

Each trace contains a total number of 40000 frame which is equivalent of a time length
of a bit more than half an hour.

We took the whole stream including I, B and P frames and applied our technique to
model it with a multiple-state MMPP. In Table 4.6.3 the parameters of the model derived

by Pdf-based matching for each of the streams are shown.

In the above table, N denotes the number of minisources and A;, A, r; and r; denote
the parameters of the 2-state MMPP minisource. The model will be a superposition of N

homogeneous 2-state MMPP minisources with the above parameters, thus an N 4 1l-state
MMPP.
Now first let study the main characteristics of each of the streams and the corresponding

models. In Figures 4.14 and 4.15 the IDC curves of the model and the video stream for
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Coding Scheme MPEG-1: (Berkeley MPEG-encoder version 1.3)

Capture rate: 25 frame per seconds

Encoder Input: 384 x 288 pel

Color format: YUV (4:1:1, resolution of 8 bits)
Quantization values: I=10, P=14, B=18

Pattern: IBBPBBPBBPBB

GOP size: 12

Motion vector search: ’Logarithmic’ / ’Simple’
Reference frame: ’Original’

Slices: 1

Vector/Range: half pel / 10

Total number of frames in trace: 40000

Table 4.6: The technical specifications of the video traces

Model parameters
Trace N | Ai(cps) | A2 (cps) [ r1 (s71) | r2 (s77)

STRM#1 || 8 | 845.2356 | 67.1195 | 0.3561 0.0782

STRM#2 | 3 | 344.6491 | 76.5825 | 0.2088 | 0.3131

Table 4.7: Model parameters for video traces
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Figure 4.14: IDC curves for the video stream STRM#1 and its MMPP model

each trace have been shown. A very good agreement is noticed, expectedly. Although, the
value of variance at small lags are different. Apparantly, the video traces have specific IDC
characteristics at small time lags, like a small fall until a minimum value before a monotonic

rise until saturation, which is uncapturable by the MMPP model. The minimum value of

IDC for MMPP is located at t = 0 and is e(llua.l to 1.

In Figures 4.16 and 4.17 the probability density function of the arrival rate for the
model and the video stream for each trace have been shown. Although the detailed shape
of the curves look a bit different but it successfully catches the regions in which a high
probability exists. It looks possible to have a general multiple-state MMPP which can have
exactly the same pdf as the video traces have, however, our simplified model was unable to

approach closer to the reference pdf.
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Figure 4.15: IDC curves for the video stream STRM#2 and its MMPP model

Now we used each trace and its computed model in a separate G/D/1 queue to compare
their queueing performance. In Figure 4.18 you observe the curves of the mean queue length
versus time for video stream STRM#1 under various traffic loads. The results have heen
obtained by using simulation. In the figure, the dotted line indicates the performance of our
model, and the continuous line indicates the performance of the real video trace SRTM#1
in separate G/D/1 systems. The values of mean queue lengths for both systems gradually
converge to the same value. In high traffic load, the system is not still in steady-state

situation because the length of the video trace was limited.

The same curves can be observed for STRM#2 in Figure 4.19. Here also the effect of

transient behaviour can be noticed. The results for the first video stream is closer which

shows our model was more applicable in that case.
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Figure 4.18: Queueing performance of the video stream STRM#1 and its corresponding
model
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Figure 4.19: Queueing performance of the video stream STRM#2 and its corresponding
model
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Due to the fact that in both cases the simulation could not be continued to the steady-
state situation, comparing the curves of probability of loss is not possible. Therefore we

Jjust used the value of mean queue length as our performance indicator here.
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CHAPTER 5
Conclusion and Future Works

In this thesis we studied the performance of Markov-Modulated Poisson Process (MMPP)
to represent the multimedia ATM traffic. First we applied the 2-state MMPP model for ag-
gregated voice traffic and compared various matching techniques for deriving the parameters
of the MMPP model in order for the model to be able to predict the queueing performance
of the aggregated traffic. We observed that a simple overload-underload IDC matching
technqiue provides us with a satsifactory accurate pfediction of the performance without
need to go for lengthy, complicated, time and computing power consuming techniques that

use inverse laplace transforms.

In the next step, we generalized a moment-based technique to make it capable of match-
ing a 2-state MMPP model to a general, arbitrary ATM traffic. By this, we were able to
take a sequence of traffic samples and model it by a 2-state MMPP. Furthermore, an ap-
proximation for the probability of loss in 2-state MMPP/D/1 queue was also derived to
avoid the lengthy and complicated Matrix Geometric techniques. At this point, we are able
to predict the queueing performance of a given traffic stream, provided that we have enough

number of samples and the 2-state MMPP model is applicable.

We found that there are certain cases were two states are not enough to represent the

changes in the arrival rate. Therefore we studied the multiple-state MMPP case. In order

100



to overcome the complicated problem of parameter-fitting for a general multiple-state case,
we introduced a special case, a superposition of N 2-state MMPP minisources, which is an
equivalent of a special N+1-state MMPP. We presented a pdf-based technique to derive
the parameters of this model from the traffic samples. We showed that IDC curve and pdf
of arrival rate are enough to derive the -pa.ra.mel:ers. We completed our job by suggesting
a technique to estimate the slope of the curve of the probability of loss for this special
multiple-state MMPP/D/1 queue. Several case studies were also presented to show the

power of the technique.

There are a number of areas in which this work can be continued. While an optimization
algorithm for pdf-based matching was offered, still the parameters of the N+1-state MMPP
model cannot be explicitly expressed in terms of the values of pdf and IDC. One may try
to come up with a modification in the lengthy fitting procedure in order to simplify the
process of finding the model parameters. Particularly in finding the number of states and
steady-state probability of staying in state 1 from probability density function of arrival

rate, some approximations may help.

We found that while the model performs satisfactorily in most cases, it seems that some
more complicated models like a general multiple-state MMPP may be needed in certain
cases. Therefore one way to continue this work, is to generalized the model and to try to
find a fitting techngiue for general multiple-state case. Especially in the case of video, some

modifications may help us to have a more accurate model to represent VBR video traffic.

Finally, the approximation for pdf which is used in this technique is applicable to any
other switched Poisson process like DMPP and PMPP too. If the IDC curves of these

models are known, one may want to try to find a fitting technqiue for these models. In
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particular, PMPP which is capable of capturing long range dependency looks an attractive
model to study. Due to the expansion of Internet and the need to come up with a model
capable of capturing self similarity and long range dependency, a PMPP matching technique

for deriving the parameters of the model from the traffic samples will be an interesting area

for research.
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