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ABSTRACT

A mathematical model describing the flow pattern in systems
similar to corner-fired furnace, with fluid having constant physical

properties, is proposed.

The system is divided into three zones: the plane-free jet zone,
the vortex zone and the decaying-swirl zone. For each zone the appro-
priate existing theory describing the flow pattern is selected and the
output variables of one zone are used as input variables in the following

zone.

Starting with the plane-free jet zone it is shown that the flow
does not become fully developed before reaching the vortex zone and
consequently an equivalent velocity is derived using the principle of
momentum flux conservation. In the vortex zone the work of Kwok is
used in conjunction with Burger's one-cell solution, and closed form
solutions are obtained for the velocity components profiles. In the
decaying-swirl zone the analytical investigation of incompressible
turbulent swirling flow by Rochino and Lavan is followed and the

numerical solution of the swirl equation presented.

Numerical results from the mathematical model have been computed
and expressed in graphical form showing the effect of the independent
parameters: fluid mass flow, inlet nozzles width and height, size of

chamber and nozzle orientation, on the flow pattern of the system.
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A STUDY OF THE VORTEX FLOW PHENOMENON

AS APPLIED TO CORNER-FIRED FURNACE

INTRODUCT I ON

Present day power plants have water-tube furnaceswhich are large
rectangular boxes, with side and height dimensions in proportion to
the generating capacity. The walls are made up of parallel tubes
carrying the cooling water, and form an enclosure within which fuel

and air are injected, mixed and burned at a certain rate.

In the corner-fired furnace four sets of burner banks are
placed,one at each corner and directed tangent to a small imaginary
circle at the center of the furnace. The streams of fuel and air
issuing from each corner impinge on the corresponding one from the
adjacent corner. Where these streams meet, intensive turbulence is
produced. This action results in the formation of a large vortex
with its axis corresponding to the geometric axis of the combustion
chamber. As a result of the centrifugal forces,the vortex spreads

out and fills the furnace as illustrated in Figures 1 and 2.

The processes that take place inside such a combustion chamber
are highly complex in nature and can be classified under three
main headings:

(1) Fluid dynamics

(2) Heat Transfer

(3) Chemical Reaction.



The scope of the present study is limited to the first aspect, and
more specifically to the fluid dynamics of corner-fired furnaces.

One approach, in the study of flow pattern in furnaces, which
has been widely used over the past ten years, is to experiment and
carry measurements on small-scale models [1] - [6]. This technique
is extremely useful as direct experiments on full scale industrial
plants are usually expensive, or too difficult because of large
size or high temperatures. However the small-scale model technique
has some limitation. For valid extrapolation of the results from
the model to the prototype, similarity must exist between them.
This implies, among other things, that for each new prototype

investigated a new model has to be built.

The ideal approach to this problem is to formulate an
analytical theory that rigorously describes the dynamics of the
system and check the theory against experiment carried out in a

well determined system.

The flow pattern in a corner-fired furnace is rather difficult
to describe mathematically and to the best of the author's knowledge,
no satisfactory formulation of this system has been presented up to
now. This study is an attempt to provide a realistic formulation of

the flow phenomenon.

When confronted with the problem of analyzing a large and
complex system, the best method of approach is to try to break it
into a number of smaller systems having their own characteristics

and identity,



and formulate the interrelationship between them. To apply this
reasoning to our problem let us try to visualize the path of a fluid
particle from the inlet to the outlet of the system., Right after
leaving the burner nozzles,the flow characteristics of the fuel and
air stream is very similar to that of a plane-free-jet; when the jet
impinges on the rotational vortex in the central zone of the furnace
the flow is transformed and developed into a three-dimensional vortex
flow which eventually decays while spiralling upwards. Each of these
flow configurations: plane-free-jet, vortex and decaying swirl may be

represented quite accurately by existing theories.

To describe mathematically the flow pattern in a corner-fired
furnace,it is proposed to divide the whole system into three zones.
Within each zone the flow pattern would be governed by the theory
prevailing in that zone. Values for the variables: velocity and
pressure, being continuous function, will be matched at the boundaries
between adjacent zones. The three zones, illustrated on Figure 3 are

as follows:

(1) The plane-free-jet zone, with height corresponding to

the burner banks, and extending inward from each furnace corner
along the burner axis, to the vortex circle inscribed in the

square furnace plane area.

(2) The vortex zone, having the shape of a cylinder with the

furnace-side dimension for diameter, and the height of the burner

banks.



(3) The decaying-swirl zone, also cylindrical in shape,

directly above and extending from the vortex zone to the furnace

outlet plane.



OUTLINE OF PRESENT INVESTIGATION

The main object of this investigation is to develop a mathe-
matical model which describes the flow pattern in a system analogous

to that of an isothermal corner-fired furnace.

Given the following input data:
a) Fluid mass flow
b) Inlet nozzle width
c) Inlet nozzle height
d) Side dimension of square chamber
e) Angle between nozzle axis and chamber diagonal
The model output are:velocity components and pressure profiles at

different plane perpendicular to chamber longitudinal axis.

To make the model as close as possible to the real system, it
is divided into three zones:

a) The plane-free jet zone

b) The vortex zone

¢) The decaying swirl zone.
For each of these three zones, mathematical relationships are derived
for the velocity component and pressure profiles either in closed form
or by numerical approximation. Values of the dependent variables are

matched at the boundary between adjacent zones.

The study is divided into two main parts:



Part 1 - A review of published analytical and experimental
works is given and the derivation of mathematical relationships
between independent and dependent variables for each of the

three zones is formulated.

Part 11 - Results, based on the formulation of Part 1 are
given for the domain of interest of the independent parameters.

The results are discussed and critically analyzed.
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PART 1

THEORET|CAL ANALYSIS

1. THE PLANE-FREE JET ZONE

1.1 REVIEW OF PREVIOUS INVESTIGATIONS

A vast amount of information on the subject of free-jet has
been published [7], [8]. Consequently only a brief account of the
methods and solutions which are relevant to the present problem

will be given.

Free-jet flow may be completely laminar, completely turbulent
or transitional (i.e transition from laminar to turbulent flow in
the jet). In each of these types of flow the jet may be divided
into three separate regions: the potential core surrounded by a
mixing zone, the transition zone and the fully developed zone

(Figure 4).

The characteristic of jet turbulent motion is that the
turbulent fluctuations are random in nature and consequently
solution of turbulent flow problem requires the application of
statistical methods. G.l. Taylor [9], [10] was the first to develop
a statistical theory of turbulence, applicable to continuous movement
and satisfying the equation of motion. However, even though it was

further developed, this theory deals only with isotropic turbulence which



is the simplest type of turbulence and of very limited use to the
solution of practical problem. To overcome these limitations
semi-empirical theories, sometimes referred to as phenomenological

theories have been developed. The three best known are:

(1) Prandtl's mixing-length theory [11]
(2) Taylor's vorticity theory [12]

(3) Reichardt's inductive theory [13]

Starting with the Navier-Stokes equations, which are obtained
by equating the rate of change of momentum of a small volume of
fluid to the forces acting on it which consist of a pressure gradient

and the force due to internal stresses, Prandtl postulated that this

turbulent shear stress was related to the velocity gradient and to the
size of the eddy, and that the fluctuating components of velocity were
proportional to the mean velocity gradient. In his vorticity theory,
Taylor suggested that the turbulent shear stress be determined by

the lateral transfer of vorticity rather than by momentum transfer.
Reichardt assumed that the transverse transport of momentum is

proportional to the transverse gradient of momentum.

The above three theories being semi-empirical, they rely on experij-
ments to establish the needed numerical value of the constants or
coefficients. Using Prandtl's mixing-length theory, Tollmien [14]
successfully analyzed the problem of turbulent jet mixing of incom-

pressible fluid in a two-dimensional jet issuing from a very narrow

opening with a medium at rest. Subsequently measurements by Ruden [15],



Foerthmann [16] and Kuethe [17] agree fairly well with Tollmien's
results. Gortler [18] re-examined the problem using Reichardt's
assumption with some suggestions from Prandtl [19] and obtained
improvement in the velocity profiles of the jet. More recently
Van der Hegge Zijnen [20] has obtained considerable data on this

particular problem.

1.2 ASSUMED FLOW CONDITIONS

In this investigation, the flow is assumed to be steady,
viscous, isothermal and incompressible. As shown in Figure 4, the
jet may be divided into three separate regions. Region 1 is charac-
terized by a uniform core, shaped roughly in the form of a wedge
tapering from the nozzle width, at the jet source, and vanishing at
a point about 4.5 nozzle widths downstream. The velocity in the core
is uniform provided that the nozzle outlet velocity is uniform.
Surrounding this core is a mixing region where the velocity is not
uniform and varies both axially and transversely. |In region II the
velocity profiles continue to develop until they attain a shape which
no longer changes with further increase in distance, thus they are said
to be self-similar. Consequently, region IT is a transitional region
in which the velocity profiles adjust from the non self-similar profiles

at the end of region | to the self-similar profiles of region ITL.

The maximum velocity within the jet occurs at the exit of the
nozzle, and the static pressure is constant within the jet structure.

Since there is neither pressure gradient nor wall shear stress in the
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free jet, there is no mechanism by which the momentum flux across

any transverse section of the jet can be reduced, and we are led

to the important conclusion that the total momentum content within
the jet is constant. The jet then only spreads the momentum by means

of viscous or turbulent mixing.

Our fnterest is to determine a representative velocity vector
at the boundary between the plane-free-jet zone and the vortex zone.
It is therefore necessary to establish first a relationship for the
length of the free-jet motion so as to determine what velocity profile

is to be expected after the jet has travelled this distance.

1.3 DISTANCE OF FREE-JET MOTION

Referring to Figure 5, let the furnace chamber be of square cross
section with side 2R, and the nozzle x-axis be inclined with respect
to the furnace diagonal by an angle ¥ . Then by trigonometry the
distance 4, from the furnace corner (which is coincident with the
nozzle plane outlet) to the intersection of nozzle x-axis with the

furnace inscribed circle, can be expressed as:
o\:T’\secx (\/'i‘-wsﬁ) (1)

where & is the angle subtended at the furnace center by a line perpen-
dicular to the furnace diagonal and originating at the intersection point.
Table 1 shows calculated values of d for practical values of

and 2R.
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1.4  EQUIVALENT VELOCITY PROFILE

The analysis of the spreading of a plane-free jet involves
solutions of the Navier-Stokes momentum equations in conjunction
with the continuity equation. In our case of steady, two-dimensional,

incompressible and turbulent flow with no pressure gradient, these

equations are:

o)
o/

Wil Lo Qv - L Y (2)

x Y ¢ Y

c&

y 0 (3)

<)
gl
o=

where W and A are components of velocity in Cartesian coordinates,

Q is the density of the fluid in the jet and Ts denotes the
turbulent shearing stress. Prandtl's mixing-length was derived from
the concept that the turbulent shear stress is related to the velocity
gradient and to the size of eddy so that:

4] W

T, = o U |38 O
Q oYl 0y ()

where Q , the mixing length, is dependent on the size of eddy at the
relevant point in the jet. Substituting for Ts in equation (2) from

equation (4) we obtain:
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Method of solving these equations is given in standard texts (e.g. [7],
[11]). Experiments on this type of jet have been performed by
Van der Hegge Zijnen [20] and the following relationships satisfy

the data reasonably well in the fully developed region of the jet:

a) Velocity on the jet axis:
-2
Uw - 2.48 ( =X - 0.6<) (6)
-V | )
b) Transverse profiles of velocity:
Ty =o.5(l+¢csm_> 7)
Uwm 0.\92 X

where Vj is the average velocity at nozzle outlet, W is the time-
mean velocity component on the axis of jet, W is the time-mean

velocity component parallel to axis of jet and b is the nozzle

width.

Substituting for U from equation (6) into equation (7), then

/2,

T o= o4 V) (._b__——) ( |+ Cos D (8)

x4+0.6 b 0192 X
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The angle of spread of jets is usually expressed as the jet
half-angle, which is the angle subtended at the jet origin by points
on the axis and points at which the velocity is half the value on
the axis. For the data of Van der Hegge Zijnen the jet half angle
was 5.5°. It isincluded in the velocity profile equation (8) through

the constant 0.192 which is equal to 2 tan € .

However, for the particular problems this study is intended to
cover, the range of values for b extends between 1.5 and 2.0 ft.
When comparing with the calculated values for d (See Table 1) from
equation (1) it is found that d <8b. Consequently the jet velocity
profile will not be in the fully developed region (i.3 region 111 of
Figure 4), and the velocity profile, given by equation (8) will not

be strictly applicable.

To obtain an average ''equivalent' velocity at the boundary
between the plane-free jet zone and the vortex zone (i.e when ﬁ;==d)
the principle, that for a free-jet the nomentum flux across any
transverse section of the jet remains constant, is used. Let the

jet lateral boundary line be that of the jet half-angle then,

Y= % + 0.096 % (9)

14

At the nozzle outlet the momentum flux M/ per unit length

of nozzle height is:

&k,: be V; (10)
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At a distance %X from the nozzle outlet the momentum flux

Mi iS:

ﬁﬁl_: 11\% Q (3:; (1)

where L)x_is an average velocity at X defined by

U, = [V Ciﬂ

-0

Equating equations (11) and (10), then

— b V2
U = | —
x v‘) ( b + »\9213 (12)

At the end of the plane-free jet zone, that is to say when

K is equal to d., the average velocity Ud is:

Ug =V K 5 +b.tszc\)‘/2 (13)

and the equivalent width of the jet W,at the same location is

obtained from equation (9),

W = b((a—o.\%?.%) (14)
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2. THE VORTEX ZONE

2.1 REVIEW OF PREVIOUS INVESTIGATIONS

Since Ranque [21] first mentioned the vortex tube in a French
patent applied for in 1931, many studies, analytical and experimental,
have been undertaken toward the description of flow in a confined vortex.
Typical confined vortex configuration might consist of a cylindrical
chamber with a fluid injected both radially and tangentially at the
chamber periphery and withdrawn at the central axis. This work has
been motivated by interest in a number of devices that utilize such
vortex configuration including the magnetohydrodynamic vortex generator,
the vortex nuclear reactor and recently the vortex amplifier for fluidic
applications. In general, theoretical analyses of vortex flow involve
solutions of the Navier-Stokes equations, but due to the highly non-
linear characteristics of these equations a number of simplifying
assumptions have to be made in order to arrive at some approximate
solutions. Except under certain simple conditions the exact solutions

of the complete Navier-Stokes equations are inacessible.

An extensive review of analytical work on vortex flow has been
given by Donaldson and Sullivan [22], [23]. Sometime later, Lewellen
[24], [25] presented solutions for the cases of a viscous, incompressible
fluid in steady axisymmetric flow with strong or low circulation. More
recently Kwok [26] gave closed-form solutions for confined vortex

incompressible flow within a thin cylindrical chamber.
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During the same period,experimental work was carried out by
several workers. Donaldson and Snedeker [27] studied the character of
vortices in a simple cylindrical vortex chamber having a single end wall
rather than the fully confined vortex. Savino and Keshock [28] did
careful measurements of radial and tangential velocity components as
well as static pressure measurements of a turbulent vortex flow,
Subsequently Roschke [29] investigated a vortex flow of water within a
right circular cylinder at different length-to-diameter ratio., Then
Kwok [26], to verify his theoretically predicted profiles, measured axial
and tangential velocity distributions at the exit plane of the central
exhaust orifice, and the radial wall static pressure across the

chamber.

2.2 ASSUMED GEOMETRIC CONFIGURATION AND FLOW CONDITIONS

In order to simplify the problem,it is assumed (Figure 6) that
the outer boundary of the vortex zone is a cylinder whose diameter is
that of a circle inscribed inside a square of side LR . The cylinder
is closed at the bottom end and open at the top. The height of the zone
is that of the inlet nozzle and corresponds to the vertical height of

the burner bank in the real system.

As in the preceding zone, the flow is assumed to be steady,
viscous, isothermal, turbulent and incompressible., Moreover it is
assumed that the flow is axisymmetric with the vortex axis coinciding

with the axis of cylindrical coordinate system. Based on the work
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of Donaldson and Snedeker [27], and that of Kwok [26] the following

assumptions are made regarding the three-dimensional fluid motion:

(a) Ve = A (r) (15)
(b) Ny = Vg (r) (16)
(c) Ny = o fe) (17)

Very little is known concerning the turbulent stresses in the case
of the vortex chamber, consequently the approach taken by Kwok [26]
has been retained. It is assumed that the apparent stresses which
are caused by the eddy viscosity 6) have a similar influence on
the flow as the viscous stresses, and that the eddy viscosity is

constant throughout the zone.

2.3 EQUATIONS OF MOTION [26]

2.3.1 BASIC EQUATIONS
The Navier-Stokes equations for incompressible turbulent steady

flow in Cartesian coordinates are given in Schlichting [30] p.463 as:




Q(\ch\‘:— +f\;-'_3—5,_\, _‘,\»(b\u) - r&f +MV\» 6(%;;_‘-;‘ + (B:\;—‘:—O'_\_cbw
B TRCVR S Y Ty o’b V% 'D\a, DR
where VA '\LJ: +’D:. J,-Z.L_

W Y Dy

—713 (18c)

(18d)

Comparing the set of equations (18) with the set obtained for the

laminar case, they are seen to be identical except for additional

terms on the right hand side which can be interpreted as components

of a stress tensor. Rewriting equation (18) as:

(53 + 28 + W28) =38 wr 7 (3 + 2 )

(038 ) = e (e 2

Q (ucﬁ + U;%-g WM) V MR (ro 7? +?0’v;§\}f +¢;G;a)

it can be concluded that the components of the mean velocity of
turbulent flow satisfy the same equations as those satisfied by
laminar flow if the laminar stresses are increased by additional

stresses known as apparent or Reynolds stresses.

(19a)

(19b)

(19¢)
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Assuming that the apparent stresses which are caused by a
constant eddy viscosity € have a similar influence on the flow as

the viscous stresses, then equation (19) may be written as:

W L W 4 wh - _ 2 0P vt a
‘+N'°‘& +W’°’a Q"Dx+ Ya (20a)

WO, v . WM = _ L JF v (20b)
w oAy Ty gy
W 4008 | wlw =-L 0B 4 v (20¢)
x ‘b\& % Q‘?g
_ + €
where Y o= \‘.'_.__.. (21)

Changing to cylindrical coordinates ¥, &, 9a , with AT, )Vq ’

55 as the radial, tangential and axial velocity components then

equations (20) becomes:

Ve 0% +g$<b—y~f+’\7;‘:l'r- ? =< -i’+ﬁ(vwr-&.\;-;1%

(22a)



4‘\7(?1'\‘7_’,‘; + «__}_*g%_.\fh +——eb_§.}) :~-%__\?. + V. V?U'
e T rag T o0y T Ry T (T%) 2o
where V'L = _}. _;__Q__ ...'..(b_'t: +1t 22d
T v TRt T (22¢)
and the continuity equation is:
L “+ .—’\:& +-—‘-m _._'D:‘Ib = 0 (23)
Q Y ¥od

Now making use of the property of axisymmetry (i.e. no dependence
on ¢ ), and of the assumptions that '\_?’Y and '\—I’(p are function of ¥

only, then equations (22) and (23) simplify to:

s E =R (2] e
A\ C\V‘@ +5\_7r7\§7‘¢ - A [_-QL (@ + @>] (24
"'&7 = - dv Y ar b)

- — = = 1— — 1—

_ . .
—J+%+h‘o (24d)
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2.3.2 DIMENSIONLESS VARIABLES

To facilitate the solution of the set of equations (24) all
the variables are made dimensionless by comparing the radial and
axial lengths to R, half the furnace side, and comparing the velocity
components and static pressure to the tangential velocity component V
at the inlet of the vortex zone and twice the value of dynamic head (’VL

respectively. On this basis the dimensionless variables are defined

as:

h: = -Y- -
Lengt X =  Z = %Y (25a)
Velocity Components: Ve= 'T_Er , V¢ - '\:J'g , Vz = _{T_g (25b)
Y v v
Pressure: P = é%t (25¢)

As in [26] the dimensionless parameter &, Q are introduced

and the apparent Reynold number Re s defined as:

\/2

QR N (bw) VR
T ——— :—-—-——-—-—-—-————-—— R = 6
RRPTYAN » Q@ RaRsmy * - H e

where Q is the total fluid flow rate into the zone, N is the number
of inlet nozzles, h is the height of inlet nozzle and W, b and 5’

are as previously defined. From equation (26) it can be shown that:

(27)
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. . . . of
Now in terms of the above dimensionless variables the s@t

equations (24) can be written as:

VedVe _ Vo - 9P _'_[i Ve o 4V (28a)
rdx )—59 X TRe dx(xJ’d )]

VedVop . Wlo 1 (4 (Vo , dVe 28b)
X T X -RL[AX(X+W)] (
V= \('3\{2 - NJ? Vz + L t“b\l r'()"—vz] (28¢)

V'%’S(* SF TG R LAaxt "X e To

[Jo B8

AV 4+ W + Nz =0 (284)
X Z

o

and equation (17) becomes:

Vz = Z S‘:(X) (29)
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2.3.3 BOUNDARY CONDITIONS

To be consistent with the assumption of axisymmetric flow it
is required to have a sufficient number of evenly-spaced driving
jets at the periphery of the vortex zone. Stated another way: the
radial and tangential velocity components should be uniform all

around the chamber.

In order to transform the average velocity lld , leaving
the plane-free jet zone over a width W , into uniform radial and
tangential velocity components over a quarter of the periphery of

the vortex chamber, we proceed as follows:

Resolving VU4 into its radial and tangential components

and expressing them in terms of the velocity at the nozzle, then:

Q\;—‘,)F -y, (%)ﬂl[ﬁ Cos Y — %] (30)

VZ.
(ve)e = V; (;E) (V2 sin Y ) (31)

where subscript F means: '"at the exit of the plane free jet zone''.

From the conservation of mass, the total flow through the nozzles

must be equal to the radial flow at the periphery of the vortex zone,
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consequently
Q=VibhN = 2m Rh (W), (32)
where subscript V means: "at the inlet of the vortex zone''.

Let (iﬁp)v = QWZ@)F

then

—\ _ N (bw)
k(\)}>V - ?.'HR[_\E. Loy § - % ] (VY)F (33)

and using expression (26) for @

e (Ve)y = =0 L‘F = 1 QVV)F

(34)

In dimensionless form the boundary conditions in the vortex

zone for V¢ ,Vg and P become:

At X=0 : Vi= Q Vo = 0

2.3.4 CLOSED-FORM SOLUTION

As a first-approach to develop the closed-form solution of equations
set (28) the Burgers' one-cell vortex solution is selected. In this
type of solution, which is applicable to system with low swirl component,
resulting in fairly constant axial velocity profile at the exit of the
vortex zone, the factor F(X), in the expression for Yy equation

(29), is constant.
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Then: No. =¢C Z (35)

Using this expression for Vz and substituting in set of

equations (28), then

AV Vg o & (d (Ve dV))_ _OP

R IR - I ?Ix ( X q )] X (362)

Ve g Vel & XX(.; N dxﬂ (36)

W2 = - ((%—/—-.ZP (36¢)

dVr + Y 4 G =0 (36d)

X X

For convenience let Cy = l%. The axial velocity becomes

Vo =2k z (37)

The continuity equation (36d) takes the form

od (W) = -
L LX )= -2k (38)
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Integrating equation (38) yields

Ve =- hx + A (39)
q -+ X

Now applying the boundary at X=0, then
Ve =<Kk X (v0)

To obtain the value of {i, the conservation of mass is considered,
that is to say the total flow Q leaving the vortex zone at A= h
must be equal to the total flow at the inlet of the vortex zone

through the nozzles . Hence

Y
Q-_-_Sm\r«_rb dv (41)
[¢]

In dimensionless form the integration of equation (41) at

-_h; becomes:
Z’R

Q :ngxdx:j’s_h (42)
Y

2N RV R

Using the relationship given in equation (26) and (27), then
ho=-0 (43)
and the axial and radial velocity components take the final form

Voo = - 20 % (44)

H

Ve = @ X (45)
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The tangential velocity component is obtained by solving

equation (6b) which can be expressed as:

dq"V ! (\V - = ©
A RCRLFECT R

The above equation is a differential equation with varying coefficients
which are a function of the independent variable X . Consequently ,
this type of system is considered linear in the sense that the
principle of superposition applies. The complete solution for V¢

is found to be :

_RR X"
Vo = A - A o TZ (7)
X 7 Re X

where A, and A, are constants of integration.

Applying the boundary conditions at X =4 and X = 0 and rearranging

the solution, equation (47) becomes:

4 -5 x*
Vg = - )

The static pressure distribution in the vortex zone is

obtained as follows:

dP =

(D_?dz 4.(..0176\)(
nyA X

and P = 8%—(—; dz + §%"§ d X (49)
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Substituting for 2P and 2P , from equations (36¢c) and (363),
QDL X

into equation (49), then combining with equations #0) and (43)
and integrating yields:

2 2 by

P= pz -@1(K+£)+ Yo dx + A (50
2 o( X

where A is a constant of integration.
The value of this constant A is obtained from the boundary condition

at X=1 and z=0.

Substituting for A in equation (50) and rearranging
then
TP =opzt4 O£ - L) - Ve dx = aP  (51)
< 2 " %

X
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3. THE DECAYING SWIRL ZONE

3.1 REVIEW OF PREVIOUS INVESTIGATIONS

As for vortex flows, swirling flows have also been the object
of a number of analytical and experimental studies. In their
investigation of swirl decays in pipe flow Talbot [31] and Collatz &
Goertler [32] considered small swirl components superimposed on a
fully developed parallel pipe flow. The tangential component of the
equation of motion was linearized and the problem reduced to an

eigenvalue problem.

Kreith and Sonju [33] made a semi-theoretical analysis of the
decay of a turbulent swirl of an incompressible fluid in pipes: For
the kinematic eddy viscosi y in the linearized swirl equation they
used an empirical expression and obtained, for the turbulent swirl

decay, good agreement with experimental data.

Using the complete Navier-Stokes equations, Lavan and Fejer [34]
obtained a numerical solution for the laminar swirling flow in the
entrance region of pipes. Kinney [35] extended von Karman's similarity
hypothesis to a cylindrical geometry and established the condition
under which universal velocity similarity will exist for plane-
rotating turbulent flow. He derived a universal velocity profile and
an eddy viscosity expression from these similarity conditions and
evaluated a universal constant in the eddy viscosity equation from

Taylor's velocity and wall shear-stress measurements.
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Recently Rochino and Lavan [36] jusing the phenomenological models
of the turbulent flow mechanism studied the problem of incompressible
turbulent swirling flow in stationary ducts. They derived the swirl
equation from Taylor's modified vorticity transport theory and
obtained an eddy viscosity expression from von Karman's similarjty
hypothesis, for the entire flow field except in a small region close
to the wall, where @ mixing-length expression analogous to that
assumed by Prandtl for parallel flow in channels was used. The
theoretical results were compared with the experimental data of Fejer,

Lavan and Wolf [37] and agreement between experiment and analysis

was satisfactory.

3.2 ASSUMED GEOMETRIC CONFIGURATION AND FLOW CONDITIONS

As for the vortex zone,it is assumed that the outer boundary
of the swirling flow is a cylinder whose diameter is that of a
circle inscribed inside of a square with side ZR . The cylinder is
open at both ends. Using the same coordinate system as for the
vortex zone, the inlet plane of the swirl zone is coincident with
the outlet plane of the vortex zone and the origin of the coordinate

system for this zone is coincident with the point ( 0,<p, h) of the

vortex zone.

Consistent with the assumptions of the preceding zones the
flow is treated as steady, viscous, isothermal, turbulent, axisymmetric
and incompressible. However, as in the work of Rochino and Lavan [36]
which is summarized in the following section (Section 3.3) , the eddy
viscosity is not assumed to be constant, and an expression is derived

using von Karman's similarity hypothesis.
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3.3 EQUATIONS OF MOTION [36]

3.3.1 BASIC EQUATIONS

The Navier-Stoke equations for steady, incompressible,

axisymmetric isothermal flow can be written as:

- -— — — — — AT L —
vy Uy +'\)'b(\00‘r _ V. - .._‘.C@_E.,\_ ﬁ?[(.b_'.‘.).‘!-\-' Ld‘fa—&_@.‘.’—yr_]
QY 7 Y QCO\’

’Tybm+6rm+'mw: 9% c‘}_@ +.‘_(E_b+cbm’\7 ...'\_'_(‘E‘l
N DY Y RS S S Y e

_[0), vevs) 4y ‘&ﬂ (52b)
EEN Dr C

Wy, L leVved- g (52d)
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Using Taylor's modified vorticity theory, the first three
partial differential equations for the radial, tangential and axial

velocity components take the following form:

= \7 — 8NE T LY P

Vi Yvr oL ’\f-)a.a._}’_".’... Ve :-D—H-“i-em(r) (b_h) (53a)
or V% v or 03" Drly

-— — - ~ 5 Y. N e \orey

¥, 9V 4 v, W + TV = 2y (M+LM-‘I& + D%) (53b)
Ur 1y r or®r vV or  v* dy*

— Are . — Y& N — A —
Nr 0w, 7, 99y - _ OH +2m (o'\ﬁz,,_s_D%__f 9V 1 Jvw
TS P Y=l P = P STONCE

© Pty
where H = —F—-\- X
€ 2

SO ('\f;- ),U.'¢ /'\”:’J)

Em () |, Em(&) |, €wm (%) = the kinematic eddy viscosity
in the radial, tangential and

axial directions,

However, in the above equations, the molecular viscosity is

neglected following the common assumption of turbulent flow theories
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which regard the molecular viscosity as being negligible compared to
the eddy viscosity of turbulent flow. This assumption is not valid
near a solid boundary. Since it is desired to include such regions

in the present investigation the tangential component equation (53b)

is modified as follows:

- N— — N —_ — 2= % — o—
e W |, We y %V = (prem ¢,)(3_«_f~_».,_1 W _ Ve M)
r ?’aod r 4 Q drr v Ir  ¥E 03t (54)
3.3.2 DIMENSIONLESS VARIABLES AND ORDER OF MAGNITUDE ANALYSIS
In swirling flow, the axial and tangential velocities are
generally prevalent, so that:
Vr << WIE, (55a)
Ve << Ve (55b)

Considering the axial change of ﬁfb it is noted that the
axial velocity profile changes only slightly over axial distances since

the average value of the axial velocity is a constant. Consequently

Vs 5y v
—— > =7 (55
Vv 0Dy 2
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Next the change of '\T’¢ with respect to % is compared to the
change of F’zr with respect to 3 . In swirling flow the tangential
velocity decreases uniformly to zero whereas the axial velocity is

unchanged onthe average. Consequently it is thought that:

/
o/

KL NN (55d)

-
? 0y

-4

and hence V% >> Vi since WV, is negligible.

P)
0y
Using the set of relationships (55) into equations (53a),

(53c), and (54) then:

I (A

(}\’('Q 2 ) - = (56a)

%, Wo _ |, YT U, 0We T

Ny YV — e (3 v V¢ M OVve Vg

2()3';) kf+ m(@)) ('3"()1 +'Dr"~ + 3y =z (56b)

- A 92— .~
e vy _ Y, u%)

_‘?; ( Q + —Z~ ) -—(/) +€n\\’.’))) (-b\_q‘ v 5r (56C)

Equation (56b) is known as the swirl equation and is used to

predict the decay of angular momentum in the axial direction.
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The swirl equation is non~dimensionalized by using the following

dimensionless variables;

X=X 2= = JE= &wl  (57a)
R R | Y

Vo= % V= Vo Nzz % (57b)
Va Vo Vo

—

where Vq’ is the average axial velocity and is defined as:

Va= '{1%" (58)

and R | }*‘ and Q are as defined previously.

Effecting the transformation, the dimensionless swirl equation

becomes:

VZ(D_\L?:(’._‘_'*.'_E. TV L Wp _ Ve j)f!:b)
Wz Rz /LUIX* X %X Xt QL (59)

where

(Re), = ‘\7;)_ R (60)

is the axial Reynold's number.
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Moreover, as pointed out by Kreith and Sonju [33], one can safely

assume that:

Ve« V22Ve (61)
Q2> vz

then:

vz‘m:(wi Wy +\_m_\_@) (62)
Vz (Re)2 oX* X X X*

The above equation was solved [33] on the basis of the eddy
viscosity being a function of the axial Reynold's number. In this

analysis, the approach of Rochino and Lavan [36] is followed.

Assuming that the kinematic eddy viscosity for swirling flow

is a superposition of that for circular and parallel flows one can

write:

Cwm = E’("M-l\’;) (63)

where L is a length scale in the turbulent flow field. Then using
von Karman's similarity theory for cylindrical geometry and turbulent

flow, it is shown [36] that the mixing length can be linearly
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related to ¥ so that:

I

em = Kr* (D_" - ._"7_4’) (64)
ACAS r
where the constant K , based on experimental data is taken as 0.0333.

However, near the wall (i.e 0.9< X < 1) the length scale has
been experimentally verified to be proportional to the distance from

it. Hence to satisfy this condition, the eddy viscosity expression in

this domain is taken as:

- w3 —v\% a_”U:o T—U—'q:
e = K*(1-Y) ('5? - Te) (65)

In dimensionless form, the eddy viscosity expressions are:

— ¢t x* (Vg Ve < X €09
E = (RQ) K™ X Q X X > y © © (66a)
E = (R K*(1-X)* Ve _ Ve 9< X £ 1.6 66b
( qz ( ) <DX X ), 09 < (66b)

and are assumed to be always positive.
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Substituting the eddy viscosity expressions in the swirl

equation (62) yields the following partial differential equation:

2 W
z.%—\é‘” :(K_‘,\—l;-\z«-lK 1“(%_\)1(; _ Vd:),)( >‘<bx¢ \)/:2)
where 4= Xl for 0 = X =< 09

=(1-X)"  for o09< X = 1.0

and with the boundary conditions:
(a) Vel(t,2) =0
() Ve (x,0) = F&)
() Ve(o,2) =0

3.3.3 NUMERICAL SOLUTION

Equation (67) is a h.ghly non-linear partial differential

(67)

equation of the parabolic type, and consequently a numerical solution

method has been selected in preference to a closed form solution

attempt.

For convenience, equation (67) is transformed in terms of

the angular momentum of the fluid. Let

M= X Vg

and substituting into equation (67), we obtain:

SATREGI S (G

kRQBZ

cqc/
N1

(68)

(69)
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with the corresponding boundary conditions:

(a) T‘(l,‘z) - 0
(b) T(x,0) = X {(x)

(c) T(o,z) = 0

If we let:

K;(%;‘%)l) (70)

Then the angular momentum equation (69) takes the following

form:

</
—3

(71)

|

ElI‘:: D NSLV
NZ *

- D
X X

b

x

To solve equation (71) numerically it is necessary to replace
it by a system of finite difference equations. The second order
derivative is replaced by three point central differences, and for
the first order derivatives, forward differences are used. Figure 7

shows the grid notation for the numerical scheme.

Let r‘.‘j = [P(lax | jaz)
then B_P - r‘iw - ri

V2 AT
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Dzrﬂ: L+1 ]qq + ‘ﬂg -4
0 X? (A x)*

and substituting into equation (71) we obtain:

"
AR (-L -4 ):D Azﬂu +( (-E— - ——>?D Az)f”
@Ax)*  (AX)X; @x)*  (Ax)X;
4 24z Ty (72)
ax)=

where

D=1 (Eﬁtﬁ +

(R‘im—r't*_?.rx*)l) L0 X =09
AX Xi

D =

+ K* (- XB( Ly T8 2P;‘§)
X3 ax Xi

A ( '>,o.~)<><si.o
\Rd

Equation (72) is an explicit positive type-difference equation if

the following inequalities are satisified:

(_i - )3).Az > 0
wx)*  (ax) x;
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and (_E___ - -—‘—-1 DAz = 1.0
axy* X; (aX)

It can be shown [36] that the above inequalities are always

satisified in the present study.

A required input to this numerical scheme is the tangential
velocity at the inlet (i.e. Z = 0), which is provided by the tangential
velocity distribution from the outlet of the vortex zone. The axial
velocity profile which appears as a parameter in equation (72) is
evaluated by taking the mean between the axial velocity profile at

the outlet of the vortex zone and Va .

The stepwise integration of the explicit finite difference
equation was carried out on an IBM-360 digital computer. Twenty
subdivisions were used in the radial direction, and the ratio of

Az to AX was kept at 0.2.
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PART 11

THEORETICAL RESULTS

1. INTRODUCTION

From the sets of solutions, either in closed-form or in
differential form, developed in Part 1, it can be seen that, given
the chamber and nozzles geometries and the properties and flow rate of
the fluid, velocity component profiles and pressure difference distributions
can be calculated in the vortex zone. Also the decay of the tangential
velocity component, as the fluid travels through the subsequent zone
can be obtained. However, in the vortex zone it is necessary to
know the proper value for ‘he apparent kinematic viscosity Ya
which is a characteristic of the system. In the following theoretical
results the eddy viscosity has been assumed to be 100 fold greater

than the molecular viscosity.

The theoretical results presented in this section are based
on the following values of the independent parameters}

Side dimension of square

chamber, (2R) : 30', 35', Lo

Angle between nozzle axis
and chamber diagonal, (Y) : 3°, 6°, 9°
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Inlet nozzle width, (b) : 1.666', 1.833', 2!
Inlet nozzle height, (h) ; 33!, 30', 27.5'
Fluid Mass flow : 2,200,000 lbs/hr.

Fluid properties:
a) density, (¢): 0.00155 slug/ft3

b) Molecular viscosity, (Y-): 1.66 x 10-5 slug/sec.ft.

Numerical computation of the velocity profiles and pressure
distribution of the eighty-one possible combinations of the independent

parameters were carried out on an IBM 360 computer.

When grouped into the dimensionless parameters & and Q , these
combinations of the independent parameters resulted into twenty seven

values for Q and three va ues for & in the following domain:

5 € &« < 66

-1.45 < Q < -0.34

2. RESULTS AND DISCUSSIONS

2.1 THE PLANE-FREE JET ZONE

In this zone it is of interest to know how the resolved
components of the average equivalent velocity vector Gd do vary
with the physical parameters R, b, and ¥ . Figures 8 and 9 depict
graphically equations (30) and (31) respectively. From these figures
it is apparent that the ratio of the radial component to the nozzle
velocity varies little with any change in the three parameters.

This can be explained quite simply as follows:
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1)  The b-dependence is absorbed in the ratio through the

nozzle velocity Vj which is inversely dependent on b.

2)  The value of the ratio Vr/Vj is mainly determined by

the cosine of ¥ which, for the low values of ¥ used, does

not vary appreciably.

3)  Similarly, the R-dependence is through the d/R ratio which is
proportional to the secant of ¥ , an almost constant value in

the range of Y values used here.

The observed strong dependence on ¥ ©f the ratio of the
tangential component to the nozzle velocity, is the result of the

change in the sine function for the low values of ¥ .

Figure 10 shows the functional relationship of the radial
velocity component from the outlet of the Plane-Free Jet Zone to the
inlet of the Vortex Zone. |t is the graphical representation of
equation (33), with equations (1) and (14) substituted for d and W.

The function is seen to be decreasing with b decreasing and R increasing.
It does not vary appreciably with ¥ due to the counteracting influence
of @-and sine of ¥ functions and consequently the plot is shown for

one value of ¥ only. As mentioned previously, this function results
from transforming the average equivalent velocity U4, leaving the
Plane-Free Jet Zone over a width W, into uniform radial and tangential
velocity components acting over a quarter of the periphery of the

vortex zone.
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2.2 THE VORTEX ZONE

Before presenting the dimensionless velocity profiles for
this zone it is of interest to discuss the two dimensionless para-
meters & and % and their relationship with the independent physical

parameters of the system.

When the defining equation (26) is combined with equation (32),

the parameter & is seen to be a Reynold's number, R(a;r)v, based on the
2 a

radial velocity component at the inlet of the vortex Zo:e and the
apparent kinematic viscosity. The dimensionless parameter @ on the
other hand, is a grouping of the physical independent parameters:
¥ > R, and b. Its functional dependence on X for several values of
R and fixed value of b is shown on Figure 11. It is apparent that Q
is mainly dependent on ¥ in the low range of ¥ < 8° and to a lesser
extent on R while the dependence on b is very smal].‘ The physical
meaning of the @ parameter is that it represents the ratio of the

radial to the tangential velocity component at the inlet of the Vortex

Zone.

The dimensionless tangential velocity distribution is shown
on Figure 12 for the three values of &X . It is seen from this figure
that the value of the maximum velocity is increasing and the point
at which it occurs moves closer toward the center as the value of «
is increased. Remembering that the & parameter, a Reynold's number, is
directly proportional to the chamber geometry and the inlet radial
velocity component and inversely proportional to the apparent kinematic

viscosity, it is seen that the tangential velocity profile shows a
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strong tendency, as the absolute value of this Reynold's number

is made larger, for the fluid to conserve its initial angular momentum.

The dimensionless radial and axial velocity profiles are shown
on Figures 13 & 14 respectively. The direct dependence on the
parameter Q for both profiles and the proportional dependence on X

for the radial velocity are evident.

The pressure difference distribution is plotted on Figure 15.
The dependence on Z has been removed by making the Z-term in equation
(51) equal to zero. The other two terms in this equation account for
the decelaration of the radial flow and the balancing of the
centrifugal forces. As in the case of the tangential velocity
distribution the dependence on the parameter « is clearly shown
indicating the influence o° the chamber geometry, the inlet radial

velocity component and the apparent kinematic viscosity.

2.3 THE DECAYING SWIRL ZONE

For this zone, dimensionless tangential velocity distributions
are shown on Figures 16, 17 and 18. The three sets of distributions
are for different systems characterized by a different & value but
having a common Q value. For each set, two curves are shown: one
corresponding to /R = 0 and the second to % /R = 9. When comparing

these graphs two things can be noted:

1) For increasing & , the relative decrease in the

maximum velocity, i-e-‘.(v"lﬂu.'(v’)r«;;]/ (V@)M“' ’ is
=0 Z= L=9°

increasing.
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2) The point of maximum velocity moves radially inward

as the axial distance increases.

It is also apparent that the angular momentum decays
with increasing axial distance. As the flow proceeds downstream,
the outer region first approaches an irrotational behavior,
particularly in the region near the outer boundary. This
irrotational flow field widens and progresses toward the

axis of the chamber.
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CONCLUSION
A mathematical model describing the flow pattern in systems
similar to corner-fired furnace, with fluid having constant physical

properties, has been proposed.

The approach taken to solve this problem has been to divfde the
whole system into three zones: the plane-free-jet zone, the vortex zone
and the decaying-swirl zone. For each zone the appropriate theory
describing the flow pattern is selected and the output variables of

one zone are used as input variables in the following zone.

In the theoretical analysis section, development of solutions
for the velocity components and pressure difference distribution are
given either in closed-form or in difference-equation form. Starting
with the plane-free jet zone it is shown that the flow does not become
fully developed before reaching the vortex zone and consequently an
expression for an equivalent velocity is derived using the principle of
momentum flux conservation. In the vortex zone the Burger's one-cell
solution, in which the radial and tangential velocities are a function
of radius only while the axial velocity is a function of the axial
coordinate, has been selected. The independent parameters of the
system and the apparent kinematic viscosity, which is assumed constant
in this zone, are grouped into two dimensionless numbers: X and @ ,
and the solution to the dimensionless velocity components are expressed
as function of these two parameters. |n the decaying-swirl zone, the
swirl equation is deduced from Taylors' modified vorticity transport

theory using an eddy viscosity expression based on an extension of
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Von Karman's similarity hypothesis to a cylindrical geometry with a
fully turbulent swirling flow. For the region near the wall
appropriate modification in the swirl and eddy viscosity expression

were made.

Numerical results from the mathematical model were computed
and expressed in graphical form showing the effect of the

independent parameters on the flow pattern of the system.
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RECOMMENDATION FOR FUTURE STUDIES

The mathematical model presented in this study is thought to
be an adequate tool to obtain the flow pattern in system similar to the

.

corner-fired furnace. However, it is evident that assurance of this
adequacy can be ascertained only by carrying out measurements on real
systems, having configuration and dimensions comparable to those for
which the mathematical model is felt to be applicable. It is therefore

recommerded that such testing be implemented and the experimental

results compared with the theoretical one.

In order to simplify the complex mathematics involved in
solving the Navier-Stokes equations in the vortex zone, a constant
apparent viscosity da is assumed throughout this zone. However, it
has been reported [37] that eddy viscosity in swirling flow is a
strong function of radial position and a weak function of axial
position. An obvious extension of the present study would be to
consider the apparent viscosity as a function of r and obtain the
solutions to the velocity component profiles with this added refine-

ment.

As a first-approach to develop the closed-form solution of the
vortex zone equations, the Burger's one-cell vortex solution was used
in the present study. This vortex structure is applicable to system
with low swirl component, but as the ratio of the tangential to radial
velocity component is increased beyond a certain value a two-cell
vortex structure developes. Donaldson and Snedeker [27] experimentally

found this critical ratio for the transition from one-cell to two-cell
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vortex structure to be approximately 3, which is equivalent in our
notation to a @ of -.333. Although the cylindrical vortex chamber
they used was different, in a number of aspects, from the system of
the present study, making their results not directly applicable, it
would be useful to consider a two-c¢cell vortex solution so as to

extend the range of application of the model.

In addition, to continue the improvement of the present model,
it is recommended that extensions to the existing solutions should
be made to include the energy generation aspect of the problem and the

corresponding volumetric change taking place in such system.
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TABLE 1 - LENGTH OF FREE-JET MOTION (ft.)

Y 2R (ft.)

(°) 15 20 25 30 35 Lo

] 3.10722 | 4.14296 | 5.17870 | 6.21444 | 7.25018 | 8.28593
2 3.11047 | 4.14730 | 5.18412 | 6.22095 | 7.25777 | 8.29460
3 3.11258 | 4.15010 | 5.18763 | 6.22515 | 7.26268 | 8.30020
I 3.11661 | 4.15550 | 5.19438 | 6.23325 | 7.27213 | 8.31230
5 3.12318 | 4.16424 | 5.20530 | 6.24636 | 7.28742 | 8.32848
6 3.13021 | 4.17361 | 5.21701 | 6.26042 | 7.30382 | 8.34722
7 3.13904 | 4.18539 | 5.23174 | 6.27809 | 7.32443 | 8.35707
8 3.15752 | 4.21002 | 5.26253 | 6.31503 | 7.36754 | 8.42004
9 3.16048 | 4.21397 | 5.26746 | 6.32096 | 7.37445 | 8.42794
10 3.17236 | 4.22981 | 5.28726 | 6.34472 | 7.40217 | 8.45962
11 3.18589 | 4.24785 | 5.30981 | 6.37177 | 7.43374 | 8.49570
12 3.20066 | 4.26755 | 5.33444 | 6.40133 | 7.46821 | 8.53510
13 3.21663 | 4.28884 | 5.36105 | 6.43326 | 7.50547 | 8.57768
14 3.23378 | 4.31170 | 5.38963 | 6.46755 | 7.54548 | 8.62340
15 3.25193 | 4.33591 | 5.41989 | 6.50387 | 7.58784 | 8.67182
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FIGURE 1

CORNER-FIRED FURNACE

(SIDE ELEVATION)
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FIGURE 3 - THE THREE-ZONES MODEL
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FIGURE 5 - PLANE-FREE-JET ZONE
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FIGURE 8 = RADIAL VELOCITY COMPONENT

VS
NOZZLE ANGLE
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FIGURE 9 - TANGENTIAL VELOCITY COMPONENT
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FIGURE 10 - RADIAL VELOCITY FUNCTION

(From the Qutlet of Plane =
Free Jet Zone to the Inlet
of Vortex Zone)
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FIGURE 11 -~(-FUNCTION VS ANGLE OF NOZZLE
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FIGURE 12 - TANGENTIAL VELOCITY DISTRIBUTION
(At Outlet of Vortex Zone)
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FIGURE 13 - RADIAL VELOCITY DISTRIBUTION

(At Outlet of Vortex Zone)




-71-

FIGURE 14 - AXIAL VELOCITY DISTRIBUTION
(At Cutlet of Vortex Zone: Z = 1)
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FIGURE 15 - PRESSURE DIFFERENCE DISTRIBUTION
(Vortex Zone, Z = o, Gs=~4.252)
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FIGURE 16 = TANGEMTIAL VELOCITY DISTRIBUTION
(Decaying Swirl Zone, < = 55.0, (3 =-1.252)
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FIGURE 17 = TANGENTIAL VELOCITY DISTRIBUTION
(Decaying Swirl Zone, o¢ = 60.0, @ =-1.252)

.20

.10

0.5 r/R 1.0



-75...

FIGURE 18 - TANGENTIAL VELOCITY DISTRIBUTION
(Decaying Swirl Zone, X = 66.0, (3=-1.,252)
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