; National Library Bibliothéque nationale

i+l

of Canada du Canada

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

Thequality of this microform is heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

l{ pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially it the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyriaht Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

NL 339 {r BBO4)c

AVIS

La quaiité de cette microforme dépend grandement de 1a
qualité de 1a thése soumise au microfiimage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

Sl manque des pages, veuillez communiquer avec
'université qui a conféré le grade

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées & raide d'un ruban usé ou si l'université nous a tan
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de celte microforme est

soumise 4 la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

Canadi

. ———— e — e —




———

On Teaching and Learning the Concept of Fractal.

Craig S. Bowers

A Thesis
in
The Department
of

Mathematics

Presented in Partial Fulfillment of the Requirements
for the Degree of Master in the Teaching of Mathematics
Concordia University
Montreal, Quebec, Canada

May 1991
© Craig S Bowers, 1991



i+l

Bibliothéque nationale
du Canada

Nationa! Library
of Canada

Canadian Theses Service

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
ncn exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protége sa thése. Nila thése nides extraits
substantiels de celle-ci ne doivent &tre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-68712-6

Canadi




ABSTRACT

On Teaching and Learning the Concept of Fractal.

Craig S. Bowers

This research study describes the acquisition of the concept of
fractal by identifying: some of the difficulties encountered in
constructing the meaning of a fractal, certain basic acts of
understanding necessary in the process of constructing the meaning
of fractal, and the didactic conditions of teaching the notion of
fractal.

Such identifications, will be considered through a historical

review of fractals and dimension, and case studies of three, grace

12 students. The case studies take place in two settings: a clinical
interview, and a teaching experiment. The interview and experiment
will be founded on a questionnaire and a preliminary epistemolegical
analysis of the concept of fractal. The analysis considers possible
acts of understanding and obstacles the students may encounter in
learning about fractals. The main pedagogical reference for the

experiment is that of the van Hiele model of geometric thinking.
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INTRODUCTION

This study will explore the timely topic of fractals. Fractal
geometry has been the cause of much excitement. The television
shnws and volumes of recently published literature are testament to
such excitement. Many high school educators have become
interested in this dynamic new geometry and have begun to design
courses of study on the topic of fractals. The visual appeal and
number of applications for the topic make it an inviting topic indeed.
However, if the Ministry of Education is to add a topic to an already
crowded curriculum, it is justified in asking for legitimate reasons
for such action. The beautiful graphics and numerous applications
may not justify implementation of fractals into the high school
curriculum. The answers to questions such as, what does the
student need in his/her mathernatics repertoire to study such a
topic? and what will the student come to understand through the
study of fractals? are essential in determining if the topic is
worthy of study and how the topic should be taught. In essence what
will the teaching of fractals mean to the individual student studying
the topic?

This study undertakes to identify: 1) some of the difficulties
encountered in constructing the meaning of a fractal (for the
purposes of this study a fractal will refer to an object that is self-
similar and has non-integral dimension), 2) certain basic acts of
understanding necessary in the process of construiung the meaning

of fractal, and 3) the didactic conditions of teaching the notion of
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fractal: prerequisites, pedagogical exploitation of the conflict
generating situations for the introduction of the new concept of
dimension, and probiems used to develop the notion of fractal.

These aims, will be considered through a historical review of
fractals and dimension, and case studies of three, grade 12 students.
The case studies take place in two seftings: a clinical interview, and
a teaching experiment. The interview and experiment will be
founded on a questionnaire and a preliminary epistemological
analysis of the concept of fractal. The questionnaire was designed
to determine the student's existing notion of dimension and
similarity. The analysis considers possible acts of understanding
and obstacles the students may encounter in learning about fractals.
The main pedagogical reference for the experiment is that of the van
Hiele model of geometric thinking.

The thesis is developed over five chapters. Chapter one
presents the notion of fractal, explains the reasons the study was
undertaken, introduces the reader to the literature relevant to this
dissertation and a short history of the notion of dimension and
fractals. Chapter two contains the pre-experiment analysis. In
particular, the two theoretical tools for this analysis, namely - a
preliminary epistemological analysis of the concept of a fractal and
van Hiele model of geometric thinking. The analysis identifies
obstacles to be overcome and acts of understanding needed to be
achieved if the notion of fractal is to be developed. The van Hiele
model discriminates between three levels of development of a
concept: visualization, description, and theoretical. Achievement of

each of the consecutive levels is guided by an instructional



sequence: inquiry, directed orientation, explication, free orientation,
and integration, in that order. The pedagogy of van Hiele model and
the preliminary epistemological analysis are then used in
determining the didactic conditions necessary for the teaching of
fractals.

The third chapter reports the three individual stories
regarding the development of the notion of a fractal during the
interview and experiment. The clinical interview and three teaching
lessons are presented in detail. The teaching experiment involves
the teaching of four activities. Eight tasks are developed as a part
of the four activities. The experiment focuses on the students
development through these tasks. An evaluation, given upon the
completion of the teaching undertakes to determine if the aims of
the activities (tasks) have been met.

The fourth chapter ccnfronts these stories with the analysis
of chapter two. Using the analysis, hypotheses will be made
regarding the elements that the three students had in common while
progressing through the tasks.

The final chapter will involve four aspects relevant to this
thesis. The four aspects include the teaching of fractals, how the
teaching undertaken in this study could be extended or maodified, in
what sense were the objectives of the study met and future areas to

be researched.
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CHAPTER 1: The notion of fractal, its literature and history

We start with a presentation of the notion of fractal. The
reasons for studying fractals form a part of this presentation. This
is followed by a review of literature related to fractals. Chapter
one closes with an outline of the history related to this subject.
This part will focus on the analytic, geometric and theoretical work
used in creating the current notions of fractal and dimension. The
history sets the stage for the epistemological analysis that follows

in chapter two.

1. What is a fractal?

Our introduction of fractals comes by way of the von Koch
curve. Through the triadic Koch curve, the ideas of self-similarity
and fractional dimension will be considered. The relationship
between dimension and self-similarity will be highlighted.

The von Koch curve is formed with a recursive technique: start
with a line, omit the middle third, substitute the middle third with
2 lines having 1/3 the length of the original line, then do the same
thing for each of the four remaining line segments.

VARG 1 O

First Stage Second Stage

Third Stage nth Stage

EEET TS T T s
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The Koch curve is the limit of this process and is deemed self-
similar. A set is self-similar if it can be formed by the union of N
non-overlapping subsets of S, Sq, So, .., SN. These subsets are all
congruent to r(S), o<r<1. Congruent meaning, they, the subsets S;,
can be formed by r(S) through rotations and translations.

The property of "self-similarity" can be used to discover the
object's dimension. A line segment, a square and a cube will be used
to show the relationship between self-similarity and dimension. |If
a line is scaled down by a ratio r then the number of smaller copies,
N, is given by N=1/r. For example if a line is scaled down by a factor
1/3 then the number of smaller copies, N, is 3=1/(1/3). If a square
is scaled down by a factor r then the number of smaller copies
N=1/r2. Similarly, the numper of smaller copies of a cube with
scaling ratio r is N=1/r3. This may be generalized into the fona
N=1/rD or D=logN/log(1/r), where D is the dimension of the figure
(Peterson, 1988).

Tt von Koch curve can be analyzed in the same manrner. The
original line is scaled down by a ratio 1/3 and there are 4 smaller
copies of the original line, thus, it has dimension D=logd/log3. This
is referred to as the object's similarity dimension.

This is the beginning of the relauonship between dimensions
of non-integral value and self-similarity. These two properties will

be common to the fractais dealt with in this paper.

2. Why study fractals?
Thorpe (1989), determines three criteria by which curriculum

is deemed relevant or not worthwhile for study. The curriculum



must be intrinsically exciting, have pedagogic vaiue and/or intrinsic
value. The study of fractals is intrinsically exciting. The patterns
and pictures created are beautiful. The students can create
pictures, and test conjectures regarding the pictures (Thorpe, 1989).

The intrinsic value can be found in many applications which
encompass the fields of chemistry, anatomy, physics, and chaotic
dynamical systems. High school students are able to characterize
fine particle boundaries (eg. carbon black), describe respirable dust
found in industry and metal crystais. These descriptions can be used
in the context of improving the workplace and improving the quality
of manufactured goods.

Mandelbrot states that fractals should be used as an
introduction to the concept of derivative, as students should be
aware that continuous lines that are nowhere differentiable are the
rule and not the exception. Thus, fractals can be used in a
pedagogicaily significant manner and, as grade 12 math is the last
course before calculus, this may be an appropriate time for the
introduction of fractals (Barcellus, 1984).

A number of high school students have been introduced to the
topic of fractals, through the media and after-school activities. The
standard presentation begins with the question, "How long is the
coastline of Great Britain?". The answer is developed by using the
idea that the length depends on your "measuring sticks". Students
are then asked to use different measuring sticks and find the length
of the coastline. The length versus measuring stick is then plotted

on log-log paper. The points can be joined 'y a straight line. The
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slope of the line, m, is used to dete:mine the dimension of the
coastline through the equation D=1+|m|. The dimension is said to
describe the coastlines ruggedness. Often no mathematical
explanation is given as to how D=1+|m| is derived. The implication is
that yet another rule has been discovered, in the field of
mathematics. Students must be given the opportunity to understand
that this is not simply another rule, but a new way to perceive the

world.

3. Literature Review

The word fractal was first coined in 1975 by Benoit B.
Mandelbrot. To get an idea of what a fractal means, a comparison of
Euclidean and fractal shapes is presented in Pietgen and Saupe's, The

Science of Fractal images (p. 26). The comparison in the following

table outlines what it means for an object to be a fractal.

Mathematical language to describe, relate, and manipulate

shapes

EUCLIDEAN FRACTAL
traditional (>2000 yr) modern monsters (.10 yr)
based on characteristic size no specific size or scaling
suits man made objects appropriate for natural shapes
described by formula (recursive) algorithm

The Pietgen's explanation is only accurate in a general sense. If by
traditional the author means shapes such as circles and cubes, and

monsters is taken to mean sets such as the Cantor set and von Koch



snowflake, the reader is given some feeling as to an apparent
difference between the two geometries. The second and third points
used to describe a fractal should be clarified. The second point, no
specific size or scale, would exclude many of the fractals found in
nature. Natural objects may exhibit such qualities, but only within a
certain range of sizes. With respect to the third poini, appropriate
for natural shapes, Stewart states "The fractal cow is not of
necessity more realistic than the spherical one" (Stewart, 1988,
242). Even this new mathematical representation of the world has
several limitations.

Mandelbrot (1982) posed the first mathematical definition of
fractal as "a set for which the Hausdorff-Besicovitch dimension
strictly exceeds the topological dimension" (p.15). This definition is
such that it excludes many fractals found in the study of physics.
Although this definition is confining it enabled researchers to
explore what fractals are in a more mathematically systematic
manner. Once this process had begun then refinements to the
definition could be based on sound mathematical theory.

In Eractals Everywhere, Barnsley's first definition regarding
fractals reads as follows, "If we were to define a deterministic
fractal, we might say that it is a fixed point of a contractive
transformation.." (p. 80). The context and clarifications given are of
interest. The comments "If | were to define" and "we might"
demonstrate Barnsley's apprehension in presenting a definition for a
fractal. The author clarifies that this is not a definition for

fractals, but "deterministic fractals".
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As the first definition was proposed in 1982 it isn't
surprising that an all encompassing mathematical definition hasn't
been developed. Also, mathematicians maybe be reluctant to offer
such definitions until the field of study has "siabilized". At present
the definition that offers a great deal of flexibility is that a fractal
is an entity whose parts are in some way similar to the whole
(Feder, 1988, 11).

This paper will be concerned with self-similar fractals. To
develop an understanding of what self-similar fractals are, a
mathematical description and an example will be given.

Self-similar fractals are those objects whose subsets, when
magnified, are all similar to the whole. Such a definition
encompasses both exact and statistically self-similar fractals.

An exactly "self-similar object is composed of N copies of
itself (with possible translations and rotations) each of which is
scaled down by the ratio r ... Consider a set S of points at positions
x=(X1,...Xg) in Euclidean space of dimension E. Under a similarity
transform with real scaling ratio 0O<r<1, the set S becomes rS with
points at rx=+(rxq,...,xg)" (Falconer, 1985, 59). A bounded set S is
self-similar when S is the union of N distinct (non-overlapping)
subsets Sq,....SN each of which is congruent to rS. Congruent refers
to the fact that a set of points S; can be made identical to rS under
translations and/or rotations . Falconer (1985) gives the Cantor set
as an example of such a set. S=[0,1], S n[0,1/3] and S N [2/3,1] are
similar to S with a scaling ratio of 1/3; § ™ [0,19], S N [2/9,1/3],
SN [2/3,7/9] and S N [8/9,1] are similar to S with a scaling ratio of
1/9.
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Feder states that a fractal is statistically self-similar if it
is the union of N non-overlapping subsets each of which is scaled
down by a ratio r from the whole and if each is identical in all
statistical respects to rS. The author doesnt make clear the
meaning of “identical in all statistical respects”.

Possibility cf misinterpreting the term fractal is great. This
is exemplified by Peterson's words, "the line, square, and cube are
also fractals, although mathematically they count as "ftrivial" cases.
The line contains within itself little line segments, the square
contains little squares, and the cube little cubes." (Peterson, 1988,
119). A straight line, square and cube are not fractals as their
Hausdorff dimension is the same as their topological dimension.
Peterson's misinterpretation results from the development of what
he calls the Hausdorff dimension, but which would be more
appropriately called the similarity dimension. The ideas of self-
similar and dimension are connected first by objects of one, two and
three dimensions, this is then extended to fractal objects
(Mandelbrot, 1983, Feder, 1988, Peterson, 1988, and Peitgen and
Saupe 1988). There is nothing wrong with this in terms of the
mathematics, but if a distinction has been made between Euclidean
and fractals geometries it must remain clear. If fractal geometry is
seen as an extension of Euclidean geometry then lines, squares and
cibes can be considered as fractals.

The concept of dimension is another idea tr needs
clarification. "The problem with dimensionality is dual: there is no

constancy at the perceptual level nor is there any universally agreed
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upon constancy at the theoretical level." (Kaye, 1989, 102). This
leaves us with an operational definition at the perceptual level and
many overlapping definitions at the theoretical level. Kaye tells the
story of the changes in (operational) dimension when observing a
ball of string. Perceptually, the string has dimension zero when it
is far from the observer as it appears to be a point. When the string
is brought closer it can be said to have dimension two as it looks
like a circle. The dimension of the string is three when it is brought
even closer because the observer can see the contours of the ball of
string. Mathematically (theoretically) the problem exists as to what
definition should be used to determine an object's dimension. To
choose a correct theoretical definition of dimension a relatively
detailed idea as to the object's properties is needed. Tricot (1981)
presents 12 definitions that can be used to determine the dimension
of an object.

Similarity dimension can be used to describe the dimension of
those objects that are self-similar.  The similarity dimension of an
entity may be determined by breaking a line up into N pieces each of
ratio r=1/N or Nr'=1 (Mandelbrot, 1983, Feder, 1988 and, Peitgen
and Saupe 1988). They proceed to show Nré=1 for a square, Nrd=1
for a cube and NrP=1 in general. D is deemed the similarity
dimension of the set. If each of the N subsets are scaled down by a
different scaling ratio r, then the dimension can be found using
Yr,P=1. Falconer (1985) is far less clear when discussing the idea
of similarity dimension. Nowhere does he use the term similarity

dimension, although his mathematicai definition of similarity is



12

unsurpassed in detail within the scope of my readings.

A mood of change is embodied in Stewart's book Does God Play
Dice?. It presents a revolutionary view of the world given through
fractals and the modern theory of chaotic dynamical systems. Since
the idea of fractal seems to be largely based on the notion of
dimension and the definitions this paper uses were available in the
early nineteen hundreds the idea that a new way to view the world
has been found may suem a bit strange.

For example Hurewicz and Wallman developed Hausdorff
dimension in Dimension theory, 1943 and used it to find the
dimension of the Cantor set, yet they seem to apply little value to it.
In their introduction they talk of the interesting concepts involved
in establishing entities of -1, 0, 1, 2, ..., n dimensions, but don't
mention that an object can have a dimension of non-integral value.
In this writer's unbiased opinion, considering objects of non-
integral value is far more interesting. This lack of insight is also
found in the article What is dimensjon?. Why then did the topic of
fractals not develop earlier? Certainly computer and the graphics
that they produce play & major role in the study of fractals. The
questions remain as to what this new perception is and how is it
useful?

The new perception can be developed in a broader context,
that is the theory of chaotic dynamical systems. This thesis will
not undertake to explain this theory. Books such as Chaos and Does
God Play Dice? can be used to provide a general understanding of the
theory.
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Stewart (1988) states that the math of fractal geometry can
be used "for describing and analyzing the structured irregularity of
the natural world". The term "structured irregularity” provides a
great deal of insight into how fractals are used to describe the
world. Euclidean geometry encounters difficulty in depicting such
irregularity.

"Thus what originated as a concept in pure mathematics has
found many applications in the sciences. These in turn are a fruitful
source of further problems for the mathematician." (Falconer, ix).
The pure and applied aspects of mathematics are very
complementary with respect to fractals. This point is pedagogically
relevant as it can be used as a motivator when students are studying
fractals. Those students who do not intend on pursuing a career in
pure mathematics can be motivated by the subject's applicative
value. Those who wish to study higher level mathematics have a

rich topic at their disposal, one full of compiexity and beauty.

4. A history of fractals

And so we begin a sojourn into a century of mathematics, the
1870's to the 1970's. Our attention will first be fixed on the period
1870 to 1920, the time in which the foundation for the definition of
fractal was built, and the link between continuous curves without
tangents and dimension was formed. We take a quantum leap when
the works of Fatou and Julia are brought into the computer age with
the help of Mandelbrot.

Weierstrass and Riemann were the first to convince the

mathematics community that it is wrong to assume that a
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continuous function always has a finite non-zero derivative, except
for a finite number of isolated points. The first counter example
was presented by Riemann in 1861.

The example was the summation of the series sin(pzx)/p2;
unfortunately, his demonstration is unknown to us. In 1872,
Weierstrass presented Y. b'cos(a"nx) as another example of a
function that doesn't possess a derivative (finite or indefinite) for
any value of x. (Note: a is an odd, whole number, and ab>1+3n/2).
Hardy (1916), showed that 0<b<1 and ab>1 were sufficient for the
function to have no finite derivative, at any point (Chabert, 1990).

This revelation was not to be accepted without apprehension,
"Hermite wrote in 1893 in a letter to Stieljes:

| divert myself with fright and horror of lamentable wound of
the function without derivative.

or again, Poincarre (1890 r~omments:

In the past when we invented a new function it was for
practical purpose, but today, we invent purposefully to prove
wrong our fathers, and that is all we get out of it.”

(Chabert, 1990)

The work of Bolzano and von Koch brought the analytic works of
Riemann and Weierstrass to that of visual geometry.

Bolzano was the first to develop a continuous curve without
derivative.  The process consists of building a succession of
polygonal lines, replacing at each stage all segments of the
polygonal lines by polygonal lines, formed by four segments having

the same extremity as the initial segments. The extremities of the
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segments (a,p) and (b,q), where a=b and p=q, is replaced by four
segments joining the points (a,p); ((5a+3b)/8, (3p+5q)/8); ((a+b/2,
(p+q)/2); ((a+7b)/8, (-p+9q)/8); (b,a). Unfortunately, Bolzano's work
was not discovered until 1921 (Chabert, 1990). Thus, von Koch was
left with the task of bringing Weierstrass' work to a more intuitive
(visual) form.

The triadic von Koch curve allows one to perceive the idea of a
curve not having a tangent, and is commonly used to bring together
the notions of seli-similarity and dimension. The curve is obtained

through the process shown below in figure 2.

N

Cesaro (1905), considered the von Kocn curve with respect to area,

as seen in figure 3. The area goes to zero.

Before finding a link between continuous curves and dimension, |
will explore what is meant by dimension.

All the objects we encounter physically are 3-dimensional.
However, paper is considered to approach that of a 2-dimensional
object (a surface) and string represents our notion of 1-dimensional
entities (lines). (Menger, 1943).

The question to be answered is (mathematically) "what is the
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difference between objects of different dimensions?” (Menger,
1943). Initially, it was thought the difference lay in the number of
points. That is, a line has fewer points than a plane, which in turn,
has fewer points than a solid. If two sets are to have the same
number of elements, then a 1 to 1 correspondence can be established
between the elements. Cantor set up such a correspondence between
the line, surface and solid, thus proving they had the same number of
elements.

The next condition was that of continuity. Maybe a line could
be traversed by a continuously moving point, but could shapes of
higher dimension? Peano found that a point could traverse a surface.

An example is shown in Figure 4.

Menger (1943) defines dimension inductively as follows :

A set of points of our space is at most n-dimensional if each
point in S lies in arbitrarily small neighbourhoods whose

boundaries have at most (n -1) - dimensional intersections
with S. The set S is n-dimensional if it is at most n-
dimensional but not at most (n-1)-dimensional. That S is not
at most (n-1)-dimensional means that S contains at least one
point at which S is at least n-dimensional , that is to say, a
point which does not lie in arbitrarily small neighbourhoods
whose boundaries have at most (n-2)-dimensional

intersections with S; the boundaries of all sufficiently small

neighbourhoods of such a point have at least (n-1)-dimensional
intersection with S. The vacuous set, called -1-dimensional,
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is the starting point for this recursive definition.
Such a definition is topological in nature and is consistent with the
writing of Hurewicz and Wallman, Dimension Theory, 1941.

In 1919, Hausdorff was able to calculate "d-dimensional
measures, where d>0 was not an integer " (Barcellos, 1984).
Besicovitch found that this could be used to find the dimension of
various sets, thus the name Hausdorff-Besicovitch dimension.

For certain (self-similar) sets a simplified version of
Hausdorff dimension can be used. This is known as similarity
dimension. Mandelbrot developed similarity dimension when
studying Brownian motion.

The work of Mandelbrot (1980, 1982) and Peitgen et al (1986,
1988) produced many visually appealing images. These images are
what have come to be known as fractals. Their research is based
largely on the work of Fatou (1906,1919/1920) and Julia (1918).

It is interesting to note that most of these beautiful images
recently obtained are found in the theoretical work of Julia. He
studied the behaviour of the iterations of the series zn = R"(zg)
where z, is a complex number and R, a rational function of degree >
1. These fractals are concerned with the invariants of non-linear
transformations as opposed to the seif-similar fractals (invariant
by linear transformation) (Chabert, 1990).

Fractals have developed as a resuit of the analytic work of
Weierstrass and Riemann, the geometry of Bolzano, von Koch and
Peano, and the theory of Cantor, Julia and Fatou. Mandelbrot was
able to unify these works. He grouped the notions of a continuous

curve without tangent and dimension to obtain a new means of



describing natural and mathematical shapes.
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CHAPTER 2 : The questionnaire and the pre-experiment analysis

This chapter starts with a presentation of the general
theoretical framework. The framework comprises a theory of
learning, and a theory of instruction.

The framework is then developed for the particular case of the
notion of fractal. It consists of a preliminary epistemological
analysis of the concept of fractal. The analysis is based on results
of a questionnaire administered to a group of grade 12 students, on
the one hand, and on the history of fractals, on the other. The latter
analysis leads to an identification of a certain number of acts of
understanding and obstacles pertaining to the notion of fractals.

Analysis of the results of the questionnaire also helps to
outline the prerequisites that, a priori, seem necessary for the
learning of fractals (by a grade 12 student). There are a number of
prerequisites to such learning whether numerical, algebraic or

logical.

1. A theory of learning

In developing an appropriate problem to be researched, a
considerable amount of thought is evoked. The problem should be
relevant to the educational setting, which for the purpose of this
paper is high school, and the problem must be consistent with the
writer's philosophical ideals. Once this consistency is met, the next
step is to develop or adopta learning theory. This learning theory

must be congruent with a theory of instruction or teaching.
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As philosophy is developed through activity, so is learning.
Kneller (1971) views philosophy as an activity which encompasses
speculation, prescription and analysis. To establish theories that
encompass as much of life as possible constitutes a speculative
activity. The prescriptive activity considers what is worthwhile.
To carify is to be analytic. These three descriptors provide a
framework within which to develop a learning theory.

The theory of learning we adopt in our research focusses on
the discontinuities rather than on the continuous parts of the
process. We admit that learning knows long periods of small steady
progress, but we also believe that important cognitive events have
the character of "leaps”. These leaps result in a complete change of
a way of knowing, of focus. Moving from the Euclidean perception of
dimension to that of non-integral dimension is not easy; it must be
done at a significant cognitive depth‘ and therefore it demands the
student go through a number of such discontinuities.

This philosophy of the learning prccess seems to be shared by
quite a few philosophers, psychologists, mathematicians and
mathematics educators. Discontinuities are crucial in Bachelard's
idea of progress of scientific thought through overcoming of
epistemological obstacles (Bachelard, 1938); Kuhn's scientific
revolutions (1962) and Piaget's periods of disequilibrium mark
exactly the big jumps in the history of human learning.
Mathematician Willem Kuyk developed a cusp catastrophy model of
mathematical intellectual concentration and discovery (1£82): "In

mathematical learning jump features are prominent. the sudden
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recognition of a pattern in problem solving, but also a discovery that
certain features fit into a comprehensive framework" .
Byers (FLM 4, 1) applies and develops Piaget's idea of

equilibrium of cognitive structures in the context of learning

mathematics at the tertiary level. He says:

Learning can be broken down into two stages. In the first a

previously held equilibrium is shown to be inadequate and is

broken down. In the second a new state of equilibrium is

established. New structures only emerge from awareness oi

conflict within the cognitive system. One role of the teacher

is to provide experiences that promote cognitive conflict -

experiences that disequilibrate the system. Without the

sustained tension generated by these conflicts there is no hope
for students to break out of the equilibrium within which they
are trapped (..) The second stage of learning involves the
establishment of a higher order equilibrium, thereby resolving
the tension generated by a particular dilemrna.

This tension needs to be managed, not eliminated, as Byers siates:

The point which is relevant for us here is that the attempt to
avoid the tension which arises naturally in a valid teaching-
learning environment often short-circuits the educational
process as a whole. There is no painless road to learning. The
true educational task consists of managing, not eliminating,

tension.

One of the fundamental didactical questions is: what does it
mean to understand (a particular notion)? This question has been
approached mainly by distinguishing kinds, modes and levels of
understanding: apprehension versus comprehension (Dewey, 1910,

How we think?); visualization, analysis, informal deduction,

deduction and rigour as levels of geometric understanding (van Hiele,

1957, 1959); instrumental, relational, logical and symbolic modes of
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understanding mathematics on two levels: intuitive and reflective
(Skemp, 1978; Herscovics & Bergeron, 1989); the level of intuitive
understanding, logico-physical procedural, and logico-physical
abstraction, and the level of logico-mathematical procedural,
logico-mathematical abstraction and formalization (Bergeron-
Herscovics, 1988).

All these approaches focus their attention rather on kinds of
ways of knowing rather than on intellectual and emotional acts that
make one change one's way of knowing.

The latter point of view is taken by Sierpinska who proposes
to define an understanding of a mathematical notion by exactly those
intellectual acts which fundamentally change one's ways of knowing,
i.e. by the "jumps".

These jumps can be seen in two, complementary, ways. |f one
looks back, on the old ways of knowing, one sees difficulties and
obstacles to the new way of knowing. Looking forward focusses on
the new way of knowing.

The first image is called an act of overcoming a difficulty or
obstacle. The second - an act of understanding. These images are
complementary and neither can be omitted in describing what it
means to understand a particular mathematical notion.

Particularly important kind of obstacles are epistemological

obstacles, as

...they seem to belong to the meaning of the concepts
themselves, they are not just results of particular ways of
teaching these, they are not idiosyncratic, not something that
occurs in a person or two. They are common in the frame of
some culture, whether present or past and thus seem to be the
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most <objective> obstacles to a new way of knowing.
(Sierpinska, 1991)

Things that function as epistemological obstacles in our ways
of knowing very often have the status of deep rooted beliefs,
convictions concerning such fundamental categories as space, time,
number, cause; or - of philosophical attitudes towards the nature of
knowledge (scientific knowledge and mathematical knowledge, in
particular); or they are some unconscious schemes of thought which
limit our view of a problem and ways in which we might approach
its solution.

Acts of understanding are distinguished through four
categories: identification, discrimination, generalization and
synthesis. ldentification (of an object amongst other objects) is
related to acts of understanding that pertain to a concept being seen
"arising” from the background into the forefront. This is the case
when a person first perceives that an object is worthy of study. the
act that occurs when significant differences and reilevant properties
are noticed is referred to as discrimination (between two objects).
Generzlization occurs when possible extensions to an idea are
ifluminated. Irrelevant features become visible and new
interpretations are perceived under this category. The fourth
category, synthesis, is the perception of links between ideas; as a
result new organisations of properties and relations are developed.

One important feature of the approach outlined above is the
way it views the role of mistakes. It is beiieved that this role is

positive and that
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by trying to shield students from making mistakes we, as educators,
do them a disservice. [f mistakes are used appropriately they can
provide a deepened awareness and an interpalization of the

properties relevant to the concept.

2. A theory of instruction
A theory of instruction satisfies two functions. The theory is

prescriptive in that it sets forth rules for a means of achieving
understanding of a mathematical concept. Secondly, a theory of
instruction is a normative theory in that "it sets up criteria and
states conditions for meeting them" (Bruner, 1966, 40) Thus, the
learning theory, which is descriptive should be congruent to the
prescriptive nature of the instruction theory. Bruner (1966)
developed an instruction theory with four features, the theory
should specify:
1. the experiences which most effectively implant in the individual
a predisposition toward learning,
2. the ways in which a body of knowledge should be structured,
3. the most effective sequences in which to present the materials
to be learned, and |
4. the nature and pacing of rewards and punishment in the process
of learning and teaching.

As the research described in the thesis will take place in a
regular school setting and over a relatively short period of time, the
first and fourth functions of the instruction will not be considered.

The structure in which the knowledge is presented affects the



25

ability of the learner to understand said knowledge. The way that
knowledge is presented, known as the economy of the representation
is important. The knowledge may be presented through actions,
images or symbols. The economy with which each one of the three
representations is presented may bLe varied. Mathematics lends
itself to all three represeniations. The economy of such
representations can be increased as a greater understancuiig of the
concept evolves.

The sequencing of material is impnrtant if understanding of a
concept is to take place.

Our choices on the level of sequencing of teaching mateial
have been guided by the van Hieles mode' of instruction, congruent
with their model of levels of geometric understanding.

The van Hiele levels of geometric understanding were
formulated by Dina van Hiele-Geldof and Pierre M. van Hiele in their
dissertations in 1957 and 1959 respectively. The model was first
composed of five levels of understanding: visualization, analysis,
informal deduction, deduction and rigor.

The first level or level O as it is referred has the student at a
level of understanding such that he views the geometric constructs
as a whole rather than seeing the attributes of the parts.
Recognition takes place through physical appearance and not
properties.

Level 1 has the student characterizing the figures and
conceptualizing classes of shapes. The student is unable to find

relations between properties, and between shapes and definitions
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aren't yet understood.

in level 2 the relations between and within objects is
understood. Class inclusion is understood and definitions have
meaning. Deductions are based on empirical evidence and the
student can't construct a proof from an unfamiliar premise.

The fourth level sees the student constructing proofs and
relating theorems, definitions and proofs. The converse of a
statement is understood.

The van Hieles state that the final level is rarely reached. At
this level different systems can be compared, for example Euclidean
and fractal geometry. Geometry is seen in the abstract.

The current version of the model consists of three levels;
visual, descriptive, and theoretical. These three level correspond to
the original model as follows; visual- level 1, descriptive- levels 2
& 3, and theoretical- levels 4 & 5.

The students proceed from one level to the next and can't skip
a level. The intrinsic object at one level is the object of study at
the next level. The appropriateness and accuracy of the linguistic
symbols used increases as the students proceed through the level.

Within each level of the van Hiele model a sequence of
instruction is to be followed: inquiry, direc.ed orientation,
explication, free orientation, and integration. These are referred to
as phases. An outline of the phases is presented below:

1. students observe and raise questions regarding the particular
objects, the purpose is to have the teacher determine the student's
existing knowledge and for the students to understand tne direction

the study will take,
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2. the students are given short tasks to obtain specific responses,
gradually the structures characteristic of that level are seen,

3. students express and exchang> their views about the structures,
the teacher assists the students in the use of accurate language,

4. the students work on tasks involving many steps and which are
open-ended in nature, and

5. students review and summarize with the help of the teacher.

The learners are now ready for the next level of understanding.

3. The questionnaire

Before implementing a clinical interview or teaching
experiment a questionnaire was designed. It was designed to serve
two purposes. The questionnaire is to be used as an hypothesis
builder regarding the student's concept(s) of dimension and
similarity, and through such information determine which, if any, of
the students questioned can be used in the study. It was expected
that the student's conception of dimension would vary greatly as
they had not previously studied dimension in an explicit manner.

The questionnaire was administered to a class of 27, grade 12
advanced mathematics students ("advanced" classes are for those
planning on an university education). The students were from a rural
high school in Prescott, Ontario. Their ages ranged from 16 to 18
years.

The presentation to follow will include the questions

answered by the students and the aim of such questions. Part A
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deals with questions relating to the idea of dimension and part B
involves the concept of similarity. The figures shown are smaller

then those shown to the students.

The Questionnaire:

Part A: Questions concerning dimension

1. Categorize the following objects in terms of their dimension.

Categories (dimension):

2. For each dimension state what the objects have in common.

3. Add an object to each category.

4. a) What is the difference between an object with dimension 1 and

an object with dimension 27
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b) What is the difference between an object of dimension 2 and an

object of dimension 3?

Part A has four aims: to establish how the student catergorize a
variety of shapes with respect to dimension (question 1), to explore
the criterion s/he used for categorizing (question 2), to determine if
the students could create and draw an object that fits the criterion
stated in question2 (question3), and to ascertain if the student can
compare characteristics of different classes of objects, in this case

the classes are created in terms of dimension (question 4).

Part B on Similarity

5. Are the following pairs of figures similar?

a)
13
4 5 5

3 12
answer:
why?
b)

> 2 3 3
answer:

why?
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r=2

@ (=2
ANEYAN

1 1/2 1/4 1/8 1/2 1/4 1/8 1/16

answer:
why?
d)

answer:
why?
e)

— [N — —— *de

answer:
why?

Part B was designed to determine what definition the student
attaches to the notion of similarity be it mathematical or

otherwise.

Results

Part A

a) 11 students viewed shapes B, D, F, I, J, and K as one
dimensional. Their answers expressed the idea that if the object is
flat ("one view"), then it has one dimension,

b) 1 student saw F as one dimensional and G as two dimensional,

c) 10 students viewed D, | and K as one dimensional,

Ara? Lol S - B
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d) 9 students viewed B, C, F and J as two dimensional,

e) 2 students in the class did not express any criterion for
determining an objects dimension,

f) 10 students classified shapes on basis of length, width and
height,

e.g.: "1 dimensional - length but no width; 2 dimensional: length and
width; 3 dimensional - length, width, depth. (...) An object with
dimension 1 has only one dimension (a length), an object with
dimension 2 has two dimensions (a length, width). An object with 2
dimensions has an area and can be expressed in units squared. An
object of dimension 3 has three dimensions (in length, width, depth)
and can be expressed in units cubed.”

This conception of dimension is very closely related to
practical problems of measuring and units. The classification goes
along the units, units squared, units cubed.

g) 9 students viewed E, H, and G as three dimensional (A varied as

they weren't clear as to the shape).

PartB

a) All the students used the idea of proportionality in defining
similarity,

b) 1 student determined similarity by "mathematical" and
"logical” means. The student in answering 5 a) wrote,

answer: "depends on your point of view".

why? "Mathematically no, because the sides aren't proportional to

each other. Logically yes because they are both right < (angled)
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triangles.”

Comments

it is of note that many avenues may have been studied upon
completion of the questionnaire as seen from the results. For our
purposes we will focus on the students who have consider dimension
as Euclid presented it. The 17 students who did not view dimension
as pertaining to length, width and height were not considered for
further study. For example, the 11 students who saw 1-dimensional
objects as those that are flat were unsuitable subjects for this
study. From the remaining 10, four were selected, the one student
who saw F as 1-dimensional and G as 2-dimensional and the student
who viewed similarity in terms of mathematics and logic, were two
of the four. The remaining two were chosen on the basis of the

clarity of their writing. Two females and two males were selected.

4. A preliminary epistemological analysis of the concept of
fractal.

The analysis presented below will deal with the "Acts of
Understanding" (U.) necessary for a (grade 12) student to realize the
meaning of fractals and the epistemological obstacles (E.0.) the
student may encounter in constructing such a meaning.

It seems that the very first intellectual act leading to an
understanding of the concept of fractal must be:

U(dim)1: Identification of dimension as a non-intuitive concept that
is in need of study and a precise definition.

This identification can be regarded as overcoming the obstacle:
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E0(dim)1: (a belief concerning the notion of dimension) There exists
one universa! concept of dimension.

The ‘above obstacle is rooted in Greek geometry. Our intuitions
concerning dimension develop from the seeds of Euclid's
classification of geometrical objects as presented in "Elements”,
Book 3:

"{. A point is that which has no part.

2. A line is breadthless length.

3. The extremities of a line are points .

5. A surface is that which has length and breadth only.
6. The extremities of a surface are lines."

... and Book XI:

"1. A solid is that which has length, breadth and depth.
2. An extremity of a solid is a surface”.

This clear idea of classifying geometrical objects into those
of dimension one, two and three is already present in Plato's
BRepublic, Book VII: "after plane surfaces ... the right way is next in
order after the second dimension to take the third ..., the dimension
of cubes and everything that has depth” (Mandelbrot, 1983).

This Euclidean classification has been observed in students’
reactions to the questionnaire (see p. 31).

Although the notion of fractional dimension was introduced by
Hausdorff in 1919, to this date it is unknown by the general public.
Also, | am unaware of many undergraduate mathematics students
encountering Hausdorff dimension.

Another feature of the common conception of dimension is
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that:
EO(dim)2: (conception of dimension) Dimension is a unique
characteristic of an object.

Some students seemed to believe that the world of
geometrical (and maybe also real world) objects can be divided once
and for all into three categories: objects of dimension 1, objects of
dimension 2 and objects of dimension 3. Some students spoke, in
fact of "dimensions" as characteristics that situate an object in
space. Those dimensions are: length, width and depth. Each of these
characteristics is a "dimension®. This reminds one of the notion of
basis of a vector space: a non-redundant set, sufficiently large to
span the whole space. "One dimension" in students' way of speaking
corresponds to "one element basis”, "two dimensions" - to "two-
element basis" etc.

This idea of an absolute dimension has to be overcome in an

act of identification:
U(dim)2: identification of dimension as an abstract concept which
has to be defined in a way which is specific to the aspects and
relationships found in the mathematical domain on which the
definition is being applied (figures in Euclidean geometry,
topological spaces, physical models such as coastlines and rivers,
etc...).

It is hoped that if the student's mathematical knowledge is
used to determine a dimension which is non integral s/he will
experience a cognitive conflict which will result in the above act of

understanding.
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"The problem with dimensionality is dual: there is no
constancy at the perceptual level nor is there any universally agreed
upon constancy at the theoretical level (Kaye, 1989, p. 102). This
leaves us with an operational definition at the perceptual level and
many overlapping definitions at the theoretical Ilevel.
Mathematically (theoretically) the problem exists as to what
definition should be used to determine an object's dimension. To
choose an adequate theoretical definition of dimension a relatively
detailed idea as to the object's properties is needed.

A prerequisite for the above act of understanding is, of course,
as awareness of the meaning and role of definitions in mathematics.
This means overcoming, at least, the obstacle:

EO0(def)3: (A conception of definition) A definition in mathematics is
similar to a description in science; it need rnot be understood too
literally, it is not binding,

The above conception can function as an obstacle in
mathematics. Definitions in mathematics are logically binding. In
mathematics a mathematical object is nothing more and nothing less
than is implied by its definition. If the definition leads to
"monsters" which we do not like we can change the definition. But if
we do not, we are bound to accept the monsters as belonging to the
object defined. However, in physics and other sciences which
propose themselves to explain phenomena, it is important to be

aware that

"A thing is never what we say it is; it is always somethiig
more, or something else; perhaps because what we say is words, and
generally what we mean is not words" (Korzybski, quoted by Bohm,
1987) .
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U.(def)3: discrimination between definitions in mathematics and

science; definitions in mathematics are logically binding,

U.(def)4: identification of the freedom in mathematics to get rid of
tacit assumptions which are traditionally regarded as universal
laws and seek the logical implications of these.

For example,
U(dim)5: identification of fractional dimension as plausible answer
to search for the dimension of a geometrical object.

This act of understanding can be regarded as overcoming the
obstacle observed in the students' responses to the questionnaire...
EO(dim)4: dimension can only be whole numbers.

(In fact only 3 whole numbers have been taken into account).

The notion of self-similarity has to be built on the notion of
similarity but at the same time - against this notion. The
discrimination between the two concepts lies not so much in the
distinct natures of their definitions as in the application of the
definitions. Similarity is applied to two separate objects if the
ratios of their corresponding sides are equal. Self-similarity refers
to a characteristic that an object may have or not. In this case the
object is similar to each of the parts that define the whole. The
ratio, r , is such that O<r<1 and r does not vary with the part being

compared to the object.

U.(sim)é6: discrimination between similarity and self-similarity.
To work with r one must develop a synthesis:
U.(sim)?: synthesis of the practical notions of approximation and

scaling in the mathematical concept of self-sirilarity.
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With such synthesis the student can then extend these notions
beyond the physical and into the domain of mathematics. These ideas
can then be used in developing similarity dimension.

Another common conviction that people seem to share when
they are asked to determine the dimension of an object concerns the
shape of the object.

EC(dim)5: (conception of dimension) Shape is irrelevant in
determining dimension.

The shape | was qualified as 2-dimensional not because of the
complexity of shape but rather because it seemed thick, having
width.

This obstacle is associated with our "Euclidean™ intuitions; in
this case - with the topological invariance of the dimension of
Euclidean spaces. When the definition of dimension is changed to
that of "space-filing”, shape becomes essential in determining an
object's dimension.

The notion of space-filling requires the student to build
another discrimination:

U(fracta!)8: Discrimination between shapes that are smooth and
those that are rugged (i.e. have corners everywhere).

...and an identification:

U(fractal)9: Identification of "jaggedness" that does not "dissolve"
under magnification (non-rectifiable curves).

The concept of fractal is linked to the process upon which it is
built. A fractal is constructed using a generator and specific
transformations (rotations, dilations and translations). This

construction may be, in a student's mind, substituted for the fractal
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itself:

EO(fractal)6: (a conception of fractal) A fractal is not a finished
entity, but merely the process of construction or a sequence of
objects.

If the iterative process is used as a (tacit) definition of
fractal then shapes such as a line segment, the square and the cube
are clearly fractals. Fractals would no longer be tied to objects that
are nowhere differentiable. The category of fractal would become so
broad that its relevance is diminished. If the focus is on the process
then the use of r, the scaling ratio, and N, the number of subsets
vesomes very complicated. Is r found through a comparison of the
generator and the nth level (iteration or between the nth and (n-1)th
levels? And as N appears to be changing with each iterative process,
how do we know which N to select.

Another related obstacle is that which is linked with the
difficulty to grasp the meaning of actual infinity, inherent in the
notion of fractal:

EO(fractal)?: A fractal is the nth approximation (where n is big but
not infinite).

Overcoming the above obstacle leads to:

U(fractal)10: identification of a class F of geometrical objects
which are generated through an infinite iteration of a certain
construction.

and ...

U(fractal) 11: discrimination between an object of class F and the

process upon which the object is built.
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5. Prerequisites for learning fractals and didactic conditions for
the teaching of fractals

A priori there seems to be some algebraic, numerical and
logical knowledge the absence of which makes the overcoming of the
above mentioned obstacles and acts of understanding impossible to
occur. Below we list a number of mathematical capabilities that
appear to be relevant:
1. Algebraic: a) represent relationships symbolically,

b) interpret formulae, and

c) manipulate relationships (expression)

2. Numerical: a) intuition as to what the solution of an equation
like 4=39 will be;

b) familiarity with logarithms.

3. Logical: capability of understanding and applying a formal

definition.

4. Geometrical: Familiarity with at least the elementary

geometrical transformations.

In general, a student in grade twelve, advanced mathematics
would meet such standards. However, the each student's level of
ability in dealing with such prerequisites will vary.

The a priori analysis points to three areas that may be of
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particular difficulty for the students. First, the students must be
made aware that dimension is a non-intuitive concept. This may be
accomplished by having the students develop the idea of similarity
dimension for the line, square and cube, generalize to get the
equation N=1/rD (D=logN/log(1/r)), and then apply the equation to
the triadic Koch curve.

The next conflict situation may arise when the students have
to determine if a shape is self-similar on the basis of a
mathematical definition. To do this the student has to use the
notions of translation, rotation, and scaling (dilation).

As noted in the a priori analysis the construction of a fractal
is not obvious. The distinction between the process of building the
object and the object itself, and the relation between the iterative
process the definition of fractal are unclear.

These three conflict generating situations will be fundamental
in the development of the teaching experiment. Each teaching lesson

can be created around one of the conflict generating situations.
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CHAPTER 3: The experiment

The study will consist of two parts: 1) the development and
application of a clinical interview, and 2) the development and
implementation of a teaching experiment.

The introduction of non-integral dimension will occur in a
clinical interview, a one-to-one interview with each of the four
preselected students. The interview will function as an
intermediary between gaining information on the student's methods
of action and the content of their thoughts. This is not purely an
assessment type of interview as teaching does take place, its aim is
to bring conflict to the surface as opposed to merely hypothesizing
as to what may be at the root of a student's problem. This interview
is not an end in itself, but lays the foundation for the teaching
experiment (it attempts to bring the student to the realization that

dimension is a non-intuitive concept in need of study).

1. The Clinical Interview

The interview was designed to observe the effect of the
students development of the notion of non-integral dimension
(through similarity dimension). All four interviews took place in the
high school library. The room is sound proof, has three walls made
of glass, and is adjacent to another room which is similar in design.
The room contained three tables, one video camera (V), one
interviewer (l), an observer (O) and the student (S).

The discussions began with an informal talk regarding their
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answers to the questionnaire. The interview questions were
presented in written and graphic form. If the student did not

understand the question, the interviewer gave the question orally.

The questions:

1. |f we take a straight line of unit length (1) and divide it into N=3
lines, what is the length, r, of each of the lines?

2. How are N and r related? (write N in terms of r, eg. N=...)

Picture:

3. |If we take the unit square and divide it into N=32 squares,
what is the length of a side, r, of each of the squares?

4. How are N and r related? (write N in terms of r, eg. N=...)

Picture:

5. If we take the unit cube and divide it into N=33 cubes,

What is the length of an edge, r, of each of the cubes?
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6. How are N and r related? (write N in terms of r, eg. N=...)

Picture:

These first six questions were used to have the students see the
effect or the pertinence the object's dimension has in the context of
self-similar objects (they are unaware of the context). All the

objects and the objects dimension are known by the students.

7. Can you see how the object's dimension is related to the

equations involving r and N? Explain
The desired answer was N=1/rD or rD=1/N. If the student did not see
this it would been given, however, of the three students who reached

this point none had a problem developing the formula.

8. The Koch curve can be subdivided into lengths, r=1/3 of the

original size. How many smaller Koch curve, N, do you get?

9. Write N in terms of r.

b U,

Picture:
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The students were to use the previously establish formula and apply
it to this question. Thus, the student would determine that the
object's dimension was non-integral. Note that this question's
wording is not consistent with that of the other questions and it
would have caused less confusion had N been a given as opposed to r.
The students answers to the interview questions can be found in

Appendix B.

1.1 Critique of the interview (as seen by the observer).

The interview was conducted in a library seminar room with
walls of clear glass. Any student in the library who wished to
glance at what was going on could do so at will.

The presence of a third person and that of the video camera
may have affected some of the subjects. To eliminate or at least
reduce the potential uneasiness of the students due to these two
factors, ti.c observer was seated at a distance from the interview
table and the purpose of the camera was explained to the students
prior to the interview. The students were told that the observer
was there to observe the interview - a statement to which the
fourth student responded, "so he is a psychologist." Each session of
the interview began with questions regarding the questionnaire so
the students would first deal with something familiar.

The subjects were presented with a list of the questions. This
may have hac two effects: first, the subjects may have thought that
they were taking a test and second, it may have contributed to the

uneasiness of the subjects. As all the questions were on one page
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the students may have felt pressured by the amount of work to be
done. Having the questions on separate pages and showing the next
question only upon completion of the previous question may have
been beneficial.

The interviewer's offering of praise may have affected the
students. This may have a negative impact if the subject fails to
get a question correct as the subject will associate the praises with
correct responses.

Use of the word "parts” instead of "lines” in the first question
could have made the question clearer. The question were set up in a
hierarchical order from simple to complex -- which is positive as a
simple question may motivate the subject and prepare him/her for
the next question (psychologically). The inductive approach adopted
enabled the first three students to obtain the equation involving r, D
and N.

1.2 Report

Once the reciprocal relation in question 2 was hinted at,
Student 1 (Linda) proceeded through the questions with certainty and
skill. She developed the expression 4=39 where 1<d<2. It was only
after the interviewer asked "Did you think this (1<d<2) was going to
be like this?" that a conflict was evident. Linda expressed this
conflict in two words, "Oh, No!" Upon seeing the significance of her
result, Linda was not uncomfortable with her findings as she said,
"It seems possible, because when | iooked at it | didn't know if it

was 1 or 2, but | didn't know there was any in between dimensions”.
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Rob had to have the reciprocal relation between N and r given
to him for question 2. Setting up similar relationships in questions
4 and 6 came slowly, but he was able to use them in determining the
general form N=1/r0 and apply it to the Koch curve. However, Rob
could not estimate a value for D, he only knew it was not 1 or 2.

As with the other students Sue had difficulty determining the
reciprocal relationship in question 2. Similar to Linda, Sue had
little difficulty answering the questions upon finding the relation
between r and N in question 2. She determined that (1/3)N=(1/4)
where 1<n<2. She did not see any significance in her answer until
the interviewer brought it to her attention. At this point she said,
"How can you have 1.5 dimensions? How can you have length and a
little bit of width? Half a width? You can't have a half. So this is
really weird. This is wrong somewhere."

Sam had a great deal of trouble focusing on any of the
questions tendered and was unable to use any suggestions given by

the interviewer.

1.3 Analysis

Upon completion of the interview, the two female students,
Linda and Sue would appear to have identified dimension as a non-
intuitive concept that is in need of further study. They have become
aware of and possibly overcome the obstacles related to the
existence of a universal concept of dimension, dimension being an
invariable characteristic of an object, and that dimension can only
be a whole number.

Rob was very slow and cautious when manipulating

P Ty
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expressions and seemed nervous when trying to estimate answers
(he was unable to estimate the answer to (1/3)D-=(1/4)). it will be
essential that he is able to work with logarithms if he is to take
part in the experiment. Working in the glassed in room seemed to be
very distracting to him and he was generally nervous.

Sam seemed the most bothered during the interview. When the
conversation began he was quite content to keep talking about what
we were doing, but it was difficult to get him to begin the
interview. Throughout the interview his thoughts seemed to wander.
He tried to find patterns within questions, but not from question to
question. This is not surprising as he said the questions reminded
him of a test. The interview was ended as the student was becoming
too nervous.

Sam was not deemed suitable for the teaching experiment, but

the three remaining students will take part.

2. Teaching Experiment

This section will state the tasks and questions used in the
experiment. The rationale for the outline will be presented during
and after the discussion of the tasks and questions (eg. the use of
the van Hiele levels and in relation to the epistemological analysis).

in the interview, Rob was able to derive (1/3)D=(1/4), for the
triadic Koch curve, yet was unable to estimate a value for D or even
on what interval D may exist. Upon meeting this student during one
of his math classes, (to set up a time when we could begin the

teaching experiment) he expressed his finding of D through the use
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of logarithms.

The teaching took place over three lessons. During the course
of the three lesson the students were involved in four activities.
Each activity contains a specific objective in the development of the

concept of fractal (within the van Hiele framework):

Activity 1 - discernment of characteristics of the object.

(visual)

Activity 2 - discernment of shapes which are self-similar, have
(visual) non-integral dimension and are fractals.

Activity 3 - mathematical definition of self-similarity and use of
(descriptive) a new definition of dimension (space-filling ability).
Activity 4 - creation of fractals through an iterative process.

(descriptive)

The presentation that follows exhibits the tasks as they
appeared in their respective activity. For each task (with the
exception of Activity 1) the dialogue between the teacher and one of
the students will be presented to enhance the reader's perception of

what took place during the teaching experiment.
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Activity 1
Task 1. The student is presented with pairs of shapes:
a) the teacher states something that is common to the shapes, and
asks the student to state something that is not common to both
shapes,
b) the roles are reversed for the next pair of shapes.

The student is encouraged to manipulate the shapes presented,
and informal vocabulary isn't corrected. In the discussion regarding
the four pairs of figures the teacher names two characteristics of
the objects (only if the student has not already done so): dimension

& self-similarity (new vocabulary isn't used).

Pair 1 - Figures A & B

Figure A Figure B

Pair 2 - Figures C & D

Figure C Figure D
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Pair 3 - Figures G & H

O oy

Figure G Figure H

Pair 4 - Figure J & K

o 5.

Figure K
Figure J

As was expected, the students were very vague in their stating
of the characteristics of the objects. It would seem that they may
never have tried to determine the properties of such shapes without
being given a very narrow context of consideration.

Linda didn't seem to see much in the pictures offered. The
prominent feature that she referred to was that of closed or open
(this maybe as a result of her finding that closed figures (eg. figure
J) can be 1-D, a point discussed upon completion of her
questionnaire).

Rob was most intrigued by the exploration of the
characteristics of the objects. He attempted to compare the shapes
with respect to area perimeter, and ruggedness. He attached a
physical quality on these "new" shapes, they truly seemed real to

him. This relates to an interesting comment he made in relation to
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figures A & B. He believed that figure A may look like B under
magnification.

Sue was the most shocked by the discovery of non-integral
dimension and never offered the dimension as a possible
characteristic of an object. As was the case with Linda, the shape
being closed seemed significant. She saw the area of figure H

building toward that of figure G .
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Activity 2.

The student is asked to sort shapes into piles. The teacher
starts each pile with one shape and then asks the student to place
the remaining shapes into the piles. The first piles are arranged in
terms of fractal and non-fractal shapes, the second, in terms of
dimension, and the final arrangement was made with respect to

self-similarity . The shapes used in activity two are:

Figure C Figure D

i I F|gure K

Figure G Figure H Figure J

AR 4

Figure L Figure M Figure N Figure Q Figure R
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Note: each shape was presented on a separate page.

Teacher intervention takes the form of interjections upon the

students sorting of a shape into a certain pile.

Task 2: fractal and non-fractal shapes

The teacher explains that a fractal is an object that is self-

similar and has dimension that is, to quote Sue, "in between" and

places figure A in one pile and figure K in the other. The discussion

with Rob (S2) went as follows:

S2

S2

S2

O.k. I'l start with the easy ones!
O.k. that's good enough

| would probably put that one (the square) right there (non-
fractal) because it's got the straight lines right here.
This is basically a smooth line and you could.. right down there
are smooth lines in there too, somewhere (sets aside figure B),
but this one is easier to identify (puts figure H in fractal pile).
This one is a whole bunch of triangles within triangles
(Sierpinski triangle) so you put this one right here since you've
got a straight line; you couid also put it over here, but because
it's triangles and triangles and they keep getting smaller and
smaller and smaller right there, inside there (decides to put it
in the fractal pile).

Ok.

That one (another version of the Koch curve) looks basically
like this right here (figure K). It looks similar to that at least
in the idea that you've got things coming off it. Isosceles
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triangles, are they?
I That's what they look like....

S2 This right here (fractal tree). This one here does basically the
same thing only it has a little line and fork. | take it these are
supposed to be the same.

| That's right

S That would probably go on there again. That (figure J) | would
probably put there (non-fractal) because its got straight lines
and they don't seem to get any smaller from that picture. That
one (figure D) | would probably put over there (non-fractal)
because these really don't have much conformity to them, its a
random thing so its not a pattern like these are , like these
tend to be. That one (cone) | would probably put over there
because, again, straight lines. This (figure B) would go right
here because it looks like (figure D) basically the same thing
only smaller. Now this (figure G) is filled in so | would tend to
put it in this one right here because since it is filled in it is
more like representing an actual object like these represent...

Most of the difficulties the students encountered related to
the fact that they could not determine if the process of "bumps on
bumps on bumps" stopped. For example it was unclear if the
Sierpinski triangle (figure L) shown was a fractal or just a triangle
with a few holes in it.

A table will be presented representing each students initial
sorting of the figures. This table will follow the comments
regarding the students work.

Linda used the definition of fractal presented until faced with
figures B & D at which time she sorted on the basis of "old" vs "new".

She was uncomfortable with such a decision and looked to me for

PO BT 7
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reassurance.

Fractal | B.D,H K, J, N, R

Non-fractal I ACG L Q

Rob had many approaches to classifying such figures, through
(self) similarity, straight lines and random lines. He used these
aspects quite effectively until figure G, at this point he switched
the notion of the shape representing "real" vs "unreal” objects, thus

he placed G in the fractal pile.

Fractal | B,D,H,K J,N,R,G

Non-fractal l A,C L Q

Sue classified non-fractal shapes as those with straight or
crooked (smooth) lines and fractals as the shapes with "bumps on
bumps on bumps..". For Sue shapes with "bumps on bumps..." had

dimension that was in between 1 and 2.

Fractal B,D,H, K, J,NR

Non-fractal | A, C,L,Q, G

Task 3: dimension of 1, 1<D<2, and 2
The teacher explains to the student the new idea of dimension

in terms of space filling and uses figures A, K and G as pile
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generators.

S3

S3

S3

S3

S3

S3

| want you to look at these shapes and tell me the ones that
are in between -- and which will be one or two (dimensions).

What about this one (figure J)? You have to wonder if it has
bumps on the bumps.

That actually looks like it doesn't have bumps on the bumps... it
stops. If that is the way it looks, you have to go with what you
perceive.

(Asks about figure H)

| tell you it has bumps on the bumps. (she places it in the in
between pile)

This is tricky (the square); that or that (1or 2-dimensional
piles), depending on whether there is something in there.

There is nothing in there because it is not shaded.
So anything that is not shaded...
Right...

Now, is this the same as that; triangles in the middle of
triangles in the middle of triangles?

No, say you stop with what you have. So, what that actually
is... if you are given a triangle, you take out certain parts, but
you are still left with certain parts of the triangle..... Why are
you putting it there?

Well it appears to have length and width.

.. And if we took out more of them, we would end up with just
lines, and we'll put it here (1<D<2).
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S3 Ya

Most of the problems are as a result of the visual
interpretation of the picture, as was the case in task 2. The
students viewed figures L & J as "stopping” and in turn were not
initially placed in pile 1<D<2. As with task 2 a table showing how
each of the figures was sorted is presented.

Linda believed that figure J didn't have the characteristic

1<D<2 as "the lines stop”, thus it is a line of dimension 1.

Dim.__{Figures
1 A B, C J M
1<D<2| H,K,N,R

2 GLQ

Although Rob was able to sort the figures into the appropriate
piles he stated that the shapes where 1<D<2, actually represented 3-

D shapes.

Dim. |Figures
1 ABCM
1<D<2| H,K,N,R, J
2 G, L

3 Q

Sue uses the "bumps on bumps.." to categorize shapes where
1<D<2 , and with all other shapes she uses length, width and height

as the criterion.
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ABCJM
1<D<2] H,K,N, R
2 G L Q

Task 4: based on property of self-similarity

The teacher explains the idea of scaling the figure down and
then building it back up with the smaller versions (the parts look
like the whole shape). The piles are started with figures A & K in

one and figure G in the other.

S2 Because these parts look like self.

| Right.

S2 You can't really do that with this (figure G), you could take
little circles out here but you have little spaces in between
that are left

| Right

S2 Like factories when you see them they have their little papers
and they're punched out.

! That's right.

S2 Now this one (figure J) you could. The lines look smaller to
each other even though it is a computer drawing and you could...
If it was a drawing you could tell if these lines were similar,

but the lines don't look like the whole thing, but this little
section here looks like that right there.

| Yes.

S2 So these little things probably could go right there. That's
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random lines so it really doesn't look like the whole thing....

All the students found this the easiest task of the three.
Figure J caused some difficulty as they found it hard to find smaller
versions of the whole shape within the figure. rhey were unable to
determine how one might go about breaking up such a figure into

smaller, and similar pieces.

The lesson ended with a summary of what had been learned. An
explanation of the two notions that comprise the fractals which
were presented was given. Self-similarity and the ruggedness of

the fractals were described.

General Comments

The focus of this lesson was the intuitive comments of the
student and the purpose was to introduce a direction in their
thinking.  Initially, the vocabulary presented was informal and
misinterpretations were left uncorrected. The vocabulary became
more formalized as the lesson progressed, but this was still
difficult as the names of many of the shapes were unknown to the
students. Presenting the lesson in forty minutes may have been too
lengthy to remain informal mathematically. This time frame may be

more appropriate for students of lesser ability.
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Activity 3

The teacher defines self-similarity and illustrates the
definition by means of the triadic Koch curve. The following
definition was shown and explained to the student:

Self-Simil

A set is self-similar if it can be formed by the union of N non-
overlapping subsets of S, S4, So, .., S\y. These subsets are all
congruent to r(S), o<r<i. Congruent meaning, they, the subsets Sj,

can be formed by r(S) through rotations and translations.

Task 5
The student is to use the definition of self-similarity in
determining if the Sierpinski triangle and Sierpinski carpet are

self-similar (see figures below),

A A‘:AA‘A SAA A A

a) The student applies the definition to determine whether the

Sierpinski triangle is self-similar.

I ... Tell me how you check if this is self-simiiar...
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S1 Starting with this?

I We'll say that that's the one.

S1  Okay, r=1/4.

I Are you sure about that?

S1  No.

| It takes four to make up the whole thing , right? The factor

that we're shrinking it down by is actually the length of this
side in comparison to the whole side. So by a factor of?

S1 Factor of a half (she then builds the shape through translations
along the x and y axis).

b) The construction of the Sierpinski gasket (SG) is explained and
the student applies the definition to determine if the Sierpinski

gasket is self-similar.

S2 Let me see. One of these little sections right here looks like
its similar to the whole thing.

| O.k. and with that can we find the scaling ratio, which is?
S2 Which is 1/3. Because this is one right here.

I So | take the picture.. | scale it down by 1/3 and I'm right here.
See if you can form the whole picture again through rotations
and translations.

S2 You can transiate this one along the x twice here to get the
middle one and here to get the far one. You can translate this
one along the y here and here. From these here you can
translate them, you can translate this over here in this corner
up the y to get this over here and you can translate this you
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across the x to get that. You've got that space up there now.

All the students considered the scaling ratio as a percentage
of the original shape. For example the Sierpinski triangle (ST) is
made up of three smaller versions each consisting of 1/4 of the area
of the original triangle, thus r=1/4. After this error was explained
to the student through the act of "shrinking” the problem did not
reoccur. Linda was the only student to see that the Slerpinski
triangle could be formed through translations. Rob and Sue used

rotations about one of the vertices of the triangle.

Task 6
a) The student estimates the relative dimension (eg. shape 1 < shape
2) of Sierpinski triangle and Sierpinski carpet on the basis of

percentage of their space being filled (density).

All 3 students believed the Sierpinski carpet's dimension was bigger

because it was "more black".

b) The formula ((r)D=1/N or D=logN/log(1/r)) developed in ‘he
clinical interview is applied to determine the value of D for the

Sierpinski triangle and Sierpinski carpet.

The three students were able to calculate the dimension of the two
figures. Sue used the form rP=1/N as she had yet to study

logarithms.
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All the students guessed that the Sierpinski carpet (SC) had a
greater dimension (with respect to space-filling), bui as the
triangle had less total area than the square this question may have
been biased. Each student was able to determined the dimension of
both sets.

A summary of the lesson was then undertaken. The definition
of self-similarity was restated and an explanation as to when the
formula for similarity dimension can be used was provided. The idea
that an object is a fractal if it satisfies the mathematical
definition of self-similarity and it's similarity dimension, D, is

non-integral.
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Activity 4

The Sierpinski triangle and carpet are shown and their
construction is reviewed. As well, the construction of the triadic

Koch curve is reiterated.

Task 7
The student is then asked to build a fractal using a scaling
ratio of r=1/4 which is similar to the triadic Koch curve, but

through rotations of 900.

| .. One thing that we will know is that the ratio is 1/4 and our

rotations will be 900. Now . the thing about fractals is that
you're not going to be able to just draw the whole thing in one
step because this is acually five steps ( picture of a triadic
Koch curve). First I'll call it zero, not first, is just the
straight line. You divide it up in four, that's the first part...

S2 16 cm
I No problem
S2 There.

| O.k., that's level zero. Now , the next step is .. and you can
figure out with that straight line and divide it into ...

S2 Four.
| Right.
S2 There's 1, 2, 3, 4.

I Great. Now what do you do? Tell me what you are doing. Your
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dividing it..
S2 Like this! |_
| Now are all of these lines equal, 1/4 of the original?
S2 No.

| Thats a problem. They have to be. You don't actually have to
do much to modify the lengths. Any ideas how we can modify
it so they are all the same?

S2 Raise that and put it over there. —

I Great. That's our first step. What would the next level be?..
Tell me what your doing.

S2 I'm doing it wrong!
| Tell me why your saying that.

S2 Because I'm not drawing 1/4 of the bar, I'm taking half of the
line.

He then draws g

It is pointed out that this could be done in many different ways.

The idea of using one shape to build another seemed foreign to
the students and this complicated by the understanding of how one
should use the information r=1/4 and rotatons of +90°. After the

generator was created, iterating the procedure was less difficult.




66

Sue became quite enthusiastic upon realizing the many ways one

might create such generators.

Task 8
At this point, the student is asked to determine if the new

shape is self-similar. Sue created the shape with a generator of:

! Now, next question. Is it self-similar?
S3 We scale it down by a factor of whatever.
| A factor of?

S3 1/4.. And then can we use that to make the shape through
rotations and translations?

| Is that the case here?

83 Ya. (She walks through it with her hands)

| Tell me which ones are strictly translations.
83 These two (two end sections).

| This one? (first vertical section)

S3 Rotation.. Rotate it that 900 and then translate.
| And this one? (third section (horizontal section))
S3 You can slide it up, then over and over again.....

i This one? (second vertical section)
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S3 Translate it that way and then rotate it -900.

The student then calculates the dimension.

Upon completing stages 0, 1, and 2 Linda no longer knew how to
determine N as she saw r as being 1/4 at each stage, yet N varied.
This problem was resolved when began to focus on r within a
particular level as opposed to between levels. Also, the use of
different values of r and N were used to calculate the dimension of
the set.

Rob's problem was somewhat different. He realized that he
could use more than one value for r, for example r=1/4, r=1/16, ...
When he discovered this he became unsure of which one he should
use. He appeared to have reconciled this problem when he found that
it did not matter what r he checse (of the form r=(1/4)", n=1,2,3,4..)
the dimension would be the same.

Sue felt the most comfortable of the three with this new
approach and confident that she could chose any relevant value for r

and determine the set's dimension.

3. tvaluation
The evaluation has 4 parts, which consist of questions
representing the aim set out during each lesson. For the four

questions the dialogue with each of the students is presented.

1. Determine if an object is a fractal...

student was shown 2 objects, the quadratic Koch curve and the
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generator of the triadic Koch curve, and then was asked if either
was a fractal and how she ascertained her answer. The shapes shown

were:

/\ 8 — — 4};'3?,41,- ...(three stages)

2. A shape's relative dimension...

student was shown the quadratic and triadic Koch curves and asked
if the dimension of the quadratic Koch curve (gKc) had a greater,
smaller or the same dimension as compared to the triadic Koch curve
(tKc).

3. A shape's dimension...
student was asked to determine the dimension of the quadratic Koch

curve.

4. The generation of the triadic Cantor set was shown and explained.
The questions: a) what is a possible range for its dimension? and

b) calculate its dimension?, were asked of the student.

Linda
1. She acturately determined the shape that was a fractal and that
which was not a fractal. In verbalizing the properties that a fractal

has she only mentioned the characteristic of self-similarity.
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. | start with this generator. There's stage two and
there's three. Do you have any questions. We go on and on
with this. Is this a fractal?

Yes.

Why?

Because you can reduce it.

And this?

Oh, no. Because if you reduce it you don't build the same
thing back up.

2. She believes that the quadratic Koch curve has greater dimension

on the basis of the complexity of its structure, "more building on it".

St

St

. What do you think is going to have the greater
dimension, just looking at these two. These are both in
the third stage.

This one (gKc).

Ok., Why?

Oh, | don't know how to say, with the triangle and the

square, it has more building on it.

3. The formula for dimension is applied correctly and the dimension

calculated.

St

Ya. Should | say how many lines there are? | could do
that and then repeat it?
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Well, if you have to.

Oh, no, because its the same reduced. So that would be..
(tries to figure it out "in her head")

Why don’'t you write it down.
1.57

If you want to just write it out D= that's okay, just so |
know what you are doing.

Okay, D=log8/log4.

4. She is unable to hypothesize a possible range of dimension for the

triadic cantor set. As in lesson 3 she became confused with the idea

that r ..as constant and N was changing, but she quickly regrouped

her thoughts and determined the dimension of the set.

a)

b)

S1

S1

S1

That's good. Now, I'm going to tell you how to start a
certain fractal. You start out with the line segment and
we're going to be scaling it by 1/3. Just so you know
which to select.

(she draws the cantor set)...
You can see where its going.
An infinite number ot points.

Ok. What do you think it's dimension is going to be? Give
me a ballpark figure.

It would be 2? | don't know. Okay, can | figure it out
with the formulae? | don't have an N.

Tell me what you do know about your question.
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S1 | know that r=1/3, but N changes between stages.

I Yes, it always does. When you used r=1/3 for the first
step...

81 Nis 3. Wait a minute.

I First step, N is what?

S1 Then Nis 2, so it would be less than 1.
I Does it make sense?

S1 Yes, because there can be dimensions between 1 and 2,
and less than 1.

From the evaluation the teaching would be considered successful in

meeting the aims it set out to fulfill.

Rob

1. He uses primarily visual cues in establishing whether or not an
object is a fractal and in doing so encounters difficulty in
determining if the quadratic Koch curve is self-similar (and a

fractal).

| First question. I'll show you one object. This was
formed by a ratioc of 1/4.

S2 That was formed by ratios of 1/3 (looks at the other
figure).

| | didn't say. This is the object I'm looking at. Here I'm
talking about as far as we could go with a pen or pencil,
this is as far as | could go, is this a fractal? That's the
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first question.
| don't think so. Doesn't each segment have to look like
the whole thing? In fractals can't you just take any

given section and it would look like the rest of the ...?

That's good. So let's try ratio's of 1/4. This one started
with 1/4.

you could take that (he looks at 1/2 of the figure).
No, | said fourths.

Oh, fourths. ... | don't think so. | might be able to divide it
into halves but not into fourths.

(the picture seemed to confusing to him, he was not able to discern
if the object was a fractal and the process upon which the figure
was built had to be explained)

2. As with Linda the complexity of the figure is that which

determines it's dimension.

S2

S2

. with those three steps which looks like its going to
have greater dimension?

That one (gKc).
Why?
Already by three steps these are hanging all over the

place and are filling up a bigger part of the page than
this.

3. He correctly applies the formula for similarity dimension.

.. So what's the dimension of this? | want you to



S2

S2

S2

73
calculate it. What's our ratio?

That would be, so if 1 is across there, that would be...
1,2,3,4..

I'l tell you the ratio we'll us is 1/4.

O.k. The ratio is 1/4. That would be right because that's
1/4 there.

Right.

N equals, then this here is 1, 2, 3, 4, 5, 6. From here it's
1, 2, 3,4,5,6,7, 8 8 right there. And right there is 1,
2, 3, 4, 5, 6, 7, 8, right there (he then calcuates the
dimension using D=logN/log(1/r))

4. He does not see that the Cantor set's dimension will lie between

0 and 1, but believes that it will be close to 1 and definitely less

than the dimension of other shapes he has seen. He has no difficulty

in determining the shapes dimension using the formula.

a)

Start with the unit line segment, our scaling ratio is
1/3. You're taking out the middle 1/3 each time. What do

you think its dimension is? (begins to calculate) Don't try
to calculate it. Guess it. What's the range that it's going to be
in? On its space filling ability

S2

S2

Probably lower than 1.5. Probably like right about 1.
That doesn't look like it's going to take up much space
there.

Work it out.
That would be 1/3. You've got 1, 2 segments here. That

would be 1/2. Lower there. About 1/2... (he writes down
the answer, and looks for his calculator).
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I Last time.. you use it (the calculator).

S2 So that's (mumbles). Less than 1.

| Does that make sense?

S2 Sort of because this right here is taking up more space
around here so this number is getting greater. This is
taking up less space, the number would be getting
smaller.

| It's going to be smaller, but why should it be less than 1.

S2 Because the whole object isn't there anymore.

Rob has an intuitive sence as to the notion of fractal, but as it
appears to be based on visual cues he is unable to deal with sets
that are more visually complex. He may still see these shapes as
representing physical objects and has not abstracted that which is

referred to as a fractal.

Sue
1. She was able to determine if the shapes shown were fractals or
not, but verbalizes that a fractal is that which is self-similar {as
did Linda).

I ... This is our initiater, r's 1/4 and you have eight pieces.

S3 | did something like that.

I What you did was right too. And then you do the next
step and get this.

S3  Wow, congradulations for going that far.

AT AT O
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So what kind of a shape would you call this?
A fractal.
This one (triadic Koch curve generator) is a ?
This is something different.
What properties do fractals have?
Self-similar -- you can scale it down and you can use

this scaled down version to build the original shape
through rotations and translations.

From this question she questioned the relation between recursion

and self-similarity by questioning if N AN\ .. was a

fractal.

She determined that it was not a fractal.

2. She is able to guess which shape wil have a greater dimension,

but she states that she saw both of these objects as unending. This

may be due to the form —— used to represent a line segment in

many school.

S3

Which of these two do you think has a greater
dimension?.. In terms of space filing? Which would fill
more space?

Well there are bumps on these bumps on these bumps, and
there's bumps on these bumps on these bumps. I'd say
this one (qKc).

Why?
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S3 Cause this one goes on. Oh, is that the end point.

3. D is found for the set using the form P=1/N as <k had not been
taught logarithms.

S3 | have to write down the dimension. That's 1, 2, 3, 4, 5,
6, 7, 8, .. and we scale it down by 1/4, didn't we?

I Correct. (she then writes out (1/4)D=1/8 and solves for
D, D=1.5)

4. She was the only student to relate that the Cantor set would have
dimension between 0 and 1 before calculating it as such. She was
the only student who questioned the eristence of such a set (lesson
3).

a\ I Take a line and remove the middle third. So actually this

isn't the end and we keep taking out the middle thirds. What do you
think the dimension of this set is going to be?

S3 | think it is between zero and one (seems very pleased
that her earlier question had been answered).

| Why?

S3 It's not a line, this was between a line and a plane and
this one is in between a point and a line.

b) S3 We've divided it up in three, how much did we scale it
down by, we scaled it down by 1/3

' And how many parts?

S3  We have 2, yes 2. (she then writes down (1/3)P=1/2 and
finds D=.64)
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Sue more than met the aims set out by the teaching experiment. It

appears that she has a firm grasp on what is meant by fractal.



78

CHAPTER 4: Post-experiment analysis

The post-experiment analysis endeavors to identify the acts of
understanding and obstacles that were prominent in the clinical
interview and teaching experiment. In essence the teaching
experiment is confronted by the pre-experiment analysis. Upon
identifying prominent acts of understanding and obstacles an
examination will be undertaken with regard to: student reactions
(eg. language), and the role of teaching and the particular task with
respect to the promotion of understanding and of overcoming
obstacles.

To facilitate the reader's progress through this analysis, a
table is given that outlines the acts that are deemed prominent. The
meaning of each of the acts of understanding and obstacle is then
stated.

The analysis is developed through the clinical interview,
activities 2, 3, and 4, in that order. Although the role of activity 1
was important, in that it gave the students time to consider thci~
initial identification (dimension is a concept worihy of study), it
does not have the student deal with any of the new ideas directly

and as such is not considered in the analysis.
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Table of t und i | epi logical obstacles.
appeared in the experiment:

Clin. Int. |  Activity 2 Activity 3 Activity 4

U1 task 2 U9 task S U7 task 7 U.10
EO.1 task 3 £0.4 task 6 £0.5 task 8 U.11,E06
£0.2 task 4 U.6

U.1: Identification of dimension as a non-intuitive concept that is
in need of study and a precise definition.

E.O.1: There exists one universal concept of dimension.
E.0.2: Dimension is a unique characteristic of an object.

U.9: Identification of "jaggedness" that does not "dissolve" under
magnification (non-rectifiable curves).

E.0.4: dimension can only be whole numbers.
U6: discrimination between similarity and self-similarity.

U.7: synthesis of the practical notions of approximation and scaling
in the mathematical concept of self-similarity.

E.O.5. Shape is irrelevant in determining dimension.
U.10: identificatica of a class F of geometrical objects which are
generated through an infinite iteration of a certain

construction.

U.11: discrimination between an object of class F and the process
upon which the object is built.

E.0.6: A fractal is not a finished entity, but merely the process of
construction or a sequence of objects.
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1. Clinical Interview

It may well be that the clinical interview was the most
important component of the experiment. Through the interview the
students were able to identify that the concept of dimension was
worthy of study. They found that their previous assumptions
regarding dimension were not universally applicable, and thus
overcame the obstacle that there was only one concept of dimension
and the belief that dimension was a unique characteristic of an
object.

The students reactions to these new ideas were pronounced.
The discovery that dimension cou!d ne nor-ictegral was truly “felt"
by Linda and Sue. Linda expressed her feeiings with the two words,
"Oh, No!" and Linda stated emphatically, "How can you have 1.5
dimensions? How can you have length and a little bit of width? Half
a width? You can't have a half. So this is really weird. This is
wrong somewhere." In my short tenure as a teacher of mathematics,
| have never seen such a strong emotion response to a mathematical
notion. As previously stated, Rob came to these realizations and
identifications only afier working with logarithms.

In particular, two features made the interview effective. The
mathematics the students dealt with was at their "level", the
students satisfied the necessary prerequisites, and they were able
to construct the framework necessary to identify that the concept
of dimension was worthy of study. This framework would be the
source of future dialogue. These two features were promoted

through the questions presented and the setting, which was that of a
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one to one interaction with the student. The students were able to
work through the questions at their own pace and 2s such they were

"connected to" and "affected by" their results.

2. Activity 2

In Activity 2, task 2, the students sorted with respect to
fractal and non-fractal shapes. The students were able tc identify a
jaggedness that does not dissolve under magnification.  This
identification was marked by descriptions such as, "it has bumps on
bumps on bumps..." (Sue) and "if you looked at it under a microscope,
it would look the same (as the original structure)” (Rob).

It was in task 3, sorting on the basis of dimension, that the
students were able to apply their new definition of dimension to a
variety of shapes. Upon completing this act of categorizing the
students no longer used expressions such as "half a width". For this
reason the obstacle that dimensions can only be whole numbers is
said to be overcome at this point as opposed to the point in the
clinical interview when the student first saw D as non-integral.

The last task concerning categorizing was task 4. In this task
the students categorized in terms of self-similarity. All three
students were able to test if the object "was made up of " parts that
were similar to it (the whole object). They appeared to have no
difficulty discriminating between similarity and self-similarity,
although the idea of self-similarity is still being developed. The
"definition" stated above seemed sufficient for Linda and Rob as they
broke the object up into parts that were congruent. Sue did not make

this assumption and in turn was able to see the circle as a shape
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that was self-similar. As she said, "you can do that with a circle
(parts similar to the whole object), you can imagine a circle (she
draws a circle within the larger circle) and then blowing it up in the
big circle.” and this could be done with as many circles as necessary.
At this point the condition that the parts had to be congruent was
given.

The role teaching plays is minimal. The teacher's role is to
have the students check that they are sorting the shapes of the basis
of the definition provided and highlight assumptions within the
definition. As with the clinical interview, the tasks are of primary

importance.

3. Activity 3

In this activity the students were presented with a definition
of self-similarity which was based on the notion of sets. The
students enjoyed using the definition of self-similarity. This task,
task &, saw the students categorizing shapes with the
aforementioned definition, but still using visual cues from the
geometric shape. A problem arose as a result of an assumption the
students made with respect to the notion of scaling ratic. All three
students considered this ratio to be 1 : the number of subsets
required to form the set.

In task 6 the student is confronted with the use of the object's
shape in determining its dimension relative to that of another
object. The two objects were the Sierpinski triangle and Sierpinski

carpet. The idea that an object's shape has information pertaining to
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its dimension was unknown to the students before beginning the
experiment. By finding an approximate value of the object's
dimension the student has some information to use when considering
if the dimension found through, D=IlogN/log(1/r) is reasonable. The
process through which the object was formed was intrinsic to
determining thHe object's relative dimension. The first four stages
of development were shown for both the Sierpinski triangle and
carpet.

In using the process in this manner the students had to have an
intuition as to the object's "space-filling ability" at the limit of the
process.

The teacher's role in Activity 3 increased. In task 5 it was
important to make the students aware of any assumptions that they
may be making with regard to the given definition. The emphasis in
task 6 was to enable the students to see the non-integral
dimensions as forming a continuum as copposed to just isolated
values, be it only on 1<D<2. The teacher had to explain how the
relative dimension could be used in correspondence with
D=logN/log(1/r). The combination Sierpinski carpet and triangle

were fundamental in unifying these ideas.

4. Activity 4

Activity 4 made the process of constructing a fractal the
extrinsic object of study. This activity engaged the students in two
tasks, the first of which was the construction of a fractal using

r=1/4 and rotations of 90°, The students' tendency was to try to
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draw the object in its entirety, when it was realized that this was
not possible, they seemed able to construct the various levels or
stages of the fractal. Through this process the students were able
to identify fractals as part of a class of objects which are
generated through an iterative process.

The second task in this activity caused a considerable amount
of tension for Rob and Linda. Once fractals were seen in the form of
an iterative process, determining information from the object as a
whole seemed unmanageable. Upon completing stages 0, 1, and 2
Linda no longer knew how to determine N as she sa" * being 1/4
at each stage, yet N varied. Rob's problem was - .at different.
He realized that he could use more than one value for r, for example
r=1/4, r=1/16, .... . When he discovered this he became unsure of
which one he should use. These problems seemed to be resolved
when different values of r {of the form r=(1/4)", n=1,23,4,...) and N
were used to calculate the dimension of the set and the dimension
was found to be the same for each such selection of r.

The task was important in confronting the problem of
discriminating between the process and the object, but it was only
through the teacher's intervention that the students were shown how
to "step back" from the construction and consider the object as a
whole. Being able to process and the object simultancously is
crucial, and cannot be forced upon the student, thus, the importance

of the one to one interaction.

5. Comments for the Classroom
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To adapt the material found in the clinical interview to the
classroom, the one to one situation would have to be established in a
modified form. In using the questionnaire the teacher could
preselect a number of students, do the interview with these
students, who in turn could present the material to their peers. This
technique would not be without problems, but it may be necessary if
the students are to ever truly begin to "understand" the concept of
dimension and in turn, the idea of a fractal.

The three categorizing tasks in Activity 2, appeared to give
the students the time they needed to question the definitions in use
and apply them in a visual manner. This type of exploration may
have been enhanced had the students been able to manipulate (eg.
dilatz, and magnify) the given shapes. This manipulation may come
by way of the computer.

Task 5, determining whether an object is self-similar, is
another task were the dynamic nature of the computer would have
been beneficial. Using a program such as Drawll on the Macintosh,
the students could have transformed a variety of figures using
different scaling ratios.

Although the notion of fractal may have blossomed as a result
of the computer, we must not overlook the benefits of paper and
pencil. Using the computer in the construction of the quadratic Koch
curve, task 7 and 8, would have made it difficult for a student to
distinguish between the process and the object. This is as a result
of the ease with which the computer can iterate a given instruction.

To establish the one to one situations set out in the clinical

interview is a challenge in a "typical" classroom. Activities1, 2 and
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3 are such that they could be used in the classroom with little or no
significant changes, and Activity 4 and beyond... presents an ideal
environment for group discussions regarding assumptions in
mathematics and the nature of a mathematical object vis a vis the

distinction and commonalities between process and object.

QTR —n———y
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Chapter 5: Conclusicn

Three areas will be examined in this conclusion: the teaching
of fractals, how such teaching could be extended and implemented
into the high school curriculum, and in what sense the objectives of
the study were met. The thesis will close by suggesting aspects
highlighted by this study that are in need in research. Conclusions
pertaining to specific acts of undertanding and epistemological
obstacles were dealt with in chapter 4.

The teaching undertaken was established through the van Hiele
mode! and an epistemological analysis The analysis was used to
determine what ideas were fundamental to understanding fractals
and the van Hiele model provided a framework within which the
ideas could be taught. As well as how and what was taught, the role
of motivation within teaching and what was relatively absent during
the teaching, the notion of infinity and limit and the computer, may
also be significant.

The epistemological analysis pointed to three areas that may
be of particular difficulty for the students. First, the students were
made aware that dimension is a concept worthy of study by means of
the clinical interview. This was accomplished by having the
students develop the idea of similarity dimension for the line,
square and cube, generalize to get the equation N=1/rD
(D=logN/log(1/r)), and then apply the equation to the triadic Koch
curve. This yielded the result that dimension could be non-integral.

The analysis predicted that the next conflict situation would
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arise when the students have to determine if a shape is self-similar
on the basis of a mathematical definition. T2 do this the student has
to use the notions of translation, rotation, and scaling (dilation), as
in Activity 3, Lesson 2. Assumptions the students made regarding
the scaling ratio caused them considerable problems.

As noted in the a priori analysis, the construction of a fractal
15 not obvious. Given the distinction between the process of building
the object and the object itself, and the relation between the
iterative process, the definition of fractal would present obstacles
to the students understanding. These obstacles were confronted in
Activity 4, Lesson 3.

The teaching in this experiment was developed through the van
Hiele model of yeometric thought. The model distinguishes three
levels, visual (level 1), descriptive (level 2), and theoretical (level
3). The teaching experiment involved levels 1 and 2. The model was
chosen due to its longstanding success in teaching geometric
concepts as discussed in Fuys, Geddes, and Tischier, 1988. As well
the model incorporates an instructional sequence: information,
directed orientation, explication, free orientation, and integration.
A significant feature of this model is the fact that what is intrinsic
at one level is extrinsic at the next level. An example of this is the
characteristic of self-similarity. In activity 2, the students
identified objects with "bumps on bumps...". Activity 3 shifts the
focus from the object to the property and a definition of self-
similarity is presented and considered. Another example was the
intrinsic use of process in Activity 3 and its extrinsic development

in Activity 4. This approach is effective in that, upon identifying an
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idea, the student then confronts such ideas with his/her beliefs.
This in turn may enable the teacher to determine obstacles related
to these beliefs.

It was apparent in the clinical interview and the final lesson
that the students encountered considerable difficulty. It is believed
that the tension created by such situations should not be avoided,
however, the students need support to overcome such obstacles,
which takes both time and individual attention. This attention can
be supplied by the teacher and peer tutors. These tutors would have
previously received individual instruction from the teacher. As
indicated from the begining of the thesis, this approach is designed
for high school students in advanced mathematics course.

Though the students were successful in meeting the objectives
set out in the lessons some difficulties were noted. Rob was
unsuccessful in abstracting the notion of self-similarity, but as
stated eariier this may have been due to the teacher not making
explicit the relationship between the iterative process and seli-
similarity. One obstacle to the understanding of similarity
dimension that was unforeseen was the association of magnitude to
dimension. This may result from the student relating dimension
(whole numbers) in terms of basic magnitudes, length (cm), surface
(cm?), and volume (cm3). It is difficult to think of a solution to 4=3°
if D is conceived of as an amount of something, D must be seen as a
number in the abstract. Rob encountered this obstacle during the
clinical interview.

Another problem not anticipated in the pre-experiment
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analysis involved the scaling ratio. All three students associated
the scaling ratio to that of a percentage of the whole object. For
example, r=1/3 for the triadic Koch curve was seen as 1/4. This
may be as a result of the static nature of the paper and pencil
environment. The problem may have been resolved more effectively
if the computer had been used to show the dilation of an object.
This may have enabled the student to identify the dynamic process
involved in determining the scaling ratio and in turn the student
would no longer see scaling ratio as pertaining to area.

In any interaction between student, teacher and content, the
role that motivation plays cannot be underestimated. All but one
student in the original grade 12 class was willing to participate in
the experiment. With the exception of activity one, the motivation of
the three students who participated was high throughout the
experiment. This is interesting as each student had a very different
perception regarding mathematics. Sue referred to math as a
"hobby", Rob saw math as useful in the applied sciences and Linda
merely observed math as a subject in which she was successful.

The teacher's level of enthusiasm no doubt affects learning.
As the topic of fractals was a topic of choice and interest to this
researcher, an enthusiastic regard for the material may have
influenced the students. My interest in fractals began upon seeing
the "pretty pictures" associated with dynamical systems such as the
Mandelbrot set and fractal planets. An introduction to the topic
through such pictures may not be apprupriate for all students. Most

of my colleagues have quickly lost interest in the "pretty pictures"
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because they were unaware of the mathematics necessary to explore
these sets. The sets initially introduced to the three students in
this experiment were not as beautiful as some, but were chosen to
allow the students to use their mathematical skills in learning
about such objects. As the teaching progressed, the students’
motivation appeared to increase with each lesson and upon
presenting all the beautiful pictures in lesson 3, they seemed
disappointed that our discussions had come to a close.

At this point a reader may be questionning what level of
understanding any person could achieve in studying fractals without
knowledge of the concepts of infinity and limit. It is assumed that
the reader is already aware that students have gained significant
understanding with regard to fractals. In time the question may
become, "how much understanding can one have of infinity if they
have not studied fractals?" There is the possiblity that fractals
may provide a visual intuition for infinity (through scaling) upon
which the teaching of infinity could be developed. In particular,
fractals provide information as to the overcoming of obstacles
involving infinity that resuit from the distinction between process
and object.

The concept of limit is an important characteristic of what is
known as a fractal. Certainly the idea of limit will promote new
acts of understanding when the fractal is explicitly considered as
the limit of a specific iterative process.

The computer is a third aspect that would appeared to be

neglect in the experiment. Three considarations affected this
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decision: student attitudes toward the computer, classroom
resources and the material to be taught.

The two female students stated their dislike of computers
(because of their experience with high school programming) and Rob
expressed a general disinterest in the computer. Many studenis have
not enjoyed their computer experience in high school and most
mathematics classrooms in Ontario do not have direct access to
computers. Using the computer in the construction of the quadratic
Koch curve, task 7 and 8, would have made it difficult for a student
to distinguish between the process and the object. This is as a
result of the ease with which the computer can iterate a given
instruction. As this distinction was fundamenta! to the
understanding of fractal, as presented in the a priori analysis the
computer was not an integral part of the experimert.

In an extended teaching outline, the role of the computer could
be increased gradually. The computer could be introduced through
short presentations. After the three lesson described in this thesis
the computer could be used to "revisited" said lessons. For example,
using Drawll on the Macintosh, dilations (scaling ratio), rotations,
and translations of a variety of fractals could be demonstrated.
Also, if the students were given a general program format for
creating fractals, they could determine the transformations for
specific fractals and have the program run on software such as
Quickbasic. From this point forward, the students' use of the
computer could be expanded to be more creative and independent.
Appendix D includes programs written in basic for creating a number

of fractals. The fractals in the text of this thesis were formed
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using Drawll.

This study undertook to identify: 1) some of the difficulties
encountered in constructing the meaning of a fractal , 2) certain
basic acts of understanding necessary in constructing the meaning
of fractal, and 3) the didactic conditions of teaching the notion of
fractal: prerequisites, pedagogical exploitation of the conflict
generating situations for the introduction of the new concept of
dimension, and problems used to develop the notion of fractal.

Point 1) and 2) were determined through the epistemological
analysis and the teaching experiment. Seven obstacles were
predicted by the a priori analysis and two more were observed
during the teaching. Eleven acts of understanding were hypothesized
by the epistemological analysis. Chapter 2 saw the stating of
prerequisites and the development of three conflict generating
situations. The first situation involved the identification that
dimension is a concept worthy of study. The second situation
pertained to the notions needed to understand self-similarity and
the third situation saw the students discriminating between the
process of building the object and the object itself. The conflict
generating situations were develped as a result of the
epistemological analysis.

The first and third situation pertained to fundamental
mathematical ideas and since the students have begun to question
and understand these ideas, as found in Chapter 4, the experiment
has significance. Two other aspects upon which this thesis may be

judged are: the questions that are raised as a result of the research
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and the positive affect that fractals may have on other topics.

Fractals offer the possibility of introducing concepts such as
infinity in a visual manner through recursive algorithms. The ideas
of process and object are fundamental to such an introduction. How
such a visua! presentation will affect the understanding of infinity
is worthy of further study. Also, how such a topic would be
introduced through this new approach is yet unanswered. Another
consideration for future study is the assessment of student's
understanding of fractal geometry upon the completion of a first
course in calculus. The role of the computer in an extended program
of study, and both the social and mathematical dynamics
(understanding) created in teaching to a small group of students are
areas yet to be investigated.

This thesis has focussed on the importance of fractals in and
of itself. However, fractal geometry may affect the study of
Euclidean geometry. In the past only Euclidean geometry was taught
in high schools and it has not been well received by many students.
S3 Oh, Euclidean shapes, we did that in geometry ... but | didn't do

well.
| You didn't do well in geometry?

S3 No, that is the one part of mathematics | dislike.

A possible consequence of the introduction of fractal geometry, is
that Euclidean geometry may be swept aside. A far more useful
approach may be the study of the understanding students gain from a
dialogue between these two points of view. Bohm (1987) considers

dialogue between different perspectives primary to creative
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processes.

"The mind is then able to respond to creative new perceptions going
beyond the particular points of view that have been suspended.”
(p.243)

Fractal geometry facilitates a creative dialogue among students and
teacher invoiving dimension, similarity and possibly infinity and
limit, and as such has an important place in the world of

mathematics education.
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Name: A'»{n Martin
Questionnaire

Instructions: 1. answer each question as best you can,

2. 1f you have a question, raise your hand and | will attempt
to answer it.

Questions

1. Categorize the following objects in terms of thelr dimension.

Categories (dimensions): -
| Qh.\.msiov'\o;\ - DK .

2 dransiong - E)\C F ‘-3 N

3 drunsional = A E S 1 \(1

2. Foreach 4imension state what the Objects have In common.
] dip,\;,\s:gh - \J‘;,u%q"vk bd AL armd Ll |
= olittwrion - LM\QPkﬂi w2 g~ cnd s crepih,

3 Cumandisn — u‘-h.\t\Lm ww’f\. \ cu.,f.’f-k

.....
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3. Add an object to each category.

| dmsaine /\/
D Gt Lo

2 d;ﬂ%ﬁ =Y. ; é;

4. 2) What 1s the difference between an object with dimension I and an
object with dimension 27

One _elgct wilh dameniian | doo wnky | dvrzrsione
(u \/{m\gu\\ com ol ~wCA e ron S

has D hmanetonn [ Hbmgthy woid o). Om ol ot
At = Ainarlorns e an OMta, ol com ke
“agpuaadd  Ta st Swd

, D) What is the difference between an object of dimension 2 and 2n ob ject of
" dimension 3; - :

O bojp & vt dinsnnion 3 Ao D alormanpionn
(& Aengih) st s, CLL-I:»“\) n~d Cconu .

LA aphessed o s ckod
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5. Are the following pairs of figures similar ?

a)_
- .13
iy G N
v \ H \
\ ! \s
:——\i \
3 - N

=

answer: ao =~

b)

(v

'J

answer: ?,‘;

WhY?  dhaa, waida ot JL%\.ML') -\vq‘lo"-"‘o"‘"z (93 3)

‘H.L-\a.\,g Yy SO s.,ku‘u

answer: on.Q

why? AN NN G-V W e o2 :J»u{-—l
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S. Are the following pairs of figures similar?

d

/\\ /‘r\\\

[N L\

answer: 0O

why? \'JJ*»-\ any ot pALGiy T Sane hopl

I Yo e Vg T

e) — - — o— - = eooce

answer: \\5
why? Thae e AR bgianery e b qgo\den
o A “”Mﬂ o,uwl'v(% PRE LS

* Would you be avallable for a discussicn about thece questions? \f€-5

-
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Name: () /€N Wardies
Questionnaire
Instructlons l. answer each question as best you can,
2. 1f you have a question, raise your hand and | will attempt
to answer it.

Questions

I. Categorize the following objects In terms of their dimension.

Categories (dimenstons): A _ > ~ | C"“l D‘ D-,'LDZ
E-3D x:-::D* 6—30 F-3D" 1 3p" 5

,’(-\‘ e

2 For each dimension state what the Ob]eCtb have In common.
fD jusE g ha=. ) la,c,‘(< “substance Y (nes Fem bt ot e
f\ — nc depth Just unu? 'y

*;p., Cealistic could exXistas a nche(



3. Add an object to each category.

ip- 20D - L‘L_//j
30" j\z\

4, 2) what is the difference between an object with dimension | and an
object with dimension 27

\/\/‘yl"H‘\ R dlf‘r\ z

b) what is the difference betwesn an object of dimension 2 and an object of
dimension 3; :

C/f[a‘%h (N &41#\.3

109

X, M
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S. Are the following pairs of figures similar ?

a)
N \
N 13
\5 NG
L . 51. . .
AN g
3 ' ¥ -
anNSwer: fes

wv? Fotios o€ siedlac™ std€s dissind e~ eve,
af ter N*a\/-rj- posttions |

//
2 . 3 }

“3
= 3

answer: ~/ €<

b

‘)

WhY'?r‘a“*"ios =t g//c’_s‘ :rm‘lqk

answer: yé S | | | .
why? TheE dbj;cc'(" on 1T he [ef+ 1s 5 the
v 0‘9_}85{‘ oh The f/g hT
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5. Are the following pairs of figures similar?

a!
(N

/N ¢\
/ \ . Z \

answer:.N O

a)

why? She PES dissin lor

I Ve W Y vy e

e)‘ - ——— - g e & - ” e o

answer: \/ = ¢

et h

why?f)"ﬁf”‘ is seme for
5 ef previcus Figu >

“Would you be available for adiscussion about these guestions?

YES

11

R ZeQETW S
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Name: L' 2:# S CRATCF

Questionnaire
Instructions: 1. answer each question as best you can,
2. if you have a question, raise your hand and | will attempt
to answer it.

Questions

1. Categorize the following objects in terms of their dimension.

Categories (dimensions):
3 d:N\EV\S.o’T\.S - A ) e‘}é‘ 7H
2 C\\"M_‘QY\C-" ens =2 5 y C_‘ D ) F y I j 5 }‘C.-

2. For each dimension state what the objects have In commaon.

3 dimensions - in all £ ihe 2 c\u‘fmf\‘:uonQ{ ShqffF:
( et Yhe < ence d’b\%}’ f";“e‘f J"“mf ,cu..{‘ )
thet ([ can See them =3 f'fvl:\/ wa}ld b«
f L othey Werenk €N the P33 |

L & m_r:& oleN g - k}‘{\{j eav’,\ ha e [{nj_u\ T,—

i

-
1t AV
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3. Addan object to each category.

- A

4. 3) What 1s the difference between an object with dimension 1 and an
object with dimension 27

R EN carnt draw o @\'Gjug\’-e Nr%\\ C\M\@\Sion

. | e - y ‘
( beeaus'e QPN \\(m\e{rau} QV\\{C{.‘i\\ fc) A {DQTC ¢
”ﬂ-‘ &U..*'N\Q'E;C s/{ (\( ) ‘L\D.S_, "1_ d ('Yh e N \‘Q,”f\_?, S > 1
: d‘ggiff‘o- C'(, \S an can. drawd 7 dimens .
6h3\;9‘€_ Qred Red Ol ) dmrensremn QJ %a,fq

b) What is the difference between an object of dimension 2 and an object of

dimension 3; :

C\“Qf\\ D men Suon ._'5 ‘p‘cs.\re% \{CV\ﬁ 'C;Qtl’,\. NS LLQ{
the ,U\;\Nﬂ* @* Sywre E /J—V\O( | d\W(’:e'_ﬂ'S [~

2 aures Are fﬁ“}‘)\‘ﬁ.(‘. dull  <wd
sre ~ oSluldn 4 L And to yvisualiz<

3‘/\\43 L\J\@q& {* LOSL*— A
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S. Are the following pairs of figures similar ? y & =2
a) NE
i3
5 \
i
. 5 \\
h 1\ | -

3 N
- ) Z
answer. depeS on ypur pomf  of  viewd

WIY? Mabhe mybically 1O - becouge he sides
arentd preper tsomel T Sk dhher. Looyesl
yes because Hhey re bSth C?cik\" L fiangg
b)

v

‘J

o

\};

nswer: \es
why?  he S \Ge<

JVO XAl N

answer: N &

YT be cause hey aren t the sams

-

-€|03\A,r€, S
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S. Are the following pairs of figures similar?

Q) :
N
/\ O\
L_l LA
answer. no

Wy? e 15T eme 3 2 € wnﬁle) e
Second en< \"5!‘\"L -

answer: Yes
why?  oqch. numbel (o the <Second set s
Yy o the CeTres enad e  numlee -
dhe ®rsT set,

* Would you be available for a discussion about these questions?

(€ \(“M want . tt\{ g,‘-ﬂcﬂ es PUT“ . &-)/\e_ QﬂSLLGF\
It's been a ceail N Weird O ‘EL\/ <o
Hﬁe@e%e_ 'm in s really  weird frome
of  min.
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Name: jw ﬁ &M
—

Questionnaire
Instructions: 1. answer each question as best you can,
2. 1T you have a question, raise your hand and | will attempt
to answer it.

Questions

1. Categorize the following objects In terms of thelr dimension.

P ¢

Categories (dimensions):

/.]— , EGW{_/\/ = % demensicnr
8 C)F,@> J —= 2 ElcmC.qS/o:‘)I
) ) g, I ) K ~ / C/Cmcnf,',/\ 5

2. For each dimension state what the objects have In common.,
3 ‘J@_ﬂw"ffln\e (f 015; e d¥ /{.-urt volyme .

5 N\

2 f{tmslc‘ \¢(-/' 64‘/’6‘_/‘( AAV{ J\-SU/'-*:(-Q ) ((_.-.n_ (m/Cu/u/! ‘\fl“—‘




3. Add an object to each category. | nz-.

/ //'.u‘//o,\Flf
o~ lt'r\Q

4. 2) What 1s the difference between an ob ject with dimension 1 and an
object with dimension 27

i e o WZA ,2,71@»4/7%%

b) What is the difference between an object of dimension 2 and an ob]ect of
dimension 3;

O f/?«f.wz,i/( QW Ao A%/-ao
72 Wm% 3 chemsnains Ao rrasthon ¢
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S. Are the following pairs of figures similar ?

a)
N
P \ .
\ . N, i3
w \n . ~
N ' 7 \.\
B\ N\ - N
S - =
answer: /VO =

why? A@%%z@g%”/’d'wé“’%ﬂ%
WM oA U s

e 7]
z 3 /.J

-2

b

-
o

answer: /'és
why? f,[z? MLMW. Tfa«dmjﬂ/{d
udlee wae ancroened by ra wnife OMAWW
2o aema %a@w,' J0 snyles, bsifes, square sorfreer.
e

@@ L

why? OM @Jn MA/74W d‘é«wf'oxa

2 whole Sphire
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S. Are the following pairs of figures similar?

a

/ Y2 . Z 4 _'/_8 e

e) ) — - eto s

answer: /¢ 5 |
Wh‘/? Dél;bﬁ » M «é/l‘-‘c b2 .A//I)q;{\/\, 0 /H\AZ?:\‘
| ol B gtk 4o

* Weuld you be available for a discussion about these questions?

v

/20~
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Stwdent !

1. If we take a straight line of unit length (1) and divide it into N=3 lines,
What is the length, r, of each of the lines?

\
r=—=
3

2. How are N and r related? (write N intermsof r, eg. N=..)

N:’ 3( /\) = %1‘
2 :9(3)
3. If we take the unit square and divide it into N=32 squares,
What is the length of a side, r, of each of the squares?

|

o—

A
-

3
4. How are N and r related? (write Nintermsofr, eg N=.)
N = %a- N=

5. If we take the unit cube and divide it into N=33 cubes,
What is the length of an edge, r, of each of the cubes?

\

= 3
6. How are N and r related? (write Nin terms of r, eg. N=...)
\ \
~ - = 2]
N="e NI

7. Canyou see how the object's dimension is related to the equations
involving r and N? Explain

- L
Tha pror\enF ot r s Fhy, dimension M = (d

8. The Koch curve can be subdivided into lengths, r=1/3 of the original size.

How many smaller Koch curves, N, do you get?

4

9, Write N in termsof r.
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1. If we take a straight line of unit length (1) and divide it Into N=J lines,

what Is the length, r, of each of the lines? /

—_—

L

2

2. How are Nand rrelaied? (write N in termsof r, eg. N=..)

\ _ _ ~
Sy = E N= 3~

3. If we take the unit square and divide it into N=32 squares,
what is the length of a side, r, of each of the squares?

N=9 sq.

4. How are Nandr related? (write N in terms of r, eg. N=...)

2 /)N — —

.’_J__ oy \ e T ~ Pl
r - d} f- .,_3‘( e ?&. %; e
r

wl

[\/:?J ...L
=L =

6. How are Nand r related? (write N in terms of r, eg. N=...)
5 |
L -
r==m

7. Can you see how the object's dimension is related to the equations

involving r and N? Explain ,
r s te the power oF rthe = a‘F ine Aimension

lel r2=20  r =22 r=>1)

8. The Koch curve can be subdivided into lengths, r=1/3 of the original size.
How many smaller Koch curves, N, do you get?

P oL VR

n
9. write Ninterms of r.

D=50e k/ DA, |, +D} 12 %P
ne - | ' DL
O
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I. If we take a straight 1ine of unit length (1) and divide it into N=3 lines,
What is the length, r, of each of the lines? I

2. How are N and r related? (write N intermsof r, eg. N=...)

’,% ,":/} = ';,L N:
N N= 3 1 by

1
7 -

3. If we take the unit square and divide it into N=32 squares,
What 1s the length of a side, r, of each of the squares?

4. How are N and r related? (write N in telrms of r, eg.N=...)
v,
{ﬁ’b/% Y S /‘/J

S. If we «ake the unit cube and divide it into N=33 cubes,
What is the lengtn of an edge, r, of each of the cubes?

)
- /7
7.
6. How are N and r related? (write N in terms of r, eg. N=...)
%=L
englh 4
% pﬁf . Can you see how the object's dimension is related to the equations
g nvolvln rand N? Explain mb——

;t ,q-.:ﬂ gf—‘a yew [Nere 2> e \{f['\c &L“-W"b‘g"{ d_@ -

I O mena(snsS  you herese < ]/W

n‘

-\‘\)"l 8. The Koch curve can be subdivided into lengths, r=1/3 of the briginal size.
How many smaller Koch curves, N, do you get?

g

0. writeNin termsof r. | P

\h_: / j £ nL 2
= = g /'
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[. If we take a straight line of unit length (1) and divide it int@N=3-Hnes,

Wwhat is the length, r, of each of the lines? '/,/.‘i:—f/'

. /
2. -«W"‘K ‘/ ('(' én‘% "g ._k 2 .3
2. How are Nand r related? (write N in terms of r, eg. N-...) |
—~— o - —
_C__: 0,3 gz:’\_/_, ‘—‘__// _/LJL‘ ’3—”(3 /\/ r= 3 |
\/ 3/!}\85’#’_-—-_—_3:6. A/;g g(- -——f—-“f r.'N:E-;
3. iIf we take the unit square and divide it intg N=32/squares, r
i what is the(fength of a side, r))of each of the squares? -
z = . 9
3 / N s D syonces (3°) V= 2 ” g
[ : —
4. How are N and r related? (write N in terms of r, eg. N=...) =, ’ Y
L
r - ._i
A
S. If we take the unit cube and divide it into N=3% cubes, oo
What is the length of an edge, r, of each of the cubes? 3
)
5 % \r }
6. How are N and r related? (write N in terms of r, eg. N=...) 35 2 7r)

2 2 Y\II - 1"\3 % )
M{q j:_ ;2‘7'3 ) 7\/: 2 3 - A

7. Can you see how the object's dimension is related to the equations 27 X
involving rand N? Explain - ~3«
Fl=%

8. The Koch curve can be subdivided into lengths, r=1/3 of the original size.
How many smaller Koch curves, N, do you get?

0. write Ninterms of r.
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L
N" (dd M"—r‘a
NT 2 - 5
2 g =3
3 -2 d - ]c 8
!073 'dloja 1033
d = /033 = | %q
lega
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de log® = 1.5 d=_loq b d= Iloq 4

lOg"\ ,oj“ /03 3

- ,.aq - }.9\[0

¢ :’tc_\: d=loqll

= 1.2b /Dj o]

) = [.ab
ot
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Nfr\umber 0F Smallen subseTs

r=scal, ng o 7o

D=al: mc_nsfm

>
r = l//\/
D
Y, = V4
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4P,
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D - lc::te/‘i
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D=l 20Y
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D. The use of lterated Function Systems in programming fractals.

The fractals found in this appendix are created using specific
transformations. The transformations come by way of dilations,
translations and rotations. Dilations, translations and rotations can
always be expressed as linear equations of the form x'=ax+by+c and
y'=dx+ey+f (Bannon, 1991). If we iterate these transformations,
choosing one of the transformation at random, the resulting figure
can be quite amazing. This is referred to as an iterated function

system or IFS.



REM KOCH CURVE

REM 4 TRANSFORMATIONS

REM 2000 ITERATIONS
XSC=400

YSC=300

RIGHT=40

DOWN=40

READN

FORI=1 TON

READ A(1),B(1),C(1),D(I),E(1),F(1),P(l)
P()=P()+P(i-1)

NEXT

X=0:Y=0

FOR N=1 TO 2000

GOSUB PICKP
XP=A(1)*X+B(1)*Y+C(I)
YP=D()*X+E(1)*Y+F(l)

auSUB POTPOINTS

X=XP.Y=YP

NEXT

LCOPY

BEN\D

PICKP:

P=RND(1)

=1

PICKME:

IF P(I)>P THEN RETURN

I=1+1

GOSUB PICKME

POTPOINTS:

XC=XP*XSC+RIGHT
YC=100-YP*'YSC+DOWN

IF (XC<0) OR (XC>500) THEN RETURN
IF (YC<0) OR (YC>290) THEN RETURN
PSET (XC,YC)

RETURN

DATA 4

DATA .33,0,0,0,.33,0,.25
DATA .17,-.29,.33,.29,.17,0,.25
DATA .17,.29,.5,-.29,.17,.29,.25
DATA .33,0,.66,0,.33,0,.25
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REM SIERPINSKI TRIANGLE
REM 3 TRANSFORMATIONS
REM 10000 ITERATIONS
XSC=200

YSC=200

RIGHT=50

DOWN=155

READ N

FORI=1 TON

READ A(I),B(I),C(1),D(I),E(1),F(1),P(1)
P()=P(1)+P(li-1)

NEXT

X=0:Y=0

FOR N=1 TO 10000
GOSUB PICKP
XP=A()*X+B(1)*Y+C(l)
YP=D(I)*X+E(1)*Y+F(l)
GOSUB POTPOINTS
X=XP:.Y=YP

NEXT

LCOPY

BE\D

PICKP:

P=RND(1)

=1

PICKME:

IF P(l)>P THEN RETURN
I=1+1

GOSUB PICKME
POTPOINTS:
XC=XP*XSC+RIGHT
YC=100-YP*YSC+DOWN

IF (XC<0) OR (XC>500) THEN RETURN
IF (YC<0) OR (YC>290) THEN RETURN
PSET (:<C,YC)

RETURN

DATA 3

DATA .5,0,0,0,.5,0,.33
DATA .5,0,1,0,.5,0,.33
DATA .5,0,.5,0,.5,.5,34

137



138

&5."‘

PN
g’m

;améa ,d:‘i'uégi}%. ? é\‘

_,sm W W fM y. e.%a
&
égl?h ,«'g... ;a..?)-
‘Sf)\\‘ o .\A\Aa (&55- :..z.bm& gl\vﬂﬁ“ \JQ”A‘“ Ad» ‘&R} e

The Sierpinski Triangle



REM DRAGON
REM 2 TRANSFORMATIONS
REM 10000 ITERATIONS
XSC=100
YSC=100
RIGHT=140
DOWN=40
READN
FORI=1 TON
READ A(1),B(1),C(1),D(,E(I),F(I),P(l)
P(H=P(1)+P(l-1)
NEXT

=0:Y=0
FOR N=1 TO 10000
GOSUB PICKP
XP=A(1)*X+B()*'Y+C(})
YP=D(I)*X+E(I)*'Y+F(l)
GOSUB POTPOINTS
X=XP.Y=YP
NEXT
LCOPY
B\D
PICKP:
P=RND(1)
=1
PICKME:
IF P()>P THEN RETURN
I=l+1
GOSUB PICKME
POTPOINTS:
XC=XP*XSC+RIGHT
YC=100-YP*YSC+DOWN
IF (XC<0) OR (XC>500) THEN RETURN
IF (YC<0) OR (YC>290) THEN RETURN
PSET (XC,YC)
RETURN
DATA 2
DATA .5,.5,0,-5,.5,0,.5
DATA -.5,.5,2,-5,-.5,0,.5
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REM BRANCH

REM 6 TRANSFORMATIONS

REM 10000 ITERATIONS
XSC=179

YSC=178

RIGHT=-70

DOWN=0

READN

FORI=1 TON

READ A(1),B(1),D(1),E(1),C(1),F(l)
NEXT

X=0:Y=0

FOR N=1 TO 10000

GOSUB PICKP

XP=A(l)* X+B(1)*Y+C(l)
YP=D(I)*X+E(l)*Y+F(1)

GOSUB POTPOINTS

X=XPY=YP

NEXT

LCOPY

END

PICKP:

I=INT(6*RND(1))+1

POTPOIN S:

XC=XP*XSC+RIGHT
YC=YP*YSC+DOWN

IF (XC<0) OR (XC>500) THEN RETURN
IF (YC<0) OR (YC>290) THEN RETURN
IF N>10 THEN PSET (XC,YC)
RETURN

DATA 6

DATA 0 ,-.28,0,.29,1.51,.92
DATA .64,0,0,.64,.82,.06
DATA -.02,.37,-.31,.29,.85,1.03
DATA 0,-.8,-.22,.01,2.43,1.51
DATA -.01,.18,-.18,-.01,.88,1.47
DATA .02,-.48,0,.50,1.6,.8

N
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REM LEAF

REM 4 TRANSFORMATIONS

REM 10000 ITERATIONS

XSC=75

YSC=75

RIGHT=250

DOWN=-50

READN

FOR I=1 TON

READ A(1),B(1).j(h,C(1),F(l)
P(l)=P(1)+P(1-1)

NEXT

X=0:Y=0

FOR N=1 TO 10000
I=INT(4*RND(1))+1
XP=A(1)*X*COS(j(1))-B(1)* Y*SIN(j(1))+C(I)
YP=A(1)*X*SIN(j(1))+B(1)*Y*COS(j(1))+F(l)
GOSUB POTPOINTS

X=XP:Y=YP

NEXT

LCOPY

END

POTPOINTS:

XC=XP*XSC+RIGHT
YC=220-YP*YSC+DOWN

IF (XC<0) OR (XC>500) THEN RETURN
IF (YC<0) OR (YC>290) THEN RETURN
PSET (XC,YC)

RETURN

DATA 4

DATA .6,.6,0,0,-5

DATA .6,.6,0,0,.5

DATA .5,.5,.7854,-.5,-.25

DATA .5,.5,-.7854,.5,-.25
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REMFERN

REM 4 TRANSFORMATIONS

REM 40000 ITERATIONS
XSC=25

YSC=23

RIGHT=250

DOWN=-0

READN

FORI=1 TON

READ A(1),B(1),D(),E(1),C(1),F(1),P(l)
NEXT

X=0:Y=0

FOR N=1 TO 40000&

S0OSUB PICKP
XP=A(1)*X+B(})*Y+C(l)
YP=D(I)*X+E(1)*Y+F(l)

GOSUB POTPOINTS

X=XP.Y=YP

NEXT

LCOPY

B\D

PICKP:

P=INT(100*RND(1))+1

iF P=100 THEN I=1

IF 0<P AND P<86 THEN |=2

IF 85<P AND P<93 THEN 1=3

IF 92<P AND P<100 THEN I=4
POTPOINTS:

XC=XP*XSC+RIGHT
YC=270-YP*YSC+DOWN

IF (XC<0) OR (XC>500) THEN RETURN
IF (YC<0) OR (YC>290) THEN RETURN
PSET (XC,YC)

RETURN

DATA 4

DATA 0,0,0,.16,0,0,.01

DATA .85,.04,-.04,.85,0,1.6,.85
DATA .2,-.26,.23,22,0,1.6,.07
DATA -.15,.28,.26,.24,0,.44,.07
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