I * . National Library
of Canada du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

Il pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in fuli or in part of this microformis governed
by the Canadian Copyright Act, R.S.C. 1970, c. ¢-30, and
subsequent amendments.

NL 339 (¢ 88/04)¢c

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

Sil manque des pages, veuillez communiquer avec
l'université qui a conféré le grade.

La qualité dimpression de certaines pages peut laisser a
désirer, surtout st les pages originales ont été dactylogra-
phiées a raide d'un ruban usé ou st I'université nous a lait
parvenir une photoccpie de qualité inténeure

La reproduction, méme partielle, de cette microforme est

soumise § la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents

Canadi®

Inspection of
Software Deliverables:
an infoMap-based
Methodology

Benoit Deslauriers

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfilment of the Requirements for
the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

September 1991

Copyright 1991 by Benoit Deslauriers, All Rights Reserved.

———

L |

National Library
of Canada

Bibliothéque nationale
du Canada

Canadian Theses Service

Ottawa, Canada
K1A ONa

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant a (a Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése & la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN ©-315-68749-5

Canada

Abstract
Inspection of Software Deliverables:
an infoMap-based Methodology

Benoit Deslauriers
Computer Science Department
Concordia University
1991

Software quality is one of the biggest challenge of today’s software
engineering society. High quality in a software product is achieved through a
continuous verification of the product during the development process. For over
a decade, software inspections have been employed with some success as a
verification technique in a number of large companies including IBM and AT&T.

This thesis proposes an inspection methodology based on Fagan’s traditional
approach augmented with the infoStructure concept, a set-oriented knowledge
representation technique. While inspections has been conventionally applied to
final products, i.e. source code, the proposed inspection process efficiently deals
with all products of the software development life cycle.

The infoStructure allows the inspection of any software deliverable to be
carried out systematically and hierarchically. Defect types and detection strategies
are directly derived from the infoStructure notation. Better visualisation of defects
is obtained through the use of the infoStructure elements.

The methodology is validated with two examples of deliverable issue from
the waterfall model. The inspection of a Software Requirements Document (SRD)
and a Software Code Document (SCD) are detailed. The inspection of remaining
software deliverables is not shown as they represent intermediate products.

iii

Acknowledgement

I would like to thank my thesis supervisor, Dr. W.M. Jaworski, for his
permission to use copyrighted infoSchemas in the Figures and Appendices of this
thesis, and for his guidance throughout this research. The confidence he showed
in me has been a strong motivation factor for the completion of this thesis. I am
also thankful to Dr. V.S. Alagar and Spyros Kattou for providing me with pertinent
Software Reguirements Documents, and Thompson Cummings for his suggestive

comments.

iv

Table of Contents

Introduction 1
Chapter 1 The Software Development Process 3

1.1 Software Verification and Validation 4

1.2 Software Maintenance vs Software Upgrade 5

1.3 A New Software Development Process 7
Chapter 2 State of the Art of Software Inspections 9

2.1 The Traditional Inspection Method 9

2.2 Inspection Benefits 13

2.3 Inspection Drawbacks 15

2.4 The Two-Person Inspection Method 15

25 Comparing Inspections with Other Verification Methods 16
Chapter 3 The Proposed Inspection Method 18

3.1 Participants 19

3.2 Planning 21

33 Overview 21

3.4 Normalization 21

3.4.1 Normalization vs Preparation 22

3.5 Analysis 22

3.5.1 Analysis vs Paraphrasing 23

3.6 Rework 24

3.7 Follow-up 24
Chapter 4 The infoStructure 25

4.1 The History 25

4.2 The Notation 27

4.3 Characteristics 31

4.4 Training 32
Chapter 5 Requirements Inspection 33

5.1 SRD Normalization 34

5.1.1 Sets 34

5.1.2 Views 36

5.1.3 Results 37

5.2
5.2.1
52.2

SRD Analysis 37
Defect Classification 39
Defect Delection Strategies 44

Chapter 6 Code Inspection 48

6.1

6.1.1
6.1.2
6.1.3
6.2

6.2.1
6.2.2

SCD Normalization 49

Sets 49

Views 51

Results 52

SCD Analysis 52

Defect Classification 53
Defect Detection Strategies 56

Chapter 7 Results Analysis 59

7.1

7.1.1

7.1.2

7.1.3

7.2
Conclusion 65
References 67
Appendices

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Evaluating the Proposed Inspection Method 59
Participants 59

Normalization 60

Analysis 61

Discussion 63

The infoMap for the Waterfall Model

The infoMap for the infoStructure Notation

Software Requirement Document for HyperDoc

The infoMap for the HyperDoc SRD

The convert Program SCD [51]

The infoMap for the convert Program SCD

Software Requirement Document for Ne.v Editor (NED)
The infoMap for the NED SRD

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.

Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

1.1

1.2

2.1
2.2
2.3
24
2.5

2.6

3.1
3.2
3.3

4.1

4.2
4.3

4.4

5.1
5.2
5.3
5.4
5.5
5.6
5.7

List of Figures

The Waterfall Model of the Software Development
Process [106]. 4
The Software Maintenance Process. 7

The Traditional Inspection Method. 10

Fagan’s Defect Types {89]. 11

Myers’ Defect Types [75]. 11

Inspection Progress Rates. 12

An Example of Information Collected Throughout the Inspection
Process [{79]. 13

Defects Detection Rates. 14

The infoMap for the Proposed Inspection Method. 20
Defect Detection Strategies for the Structure Level. 23
Defect Detection Strategies for Both Analysis Levels. 23

The infoSchema for the Job Description of Garage X’s

Employees. 27

The infoMap for the Job Description of Garage X's Employees. 29
The infoSchema for the Waterfall Model of the Software Develepment
Process. 30

A Partial infoMap for the Waterfall Model of the Software
Development Process. 31

The SRD infoFrame. 34

The infoSchema for the HyperDoc SRD. 38

Defect Types for the Structure Level Analysis of an SRD. 39
A Cardinality Defect for the HyperDoc SRD. 39

Defect Types for the View Level Analysis of an SRD. 40

A Definition Defect for the HyperDoc SRD. 40

An Assignment Defect for the HyperDoc SRD. 41

vii

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

5.8
5.9
5.10
5.11
5.12

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2

A Sequence Defect for the HyperDoc SRD. 42

A Guard Defect for the HyperDoc SRD. 43

A Flow Defect for the HyperDoc SRD. 45

Defect Detection Strategies for the Structure Level. 46
Defect Detection Strategies for Both Analysis Levels. 46

The SCD infoFrame. 50

The infoSchema for the convert Program SCD. 52

Defect Types for the Structure Level Analysis of an SCD. 53
Defect Types for the View Level Analysis of an SCD. 54

A Guard Defect for the convert Program. 55

A Typing Defect for the convert Program. 57

Defect Detection Strategies for the Structure Level. 57
Defect Detection Strategies for Both Analysis Levels. 58

The infoSchema for the NED SRD. 61
A Comparison of Defect Types. 62

viii

Introduction

The objective of this thesis i to provide a standard software inspection
methodology for the software engineers. The inspection technique presented is
based on Fagan’s inspection method and the infoStructure concept. While the
method developed by Fagan [89] has gained success in the industry, the notion
of the infoStructure has barely reached the business world. However, it has been
used for a number of years in the Computer Science Department at Concordia

University.

The motivation to produce an enhanced software inspection methodology
is attributed to several factors. The impact of the actual software crisis is the
primary cause. The time and effort spent for the maintenance of software
products has become far too expensive. The current software development process
has difficulty in producing high quality software. The techniques employed during
the verification and validation process do not supply the software engineers with

a proof that programs are free from defects.

This thesis proposes an inspection methodology aimed at achieving higher
software quality and reliability. The proposed inspection me*hod is considered to
be an enhancement to Fagan’s technique. The infoStructure representation of the
software deliverables improves the visual recognition of defects. Defect types and
detection strategies used during the inspection process are directly derived {rom
this representation. Their generalization to all software deliverables is a step

towards standardization.

This thesis consists of seven chapters and eight appendices. Chapter 1
discusses the particulars of the software development process. The emphasis is on
both the verification and validation process and the maintenance process. The
current practices in software inspection are detailed in chapter 2. The inspection
technique introduced by Fagan is fully described. Chapter 3 presents the
inspectior method as proposed by the author. The infoStructure concept is
explained in chapter 4. The next two chapters constitute the proof that the
proposed methodology is useable and good. The application of the proposed

inspection method to a Software Requirements Document (SRD) and a Software
Code Document (SCD) are demonstrated in chapters 5 and 6 respectively. Chapter
7 concludes with a discussion about the benefits and weaknesses of the proposed
technique. Appendix A shows the infoStructure representation of the waterfall
model of the software development process. The infoStructure notation used
throughout this thesis is detailed in appendix B. The original textual format of
two SRDs and one SCD are displayed in appendices C, G, and E. Their
infoStructure counterpart are displayed in appendices D, H, and F respectively.

Chapter 1
The Software Development Process

A software system inherits the complexity of the application and embedding
system. Complexity is an intrinsic part of software. Better notational technology
and "visualisation" helps eliminate only avoidable complexity [110]. The software
development process currently in use is also complex. It involves a number of
professionals, sometimes up to a few thousand, grouped into specialized teams.
Interaction among teams and team members themselves is crucial to the
development of a complete software product. Communication with users is also

necessary to fully understand the application and its requirements.

The most common software development process currently employed is the
waterfall model, Figure 1.1, or one of its derivatives [22], [48], [55], [106]. [is
products take the form of Software Deliverables (SD) such as Software
Requirement Document (SRD), Software Specification Document (SSD), Software
Design Document (SDD), and Software Code Document (SCD). A significant
amount of information created during the process is not recorded in any of the
SDs. There exists a strong interdependence among sDs and a significant overlap
of information in and among them, revealing a high level of redundancy.
Furthermore, the notation or language used to produce each SD often differs from
one document to the other. In order to perform consistently and avoid
misinterpretation, a lot of time and effort is spent on communizaung,
understanding and updating the dependent and redundant SDs. In spite of the
effort, the conventional notations and existing software processes are unable to
assure consistency among SDs.

The remainder of the chapter ciscusses two phases of the software
development process. First, the verification and validation process is defined. The
varicus techniques employed for verification and validation are introduced. Then,
a detailed definition of the maintenance process follows. A distinction is made
between software maintenance and software upgrade. Finally, the properties of
a new software development process are enumerated.

1.1 Software
Verification and
Validation

CONCEPT
EXPLORATION

Verification is the REQUIREMINTS

process of determining DESICN
whether c¢r not the IMPLEMENTATION
products of a given TEst

phase of the software JNSTALLATION
development cycle fulfil OPERATION AND
the requirements RETIREMDNT
established during the
previous phase [106].
Validation is the process
of evaluating software at
the end of the software development process to ensure compliance with software
requirements [106]. The objectives of both verification and validation is to detect
defects [26]. A defect is defined as a non-conformance to requirements [80],

[106].

—

Figure 1.1 The Waterfall Model of the Software
Development Process [106].

The verification process attempts to find defects as early as possible in the
software life cycle [26], [69]. Verification consists of checking a product against
four criteria: complet. ness, consistency, feasibility, and testability [65], [69]. The
methods of achieving this goal can be grouped in three categories: formal

verification, reviews, and testing.

The prucess of verifying a product by mathematical proofs is called formal
verification. This method requires the use of a formal specificatinn language and
a verification method (axioms and inferences) [26], [69], [73]. The biggest
advantage of formal verification is its high reliability [69], [73]. However, there
exists a number of imperfections which limits its usage [59], [61], [69], [73].
Moreover, formal verification is difficult to perform, specially on sizable products.

A review is a human-driven activity aimed to find defects in a product [26],
[73]. It is divided into two phases. The first phase, management review, is a
review of the development process itself, while the second phase is a review of the
product at various stages during the development process. Walkthroughs and
inspections are two special kinds of review [26]. The former is a peer review
technique. The later is a more formal review with a specific process management
function. The advantages of review methods include flexibility and suitability to
verify completeness and consistency [69]1, [73]. Reviews suffer from weaknesses
such as a high cost in terms of person-time, and a dependence upon the expertise
and commitment of the participants [73]. Nevertheless, review methods are
commonly used in today’s industry. Software inspections are the main concern of

this thesis. The current techniques are further des.ribed in the next chapter.

Testing is a destructive activity with the objective of causing a product to
fail. It is mainly performed on programs. Testing does not prove the absence of
defects, but finds defects. The testing process includes unit testing and integration
testing. Integration testing techniques are bottom-up, top-down, and sideways
integration [26]. The testing process is a lengthy process which can not
conceivably be performed manually, specially on large products. To assist in the
process, there exists a number or tools. They can be categorized into four classes:
static analyzers [26], [71], [72], [73], dynamic analyzers [26], [61], [72] [73],
symbolic evaluators [261, [70], [72], [73], and reliability analysis models [62],
[64], [68], [74]. Each class of tools has a number of restrictions. Therefore, only
limited assistance can be provided.

1.2 Software Maintenance vs Software Upgrade

Today, most companies spend 50 to 80 percent of their information system
effort and budget on software maintenance [94], [95], {97], [104]. Some
industries are turning into maintenance shops [95]. Software maintenance has
become a real burden for many. Users complaints include system bugs and
failures, excessive code size, lack of documentation, inadequate training and the

lack of flexibility of software where it comes to adding enhancements and new

functions. Moreover, the critical software maintenance jobs are still often filled

in by young inexperienced programmers or "development washouts".

There is a common belief that the process currently used to maintain
software suffers from a lack of up-to-date maintenance documentation [97], [104].
The problem was identified many years ago and still exists today. The update of
all of the SDs for a product is an impossible task, as it would ask for a continuous
update of each deliverable. Moreover, the consistency among the SDs would not
be assured. Therefore, in practice, the only maintenance documentation th-
used, updated, and trusted during maintenance is Software Code Document . ..,.
Other SDs are, in view of a continuous source code modification, less and less
consistent and relevant. They usually were not initially designed for maintenance

at all.

The National Bureau of Standards studies as well as the Lientz and
Swanson surveys [94], [104] show that the process of software maintenance
includes corrective maintenance (20%), adaptive maintenance (25%), perfecting
maintenance (50%), and preventive maintenance (5%). This is shown on Figure
1.2. Corrective maintenance includes diagnosis and fixing design, logic, or coding
defects. Adaptive maintenance consists of changes to a product to adjust to an
external environment. Perfecting maintenance deals with enhancements to a
product. Future reliability and maintainability is handled in preventive
maintenance. Consequently, 80% of software maintenance is in reality a
continuation, usually by a new team, of the software development process.

It is quite important to make a distinction between software maintenance
and software upgrade. The former shall be used to represent what is currently
known as corrective maintenance. The later shall incorporate adaptive, perfecting,
and preventive maintenance. Since software upgrade is a continuation of the
software development process, the techniques employed for software development

are also valid methods for software upgrade.

CORRECTIVE (20 0%)

PREVENTIVE (5.0%)

SN

PERFECTING (50 0%)

Figure 1.2 The Software Maintenance Process.

1.3 A New Software Development Process

necessary, one which:

To solve the actual software crisis, a new software development process is

to be incomplete [68], [94], [96];

a. recognizes that software requirements are incomplete and will continue

b. designs software that facilitates change implementation [68], [96];

c. designs software for maintainability [104];

d. includes more solid mathematical foundations [94];

e. closes the gaps between steps of the software development process [94],

[95]; and

f. makes a clear distinction between software maintenance and software

upgrade.

The major challenge in developing such a new process is considered by
Webster to be the Design Information Space providing a good mechanism for
"capture, representation, elaboration, reuse and presentation of information
throughout the entire process, for cooperative use by people and machines within
a surrounding organizational, social and educational structure" [109].

Chapter 2
State of the Art of
Software Inspections

M.E. Fagan first introduced code and design inspections in software
development in 1976 [89]. Fagan showed that a structured inspection
methodology can increase productivity and improve final program quality. Since
then, reports show that structured inspection has been used successfully at [BM
[89], Bell Laboratories [87], AT&T Bell Laboratories [83], and Bell Northern
Research (BNR) [76].

The methodology requires that the software development process be defined
as a set of ordered operations [80], [85], [87], [89]. For each operation, an exit
criteria is specified. This exit criteria must be satisfied for completion of the
operation. To verify a program, checkpoints are inserted in the software
development process as well as in each operation. Rework of all known errors to
a checkpoint must be complete before the checkpoint can be claimed to be
successful. This is due to the fact that the cost uf rework in programs becomes
higher the later the rework is done in the process.

The following sections of this chapter first describe the traditional inspection
method of Fagan [89], along with its benefits and drawbacks. Then, an
introduction to the two-person inspection method by Bisant and Lyle [77] follows.
The chapter concludes with a summary of a number of articles comparing software
inspections with other verification techniques.

2.1 The Traditional Inspection Method

An structures inspection is a formal process to detect defects in software
products [81], [89]. Fagan uses inspections for program development verification.
His analysis consists in the application of inspections for three particular

checkpoints in the software development process:

a. after internal specification (I0),

b. after the design is complete (I1), and

c. after the code is written ([2).

Inspections are conducted by a team of four to eight people, depending on
the product to be inspected. It is recommended that each team member has a
specific role. Fagan describes four roles. The moderator is the key person of the
team. He/she is a competent software developer from an unrelated project who
offers leadership. The moderator should be specially trained as he/she manages
the inspection team. The designer is the programmer responsible for producing
the design for the inspected product. The coder or implementor is the
programmer responsible for translating the design into code for the inspected
product. Finally, the tester is the programmer responsible for writing and/or
executing test cases. In [82], recommended individuals for specific inspections are

displayed in two tables.

Fagan’s inspection method consists of five steps: Overview, Preparation,
Inspection, Rework, and Follow-up. Ackerman, Fowler, and Ebenau add Planning
to this list as the initial step [87]. It is later confirmed by Fagan [80]. Figure 2.1

shows the traditional inspection method.
Fagan Ackerman
) X [89] (871

The Planning step embodies
management procedures. First, a Planning X
moderator is chosen. Then, the question l i
.) Overview X X
is raised as to whether or not the '
Overview is necessary. Next, other Preparation x X
members of the inspection team are |

. . Inspection x

selected, and the Overview and Inspection II) x
meetings are scheduled [80], [87]. Rework X X

The objectives of the Overview are Follow-up X X

the education of the inspection team, and Figure 2.1 The Traditional Inspection
communication among team members. Method.

The role of each member of the

10

inspection team is first defined. Then, the designer describes to the whole team
the product to be inspected. At the end of the presentation, proper documentation
is given to each of the team members for the next step, so that everyone in the
inspection team can prepare for subsequent meetings [79], [80], [87], [89].

Education is the main objective of the Preparation phase. Here, all
participants of the inspection team individually use the documentation supplied by
the designer in the Overview to familiarize themselves with the product. The aim
is to try to understand the intent and the logic of the design [80], [87], [89].

Defect Defect Data-Reference Errors
Id Definition Data-Declaration Errors
Computation Errors

LO Logic Comparison Errors

TB Test and Branch Control-Flow Errors

EL External Linkages Interface Eirors

RU Register Usage [nput/Output Errors

SU Storage Usage Other Checks

DA L[Cata Area Usage

PU Program Language Figure 2.3 Myers’ Defect Types

PE Performance [75].

MN Maintainability

DE Design Error The Inspection phase is where the

glé gg(zllggg(fmments team members attempt to find

OT Other defects in the product. One
member of the inspection tcam,

Figure 2.2 Fagan’s Defect Types [89]. designated as the reader,

paraphrases the design. Every
piece of logic must be covered at least once. Every branch must be taken at least
once. Other members of the inspection team try to locate defects while the
paraphrasing is done. For every defect discovered, the moderator records its type,
class, and severity. If a solution is obvious, it is also recorded. Buf keep in mind
that the aim of inspection is not to repair errors, but detect them. A list of
common defect types, as shown on Figures 2.2 and 2.3, guides the team members
in finding defects. A maximum of two sessions of two hours each per day is

11

recommended for this phase. At the end of each day, the moderator produces a
summary report [79], [80], [87], [89].

In Rework, the author of the product fixes the defects found in the previous

phase [80], [87], [89].

Follow-up is to ensure that all fixes are applied correctly. The moderator
ensures that all of the reported defects are now repaired. If Rework covers more
than five percent of the original design, a complete re-inspection is recommended.

Otherwise, it is up to the moderator [80], [87], [89].

A progress rate is associated to each of the inspection steps. Figure 2.4

shows progress rates as proposed by a Fagan and Ackerman.

Inspection Progress Rate (NCSS/HR)

Step
I1 12 12 Code High/level and

[89]1 [89] ([80] [87] Low/level

design[80]
Overview 500 500
Preparation 100 125 125 100
Inspection 130 150 90
Overall 125 250

Note: NCSS/HR = Non Commentary Source Statement per Hour.

Figure 2.4 Inspection Progress Rates.

Throughout the inspection process, a collection of data is assembled. Figure
2.5 shows an example of information which is gathered. As explained in the next

section, this collection of data is necess.zy for further analysis.

12

The following data should be collected for each inspection:

1. The date the product is distributed for inspection;
2. The date of the meeting;

3. The date the rework is complete;

4. Wether it is an initial inspection or a reinspection;
5. The type of inspection;

6. The identity of the product inspected;

7. The size of the material inspected;

8. The name of the moderator;

9. The number of inspectors;

10. Wether an Overview is held;

11. The Preparation time;

12. The meeting duration;

13. The number of defects of each type;

14. The severity of each defect; and

15. The disposition (pass/rework/reinspect) decided on by the

inspection team.

Figure 2.5 An Example of Information Collected Throughout the [nspection
Process [79].

2.2 Inspection Benefits

Inspections as described by Fagan have numerous results. First, productivity
and cost effectiveness are directly affected by inspections [75], [76], [77], [79],
[82], [83], [86], [89]. Obviously, productivity highly depends on the progress
rate of the inspection. Figure 2.6 displays the number of defects detected per
inspection type from a number of authors. Buck and Ackerman [79], [86] report
that the number of defects detected is independent of the type of code, the project,
the individuals involved, the management team, and the customer. Three to five
man-hours are necessary to detect a single major defect. Koontz [83] concludes
that less than two percent of the total Series 5 software development effort was
dedicated to inspections. More recently at BNR, Russell [76] reports that only one
man-hour is necessary to find a single defect. Fagan determines that
approximately two thirds of all defects reported during development are found by
11 and I2 inspections prior to machine testing. In his second article, Fagan reports

13

that inspections find from 60 to 90 percent of all defects. Consequently, rework
tends to be managed more during the first half of the schedule. Without the use
of inspections, the cost of defect rework is 10 to 100 times higher and is
accomplished in large part during the last half of the schedule [85], [89]. Fagan’s
experiment shows a 23 percent increase in productivity for the coding operation.
He also averages to 15 percent of the total project cost the cost of design and
code inspections [80]. This figure is experimentally confirmed by Russell at BNR.

Author Detection Rate (Defect/KNCSS)
High-Level Low-Level Code System
Design Design Test

Buck [86] 8-12 8-12 8-12 8-12
Koontz [83] 11 26 28 3
Russell [76]

150 NCSS/HR 37

750 NCSS/HR <8
Ackerman ([79] 7-20 7-20 7-20 7-20
Note: KNCSS = Thousand of Non Commentary Source Statements.

Figure 2.6 Defects Detection Rates.

Second, the quality of software is also improved from the utilization of
inspections throughout the development process [75], [76], [77], [79], [81], [82],
[83], [85], [89]. For a seven months testing period, 38 percent less errors were
discovered in a sample of a product developed with inspections than in a sample
of the same product developed with walkthroughs {89]. With inspections, there
exists a detailed feedback on product quality on a real-time basis, which directly

leads to an improvement from programmers.

Third, analysis of the inspection results help for a continuous control and
update of the inspection process itself [77], [81], [85], [87], [89]. For example,
statistics on the number of defects by type help in determining and updating a
list of the most common defects. The list can be used to guide inspection teams

14

to concentrate on certain defect types [75], [79], [80], [82], [84], [89].

Four, inserting inspections in the software development process facilitates
the evaluation of project completeness and quality, as estimates can be done
earlier in the process. Therefore, as inspections data is statistically collected,
inspection methods sustain the software development process and project
management [77], [78], [79], [80], [81], [82], [86], [87], [89].

Five, the quality of the programmers’ work can be evaluated through
inspections [87]. However, Fagan clearly specifies that inspections should never
be used for the evaluation of a programmer performance [80], [89].

Last, individuals involved in the inspection process share coding information
as well as programming expertise [75], [83].

2.3 Inspection Drawbacks

Results in [88] show that inspections concentrate too much on the logic
aspect of programs. More attention should be placed on input/output anomalies.
Myers suggests that programmers be trained to focus their attention on programs’

data rather than exclusively on programs’ logic.

Some participants of Myers experiment also report that there are cases
where the inspection method would be enhanced by executing the program from

a terminal.
2.4 The Two-Person Inspection Method

Bisant and Lyle [77] introduce an alternative to the traditional inspection
method as developed by Fagan. The inspection process is basically similar to the
one described above. The difference relies on the individuals involved in the
inspections. The moderator is removed from the inspection team. The inspection
is carried out by two individuals only, two programmers, one of them being the

15

author.

The experiment, as described by Bisant and Lyle, shows comparable results
to Fagan's technique. Both lead to high quality products and to improved
productivity. Also, the two-person inspection method shows significant individual
productivity improvement. This effect is most evident on weaker programmers.

The two-person inspection method described in [77] is obviously more
economic for an organization. It reduces the logistic needs required for inspections

as well as the number of personnel involved.

2.5 Comparing Inspections with Other Verification Methods

The main difference between inspection techniques and other peer review
methodologies is the data collection and analysis process {80], [82]. Throughout
the inspection process, data is manually gathered through the use of standard
forms [81], [82], [86], [87], [89]. Analysis can then be performed from the
aggregation of data collected.

In [88], formal inspections are compared with methods which employed
pairs of subjects who test a program independently and then pool their findings.
Although the methods show similar efficiency in finding defects, the labour cost
per defect is much higher for inspections. However, this result is obtained under

specific conditions.

An interesting conclusion of Myers is that there exists a significant
variability in the number and types of defects found by each person. Therefore,
a team composed of two independent individuals finds more errors in testing than
a single person, while their effectiveness is similar, in terms of labour cost.

Inspection methods revealed less variability.

Inspection methods are adaptable. Their versatility enables them to work
with primitive methodologies [87]. The methods have been successfully applied

16

to software as well as hardware [76], [79], [801, [82]. Inspections are best used
when applied to structured documents such as design or code [76], [79], [80],
[82], [83], [87]. In contrast, walkthroughs are preferred for unstructured
documents such as requirernents [87].

At BNR, an analysis shows that inspection methods approximately find one
defect per man-hour, which is two to four times faster than defect detection using
testing techniques. Ackerman also states that inspections are more cost-effective
than testing for detecting defects, and from 2 to 10 times more efficient for
removing defects [79]. The effect of inspections is not to eliminate testing
techniques. It is rather proposed that inspections be perceived as a supplement
to testing methods [75], [76], [79], [80], [87], (88].

17

Chapter 3
The Proposed Inspection Method

The inspection method proposed in this document is an enhancement to
Fagan’s traditional inspection method. The major change is that the inspection is
carried out on a normalized form of the deliverable to be inspected. As a
consequence, inspections are always performed on the same type of document.
Inspection teams do not have to be confronted with different document standards,
languages, or styles. Furthermore, considering that the normalized form of a
deliverable is processable, time necessary for Rework and Follow-up can be

considerably decreased.

The transformation of the deliverable to be inspected into a standard format
is called Normalization. To be advantageous, the normalized form of a deliverable
must possess a number of characteristics. First, it must be able to represent
various tyjes of documents. Within the software development process, such
documents include the Software Requirements Document (SRD), Software
Specification Document (SSD), Software Design Document (SDD), and the
Sofrware Code Document (SCD). Second, the normalized form must ensure
consistency. Contradiction of information within the normalized form must be
easily detected. Third, it must provide representation of analysis instruments such
as hierarchy, flow diagrams, and state diagrams.

The normalized form used throughout this thesis is built using the
infoStructure. The infoStructure possesses all of the characteristics necessary to
the normalized form. Furthermore, it exhibits an additional interesting feature
which can only improve the inspection process. The infoStructure elements are
processable, which means that a number of views can be generated from them.
Some of these views are documents such as an SRD, diagrams such as data flow
diagram, or source code. The infoStructure concept is explainad in great detail

in chapter 4.

The inspection method proposed in this thesis is shown in Figure 3.1 using
the infoStructure notation. Basically, it consists of the following six steps:

a. Planning,

b. Overview,

c. Normalization,
d. Analysis,

e. Rework, and
f. Follow-up.

The aim of each of these phases remains as described in the traditional
inspection method. The Normalization procedure takes over the Preparation step,
while the Inspection meeting is replaced by an Analysis meeting. All of the other
steps must be adapted to the normalization concept.

The remainder of this chapter first identifies the participants to the
proposed inspection method. Then, a detailed description of each of the six
inspection steps follows. The discussion on View generation is left for future

research. It is briefly covered in the conclusion.
3.1 Participants

A minimum of two individuals must be involved in the inspection process.
It is preferred that roles be defined for each participant [89]. In the proposed
inspection method, 1+ ‘0 roles are essential: the author and the inspector. The
author is the person who is responsible for the production of the deliverable to be
inspected. The inspector is an individual who works in a similar project as the
author. The inspector possesses knowledge and experience about the
normalization process, since one of his duty is to normalize the deliverable to be
inspected.

As an example, the inspection of an SRD includes the author of the SRD,
and an inspector. Additional persons may be part of the inspection team for a
SRD inspection, such as the intended user, the developers, or the system test
representatives [82], [87].

19

AfB]cIoJelFIG]HI1]4]K] L
1 A A A A A A A A A 1 |IDENTIFICATION}
2|v vv v vyvyvy v vy 1. infoMap for the Proposed Inspection Method.
3 {A A A A AA A A A 1 [REFERENCE}
4 v v v v vv v v ¥ 1. B. Deslaurlers Master’s Thesls.
S |A A A A AA A A A 2 {VIEW]
6flv vyv v vv Vv vy 1 Proposed Inspection Process
7 . . . v 2. Set Cardinality
8]0 OO0 O 00 O O O 9 {TRANSITION }
9 o . PO i. Start the inspection process.
10 o . 2. Walt for the eniry criterla to be satisfied.
11 [} . 3. Perform Overview.
12 o 4. Normalize the deliverable.
13 o . §. Perform Structure Level Analysis.
14 o . 6. Perform View Level Analysls.
15 o . . 7. Perform Rework.
16 . o 8. Re-inspect the deliverable.
17 . -} 9. Terminates the Inspection process.
18jL L L L L L L L L 8 {[INSPECTIONSTEP)
191 s 1. Planning
20)d 1 8 2. Overview
21 d s d 3. Normaliization
22 d s 4, Structure Level Analysis
23 d s 5. View Leve! Analysis
24} e e s ., @ 6. Rawork
25 d s 8 7. Follow-up
26). d . . d 8.End
27]G G G G G G G G G 3 {PRE-CONDITION}
280 . ¢ v 1. Entry criteria satisfied?
28] o+t 2. View Level Analysis done?
30]. 1 3. Rework involved less than 5% of deliverable?
315 S S S S S S S S 21{ACTION}
3211 . PR 1. Choose participants.
33} 2 .o 2. Schedule Qverview meeting.
3413 3. Schedule Normalization.
35} 4 4, Schedule Analysls meellng.
3615 . §. Schedule Rework.
37| 6 6. Schedule Follow-up.
38 1 7. Assign a role to each participant.
39 2 8. Introduce the dellverable to be inspected.
40 .3 . Ce e 9. Give documentation to each participant.
a1 . . . v . . . L. 10. Transform the delivarable to be inspected Into a normalized form.
421 1 11. Examine the composition of the normalized form.
43 . . . v o 12. Perform Cardinality Analysis.
441 v L 0L 13. Perform Structure Analysts.
45 1 14. Examine the detailed Information for each view of the normalized form.
46 11 15. Perform Redundancy Analysis.
47 11 16. Pertform Consistency Analysis.
48 11 17. Perform Flow Analysis.
49 11 18. Perform Intention Analysis.
500 1 1t . . . 19. Produce a report.
51 . . . A | . 20. Correct defects,
52 R I | 21. Ensure modifications are implemented properly.
53]G G G G G G G G G 3 {POST-CONDITION}
541t . . . 1. Is a major defect found?
551 . P | . 2. Is any defect found?
56 t 3, is Rework done properly?

Figure 3.1 The infoMap for the Proposed Inspection Method.

20

3.2 Planning

As stipulated in chapter 1, the aim of the Planning step is management.
Participants to the inspection are chosen. Each activity of the inspection process
is scheduled, including an Overview meeting, Normalization, Analysis meeting,
Rework, and Follow-up.

The difference with the traditional inspection method relies on the
participants. As in the two-person method, the proposed inspection method does
not include a moderator.

3.3 Overview

Education and communication remain the soul of the Overview. Each
participant of the inspection team is assigned a specific role. Then, the author
introduces the deliverable to be inspected to the other members of the team. At
the conclusion of the meeting, appropriate documentation is given to each
participant. Such documents include the deliverable to be inspected, as well as
those documents required for the Normalization process as described in the nex.
section.

3.4 Normalization

The essence of the Normalization step is familiarization. The inspector’s
goal is to transform the deliverable to be inspected into a normalized form. To
accomplish this task, an inspector is required to possess not only knowledge but
also experience on the transformation process. To assist the inspector, a template
of the normalized form for the type of deliverable to be inspected is provided.
The normalized form of the deliverable to be inspected is the result of the
Normalization step.

This thesis uses the infoMaps as normalized forms. Templates are called
infoFrames. Both infoMaps and infoFrames are part of the infoStructure concept

21

which is described in chapter 4.

The time and effort spent on normalization can be minimized if the
Software Deliverables (SDs) are produced using the infoStructure notation.

3.4.1 Normalization vs Preparation

Normalization is an enhancement to the Preparation step of the traditional
inspection method. No technique of how inspectors should familiarize themselves
with the deliverable to be inspected is ever mentioned in current publications.

Normalization is one such technique.

Normalization is a formal process in which specific information (views)
about a particular document is delineated. Examples of such views for
requirements are definitions and functional requirements, and for code, hierarchy
and data flow. Furthermore, this information is permanently stored and is readily
available for reference. Finally, the normalized form of the document is
orocessable. Therefore, views can be illustrated under a number of different
formats, such as text, tables, diagrams, graphs, and code.

3.5 Analysis

The purpose of the Analysis step is to find defects. Using the normalized
form of the deliverable produced by the Normalization phase, the inspection team

attempt to detect any defects.

The Analysis is performed at two distinct levels. They are identified as the
Structure Level and the View Level. The analysis performed at the Structure Level
consists in examining the composition of the normalized form. The inspector
introduces the structure of the normalized form to the inspection team. The six
detection strategies shown in Figures 3.2 and 3.3 are used to find possible defects.
If a major defect is detected at the Structure Level, the analysis is interrupted.
The deliverable is re-inspected after Rework is done.

22

If no major defect is detected at the
1. Cardinality Analysis

Structure Level, the Analysis carries on at the
View Level. Here, the inspector presents to | 9 Structure Analysis
the inspection team the detailed information

for each view of the normalized form. The Figure 3.2 Defect Detection
Strategies for the Structure Level.

team members utilize the four detection
strategies displayed in Figure 3.3 to detect defects.

When a defect is found, one member of

3. Redundancy Analysis the inspection team logs in its type, class

4. Consistency Analysis and severity, along with the analysis level.
A list of common defect types which
5. Flow Analysis depends on the category of the duliverable

6. Intention Analysis inspected and the analysis level, is provided

during the Analysis to guide the inspection

Figure 3.3 Defect Detection team. The two defect severity levels arc
Strategies for Both Analysis Levels.

identified as minor and major [76], [80],
[82], [89]. A major defect is one which
would result in a program malfunction. The three defecr classes are wrong,
missing, and extra [80], [82], [87], [89]. A report is produced at the end of each
day.

Detection strategies identified above are common to all types of deliverable.
Defect types vary from one deliverable to another. Both detection strategies and
defect types are directly derived from the infoStructure notation. They are
explained in details during the Requirements inspection in chapter 5.

3.5.1 Analysis vs Paraphrasing
The traditional inspection method suggests paraphrasing to detect defects.

Each segment of the deliverable to be inspected is interpreted each time it is
referred to. Moreover, the paraphrasing method does not supply the inspection

23

team with global views. Although this technique has been successful with code
documents, its application to other types of documents can be difficult.

The analysis process as described above provides the inspection team with
specific means of finding defects. As opposed to paraphrasing, no interpretation
is necessary. The information contained in the document is not changed, but
displayed in a structured fashion. The two levels of analysis provide the inspection
team with global and detailed analysis techniques. Furthermore, the inspection
team is supplied with six defect detection strategies which can be applied to a

large number of document types.

3.6 Rework

The defects found by the inspection team are corrected during the Rework
step. The author of the deliverable makes the rectifications in the original
document. However, the modifications could be made on the normalized form.
Since the infoStructure elements are processable, the SRD can be regenerated once

the inspection process is complete.

3.7 Follow-up

The objective of the Follow-up step is to ensure that the modifications are
implemented properly. The inspector is responsible to verify that all reported
defects were fixed. Re-inspection is necessary when the Analysis was performed
only at the Structure Level. It is also recommended when Rework involves more

than five percent of the original document.

24

Chapter 4
The infoStructure

To introduce the fundamentals of the infoStructure technology, two
examples are used. The first sample consists of describing the jobs for the
employe. « “a garage. The second deals with the waterfall model of the sof*ware
development process. All of the infoStructure elements are built using a
commercial spreadsheet package.

The infoStructure has three elements: infoMaps, infoSchemas, and
infoFrames. An infoMap contains detailed information about a particular
document. An entire SRD can be transformed into a single infoMap. As an
example, a complete infoMap for the job description of Garage X's employees is
displayed in Figure 4.2. An infoSchema is associated to a single infoMap. The
infoSchema shows how the information incorporated in the corresponding infoMap
is organized. Figure 4.1 illustrates the infoSchema of the infoMap of Figure 4.2.
An infoFrame is the generalization of an infoSchema over a number of similar
infoMaps. The infoFrame serves as a template to construct other infoMaps of the
same type. infoSchemas of these infoMaps are then used to update the original
infoFrame. Therefore, there exists a dynamic cycle within the infoStructure.

The remainder of the chapter is organized as follows. The roots of the
infoStructure are first identified. Then, the infoStructure notation is introduced.
Two examples are utilized to help the reader visualize the infoStructure concept.
Next, the characteristics of the InfoStructure elements are presented. Finally, the
chapter closes with an observation about the training required to manipulate the

infoStructure elements.
4,1 The History

The origin of the infoStructure concept is found in a 1976 paper co-written
by W.M. Jaworski and G. Belkin [12]. Their work consisted of decision tables
(TBL) to represent source code functionalities, and an interpretative experimental
processor (TAP/X) to execute and analyze the tables.

The idea behind TBL was soon upgraded in the early 1980’s, with the
creation of relation tables (ABL). The ABL tables were used to capture
information at a number of abstraction levels, from natural language to microcode
[10]. The ABL based methodology (SOS) was successfully utilized by a specialized
software company to specify, develop, and produce software [11].

Introduced in 1987 [8], [9], the J-Maps were the next step towards the
actual infoStructure. The J-Maps were tables based on sets, where roles were
identified for the sets and their elements. As with the ABL tables, information
could be abstracted at many levels. At that time, the J-Maps were limited to the
representation of the relation types found in a Entity-Relationship model: one-to-
one, one-to-many, many-to-many, and unary relationships. In addition, a Meta-

model was developed to illustrate the structure and size of the J-Maps relations

[8].

The jMaps described in [7] constituted a positive enhancement to the
former J-Maps. First, the Meta-model is formally named Schema. Then, the
notation is extended. A number of roles for the sets and the set members are
added. As a direct result, additional relationships such as hierarchy and flow can
be represented. Finally, the article presents a formalization of the jMaps concept.

In 1990, the concept is enhanced once again. An extension is made to the
jMap notation. jMaps are renamed infoMAPs, and Schemas infoSCHEMAs. An
additional structure is introduced. The infoFRAME is a template employed to
incrementally build an infoMAP. In [6], a classroom environment based on the

three structures is described.

The latest modification to the three structures occurred in 1991. The
notation was once more extended. The infoMAPs were renamed infoMaps,
infoSCHEMASs infoSchemas, and infoFRAMEs infoFrames. This thesis utilizes the
term infoStructure to represent the three structures.

26

AlBJ]c]bp]E] F
1 1A A A 1 [IDENTIFICATION }
2 v v v 1. infoSchema for the Job Description of Garage X's Employess.
3 /A A A 3 [VIEW]
4 |y v . 1. Company Structure
5 . .V 2. Employee Job Description
6 N) v 3. Set Cardinality
7 10 . . 3 (DEPARTMENT}
BiIM H O 7 [(EMPLOYEE)
9 . F 5 ({DELIVERABLE}
10 . M 6 {TASK]}

Figure 4.1 The infoSchema for the Job Description of Garage X’s Employees.

4.2 The Notation

The notation of the infoStructure is based on set theory. An infoSchema
may be viewed as a collection of sets and their relationships. The infoSchema
shown in Figure 4.1 has 6 sets, listed in column E. The cardinality of these sets
appears in column D. The set { VIEW } has 3 members. They are Company
Structure, Employee Job Description, and Set Cardinality.

Capital letters are used to represent relationships among the sets. The letter
"A" allows the user to denote that a cluster of columns has been grouped into a
horizontal relationship. The letter "O" is used to represent the dominant set of a
relationship. The letter "v" is simply used as a column marker. An example of a
one-to-many relationship is shown in column A. Entries "A", "v", "A", "v", "Q", "M"
mean that within the Company Structure view, O-ne member of the set
{ DEPARTMENT } is vertically related to M-any members of the sct
{ EMPLOYEE }. The letter "S" replaces the letter "M" when scquential ordering
of the set members is relevant. In the case of a one-to-one relationship, letrers "O"
and "T" are utilized.

The letter "H" indicates a vertical hierarchy among the set members. For
example, in column B, entries "A", "v", "A", "v", "H" indicate that the Company
Structure view is composed of a hierarchy relationship within the members of the
set { EMPLOYEE }.

27

The flow of information is represented by the letter "F". For example,
entries "A", "V, "A", "v", "0", "F", "M" in column C specify that within Employee
Job Description view, O-ne member of the set { EMPLOYEE } is vertically related
to a F-low of members of the set { DELIVERABLE }, and to M-any members of the
set { TASK }.

The Set Cardinality view reveals the number of members in each set of the
infoStructure element. This view is part of all infoSchemas and infoMaps shown

in this report.

An infoSchema specifies the relationships between sets. An infoMap records
relationships between the members of the sets. Lower-case letters are used to
symbolize relationships among set members. Figure 4.2 displays the infoMap
associated with the infoSchema of Figure 4.1. The structure of column A to C of
the infoMap is specified by the column A of the infoSchema. The affiliation of the
employees within the each department of the company is presented in these three
columns. For example, column C shows that employees [.O. You, . Workman, and
U. Too, all belong to the Automobile department of Garage X.

The structure of column D through F of the infoMap is defined from column
B of the infoSchema of Figure 4.1. The employee hierarchy of Garage X is
completely represented by these three columns. Letters "p" and "c" are used to
indicate the p-arent and its c-hildren. For example, in column D, U.R. Rich is the
supervisor of employees .M. Next and [.O. You. Columns E and F show that both

of these employees are themselves supervisors of a two other employees.

The job description for each employee of Garage X is displayed in column
G through M of the infoMap of Figure 4.2. Letters "i", "0", and "b" are employed
to represent the flow of information. For instance, column H shows that the tasks
of employee I.M. Next are to File bills and Fill in vehicles with fuel. An i-nput
deliverable associated with .M. Next job description is a Written Order, while an
o-utput deliverable consists of a Verbal Order. Bills are b-oth input and output for

28

AlB[c]ole[Fic]H[1Julx]LImMIN]OI P
1 {AAKAAAAAAAAAAA T [IDINTIFICATION}
2]y vie w v v v¥v v v v v v 1. infoMap for the Job Descripton of Garage X's Employeos
3 |A A TA A A A AA A A A A A I {VIEW)
4 v v'e N v v v .. 1 Company Structure
5 1. is.e VY VvV VY 2 Employes Job Description
8 Lo v 3. Set Cardinalty
710 0. . . . 3 {DEPARTMENT]}
8 to . iq\ , . e 1. Management
9 oist, . . 2. Fuel
10 e, . . 3. Automobile
11|M MM.H HH OO © O O OO0 7 (EMPLOYEE)
12lv .{, p o . . 1. U.R. Rich
13 vi. @ p o 2. IL.M. Next
14] . vi. .. ¢ . . o . .o 3 D.J Coo!
18] . vie » € . . + . O . . . 4 U.C. Birds
16 v e P . . o . . 5. LO. You
17 . ‘gv - c 0 6. 1. Workman
18 A c . [} 7. U. Teo
19 §* . F F FF F F F 5 {DELIVERABLE}
20 £a v e b . . . 1. Business plan
21 "o . ol . . . 2. Written order
22 LU R - R T T - T I | 3. Verbal order
23 N i b oob oo 4. Bills
24 PR .« . . b oo 5 Esumates
25 L MM MMMMMEG6 {TASK}
26 ;. . .o .V VoV 1. Estimate damages on vehiclos
27 Tt . v Vv Vv 2. Fix vehicles upon client approbation.
28 PO . v 3 File estimates
29 « vV v . .V 4. File bills.
ol . . ;, . .. ¥ vV 5. Fill In vehicles with fuel.
31 . v 6 Perform administrative and management funclions

Flgure 4 2 The mfoMap for the Job Description of Garage X's Employees.

.M. Next's job.

Figure 4.3 presents the infoSchema for the waterfall model of the software
development process. This infoSchema possesses 8 sets and two views. As in the
previous example, the Set Cardinality view exhibits the number of members in
each set of the infoSchema. The other view, Software Life Cycle Process, is an
example of a state machine. The { STATE } set represents the nodes while the
arcs between therm are symbolized by the { TRANSITION } set. Criteria which
must be met to allow a transition to fire are part of the sets { PRE-CONDITION
} and { EVENT }. The set { ACTION } refers to the tasks that are performed
when a transition takes place. In column A, entries "A", "V", "A", "v", "A", "v", "O",
"L" "G", "G", "S" indicate that the O-ne member of the set { TRANSITION } I.-
inks some members of the set { STATE } if the G-uards from the { PRE-
CONDITION } and { EVENT } are fulfilled. In doing so, a S-equence of members
of the set { ACTION } are performed.

29

A part of the infoMap for the waterfall model of the software development
process is shown Figure 4.4. The entire infoMap is illustrated in appendix A.
Column A through AJ are defined from column A of its corresponding infoSchema,
displayed in Figure 4.3. Letters "s" and "d" correspond respectively to the source
and the destination state. The letter "I' is used when the source and the
destination state is the same, i.e. when the transition l-oops on a state. Letters
"t" and "f' stand respectively for true and false.

| B C| D
1 { IDENTIFICATION }
1. infoSchema for the Waterfall Model
of the Software Development Process.
1 {REFERENCE}
1. IEEE Software Engineering Standards [55]
2 {VIEW}
1. Software Life Cycle Process
. v 2. Set Cardinality
O 36 { TRANSITION}
L 9 {STATE}
G 7 {PRE-CONDITION}
G 7 {EVENT}
13| § X {ACTION }

Figure 4.3 The infoSchema for the Waterfall Model of the
Software Development Process.

< Bhip

T <D:

b | ek | b
slalalele|Nelalslwiniw

For instance, column J of Figure 4.4 shows that the transition from the
Design to the Implementation states takes places if the pre-condition Design phase
completed? is t-rue. In column T, the transition which l-oops on the Test state
occurs if the pre-condition Test phase completed? is f-alse OR the event Test
change is t-rue.

Appendix B presents the infoMap for the infoStructure notation used
throughout this thesis.

30

GFRELnn S E TR T T

JIK|LIM[NToTPT @] RT s T uJaK[AL] AM

A

*

ajalalalalalelolminivivividivivio]
olnls|elololalolo|e|~lo|nlalelvi=lolo PN @& @M
»

(2]
o

N
[~
-

[~ R 1]
o |-
m-

DM |N
QXN D
.

~N | D
ol

< >

V.

<o

- e

™ >

QW + ~

(34}
(2]
“a‘ »

< Pp<D>

O -

A
v

< < >

Q-

A
v

< P> < D>

O .

A
v

< Pp <D

o .

+f

+t

A
v

< P> <P

(o)X

A
v

< < >

o)

ar .

A
v

< P> < >

0 B

A
v

< P> < D>

o .

A A

v

< >< >
«cBedD

O -

<

o-

t~s O v

.

~—

.+t

A
v

A
v
A
v

o)

-

Oawn -

t
G

1 { IDENTIFICATION }
1. Partial infoMap for the Waterfall Modal
of the Software Development Process.
1 {REFERENCE}
1. |IEEE Software Engineering Standards [55]
2 { VIEW}
1. Soltware Life Cycle Process
v 2. Set Cardinality
36 { TRANSITION }
10
11
12
13
14
15
16
17
18
19
20
21
9 { STATE}
Concept
Requirements
. Design
Implementation
. Test
. Installation and checkout
7 { PRE-CONDITION}
3. Design phase completed
4. Implementation phase completed?
5. Test phase completed?
7 {EVENT}
2. Concept change
3. Requirements change
4, Design change
5. Implementation change
6. Test change

Awp

NOO»

72|S S S S S 8 S S 8 S8 S S X {ACTION}

Figure 4.4 A Partial infoMap for the Waterfall Model of the Software Development

Process.

4.3 Characteristics

The infoStructure is based on set theory. The infoSchemas are used to

define the relationships between sets and serve to prescribe the information

structures within the Design Information Space [109]. The infoFrames are derived

automatically from the infoSchemas and provide the Information Space into which

31

information is inserted forming infoMaps.

The infoStructure notation exploits the properties of fundamental
mathematical concepts such as sets, relations, graphs, and functions. The
infoStructure provides a mechanism which facilitates the reuse of existing
information. Therefore, the use of the infoStructure removes artificial borders,

minimizes redundancy and complexity, and ensures consistency.

The elements of the infoStructure are processable. The processes and
products represented with the infoStructure are also processable. Software
deliverables are easily derived from the infoStructure elements, and their

consistency can be assured by careful inspection of the elements.

Finally, the infoStructure notation is flexible. The expressions utilized to

represent relationships are at the user’s discretion.

4.4 Training

The infoStructure notation is quite different from commonly used notations.
No other notation encompasses so much information under one document. The
multidimensional relations created in the infoStructure elements are often
unfamiliar to most software engineers. Therefore, training is essential fo
manipulate infoStructure elements efficiently.

The time required for training on infoStructure elements and notation has
not been clearly identified. A very limite. number of individuals are currently
trained to deal efficiently with the infoStructure concept. Most of these individuals
have bean training on a part time basis. Since there exists no formal courses on
the infoStiucture concept, the knowledge is acquired through a hands-on training
method. Therefore, the time taken by these persons tc become familiar with the
methodology greatly varies. [t is estimated that training requires from two to six

months.

32

Chapter 5
Requirements Inspection

This chapter represents a validation of the proposed methodology by
construction and comparison. The proposed inspection method is directly applied
to a Software Requirements Document (SRD).

The first phase of most models of the software development process is the
Requirements phase [22], [48], [55]. The outpui of the Requirements phase is
a Software Requirements Document (SRD). This initial phase is unique as it does

not possess any previous document for verification.

An appropriate entry criteria for the inspection of requirements is a
complete SRD [82]. The exit criteria is that all defects found during the
inspection process must be corrected and verified. This exit criteria is similar for
the inspection of any document.

In addition to the author of the SRD and an inspector, supplementary
participants are necessary for the inspection of requirements. Individuals such as
the intended user, developers, and system test representatives are strongly
encouraged to join the inspection team [82], [87].

The remainder of this chapter is structured as follow. The Normalization
process for a SRD is first described. The second section explains the Analysis
process for a SRD. The SRD for HyperDoc as shown in appendix C is used to
illustrate both processes. This SRD was done by a group of graduate students
from Concordia University as an assignment for a Software Engineering course.
The Planning, Overview, Rework, and Follow-up steps of the proposed inspection
method were intentionally left out. They were explained in chapter 3 and do not
necessitate further elaboration.

5.1 SRD Normalization

The inspector is directly responsible for the Normalization of the SRD. The
normalized form is based on IEEE Standard 830-1984 [47]. Figure 5.1 shows the
infoFrame for SRDs complying with this standard. Six views and 18 sets are
necessary to completely map all of the information of a SRD.

AlB]cIDlE][F]G[H]I] 4] K
1 |A A A A A A A A 1 {IDENTIFICATION }
2|{v v v v v v v v 1. SRD infoFrame.
3/{A A A A A A A A X {REFERENCE}
4 |A A A A A AAA 6 {VIEW}
5 |v . 1. Definitions
6 vV Vv 2. Product Perspective
7 v Vv 3. Product Functions
8 v v . 4. Functional Requirements
9 v 5. Product Users
10} v 6. Set Cardinality
110 X {DEFINITION}
12 0 X { TRANSITION }
13]. . L X({STATE}
14|T O X {USERTYPE}
1651 . . H O X {OPERATION }
16| T H F F . X {EXTERNALOBJECT}
17|]T H F O O F M X {INTERNAL OBJECT}
18 . G . G X {PRE-GUARD}
19 G G X {PRE-CONDITION}
20 . G X {EVENT}
21 M M H . X { TASK}
22 . S X {ACTION}
23 G . G X { POST-CONDITION }
24 . . . G . G . X {POST-GUARD}
25 M M . X {REMARK}

Figure 5.1 The SRD infoFrame.
5.1.1 Sets

The sets which are part of the SRD infoFrame are listed in column J of
Figure 5.1. The { IDENTIFICATION } set is used to identify the infoStructure
clement. The { REFERENCE } set lists the reference documents cited in the SRD.

34

Also included in this set is [EEE Standard 830-1984.

Definitions of terms, acronyms and abbreviations are the members of the
{ DEFINITION } set. The { OPERATION } set contains the name of each
operation listed in the Functional Requirements section of [47]. Objects identified
in a SRD are grouped into two sets, { EXTERNAL OBJECT } and { INTERNAL
OBJECT }. The external and internal attributes are relative to the product itself.
Members of these two sets are mainly found in the Definition and Notations
sections of [47]. However, additional objects may appear throughout the SRD.
The { PRE-GUARD } set embodies global conditions of the product which must be
satisfied before the design/operation of the product. Members of this set are
found in the Assumptions and Dependencies, and General Constraints sections of
[47]. The tasks of the product are the members of the set { TASK }. They are
located in the Product Functions section of [47].

The { PRE-CONDITION }, { EVENT }, { ACTION }, and { POST-
CONDITION } set members come from each operation defined in the Functional
Requirements section of [47]. Conditions and events which must be satisfied prior
to the execution of an operation respectively form the members of the { PRE-
CONDITION } and { EVENT } sets. Spacific actions performed by an operation
constitute the members of the { ACTION } set. Specific conditions that must be
met to terminate an operation compose the { POST-CONDITION } set.

The members of the set { REMARK } are comments associated to the tasks
of the product, or to the specific opcrations.

The { POST-GUARD } set contains global conditions of the product that
must be fulfilled after the design/operation of the product. It also includes general
conditions which must be satisfied to terminate an operation. Members of this set
come from the Purpose, Scope, General Constraints, Performance Requirements,
and Attributes sections of [47], or from the Functional Requirements section.
Intended users of the product are the members of the set { USER TYPE }. They
can be found in the User Characteristics section of [47].

35

It is not obvious how to detect the members of the sets { TRANSITION }
and { STATE } in a conventional SRD. Most of the time, they are just not
included. Therefore, when necessary, the members of these two sets are simply

represented with identification numbers.

5.1.2 Views

The first view, Definitions, associates a definition to each ambiguous term
employed to identify an external/internal object or a user type.

The Product Perspective view consists of two relation types. First, the
hierarchy among external and internal objects is shown. Second, a state diagram
is used to show the relationship between the product and its environment.
Although this view is part of the IEEE standard, it is rarely included in a SRD.

The Product Functions view lists the conditions attached to the design of
the product, and its main tasks. Two relations are necessary to illustrate this
view. The first relation displays a number of pre-guards which must be satisfied
before the design of the product can start. Also included are the post-guards
which have to be met before the design terminates. The second view shows the
tasks that the product have to perform. These tasks may be part of the current
or future requirements for the product.

The hierarchy between the product tasks and the operations appearing in
the Functional Requirements section of [47] forms the first relation of the
Functional Requirements view. The details of each operation is reflected in the

second relation. Each operation is associated with:

a. a number of pre-conditions and events which must be fulfilled prior to

the execution of the operation;

h. a sequential list of actions to be performed by the operation;

36

c. a number of post-guards and post-conditions which must be met before
the operation is allowed to conclude;

d. the flow of external and internal objects (input and output) for the
operation; and

e. remarks concerning the operation.

The Product Users view depicts the intended users for the product. A user
may have to meet certain conditions to properly utilize objects within the product.

Final.y, the Set Cardinality set simply states the number of members in each
set of the infoStructure.

5.1.3 Results

The Normalization step concludes when an infoSchema and an infoMap of
the SRD to be inspected are completed. Both infoStructure elements are necessary
for the Analysis step. Figure 5.2 shows an example of infoSchema for the
HyperDoc SRD. The corresponding infoMap is displayed in appendix D. The
whole document in appendix C was normalized with the exception of the
Functional Requirements section. The functional requirements involving security
within HyperDoc, i.e. sections 3.1.45 to 3.1.56 of appendix C, were the only ones
normalized. The normalization of that entire section would have significantly
expanded the infoMap but not induced any additional features.

5.2 SRD Analysis

For best results, all of the members of the inspection team must be present
for the Analysis step. The inspector is the one who conducts the Analysis process.
Analysis is performed on the normalized form obtained from the Normalization
step. The infoSchema is analyzed first (Structure Level). The inspection team
tries to find defects to the infoSchema using the list of common defect types

37

AlB[cIDJE]FIG]H] 1 | J
1 A A A A A A A 1 {IDENTIFICATION]}
2lv v v v v v Vv 1. infoSchema for the HyperDoc SRD.
3]/]A A A A A A A 8 {REFERENCE}
4 |A A A A A A A 6 {VIEW}
5 |v . 1. Definitions
6 v . 2. Product Perspective
7 v v . 3. Product Functions
8 vV v . 4. Functional Requirements
9 v 5. Product Users
10} . v 6. Set Cardinality
11} 0 . 29 { DEFINITION }
12| T . O 6 {USERTYPE}
13 . H O 12 { OPERATION }
14| . H . . . 1 {EXTERNALOBJECT}
16§|T H O O F M 45 {INTERNAL OBJECT}
16 G . 11 { PRE-GUARD }
17 . G 15 { PRE-CONDITION }
18 M H . 11 { TASK}
19 S 19 { ACTION }
20 . G . 8 {POST-CONDITION}
21 G . . G . 27{POST-GUARD}
22]. . .. M . M 5 { REMARK}
Figure 5.2 The infoSchema for the HyperDoc SRD.

shown in Figure 5.3.

If a major defect is found at this level, the Analysis

terminates and the deliverable is sent for Rework.

If no major defect is detected in the infoSchema, the infoMap is analyzed
(View Level).

participants. The list of common defect types shown in Figure 5.5 is used to guide

the inspection team in finding defects.

severity. At the end of the Analysis step, a report which summarizes all of the

Defects found at either levels of the Analysis are recorded by type and

defects discovered is produced.

38

The inspector displays each view of the infoMap to the other

5.2.1 Defect Classification

At the Structure Level, there exists two types of defect which can occur for
a SRD. Figure 5.3 presents the list of these defect types.

A Relationship Defect (RD) signify a fault

in one of the relations of the infoSchema. The RD : Relationship Defect

. -) CD : Cardinality Defect
infoSchema shown in Figure 5.2 contains a RD.

It is missing a relationship, the one in column C Figure 5.3 Defect Types for the

of Figure 5.1. Structure Level Analysis of an
SRD.

A Cardinality Defect (CD) appears when

the number of members of a set is suspicious. For example, if the set { PRE-
CONDITION } has only one member, a CD is recorded. Figure 5.4 illustrates
another instance of a CD. The cardinality of the set { DEFINITION } in column
H is different from the sum of the cardinality of the sets { EXTERNAL OBJECT },
{ INTERNAL OBJECT }, and { USER TYPE }. The meaning associated to this
particular defect is that there exist terms referring to objects or user types which
are used in the SRD but not defined.

Al HITI] J
1 A i % (IDENTIFICATION }
2 | vi 1. Partial infoSchema for the HyperDoc SRD.
3 | A 8 :[REFERENCE}
4 | A:& {VIEW}
51| v - 1. Definitions
10| . " v . 6. Set Cardinality
11| O 29 { DEFINITION }
12| T & .(USERTYPE}
14| . 7 ‘{EXTERNAL OBJECT}
15| T 45 {INTERNAL OBJECT }

Figure 5.4 A Cardinality Defect for the HyperDoc SRD.

The number of defect types for the View Level is obviously larger. As
shown in Figure 5.5, each defect type is associated with an infoStructure notation.

39

A Definition Defect (DD)

Defect Type infoStructure

appears in the it view ;
PP Definitions Notation

of the infoMap of a SRD. An

example of a Definition Defect DD: Definition Defect
AD: Assignment Defect

SD: Sequence Defect
the HyperDoc SRD. Here, more HD: Hierarchy Defect

than one term is wused to GD: Guard Defect
identify the same user type. | FD: Flow Defect
The user type User leader is ,Iljg ’er;p}(mz eggftect
defined in column B but never

referred to, while class leader is Figure 5.5 Defect Types for the View Level
used throughout the SRD but Analysis of an SRD.

not defined. The Definition

Defect is associated with the letter "T" of the infoStructure notation.

is highlighted in Figure 5.6 for

rEmQOTwE A

A[B[cID]E[F] G| H
1 |A g# A A A 1 {IDENTIFICATION }
2 |vi¥gv v v 1. Partial infoMap for the HyperDoc SRD.
3 JAIA{ A A A 8 ({REFERENCE}
a4 |AATA A A B {VIEW)
5 |viw: . . . 1. Definitions
6 |. %. v v Vv 5. Product Users
7 1.« . . .V 6. Set Cardinality
8 |0i0. . . . 29 {DEFINITION}
9 lowi . . . 25. A user with full rights at all times in HyperDoc system.
10 .:00 28. A supervisor defined for 8 user clags having the
11 authority to manage the rights of users in that user class.
12{TiFT O O O & {USERTYPE}
13jv;.:0 . . 1. Super user
14| . %, 3 . o . 2. Builder
16|..7. . o 3. Consulter
16]..¢.. . . 4. User leader
17].40 . . . §. Class leader
18 Lo s o - 6. Author
19|T'F M M M 45 {INTERNALOBJECT}
20/. . v v v 1. HyperDoc

Figure 5.6 A Definition Defect for the HyperDoc SRD.

An Assignment Defect (AD) occurs when a task, an action, or a remark is
badly assigned. Figure 5.7 illustrates an example of an Assignment Defect for the

40

HyperDoc SRD. In column B, the remark about the notation <user id, object id,
access right set> does not apply to this part of the
Assign_Object_And Rights_To_Manager operation. This type of defect is associated
with the letter "M" of the infoStructure notation.

AlBlciD] E
1 |AtAt 1 [IDENTIFICATION}
2 |vivi 1. Partial infoMap for the HyperDoc SRD.
3 | A4i8 (REFERENCE)
4 |A ?xz 6 {VIEW}
5 |v ,vf§ 4. Functional Requirements
6 | .i.% v 6. Set Cardinality
7 10, 0%12 {OPERATION)
8 |0 9. Assign_Object And_Rights_To_Manager
9 | F #:45 {INTERNAL OBJECT}
10 J *»: 22. User class id
11] . zlé 25, User class list
120 i3] 27. User id
13] 0 %y 31. User list
141 b §5 35. Manager-object relation list
15| i &f 36. Access rights set (Read, Write, Delete, stc .)
16| G f{i 15 (PRE-CONDITION}
17]t t § 2. The user performing the operation is the SUPER user.
18] . 1¢7 3. The user class id is in the user class list.
19t 7. The user id is in the user list
20|t s, 11. The <user id, object id> relation exists in the managor-object relation list
21| . . 12 The <user class i1d, object id> relation exists in the manager-object rolation list.
2218, 6’ 19 {ACTION}
23] 2 2\5 2 Inform the SUPER user of the results of the operation
24|11, 13. Add the <user id, object id, access rights set> rolation in the manager-object
25| ¥ relation list,
26 b3 14. Add the <user class id, object id, access nghts set> relation in tho
27 P manager-object relation hst
28|G-@ 8 ({POST-CONDITION}
29] tig: 7. New manager-object relation hist
3o0|Gi@ "27 {POST-GUARD}
31 t.. 15. To mahke a user eligible to access an object with certain accass privilegos
321 . b 16. To make a user class eligible to access an objoct with certain access prnivilogos
33| MM -5 (REMARK}
34| viy’ 3. The notatlon <user id, object Id, access rights set> assoclates a usor
35 T with an object In the way specilied by the access rights set.
36|v v~ 4. Current requirements

Figure 5.7 An Assignment Defect for the HyperDoc SRD.

Sequence Defects (SD) arise when the order of actions to be performed is
faulty. For example, the sequence of actions of operation Update_User shown in
column A of Figure 5.8 should include an additional action. The Super user must
be informed of the results of the operation when he/she is the originator of the

41

operatio

n. The letter "S" of the infoStructure notation is associated to the

Sequence Defect.

>
w

ic] D

N

.\
.

88

v

..%}_ B

.

R I e
6 B

L ke

Q

& o

&

-

7

b

LN
\2§
K

3
.‘~

WINININININDINININININ = = | b b ok | b ek ok ek
OCDQNOO’Ibwwdoomqmmhun_‘omaﬂmmbuwd
*
.

):T

46 {VIEW)

112 { OPERATION }

F:i45 { INTERNAL OBJECT}

419 [ACTION}

1 {IDENTIFICATION)
1. Partial infoMap for the HyperDoc SRD.
8 {REFERENCE}

4. Functional Requirements
v 6. Set Cardinality

6. Update_User

25. User class list
27. User id
28. User name
29. User password
30. User description
15 { PRE-CONDITION}
2. The user performing the operation is the SUPER user.
5. The new values are different than the old ones.
8. The user performing the operation is the User himself.
15. The user id is in the user class list.

2. Inform the SUPER user of the results of the operation.

9. Inform the user of the resuits of the operation,

10. Replace the old name and/or password and/or description
of user with new values,

G i 8 {POST-CONDITION }
i 3 5. New modified user attributes.
G ;27 {POST-GUARD)
¢t 12. To modify the name
M5 {REMARK)
V¥ 2. A user class id cannot be modified
31|y 4. Current requirements
Figure 5.8 A Sequenc Defect for the HyperDoc SRD.
A Hierarchy Defect (HD) is found in the first part of the Product Perspective
view of a SRD. An erroneous object hierarchy is the source of an Hierarchy

Defect. This situation is clearly shown in the infoMap for the HyperDoc SRD in
appendix D. Some objects, such as anchor, are not part of the hierarchy structure.
This type of defect is associated with the letter "H" of the infoStructure notation.

42

Guard Defects (GD) happen when conditions are not constructed properly.
Conditions listed in the sets { PRE-GUARD }, { PRE-CONDITION }, { POST-
CONDITION }, and { POST-GUARD } are subject to Guard Defects. Figure 5.9
shows two examples of Guard Defects for an operation from the HyperDoc SRD.
In column A, the pre-condition The user id is not in the user class list for the
Update_User operation is inconsistent with the rest of the SRD. The user class list

AlB|cC]| D
1 Aﬁ 1 { IDENTIFICATION }
2 vg 1. Partial infoMap for the HyperDoc SRD.
3 | A 8 {REFERENCE}
4 lAale {VIEW)
5 P 4. Functional Requirements
6 |3t v 6. Set Cardinality
7 Q312 {OPERATION}
8 o 6. Update_User
9 _|Fias { INTERNAL OBJECT }
10§17, 25. User class list
1140 27. User id
12 |4b 28. User name
13 :Iis_b 29. User password
14 |40 30. User description
156 6‘315 { PRE-CONDIT!ON }
16 | +F 2. The user performing the operation is the SUPER user.
177 5. The new values are different than the old ones.
18 I ¥t 8. The user performing the operation is the User himself.
19 |43 15. The user id is in the user class list.
20519 { ACTION)
21}.. 2. Inform the SUPER user of the results of the operation.
2212 9. Inform the user of the results of the operation.
23 J‘ 10. Replace the old name and/or password and/or description
24). of user with new values.
25 Gg 8 {POST-CONDITION }
2611t 5. New modified user attributes.
27 {6127 {POST-GUARD }
28 | ¢ 12. To modify the name
29 |M 5 {REMARK]}
30jv! 2. A user class id cannot be modified
31}v: 4. Current requirements

Figure 5.9 A Guard Defect for the HyperDoc SRD.

43

contains user class ids, not user ids. Moreover, the pre-condition The new values
are different than the old ones for the same operation, should be true not false.
Guard Defects are associated with the letter "G" of the infoStructure notation.

Faults about the flow of objects are called Flow Defects (FD). For instance,
Figure 5.10 displays a data Flow Defect for the Update_User operation. In column
A, the object User class list listed as an input for the operation is faulty. The User
list is the correct input. Flow Defects are associated with the letter "F" of the

infoStructure notation.

A Link Defect (LD) arises in a state diagram. A typical Link Defect occurs
to a transition which leaves the system in an improper state. Unfortunately, the
HyperDoc SRD does not show any Link Defects. This type of defect is associated
with the letter "L" of the infoStructure notation.

The last type of defect is the Typing Defect (TD). Typing Defects simply

relates to the faults made on the spelling of words in a SRD. Typing Defects
should be reported only on key words of the SRD, such as objects.

5.2.2 Defect Detection Strategies

Detection strategies may be categorized in a number of ways. Figures 5.11
and 5.12 present a categorization of detection strategies for both levels of Analysis.
This classification was previously introduced in chapter 3.

Both analysis techniques listed in Figure 5.11 are used at the Structure
Level only. The Structure Analysis is a verification of the role of each set into
every relationship of the infoSchema. Typical defects encountered through the
Structure Analysis are:

a. a wrong dominant set for a relationship;

b. the letter "M" used where a more specific notation can be employed;

44

B|C| D
‘A% 1 (IDENTIFICATION }
1. Partial infoMap for the HyperDoc SRD.
A"} 8 {REFERENCE)
i 6 {VIEW}
: 4. Functional Requirements
3V 6. Set Cardinality
#12 {OPERATION}
. 6. Update_User
45 {INTERNAL OBJECT}
25, User class list
27. User id
28. User name
29. User password
: 30. User description
> 31. User list
'3315 { PRE-CONDITION }

DN B W[N]

~

N [od |ond Jod fomd |k [onh [foue fmd
OD@NOM&WN-‘O‘DON

, 2. The user performing the operation is the SUPER user.
£ 5. The new values are different than the old ones.
.;.! 8. The user performing the operation is the User himself.
kS 15. The user id is in the user class list.

21}85:19 {ACTION}

22 | 2. Inform the SUPER user of the results of the operation.

23 2, 9. Inform the user of the results of the operation.

24 }%. 10. Replace the old name and/or password and/or description

25} 4 of user with new values.

26 }3% 8 {POST-CONDITION}

27 t% 5. New modified user attributes.

28 &4 :27 {POST-GUARD}

291 § 12. To modify the name

30 M 5 {REMARK]}

31jv; 2. A user class id cannot be modified

32w 4. Current requirements

Figure 5.10 A Flow Defect for the HyperDoc SRD.

¢. a necessary set which is not part of a particular relationship; and
d. a necessary velationship which is not part of the infoSchema.

Defects detected during the Structure Analysis are recorded as Relationship Defects.
They usually are major defects.

45

The Cardinality Analysis utilizes the Set
Cardinality view of the infoSchema to detect
defects. The Cardinality Defect of Figure 54 is | 5 gtructure Analysis
easily located by comparing the cardinality of the
set { DEFINITION } with the other sets part of Figure 5.11 Defect Detection
the Definitions view. Similarly, a cardinality of Sxategies for the Structure
zero for both { ' S-GUARD } and { PRE-

CONDITION } sets suostantiates a major CD.

1. Cardinality Analysis

Figure 5.12 shows the analysis techniques utilized at the Structure Level
and at View Level. The Redundancy Analysis searches for redundancy occurrences
in the infoSchema or the infoMap. Analogous relationships in the infoSchema
should be further investigated. Similarities among set members in the infoMap
may also induce defects. An example is shown in Figure 5.6 for a Definition
Defect. Both minor and major defects can be found from Redundancy Analysis.

The Consistency Analysis looks for

inconsistencies within an infoStructure element. 3. Redundancy Analysis

This technique requires more attention from he 4. Consistency Analysis
inspection team. Inccasistency may emerge from
a set, a relationship, a view, or a combination of 5. Flow Analysis

these. Figure 5.9 shows an example of a Guard 6. Intention Analysis

Defect introduced from inconsistency between

objects. Inconsistency can lead to both minor and Figure 5.12 Defect Detection
Strategies for Both Analysis

Levels.

major defects.

The Flow Analysis is intended to detecting defects related to the flow of
objects. The method involves an examination of each object to verify where it is
employed as an input and/or output. Defects are detected when, for instance, an
object is referred to (input) but not initially declared (output). A Flow Analysis

can discover both major and minor defects.

46

The last strategy for finding defects is the Intention Analysis. It consists of
checking each reiationship against the intentions of the author of the SRD.
Obviously, both the author and the intended user are the key players in this
technique. Their presence is of prime importance.

The application of all six detection strategies by the inspection team is
recommended. As seen previously, each technique leads to different types of

defects, and/or to different defects of the same type.

Software Specification Documents (SSDs) and Software Design Documents
(SDDs) would be inspected using the same approach as for the SRD.

47

Chapter 6
Code Inspection

This chapter is the second stage of the validation of the proposed
methodology by demonstration. In the previous chapter, the inspection method
introduced in chapter 3 is applied on a SRD. Here, the same inspection process
is performed on a Software Code Document (SCD).

The Software Code Document (SCD) is the principal deliverable of the
Design phase of the software development process [48], [S5]. Most reports on
software inspections deal almost exclusively with code inspections [75], [76],
(771, [79], [80], [811, [82], [83], [84], [85], [86], [87], [88], [89]. Although
a few authors believe in the feasibility of inspection for different documents,
results concerning other deliverables are nonexistent. Therefore, it was felt
important to cover code inspection in this report.

Entry criteria for the inspection of code a“e reported in [80], [83], [87].
For the proposed inspection method, the entry criteria consists of the following
conditions:

a. a clean compile of the code must be completed;

b. all changes reported in previous inspections must be reflected in the

code; and

c. requirements, design and change documentation have to be part of the

inspection package.

As for the Requirements phase of the software development process, the exit
criteria for code inspection is that all defects found during the inspection process

are corrected and verified.

The inspection team consists of four persons: the individual responsible for
the design of the inspected product, the author of the Software Code Document,

the programmer responsible for the testing, and an inspector (82], [83], [87],
[89]. It is recommended that the inspector be a programmer with experience in
similar projects. However, the inspector should not be involved in the project
being in-pected.

The remainder of this chapter is organized in the following way. The first
section explains the Normalization process for a Software Code Document. The
Analysis process is covered in the next section. Both processes utilize the SCD of
the program convert shown in appendix E as an example. Program convert reads
from the input medium until it finds a digit, reads more digits until it reaches the
end of the number, and performs the conversion to an internal form [51]. As
with the requirements inspection, the Planning, Overview, Rework, and Follow-
up steps are not covered in this chapter.

6.1 SCD Normalization

The Normalization of the SCD is the responsibility of the inspector. The
infoFrame for a SCD is shown in Figure 6.1. [t is in harmony with the research
done in [1]. All of the information contained in a conventional Software Code
Document can be captured using five views and 12 sets.

6.1.1 Sets

The sets for the SCD infoFrame are listed in column I of Figure 6.1. As for
the SRD infoFrame, the { IDENTIFICATION } and { REFERENCE } sets are used
respectively to identify the infoStructure element, and the reference documents.

The { OBJECT/ALGORITHM } set contains the name of all programs of the
SCD. This is necessary for complex systems which include a number of programs.
Sub-routine, procedure, and function names form the set { PROCEDURE }.
Variable types are the members of the set { TYPE }. Examples are BOOLEAN and
INTEGER for the Pascal programming language. The set { ATTRIBUTE } is made
of the variables names declared in the SCD.

49

AlBlc]plE]FlalH]|1] J
1 {A A A A A A A 1 [IDENTIFICATION}
2|lv v v v v v v 1. SCD inioFrame.
3J]A A A A A A A X {REFERENCE)}
4]A A A A A A A 5 {VEW}
5§ jv . 1. Hierarchy
6 v v v . . 2. Data Model
7 vV v 3. Data Flow
8 v 4. Control Flow
9 !.V 5. Set Cardinality
10fH O . . O . . X {OBJECT/ALGORITHM}
11 . .. 0 . . . X{TYPE}
12 MMMF O . X {ATTRIBUTE}
13 O X { TRANSITION }
14 . L X {STATE}
15 . . . F G X {PRE-CONDITION}
16jH . O F S X {PROCEDURE}
17 F S X {ACTION}
18 F G X {POST-CONDITION }

Figure 6.1 The SCD infoFrame.

The Boolean test statements found in the SCD are grouped into two
categories. The set { PRE-CONDITION } encloses the test statements executed
prior to the actions it governs. For instance, test statements part of an IF-THEN-
ELSE code construct are members of this set. The second category of test
statements are those which are executed after the actions they control. These test
statements form the set { POST-CONDITION }. The test statements found in the
REPEAT-UNTIL code construct is an example.

The members of the set { ACTION } are those statements of a SCD which
require a specific action to be performed. The most common statement which is
part of this set is the assignment statement.

As opposed to the SRD, the members of the sets { TRANSITION } and {
STATE } are easily detected. They represent respectively the transitions and states
of the process described by a SCD. Both set members are dictated by the sequence
of code statements of a SCD. An identification number is associated with each

50

member of both sets. The inspector may extend each set member with a brief
description to better illustrate the meaning of the state/transition.

6.1.2 Views

The first view, Hierarchy, illustrates the hierarchy among the programs and
the procedures/functions/sub-routines. It does not represent the order in which
the modules are declared, but rather shows how the modules "call" each other.

The Data Model view is made of three different relations. The first two
relations list the variables which are declared in each program or
procedure/function/sub-routine. The third view associates a type to each variable
found in a SCD.

The Data Flow view consists of two relations. The flow of variables in and
out of each program is shown in the first relation. The second relation exposes
the statements of a program where each variable is referenced and/or defined.

These statements may be conditional, procedural, or imperative [1].

The one relation forming the Control Flow illustrates a state machine or
state diagram for the SCD. Each transition is associated with:

a. a departure state and a termination state.

b. a number of pre-conditions which must be fulfilled prior to the execution
of the transition;

c. a sequential list of procedure calls and actions to be performed during the
transition; and

d. a number of post-conditions which must be met before the transition is
allowed to conclude.

51

of the infoStructure element.

Finally, the Set Cardinality set reports the number of members in each set

6.1.3 Results

The Normalization step concludes when an infoSchema and an infoMap of
the SCD to be inspected are completed. Both infoStructure elements are necessary
for the Analysis step. An example of an infoSchema for a Pascal SCD is displayed
in Figure 6.2. Appendix F shows the corresponding infoMap.

AlB[C][DIE[F[GIH[1] J
1 |A A A A A A A 1 {IDENTIFICATION }
2 |{v v v v v v v 1. infoSchema for the "convert” Program SCD.
3|A A A A A A A 1 {REFERENCE}
4 |A A A A A A A 5 {VIEW)
5 v . . . 1. Hierarchy
6 v V. VvV . . 2. Data Model
7 v v . 3. Data Flow
8 v 4. Control Flow
9 | . . . v 5. Set Cardinality
10|H O . O 1 {OBJECT/ALGORITHM }
11 . . 0 . . 5 {TYPE})
12 M MMF O . 15{ATTRIBUTE}
13 O 10 { TRANSITION }
14 . L 7 {STATE}
15 . . F G 4 {PRE-CONDITION}
16 | H o F § 4 {PROCEDURE}
17 F S 17 {ACTION}
18 F G 2 {POST-CONDITION }

Figure 6.2 The infoSchema for the convert Program SCD.

6.2 SCD Analysis

As for the Requirements inspection, the whole inspection team participates

in the Analysis step. The inspector takes control of the Analysis process. The

Structure Level analysis comes first. The infoSchema is scrutinized with the aim

of finding defects. A list of common defect types, as shown in Figure 6.3, guides

the inspection team. The discovery of a major defect results in a halt of the

inspection process. In this case, the deliverable is directed to the Rework step.

52

When no major defect is found at the Structure Level analysis, the
inspection team carries on with the View Level analysis. Each view of the infoMap
is displayed to all team members. Figure 6.4 lists the common defect types which
are employed by the inspection team to detect defects.

The same recording procedure applies to the code inspection. The type and
severity of each defect found are registered. A summary report is produced upon
conclusion of the Analysis step.

6.2.1 Defect Classification

The two types of defect identified for the Requirements inspection at the
Structure Level also apply to the Code inspection. These two defect types are
repeated in Figure 6.3.

There is no evidence of a Relationship
Defect (RD) nor a Cardinality Defect (CD) in the RD : Relationship Defect
. . CD : Cardinality Defect
infoSchema of Figure 6.2. An example of a CD
for an infoMap representing some source <ode, is Figure 6.3 Defect Types for the
the cardinality of the set { STATE } greater than Structure Level Analysis of an
the cardinality of the set { TRANSITION } plus SCD.
one. The meaning associated to this particular

defect is that there exists at least one state which is never reached.

The defect types for the View Level slightly differs from those for the SRD
inspection. Only the Definition Defect (DD) was removed. The relatinn between
each defect type and the infoStructure notation is illustrated in Figure 6.4.

An Assignment Defect (AD) occurs when a attribute is badly assigned to a
program, a procedure or function. An erroneous type associated to a attribute also
causes an AD. No instance of an Assignment Defect is detected in the infoMap of
the program convert. The Assignment Defect is associated with the letter "M" of

53

the infoStructure notation.

Defect Type infoStructure
Notation
Sequence Defects (SD) | AD: Assignment Defect M

SD: Sequence Defect

S

: HD: Hierarchy Defect H
view. A SD results from a fault GD: Guard Defect G
F

L

develop in the Control Flow
in the order of the actions and FD: Flow Defect
procedures to be performed | LD: Link Defect

when a transition takes place. TD: Typing Defect

The infoMap shown in appendiX g1 re'6 4 Defect Types for the View Level
F displays no indication of Analysis of an SCD.

Sequence Defects. The letter

"$" of the infoStructure notation is associated to the Sequence Defect.

Hierarchy Defects (HD) appears in the Hierarchy view. A HD is detected
when a program or a procedure "calls” erroneously a sub-routine, function, or
procedure. Unfortunately, no HD was identified for the Pascal program convett.
This type of defect is associated with the letter "H" of the infoStructure notation.

Guard Defects (GD) are all contained in the Control Flow view. A GD
arises when a test statement is not formulated properly. Members of the set {
PRE-CONDITION } and { POST-CONDITION } are all subject to Guard Defects.
Figure 6.5 illustrates an example of a Guard Defect for transition 2 within the
program convert. The details of this transition is displayed in column AC. The
post-conditions zero <= ch and ch <= nine are insufficient to cover all input
cases. For instance, if the number .84 is entered, the decimal point is skipped and
the first character considered is the number eight. As a result, program convert
treats .84 as 84. This observation is valid for all inputs of the form ".X", where
X is one or a series of digits. Guard Defects are associated with the letter "G" of

the infoStructure notation.

Faults concerning the flow of attributes are known as Flow Defects (FD).
This type of defect can be found in both relations of the Data Flow view. A

54

nciaa SR

Al]AS|AK] AL AM] AN

AB|AC|ADIAE| AF]AG]AH]
1 JAJASA A A A A
2 JviFiv v v v
3|AIRiA A A A A
5 |AiAiA A A A A
9 Jviviv v v v v
10} . 2% .
3s5jodio o 0 0O
36| o 155 .
37] .58%.
38| . %o .
39 o o .
40| . & o .
41] . i’ o .
42] . &t o
43| . £
aa| . b5
45 e .
46| L£iL L L L L
47 sf\\
48] d 1} .
40| . led 1l 5 .
50 ? . d s s
s1] .84 . d |
521 . Fyy . .
53] . ;.r% . d
54| Gi{@iG G G G G
55 .*E;f%t +f t
56 Sov.st +f t
57 0 SUR B
58 bt . .
59 s‘”sgs S S S S
60] . k42 .. 2
61 \<§5 2 . 5
62} 7igis . 3 8
63] . & .
64|Si¥is S s S S
651 1 §,% .
66|25
67 3?;...
684 .5
695 i,
700 . i %1 1
71] . 5. i3 3
72 g. 4 4
73 . i¢ 6 . 6
74] . i 1 .
75 sif* 7 2 7
76]8 .3 4 9
77] . g 10
78] . %,i
79) . A%
80 . ?4“3 1
81 jf : 3 .
82]GiGIG G G G G
83 .;*fs. e e e w
84| . ioF

A A A 1 (IDENTIFICATION}

1 { REFERENCE}
5 { VIEW}

4. Control Flow
v 5. Set Cardinality
10 { TRANSITION }

< P> > <
< > > <
< > > <

(o]
o .
o

OCONDGOEWN -

10
7 { STATE}
1. start convert

—
-
—~ o

o h 0N

7. end convert
4 { PRE-CONDITION}
+f . . 1. zero <= ch
+f . . 2. ¢ch <= nine

3. ch = point

4.scale>0
4 {PROCEDURE}

1. ord

2. ord

3. read

4. writeln

17 { ACTION }
. . 2810 = 'O
. hine = '9";
. point = "%
. radix = ‘10";
. result ;= O;
. DummyOrdin := ch;
. result ;= radix * resuit + DummyOrdOut,
. DummyOrdin = zero,
9 result := result - DummyOrdOut;
10. scale = O;
11. DummyFileRead := input;
12. ¢h := DummyRead,
13. scale := scale + 1,
14, result = result /radix;
15 scale ‘= scale - 1,
1 16 DummyWriteln = result,
. . 3 17 output = DummyFileWrta;
G G G 2 {POST-CONDITION}
o o e 1. zero <= ch
. 2. ch <= nine

» /2]
w - . w .
nn » - oaon.

DN D WD =

N -

Figure 6.5 A Guard De

fect for the convert Program.

55

1. Partial infoMap for tho “convert” Program SCD.

typical FD is a faulty input attribute for a procedure. The program convert does
not reveal any FD. Flow Defects are associated with the letter "F" of the

infoStructure notation.

Link Defects (LD) take place in the Control Flow view. Link Defects are
caused by a faulty combination of transitions and states in a state machine or state
diagram. A typical Link Defect occurs when a state is declared but never reached.
Unfortunately, the infoMap of the program convert does not disclose any Link
Defects. The Link Defect is associated with the letter "L" of the infoStructure

notation.

Finally, Typing Defects (TD) are concerned with the syntax of the code.
Although one of the entry criteria specifies that the program must go through a
clean compile before inspection, there still are certain syntactical aspects which
remain to be inspected. These include the standard imposed by the organization
for the procedure and variable names. For example, the attribute name ch as
shown in Figure 6.6 might not meet the standard fixed by a particular
organization. It would then be considered as a TD.

6.2.2 Defect Detection Strategies

As stated in chapter 3, the six detection strategies identified in the previous
chapter also apply to a Software Code Document. Figures 6.7 and 6.8 list the
methods. Since each technique was fully described in chapter 5, this section is
aimed at providing specific examples relative to a SCD.

Defects detected through the Structure Analysis are common to the
infoSchema of all types of deliverables. However, particular defects for a SCD
exist for the Cardinality Analysis. The example of a state that is declared but
never reached, as stated yreviously in this chapter, is an instance of defect found
through the Cardinality Analysis.

56

GIH[1 |y]K]AL|AM| AN
1 |]A A A A A 1 {IDENTIFICATION}
2 |v v v v v 1. Partial infoMap for the "convert" Program SCD.
3|]A A A A A 1 {REFERENCE}
5]A A A A A 5 {VIEW]}
7|lv v v v v 2. Data Model
10y vV 5. Set Cardinality
13]O0 O O O O 5 {TYPE}
14{0 . . 1. real
16] . o . . . 2. integer
16)]. . o . . 3. char
17] . . . o . 4. list of char strings
181} . . . 0 5. file of char
19| MM M M M 15{ATTRIBUTE }
20 v 1. zero
21 v 2. nine
22 \ 3. point
23 v 4. radix
24 | v 5. result
25 v 6. scale
26 v 7. ¢h
271V 8. input
28 v 9. output
291 . . . v . 10. DummyRead
301 . . v . . 11. DummyOrdin
31 1. . . v . 12. DummyWriteln
321 . v . . . 13. DummyOQrdOut
33y vV 14. DummyFileRead
34 v 15. DummyFileWrite

Figure 6 6 A Typmg Defect for the convert Program.

Figure 6.8 lists the four defect
detection strategies which are applicable at
the View Level. Here, the attention is drawn
on the Flow Analysis. An example of a defect
found by using this technique is the case
where an attribute is referred to but never
defined. This defect can be easily detected in
the second relation of the Data Flow view.
Each attribute identified in the set

57

3. Redundancy Analysis
4. Consistency Analysis
5. Flow Analysis

6. Intention Analysis

Figure 6.7 Defect Detection
Strategies for Both Analysis
Levels.

{ ATTRIBUTE } must be utilized as an input and
an output at least once in one of the sets { PRE-
CONDITION }, { PROCEDURE }, { ACTION }, or | 5. Sructure Analysis
{ POST_CONDITION }. A simpler instance of a

defect detected through a Flow Analysis is an Figure 6.8 Defect Detection
Strategies for the Structure

Level.

1. Cardinality Analysis

attribute which is never referred to nor defined.

58

Chapter 7
Results Analysis

As with the traditional inspection method, the proposed inspection technique
is composed of six steps. They have been identified and described in chapter 3.
However, there is still a number of elements that remains to be discussed.

The remainder of this chapter examines the three main areas where the
proposed inspection method differs from the traditional inspection technique. They
are the members of the inspection team, the Normalization process, and the
Analysis process. Thereafter, a brief discussion on the inspection technique as a
whole concludes the chapter.

7.1 Evaluating the Proposed Inspection Method
7.1.1 Participants

The members of the inspection team are chosen in the Planning step.
Although the proposed inspection method does not consider the moderator role as
being necessary to the inspection process, it is agreed that someone must exercise
some control for each of the inspection steps. As discussed in chapter 3, the
author is responsible for the Overview and the Rework steps, while the inspector
handles the Normalization, Analysis, and Follow-up steps. Planning is performed
by the management group of the organization.

The inspector role is played by a single person. The author is also
represented by a unique individual. Therefore, an inspection team is composed of
only two persons. It reduces the personnel and logistic needs required for the
inspection process to a minimum [77]. The removal of the author and/or the
inspector role would obviously result in a complete elimination of the whole
inspection process.

7.1.2 Normalization

The Normalization step replaces the Preparation step of the traditional
inspection method. The deliverable to be inspected is transformed into
infoStructure elements. The infoFrame helps the inspector in determining precisely
what should go into the deliverable [68]. The infoSchema presents the structural
content of the deliverable, while the infoMap illustrates all the details. Therefore,
the infoStructure elements form a hierarchy with respect to the depth of
information they embody. This hierarchy allows the analysis to be carried out at
different levels, which facilitates the inspection process.

In [65], the Entity-Relationship (ER) model is used to represent an
application design. The ER model easily pictures simple relationships like a one-
to-one, one-to-many, or hierarchy relation. However, there exist difficulties in
representing complex relationships such as a complicated hierarchy or a flow
relation. The infoStructure element deals efficiently with complex relationships.

The infoFrame for the SRD presented in chapter 5 was built from two
different SRDs. The HyperDoc SRD was normalized first. Its infoSchema was
used as an infoFrame to normalize the second SRD, the SRD for the New Editor
(NED). This SRD is shown in app-adix G. Its infoSchema, which appears in
Figure 7.1, was utilized to update the SRD infoFrame.

The SCD infoFrame was deduced from past experience with the
Normalization of a number of SCDs. Research done in [1] also influenced the
composition of the SCD infoFrame.

The main drawback of the Normalization step consists in the possibility of
it introducing defects. Any manual transformation of a deliverable suffers from the
risk of modifying the content. This is malaly caused by human inadvertence or
misinterpretation. As depicted in chapter 1, this is one of the primary problems
of today’s software development process. In our case, the problem can be
minimized by expressing the entry criteria for the Requirements inspection up as

60

AlB]cID|E[F[G[H] 1] J
1 JA A A A A A A 1 [{IDENTIFICATION }
2|lv v v v v v v 1. infoSchema for the NED SRD.
3]A A A A A A A 6 {REFERENCE}
4]A A A A A A A6 {VIEW}
5 1]v . . 1. Definitions
6 v ... 2. Product Perspective
7 v Vv . .. 3. Product Functions
8 vV Vv . 4. Functional Requirements
9 v 5. Product Users
10. v 6. Set Cardinality
11|0 41 {DEFINITION}
12 . . O 2 {USERTYPE}
13 H O 10 { OPERATION}
14|T H . F . 11 {EXTERNAL OBJECT}
15|T H O O . F M 42 {INTERNALOBJECT}
16 G . . . G 9 {PRE-GUARD}
17 G 18 { PRE-CONDITION}
18 . G 1 {EVENT}
19 M H . 18 { TASK}
20 S 24 {ACTION}
21 . G 30 {POST-CONDITION }
22|. . G . . G . 31 {POST-GUARD}
23 M M 6 {REMARK}

Figure 7.1 The infoSchema for the NED SRD.

an infoStructure representatior of the SRD or else, through the automation of the
Normalization process.

7.1.3 Analysis

There exist four main analysis criteria: completeness, consistency, testability,
and feasibility [65], [69]. The proposed inspection method, as the traditional
inspection technique, deals principally with the completeness and consistency of
a deliverable.

The infoStructure allows the inspection to be performed hierarchically. The
proposed inspection method prescribes an analysis at the Structure Level and the

View Level. The method can be augmented with additional levels. The sets in the

61

SRD infoFrame (Figure 5.1) reflect this hierarchy concept. The set { TASK } is
at a higher level than the set { ACTION }. Similarly, the sets { PRE-GUARD } and
{ POST-GUARD } are one level above the sets { PRE-CONDITION } and { POST-
CONDITION } respectively. This hierarchy in the analysis process lets the
inspection team deal with a deliverable using a top-down approach. Consequently,
defects detected at the top level should lead to major defects. This concept was
expressed in chapters 5 and 6 for the analysis at the Structure Level.

To assist the inspection team in the Analysis process, defects are
categorized. A list of defect types is necessary for each analysis level. At the
Structure Level, the defect types were found to be the same for both the SRD and
SCD (Figures 5.3 and 6.3). At the View Level, the defect types identified for the
SCD (Figure 6.4) is a subset of those associated to the SRD (Figure 5.5). These
observations indicate a possible generalization of the defect types, one which

would be independent of the deliverable inspected.

The defect types of the SCD at the View Level (Figure 6.4) are comparable
to the defect types identified by Myers [75]. Figure 7.2 establishes the
relationship which exists between the defect types of the proposed inspection
method and Myers’.

The grouping of defects
elaborated in chapters 5 and 6 D.eslauners Myers
View Level [75]
could be further develop to
include additional defect types FD Data-Reference Errors
for supplementary analysis AD Data-Declaration Errors
\ SD Computation Errors
leveis. For example, Flow)
GD Comparison Errors
Defecis (FD) could be FD/LD Control-Flow Errors
subdivided into two categories, FD/HD Interface Errors
FD Input/Output Errors
Data Flow Defects (DFD) and p P
(DFD) an TD Other Checks
Contrcl Flow Defects (CFD).

Figure 7.2 A Comparison of Defect Types.

62

The defect detection strategies introduced in this report are equally
applicable to both SRDs and SCDs. A set of strategies is associated to each
analysis level. They provide the inspection team with practical techniques for
finding defects. Each detection strategy serves in identifying specific types of
defects.

The analysis of a number of deliverable of the same type illustrates some
interesting features. An example is the analysis of the HyperDoc SRD and the
NED SRD. Both SRDs were done by a group of students from Concordia
University. The members of the two groups had basically the same background.
Both SRDs were composed as an assignment for a Software Engineering course
taught by the same professor. One could have expected the structure of these two
SRDs to be similar. However, a Structure Analysis performed on each SRD shows
that their infoSchemas are different in a number of ways. For example, the set
{ EVENT } shown in column J, row 18 of the infoSchema for the NED SRD
(Figure 7.1) does not appear in the infoSchema for the HyperDoc SRD (Figure
5.2).

7.2 Discussion

The inspection method presented in this thesis benefits from the same
advantages as the traditional inspection method. The detection of defects early
in the software development process, in software deliverables such as an SRD,
results in a significant reduction in the development cost, along with an increase
of the total productivity. The inspection process gets continuously updated as
inspections are carried out. The infoFrames are being revised as infoSchemas are
produred. Moreover, the infoStructure elements allow a better visualisation of
program structures and characteristics. This is also a property of the matrices used
by Lichtman to analyze program structures [60].

A detailed inspection process was defined in chapter 5 for the first formal

deliverable of the software development process, the Software Requirements

Document. In chapter 6, an equivalent exercise led the reader through a code

63

inspection. During the other phases of the software development process, a
number of intermediate deliverables, such as the Software Specification Document
and Software Design Document, are produced. Each of these deliverables
represents the final software product at a specific level of detail, and most of the
time, under a different format. Since the proposed inspection method was proven
valid for the SRD and SCD, it is also assumed valid for any deliverable in between.
Therefore, the inspection process as described in this thesis can be applied to any
software deliverable.

64

Conclusion

This thesis has proposed an inspection methodology aimed at reaching higher
software quality and reliability. The proposed inspection method is considered as an
enhancement to Fagan’s technique. While the traditional inspection method has been
conventionally utilized with source code, the proposed inspection process is applicable to
any software deliverable. The technique was demonstrated for two IEEE software
documents, but the other deliverables are intermediate products of these two.

The infoStructure representation of the software deliverables improves the visual
recognition of defects. Defect types and detection strategies used during the inspection
process are directly derived from this representation.

A first attempt was made to formalize the Preparation and Inspection phases of the
traditional inspection method. The Normalization step is a transformation process
governed by explicit rules, while the Analysis step is built from specific defect types and
detection strategies. Both processes are manipulating processable infoStructure elements
representing a software deliverable. Therefore, the automation of these two processes

is achievable, which could lead to a fully automated inspection process.
The work done in this thesis opens up a wide range of fields of interest for future
research in the inspection process itself or else, in the software development process.

These are:

a. the Normalization of a large number of SRDs to verify the proposed SRD
infoFrame;

b. the Normalization of other software deliverables to establish their corresponding

infoFrames;
c. the generalization of the defect types over all software deliverables;

d. the construct of a View Generation tool to assist the inspection team in

visualising the different views of the infoStructure representation of the software

deliverables.

Such a tool would take a user defined area of an infoStructure element as
an input, and output a predefined form of the selected area. Instances of
these forms are diagrams (control flow diagram, data flow diagram, state
diagram, etc...), or a whole software deliverable (SRD, SSD, SCD, etc...).
A View Generation tool is particularly useful for the Overview and Rework

phase of the inspection process;
e. the automation of the proposed inspection method; and

f. the entry criteria defined in chapter 5 for the Requirements inspection could be

loosened.

In this case, the Analysis step of the inspection process identifies the content
which is missing from a partial SRD.

Rework can be done on the infoStructure elements to solve the detected defects.
In fact, it is possible to build an SRD from the very beginning by using the infoStructure
concept. The infoFrame serves as a template which leads the software engineer in the
right direction. The infoMap is produced from the infoFrame by "filling the blanks".
This technique for producing an SRD is applicable to the other software deliverables as
well. lts consequences to the proposed inspection method is to eliminate the
Normalization step. This would considerably speed up the whole inspection process, and
completely remove the chance of inducing defects during Normalization.

66

References

A. infoStnicture

[1]

[2]

(3

(4]

[5]

[6]

(7]

T. Cummings, "A Knowledge Acquisition Method: Transformation of
Algorithms and Programs with infoMaps (TAPi)", Master of Computer
Science Thesis, Computer Science Department, Concordia University,
Montreal, Quebec, Canada, May 1991.

W.M. Jaworski, T. Cummings, "Program Normalization and Optimization:
Using infoMaps as an Inspection and Program Processing Tool", Coraputer
Science Department, Concordia University, Montreal, Quebec, Canada, 1991.

W.M. Jaworski, T. Cummings, "Program Analysis, Processing and
Optimization: Spreadsheet based infoMaps", Computer Science Department,
Concordia University, Montreal, Quebec, Canada, January 1991.

W.M. Jaworski, B. Deslauriers, "Software: Process, Maintenance, Products,
infoMaps", Proceedings of the 3" Canadian Conference on Electrical and
Computer Engineering, Ottawa, Ontario, Canada, September 4-6, 1990.

W.M. Jaworski, P.D. Grogono, "infoMaps: a Pragmatic Environment for
Seamless and Nondeterministic Software Development”, Computer Science
Department, Concordia Univetsity, Montreal, Quebec, Canada, June 1990.

W.M. Jaworski, "Systems Analysis and Design in the Classroom: infoMaps
Factory", Proceedings of the Modeling and Simulation Conference,
Pittsburgh, Pa., May 3-4, 1990.

P.D. Grogono, W.M. Jaworski, "Software Development as Knowledge
Acquisition using jMaps", Proceedings of the Canadian Conference on
Electrical and Computer Engineering, Montreal, Quebec, Canada, September
17-20, 1989.

(8]

(9]

[10]

[11]

[12]

W.M. Jaworski, E. Farell, "j-MAP Notational Technology: Application to
Development of Spectrum Management Systems’, Montech '87 Proceedings,
Conference on Communications, Montreal, Quebec, Canada, Novemnber 9-

11, 1987.

W.M. Jaworski, T. Radhakrishnan, "Modelling of System Development
Methodologies", Complnt ’87 Proceedings, Conference on Computer-Aided
Technologies, Montreal, Quebec, Canada, November 9-11, 1987.

W.M. Jaworski, L. Ficocelli, K.S. O'Mara, "The ABL/W4 Metrhodology for
System Modelling", Systems Research Journal, vol. 4, no.1, pp. 23-37, 1987.

W.M. Jaworski, M. Virard, "Converting a Software Comapny to a New
Technology", Proceedings of the 1986 Canadian Conference on Industrila
Computer Systems, Montrel, Quebec, Canada, May 28-30, 1986.

G. Belkin, W.M. Jaworski, "Towards Logic and Performance Analysis of
Unwritten Programs", Proceedings of the Canadian Computer Conference,
Montreal, Quebec, Canada, May 17, 1976.

B. Software process

[13]

[14)

[15]

F.J. Buckley, "Do standards cause software productivity problems?",

Computer, vol. 24, no. 1, pp. 97-98, January 1991.

S.P. Overmyer, "The Impact of DoD-Std-2167A on Iterative Design

Methodologies: Help or Hinder?", ACM SIGSOFT Software Engineering
Notes, vol. 15 no. 5, pp. 50-59, October 1990.

E. Souza, "The New CASE Development Life Cycle", Software Engineering:

Tools, Techniques, Practice, vol. 1, no. 3, pp. 14-21, September/October
1990.

68

[16]

[17]

[18]

[19]

{20]

[21]

[22]

[23]

[24]

[25]

P. Freeman, "Establishing a System for Developing Software", Software

Engineering: Tools, Techniques, Practice, vol. 1, no. 2, pp. 14-22,
July/August 1990.

R.W. Matthews, W.C. McGee, "Data modeling for software development”,
IBM Systems Journal, vol. 29, no. 2, pp. 228-235, 1990.

J.A. Hager, "Software Cost Reduction Methods in Practice”, [EEE Trans. on
SE, vol. 15, no. 12, pp. 1638-1644, December 1989.

W.S. Humphrey, "Improving the Software Development Process",
Datamation, vol. 35, no. 7, pp. 28-30,52, April 1, 1989.

E.J. Joyce, "Is Error-Free Software Achievable?", Datamation, vol. 35, no.
4, pp. 53-56, February 15, 1989.

W.S. Humphrey, M.L. Kellner, "Software Process Modeling: Principles of
Entity Process Models", Proc. 11th Conf. Software Eng., Pittsburgh, Pa.,
New-York: [EEE Press, pp. 331-342, 1989.

AM. Davis, E.H. Bersoff, E.R. Comer, "A Strategy for Comparing Alternative
Software Development Life Cycle Mcdels", [EEE Trans. on SE, vol. 14, no.
10, pp- 1453-1461, October 1988.

W.B. Bohem, P.N. Papaccio, "Understanding and Controlling Software
Costs", IEEE Trans. on SE, vol. 14, no. 10, pp. 1462-1477, October 1988.

D.N. Card, F.E. MC Garry, G.T. Page, "Evaluating Software Engineering
Technologies", [EEE Trans. on SE, vol. 13, no. 7, pp. 845-851, July 1987.

S.S. Yau, J.J. Tsai, "Knowledge Representation of Software Component
Interconnection Information for Large-Scale Software Models", IEEE Trans.
on SE, vol. 13, no. 3, pp. 355-361, March 1987.

69

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

B. Ratcliff, Software Engineering: Principles and Methods, Blackwell
Scientific Publications, 1987.

B.G. Silverman, "Software Cost and Productivity Improvements: An
Analogical View", Computer, vol. 18, no.5, pp. 86-96, May 1985.

W.S. Humphrey, "The IBM large-systems software development process:
Objectives and direction”, IBM Systems Journal, vol. 24, no. 2, pp. 76-78,
1985.

G.F. Hoffnagle, W.E. Beregi, "Automating the software development
process", IBM Systems Journal, vol. 24, no. 2, pp. 102-120, 1985.

L.L. Beck, T.E. Perkins, "A Survey of Software Engineering Practice: Tools,
Methods, and Results", IEEE Trans. on SE, vol. 9, no. 3, pp. 541-561,
September 1983.

U. Montanari, "Towards an Integration Between Language and Sofcware

Development Environment”, Theory and Practice of Software Technolo
North-Holland Publishing Company, 1983, pp. 195-202.

N. Zvegintzov, "What life? What cycle?", AFIPS Conference Proceedings, vol
51, pp. 561-568, 1982.

B.W. Boehm, "Software and Its Impact: A Quantitative Assessment",
Datamation, pp. 48-59, May 1973.

C. Requirements

[34]

H.B. Reubenstein, R.C. Waters, "The Requirements Apprentice: Automated
Assistance for Requirements Acquisition", [EEE Trans. on SE", vol. 17, no.
3, pp. 226-240, March 1991.

70

(35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

"SRD for HyperDoc", COMP648 Course Project, Computer Science
Department, Concordia University, December 1990.

"SRD for NED", COMP354 Assignment, Computer Science Department,
Concordia University, October 1990.

W. Rzepka, Y. Ohno, "Requirements Engineering Environments: Software
Tools for Modeling User Needs", Computer, pp. 9-12, April 1985.

G.-C. Roman, "A Taxonomy of Current Issues in Requirements Engineering”,
Computer, pp. 14-21, April 1985.

D.T. Ross, "Applications and Extensions of SADT", Computer, pp. 25-34,
April 1985.

M. Afford, "SREM at the Age of Eight; The Distributed Computing Design
System", Computer, pp. 36-46, April 1985.

P.A. Scheffer, A.H. Stone, W.E. Rzepka, "A Case Study of SREM", Computer,
Pp. 47-54, April 1985.

G.E. Sievert, T.A. Mizell, "Specification-Based Software Engineering with
TAGS", Computer, pp. 56-65, April 1985.

S.M. White, J.Z. Lavi, "Embedded Computer System Requirements
Workshop", Computer, pp. 67-70, April 1985.

M. Chandrasekharan, B. Dasarathy, Z. Kishimoto, "Requirements-Based
Testing of Real-Time Systems: Modeling for Testability”, Computer, pp. 71-
80, April 1985.

A. Borgida, S. Greenspan, J. Mylopoulos, "Knowledge Representation as the
Basis for Requirements Specifications", Computer, pp. 82-91, April 1985.

71

[46]

[47]

R.G. Mays, L.S. Orzech, W.A. Ciarfella, R.W. Phillips, "PDM: A requirements
methodology for software system enhancements", IBM System Journal, vol.
24, no. 2, pp. 134-149, 1985.

"[EEE Guide to Software Requirements Specifications", ANSI/IEEE Std 830-
1984, Software Engineering Standard, Third Edition, IEEE, October 1989.

D. Design

[48]

[49]

[50]

[51]

"Defense System Software Development", DOD-STD-2167A, 29 February
1988.

S.S. Yau, J.J.-P. Tsai, "A Survey of Software Design Techniques", IEEE
Trans. on SE, vol. 12, no. 6, pp. 713-721, June 1986.

D.N. Card, V.E. Church, W.W. Agresti, "An empirical Study of Software
Design Practices", [EEE Trans. on SE, vol. 12, no. 2, pp. 264-271, February
1986.

P. Grogono, Programming in Pascal, Revised Edition, Addison Wesley,
Philippines, 1980.

E. Verification

[52]

[53]

[54]

L. Russell, "Requirements Testing: Broadening the Definition", Software

Engineering: Tools, Techniques, Practice, vol. 1, no. 4, pp. 43-45,
November/December 1990.

D. Darst, "Balancing Productivity and Quality", Datamation, vol. 36, no. 18,
pp. 117-119, September 15, 1990.

Y. Levendel, "Reliability Analysis of Large Software Systems: Defect Data
Modeling", IEEE Trans. on SE, vol. 16, no. 2, pp. 141-152, February 1990.

72

ELAAML

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

"Software Verification and Validation Plans", ANSI/IEEE Std 1012-1986,
Software Engineering Standard, Third Edition, IEEE, October 1989.

D.P. Sidhu, T.-K. Leung, "Formal Methods for Protocol Testing: A Detailed
Study”, [EEE Trans. on SE, vol. 15, no. 4, pp. 413-426, April 1989.

R. Lewis, D.W. Beck, "Assay - A Tool To Support Regression Testing", pp.
487-496, ...

V.R. Basili, R.W. Selby, "Comparing the Effectiveness of Software Testing
Strategies", [EEE Trans. on SE, vol. 13, no. 12, pp. 1278-1296, December
1987.

D. Craigen, "Strengths and Weaknesses of Program Verification Systems",
1st European Software Engineering Conference, pp. 397- 404, 1987.

Z.L. Lichtman, "Generation and Consistency Checking of Design and
Program Structures”, IEEE Trans. on SE, vol. 12, no. 1, pp. 172-181,
January 1986.

A.L. Goel, "Software Reliability Models: Assumptions, Limitations, and
Applicability", IEEE Trans. on SE, vol. 11, no. 12, pp. 1411-1423, December
1985.

S. Yamada, S. Osaki, "Software Reliability Growth Modelling: Models and
Applications", [EEE Trans. on SE, vol. 11, no. 12, pp. 1431-1437, December

1985.

J.P. Cavaro, "Toward High Confidence Software", IEEE Trans. on SE, vol.
11, no. 12, pp. 1449-1455, December 1985.

R. Troy, R. Moawad, "Assessment of Software Reliability Models", [EEE
Trans. on SE, vol. 11, no. 9, pp. 839-849, September 1985.

73

[65]

[66]

[67]

{68]

[69]

[70]

(71]

[72]

[73]

[74]

H.M. Sneed, A. Merey, "Automated Software Quality Assurance", [EEE
Trans. on SE, vol. 11, no. 9, pp. 909-916, September 1985.

M. Ohba, "Software reliability analysis models", IBM Journal of Research

and Development, vol 28, no. 4, pp. 428-443, July 1984.

V.R. Basili, B.T. Perricone, "Software crrors and Complexity: an Empirical
Investigation", Communications of the ACM, vol. 27, no. 1, pp. 42-52,
January 1984.

F.J. Buckley, R. Poston, "Software Quality Assurance", [EEE Trans. on SF,
vol. 10, no. 1, pp. 36-41, January 1984.

B.W. Boehm, "Verifying and Validating Software Requirements and Design
Specifications”, IEEE Software, vol. 1, no. 1, pp. 75-88, January 1984.

L.A. Clarke, D.J. Richardson, "Symbolic Evaluation - An Aid to Testing and
Verification", Suftware Validation, Elsevier Science Publishers B.V., New
York, 1984, pp. 141-166.

S.H. Saib, "RXVP - Today and Tomorrow", Software Validation, Elsevier
Science Publishers B.V., New York, 1984, pp. 103-125.

L. Osterweil, "Integrating the Testing, Analysis and Debugging of Programs",
Software Validation, Elsevier Science Publishers B.V., New York, 1984, pp.
73-102.

H.L. Hausen, M. Mullerburg, "An Introduction to Quality Assurance and
Centrol of Software", Software Validation, Elsevier Science Publishers B.V.,
New York, 1984, pp. 3-9.

P.N. Misra, "Software reliability analysis", [BM Systems Journral, vol. 22, no.
3, 1983.

74

[75] G.J. Myers, The Art of Software Testing, John Wiley & Sons, 1979.

F. Inspection

[76] G.W. Russell, "Experience with Inspection in Ultralarge-Scale Developments",
[EEE Software, pp. 25-31, January 1991.

[77] D.B. Bisant, J.R. Lyle, "A Two-Person Inspection Method to Improve
Programming Productivity”, IEEE Trans. on SE, vol. 15, no. 10, pp. 1294-
1304, October 1989.

[78] S.M. Stevens, "Intelligent [teractive Video Simulation of a Code Inspection”,
Communications of the ACM, vol. 32, no. 7, pp. 832-843, July 1989.

[79] A.F. Ackerman, L.S. Buchwald, F.H. Lewski, "Software Inspections: An
Effective Verification Process”, [EEE Software, pp. 31-36, May 1989.

[80] M.E. Fagan, "Advances in Software Inspections", [EEE Trans. on SE, vol. 12,
no. 7, pp. 744-751, July 1986.

[81] M.E. Graden, P.S. Horsley, T.C. Pingel, "The Effects of Software Inspections
on a Major Telecominunications Project”, AT&T Technical Journal, vol. 65,
no. 3, pp. 32-40, May/June 1986.

[82] P.J. Fowler, "In-Process Inspections of Workproducts at AT&T", AT&T
Technical Journal, vol. 65, no. 2, pp. 102-112, March/April 1986.

[83] W.L.G. Koontz, "Experience with Software Inspections in the Development
of Firmware for a Digital Loop Carrier System", [EEE International
Conference on Communications 1986 Conference Record, IEEE, New York,
pp- 1188-1189, 1986.

75

[84]

(85]

[86]

(87]

(88]

[89]

G.M. Weinberg, D.P. Freedman, " Reviews, Walkthroughs, and Inspections”,
IEEE Trans. on SE, vol. 10, no. 1, pp. 68-72, January 1984.

H. Remus, ‘'"Integrated Software Validation in the View of
Inspections/Reviews", Software Validation, Elsevier Science Publishers B.V.,
New York, 1984, pp. 57-64.

R.D. Buck,J.H. Dobbins, "Application of Software Inspection Methodology
in Design and Code", Software Validation, Elsevier Science Publishers B.V.,
New York, 1984, pp. 41-56.

A.F. Ackerman, P.J. Fowler, R.G. Ebenau, "Software Inspections and the
Industrial Production of Software", Software Validation, Elsevier Science
Publishers B.V., New York, 1984, pp. 13-40.

G.J. Myers, "A Controlled Experiment in Program Testing and Code
Walkrhroughs/Inspections”, Communications of the ACM, vol. 21, no. 9, pp.
760-768, September 1978.

M.E. Fagan, "Design and code inspections to reduce errors in program
development", IBM Systems Journal, vol. 15, no. 3, pp. 182-211, 1976.

G. Validation

(9]

[91]

J.T. Nosek, R.B. Schwartz, "User Validation of Information System
Requirement: some Empirical Results", :EEE Trans. on SE, vol. 14, no. 9,
pp. 1372-1375, September 1988.

H.-L. Hausen, "Comments on Practical Constraints of Software Validation

Techniques", Software Validation, Elsevier Science Publishers B.V., New
York, 1984, pp. 323-333.

76

[92]

E. Ploedereder, "Symbolic Evaluation as a Basis for Integrated Validation",
Software Validation, Elsevier Science Publishers B.V., New York, 1984, pp.
167-185.

H. Maintenance

[93]

[94]

[95]

[96]

[97]

[98]

[99]

(100}

J.E. Moore, "A Four-Phase Methodology for Software Maintenance”,

Software Engineering: Tools, Techniques, Practice, vol. 1, no. 5, pp. 13-
23, January/February 1991.

"Scaling Up: A Research Agenda for Software Engineering", CSTB Report,
Communications_of the ACM, vol. 33, pp. 281-293, March 1990.

J. Moad, "Maintaining the Competitive Edge", Datamation, pp. 61-66,
February 1990.

F.J. Buckley, "A Standard Environment for Software Production", [EEE
Computer, pp. 75-77, January 1990.

F.J. Buckley, "Some Standards for Software Maintenance”, [EEE Computer,
pp. 69-70, November 1989.

S.S. Yau, R.A. Nicholl, J.J.-P. Tsali, S.-S. Liu, "An integrated Life-Cycle Model
for Software Maintenance", [EEE Trans. on SE, vol. 14, no. 8, pp. 1128-
1144, August 1988.

R.P. Hall, "Seven Ways to Cut Software Maintenance Costs", Datamation,
pp. 81-84, July 15, 1987.

N.T. Schneidewind, "The State of Scftware Maintenance”, IEEE Trans. on
SE, vol. 13, no. 3, pp. 303-310, March 1987.

77

[101] S. Bendifallah, W. Scacchi, "Understanding Software Maintenance Work",
IEEE Trans. on SE, vol. 13, no. 3, pp. 311-323, March 1947.

[102] S.S. Yau, J.S. Collofello, "Design Stability Measures for Software
Maintenance", IEEE Trans. on SE, vol. 11, no. 9, pp. 849-856, September
1985.

[103] L. Vessey, R. Weber, "Some Factors Affecting Program Repair Maintenance:
An Empirical Study”, Communications of the ACM, vol. 26, nc-. 2, pp. 128-
134, February 1983.

[104] J. Martin, C. McClure, Software Maintenance: The Problem and [ts Solution,
Prentice-Hall, 1983, ch. 1,2, pp. 3-40.

[. Miscellaneous

[105] M.E. Crosby, J.Stelovsky, "How Do We Read Algorithms?
A Case Study”, Computer, vol. 23, no. 1, pp. 24-35,
January 1990.

[106] "Glossary of Software Engineering Terminology", ANSI/IEEE Std 729-1983,
Software Engineering Standard, Third Edition, IEEE, October 1989.

[107] V.R. Basili, H.D. Mills, "Understanding and Documenting Programs", IEEE
Trans. on SE, vol. 8, no. 3, pp. 270- 283, May 1982.

[108] G. Birks, P. Davis, "Compound Electronic Document Creation, Storage,
Retrieval, and Delivery in Bell-Northen Research and Northern Telecom",

pp. 16-19, ...
[109] D.E. Webster, "Mapping the Design Representation Terrain", Technical
Report STP-093-87, MCC, Software Technology Program, July 1987.

78

[110] F.P. Brooks, "No Silver Bullet: Essence and Accidents of Software
Engineering", IEEE Computer, pp. 10-19, April 1987.

79

Appendix A

The infoMap for the Waterfall Model

AlB]jcl D
1 | A 1 {IDENTIFICATION }
2 v 1. infoSchema for the Waterfall Model
3 . of the Software Development Process.
4 { A 1 {REFERENCE}
5 Y 1. IEEE Software Enqineering Standards [55]
6 | A 2 {VIEEW}
7 | v 1. Software Life Cycle Process
8 . v 2. Set Cardinality
9 | O 36 { TRANSITION}
10| L 9 ({STATE}
11| G 7 {PRE-CONDITION}
12] G 7 {EVENT}
13| S X {ACTION}

2fefelsk

&l

'3
3

Sfsfels]

REREEEE

ajafciofelrfojujifsIx]rju]n]oJPjofRISVIuUlvIw[X]Y]
AAAAAAAAAAAAAAAAANAAARNARAANR

«cme»

20

v

L I

o
o
o
[+
o
o
[~}
[}
o
-]
o
=]
(-]
[
[=]
o
o
(-]

¥

< »>a >

v

« > <>

v

LR K2

ol

+

v

« > <>

aw

A
v
A
v

v

- »>e»

v

«cPpec»

<« > <>

v

A
v
A
v

v

A
v
A
v

v

A
v
A
v

v

< >a)

ol

ot

v

<« P<»

v

«pa >

v

« > >

(2]

v

«pa>

v

- > < >

v
A
v
A
v

o

« > >

o

<« »>a >

=]

v

A
v
A
v

v

<« > x>

-}
o

v

< > >

(<]

Ax{AL] AM

- >
«»

v Y ¥ VvVyY Vv e

« > a»
>
< > <>
« P>
« P>
«cPc>
« > a>
«><»
< > x>
« > >

[}
[}
-]
o
=]
=]
[-]
-]
[~}
-}

7 JAA ADACIADI AE[AT JAGIAR] A 1]AJ]
AAAAAAAARAN

v

« > aw

c

-

S

1 {IDENTIFICATION |}
1 miocMap tor tha Waterfal Modet

of tha Software Davelopnwent Froceds

1 {REFERENCE]

1 1EEE Soltware Enginewing Siandanis |56]

2 | VIEW)

1 Soltware Lie Cycla Process
v 2 Set Cardwnalty
36 { TRANSITION |

s
9 [STATE
t Concept Eaptxation
Concepl

Asquremenis
Desgn
Implernenislon
Tost
inslalgtion and chachout
Opersiion and manisnsoce
Retirament
7 {PRECONOITION |

1 Concepd phase tomplaied?
Requirements phase compiet ed?
Desxgn phase compisied

ocBNBBAUN

phase
Tost phase campisled?

NOC sauw

7 {EVENT)
1 Process slant

2 Concapt change

3 Requremants change

4 Deugn change

5 impleneniaion dhange

€ Test change

hstafaten and chackoul changs
¥ {ACTION |

-~

?

insatisbon and chechout phare compiel e
Operation snd mantenance phate congited’

Appendix B
The infoMap for the infoStructure Notation

AlB][c]OlE[FIGIH] I [UTK[L]M] N
1A A A A A A A A A A A A {IDENTIFICATION}
2lv VvV vV VvV V VvV VvV V V V VvV V 1. infoMap for the infoStructure Notation.
3 |]A A A A A A AAAAA A{VEW])
4 |lv v v v v v v v v v v 1. Hierarchy
51 v 2. Set Cardinality
6§ |H HHHHHHHHH HI11{SETROLE}
71p . 1. A 1= Association of relations
8 P . 2. F = Flow
9 [J 3. G ::= Guard
10 . p 4. H ::= Hierarchy
11 .op . 5. L ::= Directed graph with cycles ant forks
12 . P . 6. M == Many
13 .op . 7. O ::= Dominant set
14 .op . 8. S ;= Sequence
15 . p . 8. T:=0ne
16 . P . 10. V 1= Value
17!]. P 11. X ::= Unidentified value
18/]H HHHHHHHHHH 9 {SETMEMBERROLE)
19ic . c c . 1. v = Column marker
20 c . 2. i.,0,b ::= Flow direction; “in", “out", "both"
21 c 3. tf = Guard status: “true”, “false®
22 c . 4. p,c 1= Hierarchica! structure: "parent®, “child”
23 c . c 5. 1..n ::= Place in sequence
24 c . 6. s,d,| 1= Diraction: "source®, "destination”, “loop"”
25 c . 7. o ::= Dominant set member
26 | . c 8. Integer, real, character,...
271 . c 9. x = unidentified value

Copyright 1990 by W.M. Jaworski, All

Rights Reserved.

Appendix C

Software Requirement Document
for
HyperDoc

Prepared by
Juliette D’Almeida
Spyros Kattou
Marie Wallace
Anukon Wongyai

submitted in partial fulfilment
of the requirements of
COMP 648
Concordia University
November 1990

TABLE OF CONTENTS

1 INTRODUCTION. ..t i vv v e cvner v o ons Cee s . ‘o C-5
1.1 PUTPOSE. « vt vvv e cnes e antoamsanss s snsosseones C-5
1.2 S COPE .+t e vt ettt s s C-6
1.3 Definitions.ttt iiiie i c-7
1.4 REFEIENCES . vt v v v ts e st e esanosssnsessasans Cc-10
1.5 10 Y o -2 T c-11
2 GENERAL DESCRIPTION. ettt eesssoascs oo Cc-12
2.1 Product Perspective....... ..t ieeverannne C-12
2.1.1 J e Yo U=1- P) .. C-13
2.1.2 LA KE . e s t v e v ee o seraoetetssanesssasasnssonsns C-13
2.1.3 Organizations........ .. .o c-13
2.1.4 NeEWOXKS . v v vttt ci i tiitoaastar oo sessess Cc-14
2.1.5 Cooperative Work.......... ..o o Cc-14
2.1.6 Security in HYpPerDOC.ot en oo cnne C-15
2.1.7 System Model......... ...t iivieeenenenanne C-15
2.2 Product Functions.... covieresnennonacsns C-16
2.3 User Characteristics. civ v anans c-18
2.4 Special Constraints......... ..o c-19
2.5 ASSUMPELIONS . v vt vt i it ittt i e s .. C-20
3 SPECIFIC REQUIREMENTS.........i0ctuteeannen Cc-22
3.1 Functional Requirements....... ... c-22
3.1.1 Show _Outgoing Links.........coveeenvncnenens Cc-22
3.1.2 Show_Incoming Links.......coouuveveneneennn Cc-23
3-1-3 Follow Llnk ------------- 4 4 6 4 8 8 5 1 8 s 8 0 0 0 0w s e C-24
3.1.4 Move_To_Unconnected_Node C-26
3.1.5 Backtrack One_Step.......ccoviiiiieninns c-27
3.1.6 Display_ Overview Diagram.........covieeninn C-28
3.1.7 Display_Network . Attributes. ... eieerrannnnn C-29
3.1.8 Display Organlzatlon Attributes.............. C-30
3.1.9 Display Node_ Attributes...............c.vunn Cc-31
3.1.10 Display_Link_. TAttributes.. ... C-32
3.1.11 Destroy_Informatlon_Wlndow e C-33

c -2

wwwwwwwwwwwwwwwwwwwwwwwwwwwuwwwwwwwwwwuwwuwwuwwww
B b b b b e b b B b e b b b b b b b b b ke ek b b2 e B b R e b e b e e S S e e

.12
.13
14
.15
.16
.17
.18
.19
.20
.21
.22
.23
.24
.25
.26
.27
.28
.29
.30
.31
.32
.33
.34
.35
.36
.37
.38
.39
.40
.41
.42
.43
.44
.45
.46
.47
.48
.49
.50
.51
.52
.53
.54
.55
.56
.57
.58
.59
.60

Change_ Node....... .. it enoas C-34
Lock Node.......o ennnn C-35
Unlock Node..........ciiiiiiiiiiinnneenoanons C-36
Search_For_ String............... ... c-37
Search_For_Next_Occurrence_Of_String......... C-38
Search_For_ An_Attribute...............cv e C-39
Assign_Link Attribute............ ... C-40
Assign_Node Attribute.............. ... C-41
Assign_Network Attribute..................... C-42
Assign_Oxrganization_ Attribute................ C-43
Assign_Region_ Attribute............. C-44
Create Node........ ..o vnneanonss C-45
Delete Node........ ... i, C-46
SPLAL NOG@. \ e o ie e e et ineiiaaaee s C-47
Insert Node....... ...t C-48
Save_Node_Under_ Current_Version.............. C-49
Assign _Node_To_Network................oovnn C-50
Create Region.......... . eiinnnennnns C-51
Delete Region.......... C-52
Create Link....ty C-53
Delete Link.... ...ttt C-54
Create Network.coiiiiiiiiiennsn C-55
Delete Network......... C-56
Create_Organization............. .o C-57
Delete Organization............. oo C-58
Invoke HyperDoc.......... ... C-59
Shutdown_HyperDOoCceiiitivennnecennn C-60
Show Netwoxrk List........... ... oo C-61
Show List_Of_Organizations_Within_A_Network.. C-62
Select_Network..., C-63
Move _To Next Node............. . v C-64
Save_Node_Under_ New_version.................. C-65
Retrieve Previous_Version_Of A _Node.......... C-66
Create _User _Class.......... .ot iinnennn.s C-67
Delete User Class........ccoviviiiuinnnneenens C-68
Update User_Class..........ovuniinnnnnn.. C-69
Create User...........iiiniiiiiinenennn. Cc-70
Delete USer...... ..ttt onnnnennanns Cc-71
Update User.ttt ananns Cc-72
Assign User _To_ClassS......... oottt Cc-73
Delete User From Class.............c.oouvnn.. C-74
Assign_Object_And_Rights_To_Manager.......... C-175
Delete_Object_And Rights_From_Manager........ C-76
Update_Object_Rights_Of_ Manager.......... .o. C-77
Show_Object_Access_Rights.................... Cc-78
Select_Organization............ ..o C-79
Display Region_Attributes.................... C-80
Display Assigned Object_Ids.................. c-81
Future Requirements.......... ... e Cc-82

w w

w

ww

[S

Overall Performance Requirements........... .. C-83

Timing Constraints.......... . e anns C-83
Attributes.o i i i i e e e Cc-84
Availability...... ..ttt C-84
SECUL Ity .ttt ittt i i s i i s e C-84
Acceptance Criteria.........c.oiiiiiienns C-85

1. INTRODUCTION
1.1 Purpose

The purpose of this SRD is to bring out the functional
and performance requirements for the design of a hyperdocument
system, called HyperDoc. Hypertext is a well-known technique
for information representation and management in which data
is stored in networks of nodes connected by links. The nodes
are fragments of information such as text, graphics, images,
voice and animation. The links reflect relationships between
these information fragments. A user can Dbrowse a
hyperdocument by traversing the network and view the
information fragments as they are visited, thus allowing the
user to have non-sequential access to a text or multimedia
document.

This SRD is written by a group of four students as part
of the project for Specifications of Software Systems course
(COMP648) at Concordia University. The document will be
submitted to Dr. Alagar for verification and evaluation of the
functional and performance requirements.

1.2 Scope

HyperDoc will work under a multi-user and multi-tasking
environment. Although HyperDoc may be used for several
purposes, it’s main purpose as a support environment for the
software life cycle will be outlined in this document.
HyperDoc will perform under a multiple window workstation.

HyperDoc will provide, among others, capabilities to
allow for the documentation and the management of the software
development process. Handling such documents with HyperDoc
provides a corporate memory for the development history while
permitting the simultaneous viewing of multiple sections of
the same document of similar, related or refereaced documents,
by more than one user. From now on, a document built with
HyperDoc will be referred to as a hyperdocument.

Generalizing, HyperDoc will provide facilities for:
a. navigating through hyperdocuments;
b. versioning of hyperdocuments;

c. editing hyperdocuments as well as storage and
retrieval facilities;

d. defining the structure of a hyperdocument (links and
nodes) ;

e. providing security management to hyperdocuments or
parts of the hyperdocuments; and

f. providing support for cooperative work.

The objective of HyperDoc is to make the users feel they
can move freely through the information according to their own
needs as well as providing manipulation facilities for the
document's organization and the document’s content.
Particularly, it provides a tool for Software developers to
manage their interconnected multimedia documents.

1.3 Definitions

Anchor:

Attribute:

Cursor position:

Departure point:

Destination point:

Hyperdocument:

Information window:

Link:

Node or region in a node which can be
selected by the user in order to use a
link. The anchor selected is the
departure point of a link. Anchors are
created within a node by authorized users.

An attribute is a pair (label, value)
existing for 1links, nodes, regions,
networks and organizations used to
describe them. Each of the previous has
some fixed labels, and can support an
unlimited number of user-defined attribute
pairs. The labels must be unique. For
example, some attributes that describe a
node would be Author: "John Smith", Date:
"Oct. 20 1990", Description: "The New
Release of Srd". Author, Date and
Description are labels, and "John Smith",
"Oct. 20 1990" and "The New Release of
Srd" are the corresponding values.

A place marker in the node window.

The source point of a link. It can be a
node or a region in a node.

The destination in a hyperdocument that
a link leads to. It can be a node or a
region in a node.

The entire HyperDoc information space
(contents of all nodes of all networks).

Window used to display any information
about HyperDoc'’s objects (links, nodes,
networks, organizations). The user can
only browse the information and is not
allowed to change it. An information
window contains a header with its name.

Means of relating two pieces of
information. A link is defined by its
departure point and its destination point.
The link provides a way for moving from
one point to another.

Link attributes:

Lock attribute:

Map:

Navigation path:

Network:

Network attributes:

Node:

Node attributes:

Node window:

Organization:

The list of attribute labels minimally
requivred for 1links is: id, departure
point, destination point, author, last
modified date, type (respond_to, agree,
object_to...), description.

An attribute of the node which when set
to true by a user disables the other users
from changing the content of the node.
When this attribute is false no users are
modifying the node. For example, when a
user needs to change the content »>f a
node, he/she must first lock the node to
prevent other users from changing it at
the same time.

Similar to an index, where a list of user
defined keywords map into nodes.

The ordered list of nodes visited by the
user in the current network.

Set of nodes and links which have some
logical association. A certain concept
can be captured within a network. A
network can have several organizations.

The list oi attribute labels minimally
required for networks is: id, author, last
modified date, description.

A piece of information of a specific
medium. It is the fundamental unit of
HyperDoc. Nodes are represented as node
windows on the screen.

The list of attribute labels minimally
required for nodes is: id, description,
author, date, type (text, graphic...),
last modified date, version number, lock
(true or false).

A means of displaying a node on the
screen. A node window is provided the
appropriate tool to edit or browse the
content of a node. A node window contains
a header with the node’s id.

An arrangement of nodes of a network as
a set, a map or a sequence. An
organization can only be one of the above.

Organization
attributes:

Overview diagram:

Region:

Region attributes:

Sequence:

Set:

Super user:

User:

User class:

User leader:

The list of attribute labels minimally
required for organizations is: id, author,
creation date, type (map, set, sequencse
or user-defined).

A bird'’'s eye view of the network (nodes
and links) with the current navigation
path highlighted.

A region is a section in a node of
contiguous text, voice, video, graphics,
etc defined by the user. A region serves
as an endpoint (source or destination) of
a link. A region can be of any size.

The list of attribute labels minimally
required for regions is: id, parent node,
description, type (text, graphic...).

A user defined ordering that is imposed
on some nodes in a network, i.e the nodes
can be accessed in this order.

A user defined collection of nodes that
may be accessed in any order.

A user with £ull rights at all time in
HyperDoc system.

A person belonging to at least one user
class.

Describes the role of people and defines
the scope of their work within the
software life cycle context. Contains a
list of users assigned to it.

A supervisor defined for a user class
having the authority to manage the rights
of users in that user class.

1.4 References

[ALAGAR]

[GARG1]

[LANGE]

[NEILSON]

[GARG2]

[CONKLIN]

V.S. Alagar, P. Goyal, "CONSLT: A Software Life
Cycle Tool", Concordia University, Montreal, Canada.

Pankaj K. Garg and Walt Scacchi, "ISHYS Designing
an Intelligent Software Hypertext System",
University of Southern California, IEEE EXPERT, Fall
1989.

Danny B. Lange, "A formal Approach to Hypertext
using Pogt-Prototype Formal Specification",
Department of Computer Science, Technical University
of Denmark.

Jacob Neilson, Hypertext and Hypermedia, Academic
press, 1990.

Pankaj K. Garg and Walt Scacchi, "A Hypertext System
to manage Software Life-Cycle Documents", IEEE
Software, May 1990.

Jeff Conklin, "Hypertext - An Introduction and

Survey", Microelectronics and Computer Technology
Corp., Computer, September 1987.

c - 10

1.5 Overview

The remaining part of the document is organized as given
below. Section 2.1 gives a perspective of HyperDoc as defined
by it’s objects and their organization. Nodes, 1links,
organizations and networks are introduced. However, the
concept of how cooperative work can be handled with HyperDoc
is also outlined. Security considerations are introduced. The
system model followed by a brief description of it is also
provided. The main tasks expected to be performed by HyperDoc
are delineated in Section 2.2 with a brief description of what
is to be provided by each task. Section 2.3 gives the user
involvement during the building and utilization of a
hyperdocument. Special constraints regarding hardware or
HyperDoc itself are brought out in Section 2.4.

The assumptions on which the SRD is based are listed in
Section 2.5. This section also includes some presupposed
knowledge about the management of rights to users and the
availability of tools used by HyperDoc.

Section 3.1 gives specific functional requirements. Each
requirement is given in a self-contained form giving the
input, action, result, exception handling and remarks. The
format will help in test-data preparation for verification of
individual requirements. Since the tasks involved have to
perform in a coordinated manner, overall performance
requirements not conflicting with individual requirements are
given in Section 3.2.

Specific attributes and their conformity with HyperDoc
are hrought out in Section 3.3. The acceptance criteria for
Hy} Joc, the various stages of review and the scope of each
review are given in Section 3.4. References cited in Section
1.5 provide an excellent background to the principles of
Hypertext.

c - 11

2. GENERAL DESCRIPTION
2.1 Product Perspective

HyperDoc consists of interlinked pieces of information.
These pieces are called nodes. A node 1is the basic unit of
information in HyperDoc. Whatever the granularity of these
nodes, each may have pointers to other units, and these
pointers are called links. Links and nodes form networks in
HyperDoc. The entire HyperDoc is the set of all networks.
The responsibility of defining the content of nodes or the
structure of networks rests with the user. Figure 2.1 shows
a HyperDoc system where nodes are illustrated as circles.

% k Kk kk
put network example here

* %k % %
Netwcrk A: one organization is the sequence of nodes A,C,D,B
Network B: one organization is the set of nodes E,D,H,F,G
Node D is shared by both networks

Figure 2.1. Simplified view of small HyperDoc

structure having two networks

A HyperDoc system can handle multiple users and provide

means for cooperative work. HyperDoc will execute on
homogeneous workstations suitably networked for data
communication. The communication protocols do not concern
HyperDoc.

c - 12

2.1.1 Nodes

HyperDoc represents a node as a window on the screen.
Multiple nodes may be displayed on the screen. Each window
contains a header specifying the identification of its node.
Editing within the window as well as scrolling mechanisms are
provided by appropriate tools already available which HyperDoc
uses (refer to Section 2.1.7). Multiple users can access the
same node. However only one user can modify the content of
a node at a time, assuming he/she possesses the appropriate
rights.

A user can define regions within a node. Regions are
marked areas within a node. Regions and nodes can be
departure points or destination points of links. Regions are
unique within their node. Attributes can be assigned to
regions. A node can only handle one type of medium and it can
be of any size. Nodes are uniquely named throughout the
entire ' ‘rperdocument and possess attributes. Versioning is
done at the node level.

2.1.2 Links

Links provide a way of moving from one departure point

to one destination point within a network. We may have
several links from one departure point and similarly, several
links to one destination pcint. A user with appropriate

rights can follow & link from a source to explore the
information within the destination of the link. A 1link is
named and attributed so that HyperDoc applications can
associate higher level semantic to the 1link. This allow
further developments such as query base on the semantic of
these links. This leads to a high potential for the query
which is based on the logic or inference rule to make HyperDoc
more attractive. For example, in a HyperDoc application, an
enterprise can organize link names such that it supports a
cooperative work (refer to Section 2.1.5).

Future requirement may call for other types such as
active links in which a link points to a function executing
some process.

2.1.3 Organizations

Orcianizations are created by the user to organize the
nodes of a given network as a set, a map or a sequence. When
HyperDoc 1is 1invoked, an organization must be selected
afterwards. If the organization is a sequence, nodes may be
visited in that logical sequence wusing the function
Move_to_Next_MNode. At any time, the links can always be used
to navigate through the network as usual and are totally
independent of the logical sequence of nodes. The usexr choose

c - 13

to navigate through nodes with links or following the sequence
defined.

2.1.4 Networks

Nodes and links form networks. A network can contain
many user defined organizations. When HyperDoc is invoked,
a network must be selected afterwards. A node may be shared
by several networks. Networks have a unique identity and are
attributed.

2.1.5 Cooperative Work

As it was stated before, HyperDoc provides a perfect
environment for the documentation aspect in Software
Development. In such an environment, work is done wituin the
solution space of the problem/task by many people/experts, but
each piece of work is uniquely identified by its creator.
When the author of a piece of work wishes to receive
feedback/comments on his/her work, he/she can post an issue
on the work done to a selected audience (i.e a selected set
of users, project group(s), etc). The audience can then
individvally or jointly respond to, guestion, support, object
to, suggest, take a position, argue, etc... on the issue and
the positions taken and the arguments put forward. For
example, userl is responsible for a functional requirement,
but needs some additional information before proceeding. The
user then decides to pos*t an issue, which may be a question,
a call for help, etc... to user2 and users3. User?2 and user3,
in turn, may respond to the issue by agreeing or disagreeing
ir. the form of a position or argument. Userl may then follow
the suggestions in the positions and/or argument nodes to
complete his work.

To fit this within ours definition of HyperDoc, issues (or
concepts), positions (or responses to an issue) and arguments
(or debates) reside in nodes and the links which connect them
carry one of the types mentioned above (i.e respond_to,
question, object_to, etc). The author of =zn issue can see the
list of all incoming and outgoing links to the issue node and
depending on the feedback/comments he/she receives, can make
decisions as to the direction of his/Fer work. He/she may
decide for example *o create a new version of the work after
consulting and evaluating all feedback/comments by the other
users.

This method then, not only supports cooperation during
the software engineering process but provides a means for
tracing the decision making process throughout the life of a
piece of work, from problem formulation to solution. The
following diagram outlines the concepts described here.

c - 14

kkk kkkhkk

PUT DIAGRAM FROM CON87 PP.25

KKK KRKKKKKKKX

2.1.6 Security in HyperDoc

HyperDoc is an object made out of nodes, links,
organizations and networks. For each of these objects there
exists a creator. In the context of software engineering, the
creation of each object is done within the scope of one of the
software life cycle processes or within the scope of the
interaction or relationship(s) of these processes. People
creating these objects, the authcrs, belong to different
classes such as class user, class analyst, class designer,

class programmer, etc... Documents or work associated with
the SLC processes such as problem definition, software
requirement specification, design, source code, etc... are

the objects which the different classes of users and in effect
the users within those classes, manipulate.

in order to protect these documents and the system in
general from unauthorized access as well as define the scope
of the users in such system, the need for a security manager
exists in order to assign rights to users or a class of users.
A user inherits the rights (permissions) cf the user class
where he/she belongs (Refer to Section 2.5 for the rules
assumed to govern security) .

2.1.7 System Model

HyperDoc is similar to an operating system that sits
between the user and the operating system of the host machine.
The user is required to login to HyperDoc (with a user id and
a password) so that appropriate user permissions can Dbe
associated with this user. HyperDoc uses facilities that are
available in the operating system, such as time and date
utilities.

HyperDoc uses a set of existing tools such as text
editors, graphics editors, etc..., to manage a hyperdocument.
These tools are assumed to have been modified in order to
function in the HyperDoc environment.

The following diagram shows the interface of HyperDoc
with the relevant external entities.

Kk ok ok k¥kkhk

put spiros graph and
Kk kkkkkk k%X

2.2 Product Functions

The tasks that comprise HyperDoc can Dbe broadly
categorized into the following (these tasks have been brought
out from the user’s viewpoint):

a. manipulation of node’s content;

b. manipulation of HyperDoc's objects (links, nodes,
networks, organizations);

¢. handling of attributes for HyperDoc’s objects;
d. definition of security management functions;
e. navigation through a hyperdocument; and

f. searches for strings through a hyperdocument.

Manipulation of node's content: HyperDoc 1is expected to
provide a set of functions that perform normal editing on any
type of medium being part of the node. Those editing
capabilities are provided by existing tools which are used Ly
HyperDoc. At this level, we should be able to save the
content of a node (possibly under a new version) and retrieve
a specific node version.

Manipulation of HyperDoc'’s objects: the basic objects of
HyperDoc are networks, organizations, nodes, links within a
network and regions within nodes. Facilities to add/create
or delete any of these must be provided. Functions for the
user to select a network and an organization to work with are
also provided.

Handling of attributes for HyperDoc’s objects: HyperDoc
should provide facilities to assign attributes to networks,
links, nodes, and regions in nodes. Such attributes are date
of creation, author, etc (refer to Section 1.3 for definition
of attributes) and others which may be defined by the user.
It should also be possible to query on any attribute of any
object. For example, selective retrieval of information would
be:

a. select all links created on a certain date;

b. select all nodes of type graphic; and

¢. select all nodes of a certain author.

Each query’s response is displayed in a special window
called an information window (refer to Section 1.3 for

definition). Functions are also provided to inform the user

C - 16

on which networks and organizations within a network he/she
can work with. The information is stored in such a way that
in the future, an inference engine can be built to interpret
it.

Definition of security management functions: protection
at several levels must be provided by HyperDoc. The ability
to assign permissions for creation, deletion or viewing of
nodes, links, networks, organizations to different type of
user classes or to single users must be available.

Navigation through a hyperdocument: HypexrDoc should
provide the ability to move from one node/region to another
via links. The user has the choice of navigating through the
information space as he/she wants using the links available
or using a predefined sequence of nodes within a network, if
any (refer to Section 2.1.3). Backtracking facilities must
also be provided. In this way, it serves as a lifeline for
the user who can do anything and still be certain to be able
to get back to familiar territory. 1In addition, the user must
also be able to move to any node in the network without the
use of links, given the user knows the node identifier.

Searches for strings through a hyperdocument: when
dealing with a large information space, one need a search
mechanism that will retrieve the occurrences of a string of
characters throughout the nodes of the network. As well, the
search for next occurrence is also provided.

c - 17

2.3 User Characteristics

Three general classes of users are identified in
HyperDoc. A super user who can be seen as the manager of the
HyperDoc system. He/She is assumed to be the only one who can
create/delete users or user classes. He/She can designate one
user as a leader of a user class (refer to Section 2.1.6 on
security).

Another user class can be seen as the builders who are
authorized to create/delete nodes, links, organizations and
networks in HyperDoc.

Finally, another user is the consulter who can only
browse hyperdocuments and request specific information. The
users are assumed to have some basic knowledge about windowing
facilities. As stated before, users can be Software
Developers and consequently, one assumes that they possess
domain knowledge in order to build the documents
appropriately.

c - 18

2.4 Special Constraints

HyperDoc is expected to run under Unix environments. The
tools for editing must be modified appropriately to interface
with HyperDoc. The operating system must handle rrotection
at the file level (secondary storage). At the hyperdocument
level, HyperDoc allow only authorized users (defined within
HyperDoc) to access objects.

Only one user can modify the content of a node at a time,
given he/she possesses the permissions to do so.

c - 19

Assumptions

a.

b’

atomicity is guaranteed for any function occurring at
the node level,

the tools to edit multimedia must be available under
HyperDoc’s environment.

. regions within a node are highlighted in some way when

the node is displayed on the screen.

. a window environment is assumed to be available. This

facility will take care of basic window management
functions such as move the window in the screen,
resize the window, etc. . HyperDoc does not have to
take care of such functions,

hardware support is assumed to possess enough
characteristics to meet the performaince requirements
as stated in Section 3.2.

it is the user responsibility to decide what to put
in the node and how to link thenmn.

any modifications of administrative information
(add/create nodes, links, organizations, networks) in
HyperDoc is saved implicitly and permanently when
modified.

. multiple user access to information is provided by the

operating system.

the following rules are followed to govern the
security system:

(1) it is assumed that the verification of rights for
a specific user is done at the single user level
as well as at the user class level where he/she
belongs to (refer to Section 2.1.6).

(2) a user belong to at least one user class.

(3) a user can access the system only when he/she has
been granted permission under a certain user
class.

(4) there exists a SUPER user with full access rights
at all times.

(5) a user or user class can only access links, nodes,
organizations and networks they have been granted
access to in the manner specified by object
rights.

(6) object rights granted to users or groups of users
are: Read, Write, Delete, Create.

c - 20

(7)
(8)

(9)
(10)

only SUPER user can create/delete/update users and
user classes.

a user can assign/revoke/update object rights to
other users or user classes of only objects he/she
has created. The class leader can assign/revoke
object rights for any user of his/her class.
SUPER User can assign/revoke/update access rights
of any object for any users or user classes.

the author of an object can be a user or a user
class.

c - 21

3.

3.

3.

0

1

1.

1

SPECIFIC REQUIREMENTS

Functional Requirements

NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS :

Show_Outgoing_ Links

To identify all the links of the current
network having the given anchor
identification as their departure point.

Anchor id
Current network

The links having the anchor identifier as
their departure point are searched through
the current network and are displayed on
a new information window.

A new information window is created and
displayed over all windows (if any)
currently appearing on the screen. This
window contains the list £ links having
the anchor as their departure point.

When the given anchor is not the departure
point of any 1link. In such a case, a
message is displayed to the user.

Anchor identifier may be a Node identifier

or a Region identifier with a node
identifier.

c - 22

NAME :

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Show_Incoming_Links

To identify all the links of the current
network having the given destination
identification as their destination point.

Destination id
Current network

The links having the destination
identifier as their destination point are
searched through the current network and
are displayed on a new information window.

A new information window is created and
displayed over all windows (if any)
currently appearing on the screen. This
window contains the list of links having
the given destination as their destination
peint.

When the given destination in not the
destination point of any link. In such
a case, a message is displayed to the
user.

Destination identifier may be a Node
identifier or a Region identifier with a
Node identifier.

c - 23

.1,

NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

Follow_Link

To move around the information space of
the hyperdocument using an explicit link
by displaying the node visited.

Link id with its departure and destination
point

Current node

Current navigation path

i) If the link refers to a destination
point in another node,

- If the current node contains unsaved
changes, confirm with the user to
move or not.

- If the users wants to move,

- include the current node identifier
in the current navigation path,

- display the latest version of the
node referred by the link in a new
node window with the cursor
positioned at the beginning of the
region (if specified by the link)
or at the beginning of the node
otherwise.

- Display the node identifier in the
window header.

ii) If the link refers to a destination
point in the same node (current node
window), make the region pointed by
the link visible in the current node
window and position the cursor at the
beginning of the region.

i) A new node window is displayed on the
screen with the user positioned at the
destination point specified by the
link.

ii) The user position is at the
destination point specified by the
link (this region is made visible in
the current node window).

EXCEPTIONS: - Unauthorized user permission.

- Link departure point is not part of the
current node.

C - 24

REMARKS : - If the user has unsaved changes in the
node, he/she is requested to confirm
whether to move or not. If he/she
decide not to move, his functions is
disabled.

-~ Link destination point contains a node
identifier and possibly a region
identifier within this node.

Cc - 25

.1.4 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Move_To_Unconnected_Node

To visit a specified node of the current
network without using a link.

Node id to visit
Current node identifier
Current navigation path

- If the node contains unsaved changes,
confirm with the user to move or not.
- If the user wants to move,

- include the current node in the
current navigation path,

- display the latest version of the node
in a new node window on the screen
with the cursor positioned at the
beginning of the node,

- the node identifier is displayed in
the node window header.

A new node window is displayed on the
screen with the cursor positioned at the
beginning of the node.

- Unauthorized user permission.
- Node identifier does not exist in the
current network.

If the user has unsaved changes in the
node, he/she is requested to confirm
whether to move or not. If he/she decide
not to move, this functions is disabled.

C - 26

1.

NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS :

REMARKS:

Backtrack_One_Step

To backtrack one step in the navigation
path followed by the user through the
network.

Current navigation path

- The current position of the user in the

network is backtracked one step to the
previous node of the navigation path.
The current node window is cleared from
the screen and the cursor in now in the
previous node window (made visible) at
the previous position.
Remove the current node from the current
navigation path.
e.qg.
1) current navigation

path: nodel-->node4-->node2-->node?9

]
1
current node ---+

2) backtrack one step

3) current navigation
path: nodel—-)node4——>no§ez

new current node ---+

The current node window disappears from
the screen and the previous node window
is reaisplayed at the front of any windows
currently shown on the screen.

When the current visited node is the
first node in the current navigation
path (cannot back track).

When the current navigation path is not
defined (empty).

When the previous node in the navigation
path does not exist anymore.

Nil

c - 27

.1,

NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS :

REMARKS:

Display Overview_Diagram

To inform the user about its relative
position (node position) in the current
network.

Network
Current navigation path

- Display the diagram of the current
network on a new information window.

- Mark the nodes visited so far (nodes
which are part of the navigation path)
differently from the other nodes.

- Mark the current node differently from
the nodes in the navigation path as well
as all other nodes in the network.

A new information window is displayed over
all windows currently shown on the screen,
with the overview diagram in it.

There is no current network selected.

Nil

cC - 28

.1,

NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Display_ Network_Attributes

To inform the usger about the attributes
and their assigned values in the given
network.

Network id
Current network

Display in an information window, the list
of the network’s attribute labels as well
as their value.

A new information window is displayed on
the screen and it contains the list of
attributes assigned to the network.

The network does not exist is the HyperDoc
system.

Nil

Cc - 29

.1,

NAME :

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS :

Display_Organization_Actributes

To inform the user about the attributes
and their assigned values for the given
organization in the ‘urrent network.

Organization id
Current network

Display in an information window, the list
of the structure’s attribute 1labels as
well as their value.

A new information window is displayed on
the screen and it contains the 1list of
attributes assigned to the structure.

The organization does not exist in the
current network.

Nil

c - 30

. 1.

NAME :

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS :

Display_Node_Attributes

To inform the user on the attributes and
their values assigned to the given node
in the current network.

Node id
Current network

Display in an information window, the list
of the node's attribute labels as well as

their value.

A new information window is displayed on
the screen and it contains the 1list of
attributes assigned to the node.

The node does not exist in the current
network.

Nil

c - 31

3.1.10 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS :

Display_Link_Attributes

To inform the user on the attributes and
their values assigned to the given link.

Link identifier
Current network

Display in an information window, the list
of the link’s attribute labels as well as
their value.

A new information window is displayed on
the screen and it contains the list of
attributes assigned to the link.

The link does not exist in the current
network.

Nil

Cc - 32

3.1.11 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Destroy_ Information Window

To remove an information window from the
screen.

Information window id
Destroy the information window.

The given information window disappears
from the screen.

The window identified is not currently
displayed on the screen.

Nil

c - 33

3.1.12 NAME:
PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS :

Change_Node
To change the content of a node.

Node id
Node attributes
Editing command
User id

- The editing command is interpreted by
the appropriate tool editor for the node
(refer to Section 2.1.7) and applied on
the node’s content.

- If the node or the region changed is
referenced by a link who's author is not
the current user, versioning is forced
(refer to Section 1.3.43 save under new
version).

- Update the last modified date attribute
of the current network.

The content of the node has changed
appropriately.

- Unauthorized user permission

- The current node is not locked by the
user wanting to change it.

- The current node is not the latest
version that exists.

From the node type attribute (graphic,
text, voice), the appropriate tool is used
so that the user can utilize the commands
available from that tool to change the
content of the node.

For example, an editing command could be
"add a character". The appropriate tool
will take care of the changes implied by
the command (ie, adjusting cursor
position, updating the display, etc).

Cc - 34

3.1.13 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS :

Lock_Node

To disable the ability of any other user
to change the content of the current node.

Current node id
User id
Node attribute list

- Lock the current node for the given
user.

- Set the lock attribute of the current
node to true.

The current node is locked by the user id.

- Unauthorized user permission.
- The node is already locked by another
user.

Nil

Cc - 35

3.1.14 NAME:
PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS :

Unlock_Node
To unlock the node from the user.

Current node id
User 1d
Node attribute 1list

- Unlock the current node from the given
user.

- Set the lock attribute of the current
node to false.

The node is unlocked and is available for
other users to change it.

- The node is not currently locked.

- The user under whom the node was
actually locked is not the same as the
given user wanting to unlock it.

Nil

Cc - 36

3.1.15 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS::

Search_For_ String

To search nodes in a network for a given
string.

A
A

string
scope id

For every node in the given scope,
search the node contents for a match to
the search string.

If the search string is found, display
the node that contains it, otherwise,
display a "not found" message to the
user,

The current node becomes the node where
the search string is found.

OR

A "not found" message is displayed.

The scope id does not exist in the system.

The scope id can be either a network id
OR an organization id. The scope id
creates a boundary for the number of nodes
that are included in the search.

c - 37

3.1.16 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Search_For Next_Occurrence_Of_String

To find the next occurrence of a search
string entered by the user, within the
previocusly specified scope.

A string
A scope id

- Find the next occurrence of the string.

- If there is no other occurrence of the
search string within the boundaries of
the scope, display a "not found" message
to the user.

- The current node becomes the node where
the search string is found.

OR

- A "not found" message is displayed.

- A search string and a scope id were not
previously entered.

- The scope id does not exist in the
hyperdocument.

The scope id can be either a network id
OR an organization id. The scope 1id
creates a bound on the number of nodes
that are included in the search.

cC - 38

3.1.17 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Search_For_An_Attribute

To search all attribute lists associated
with links, nodes, regions, networks and
organizations for a <label,value> pair
that matches the given input.

A <label, value> pair

A search object, (ie a link, node, region,
network or organization id) whose
attribute lists will be searched (or use
the default, search all)

A scope id in which to search, (or use the
default, search current network)

- Search the attribute list of the given
search object for a <label, value> pair
that matches the given input.

- Display a list of search object
identifiers having matches in their
attribute lists.

- Display a "not found" message if no
search objects have a match to the user
input in their attribute lists.

- A list of object identifiers whose
attribute list contains a match to the
given attribute.

OR

- A "not found" message is displayed.

The given scope id does not exist in the
system.

The scope id can be either a network id
OR an organization id. The scope id
creates a boundary for the number of nodes
that are included in the search.

c - 39

3.1.18 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

REMARKS:

EXCEPTIONS:

Assign_Link_Attribute

To assign an <label, value> pair to a
link.

Link id

A
A

<label, value> pair
user id

Assign the value to the label in the
attribute l1ist for the given link. 1If
the label already exists, its value is
overwritten by the new value.

The Last_Modified Date will be set to
the system time when the attributes are
assigned, and the Created_By attribute
will be set to the name of the user who
makes the assignment.

If no value for the Link_Description is
supplied by the user, HyperDoc will give
the label a value equal to the first
part of the Anchor attribute.

The attribute list associated with the
given link id will have either a new
<label, value> pair, or a new value for
an existing label.

System maintained attributes will be
updated (Created_By, Last_Modified_Date,
Link_Description).

The link id does not exist in the
network.

The user does not have the appropriate
permissions to modify the link
attributes.

Nil

C - 40

3.1.19 NAME:

PURPOSE :

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS :

Assign_Node_Attribute

To assign an <label, value> pair to a
node.

Node id
A <label, value> pair
A user id

Assign the value to the label in the
attribute 1ist for the given node. If
the label already exists, its value is
overwritten by the new value.

The Last_Modified_Date will be set to
the system time when the attributes are
assigned, and the Created By attribute
will be set to the name of the user who
makes the assignment.

If no value for the Node_Description is
supplied by the user, HyperDoc will give
the Label a value equal to the first
part of the content of the node.

The attribute list associated with the
given node id will have either a new
¢label, value> pair, or a new value for
an existing label.

System maintained attributes will be
updated (Created_ By, Last_Modified Date,
Node_Description).

The node id does not exist in the
network.

The user does not have the appropriate
permissions to modify the node
attributes.

Nil

C - 41

3.1.20 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

REMARKS :

EXCEPTIONS:

Assign_Network Attribute

To assign an <label, value> pair to a
network.

Network id

A
A

<label, value> pair
user id

Assign the value to the label in the
attribute list for the given network.
If the label already exists, its value
is overwritten by the new value.

The Last_Modified_Date will be set to
the system time when the attributes are
assigned, and the Created_By attribute
will be set to the name of the user who
makes the assignment.

If no value for the Network Description
is supplied by the user, HyperDoc will
give the Network_Description a default
value.

The attribute list associated with the
given network id will have either a new
<label, value> pair, or a new value for
an existing label.

System maintained attributes will be
updated (Created By, Last_Modified_Date,
Network Description).

The network id does not exist in the
system.

The user does not have the appropriate
permissions to modify the network
attributes.

Nil

C - 42

3.1.21 NAME:

PURPOSE :

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Assign_Organization_Attribute

To assign an <label, value> pair to a
organization.

Organization id
A <label, value> pair
A user id

- Assign the value to the label in the
attribute 1list for the given
organization. If the label already
exists, its value is overwritten by the
new value.

- The Last_Modified_Date will be set to
the system time when the attributes are
assigned, and the Created_By attribute
will be set to the name of the user who
makes the assignment.

- If no value for the
Organization_Description is supplied by
the user, HyperDoc will give the
Description a default value.

- The attribute list associated with the
given organization id will have either
a new <label,value> pair, or a new value
for an existing label.

- System maintained attributes will be
updated (Created_By, Last_Modified_Date,
Organization Description).

- The organization id does not exist.

- The user does not have the appropriate
permissions to modify the organization
attributes.

Nil

3.1.22 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

REMARKS :

EXCEPTIONS:

Assign_Region_Attribute

To assign an <label, value> pair to a
region.

Region id

A
A

<label, value> pair
user id

Assign the value to the label in the
attribute list for the given region.
If the label already exists, its value
is overwritten by the new value.

The Last_Modified_Date will be set to
the system time when the attributes are
assigned, and the Created_By attribute
will be set to the name of the user who
makes the assignment.

If no value for the Region_Description
is supplied by the user, the hypertext
system will give the Region_Description
a value equal to the first part of the
contents of the region.

The attribute list associated with the
given region id will have either a new
<label, value> pair, or a new value for
an existing label.

System maintained attributes will be

updated (Created_By, Last_Modified_Date,

Region Description).

The region id does not exist.

The user does not have the appropriate
permissions to modify the region
attributes.

Nil

3.1.23 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Create_Node

To create a new and empty node within the
HyperDoc and assign it to a network.

Node attributes
Network id

Create new node in the HyperDoc.

The HyperDoc assigns default attribute
values to the new node; its version
number will be assigned to 1.

Assign node to the specified network.
The node lock is false.

New node is created.
A unique node id is returned.

The user has unauthorized capability to
create new node.
Network id does not exist.

The default wvalues of the node were
described in detail in section 2.

C - 45

3.1.24 NAME:
PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS :

Delete_Node
To delete the node from the netvork.

Node id
Current network

- If there exist links within the same
network associated to the node, the
HyperDoc informs the user about these
links.

- The HyperDoc prompts the user to confirm
his/her decision so that the user can
undo the command and manipulate these
links manually.

- If the user confirms to delete the node
while there are links associated to the
node then the HyperDoc deletes all links
and logically remove the node from the
context of the network.

- If there exist in-coming links which
reference the node from the other
network context, then the HyperDoc
forces versioning.

- Update the modification date of the
networks affected by this function.

The node is deleted from the context of
the specified network.

- The user has unauthorized capability to
delete a node.
- Node is locked.

Nil

C - 46

3.1.25 NAME:
PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS :

Split_Node

To split the node into two.

Node id
Position within the node
Current network

Create new and empty node to the
HyperDoc and assign it to the current
network.

The HyperDoc assigns the default
attribute values to the new node.

Copy content from second part starting
from the given position of the original
node Lo the newly created node.

Remove the second half of the original
node content.

If there exist links within the current
network associated to the original ncde,
the HyperDoc informs the user about
these links.

The HyperDoc prompts the user te confirm
his/her decision so that tihie user can
undo the command anc manipulate these
links manually.

If the user confirma to delete the node
while there are lianks associated to the
node then the HyperLoc deletes all links
and logically removes the node from the
context of the network.

If there exist in-coming links which
reference the node from the other
network context, then the HyperDoc
forces versioning.

Update the modification date of networks
affected by this function.

Original node is split into two.
A unique node id of the newly created
node is returned.

The user has unauthorized capability to
split the node.

Cursor position is in the area within
a region.

Node is locked.

The user may require to update the links
associated to the nodes in order to
correct the semantics of those links.

C - 47

3.1.26 NAME:
PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Insert_Node
To insert content of node (1) to node (2).

Node id (1)

Node id (2)

Position within node (2)
Current network

- Content of node (1) is inserted after
the given position within node (2).

- FPor links previously associated to the
node (1) in the current network context,
they will be updated to the
corresponding destination in node (2).

- Delete node (1) from the current
network.

- If there exist in-coming links which
reference the node from the other
network context, then the HyperDoc
forces versioning.

- Update the modification date of nodes
and networks affected by this function.

- Content of node (1) becomes part of node
(2).

- Node (1) is deleted from the current
network.

- Node is locked.

- The user has unauthorized capability to
insert the node.

- Node id of node (1) is identical to that
of node (2).

The user may require to update links in
the current network to keep the links'
semantic correct.

C - 48

3.1.27 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Save_Node_Under_Current_Version

To save the node to the permanent store
under current version.

Node id
Current network
Node version

- If region(s) has been changed within
the context of the current network and
there exist in-coming link(s) which
references the region from other network
context, then the HyperDoc forces
versioning, otherwise the HyperDoc save
the node onto the permanent store.

- Updates the modification dated of
networks affected by this function.

The permanent store of the node is updated
under current version or new node version
will be created and saved.

- The user has unauthorized capability to
save the node.

- There is not enough space in the
permanent store.

- Node is locked.

Nil

C - 49

3.1.28 NAME:
PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS :

Assign_Node_To_Network

To assign the node to a specified network.

Node id
Network id

- The node is input into the network.

- Updates the last modified dated to the
network.

The node is in the context of the network.
- The user has unauthorized capability
to assign the node to the network.

- Node id or network id is invalid.

Nil

c - 50

3.1.29 NAME:
PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Create_Region

To create a region in the specified node.

Node id
Selected area within the node
Region attributes

- Create a region within the specified
node.

- The HyperDoc assigns the default
attribute values to the region.

- The region is crected within the
specified node.
- Region_Id is returned.

The user has unauthorized capability to
create new region in the specified node.

Regions may overlap partly or completely
within the node.

c - 51

3.1.30 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Delete_Region

To delete a region from the specified
node.

Node id
Region id
Current network

- If there exist links within the current
network associated to the region, the
HyperDoc informs the user about these
links.

- The HyperDoc asks the user to confirm
his/her decision so that the user can
undo the command and manipulate these
links manually.

- If the user confirms to delete the
region while there are links associated
to the region then the HyperDoc deletes
all theselinks and removes the region.

- If there exist in-coming links which
reference the region from the other
network context, then the HyperDoc
forces versioning.

- Update the modification date of networks
affected by this function.

The specified region is removed from the
node.

The user has unauthorized capability to
delete region from the specified node
within the network.

Nil

Cc - 52

3.1.31 NAME:

PURPOSE :

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Create_Link

To create a new link from a departure to
a destination within the specified
network.

Current network
Departure id
Destination id
Link attributes

- The HyperDoc assigns the default
attribute values to the link.

- Connects the link from the departure
point to the destination point.

- Assign the link to the current network.

~ Update the last modified date of the
current network.

- A link is created in the current
network.
- A unique link id is returned.

- The user has unauthorized capability to
create link in the specified network.

- Departure or destination is undefined
within the context of the current
network.

Departure/destination can be node or
regions.

c - 53

3.1.32 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Delete_Link

To delete a link within the specified
network.

Current network
Link id

- Remove the link from the current
network.

- Update the last modified date of the
network.

The link is deleted.

The user has unauthorized capability to
delete the 1link within the current
network.

Nil

C - 54

3.1.33 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS :

Create_Network

To create a new and empty network to the
hyperdocument.

Network attribute

New and empty network in the HyperDoc.
The HyperDoc assigns default attributes
value to the network.

New network is created in the HyperbDoc.
- A unique network id is returned.

The user has unauthorized capability to
create new network.

Nil

Cc - 55

3.1.34 NAME:
PURPOSE:
INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS :

Delete_Network
To delete the network from the HyperDoc.
Network id

- All links and nodes within the network
are deleted.

- Remove the specified network from the
HyperDoc.

The network is removed from the Hypertext.

- The user has the unauthorized capability
to delete the network.

- Network id is undefined.

Nil

C - 56

3.1.35 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Create_Organization

To create a new/empty organization within
a network.

Network id
Organization type
Organization attributes

- Create a new and empty organization
within the specified network.

- The HyperDoc assigns the default value
of attributes to the organization.

- Update last modified date of the
specified network.

- The new/empty organization is created.
- A unique organization id is returned.

- The user has unauthorized capability to
create new organization to the network.
- Network id is undefined.

The user may select one of the Hypertext

defined type (SET, SEQUENCE, MAP) or
his/her own defined type.

c - 57

3.1.36 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTION:

REMARKS:

Delete_Organization

To delete an organization from the
network.

Organization id
network id

- Remove the organization description
(content).

- Remove the organization from the
network.

The specified organization is deleted.

- The user has unauthorized capability to
delete the organization.

- Network id is undefined.

Nil

C - 58

3.1.37 NAME:

PURPOSE:

INPUT:

ACTION:
RESULT:
EXCEPTIONS:

REMARKS :

Invoke_HyperDoc

To invoke the HyperDoc from the host
operating systen.

User id
Password

Execute the HyperDoc system.
Hyperdocument.

The user id or password is undefined.

Nil

Cc - 59

3.1.38 NAME:
PURPOSE:
INPUT:
ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Shutdown_HyperDoc

To quit from the HyperDoc.
Current HyperDoc

Quit from HyperDoc.

The user is out of the HyperDoc and back
to the host operating system.

Nil

Nil

Cc - 60

3.1.39 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Show_Network List

To display the list of all networks to the
user.

Nil

Display the 1list of all networks in an
information window.

A list of all networks in the
hyperdocument is displayed on in an
information window.

Nil

Nil

Cc - 61

3.1.40 NAME: Show_List_Of_Organizations_Within_ A_Network

DPURPOSE: To display the 1list of organizations
defined for a given network.

INPUT: A network id
A user id

ACTION: Display a list of organizations defined
for the given network in an information
window.

RESULT: A list of organizations that the user can

activate is displayed on the screen.
EXCEPTIONS: Nil
REMARKS: The user is already within the context of

a network for which he has the appropriate
access rights.

C - 62

3.1.41 NAME:
PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS :

Select_Network

To allow the user to activate a network.

A network id
A user id

Change the currently active network to the
selected network.

The currently active network becomes the
selected network.

~ The network id does not exist in the

system,
- The user does not have access rights for

the given network.
When a network is activated, the user can

access only those nodes and organizations
that are defined for that network.

C - 63

3.1.42 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Move_To_Next_Node

To display the contents of the next node
in an organization of type sequence to the
user.

An organization id

A network id

The current node id

The current navigation path

- If the current node contains unsaved
changes, confirm with the user to move
or not.

- If the user wants to move,

- include the current node identifier
in the current navigation path,

- display the latest version of the next
node in the sequence in a new node
window with the cursor positioned at
the beginning of the node, and

- display the node identifier in the
window header.

The content of the next node in the
sequence is displayed in a new node
window.

- The organization type is not a sequence

type.
- Unauthorized user permission.

The user is already within the context of

a network and organization for which he
has the appropriate rights.

C - 64

3.1.43 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Save_Node_Under_New_Version

To gsave the contents of the node with a
new version number.

A node id

A set of node attributes

- Save the content of the node on
secondary storage with a new version
number.

- Increment the version number in the
attribute list of the given node.

- Remove all incoming links to the new
node that were created by the author,
and keep all incoming and outgoing links
to the o0ld node.

- Update the appropriate link attributes
that have been affected by this
operation.

- The content of the node is written into
a new file on the storage device.

- The version attribute of the node is
incremented.

- Those attributes that are maintained by
HyperDoc are updated.

- Insufficient siorage space exists on the
storage device.

- The user does not have the security
permission to save changes to a node.

Nil

C - 65

3.1.44 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Retrieve_Previous_Version Of_A_Node

To retrieve and display the contents of

a

A
A

A

previous version of a given node.

node id
version number

Reti ieve the given version of the node
from the storage device.

Display the contents of the node on the
screen in a node window.

Update the window header to display the
identification of the node.

node window is displayed that contains

the contents of the node.

The version number does not exist for
the given node.

The node id does not exist in the
hyperdocument.

The user does not the appropriate access
permissions.

Nil

C - 66

3.1.45 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Create_User_Class

To create a new user class and add it to
the user class list.

User Class Id

User Class Name

User Class Description
User Class List

- Create the new user class and add it to
++e user class list.

- Inform the SUPER user of the results of
the operation.

New user class list.

- A user class list does not exist.

- The user class id already exist in the
user class list.

- The creator is not the SUPER user.

The user class description attribute
captures information pertaining to the
role that the user class plays within the
context of the software engineering
process. User classes should be unique
(ie. unique user class id).

Cc - 67

3.1.46 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

XCEPTIONS:

REMARKS :

Delete_User_Class

To remove the definition of a user class
from the user class list.

User Class Id
User Class List

- Delete the user class from the user
class list.

- Inform the SUPER user of the results of
the operation.

New User class list.

- The user class to be deleted is not in
the user class list.

- The set of users belonging to that class
is not empty.

- The user attempting the deletion is not
the SUPER user.

Nil

C - 68

3.1.47 NAME:

PURPOSE:

INFUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Update_User Class

To modify the name and/or description of
a user class.

User Class Id
New Name and/or New Description
User Class List

- Replace the old name and/or description
of user class with new values.

- Inform the user SUPER of the results of
the operation.

New modified user class.

- Th2 user class is not in the user class
list.

- The new values are not different than
the o0ld ones.

- The user attempting to modify any of the
attributes of the user class is not
SUPER user.

A user class id cannot be modified, only
created or deleted.

C - 69

3.1.48 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS :

Create_User

To create a new user and add him/her to
the user 1list.

User Id

User Name

User Password
User Description
User List

- Create the new user and add him/her to
the user list.

- Inform SUPER user of the results of the
operation.

New user list.

- The user list does not exist.

- The User Id already exist in the user
list.

- The creator is not the SUPER user.

The user description attribute captures
information pertaining to the role that
the user plays within the context of one
or more of the software engineering
processes. User Id’s should be unique.

cC-170

3.1.49 NAME:
PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Delete_User
To remove a user from the user list.

User 1Id

User List

Set of pairs of <object type, object id>
of user objects

Set of user classes to which a user
belongs

Another user’'s Id

- Allocate all objects rights of deleted
user to another user.

- Delete user from all classes that appear
in the set of user classes.

- Delete the user from the user list.

- Inform the SUPER user of the results of
the operation.

New User 1list. All objects rights of
deleted user transferred toc another user.

- The user to be deleted is not in the
user list.

- The user attempting this operation is
not the SUPER user.

Nil

c-171

3.1.50 NAME:

PURPFOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS::

Update_User

To modify the name, password and/or
description of a user.

User Id

New Name and/or New password and/or New
Description

User Class List

- Replace the old name and/or password
and/or description of user with new
values.

- Inform the user of the results of the
operation.

New modified user attributes.

- The user is not in the user class list.

- The new values are different than the
old ones.

- User attempting modification is not the
SUPER user or the user himself.

A user id cannot be modified, only created
or deleted.

cC - 72

3.1.51 NAME:
PURPOQSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Assign_User_ To_Class
To make a user a member of a user class.

User Id

User List

User Class Id

User Class List
User-Class Relation List

~ Add the <user 1id, user class id>
relation in the user-class relation
list.

- Inform the SUPER user of the results of
the operation.

New user~class relation list.

~ The user is not in the user list.

- The user class is not in the user class
list.

~ The <user id, user class id> relation

already exists in the user-class

relation list.

Another user besides SUPER user attempts

to perform this operation.

Nil

c - 173

3.1.52 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Delete_User_ From_Class

To revoke a user'’'s membership from a user
class.

Usexr Id

User List

User Class Id

User Class List
User-Class Relation List

- Remove the <user id, user class 1id>
relation from the user-class relation
list.

- Inform the SUPER user of the results of
the operation.

New user-class relation 1list.

- The user is not in the user list.

- The user class is not in the user class
list,

- The <user id, user class id> relation
does not already exist in the user-class
relation list.

- This is the only class that the user
belongs to.

- It is not the SUPER user performing this
operation.

Nil

cC - 74

3.1.53 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Assign Object And_Rights_To_Manager

To make a user or a user class eligible
to access an object with certain access
privileges.

User Id

User List (or User Class Id, User Class
List)

Object type Object Id

Manager-Object Relation List

Access rights set (ie read, write, create,
delete, etc...)

- Add the <user id, object id, access
rights set> or <user class id, object
id, access rights set> relation in the
manager-object relation list.

- Inform the SUPER user of the results of
the operation.

New manager-object relation list.

- The user or user class is not in the
user or user class list.

- The <user id, object id> or <user class
id, object id> relation does not already
exist in the manager-object relation
list.

- It is not the SUPER user performing this
operation.

The notation <user id, object id, access
rights set> associates a user with an
obiect in the way specified by the access
rights set.

cC - 175

3.1.54 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Delete_Object_And_Rights_From_Manager

To revoke a user’s or a user class access
to an object which they used to access
with certain access privileges.

User I4

User List (or User Class Id, User Class
List)

Object type

Object I4d

Manager-Object Relation List

- Delete the <user id, object id, access
rights set> or <user class id, object
id, access rights set> relation from the
manager-object relation list.

- Inform the SUPER user or class leader
of the results of the operation.

New manager-object relation list.

- The user or user class is not in the
user or user class list.

- The <user id, object id> or <user class
id, object id> relation does not already
exist in the manager-object relation
list.

- It is not the SUPER user or the class
leader performing this operation.

Nil

Cc - 76

3.1.55 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS :

REMARKS:

Update_Object_Rights_Of_Manager

To update a user’s or a user class access
to an object which they have access to
already with certain access privileges.

User Id

User List (or User Class Id, User Class
List)

Object type

Object Id

Manager-Object Relation List

New access privileges set (ie. read,
write, etc...)

- Replace the old access rights set with
the new ones.

- Inform the SUPER user or class leader
of the results of the operation.

New manager-object relation list.

- The user or user class is not in the
user or user class list.

- The <user id, object id> or <user class
id, object id> relation already exist
in the manager-object relation list.

- The o0ld and new set of privileges are
the same.

- It is not the SUPER user or the class
leader performing this operation.

Nil

c - 177

3.1.56 NAME Show_Object_Access_Rights

PURPOSE: To show the access rights that a user has
on an obiject.
INPUT: User Id
Object id
ACTION: Display allocated rights to user.
RESULT: The object rights for the user.

EXCEPTIONS: Nil

REMARKS : Nil

c - 178

3.1.57 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS:

Select_Organization

To allow the wuser to activate an
organization within a network.

The current network
An organization id
A user id

Change the currently active organization
to the selected organization.

The currently active organization becomes
the selected organization.

- The organization id does not exist in
the current network.

- The user does not have access rights for
the given organization.

When a organization is activated, the user

can access only those nodes that are
defined for that organization.

cC-179

3.1.58 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS :

Display_Region_Attributes

To inform the user about the attributes
and their values assigned to the given
region.

Region identifier
Node identifier
Current network

Display in an information window, the list
of the region’s attribute labels as well
as their value.

A new information window is displayed on
the screen and it contains the list of
attributes assigned to the region.

The region does not exist in the current
network.

Nil

c - 80

3.1.59 NAME:

PURPOSE:

INPUT:

ACTION:

RESULT:

EXCEPTIONS:

REMARKS :

Display_Assigned_Object_1Ids

To provide the user with a list of object
ids, having the given object attribute,
to which he has full access rights.

Author id
Object attribute

Display in an information window, the list
of the object 1ids of all objects
containing the given object attribute in
their attribute lists.

A new information window is displayed on
the screen and it contains the list of
object ids selected.

Nil

An object attribute is an attribute
defined for the object. For example, a
user can list all the issues that he has
been asked to respond to by specifying
that the object attribute (in this case,
a node attribute) be of type issue.

Cc - 81

3.1.60 Future Requirements

a. garbage collection facility to collect objects that
are not used in the system;

b. versioning at the network level;
c. importation of information created outside HypderDoc;
d. facilities for printing; and

e. pattern search capabilities.

c - 82

3.2 Overall Performance Requirements

3.2.1 Timing Constraints

HyperDoc is an interactive tool. The following
constraints are required for the timely execution of user

commands:

a. the response time to

any user command must be no

longer than 30 seconds;

b. the overview diagram
reasonable number of
the structure of the

¢. operations performed

must be updated after a
modifications have been made to
hyperdocument;

by the SUPER user must take

effect instantaneously; and

d. performance of HyperDoc must not degrade below the
above stated timing constraints when the system load

increases.

C -~

83

3.3 Attributes
3.3.1 Availability

HyperDoc should be available at all times to at most 50
users. In case of a failure internal to HyperDoc appropriate
recovery procedures can be activated to repair the damage, if
possible. In case of a host operating system failure, restart
and consistency checking procedures exist.

3.3.2 Security
There are three levels of security, host-user level,

HypderDoc-user level and HyperDoc-object level. For details
on HyperDoc security refer to section 2.1.6

cC - 84

3.4 Acceptance Criteria

The product, HypderDoc will be accepted if the following
criteria are satisfied:

a. functional Requirements are satisfied;

b. the Timing Constraints are satisfied;

C. an average user can easily learn HyperDoc;

d. HyperDoc should be easily extendible and maintainable;
e. HyperDoc should lke reliable;

f. HyperDoc should be user-friendly; and

g. a user manual should be provided, which must be
consistent with the functionalities in HyperDoc.

Cc - 85

Appendix D

The infoMap for the HyperDoc SRD

A[BICIDIE|FIG[H]| t | J
1A A A A A A A 1 {IDENTIFICATION}
2 |v v VvV v v v v 1. infoSchema for the HyperDoc SRD.
3 1A A A A A A A 8 {REFERENCE)}
4 A A A A A A A 6 {VIEW)
5]|v . . 1. Definitions
6 v .. 2. Product Perspective
7 v v . . 3. Product Functions
8 vV Vv . 4. Functional Requirements
9 v 5. Product Users
10] . v t. Set Cardinality
1110 . 29 { DEFINITION }
12T . . O 6 (USERTYPE}
13 . H O 12 { OPERATION }
14f. H 1 {EXTERNAL OBJECT}
15|{T H O O F M 45 {INTERNAL OBJECT }
16 G . 11 { PRE-GUARD}
17 . . G 15 { PRE-CONDITION }
18 M H . 11 { TASK}
19 S 19 { ACTIOHN }
20 . G 8 {POST-CONDITION}
21 G . G 27 { POST-GUARD}
22 M M 5 {REMARK}

—

«< <>« pig

<< qa>a >
-4

s
-
»

< ¢ 2 >a >
-

<< <»«plp

% < <P >
-

-
-
< < < »= ple

<< ey»<rle

ot

<« < <>« >0

LIS IR ¢
<Pz ple
<% <> e
«c<« >«
<< <»c <
LI S Y
LEC RIS 3
Ccee>ad

<
<
-
-
<
<
-
<
<
-
<
<
<
<

EEFFRRFREFE

<
<
<
<
<
-
<
<

{= i

<
<
<
<
<
<
<
<
<
<
-

-
-
< <
<
<
<

-
<

238388

»

e

LI 3

- o«

K 3
<

. <

L
<

3

nd
3

l

[=j=]]

el

b
-

l;l=l

L
-~

l:lzlélzl

IS
~

RA!

I

-~
-

l

-

I=I:I:l=l‘

[=f=fele]

|

C
~

l

!

[sisiols]

|

»
C

I

T
|

-
~

B

SEE!

[~
™

]

SEEE

£

g

-

AAsjac|ns{eT] [)

A 1 [IOENTIFICATION)

v 1 infolap kor he MyperDoc 8RO

A)

v 1 IEEE 5 530-1964

v 2 8AD kr 8 hyperdocumen! tysem

v 3vsmrmy¢,'conw' A Sofware Lite Cyde Toof,

of, Canada.
v ¢Pmnmuw¢mmo¢w*vm
Hyp System’, L y of

mmuzm Fall 1989,

v 8. Danny B Lange, A lormal Approach Hyperiext uting
rm-mumn Feml lpodlulm‘ Dopulnml ol

v |Jmm,.,, nd Hyp demio Press, 1990,

v 7 Porkel K. Garg and Wak Scacchl, *A Hyperts! Syshem 1o manage
Sohwae Litle-Cycle Docuninis’, [EEE Sotware, May 1990.

v § Jeit Conkim, Fyparteri - A inkaducton and Suvey”, Computer,

and Computer Technology Corp , Comp
Sepamber 1007,
o (VIEW)

O?’lDEFNITMI

1. Node of region in & node which can be salectsd by he users in arder 1o
o Use & k. The anchor selectad |8 the deperire point of o lnk,
Anchors are cxeated within 8 node by suthorized users,

2 An atybue is & pair (label, value) exiebng for nodes, teplons,
netwarks and organizstions wed K desaibed hem. Each of the previous
has some finect labels, and can support an unimited number of
wserdefined stribuss peirs The labels must be unique.

3 A place merker in e node window,

4 The source pant of a link. & can be & nade of a region In & node,

3 The ation in a hyp Mt 8 link leads & 1t can be 8 node
of &]egian in & node

¢ The eniire HyparDoc Information space (conients of sl nodes and natworks).

7. Window used t» display any inlormasion sbout HyperDoc's objects.

The user can only trowse e information and is not allowed © change it
An informaton window contne 8 header with ks name.

8 Means of relstng two pieces of informaton. A fnk is defined by i
Gepariee pont and s desination point. The dnk provides a way for
moving rom one point 10 anoher.

®. The st of labele mi equired for finks le° id, departure
pont, dessnasion point, suthor, l-lmodlmdﬂ.lwo desaiplon.

10 An atritans of e node wtich when sat b0 Yue by & user disables the
oher users rom chnaging e content of he node. Whan His
stritute is talse no users e moditying the node.

11 Similer 0 an index, where a st of user defined keywords map ino nodes

12 The ordered Bst of nodes vaisd by the user in the current netwark.

13 St of nodes and Inks which have some logical associstion. A certsin
conoept can be captured wtwn & network. A nelwork can have seveal
organzason

14 The st of stibute labels minimalty required for networks Is 1,
author, last madied date, desaiption.

15 A piece of info of a specific Itis be d | wnit
of HyperDoc nodes are reresenisd as node windows on e saeen.
18. The list of atwiute 1adels mi d lor nodes ks. b

descripion, musthor, dats, type, last madalod date, version rumber, lock,

17. A memns of dspleying a node en e screen A node window s provided
the sporogriate 1ol 1o edit or browss the contnt of & node, A node
containg 8 heeder with the node's i),

13 An srrargement of nedes of 8 Mtwork as 8 S84, & Map OF 8 SEQUINCe
An can only be ene of he sbove

19 The list of strinste fabets minimally required lor ong ¥ Is: W
sutvor, creation dae, type.

20 A birds eye view ol the mwork mth the curent navigation path

highlghted

21, A section In a Node of contguovs text, voice, video, grphics, oK.,
debned by The uest. A tegion sérves as an endpoint of & i A region
can be of any alze,

22, The Mst of atyioute labels minimally required lor reglons is: Id
parsnt node, desarigdon, type.

23, A wer defined endering thet is composed on some hode in & Nelwork
Le e nodes can be scoets in tis order

24, A user delrwd collecion of nades that may be accessed in any erder,

23 A uset wih Rl rights al al 4me In HyperDoc sysem

28 A person belonging © a lesst one user class

27 Descnbes e role of peopie snd detnes e scope ol ek work within

the sohwmre hie cycle contaal Contains 8 Nt of users stsgned B R
° 28 A supervisor dened kr @ e dass having e authoilly i manage
e rights of users In that e dase
P (] 29 The sat of all networks
TTTITTTITTTTTITYITITTTTITTTTITTTT T T T & |USEATYPE)
. PP . B P v . 1 Super uasr
e e e e . PR 3. Consulier
P P v 4 Usat leader
e e . 3 Clas teader
.