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Abstract

An IP/ATM Hybrid Network Simulator - HyNS

Shaozhen Chen

The IP/ATM Hybrid Network Simulator (HyNS) reported herein is an extension to
LBNL'’s (Lawrence Berkeley National Labs) Network Simulator version 2 -- Ns2
[MCCA97]. Ns2 is an object-oriented simulator, written in C++, with an OTcl interpreter
as a front-end. Ns2 has good support for IP, but no support for ATM. Since not many
researchers are familiar with Otcl, and it is painful to do OTcl and C++ debugging
together, we decided to take out the OTcl part and convert OTcl code into C++ code. In
order to support ATM and TCP/IP over ATM, the following components are added to
modified and translated Ns2: (1) TCP connection to ATM virtual circuit mapping, (2)
second layer routing (ATM switching), (3) ATM switch (Virtual Circuit Classifier), and

(4) IP/ATM gateway function (segmentation and reassembly).

HyNS was developed to provide a means for researchers to analyze the behavior of IP
networks or IP over ATM networks without the expense of building a real network. It can
be used for testing various [P-over-ATM algorithms, investigating the performance of
TCP connections over ATM networks without ATM-level congestion control, and

comparing it to the performance of TCP over packet-based networks, etc.
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1. Introduction

1.1 A Brief Introduction of IP Over ATM Networking

1.1.1 Internet Protocol (IP)

Internet is the most popular and the fastest growing network in the world today. The
protocols used in the Internet are the Transport Control Protocol (TCP) for end-to-end
data transport, and the Internet Protocol (IP) for data transport within the Internet. Most
of the Internet today runs on conventional LAN technology like Ethernet and Token Ring
for the smaller sub networks and WAN technologies like Frame Relay etc., for long haul

links.

1.1.2 Asynchronous Transfer Mode (ATM)

ATM is a connection-oriented network technology that uses small, fixed-sized cells at the
lowest layer, ATM was designed to support voice, video, and data with a single,
underlying technology. ATM cells of data are transferred through hardware-based

switching systems that can work much faster because of the small, fixed-sized cells.

1.1.3 IP over ATM

The deployment of ATM networks is a recent development in the field of computer
communication. It seems fairly clear that the telecommunications industry will be
deploying ATM infrastructure for the bulk of future high-speed transport, large computer
networks will be connection-oriented, with at least the data-link layer connectivity being
provided by ATM [KESH95]. These networks will need to communicate with existing

networks, the Internet, uses the connectionless IP. In order to take advantage of the high



speed and quality guarantees of ATM with the robust utility of the IP protocol, a number
of approaches have been suggested to map Internet Protocol to ATM (IP-over-ATM).
ATM was developed to support many different kinds of digital communications other
than simple data transmission. However, data networking is still the most popular use of
ATM technology primarily because of vendor focus. ATM’s close partmership with
synchronous optical networking (SONET) technology has resulted in the development of
multi-gigabit delivery systems. Although SONET can work with other networking
technologies, ATM/SONET is not only more readily available; it is also a proven
environment. Hence, a lot of effort has been put into making data networking protocols
such as IP work with ATM. There are a lot of discussions on how to best take advantage
of all the features that ATM can provide and incorporate them into IP.
Typical implementation of TCP/IP over ATM uses the following protocol stack
[STAL97]:

TCP

P

AALS

ATM
ATM Adaptation Layer (AAL) is used to support information transfer protocols not
based on ATM, like TCP. AAL Type S (AALS) provides a streamlined transport facility
for higher-layer protocols that are connection oriented. In a mixed environment, a
convenient way of integrating IP and ATM is to map IP packets onto ATM cells. This
will usually mean segmenting one IP packet into a number of cells on transmission and
reassembling the packet from cells on reception. The AALS layer is responsible for

segmentation and reassembling of IP packets that are encapsulated in ATM Protocol Data



Units (PDUs). By allowing the use of IP over ATM, all of the existing IP applications can
be employed on an ATM network.

Vendors have decided that IP version 4 can work over ATM by just using that
transmission system as a "fat pipe", ignoring the most part of control available with ATM
[SHAHO97]. The basic connections are established between two end-points with traffic
going through large bandwidth pipes of 45 Mbps, 155 Mbps, etc. ATM fat pipes are

already taking over WAN:Ss for the Internet and corporations.

1.2 The Need for Network Simulator

Network protocols are complex and thus mathematical analysis of their performance is
not always feasible. Experimental Studies are not always practical since deployment of
new policies is not easy and normally not cost effective. Moreover, not everyone has
access to a network that can be modified. Network simulators provide a flexible way of
studying network behaviors and performance. Simulation is often the method of choice
for evaluating the performance implications of policies and mechanisms on hosts and

routers.

1.3 TP/ATM Hybrid Network Simulator (HyNS)

There are many simulators designed for either [P or ATM networks, but few simulators
designed for both (one exception is [MAH96]). There is evidence that researchers have to
use two different simulators to compare the performance of IP network and IP-over-ATM
network [ROMA94]. There are two disadvantages of using two simulators for
comparison. First, researchers need to learn two different simulators; second, different

simulators will have different implementation for the basic network mechanisms, thus



will have different overhead. Less common background will be there for performance
comparison. A dual or hybrid network simulator will be very useful for testing various
IP-over-ATM algorithms, investigating the performance of TCP connections over ATM
networks without ATM-level congestion control, and comparing it to the performance of
TCP over packet-based networks, etc.
Because of the lack of combined IP and ATM simulators, my goal was to develop a dual
or hybrid network simulator. In order not to reinvent the wheels, the best way is to
combine existing [P and ATM network simulators into a single hybrid simulator. But
normally different simulator will have different data and class structure, different
communication method between command and configuration interface and simulation
engine, and implemented in different languages. It is almost impossible to merge two
simulators into one without fully understarding both and modifying at least one of the
two extensively. Thus, there is overhead of learning two existing simulators. The more
practical way is to choose a best available simulator as the base simulator to modify and
add missing functionality to it.
In order to find a good base for developing a new IP/ATM Hybrid Network Simulator,
several existing simulators are studied. Lawrence Berkeley National Laboratory
(LBNL)’s Network Simulator version 2 (Ns2) [MCCA97] turned out to be the winner.
Following are the reasons why Ns2 was chosen as the base simulator:
® Ns2 has good support for IP, it provides substantial support for simulation of TCP,
routing, and multicast protocols.

¢ Ns2 source code is available on the Internet and daily snapshot is provided.



® Ns2 development effort is an ongoing collaboration with the Virtual InterNetwork
Testbed Project (VINT)[KUMAG97], Ns2 is the simulator code basis for VINT
project.

® Ns2 has fine-grain object decomposition; objects can be composed and re-used.

® Alotof notes and documentation is available.

® There are mailing lists for discussions among Ns2-users, for announcements about
Ns2.

® Many researchers use Ns2.

Ns2 has good support for IP, but no support for ATM. Since Ns2 is written in C++ and

Object Tool Command Language (OTcl), any one who wishes to fully understand or

modify it must be comfortable with both Otcl and C++ tools. It is hard to debug both C++

and OTcl code. OTecl also brings overhead in simulation. Since not many researchers are

familiar with OTcl, we decided to take out the OTecl part and convert OTcl code into C++

code, this way, user only needs to know C++ to understand the simulator and can step

into each line of code by using only C debugger. Thus, there were two main parts of the

project:

1. Converting OTecl code to C++ (for a large subset of Ns2).

2. Extending this modified version to support ATM virtual circuits (VCs).

HyNS was originally developed under Unix Solaris 2.5, and ported to Windows NT 4.0
and Windows 95. Nowadays, personal computers can be found every where, in the office
or at home. So it is very convenient for the researchers to have a version of HyNS

running under Windows environment like Windows NT and Windows 95. See appendix



A for the details of creating HyNS console program using Microsoft Visual C++ 5.0

under Windows NT or Windows 95 environment.

Since not everything was feasible to do in the scope of the project, following features are

considered as future work:

Configuration files

HyNS uses program main() function to setup topology and run simulation. Any
configuration changes will mean recompiling the simulator. This is not convenient
when the simulator is used for running more than one set of simulations. The better
way is to include some initialization code that reads the configuration files.

ATM Quality of Service (QOS) Control

HyNS only uses ATM transmission system as a "fat pipe", ignoring the QOS control
available with ATM.

Multiplexing more than one connection into one virtual circuit

Only one TCP connection per virtual circuit mapping is implemented in HyNS,
multiplexing more than one connection into one virtual circuit can be added when

needed.

1.4 Outline of this Report

This section contains a roadmap of the remainder of this report.

Chapter 2  IP Network Simulation

This chapter describes the basic IP network simulation concepts mostly inherited from

Ns2. A lot of classes and their member functions mentioned in this chapter are the

modified and translated version of Ns2.



Chapter3  OTcl/C++ Conversion

This chapter describes what I did to take out OTcl part and to translate OTcl code to C++
code.

Chapter4  IP over ATM Network Simulation

This chapter describes what was added to Ns2 to support ATM and IP over ATM
network simulation.

Chapter § A Simulation Example

This chapter explains the usage of the hybrid network simulator by using a simple
example.

Chapter6 Summary

This chapter summarizes the report.



2. IP Network Simulation

Ns2 is an event-driven network simulator. The simulation engine is written in C++ that
uses MIT's OTcl as the command and configuration interface. This chapter describes the
basic concepts in the simulation of IP networks, and used in Ns2. A lot of classes and
their member functions mentioned in this chapter are modified and translated version of

Ns2. The translated class definitions is listed in detail in section 3.3.3.

2.1 Simulator Initialization

When a new simulation object is created, the following operations are performed:

¢ initialize the packet format

e create a simple linked-list scheduler

e create a "null agent" (a discard sink used in various places)

The packet format initialization sets up field offsets within packets used by the entire
simulation. The scheduler runs the simulation in an event-driven manner and may be
replaced by alternative schedulers that provide somewhat different semantics, like heap
scheduler and calendar scheduler. The null agent is generally useful as a sink for

dropped packets or as a destination for packets that are not counted or recorded.

2.2 Network Topology Generation
A network topology is realized by using three primitive building blocks: nodes, links and
agents. The Simulator class has functions to create or configure each of these building

blocks.

2.2.1 Nodes



Three types of nodes are defined in HyNS, namely IP nodes (IP hosts and routers), ATM
switches and gateways. IP node is inherited from Ns2; ATM switch and gateway are new
extensions to HyNS. Each node has a unique node ID to uniquely identify each node in
the topology; the IDs of IP nodes also represent their addresses. Passing an integer node
type parameter to the Simulator function node (int node_type) creates IP nodes, ATM

switches or gateways, and a unique ID is automatically assigned to each node.

2.2.2 Links

Links are created between nodes to form a network topology with the simplex_link() and
duplex_link() tunctions that set up unidirectional and bi-directional links respectively.
The following describes the syntax of the simplex_link() which creates a link from nodel
to node2 with specified bandwidth and delay characteristics. The link uses a queue of
type queue_type: |

void simplex_link(Node* nodel, Node* node2, double bandwidth, double delay,
int queue_type)

The function duplex_link() constructs a bi-directional link from two simplex links.

2.2.3 Agents

Agents are the objects that actively drive the simulation. Agents can be thought of as the
processes and/or transport entities that run on nodes that may be end hosts or routers.
Traffic sources and sinks are all examples of agents. Once the agents are created, they are
attached to nodes with the attach_agent() Simulator function. Each agent is automatically
assigned a unique port number across all agents on a given node (analogous to a TCP or
UDP port). Some types of agents may have sources attached to them while others may

generate their own data. For example, you can attach *‘ftp” and *‘telnet” sources to *‘tcp”



agents but ‘‘constant bit-rate” agents generate their own data. Sources are attached to

agents using the attach_source() Agent function.

2.3 Nodes and Packet Forwarding

The function Simulator::node() constructs a node out of simpler classifier objects. The
typical structure of an IP node is as shown in Figure 1. ATM switches and gateways will-

be explained in chapter 4.

Figure 1 Typical Structure of an [P Node

2.3.1 Node Member Functions
The definition of Node class can be found in section 3.3.3.3. Its member functions can be

classified into:

¢ Control Functions

10



entry() returns the entry point for a node. This is the first element that will handle packets
arriving at that node. For unicast nodes, this is the address classifier that looks at the
higher bits of the destination address. The member variable, classifier_ contains the
reference to this classifier.

resel() resets all the agents at the node.

¢ Address and Port Number Management

id() returns the node ID of the node. This ID is automatically incremented and assigned to
each node at creation by the function Simulator::node(). The class Simulator also stores
an array member variable Node_, indexed by the node ID, and contains a reference to the
node with that ID.

agent(int port) returns the handle of the agent at the specified port. If no agent at the
specified port number is available, the function returns the null string,

alloc_port() returns the next available port number. It uses an instance variable, np_, to
track the next unallocated port number.

add_route(int dst, NsObject* target) is used by unicast routing to populate the
classifier .

add_switch(int vci, NsObject* target) is used by unicast switching to populate the
classifier_.

¢ Agent management

attach(Agent* agent) will attach the agent to the node, assign a port number to the agent
and set its source address, set the target of the agent to be its entry().

Detach() will remove the agent from the node, and point the agent’s target, and the entry

in the node dmux_ to nullagent.

11



¢ Tracking Neighbours
Each node keeps a list of its adjacent neighbors in its member variable, neighbor .
add_neighbor() adds a neighbor to the list, neighbor _.

neighbors() returns the list, neighbor .

2.3.2 Classifiers

The function of a node when it receives a packet is to examine the packet’s fields, usually
its destination address. It should then map the values to the next downstream recipient of
this packet. A simple classifier object performs this task. A node in HyNS uses many
different types of classifiers for different purposes. A classifier provides a way to match a
packet against some logical criteria and retrieves a reference to another simulation object
based on the match results. Each classifier contains a table of simulation objects indexed
by slot numbers. The job of a classifier is to determine the slot number associated with a
received packet and forward that packet to the object referenced by that particular slot.
The class Classifier provides a base class from which other classifiers are derived.

class Classifier : public NsObject {

public:
Classifier();
~Classifier();
void recv(Packet*, Handler* h = 0);
int maxslot() const { return maxslot _; }
NsObject* slot(int slot);
NsObject* find(Packet*);
virtual int classify(Packet *const);
void install(int index, NsObject* );
void print_mapping table();

protected:

void clear(int slot);
void alloc(int);

12



NsObject** slot_; /I table that maps slot number to a NsObject

int nslot_; /1 allocated max slot

int maxslot ; Il actual max slot used

int offset_; Il offset for Packet::access()
int shift_;

int mask_;

intoff ip ;

}’.

The function classify() is pure virtual, indicating the class Classifier is to be used only as
a base class. The alloc() function dynamically allocates enough space in the table to hold
the specified number of slots. The install() and clear() functions add or remove objects
from the table. The recv() function and find() function are implemented as follows:

Il objects only ever see "packet" events, which come either

!l from an incoming link or a local agent (i.e., packet source)
void Classifier::recv(Packer* p, Handler*)

{
NsObject* node = find(p);
if (node == NULL) {
Packet: :free(p);
return;
}
node->recv(p);
}

/I perform the mapping from packet to object, return NULL if no mapping
NsObjecr* Classifier::find(Packet* p)
{
NsObject* node = NULL;
int cl = classify(p);
if (cl < 01l ¢l >= nslot_\l (node = slot_[cl]) ==0)
return (NULL);
else
return (node);

When a classifier receives a packet with function recv(), it hands it to the find() function

to perform the mapping from packet to object, which passes the packet to the classify()

13



function. classify() function is defined differently in each type of classifier derived from
the base class. The usual format is for the function classify() to determine and return a
slot index into the table of slots. If the index is valid, and points to a valid object, the
classifier will hand the packet to that object using that object’s recv() method.

The clear(int slot) function clears the entry in a particular slot. The slot(int slot) function
returns the object stored in the specified slot. The install(int index, NsObject* object)

function installs the specified object at the slot index.

2.3.3 Address Classifiers

An address classifizr is used in supporting unicast packet forwarding. It applies a bit-wise
shift and mask operation to a packet’s destination address to produce a slot number. The
slot number is returned from the classify() method. The class AddressClassifier is defined
as follows:

class AddressClassifier : public Classifier {
public:
AddressClassifier() : mask_(~0), shift (0) {
I set up classifier as a router (i.e., 24 bits for addr and 8 bits for port)
mask_ = AddressClassifier_mask_;
shift_ = AddressClassifier_shift_;

}

nsaddr_t mask_;
int shift_;

protected:
int classify(Packet *const p) {
hdr_ip* h = (hdr_ip* )p->access(off ip_);
return ((h->dst() >> shift ) & mask_);

14



The class imposes no direct semantic meaning on a packet’s destination address field.
Rather, it returns some number of bits from the packet’s dst _field as the slot number used

in the Classifier::recv() method.

24 Links and Simple Links

The class Link provides a few simple primitives. The class SimpleLink is the subclass of
class Link that provides the ability to connect two nodes with a point to point link. As
with the node being composed of classifiers, a simple link is built up from a sequence of

connectors. Figure 2 shows the composite construction of a unidirectional link.

: <
!

Figure 2 Composite Construction of a Unidirectional Link

Five instance variables define the link:

head_ Entry point to the link, it points to the first object in the link.

queue_ Reference to the main queue element of the link. Simple links usually have one
queue per link.

link_ A reference to the element that actually models the link, in terms of the delay and
bandwidth characteristics of the link.

#l_ Reference to the element that manipulates the ttl in every packet.

15



drophead_ Reference to an object that is the head of a queue of elements that process link
drops.

The following member variables track the trace elements:

enqT_ Reference to the element that traces packets entering queue_.

deqT_ Reference to the element that traces packets leaving queue_.

drpT_ Reference to the element that traces packets dropped from queue_.

2.4.1 Link Member Functions

The following are the member functions of class Link:

head() returns the handle for head_.

queue() returns the handle for queue_.

link() returns the handle for the delay element, link_.

cosy() set link cost to value specified.

get_cost() returns the cost of the link. Default cost of link is 1, if no cost has been

specified earlier.

2.4.2 Class Connector

Connectors only generate data for one recipient; either the packet is delivered to the
target_ neighbor, or it is sent to the drop_target .

A connector will receive a packet, perform some function, and deliver the packet to its
neighbor, or drop the packet. There are a number of different types of connectors, each
performs a different function.

LinkDelay Object that models the link’s delay and bandwidth characteristics. This object
schedules receive events for the downstream object for each packet it receives at the

appropriate time for that packet.

16



Queue models the output buffer attached to a link in a "real" router in a network. In
HyNS, It is attached to, and is considered as part of the link.

TTLChecker will decrement the ttl in each packet that it receives. If that ttl has a positive
value, the packet is forwarded to the next element on the link. In the simple links,
TTLCheckers are automatically added, and are placed as the last element on the link,

between the delay element and the entry for the next node.

2.5 Agents

Agents represent endpoints where network-layer packets are constructed or consumed,
and provide some functions helpful in developing transport-layer and other protocols.
Generally, a user wishing to create a new source or sink for network-layer packets will

create a class derived from Agent.

2.5.1 Agent State

The class Agent includes enough internal state to assign various fields to a simulated
packet before it is sent. This state includes the following:

addr_ source node address

dst_ destination node address

size_ packet size in bytes (placed into the common packet header)

type_ type of packet (in the common packet header)

fid_ the IP flow identifier

prio_ the IP priority field

flags_ packet flags

defttl_ default IP ttl value

17



Any class derived from Agent may modify these variables, although not all of the agents

need all of the variables.

2.5.2 Agent Member Functions

The class Agent supports packet generation and reception. The following member
functions are generally not over-ridden by derived classes:

Packer* allocpkt() allocates new packet and assigns its fields

Packer* allocpki(int) allocates new packet with a data payload of n bytes and assigns its
fields

Classes derived from Agent should normally override following member functions:

void timeout(int timeout_number) subclass-specific time out method

void recv(Packet*, Handler*) receiving agent’s main receive path

The recv() function is the main entry point for an agent which receives packets, and is
invoked by upstream nodes when sending a packet. In most cases, agents make no use of

the second argument (the handler defined by upstream nodes).

2.5.3 Protocol Agents

There are several agents supported in the simulator: The following are their class names:
TcpAgent a '"Tahoe" TCP sender (cwnd = | on any loss)

TepSink a Reno or Tahoe TCP receiver

CBR_Agent connectionless protocol with sequence numbers

UDP_Agent UDP with sequence numbers and traffic sources

LossMoniror a packet sink which checks for losses

NullAgent a degenerate agent which discards packets

18



The class TcpAgent represents a simplified TCP sender. It sends data to a TcpSink agent

and processes its acknowledgments.

2.6 Schedulers and Events

There are three schedulers included in the simulator, each of which is implemented using
a different data structure: a simple linked-list (default), heap, and calendar queue. The
scheduler runs by selecting the next earliest event, executing it to completion, and
retuning to execute the next event. Currently the simulator is single-threaded, and only
one event in execution at any given time. If more than one event is scheduled to execute
at the same time, they are ordered (in some scheduler-dependent way) and executed

serially. No partial execution of events or pre-emption is supported.

2.6.1 List Scheduler

The list scheduler implements the scheduler using a simple linked-list structure. The list
is kept in time-order (earliest to latest), so event insertion and deletion require scanning
the list to find the appropriate entry. Choosing the next event for execution requires
trimming the first entry off the head of the list. This implementation preserves event

execution in a FIFO manner for simultaneous events.

2.6.2 Heap Scheduler
The heap scheduler implements the scheduler using a heap structure. This structure is
superior to the list structure for a large number of events, as insertion and deletion times

are in O(log n) for n events.

2.6.3 Calendar Queue Scheduler
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The calendar queue scheduler uses a data structure analogs to a one-year desk calendar,

in which events on the same month/day of multiple years can be recorded in one day.

2.6.4 Event

An event generally comprises a "firing time" and a handler function.

class Event {
public:
Event() : time_(0), uid_(0) (3
~Event();
Event* next ; /* event list */
Handler* handler_; /* handler to call when event ready */
double time_; I* time at which event is ready */
int uid_; /* unique ID */
};
¥

* The base class for all event handlers. When an event’s scheduled
* time arrives, it is passed to handle which must consume it.
*/
class Handler {
public:
virtual void handle(Event* event) = 0;

} N

Two types of objects are derived from the base class Evenr: packets and "at-events".
Packets are the fundamental unit of exchange between objects in the simulation. An at-
event is a function execution scheduled to occur at a particular time.

Events are scheduled using the at Simulator function that allows functions to be invoked
at arbitrary points in simulation time. They can be used to start or stop sources, dump
statistics, instantiate link failures, reconfigure the network topology etc. The simulation is
started via the run functions and continues until there are no more events to be processed.

Invoking the halt Simulator function can prematurely halt the simulation.
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Packets are forwarded along the shortest path route from a source to a destination, where
the distance metric is the sum of costs of the links traversed from the source to the
destination. The cost of a link is one by default; the distance metric is simply the hop
count in this case. The cost of a link can be changed with the cost Simulator function. A
static topology model is used as the default in Ns2 in which the states of nodes/links do
not change during the course of a simulation. Also static unicast routing is the default in
which the routes are pre-computed over the entire topology once prior to starting the

simulation.

2.7 Queue Management and Packet Scheduling

Queues represent locations where packets may be held (or dropped). Packet scheduling
refers to the decision process used to choose which packets should be serviced or
dropped. Buffer management refers to any particular discipline used to regulate the
occupancy of a particular queue. In HyNS, support is included for drop-tail (FIFO)
queuing, RED buffer management, CBQ (including a priority and round-robin
scheduler), Fair Queuing, and Stochastic Fair Queuing (SFQ). In the common case where
a delay element is downstream from a queue, the queue may be blocked until it is re-
enabled by its downstream neighbor. This is the mechanjsm by which transmission delay
is simulated. Packet drops are implemented in such a way that queues contain a "drop
destination"; that is, an object that receives al packets dropped by a queue. This can be

useful to keep statistics on dropped packets.

2.7.1 Queue Class

The Queue class is derived from a Connecror base class.
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class Queue : public Connector {
public:
virtual void enque(Packer*) = 0;
virtual Packet* deque() = 0;
void recv(Packet*, Handler*);
void resume();
int blocked() const { return (blocked_ == 1); }
void unblock() { blocked_ = 0; }
void block() { blocked_= 1, }

void reset();

int qlim_; I* maximum allowed pkts in queue */
protected:

Queue();

int blocked_; I* blocked now? */

int unblock_on_resume_;  /* unblock q on idle? */

QueueHandler qh_;
}

The enque() and deque() functions are pure virtual, indicating the Queue class is to be
used as a base class; particular queues are derived from Queue and implement these two
functions as necessary. In general, particular queues do not override the recv() function
because it invokes the particular enque() and deque().

The member variable glim_ is constructed to set a bound on the maximum queue length,
but the Queue class itself does not enforce this; it must be used by the particular queue
subclasses if they need this value. The Boolean member variable blocked_ indicates
whether the queue is able to send a packet immediately to its downstream neighbor.

When a queue is blocked, it is able to queue packets but not to send them.

2.7.2 Queue Blocking
A queue may be either blocked or unblocked at any given time. Generally, a queue is
blocked when a packet is in transit between it and its downstream neighbor. A blocked

queue will remain blocked as long as its downstream link is busy and the queue has at



least one packet to send. A queue becomes unblocked only when its resume() function is

invoked by a downstream neighbor, usually when no packets are queued.

2.7.3 PacketQueue Class

The Queue class may implement buffer management and scheduling but do not
implement the low-level operations on a particular queue. The PacketQueue class is
defined for this purpose as follows:

class PacketQueue : public TclObject {

public:
PacketQueue() : head_(0), tail_(&head_), len (0) {}
inline int length() const { return (len_); }
virtual void enque(Packet* p);
virtual Packet* deque();
Packer* lookup(int n);
I* remove a specific packet, which must be in the queue */
virtual void remove(Packet* );
/* Remove a packet, located after a given packet. Either could be 0. */
void remove(Packet *, Packet *);

protected:

Packet* head_;

Packer** tail_;

int len_; Il packet count
}’.

This class maintains a linked-list of packets. Particular scheduling or buffer management
schemes may make use of several PacketQueue objects. The enque() function places the
specified packet at the end of the queue and updates the len_ member variable. The
deque() function returns the packet at the head of the queue and removes it from the
queue and updates the counter len_, or returns NULL if the queue is empty. The lookup()

function returns the nth packet from the head of the queue. The remove() function deletes



the packet stored in the given address from the queue and updates the counter. It causes

an abnormal program termination if the packet does not exist.

2.7.4 DropTail Class
The DropTail class implements FIFO scheduling and drop-on-overflow buffer
management that is most typically used in present-day Internet routers.
I* A bounded, drop-tail queue */
class DropTail : public Queue {
public:
DropTail() { g = new PacketQueue; }
~DropTail();
protected:
void enque(Packer*);
Packet* deque();
PacketQueue *q ;  /* underlying FIFO queue */
K
The base class Queue provides most of the needed functionality. The drop-tail queue
maintains exactly one FIFO queue, implemented by including a PacketQueue object.

Drop-tail implements its own versions of enque() and deque() as follows:

void DropTail::enque(Packet* p)

{
q_->enque(p);
if(q_->length() >= glim_) {
q_->remove(p);
drop(p);
}
}
Packet* DropTail::deque()
{
return q_->deque();
}

Here, the enque() function first stores the packet in the internal packet queue (which has
no size restrictions), and then checks the size of the packet queue versus qlim_. Drop-on-

overflow is implemented by dropping the packet most recently added to the packet queue
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if the limit is reached or exceeded. Simple FIFO scheduling is implemented in the

deque() function by always returning the first packet in the packet queue.

2.8 Delays and Links

Delays represent the time required for a packet to traverse a link. The amount of time
required for a packet to traverse a link is defined to be s/b + d where s is the packet size
(as recorded in its IP header), b is the speed of the link in bits/sec, and d is the link delay
in seconds. The implementation of link delays is closely associated with the blocking

procedures described for queues in section 2.7.2

2.8.1 LinkDelay Class
The class LinkDelay is derived from the base class Connector. It is briefly excerpted
below, only considering "non-dynamic" links:

class LinkDelay : public Connector {
public:
LinkDelay();
~LinkDelay(),
void recv(Packet* p, Handler*);
void send(Packet* p, Handler*);
void handle(Event* e);
inline double delay() { return delay ; }
inline double txtime(Packet* p) {
hdr_cmn *hdr = (hdr_cmn* Jp->access(off_cmn_);
return (hdr->size() * 8. | bandwidth_);
}
inline double bandwidth() const { return bandwidth_; }
void pktintran(int src, int group);

double bandwidth_;  1* bandwidth of underlying link (bits/sec) */
double delay ; /* line latency */

protected:
void resel();

Event intr_;



Event inTransit_;

private:
void schedule_next();

»
The recv() function overrides the base class Connector version. Its is excerpted below,
only considering "non-dynamic" links:

void LinkDelay::recv(Packer* p, Handler* h)

{
double txt = txtime(p);
Scheduler & s = Scheduler: :instance();
s.schedule(target_, p, txt + delay );
s.schedule(h, &intr_, txt);

}

For "non-dynamic" links, this method operates by receiving a packet, p, and scheduling
two events. Assume these two events are called El and E2, and that event El is
scheduled to occur before E2. E1 is scheduled to occur when the upstream node attached
to this delay element has completed sending the current packet (takes time equal to the
packet size divided by the link bandwidth). E1 is usually associated with a Queue object,
and will cause it possibly to become unblocked. E2 represents the packet arrival event at
the downstream neighbor of the delay element. Event E2 occurs later than E1, the time

difference between E1 and E2 is the link delay in seconds.

2.9 Packet Headers and Formats
Objects in the class Packer are the fundamental unit of exchange between objects in the
simulation. Packet headers are defined on a per-protocol basis, new protocols may define

their own packet headers or may extend existing headers with additional fields. New
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packet headers can be introduced into the simulator by defining a structure with the
needed fields, and then modifying some of the simulator initialization code to assign a

byte offset in each packet where the new header is to be located relative to others.

2.9.1 Packet Class

The class Packet is a subclass of Event, so that packet can be scheduled like event (e.g.
for later arrival at some queue). The class Packet defines the structure of a packet and
provides member functions to handle a free list of objects of this type. It is defined as
follows:

class Packet : public Event {
public:
Packet* next_; /1 for queues and the free list
static int hdrlen_;
Packet() : bits_(0), datalen_(0), next_(0) { }
unsigned char* const bits() { return (bits_); }
Packet* copy() const;
static Packer* alloc();
static Packer* alloc(int);
inline void allocdata(int);
static void free(Packer*);
inline unsigned char* access(int off) {
if(off < 0)
abori();
return (&bits_[off] ); }
inline unsigned char* accessdata() {return data_;}
protected:
static Packet* free_;
private:
unsigned char* bits_;
unsigned char* data_; /! variable size buffer for 'data’
unsigned int datalen_; |/ length of variable size buffer

};

This class holds a pointer to a generic array of unsigned characters (commonly called the
"bag of bits" or BOB for short) where packet header fields are stored. It also holds a

pointer to packet "data" (which is often not used in simulations). The member variable
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bits_ contains the address of the first byte of the BOB that is implemented as a
concatenation of all the structures defined for each packet header. Packet header
structures have the names like hdr_xxx by convention, where xxx represents the specific
header names. BOB generally remains a fixed size throughout a simulation, and the size
is recorded in the Packet::hdrlen_ member variable.

The other functions of the class Packet are for creating new packets and storing old
(unused) ones on a private free list. The alloc() is a support function commonly used to
create new packets. It is called by Agent::allocpkt() on behalf of agents and is thus not
normally invoked directly by most objects. It first attempts to locate an old packet on the
free list and if this fails allocates a new one using the new operator. Note that Packer class
objects and BOBs are allocated separately. The free() method frees a packet by returning
it to the free list. Packets are never returned to the system’s memory allocator. Instead,
they are stored in a free list when Packet::free() is called. The copy() function creates a

new, identical copy of a packet with the exception of the uid_ field, which is unique.

2.9.2 Common Header
Each packet in the simulator has a ""common" header that is defined as follows:

struct hdr_cmn {

int  ptype ; /I packet type

int  size_; Il simulated packet size

int  uid_; /I unique id

int  error_; /I error flag

double ts_; Il imestamp: for q-delay measurement
int  iface ; Il receiving interface (label)

static int offset ; /1 offset for this header

inline int& offset() { return offset_; }

I* per-field member functions */
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inline int& ptype() { return (ptype_); }

inline int& size() { return (size_); }

inline int& uid() { return (uid_); }

inline int& error() { return error_; }

inline double & timestamp() { return (ts_); }

inline int& iface() { return (iface_); }

F

This structure primarily defines fields used for tracing the flow of packets or measuring
other quantities. The time stamp field is used to measure queuing delay at switch nodes.
The ptype_ field is used to identify the type of packets, which makes reading traces
simpler. The scheduler employs the uid_ field in scheduling packet arrivals. The size_
field is of general use and gives the simulated packet’s size. Note that the actual number
of bytes consumed in the simulation may not relate to the value of this field. Rather, it is
used most often in computing the time required for a packet to be delivered along a

network link. The simulator uses the iface_ field when performing multicast distribution

tree computations. It is a label indicating on which link a packet was received.

2.9.3 Packet Header Manager

An object of the class PacketHeaderManager is to manage the set of currently active
packet header types and assign each of them unique offsets in the BOB. It is defined as
follows:

class PacketHeaderManager {

public:

PacketHeaderManager();
static int vartab_[256] ;
int allochdr(int );

K

#defineNS ALIGN 8 I* byte alignment for structs */
int PacketHeaderManager: :allochdr(int hdrlen)

{
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int size = hdrlen;

/1 round up to nearest NS_ALIGN bytes
int incr = (size + (NS_ALIGN-1)) & ~(NS_ALIGN-1);
int base = Packet::hdrlen_;

Packet::hdrlen_ =Packet::hdrlen_ + incr;

return(base);

}

I Packet offsets

#define OFF_COMMON
#define OFF IP

#define OFF_TCP
#define OFF FLAGS
#define OFF RTP
#define OFF CELL

MA"“NNQ

Il ATM cell header

Il set up the packet format for the simulation
void Simulator::create_packetformat()
{
PacketHeaderManager* pm = new PacketHeaderManager;
PacketHeaderManager::vartab_[OFF_ COMMON] =
pm->allochdr(sizeof(hdr_cmn));
PacketHeaderManager::vartab_[OFF IP] =
pm->allochdr(sizeof(hdr_ip));
PacketHeaderManager::vartab_[OFF TCP] =
pm->allochdr(sizeof(hdr_tcp)):
PacketHeaderManager::vartab_[OFF FLAGS] =
pm->allochdr(sizeof{hdr_flags));
PacketHeaderManager::vartab_[OFF RTP] =
pm->allochdr(sizeof(hdr_rtp));
PacketHeaderManager::vartab_[OFF CELL] =
pm->allochdr(sizeof{hdr_cell));

packetManager = pm;

Function Simulator::create_packetformat() is called one time during simulator
configuration. It first creates a single PacketHeaderManager object. After creating the

packet manager, it enables each of the packet headers of interest. The placement of
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headers is performed by the allochdr() function of the PacketHeaderManager class. The
function keeps a running variable Packet::hdrien_ with the current length of BOB as new
packet headers are enabled. It also arranges for 8-byte alignment for any newly enabled
packet header. This is needed to ensure that when double-world length quantities are used
in packet headers on machines where double-word alignment is required, access faults

are not produced.

2.10 Traffic Generation

There are two methods of traffic generation in HyNS. One method uses the abstract class
TrafficGenerator to generate inter-packet intervals and packet sizes. Classes derived from
TrafficGenerator are used in conjunction with the UDP_Agent objects, which are
responsible for actually allocating and transmitting the generated packets. The second
method of traffic generation uses the Source class. Source objects generate traffic that is

transported by TcpAgent objects.

2.10.1 Traffic Generator Class
TrafficGenerator is an abstract class defined as follows:

class TrafficGenerator : public NsObject {
public:
TrafficGenerator() 3
virtual double next_interval(int &) = 0;
virtual void init() {}
protected:

void recv(Packet*, Handler* ) { abort(); }
int size ;
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The pure virtual function next_interval() returns the time until the next packet is created
and also sets the size in bytes of the next packet. The member function init() is called by
the UDP_Agent with which the TrafficGenerator is associated when the agent is started.
Necessary initializations specific to a traffic generation process are done in init().

There are three classes derived from the class TrafficGenerator:

1. EXPOO_Source -- generates traffic according to an Exponential On/Off distribution.
Packets are sent at a fixed rate during on periods, and no packets are sent during off
periods. Both on and off periods are taken from an exponential distribution. Packets
have constant size.

2. POO_Source -- generates traffic according to a Pareto On/Off distribution. This is
identical to the Exponential On/Off distribution, except the on and off periods are
taken from a pareto distribution. These sources can be used to generate aggregate
traffic that exhibits long range dependency.

3. TrafficTrace -- generates traffic according to a trace file. Each record in the trace file
consists of 2 32-bit fields. The first contains the time in microseconds until the next

packet is generated. The second contains the length in bytes of the next packet.

2.10.2 UDP Agent Class

TrafficGenerator objects merely generate inter-packet times and sizes. They do not
actually allocate packets, fill in header fields and transmit packets. Hence, each
TrafficGenerator object must be associated with another object that performs these
functions. This functionality is implemented in class UDP Agent that is defined as
follows:

class UDP_Agent : public CBR_Agent {
public:
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UDP_Agent();
virtual void timeout(int);

protected:
void start();
void stop();

TrafficGenerator *trafgen_;
virtual void sendpkt();

k
This class is derived from the class CBR_Agent. It differs only in the manner in which
inter-packet times and packet sizes are determined. Whereas the CBR_Agent uses fixed
size packets and constant inter-arrival times (with optional randomization added to the
inter-packet times), UDP_Agent objects invoke the next_interval() function on an

associated TrafficGenerator object to determine these values.

2.10.3 Source Class

Classes derived from the Source class are used to generate traffic for TCP. There are two
classes derived from Source: FTPSource and TelnetSource. These classes work by
advancing the count of packets available to be sent by a TcpAgent. The actual

transmission of available packets is still controlled by TCPs flow control algorithm.

2.11 Trace and Monitoring Support

There are a number of ways of collecting output or trace data on a simulation. Generally,
trace data are either displayed directly during execution of the simulation, or more
commonly stored in a file to be post-processed and analyzed. There are two distinct types
of monitoring capabilities supported by the simulator — traces and monitors. Trace object

records each individual packet as it arrives, departs, or is dropped at a link or queue.
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Monitor records counts of various interesting quantities such as packet and byte arrivals,
departures.

A common header (hdr_cmn) is included in each packet in order to support traces. This
common header includes a unique identifier for each packet, a packet type field (set by
agents when they generate packets), and a packet size field (in bytes, used to determine
the transmission time for packets).

Monitors are supported by a separate set of objects that are created and inserted into the
network topology around queues. They provide a place where arrival statistics and times

are gathered, and statistics are computed over time intervals.

2.11.1 Trace Support

Objects of the following classes are inserted directly in-line in the network topology:

EnqueTrace a packet arrival (usually at a queue)

DequeTrace a packet departure (usually at a queue)

DropTrace packet drop (packet delivered to drop-target)
SnoopQueueln on input, collect a time/size sample (pass packet on)
SnoopQueueOut on output, collect a time/size sample (pass packet on)

SnoopQueueDrop on drop, collect a time/size sample (pass packet on)
Objects of QueueMonitor class are added in the simulation and referenced by the objects

listed above. They are used to aggregate statistics collected by the SnoopQueue objects.

The following Simulator member functions can be used to attach trace elements:

¢ void flush_trace() This function flushes buffers for all trace objects in the simulation.
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Trace* create_trace(int type, FILE* file, Node* src, Node* dst) This function creates
anew trace object of type type between the given src and dst nodes and attaches a file
handle to it. The function returns the handle to the newly created trace object.

void trace_queue(Node* nl, Node* n2, FILE* file This function enables Enque,
Deque, and Drop tracing on the link between nodes nl and n2.

QueueMonitor* monitor_queue(Node* nl, Node* n2, FILE* gqtrace, double
samplelnterval=0.1) This function calls the init monitor() function on the link
between nodes n! and n2, it arranges for the creation of SnoopQueue and
QueueMonitor objects which can be used to ascertain time-aggregated queue
statistics.

void drop_trace(Node* nl, Node* n2, Trace* trace) This function makes the given
trace object the drop-target of the queue associated with the link between nodes nl

and n2.

The Simulator member functions described above require the trace() and init_monitor()

SimpleLink member functions. The trace() function is defined as follows:

/! Build trace objects for this link and update the object linkage

void SimpleLink::trace(Simulator* ns, FILE* f)

{
engT_ = ns->create_trace(TRACE_ENQUE, f, fromNode_, toNode_);
deqT_ = ns->create_trace(TRACE_DEQUE, f, fromNode _, toNode_);
drpT_ = ns->create_trace(TRACE_DROP, f, fromNode_, toNode_);

Il insert drpT _in between drophead_ and its target_
NsObject* nxt = drophead_->target ;
drophead_->target = drpT ;

drpT_->target_ = nxt;

queue_->drop _ = drophead_;
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Il insert deqT _in between queue_ and its target_
deqT ->target = queue_->target ;
queue_->target = deqT ;

Il insert enqT _ in between head_ and its target_
engT ->target = head_;

head = enqT _;

This function establishes Enque, Deque, and Drop traces in the simulator Ns2 and directs
their output to file handle f. The function assumes a queue has been associated with the
link. It operates by first creating three new trace objects and inserting the Engque object
before the queue, the Deque object after the queue, and the Drop object between the
queue and its previous drop target. Note that all trace output is directed to the same file

handle.

The following functions, init_monitor() and attach_monitor(), are used to create a set of
objects used to monitor queue sizes of a queue associated with a link. They are defined as
follows:

Il like init_monitor, but allows for specification of more of the items
void SimpleLink::attach_monitors(SnoopQueue* insnoop, SnoopQueue*
outsnoop, SnoopQueue* dropsnoop, QueueMonitor* gmon)
{

snoopin_ = insnoop;

snoopOut_ = outsnoop;

snoopDrop _ = dropsnoop;

snoopln_->target_ = head_;
head_ = snoopln_;

snoopOut_->target = queue_->target_;
queue_->target_ = snoopOut_;

NsObject* nxt = drophead_->target ;
drophead_->target_ = snoopDrop_;
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snoopDrop_->target_ = nxt;

snoopln_->qm_ = gmon;
snoopOut_->qm_ = gmon;
snoopDrop _->qm_ = gmon;
qMonitor_ = gmon;

}

/I Insert objects that allow us to monitor the queue size

/I of this link. Return the name of the object that

/I can be queried to determine the average queue size.

QueueMonitor* SimpleLink::init_monitor(Simulator* ns, FILE* qtrace, double
samplelnterval)

{
ns_=ns;
qtrace_ = qtrace;
samplelnterval = samplelnterval;
qMonitor_ = new QueueMonitor;
SnoopQueueln* snoopln = new SnoopQueueln;
SnoopQueueOut* snoopOut = new SnoopQueueOut;
SnoopQueueDrop* snoopDrop = new SnoopQueueDrop;
attach_monitors(snoopln, snoopOut, snoopDrop, qMonitor_);

Integrator* bytesint = new Integrator;
gMonitor_->bytesint_ = bytesint;

Integrator* pkisint = new Integrator;
gMonitor_->pktsint_ = pktsint;

return (qMonitor_);

These functions establish queue monitoring on the SimpleLink object in the simulator.
Queue monitoring is implemented by constructing three SnoopQueue objects and one
QueueMonitor object. The SnoopQueue objects are linked in around a Queue in a way
similar to Trace objects. The SnoopQueueln(Out) object monitors packet
arrivals(departures) and reports them to an associated QueueMonitor agent. In addition, a

SnoopQueueOut object is also used to accumulate packet drop statistics to an associated
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QueueMonitor object. The same QueueMonitor object is used in all cases for

init_monitor().

2.11.2 Trace Class
The Trace class is defined as follows:

class Trace : public Connector {
public:
Trace(int type);
~Trace();

inline void detach() { channel_ = NULL; }
inline void flush() { fflush(channel_); }

inline void attach(FILE* fileHandle)}{ channel_= fileHandle}

void recv(Packer* p, Handler*);
virtual void trace(TracedVar*);

void dump();

inline char* buffer() { return (wrk_); }

intoff ip_;
int off tcp_;
intoff rip_;
int off cell _;

nsaddr t src_;
nsaddr_t dst_;

protected:
int type_;

FILE* channel_;
int callback_;
char wrk_[256] ;
void format(int 1, int s, int d, Packet* p);
void annotate(const char* s);
int show_tcphdr ; Il bool flags; backward compat
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The src_, and ds¢_ internal state is used to label trace output and is independent of the

corresponding field names in packet headers. The main recv() function is defined as

follows:

void Trace::recv(Packet* p, Handler* h)

{

format(type_, src_, dst_, p);
dump();
if (target_==0)
Packet::free(p);
else
send(p, h);

The function merely formats a trace entry using the source, destination, and particular

trace type character. The dump function writes the formatted entry out to the file handle

channel_.

2.11.3 Trace File Format

The Trace::formai() function sets the trace file format, it is defined as follows:

void Trace::format(int tt, int s, int d, Packet* p)

{

hdr_cmn *th = (hdr_cmn* Jp->access(off_ cmn_);
hdr_ip *iph = (hdr_ip*)p->access(off ip_);
hdr_tcp *tcph = (hdr_tcp* )p->access(off tcp_);
hdr_rtp *rh = (hdr_rtp* Jp->access(off rtp_);
hdr_cell *cellh = (hdr_cell* )p->access(off cell_);
int t = th->ptype();

const char* name = pt_names[t];

if (name == 0)
abort();

int seqno;

if(t==PT RTP |l t == PT _CBR)
segno = rh->seqno();

else if (t == PT TCP |l t == PT_ACK)
seqgno = tcph->seqno();

else if (t == PT_CELL )
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segno = cellh->seq();
else
seqno = -1;

if (!show_tcphdr_) {

sprintfiwrk_,
"%c Y%g %d %od Yos Jod Jos %od Yed.%d %ed.%ed %d %d",
1,
Scheduler::instance().clock(),
S,
d’
name,
th->size(),
flags,
iph->flowid(),
iph->src() >> 8, iph->sre() & Oxff,
iph->dst() >> 8, iph->dst() & Oxff,
seqno,
th->uid());

pelse{
sprintfiwrk_,
"%c Jog %d %d %os %ed %os %ed %ed.%d Tod.%d Jed %ed %ed 0x%x %d",

1,
Scheduler::instance().clock(),
s,
d,
name,
th->size(),
flags,
iph->flowid() ,
iph->src() >> 8, iph->sre() & Oxff,
iph->dst() >> 8, iph->dst() & Oxff,
segno,
th->uid(),
tcph->ackno(),
tcph->ﬂags(),
tcph->hlen());

This function formats the source, destination, type fields defined in the trace object, the

current time, along with various packet header fields including: type of packet (as a



name), size, flags (symbolically), flow identifier, source and destination packet header
fields, sequence number (if present), and unique identifier. The show_tcphdr _ variable
indicates whether the trace output should append tcp header information (ack number,

flags, and header length) at the end of each output line.

2.12 Static Routing and Route Logic Class

HyNS applies the static routing strategy that runs the same routing protocol on all the
nodes in the topology. The route computation algorithm is run exactly once prior to the
start of the simulation. The routes are computed using an adjacency matrix and link costs
of all the links in the topology. The main class of route logic is RouteLogic, the routing
architecture is also implemented in the following classes: Simulator, Link, Node and

Classifier.

The class RouteLogic is defined as follows:

/*
* Routing codes for general topologies based on min-cost routing algorithm in
* Bertsekas’ book. Written originally by S. Keshav, 7/18/88
*/

class RouteLogic : public TclObject {
public:
RouteLogic();
~RouteLogic();
inline void compute() {compute_routes();}
int lookup(int src, int dst);

void insert(int src, int dst, int cost);
void configure();
void print_route();

protected:

void check(int);
void alloc(int n);

41



void reset(int src, int dst);
void compute_routes();
int* adj ;

int* route ;

int size_; -
int maxnode _;

}'.

void RouteLogic::configure()

{

Il Since the Simulator knows the entire topology, its member function

Il compute_routes() is well suited here.

Simulator: :instance().compute_routes();

}

The configure() function is invoked by the Simulator run() function to setup routes before
simulation starts.
The lookup() function takes source node ID (src), destination node ID (dst), and returns
the ID of the neighbor node that src uses to reach dst. This function is used by the static

route computation function to query the computed routes and populate the routes at each

of the nodes.
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3. OTcl/C++ Conversion

Ns2 is an object-oriented simulator, written in C++, with an OTcl interpreter as a front-
end. The simulator supports a class hierarchy in C++ (the compiled hierarchy), and a
similar class hierarchy within the OTcl interpreter (the interpreted hierarchy). The two
hierarchies are closely related to each other; from the user’s perspective, there is a one-to-
one correspondence between a class in the interpreted hierarchy and one in the compiled
hierarchy. The control operations of Ns2 are in OTcl and data are passed through C++

objects for speed.

3.1 Why Take Out OTcl Part

We can see from above that Ns2 supports two similar class hierarchies in C++ and OTcl,
and this overhead slows down the simulation. Also, any one wishing to fully understand
or modify it must be comfortable with both environments and tools. Plus, it is painful to
do OTcl and C++ debugging together. Imagine, when looking at the OTcl code and
debugging OTcl level stuff, one wants to look at the C++-level classes, and vice versa.
Since not many researchers are familiar with OTcl, we decided to take out the OTcl part
and convert OTcl code into C++ code, this way, user only needs to know C++ to
understand the simulator and can step into each line of code by using only C debugger.
Ns2 is a fairly big simulator; it has 27K lines of C++ code and 12K lines of OTcl support
code. In order to finish this project within certain time limit, the simulator is simplified
by removing some detailed or complex implementation, hence, not all the OTcl code is

translated and not all the C++ classes are included in HyNS.
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Since Ns2 uses very fine-grain objects, as long as the original class structure is
maintained, it is very easy to add back all the original features when needed, and can

evolve along with Ns2.

3.2 What was Done to Remove OTcl Part

The main simulation classes of Ns2 like Simulator, Node and Link are written fully in
OTcl, and some classes are defined in both C++ and OTcl, like Source, TelnetSource,
PacketHeaderManager, Agent, Trace, QueueMonitor and RandomVariable. Other OTcl
classes are FTPSource, EnqueTrace, DequeTrace and DropTrace. All these OTcl classes
or OTcl functions need to be converted into C++ classes and member functions. Since
Ns2 supports two similar class hierarchies in C++ and OTcl, the OTcl linkage need to be
removed from C++ code and the class hierarchy within the OTcl interpreter needs to be
removed.

Following are the tasks done to remove the OTcl part:

¢ Translation of OTcl Code

¢ Removal of OTcl Linkage

e Removal of the interpreted class hierarchy

3.3 Translation of OTcl Code

The three main OTcl classes (Simulator, Node and Link) and other OTcl classes
(FTPSource, EnqueTrace, DequeTrace and DropTrace) are translated into C++ classes.
The OTcl functions of the mixed classes (Source, TelnetSource, PacketHeaderManager,
Agent, Trace, QueueMonitor and RandomVariable) are translated into C++ member

functions. Some of the OTcl code is modified before been translated into C++ code.



3.3.1 Comparison with C++

In order to translate OTcl to C++ code correctly, we need to know the differences

between OTcl and C++. Some of the differences are as follows [OTcl95]:

¢ While OTcl has multiple definitions, C++ has single class declaration. Each method
definition (with instproc) adds a method to a class. Each instance variable definition
(with set or via instvar in a method body) adds an instance variable to an object.

e While C++ has constructor/destructor, OTcl has init/destroy methods. Unlike
constructors and destructors, init and destroy methods do not combine with base
classes automatically. They should be combined explicitly with next.

¢ Unlike C++, OTcl methods are always virtual and called through the object.

* In OTcl, the name self, which is equivalent to this in C++, may be used inside method
bodies.

* C++ shadowed methods are called explicitly with scope operator, while OTecl calls
them with next. next searches further up the inheritance graph to find shadowed
methods automatically. It allows methods to be combined without naming
dependencies.

¢ Unlike C++, OTecl has no static methods and variables.

* Unlike C++, OTecl is a typeless, string-oriented language. C++ arrays use integer-
valued index while OTcl arrays use string-valued index. So, an OTcl array is actually

a mapping from string to string.

3.3.2 Translation Examples
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Translating the OTcl code to C++ is harder than it sounds, partly because transformation
from OTcl to C++ is not all that straightforward. Since OTcl has no data type, all the
variable data types have to be figured out from the context.
The core OTecl class Simulator is the principal interface to the simulation engine; the
following is the constructor of this class in OTcl:
Simulator instproc init args {

eval $self next $args

$self create_packetformat

$self instvar scheduler nullAgent

set scheduler_ [new ScheduleriList]
set nullAgent [new Agent/Null]

}

instproc is used for method definition, it defines init method for the class Simulator. init
method corresponds to the constructor function in C++, self is equivalent to this in C++,
set or instvar is used for instance variable definition, it adds instance variables to the
Simulator object.

The following is the translation of class Simulator constructor function in C++, all the

member variables and member functions are declared once in the header file, see section

3.33.2.

Simulator::Simulator()

{
create_packetformat();
scheduler _ = (Scheduler* ) new ListScheduler;
nullAgent = new NullAgent(0);
routingTable_ = NULL,
atm_routingTable = NULL;

}

Since OTcl arrays use string-valued index, an OTcl array can be translated into a one,
two or more dimensional array according to the constitution of the string-valued index.

The OTecl array link_($sid:$did) stores the link object from source (with node id equals to



sid) to destination (with node id equals to did). The index string is the concatenation of
source node ID, separator " *, and destination node ID. This array can be translated into
two dimensional C array link_[sid][did].

The following is the OTcl code sample where the array link_(3sid:$did) is in use:

Simulator instproc simplex-link { nl n2 bw delay type } {
$self instvar link_ nullAgent_
$self instvar traceAllFile_

set sid [$nl id]
setdid [$n2 id]

set q [new Queuel/3type]
$q drop-target $nullAgent_

set link_(3sid:$did) [new SimpleLink 3ndl $nd2 $bw $delay $q]
$nl add-neighbor $n2

if [info exists traceAllFile ] {
$self trace-queue $nl $n2 3traceAllFile_
}

}

The C++ translation of the above OTcl code is shown as following:

void Simulator::simplex_link(Node* nl, Node* n2, double bw, double delay, int
pe)
{

int sid = nl->id();

int did = n2->id();

Queue* q;
if (type == DROP_TAIL)
q = new DropTail;
else /| (type == RED_QUEUE)
q = new REDQueue;
g->drop_ = nullAgent_;
link_[sid] [did] = new SimpleLink(sid, did, bw, delay, q);
nl->add_neighbor(n2);

if (traceAllFile_)
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trace_queue(nl, n2, traceAllFile );

3.3.3 Translated Main Simulation Classes
The class hierarchy of HyNS is shown in Figure 3. Some of the classes are explained in

this section and others will be explained in later sections where they are mentioned.

3.3.3.1 Root Class TclObject

Most of the classes in the HyNS are derived from a single base class - TclObject - at the
root of the class hierarchy. The class name TclObject is inherited from Ns2, but all the
Tcl related functions are removed, only naming capability is kept and enhanced. By
abstracting the naming functions to the root class, all the subclass objects can have names
associated with them. Object names are very useful when it comes to simulation
debugging and printing, since names are much more meaningful than addresses.

TclObject class is defined as follows:;

class TclObject {

public:
virtual ~TclObject();
inline const char* name() { return (name )i } Il retrieve name
void name(const char* s); /] set name to s
void name(const char* s, int id); /] set name to s+id

void name(const char* s, int idl, int id2); /] set name to s+idl +id2

protected:
TclObject();
char* name_;
K
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33.3.2 Class Simulator

Class Simulator describes the overall simulator. It provides a set of functions for
configuring a simulation and for choosing the type of event scheduler used to drive the
simulation. The configuration generally begins by creating an instance of Simulator class
and calling various functions to create and manage the topology, and internally stores
references to each element of the topology. The class is defined as follows:

class Simulator {
public:
Simulator();
~Simulator();

static Simulator & instance() { return (*instance )}

static Agent* nullAgent ;

static Node* Node_[MAX_NODES]; |/ array of references to the nodes,
/! Indexed by the node id

static Link* link_[][MAX_NODES];

static int EnableMcast_;

static int nt_; /1 total number of trace in alltrace_[]

static int nc_; I number of TCP connections

Scheduler* scheduler ;

Node* node(int);

void now();

void at(Event*);

int at(double, void* (*proc)(void*), void* args=0);

void cancel(Event*);

void run();

void halt();

RouteLogic* get_routelogic();

RouteLogic* get_amm_routelogic();

void simplex_link(Node*, Node*, double, double, int);

void duplex_link(Node*, Node*, double, double, int);

void use_scheduler(int);

void delay(Node*, Node*, double);

Trace* create_trace(int, FILE*, Node*, Node* );

void trace_queue(Node*, Node*, FILE*);

void flush_trace();

inline void trace_all(FILE* file) { traceAllF ile_ = file;}

QueueMonitor* monitor_queue(Node*, Node*, FILE*, double )

void queue_limit(Node*, Node*, int);

void drop_trace(Node*, Node*, Trace*);

void cost(Node*, Node*, int);
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void attach_agent(Node*, Agent*);

void detach_agent(Node*, Agent*);

Agent* connect(Agent*, Agent*, Node** route=NULL, int cnt = 0 );
void compute_routes();

void print_conn_table();

protected:
RouteLogic* routingTable ;
RouteLogic* atm_routingTable _;

FILE* traceAllFile_;

Trace* alitrace_{MAX NODES]; /I array of trace
static Simulator* instance _;

PacketHeaderManager* packetManager ;

int connection_{[MAX_CONNECTIONS] [—4] ;I global mapping table

Node** route_list [MAX NODES]; /1 route list indexed by conn.

void create_packetformat();

inline int alloc_conn() { return (nc_++);}
void create_vc(int, int, int);

void conn_gateways();

3.3.3.3 Class Node

Each node has a unique node ID to uniquely identify each node in the topology. Passing
an integer node type parameter to the Simulator function node (int node_type) creates IP

nodes, ATM switches or gateways, and a unique ID is automatically assigned to each

node. Nodes are composed of classifiers. The class is defined as follows:

class Node : public TclObject {

public:
Node(int);
~Node();
static int nn_; /I total number of nodes
inline int id() { return (id_); } /I returns the node ID
int type_; I/ node type

inline Classifier* entry() { return (classifier_); }

void add_neighbor(Node* ); /! adds a neighbor to the neighbor list

inline NodeList* neighbors(){ return (neighbor )}
void add_route(int dst, NsObject* target
void add_switch(int vci, NsObject* target);

51



Agent* agent(int port);
inline int alloc_port() { return (np_++); }

void attach(Agent*); I add the agent to agent list agents_

void detach(Agent*, Agent*); Il remove the agent from agents _

void reset(); /I reset all agents at the node
protected:

Classifier* classifier ;
inline int getid() { return(nn_++); }

intid_; /1 0 based node ID

NodeList* neighbor_;

AgentList* agents_;

AddressClassifier* dmux_; Il port classifier

intnp _; /I number of local agents (each has a port)

3.3.34 Class Link and SimpleLink
The class Link provides a few simple primitives. The class SimpleLink is the subclass of
class Link that provides the ability to connect two nodes with a point to point link with an
associated queue and delay. As with the node being composed of classifiers, a simple link
is built up from a sequence of connectors.
Class Link is defined as follows:
class Link : public TclObject{
public:
Link(int, int);
~Link();
inline NsObject* head() { return(head_); }
virtual inline Queue* queue() { return(queue_); }

inline LinkDelay* link() { return(link_); }

inline void cost(int c) { cost_= c; } Il set link cost 1o value ¢
inline int get_cost() { return(cost )}

virtual void trace(Simulator* ns, FILE* f) {};
protected:

NsObject* head_; Il Entry point to the link, it points
/] to the first object in the link.
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};

Queue* queue_; /] Reference to the main queue element of the link
LinkDelay* link ; Il A reference to the element that actually

I models the link, in terms of the delay and

/! bandwidth characteristic of the link.
Trace* trace ;

Node* fromNode_; /1 source node
Node* toNode_; /1 destination node
int source_; Il source node id

int dest_; /! destination node id
int cost_; I link cost

Class SimpleLink is derived from the base class Link as follows:

class SimpleLink : public Link {

public:

SimpleLink(int, int, double, double, Queue*);
~SimpleLink();
void trace(Simulator*, FILE*); /! Build trace objects for this link

/1 and update the object linkage
QueueMonitor* init_monitor(Simulator*, FILE*, double);

protected:

void attach_monitors(SnoopQueue*, SnoopQueue*, SnoopQueue*,

QueueMonitor*);

void start_tracing();

void ttl_drop_trace(Connector*);

void ttl_drop trace();

void transit_drop_trace();

void transit_drop_trace(Connector*);

void queue_sample_timeout();

char* sample_queue_size();

TTLChecker* utl_; Il Reference to the element that manipulates the ttl

Il in every packet.

Connector* drophead_; /| Reference to an object that is the head of

Il queue of elements that process link drops.

Trace* enqT ; /1 Reference to the element that traces
/! packets entering queue_

Trace* deqT ; /l Reference to the element that traces
Il packets leaving queue_

Trace* drpT _; Il Reference to the element that traces
Il packets dropped from queue_
SnoopQueue* snoopin_;
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SnoopQueue* snoopQOut_;
SnoopQueue* snoopDrop _;
QueueMonitor* gMonitor_;

Simulator* ns_;

FILE* gqtrace_; Il queue trace output file pointer
double samplelnterval_; /! float number

double lastSample_; /! last sample time

},.

The constructor is defined as follows:

SimpleLink::SimpleLink(int src, int dst, double bw, double delay, Queue* q)
: Link(src, dst)
{

queue_ =q;
link_ = new LinkDelay;

link . _->bandwidth_ = bw;

link - ->delay = delay,
link_->name("LinkDelay", src, dst);

queue_->target_ = link_;
link_->target_ = (NsObject* )Simulator::Node_[dst]->entry();

head_ = (NsObject* ) queue_;

drophead_ = new Connector;

drophead_->target = (NsObject* )Simulator: ‘nullAgent_;
drophead_->name("DropHead", src, dst);

ttl_ = new TTLChecker;

el _->target_ = link_->targer_;
1tl_->name("TTLChecker", src, dst);

nl_drop_trace();

link_->target_=nl_;

lastSample_ = 0;

Notice that when a SimpleLink object is created new LinkDelay and TTLChecker objects

are also created, and the Queue object must have already been created.
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3.4 Removal of OTcl Linkage

Users create new simulator objects through the interpreter; these objects are instantiated

within the interpreter, and are closely mirrored by a corresponding object in the compiled

hierarchy. There are six OTcl classes used in Ns2:

e Class Tcl contains the methods that C++ code will use to access the interpreter.

® Class TclObject is the base class for all simulator objects that are also mirrored in the
compiled hierarchy.

® Class TclClass defines the interpreted class hierarchy, and the methods to permit the
user to instantiate TclObjects.

e Class TclCommand is used to define simple global interpreter commands.

¢ Class EmbeddedTcl contains the methods to load higher-level built-in commands that
make configuring simulations easier.

® Class InstVar contains methods to access C++ member variables as OTcl instance

variables.

3.4.1 Variable Bindings

In most cases, access to compiled member variables is restricted to compiled code, and
access to interpreted member variables is likewise confined to access via interpreted
code. However, it is possible to establish bi-directional bindings such that both the
interpreted member variable and the compiled member variable access the same data, and
changing the value of either variable changes the value of the corresponding paired
variable to the same value. In Ns2, the compiled constructor establishes the binding when
that object is instantiated; it is automatically accessible by the interpreted object as an

instance variable.
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3.4.2 command Methods

For every TclObject that is created, Ns2 establishes the instance procedure, cmd(}, as a
hook to executing methods through the compiled shadow object. The procedure cmd{}
invokes the method command() of the shadow object automatically, passing the

arguments to cmd{} as an argument vector to the command() method.

3.4.3 Class TclClass

This compiled class TclClass is a pure virtual class. Classes derived from this base class
provide two functions: construct the interpreted class hierarchy to mirror the compiled
class hierarchy; and provide methods to instantiate new TclObjects. Each such derived
class is associated with a particular compiled class in the compiled class hierarchy, and

can instantiate new objects in the associated class.

3.44 Breaking the OTcl Linkage

To remove the OTcl linkage from C++ code, following modifications are done to all the

OTcl classes:

¢ Setup all the default parameters directly in C++ instead of variable bindings.

¢ Remove command() function and extract the useful functions if not already exists in
C++ code, since all the functions will be called directly from C++ code.

¢ Remove all the subclasses of class TclClass, since there is no need for the interpreted

class hierarchy.
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4. IP over ATM Network Simulation

In order to support ATM and TCP/IP over ATM, following components are added to
HyNS:

¢ TCP connection to ATM virtual circuit mapping

¢ Second layer routing (ATM switching)

® ATM switch (Virtual Circuit Classifier)

e IP/ATM gateway function (segmentation and reassemble)

In HyNS, the protocol stack of “TCP/IP/AALS/ATM” is used to implement TCP/IP over
ATM. Here, the functionality of AALS is implemented in [P/ATM gateways. An [P
packet from the source computer goes into a router, then through an IP/ATM gateway
that segments the packet into cells. The segmented cells go through the ATM network to
an IP/ATM gateway near the other point, where they are reassembled back into the IP
packet and forwarded to a router on the destination end, and finally into the destination

computer.

4.1 TCP Connection to Virtual Circuit Mapping
All the mappings from TCP connection to virtual circuit are first set up and stored in

member variable Simulator::connection_, then the related mapping information is

'

extracted and stored in each gateway. The member variable Simulator::nc_ keeps the

total count of the TCP connections. For fast mapping from both directions, each gateway
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keeps two local mapping tables, one map from connection to virtual circuit (VC), the

other maps from VC to connection.

4.1.1 Global Mapping Table

The global mapping table has four columns and the same number of rows as the total
number of TCP connections. Each row stores the information about a TCP connection,
TCP connection number is implied in the row number. The first column of the mapping
table is the combination of source node ID and source agent port ID. The second column
is the combination of destination node ID and destination agent port ID. The third column
is the mapping virtual circuit ID, and the fourth column is the node count in the user
specified path for the second layer switching. When a TCP connection is established
between source and destination agents using function Simulator::connect(), a unique
connection ID is created and a new row is added to the mapping table. The mapping
virtual circuit ID is assigned later if the connection includes any ATM switch. The
function Simulator::connect() is defined as follows:

Agent* Simulator::connect(Agent* src, Agent* dst, Node** route, int cnt)

{

/I Connect agents (low eight bits of addr are port number,
/I High 24 bits are node number)

Node* srcNode = src->node_;

Node* dstNode = dst->node_;

int src_address = srcNode->id() << 8 | src->port();
int dst_address = dstNode->id() << 8 | dst->port();

/1 dst_ -- destination address for pkt flow
src->dst_ = dst_address;
dst->dst_ = src_address;

Il Populate global mapping table

int conn = alloc_conn(); I/ get next connection number
connection_{conn] [CONN_SRC] = src_address;
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connection_[conn] [CONN_DST] = dst_address;

connection_[conn] [CONN_VC] = -1, I/ no virtual circuit ID assigned yet
connection_[conn] [CONN_ROUTE _CNT] = cnt;

route_list_fconn] = route;

/! Setup source agent’s TCP connection number
src->conn_ = conn;

return(src);

Source agent’s TCP connection number is also setup when the connection is established.
This way, the source agent can include the connection number in the packet header when

sending packets.

4.1.2 Local Mapping Tables
Each gateway keeps two local mapping tables (two one-dimensional arrays). One table
maps from TCP connection to virtual circuit (rcp2vc_), indexed by connection number.
The other table maps from virtual circuit to TCP connection (vc2tcp_), indexed by virtual
circuit ID. After all TCP connections are established, function
Simulator::conn_gateways() is called to route through all TCP connections. If gateway-
gateway link is found and there is no physical link exists between these two gateways, a
virtual circuit is created to connect these two gateways, the virtual circuit ID is assigned
to the corresponding TCP connection in the global mapping table and the two local
mapping tables. Function Simulator::conn_gateways() is defined as follows:
void Simulator::conn_gateways()
{ int src_address, dst_address;
int src_id, dst_id, new_src, found;
RouteLogic* r = get_routelogic();
int veid = 0; I virtual circuit id start from 0

int nh; /! nexthop
inti;
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Jor(i=0; i<nc_; i++) {
src_address = connection_[i] [CONN _SRC];
dst_address = connection_[i] [ CONN _DsT];

I get node ID (lower eight bits of address are agent port ID,

/1 higher 24 bits are node ID)

src_id = (src_address >> AddressClassifier_shift ) &
AddressClassifier_mask _;

dst_id = (dst_address >> AddressClassifier_shift ) &
AddressClassifier_mask_;

/I start from original source node, route through this connection to

!l find gateway-gateway virtual link and construct virtual circuit for it
new_src = src_id;

Sfound = 0;

PacketTypeClassifier* ptypeClassifierl ;

PacketTypeClassifier* ptypeClassifier2;

nh = r->lookup(new_src, dst_id); I/ find next hop
while (nh >= 0 && nh !=dst_id) {
if (Node_[new_src]->type_ == GATEWAY &&
Node_[nh]->type == GATEWAY &&
link_[new_src] [nh] == NULL) {

found = I;

connection_[i][CONN _VC] = vcid;
ptypeClassifier] =

(PacketTypeClassifier* (Node_[new_src]->entry());
ptypeClassifier2 =

(PacketTypeClassifier* (Node_[nh]->entry());
ptypeClassifier->tcp2ve_[i] = vcid;
ptypeClassifier2->vc2tcp [veid] = i;
create_vc(i,new_src,nh);
}
new_src = nh;
nh = r->lookup(new _sre, dst_id);
}
if (found == 1)
veid++;

4.2 Two-Layered Routing



HyNS uses two-layered routing for IP over ATM networks, first layer is IP routing and
second layer is ATM routing (switching). IP routing includes all the IP nodes (IP hosts
and routers) and IP/ATM gateways, and all the gateways are fully meshed either by a real
link or a virtual link. IP routing will always use the shortest path generated by the system.
ATM switching includes all the gateways and ATM switches, connects pairs of gateways
with switches along the shortest path generated by the system or along the user specified

path.

4.2.1 Route Table Setup
Each simulator contains two RouteLogic pointers, one for [P routing (routingTable ) and
the other for ATM switching (arm_routingTable_). Following function computes both

route logic and populates route/switch table for each node:

void Simulator::compute_routes()

{
/1 get both route logic
RouteLogic* r = get_routelogic(); I for IP nodes and gateways
RouteLogic* atm_r = get_atm_routelogic(); I/ for switches and gateways

/I insert link cost for all the real links in both route logic
inti, j;
Link* [;
Jor(i=0; i<Node::nn_; i++){
Jor(j=0; j<Node::nn_; j++) {
I =link_[i][j];
if(l!'=NULL){
!l assume all the links are always up
if (Node_[i]->type_!= ATM_SWITCH &&
Node_{j]->type_!= ATM_SWITCH)
r->insert(i, j, I->get_cos());

if (Node_[i]->type_!= IP_NODE &&

Node_[j]->type_!=IP_NODE)
arm_r->insert(i, j, I->get_cosi());
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}

/I set up virtual links between all pairs of gateways

!l in the first layer route logic if real links does not exist.

Jor(i=0; i<Node::nn_; i++) {

for(j=0; j<Node::nn_; j++) {
if(i!=j && Node_[i]->type_ == GATEWAY &&
Node_[j]->type_ == GATEWAY) {
if (link_[i][j] == NULL) I/ if not already exists, add it
r->insert(i, j, VIRTUAL_LINK COST);
}

}
}

Il compute both route logic
r->compute();
atm_r->compute();

/1 set up route table for each first layer node (IP node or gateway)
i=0;

Node* nl;
int nh; /I next hop
Link* link;
while(i < Node::nn_ ) {
nl = Node_[i];
if(nl->type_!= ATM_SWITCH) {
intj=0;
while(j < Node::nn_) {
iflil=j){
if (Node_[j]->type_!= ATM_SWITCH) {
nh = r->lookup(i, j);
ifinh>=0){(
link = link_[i] [nh];
if (link != NULL)
nl->add_route(j, link->head());
}
}
}
JH++;
}
}
i++;
}

/I set up switch table for each second layer node (switch or gateway)
conn_gateways();
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A virtual link is set up when no real link exists between two gateways. The cost of this
virtual link is set to be very high, higher than the cost of the longest real route
(concatenation of all the real links along the worst route) in the topology. This way real
route will always be chosen over virtual route (routes which include virtual links) based
on the shortest path principle. The assumption for the setting is that if a real route exists
between two IP nodes, these two IP nodes must be close or can be considered within the
same IP network, ATM network should be avoided in this case. Link cost can also be
used to favor or disregard specific links in order to achieve particular topology

configurations.

4.2.2 User Specified Path vs. Shortest Path

TCP connections between source and destination agents are established by calling
function Simulator::connect(Agent* src, Agent* dst, Node** route=NULL, int cnt = 0).
The last two parameters are the user specified route path and the node count of this
specified route. If they are not given, the system generated shortest route path will be
used for the second layer routing. If they are past with the valid node list (user specified
route path) and node count for all the nodes involved in the ATM switching, the user
specified route path will be used for the second layer routing. Node lists are stored in the
variable Simulator::route_list_ which is indexed by TCP connection number. Node
counts are stored in the fourth column of the global mapping table. A node list is valid
means that all the nodes in the list should be either gateways or switches, all the

neighboring nodes should have real links between them, node list should start and end
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with gateways and has at least one switch in between. This feature is useful when a
specific route path is required for ATM switching.

Since fully meshed gateway connection is used in HyNS, usually one gateway-gateway
virtual link is needed when a switching path is generated by the system (shortest path).
User specified path can contain more than one gateway-to-gateway virtual link for a TCP
connection, as long as all the switches and gateways are specified when the connection is
setup.

Function Simulator::create_vc(int conn, int gl, int g2) sets up the second layer routing
(ATM switching) for TCP connection conn between gateway g/ and gateway g2. The
function is defined as follows:

void Simulator::create_vc(int conn, int g1, int g2)

{
int nh; /I next hop
int th; // this hop
inti;
int found, indexl, index2;
int user_specified_path = 0;
Link* link;
RouteLogic* r = get_atm_routelogic(); Il second layer route logic

/I get previously stored vci, user specified path and node count
int vei = connection_[conn] [CONN VC];
Node** route = route_list_[conn];
int cnt = connection_{conn] [CONN_ROUTE _CNT];
if (route != NULL) {
/I search for g1 and assign its index to indexl
Sfound = 0;
i=0;
indexl = -1;
while (i < cnt && found == 0) {
if (route[i]->id() == gl ) {
found = 1;
indexl = i;
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i++;
}
if (found == 1) {
Il search for g2 and assign its index to index2
Sfound = 0;
i =indexl+1;
index2 = -1;
while (i < cnt && found == 0) {
if (route(i]->id() == g2) {
found = 1;
index2 = i;

i++;
4

/I checks the validity of the user specified path
if (indexl != -1 && index2 != -1 && (index2-indexl)!= 1) {
user_specified_path = 1;
th=gl; /I start from source gateway
Jor(i=indexl +1; i<=index2; i++) {
nh = route[i]->id();
link = link_[th] [nh];
if (Node_{th]->type == [P_NODKE ||
Node_[nh]->type_ == IP_NODKE ||
link == NULL)
user_specified_path = 0;

th = nh;

}

/I use user specified path if valid, otherwise use the shortest path

/] generated by the system, populate switch table for each gateway or
/1 switch along the path

if (user_specified_path == 1) { I/ user specified path
th=gl; /l start from source gateway
Jor(i=indexl +1; i<=index2; i++) {
nh = route[i] ->id();
link = link_[th] [nh];
if (link != NULL)
Node_[th]->add_switch(vci, link->head());

th = nh;
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}

else { // shortest path
th=gl; I/ start from source gateway
nh = r->lookup(th, g2);
while (nh >=0 && th!=g2) {
link = link_[th] [nh];
if (link != NULL)
Node_[th]->add_switch(vci, link->head());

th = nh;
nh = r->lookup(th, g2);

Function create_vc() retrieves previously stored virtual circuit ID, user specified path
and node count if specified, and checks the validity of the user specified path, and then
populates switch table for each gateway or switch along the user specified path if the path

is valid, otherwise along the shortest path generated by the system.

4.3 ATM Switch
ATM switches uses the Virtual Circuit Identifier (VCD) in each ATM cell header to
determine how to route the cell. The typical structure of an ATM switch is as shown in

Figure 4.
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Figure 4 Typical Structure of an ATM Switch

4.3.1 Virtual Circuit Classifier
A virtual circuit classifier is used for cell forwarding, it is the first element that handles
the incoming cells to the switch. It applies a bit-wise shift and mask operation to a cell’s
virtual circuit ID to produce a slot number. The slot number is returned from the
classify() method. The class VirtualCircuitClassifier is defined as follows:
class VirtualCircuitClassifier : public Classifier {
public:
VirtualCircuitClassifier() : mask_(~0), shift (0) {
mask_ = Classifier_mask_;
shift_ = Classifier_shift_;
off cell_= PacketHeaderManager::vartab [ OFF CELL];
}
nsaddr_t mask_;
int shift_;
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protected:
int off cell ;
int classify(Packet *const p) {
hdr_cell* h = (hdr_cell* )p->access(off cell_);
return ((h->vci() >> shift ) & mask_);

4.4 IP/ATM Gateway

A gateway is a computer that connects two different networks. An IP/ATM gateway
connects IP and ATM networks, it segments an IP packet into ATM cells or reassemble
ATM cells back into an IP packet. The typical structure of a gateway is shown in Figure
5.

In HyNS, each gateway contains a packet type classifier, which is the first element that
handles the incoming packets to the gateway. Each packet type classifier contains an
address classifier for routing packets and a virtual circuit classifier for switching cells.
When a gateway receives a packet, its packet type classifier checks the incoming packet
type. If the packet is an IP packet, the TCP connection to virtual circuit mapping table is
checked. If a mapping is found, the gateway segments the IP packet into ATM cells and
forwards them to its switch (or, virtual circuit classifier) which in turn forwards the cells
to downstream ATM switch. This is the normal behavior of gateway. If the mapping is
not found, the gateway forwards the packet to its router (or, address classifier) which in
turn forwards the packet to the downstream IP node. Here, the gateway behaves like an
IP router. If the packet is an ATM cell, the virtual circuit to TCP connection mapping

table is checked.
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If the mapping is found and the cell is not the last one, the gateway buffers the cell. Or if
the mapping is found, and the cell is the last one and all the cells are received in order,
the gateway then reassembles all the cells received into IP packet and forwards the packet
to its router (or address classifier) which in turn forwards the packet to the downstream IP
node. This is the normal behavior of gateway. If mapping is not found, the gateway
forwards the packet to its switch — virtual circuit classifier — which in turn forwards the

cell to the downstream ATM switch, here gateway behaves like an ATM switch.
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4.4.1 Packet Type Classifier
PacketTypeClassifier object is the first element that handles the incoming packets to the
gateway, it is defined as follows:

class PacketTypeClassifier : public Classifier {
public:

PacketTypeClassifier(int);

void recv(Packer*, Handler* h = 0);

inline AddressClassifier* address_classifier() {
return (addr_classifier );}
inline VirtualCircuitClassifier* vc_classifier() {return (vc_classifier )}
int tcp2vc_[MAX_CONNECTIONS] ; Il TCP to VC mapping table
int ve2tcp_[MAX_CONNECTIONS]; I/ VC to TCP mapping table
I prints above two tables, route and switch tables
void print_mapping table();
nsaddr_t mask_;

int shift_;
int off cell_;

protected:
AddressClassifier* addr_classifier ; /! address classifier
VirtualCircuitClassifier* vc_classifier_; /1 virtual circuit classifier
int classify(Packet *const p);
void ip2atm(Packet*); Il segmentation (IP packet to ATM cells)
void atm2ip(Packer* ); !l reassemble (ATM cells to IP packet)

void add_cell(Packer*);
int remove_cell(int vci, int last_seq);
CellList* buffer_; /I keeps all the incoming cells

},.

When a gateway receives a packet, the recv() function is called to check the incoming
packet type. If incoming packet is an IP packet, the ip2arm() function is called; If

incoming packet is an ATM cell, the arm2ip() function is called.

4.4.2 Segmentation
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Member function PacketTypeClassifier::ip2atm() is called mainly to segment the [P
packets into ATM cells and forward them to the downstream ATM switch, and it is
defined as follows:

;oid PacketTypeClassifier::ip2atm(Packet* D)

inti, conn, vci, ip_size, cell_num;
hdr_cell* h;

hdr_cell* h_cell;

hdr_cmn* h_cmn;

Packet* cell;

// map TCP connection to ATM virtual circuit
h_cell = (hdr_cell* )p->access(. off cell );
conn = h_cell->conn();
vei=-l;
if(conn !=-])

vei = tcp2ve_[conn];

if(vci==-1){
/I no mapping, send through gateway's router
addr_classifier_->recv(p);

}

else { /| segment and send through gareway's switch
h_cmn = (hdr_cmn* Jp->access(off cmn_);
h_cell->ip_ptype() = h_cmn->ptype(); ~ /I keep ip packet type
h_cell->ip_size() = h_cmn->size(); I keep ip packet size
ip_size = h_cmn->size(); /] get simulated ip packet size
h_cmn->ptype() = PT_CELL;
h_cmn->size() = CELL_SIZE;
h_cell->vci() = vci;
h_cell->lastCellBis() = 0;

cell num = ip_size/CELL_DATA SIZE + I;

Il copy and send all but the last cell

Jor(i=1; i<cell_num; i++){
cell = p->copy();
h = (hdr_cell* |cell->access(off cell_);
h->seq() = i;
ve_classifier_->recv(cell);

}
I/l send last cell
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h_cell->seq() = cell_num;
h_cell->lastCellBit() = 1;
ve_classifier_->recv(p);

}

This function retrieves the TCP connection number from the packet header, and looks up
a mapping virtual circuit number from table tcp2vc_. If no mapping is found, the IP
packet is forwarded through address classifier, here gateway behaves like an IP router; If
a mapping virtual circuit is found, the IP packet is segmented into ATM cells and
forwarded through virtual circuit classifier, here gateway behaves like a normal gateway.
Each ATM cell has a sequence number and last cell bit field stored in the cell header.
Sequence number is used to insure the cells are received in the original order before
being reassembled back to the IP packet. The last cell bit field of the last cell is set to 1,

and others set to 0.

4.4.3 Reassemble
Member function PacketTypeClassifier::am2ip() is called mainly to buffer a cell or
reassemble cells into IP packet and forward it to the downstream IP node, it is defined as
follows:

void PacketTypeClassifier::atm2ip(Packer* cell)

hdr_cmn* h_cmn = (hdr_cmn* )cell->access(off cmn_);
hdr_cell* h_cell = (hdr_cell* Jcell->access(off cell );

! map virtual circuit ID to TCP connection number
int conn = -|;
intvei = h_cell->vci();
if (vei!=-1)
conn = vc2tcp_[vci];

if(conn == -1){
// no mapping, send through gateway’s switch
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ve_classifier_->recv(cell);

}

else { I reassemble and send through gateway’s router
int last_cell_bit = h_cell->lastCellBit();
if (last_cell bit==1){ /1 last cell received
int last_seq = h_cell->seq();

Il remove the previous buffered cells
int out_of order = remove_cell(vci, last_seq);

Il if all the cells received in order,
/I reassemble and send the packet
if (out_of order!=1){
h_cmn->ptype() = h_cell->ip_ptype();
h_cmn->size() = h_cell->ip_size();
addr_classifier_->recv(cell);

}

else
Packet::free(cell);

}
else // buffer this cell

add_cell(cell);

This function retrieves the virtual circuit number from the packet header, and looks up a
mapping TCP connection number from table vc2ecp_, If mapping is not found, the cell is
forwarded through virtual circuit classifier, here gateway behaves like a switch. If a
mapping TCP connection is found, the cell is the last one from a packet and all the cells
received in order, the cells will be reassemble back into the [P packet and forwarded
through address classifier, here gateway behaves like a normal gateway. If the cells are
received out of order, they will be discarded. If the cell is not the last one, simply buffer

it.
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S. A Simulation Example

A simple example is used to explain the usage of the hybrid network simulator. In this
simple example, the agents in IP nodes from one IP network (node 0 and node 1) send
constant bit rate packets to the agents in IP nodes in another IP network (node 3), passing

through a high speed ATM network. The topology is shown in Figure 6.

Sample Topology

RO .
O QOO
~Olen 0O

O: IP Nodes I : [IP/ATM Gateways O: ATM Switches

Figure 6 Sample Topology

5.1 Creating the Topology

The following code segment generates the topology shown in Figure 6:
Simulator* ns = new Simulator;
Node* n0 = ns->node(IP_NODE);

Node* nl = ns->node(IP_NODE);
Node* n2 = ns->node(IP_NODE);

74



Node* n3 = ns->node(IP_NODE);

Node* n4 = ns->node(ATM SWITCH);

Node* n5 = ns->node(ATM  SWITCH);

Node* n6 = ns->node(ATM SWITCH);

Node* n7 = ns->node(GATEWAY);

Node* n8 = ns->node(GATEWAY);
ns->duplex_link(n0, n2, 5000000, 0.002, DROP  TAIL);
ns->duplex_link(nl, n2, 5000000, 0.002, DROP  TAIL);
ns->duplex_link(n2, n7, 1500000, 0.002, DROP  TAIL);
ns->duplex_link(n7, n4, 1500000, 0.01, DROP TAIL);
ns->duplex_link(n4, n5, 1500000, 0.01, DROP TAIL);
ns->duplex_link(n4, n6, 1500000, 0.01, DROP TAIL):
ns->duplex_link(nS, n6, 1500000, 0.01, DROP TAIL);

ns->duplex_link(n5, n8, 1500000, 0.01, DROP_TAIL);
ns->duplex_link(n8, n3, 1500000, 0.01, DROP_TAIL);

The above code segment first creates an instance of class Simulator, and calls function
node(int type) to create four IP nodes (n0, nl, n2, n3), three ATM switches (n4, nS, n6)
and two IP/ATM gateways (n7, n8) and then calls its member function
duplex_link(Node* nl, Node* n2, double bw, double delay, int queue_type) to construct
bi-directional links between node n/ and node n2 with bandwidth bw (bps) and delay

delay (second), using queue of type queue_type.

5.2 Creating the Agents
The following code segment creates agents, attaches them to nodes, and establishes
connection between source and destination agents:

CBR_Agent* cbr0O = new CBR_Agent;
ns->attach_agent(n0, cbr0);

CBR_Agent* cbrl = new CBR_Agent;
ns->attach_agent(nl, cbrl);

NullAgent* null0 = new NullAgen:(0);
ns->attach_agent(n3, null0);

Node* route[] = {n7, n4, n6, nS, n8};
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int cnt = sizeofiroute)/sizeof(route[0] ); I array length

ns->connect(cbr0, null0);

ns->connect(cbrl, null0, route, cnt);
The above code segment first creates two Constant Bit Rate (CBR) agents (crb0 and
cbrl), and attaches cbr0 to node n0, cbrl to node nl. Creates a null agent (null0) as traffic
sink and attaches it to node n3, and then establishes two TCP connections between CBR
agents and null agent. The connection between cbrQ and null0 uses the shortest path for
second layer routing since last two parameters are not given. The connection between

cbrl and null0 uses user specified path for second layer routing, route sequence between

gateway n7 and gateway ng is 7-> n4-> n6-> n5-> n8.

3.3 Starting and Finishing the Simulation
The following code segment schedules three events, and starts the simulation by calling
function run();
ns->at(1.0, cbr_swart, cbr0);
ns->at(l.1, cbr_start, cbrl );
ns->at(1.2, finish, ns);
ns->run();
Three scheduled events are:
® cbrO starts sending packets at 1.0 (simulation time in seconds)

® cbrl starts sending packets at 1.1 (simulation time in seconds)

¢ simulation ends at 1.2 (simulation time in seconds)

54 Trace Output
When above simulation is run, each individual packet is recorded as it arrives, departs, or
is dropped at a link or queue. All these trace records are stored in a trace file to be post-

processed and analyzed. Analyzing the trace file is one way of testing the simulator.
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The trace output segments from the above simulation are listed and explained in this
section. The first segment shows the travel path of a single packet from its source agent
cbr0 to its destination agent null0, through the shortest path generated by the system. The
second segment shows the travel path of a single packet from its source agent cbrl to its
destination agent null0, through the user-specified path (n7-> n4-> n6-> n5-> n8).

Assuming the link cost for all the real (physical) links is one.

5.4.1 Trace Record Fields
In order to understand the trace output, the trace record fields are explained here. Each
trace record (row) includes following fields separated by a space:

<code><time><hsrc><hdst><type><size><flags>
<flowID><src.sport><dst.dport><seq><pktID>
where
<code>: + (en-queue): packet entering queue;
- (de-queue): packet leaving queue
<time>: simulation time in seconds at which each event occurred
<hsrc>: first (source) node ID
<hdst>: second (destination) node ID
<type>: descriptive name for the packet type
<size>: packet’s size, as encoded in its IP header
<flags>: six characters represent special flag bits which may be enabled.
The default value is “------*.
<flowID>: IP flow identifier field as defined for IP version 6.1.
<src.sport>: packet source node ID & port number
<dst.dport>: packet destination node ID & port number
<seq>: packet sequence number (unique only to each source or to each packet
when used in segmented cells)
<pktID>: unique packet identifier (for all the packets sent by all the sources)

An example of a trace file might appear as follows:

+102chbr210------00.03.000
-102chr210------00.03.000

+ 1.002342 7 cbr 210 ------ 00.03.000
-1.002342 7 cbr210------00.03.000
+1.0037502 cbr210------00.03.011
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-1.003750 2 cbr 210 ------ 0003011
Here we see six trace entries, 3 en-queue operations (indicated by "+" in the first
column), 3 de-queue operations (indicated by "-"). The simulated time (in seconds) at
which each event occurred is listed in the second column. The next two fields indicate
between which two nodes tracing is happening. The next field is a descriptive name for
the type of packet seen. The next field is the packet’s size, as encoded in its IP header.
The next six characters represent special flag bits that may be enabled. The next field
gives the IP flow identifier field as defined for IP version 6.1. The subsequent two fields
indicate the packet’s source and destination node addresses, respectively. The following
field indicates the sequence number. The last field is a unique packet identifier. Each new

packet created in the simulation is assigned a new, unique identifier.

5.4.2 Shortest Path Packet Trace

The connection between cbr0 and null0 uses the shortest path generated by the system for

second layer routing, the route sequence between two gateways should be n7->n4->n5->

n8, the complete route should be n0->n2->n7->n4->n5->n8->n3. Now let’s check the

trace to see if packets really go through this route and been segmented and reassembled at

the right node.

Following trace records the lifetime of the first packet sent from CBR agent cbrO to null

agent null0:

¢ Attime 1 (in seconds), a CBR packet sent from node 0 to node 2 (en-queued and de-
queued). CBR packet size is 210. Packet source node ID & port number is 0.0. Packet
destination node ID & port number is 3.0. This packet is the first packet send by cbr0

(second to the last field is 0) and the first packet send by the simulator (last field is 0).
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+102cbr210——-0003.000
-102cbr210—-00.03.000

At time 1.00234, this CBR packet is forwarded from node 2 to node 7.

+1.0023427cbr210---—--00.03.000
-1.002342 7 cbr210------00.03.000

From time 1.00546 to time 1.00659, this CBR packet is segmented into 5 ATM cells
in node 7 (IP/ATM gateway) and forwarded to node 4 (ATM switch). Notice that the
packet type is changed from ‘cbr’ to ‘cell’, packet size is changed from 210 to 53
(cell size) and the packet sequence number O (second to the last field) is changed to
cell IDs (1 to 5).

+1.005467 4 cell 53 -—— 0003010
- 1.005467 4 cell 53 —---00.03.010
+ 1.005467 4 cell 53 —---00.03.020
+ 1005467 4 cell 53 --—---00.03.030
+1.005467 4 cell 53 -----00.03.040
+1.005467 4 cell 53 --—-00.03.050
- 1.005747 4 cell 53 -——00.03.020
- 1.00602 7 4 cell 53 —--00.03.030
-1.00637 4 cell 53 ~----00.03.040

- 1.00659 7 4 cell 53 ----00.03.050

From time 1.015744 to time 1.01687, these S cells are forwarded from node 4 to node

5.

+ 1.01574 4 5 cell 53 —---00.03.01 0
-1.01574 45 cell 53 —----00.03.010
+1.01602 4 5 cell 53 ——-0003.020
-1.0160245 cell 53 —--00.03.020
+1.016345 cell53 0003030

-1.01634 5 cell 53 - 00.03.030

+1.01659 4 5 cell 52 ——-00.03.040
- 10165945 cell 53 ——00.03.040
+1.01687 4 5 cell 53 —-0003.050
-1.01687 45 cell S3 -—--00.03.050
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¢ From time 1.02602 to time 1.02715, these 5 cells are forwarded from node S to node

8.

+1.02602 5 8 cell 53— 00.03.0 1 0

- 1.02602 5 8 cell 53 - 00.03.0 1 0

+1.0263 58 cell 53 ——00.03.020

- 1.0263 5 8 cell 53 ——00.03.020

+1.026595 8 cell 53—~ 00.03.0 30

- 1.02659 5 8 cell 53 - 00.03.03 0

+ 1.02687 58 cell 53 —-—00.03.040

- 1.02687 5 8 cell 53 ~—00.03.04 0

+1.027155 8 cell 53 0003050

- 1.02715 5 8 cell 53 -——00.03.050

® At time 1.03743, these 5 cells are reassembled back to CBR packet in node 8

(IP/ATM gateway) and forwarded to node 3, the destination node. Notice that the
packet type is changed from ‘cell’ back to ‘cbr’, packet size is changed from 53 back

to 210 and the cell IDs are changed back to packet sequence number 0.

+1.0374383 cbr210--—--0003.000
-1.03743 83 cbr210---—---00.03.000

We can see from the above trace analysis that the first packet sent from cbr0 actually
travels through the shortest path generated by the system and been segmented and

reassembled at the right node.

5.4.3 User Specified Path Packet Trace

The connection between cbrl and null0 uses user specified path for second layer routing,
the route sequence between two gateways is n7->n4->n6->n5->n8, the complete route
should be n1->n2->n7->n4->n6->n5->n8->n3. Now let’s check the trace to see if packets

really go through this route and been segmented and reassembled at the right node.
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Following trace records the lifetime of the first packet sent from CBR agent cbrl to null

agent null0:

At time 1.1 (in seconds), a CBR packet sent from node 1 to node 2. Packet source
node ID & port number is 1.0. Packet destination node ID & port number is 3.0. This
packet is the first packet send by cbrl (second to the last field is 0) and the 27th
packet send by the simulator (last field is 27).

+1112chbr210----01.03.0027
«1.112chr2l0----0103.0027

At time 1.10234, this CBR packet is forwarded from node 2 to node 7.

+1.1023427cbr210----01.03.0027
-1.1023427cbr210-—----0103.0027

From time 1.10546 to time 1.10659, this CBR packet is segmented into 5 ATM cells
in node 7 (IP/ATM gateway) and forwarded to node 4 (ATM switch). Notice that the
packet type is changed from ‘cbr’ to ‘cell’, packet size is changed from 210 to 53
(cell size) and the packet sequence number 0 (second to the last field) is changed to

cell IDs (1to 5).

+ 1105467 4 cell 53 ---01.03.0127
- 1105467 4 cell 53 -0 1.03.0127
+1.105467 4 cell 53 ----01.030227
+1.10546 7 4 cell 53 -----01.03.0327
+1.105467 4 cell 53 -—--01.03.0427
+ 1.105467 4 cell 53 -----01.030527
- 1105747 4 cell 53 -----01.03.0227
- 1106027 4 cell 53 ~—01.03.03 27
-1.10637 4cell53 ——~0103.0427

- 1106597 4 cell 53 —---01.03.0527
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From time 1.115744 to time 1.11687, these 5 cells are forwarded from node 4 to node

6.

+11157446 cell 53 —-01.03.0127
-1.1157446 cell 53 ——-01.03.0127
+1.11602 46 cell 53 --—--01.03.0227
-1.11602 46 cell 53 —--01.03.0227
+1.116346cell 53 —-0103.0327

-1.116346cell 53 -—- 01030327

+1.116594 6 cell 53 ~—01.03.0427
-1.116594 6 cell 53 - 01.03.0427
+1.11687 46 cell 53 -——-01.03.0527
-1.11687 46 cell 53 - 01.03.05 27

From time 1.12602 to time 1.12715, these 5 cells are forwarded from node 6 to node

3.

+ 11260265 cell 53 —-—-0103.0127
-1.126026 5 cell 53 ------01,03.0 1 27
+ 1126365 cell 53 —---01.03.02 27
-1.126365 cell 53 ~---01.03.02 27
+ 1.126596 5 cell 53 —--—01.03.03 27
- 11265965 cell 53 ------01.03.03 27
+ 1126876 5 cell 53 -—--—-01.03.0427
- 11268765 cell 53 —----01.03.0427
+ 1127156 5 cell 53 ----01.03.0527
-1.127156 5 cell 53 —-01.03.0527

From time 1.1363 to time 1.13748, these 5 cells are forwarded from node 5 to node 8.

+1.136358cell 53 —- 01030127
-1.136355 8 cell 53 ----01.03.0127
+ 11365958 cell 53 ——0103.0227
-1.13663 5 8cell 53 -----01.03.02 27
+1.13687 58 cell 53 -—~---0103.0327
-1.13691 58cell 53 —-0103.0327
+ 11371558 cell 53 -—--0103.0427
-1.137258 cell 53 -—---01.03.04 27
+1.13743 58 cell 53 -~---01.03.0527
-1.137485 8 cell 53 -----01.03.0527
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e At time 1.14776, these S cells are reassembled back to CBR packet in node 8
(IP/ATM gateway) and forwarded to node 3, the destination node. Notice that the
packet type is changed from ‘cell’ back to ‘cbr’, packet size is changed from 53 back

to 210 and the cell IDs are changed back to packet sequence number O.

+1.147768 3 cbr210------01.03.0027
-1.14776 83 cbr 210 - 01.03.0027

We can see from the above trace analysis that the first packet sent from cbrl actually
travels through the user specified path and been segmented and reassembled at the right

node.
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6. Summary

Because of the lack of IP+ATM simulators, my goal was to develop a dual or hybrid
network simulator. In order not to reinvent wheels, Lawrence Berkeley National
Laboratory (LBNL)'s Network Simulator version 2 (Ns2) was chosen as the base
simulator for building my IP/ATM Hybrid Network Simulator (HyNS).

Ns2 is written in C++ and OTcl, any one wish to fully understand or modify it must be
comfortable with both environments and tools. Plus, it is hard to debug both C++ and
OTecl code together. Since not many researchers are familiar with OTcl, we decided to
take out the OTcl part and convert OTcl code into C++ code, this way, users of HyNS
will only need to know C++ to understand the simulator, and use any standard C++Level
debugger for debugging.

Ns2 has good support for IP, but no support for ATM. In order to support ATM and
TCP/IP over ATM, following components are added to the modified and translated Ns2:
* TCP connection to ATM virtual circuit mapping

¢ Second layer routing (ATM switching)

® ATM switch (Virtual Circuit Classifier)

o [P/ATM gateway function (segmentation and reassemble)

HyNS was tested before and after the addition of the above ATM components. In this
hybrid simulator, most of the objects have a name field, and a lot of classes provide
debugging functions, which print out the object information. The simulator also supports

trace object which records each individual packet as it arrives, departs, or is dropped at a
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link or queue. The simulator was tested with sample topologies using the above
debugging supports. During the test process, some tables (IP and ATM routing tables,
global and local TCP connection to ATM virtual circuit mapping tables) and scheduler
were printed and checked manually against the sample topologies. When a packet is
traced from its source node to its destination node, a list of names of the objects that
received and forwarded the packet along the path was obtained. The trace file was also
analyzed to make sure the simulator ir'nplementation is correct. Users of the simulator can

also use these debugging supports to understand the simulator.

HyNS was developed to provide a means for researchers to analyze the behavior of IP
networks or [P over ATM networks without the expense of building a real network. It can
be used for testing various [P-over-ATM algorithms, investigating the performance of
TCP connections over ATM networks without ATM-level congestion control, and

comparing it to the performance of TCP over packet-based networks, etc.
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Appendix A Conversion to Windows NT and Windows 95
HyNS was originally developed under Unix Solaris 2.5, and ported to Windows NT 4.0
and Windows 95. Nowadays, personal computers can be found every where, in the office
or at home. So it is very convenient for the researchers to have a version of HyNS
running under Windows environment like Windows NT and Windows 95.
The following are the steps to create HyNS console program using Microsoft Visual C++
5.0 under Windows NT or Windows 95 environment:
1. Create a new project of type “Win32 Console Application”

¢ In Microsoft Developer Studio, On the File menu, click New and then click the

Projects tab.

o Select “Win32 Console Application” as project type.

¢ Specify the Project Name (HyNS), Location, and then click the OK button.
2. Rename all the *.cc files to *.cpp files
3. Add all the *.cpp files and *.h files to the new project space

¢  On the Project menu, click *“Add to project”, and then click Files

o Select all the *.cpp and *.h files, click OK.
4. Build and run the application

¢ On the Build menu, click “Build HyNS.exe" to build the application.

® On the Build menu, click “Execute HyNS.exe" to run the application.

Console programs are developed with Console API functions, which provide character-
mode support in console windows. The Visual C++ run-time libraries also provide output

and input from console windows with standard I/O functions, such as pringff) and scanf().
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