INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

®

UMI

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

A COMPILER OPTIMIZATION FRAMEWORK FOR
CONCORDIA PARALLEL C

WEN LIANG

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CoNCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

SEPTEMBER 1998
© WEN LIANG, 1998

vl

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Waellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada .
Your file Votre référence
Our file Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette these sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise ' de celle-ci ne doivent étre imprimes
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-39488-3

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: ‘Wen Liang
Entitled: A Compiler Optimization Framework for Concordia Par-
allel C

and submitted in partial fulfillment of the requirements for the degree of
Master of Computer Science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Chair

Supervisor

Approved
Chair of Department or Graduate Program Director

19

Dr. Nabil Esmail, Dean

Faculty of Engineering and Computer Science

Abstract

A Compiler Optimization Framework for Concordia Parallel C

Wen Liang

In this thesis, we present the design and implementation of a compiler optimization
framework for the Concordia Parallel C (CPC). CPC is the working language for the
Concordia Parallel Systems Simulator (CPSS), whose purpose is to study interactions
between parallel runtime systems and languages and their impacts on perforinance.

The major challenge of designing a compiler optimization framework is to choose
an appropriate Intermediate Representation (IR) that is able to support the solving
of dataflow equations efficiently and applying corresponding transformations easily.
The demanding issue in implementing such a framework is to make it general enough
to meet the requirements of various dataflow analyses and transformations.

We choose Control Flow Graph (CFG) as our intermediate representation because
it is a general and mature compiler IR. We developed a two-pass algorithm that
can build CFG from the CPC Abstract Syntax Tree (CPC-AST). Based on CFG
representation, we implemented an optimization framework that can solve dataflow
equations in either forward and backward manner. As a demonstration example, we
showed how to solve the Common Subexpression Elimination (CSE) problem using
the optimization framework.

To make our optimization framework general yet efficient, we pay special attention
on data structures used in our implementation. Sets are the common data structure
used in describing dataflow equations and their solution algorithms. We use linked
lists to represent sets and implement various set operations such as intersection, union
and member on linked lists.

Our optimization framework is general yet efficient to solve various compiler op-
timization problems including CSE, live variable analysis, and reaching definition.
The experimental results show that the implemented CSE optimization does improve

program performance.

i

Acknowledgements

I would like to thank Prof. Lixin Tao for his thesis supervision for one year.

I am grateful to the professors in the Computer Science department especially,
Dr. Lixin Tao, who taught me so many courses and offered me guidance, advice and
encouragement, Dr.Butler, who gave an excellent course on Software Design Method-
ologies and Object-Oriented Design (COMP647), Dr. Opatrny, who gave wonder-
ful courses on Discrete Structures and Formal Languages(COMP536) and Compiler
Design(COMP 642). Thanks also go to the administrative assistants of the CS de-
partment, especially Ms. Halina Monkiewicz and Ms. Stephanie Robert. Their
friendliness and administrative support have made graduate students’ life much eas-
ier. Thanks must also go to the UNIX system administrators, who have provided
superior system support and services.

Special thanks go to other committee members of my master thesis defence, Pro-
fessor Yuke Wang and Professor Manas Saksena who spent a lot of time to read my
thesis and gave me constructive critiques. Thanks also go to the chairman of my
master thesis defence, Professor Klasa Stan who made the whole thesis defence go
smoothly.

My good friends always deserve my appreciation. They have shared with me not
only my accomplishments but also my frustration.

My family has been very supportive, especially my husband who give me his
unconditional love and support. He helped to proofread this thesis and always gave
constructive critiques, which make this thesis more readable and have fewer mistakes.
I also thank my parents who always encourage me to overcome various difficulties in

my life and study.

iv

Contents

List of Tables viii
List of Figures ix
1 Introduction

1.1 Thesis Contributions v v v v o i i e e e e e e e e e e e

1.2 Thesis Organization

Literature Survey 5
Introduction to Concordia Parallel C 9
3.1 Concordia Parallel C e 10
3.2 CPC AST . . . o e e e e e e e e e e e e e e 10

3.2.1 AST Nodes o i i i i i it ittt i e 11

3.2.2 AST Structure o i i i e e e e e 11
Optimizations, Properties and Problem Statement 15
4.1 Criteria for Compiler Optimizations and Transformations 15
4.2 Framework for optimizations and Transformations 18

4.3 An Example of Function-Preserving Transformations — Common Sub-

EXPTESSION . & & v ¢ v v e e e e e e e e e e e e e e e e 23
Control-Flow Analysis: Building CFG Based on CPC-AST 26
5.1 Introduction to Basic Blocks and Control Flow Graph (CFG) 26
5.2 Approaches to Control-Flow Analysis 30
5.3 Structural Analysis e 31
54 BasicBlocks e e e e e e e 33

55 Control Flow Graphs 35

5.6 Building CFG based on CPC-AST 37
5.6.1 Representation of Basic Blocks and CFG in CPC-AST 37
5.6.2 Main Control Algorithm of Building CFG Based on CPC-AST 42
5.6.3 The Algorithms of Building CFG for Each C Component Based

on CPC-AST e e e 44

Iterative Dataflow Analysis Framework 57
6.1 Safe vs. Aggressive in Compiler Optimizations 57
6.2 Basic Concepts: Lattices, Flow Functions, and Fixed Points 58
6.3 Iterative Data-flow Analysis 60
6.4 Available Expressions 0oL 64
6.5 Live-Variable Analysis, 69
6.6 Sets, Operators, and General Solver 70
6.6.1 Abstract Sets and Meet Operators 70
6.6.2 GeneralSolver. e 71

6.7 CSEExample« .« o i it e e e e e 72
6.7.1 Data Structures for Solving CSE 72
6.7.2 Algorithm for Solving CSE 75
CSE Transformation 79
7.1 Common-Subexpression Elimination 79
7.2 Global Common-subexpression Elimination 81
7.3 Perform the CSE Transformation Based on CPC-AST 84
7.3.1 Available Results of CSE Dataflow Analysis 85
7.3.2 Data Structures for CSE Transformation 85
7.3.3 Algorithm for the CSE Transformation 86
Experimental Results and Analysis 89
8.1 Benchmarks o o i o o e e e e e e e e 89
8.2 Experiment Setting Lo oo 91
8.3 Static Profiling oo 92
8.4 Runtime Measurement« o e e .. 93
8.4.1 Runtime Performance on Sun Workstations 93
8.4.2 Performance Improvementon CPSS 95

vi

9

A

Conclusions and Future Work 98

105
A.1 Benchmarkof Single Loop, 105
A.2 Benchmark of Double Loops 106
A.3 Benchmarkof My-suite 107
A.4 Benchmarkof Quick Sort 109

vii

List of Tables

Number of iterative solver iterations and the CSE expressions 92
2 Execution times of two versions of programs, optimized vs. unopti-

mized on Sun workstations 0oL 94
3 Execution time of two versions of program, optimized vs. unoptimized

on the CPSS simulator. 95

viii

List of Figures

W 0 N O Ut W N -

NN N DN DY e e e S e e e
B W N = O W 00~ 0t WY = O

N
(S

Graphical representationof nodes 12
A compound statement Lo 0oL 13
Places for potential improvements by the user and the complier. . . 19
Organization of the code optimizer. 20
C program and its three-address representation. 20
Control flow graph of the C program 21
Local common subexpression elimination.. 23
B5 and B6 after common subexpression elimination.. 24
An exampleof fibonacci oL Lo 27
Flowchart and flowgraph corresponding to the fibonacci program. . . 28
Dominance tree for the flowgraph of fibonacci program 29
Some types of acyclic regions used in structural analysis 32
Some types of cyclic regions used in structural analysis 32
Example of Basic Block 33
Example of three-address statements and basic blocks 34
An example of CFG base on three-address 36
Data structure of a CFGgraph 38
Data structureof BB o oo o oo 39
An example of CFG nodes of if-then statement. 39
An example of CFG nodes of continue statement. 40
Data structure of CFG edge base on CPC-AST 41
Mapping from statementstoBBs 42
Algorithm for building CFG 43
Build a CFG based on structural analysis for a program represented

in CPC-AST e e 45
An example of if-then statement. 46

ix

26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53

An example of if-then-else statement.
An example of while statement.
An example of do-while statement.
An example of for statement. o000
An example of break statement. 0.0,
An example of continue statement.
An example of switch statement.
An example of case statement.o
An example of default statement.
An example of goto statement.
Worklist algorithm for iterative data-flow analysis (statements that
manage the worklist are S1,52,83)
A potential common subexpression across blocks
Computation of available expressions.
Initializing the in sets to @ is too restrictive
Available expressions computation. o000
Data structure of the statement listinaBB
Data structure of definition list for CSE
Data structure of expressionsets,
Data structure of set header.
Algorithm for solving CSE
Algorithm of searching BB for solving CSE
(a) Example of a common subexpression, namely, a+2, and (b) The
result of doing common-subexpression eliminationon it
Example flowgraph for global common subexpression elimination

Algorithm for the CSE transformation
Experiment settings on a Sun workstation
C routine measuring execution time oL
Experiment settings on the CPSS simulator
CSE pattern in the Quick-Sort benchmark

Chapter 1
Introduction

Rapid advances in VLSI technology have provided new challenges to compiler and
architecture designers in the development of both uniprocessor and multiprocessor
systems. In order to effectively exploit the ample resources provided by these new
architectures, aggressive compilation techniques and innovative architecture designs
are essential. New approaches in compiler technology are required to suit the different
architecture design philosophies emerging today, from RISC machines to multiproces-
sors architectures. It is essential that compilation techniques and architecture models
are developed together, so that the effects of one on the other can be studied.

In this thesis, we present the design and implementation of a compiler optimization
framework for the Concordia Parallel C (CPC) [Ta096]. CPC is the working language
for the Concordia Parallel Systems Simulator (CPSS) [Ta096], whose propose is to
study interactions between parallel runtime systems and languages and their impacts
on performance.

Uniprocessor performance has been increased dramatically (more than a factor of
ten) since mid 80s. One of the main reasons of such success is the close interactions
between compiler writers and computer architects. New architecture features such as
pipelining [Kog81), multiple issuing [Fis83, CNO*87], and branch predication [MH86],
have been exposed to compiler writers so that new compiler optimization techniques
have to be developed to exploit those innovative architectural features.

The design of a good optimizing or parallelizing compiler is crucial in the de-

velopment of high performance single and multi-processor architecture systems. An

optimizing compiler performs a series of code-improving transformations, such as con-
stant propagation [WZ85], common subexpression elimination [ASU86], and instruc-
tion scheduling [GM86], before producing efficient machine code. In order to perform
any sort of optimizing transformation, it is essential to collect accurate information
about the variables used in the program. Data-flow analysis is a process of collecting
information about definitions and uses of variables in a program. Typical examples
of traditionally performed data-flow analyses are reaching definitions, live-variable
analysis, and last-use information. A different kind of analysis that is receiving an in-
creasing attention is alias and array dependency analysis[Bar78, Ban79, CK89, LR92].
Optimizing compilers make use of data-flow and alias information to produce efficient
code. Furthermore, parallelizing compilers need this information to extract parallel
threads from a sequential program.

Intra-procedural data-flow analysis, i.e., analyzing one procedure at a
time [ASU86], has been widely studied and implemented in existing compilers. Gath-
ering information about many interacting procedures, known as inter-procedural anal-
ysis, is essential to accurately analyze large programs. However, in this thesis we focus
on intra-procedural analysis since it is a base for inter-procedural analysis.

The major challenge of designing a compiler optimization framework is to choose
an appropriate Intermediate Representation (IR) that is able to support for solv-
ing data-flow equations efficiently and applying corresponding transformations easily.
The demanding issue in implementing such a framework is to make it general enough

to meet the requirements of various data-flow analysis’s and transformation’s.

1.1 Thesis Contributions

This thesis concentrates on the development of a compiler optimization framework
for CPC.

The first important contribution is the selection of an intermediate representation
suitable for various high-level analyses and optimizations. A major portion of the
analyses and optimization transformations takes place on the intermediate code. Thus
the appropriate choice of an intermediate representation is vital in the design of an
optimizing compiler. We choose Control Flow Graph (CFG) as our intermediate

representation because it is a general and mature compiler IR.

The second contribution is the development of a two-pass algorithm that builds
a CFG from CPC Abstract Syntax Tree (CPC-AST). Traditionally, an intermediate
representation consists of three-address statements and control flow graphs[ASUS86].
The program represented by these three address statements is partitioned into basic
blocks, where each basic block consists of a sequence of consecutive statements with
no branches in between. The optimizations are performed on control flow graphs, in
which the edges represent flow of control and the nodes represent basic-blocks. CPC-
AST is not a three-address format and the goto statement is allowed in CPC-AST. In
the two-passes algorithm, we use the structural analysis technique to build a CFG for
each CPC-AST construct such as if, for-loop, and while-loop. During this first pass,
the potential targets of goto statement have been collected and remembered in a goto
target table. Then, in the second pass, the goto statement can search the table to
find out its destination basic block.

The third contribution is that we have implemented an optimization framework
based on the CFG representation, which can solve data-flow equations in either for-
ward and backward manner. As a demonstration example, we will show how to
solve the Common Subexpression Elimination (CSE) problem using the optimiza-
tion framework. However this optimization framework is general yet efficient to solve
other compiler optimization problems. Live variable analysis, and reaching definition
are just named as a few.

To make our optimization framework general yet efficient, we pay special attention
on data structures used in our implementation. Sets are the common data structure
used in describing data-flow equations and the related algorithms. We use linked lists
to represent sets and implement various set operations such as intersection, union

and member on linked lists.

1.2 Thesis Organization

The rest of the thesis is organized as follows.

In chapter 2, we survey related work on building compiler infrastructures, concen-
trated on the compiler optimization framework. In chapter 3, we overview the CPPE
environment, concentrated on the structure of CPC-AST. In chapter 4, we discuss

criteria that compiler optimizations should obey and propose the problem that this

thesis is interested in. In Chapter 5 we present our CFG building algorithm, which
is based on a structural analysis technique to construct a CFG for each CPC syntax
construct. In Chapter 6, we describe an iterative dataflow analysis framework which
contains a general dataflow equation solver that is able to solve a variety of dataflow
analysis problems. In Chapter 7, we illustrate the effectiveness of the framework by
applying it to solve an optimization problem, common subexpressions elimination
(CSE). In Chapter 8, we present the experimental results by applying the CSE op-
timization on a suite of benchmarks and analyze the impact of such an optimization
on program performance. Finally, we conclude with summary and future work in

chapter 9.

Chapter 2
Literature Survey

Research in automating the analysis and optimization phases of a compiler is still
in its early stages. Few tools exist to help build optimizer, which are usually large
and complex, since they must perform many program transformations to get the best
code.

Sharlit[TH92] is a system which is designed to simplify building of optimizers in
compilers. Sharlit merges the data-flow collection phase and the optimization phases;
it takes in a specification and performs one type of data-flow analysis and a code-
transformation that relies on that analysis. This works on the traditional flow-graphs
and basic-blocks. Sharlit uses the following abstractions to develop global analyses

and optimizations in a modular fashion.

e The nodes of the flow graph.

Values that flow through the flow graph.

Flow functions that represent the effect of flow graph nodes and paths on the

flow values.
e Action routines to perform the optimization.

e Rules to combine the flow functions to other flow functions for path simplifica-

tion.

Sharlit performs intra-procedural analyses and optimizations on flow-graphs. The

data-flow analyses consists of four major components:

1. the control flow analysis that summarizes the structure of the flow graph.

2. the path simplifier, generated from the path-simplification rules in the input

description and uses control flow information to eliminate some flow nodes.

3. the iterator makes use of the flow functions and iterates to find a solution for

the data-flow equations.

4. the propagator that uses the action routines to perform the optimization.

Whitfield and Soffa|WS91] describe the automatic generation of global optimizers.
They have introduced a General Optimization Specification Language (GOSpel) and
an optimizer generator (GENesis) that is used to create global optimizers from com-
pact, declarative specifications made in GOSpeL. The specifications mainly consist of
a set of preconditions and the actions to optimize the code. The preconditions, in turn,
consist of the code pattern to match and the global dependence information (i.e., the
control and data dependencies that are required for the specific optimization). The
actions take the form of primitive operations that make up the optimization trans-
formation. GENesis analyzes GOSpeL specifications and produces the optimizer. It
first produces code (i) for the data structures defined, (ii) for matching the required
code pattern, (iii) for checking if the particular data dependences hold, and (iv) for
performing the required optimizing transformations. Thus, unlike Sharlit, they do
not generate the data-flow analyzer along with the optimizer, but they do assume the
data-flow information such as anti, output and flow dependence relations are already
computed and available. Further, they also work on flow-graphs, and do not perform
any inter-procedural optimization.

In the MUG2 Compiler Generating System[GGMW82], Wilhelm describes sepa-
rate analyses and optimization phases which work on a structured abstract syntax
tree intermediate representation. Global data-flow analysis is specified using modified
attribute grammars and the abstract syntax tree, decorated with the data-flow infor-
mation, is called an attributed program tree. In a single analysis pass, which may be
made up of several semantic analysis passes, global data-flow information is collected
as attributes associated with nodes in a program tree. Attributes are classified as
either derived or inherited, and they are evaluated according to the rules specified

for every different kind of node. The optimization passes are implemented as tree

transformations, and could also update the data-flow information present in the tree
nodes.

Vortex is an optimizing compiler infrastructure for object-oriented and other
high-level languages [DDG*96]. It targets both pure object-oriented languages like
Smalltalk and hybrid object-oriented languages like C++ and Java. Vortex currently
incorporates high-level optimizations such as static class analysis, class hierarchy
analysis, automatic inlining. It also includes a collection of standard intra-procedural
analyses such as common subexpression elimination.

A central piece of supporting infrastructure in the Vortex compiler is its iterative
dataflow analysis (IDFA) framework. All of the analyses and transformations rely on
this framework to manage the details of iterative dataflow: control flow graph traver-
sal, merging dataflow information at control flow merges, fixed-point convergence
testing for loops, and graph transformations. (in spirit, Vortex’s IDFA is similar to
the Sharlit system.)

McCAT is a compiler environment developed for researching compiling issues for
C programs [HDE*92], especially for high-level dataflow analyses such as points-to
(alias) and heap analysis. The intermediate representation used in McCAT is called
SIMPLE, in which each statement is simplified into a three address format while
high-level structures such as array reference and pointer deference, and high-level
control structures such as loops and conditionals, are still retained. Many high-level
dataflow analyses have been implemented on McCAT, including constant propagation,
reaching definition, alias analysis, array dependence analysis, read/write set analysis,
and function inlining.

The SUIF compiler infrastructure is a part of the national compiler infrastructure
project (USA). The infrastructure is based on the SUIF (Stanford University Inter-
mediate Format) parallelizing compiler. developed at Stanford University [AALL93].

The primary objective in the SUIF compiler design is to develop an extensible sys-
tem that supports a wide range of current research topics including parallelization,
object-oriented programming languages, scalar optimizations and machine-specific
optimizations. The SUIF group strives to develop an architecture that is modular,
easy to extend and maintain, and supportive of software reuse. By adopting ob-
ject oriented programming techniques, each dataflow analysis can be added into the
SUIF environment independently. Many dataflow analyses have been implemented

on SUIF, among them array dependence analysis is their most famous research work.

7

Even though McCAT and SUIF have implemented many dataflow analyses, there
is no general iterative analysis solver on both systems.

In our framework, we took a less ambitious approach in which we separate analysis
and transformation phases. It is the user’s responsibility to provide C routines to
do certain analysis and transformations since the techniques are still immature to
automatically generate such routines.

Recently, Olaf Chitil have developed a version of CSE for a lazy functional pro-
gramming languages and found several advantages. First, the referential transparency
of these languages makes the identification of common subexpression very simple.
Second, more common subexpression can be recognized because they can be of ar-
bitrary type whereas standard common subexpression elimination only shares primi-
tive values. However, because lazy functional languages decouple program structure
from data space allocation and control flow, analyzing its effects and deciding under
which conditions the elimination of a common subexpression is beneficial proves to be
quite difficult. They developed and implemented the transformation for the language
Haskell by extending the Glasgow Haskell compiler and measured its effectiveness on
real-world programs.

We implemented the CSE optimization based our general iterative analysis solver.

Our CSE optimization is applied to an imperative language based on C.

Chapter 3

Introduction to Concordia Parallel

C

In this thesis, we present the design and implementation of a compiler optimization
framework for the Concordia Parallel C.

Concordia Parallel Programming Environment (CPPE) consist of two parts: Con-
cordia Parallel Systems Simulator (CPSS) and Concordia Parallel C (CPC).

CPPE is a useful tool to identify performance bottlenecks of parallel code, study
the interaction of various system components of a parallel system, and investigate the
interaction between compiler optimizations and system performance. CPPE is also
a self-contained programming environment in which students can learn and practice
parallel programming. CPPE contains about 500K well documented C source code
and runs on most platforms including PCs and workstations. On Unix and Windows-
NT it can simulate more than 4000 parallel processors. As part of the prototype CPPE
also designed a special wormhole routing simulator for on-line network simulation.

CPSS is a compact performance debugger prototype, designed for researching
on performance of parallel systems. CPSS performs simulation of various parallel
systems and their communications subsystems.

The CPC compiler includes:

e a compiler frontend, transforming code in the Concordia Parallel C (CPC) to

an abstract syntax tree;

e a code generator, generating intermediate code for the Concordia Parallel Sys-

tems Simulator (CPSS).

Our work is to add an optimization framework between the frontend and the code
generator so that code generated can be run or simulated fast. In the following, we
will describe the CPC abstract syntax tree (AST), which is the output of the front-end

and the input of our optimization framework.

3.1 Concordia Parallel C

The CPC (Concordia Parallel C) language is based on the popular programming
language C [KR88] and enhanced with new features to support parallel programming.
The CPC language supports both shared-memory and message-passing programming
paradigms. Parallel features of CPC support the creation of parallel processes, the
definition of virtual parallel architectures, process communications through channel
variables and mapping of parallel processes to virtual processors. CPC preserves
existing sequential features of the C language.

User will write portable parallel programs on virtual architectures of his choice in
an extended version of C (CPC), which supports MPI communications standard and
high-level channel abstractions of message passing. The CPC compiler will translate
the source code into an abstract syntax tree, and generate either simulation code for
CPSS or object code for particular parallel systems. For our research, we add one
component into the CPC compiler, which can also dump sequential C code from a

CPC-AST tree.

3.2 CPC AST

The structure of CPC-AST is a structured intermediate representation chosen for
CPC.

The main strength of CPC-AST is its simple yet expressive structure. Complete C
source code for its implementation as well as its executable are within 200K bytes, and
can run on any system supporting C compiler, lex and yacc (or their compatibles).
CPC-AST has a syntax matching well to the ANSI definition. All information in the
source code are represented by four types of nodes and their interconnection.

CPC-AST is designed for portability. It is a shared front-end for CPC, from

which code can be generated for different parallel machines. The program written in

10

CPC is architecture-independent. To run the existing code in CPC on a new parallel
machine, one only needs to add a new backend for that machine to generate code for
that machine from CPC-AST.

CPC-AST is designed for research. Because of its concise yet expressive nature,
CPC-AST is strongly typed. While much of important information is explicit, new
implicit information can be easily derived from CPC-AST with minimum effort.

CPC-AST is designed for easy usage. All information, including type chains,
symbol tables, structure tables, and internal code representation can be visualised on

display and traversed at will.

3.2.1 AST Nodes

In AST all information in CPC source programs is represented in four types of nodes
and in the interconnection among these nodes. These four types of nodes are symbol
nodes, link nodes, value nodes, and statement nodes.

Figure 1 draws four nodes used in the CPC to represent the four different types

of nodes.

e Symbol nodes represent identifies, which may be a variable, a function, a user-

defined type, an enumeration element, or a bit field.
e Link nodes are used to represent type structure.

e Value nodes represent expressions made up of constants or occurrences of sym-

bols in the statement of the code.

e Statement nodes represent the statements in C.

3.2.2 AST Structure

In the CPC-AST, a compound statement has three components: symbol list,

struc_list, and stmt.

e symbol_list points to a linked list of all symbols for variable and typedefed new
types. Theses symbols can be declared either at the beginning of a compound

statement or outside any function with the scope of whole program (source file).

11

type of value

| f—
name — ™ —— f)),gés
next —> ~<— compound
(2) symbol node (c) value node
link type of statement
type of lin
~— sym
(b) link node (d) statement node

Figure 1: Graphical representation of nodes

All variables & structures, global or local, are inserted into the hash table when
they are under parsing. And then they are unhooked (deleted) from the hash

table. At end, there is not any information for AST in hash table.

e struc_list points to a linked list of all symbols for structures, unions, and
enumerations declared at the beginning of this compound statement or outside

any function for whole program (global structures).

e stmt points to a linked list consists of a sequence of statements of a compound

statement.

Let’s take a close look at how a function is presented in CPC-AST. Figure 2(a)
lists simple C code and Figure 2(b) lists its AST tree.

Function £ is represented as a symbol node, in which there are three fields pointing

to:
e a function link node, followed by the return type of the function;
e a parmeler list;
e a compound node, pointing to a compound of statements.

The compound statement consists of three lists: statements, symbols, and struc-
tures. By following the stmt link, we can find a sequence of statements which form
the body of the compound statement. The sequence is composed by expr node in

Figure 2.

12

int f(int x, int y)
{int x;
enum {al,a2}e;
x =3;
X+,
x ==3?al:a2;

)

(a) Code

symbol_list X > int L
L
y .
int 1
f -

function - - int -

compound

stmt symbol_list struc_list

exprl /

expr2 \

—] 301 al
int H
/ Y t
\ I
— a2
5 enum __[— f
exé(\ expr
expr
sym sym
sym
post_inc assign

(o) (conain)

exprl

(b) Node structure

Figure 2: A compound statement

13

exprl expr2+

xpr3

(=)

J(

)

expr2

To find an expression statement, we should follow a list of ezpr nodes headed by
stmt. In an erpr node, field expr points to value node representing an expression.

For a wvalue node, it can be any C expression type such as assignment, post-
increment. The operands of an expression are presented by expril and expr2 fields,
pointing to the related operand symbols.

In our implementation, we need to follow from the top-level symbol list to enter
a function and then the top-level compound node of the function to find a statement
list. Then we need to follow from the statement list to find each statement to build
CFG for the function. To compute common subexpressions, we need to go down
another level, tracing the expr node from a statement node to compute available

expressions for each statement.

14

Chapter 4

Optimizations, Properties and

Problem Statement

To create an efficient target language program, a programmer needs more than an
optimizing compiler. In this section, we will describe criteria for optimizing transfor-
mations and specify the compiler optimization problems that are most interesting to

us.

4.1 Criteria for Compiler Optimizations and

Transformations

Optimization may be valuable in improving the performance of the object code pro-
duced by a compiler. Before going into some details, let’s discuss the meaning of the
word “optimize” in terms of compiler optimizations and transformations. We must
point out that “optimization” is a misnomer—only very rarely does applying opti-
mizations to a program result in object code whose performance is optimal, by any
measure. Rather, optimizations generally improve performance, sometimes substan-
tially, although it is entirely possible that they may decrease it or make no difference
for some (or even all) possible inputs to a given program. In fact, like so many of the
interesting problems in computer science, it is formally undecidable whether, in most
cases, a particular optimization improves (or, at least, does not worse) performance.
Some simple optimization, such as algebraic simplifications, can slow a program down

only in the rarest cases (e.g., by changing placement of code in a cache memory so

15

as to increase cache misses), but they may not result in any improvement in the pro-
gram’s performance either, possibly because the simplified section of the code could
never have been executed anyway.

We expect that the best program transformations are that yield the most benefit
for the least effort. The transformations provided by an optimizing compiler should
have several properties.

First, a transformation must preserve the meaning of programs. That is, an “op-
timization” must not change the output produced by a program for a given input, or
cause an error, such as a division by zero, that was not present in the original version
of the source program. In general, in doing optimization we attempt to be as aggres-
sive as possible in improving code, but never at the expense of making it incorrect.
To describe the latter objective of guaranteeing that an optimization does not turn a
correct program into incorrect one, we use the terms safe or conservative. Suppose,
for example, we can prove by data-flow analysis that an operation such as z = y/z in
a while loop always produces the same value during any particular execution of the
procedure containing it (i.e., it is loop-invariant). Then it would generally be desir-
able to move it out of the loop, but if we cannot guarantee that the operation never
produce a divide-by-zero exception, than we must not move it, unless we can also
prove that the loop is always executed at least once. Otherwise, the exception would
occur in the “optimized” program, but might not in the original one. Alternatively,
we can protect the evaluation of y/z outside the loop by a conditional that evaluates
the loop entry condition. The influence of this criterion is so important that at all
times we take the “safe” or “conservative” approach of missing an opportunity to
apply a transformation rather than risk changing what the program does.

Second, a transformation must, on the average, speed up program by a measurable
amount. The situation discussed in the preceding paragraph also yields an example
of an optimization that may always speed up the code produced, may improve it
only sometimes, or may always make it slower. Suppose we can show that z is never
zero. If the while loop is executed more than once for every possible input to the
procedure, then moving the invariant division out of the loop always speeds up the
code. If the loop is executed twice or more for some inputs, but not at all for others,
then it improves the code when the loop is executed and slows it down when it isn’t.
If the loop is never executed independent of the input, then the “optimization” always

makes the code slower. Of course this discussion assumes that other optimizations,

16

such as instruction scheduling, don’t further rearrange the code.

Not only is it undecidable what effect an optimization may have on the perfor-
mance of a program, it is also undecidable whether an optimizations is applicable to
a particular procedure. Although properly performed control- and data-flow analyses
determine cases where optimizations do apply and are safe, that cannot determine all
possible such situations.

In general, there are two fundamental criteria that decide which optimizations
should applied to a procedure (assuming that we know they are applicable and safe),
namely, speed and space. Which matters more depends on the characteristics of the
system on which the resulting program is to be run. If the system has a small main
memory and/or a small cache, minimizing code space may be very important. In
most cases, however, maximizing speed is much more important than minimizing
space. For many optimizations, increasing speed also decreases space. On the other
hand, for others, such as unrolling copies of a loop body, increasing speed increase
space. Other optimizations, such as tail merging, always decrease space at the cost
of increasing execution time. For each individual optimization, it is important to
consider its impact on speed and space.

Third, a transformation must be worth the effort. It does not make sense for
a compiler writer to spend the inteliectual effort to implement a code-improving
transformation and to have the compiler spend the additional time compiling source
programs if this effort is not repaid when the target programs are executed. Some
transformations can only be applied after detailed, often time consuming, analysis of
the source program, so there is little point in applying them to programs that will be
run only a few times. For example, a fast, non optimizing, compiler is likely to be
more helpful during debugging or for “student jobs” that will be run successfully a few
times and thrown away. Only when the program in question takes up a significant
fraction of the machine’s cycles does improved code quality justify the time spent
running an optimizing compiler on the program.

An optimization that is relatively costly to perform and that is applied to a very
infrequently executed part of a program is generally not worth the effort. Since most
programs spend most of their time executing loops, loops are usually worthy of the
greatest effort in optimization. Running a program before optimizing it and profiling
it to find out where it spends most of its time, and then using the resulting information

to guide the optimizer, is generally very valuable. But even this needs to be done with

17

some caution: the profiling needs to be done with a broad enough set of input data
to run the program in a way that realistically represents how it is used in practice.
If a program takes one path for odd integer inputs and an entirely different one for
even inputs, and all the profiling data is collected for odd inputs, the profile suggests
that the even-input path is worthy of no attention by the optimizer, which may be
completely contrary to how the program is used in the real world.

Fourth, the transformation order applied to a program matters. It is generally
true that some optimizations are important than others. Thus, optimizations that
apply to loops, global register allocation, and instruction scheduling are almost essen-
tial to achieving high performance. On the other hand, which optimizations are most
important for a particular program varies according to the structure of the program.
For example, for programs written in object-oriented language, which encourage the
use of many small procedures, procedure integration(which replaces calls to proce-
dures by copies of their bodies) and leaf-routine optimization (which produces more
efficient code for procedures that call on others) may be essential. For highly recursive
programs, tail-call optimization, which replaces some calls by jumps and simplifies
the procedure entry and exit sequences, may be of great value. For self-recursive
routines, a special case of tail-call optimization called tail-recursion elimination can
turn recursive calls into loops, both elimination the overhead of the calls and mak-
ing loop optimization applicable where they previously were not. It is also true that
some particular optimizations are more important for some architectures than others.
For example, global register allocation is very important for machines such as RISCs
that provide large numbers of registers, but less so for those that provide only a few

registers.

4.2 Framework for optimizations and Transfor-
mations

Dramatic improvements in the running time off a program — such as cutting the
running time from a few hours to a few seconds - are usually obtained by improving
the program at all levels, from the source level to the target level, as suggested by
Figure 3. At each level, the available options fall between the two extremes of finding

a better algorithm and of implementing a given algorithm so that fewer operations

18

are performed.

source .| front |, intermediate ._.{ code | target
code end code generator code
}] [}
]]]
] I [}
1 ' [}
user can compiler can complier can
profile program improve loops use registers
change algorithm procedure calls select insturctions
transform loops address calculations do transformations

Figure 3: Places for potential improvements by the user and the complier.

We are interested in the techniques needed to analyze and transform a program at
an intermediate level since at this level of abstraction transformations are independent
on both high-level programming languages and low-level machine details. Figure 4
gives the overview of such a code optimization and transformation framework, The
code-improvement phase consists of control-flow and data-flow analysis followed by
the application of optimizing transformations. The code generator produces the target
program from the transformed intermediate code.

Our work is to add such a framework on top of the CPC compiler so that the com-
piler optimization framework will perform necessary analyses and optimizing trans-
formations. We use the existing CPC code generator to emit CPSS code. We also
develop a “code generator” to produce C code to verify the code correctness.

The organization in Figure 4 has the following advantages:

1. The operations needed to implement high-level constructs are made explicit in
the intermediate code, so it is possible to optimize them. For example, array
address calculation may be exposed explicitly so that common subexpression

may be detected in computing the address.

2. There exist many good optimization algorithms based on graph theory, which
can be used in building such a framework. For example, all loops can be trans-

lated into cycles in terms of graph theory. Thus, optimizing cycles is equivalent

19

front ...l ! code | > code
_ end : optimizer generator
control- data- transfor-
flow = flow mations
analysis analysis
Figure 4: Organization of the code optimizer.
void quicksort(m,n)
{
int i,j;
int v, x; (1) i = m-1 (16) t7 = 4%i
(2) j =n (17) t8 = 4%j
if (n<=m) return; (3) t1 = 4*n (18) t9 = a[t8]
/* fragment begins here */ (4) v = alt1] (19) alt7] = t9
i=m-1; j =mn; v=alnl; (5) i =i+l (20) t10 = 4%j
while(1) { (6) t2 = 4%i (21) al[t10] = x
do i = i-1; while(alil<v); (7) t3 = alt2] (22) goto(s)
do j = j-1; while(a[jl<=v); (8) if t3<v goto (5) (23) t11 = 4=*i
if (i >= j) break; (9) 3 = j-1 (24) x = alt11]
x = alil; alil = aljl; aljl = x; (10) t4 = 4*i (25) t12 = 4#i
¥ (11) t5 = alta] (26) t13 = 4*n;
x = alil; alil = alnl; aln] = x; (12) if t5>v goto(9) (27) ti4 = alt13]
/* fragment ends here */ (13) if i>=j goto(23) (28) alt12] = ti14
quicksort(m,j); quicksort(i+i,n); (14) t6 = 4%*i; (29) t15 = 4%n;
¥ (15) x = a[t6] (30) alt1s] = x
(a). C code for quicksort (b). Three-address code

Figure 5: C program and its three-address representation.

20

to optimize any loop.

3. The intermediate code can be (relatively) independent of the target machine,
so the optimizer does not have to change much if the code generator is replaced

by one for a different machine.

In the code optimizer, programs are represented by control flow graphs, in which
edges indicate the flow of control and nodes represent basic blocks (see Chapter 5).

Unless otherwise specified, a program means a single procedure.

Bl
i =m-1;
j=m
tl =4%n
v =aftl]
* B2
—1 =i+l;
12 =4%j;
t3 =aft2]
if t3 < v goto B2
{ B3
i =51
t4 =4%j
t5 =a[t4]
if t5 >v goto B3
* B4
| if i>=j goto B6
t6 = 4*i tl] =4%i
x = aft6] x =atll]
t7 = 4% tl2=4%*i
t8 =4%j t13 =4*n
t9 = aft8} t14 =a[t13]
t10 = 4%j; tl5=4*n
aftl0]=x a[tis]=x
goto B2

Figure 6: Control flow graph of the C program

Figure 5(a) is a C program and Figure 5(b) lists its three-address format. Figure 6
contains the control flow graph for the program in Figure 5. Bl is the initial node.
All conditional and unconditional jumps to statements in Figure 5 has been replaced

in Figure 6 by the jumps to the block of which the statements are leaders.

21

In Figure 6, there are three loops. B2 and B1 are loops by themselves. Blocks B2,
B3, B4 and BS together from a loop, with entry B2.

The control flow graph showed in Figure 6 is selected as our compiler framework
intermediate representation, since it is used pervasively in most of compiler opti-
mization frameworks. The problem interested in this thesis is to build a compiler
optimization framework based on such control flow program representation.

The problem we are interested in is to build a compiler optimization framework,
which can be used to study compiler transformations and their impacts on program
performance, especially the influences on CPSS. Since this framework is targeted
for CPSS in which Concordia Parallel C (CPC) is its working language, CPC is
naturally chosen as the input programming language of our framework. CPC is a
dialect of C, with extensions to express the concepts of parallelism, communication,
and synchronization used in parallel processing. In this thesis study, the optimizations
are targeted to the sequential part of CPC, which is mainly C part of CPC.

Analyzing a C program and collecting accurate data-flow information is still a
dream of human being. In reality, only conservative estimated information can be
collected from the program. This problem becomes even complicated when C pointer
and array variables are involved. The alias analysis is a process to compute whether
two pointer variables point to the same memory location. The array dependence
analysis is a process to compute whether two array references are actually visiting
the same memory location. The techniques of performing the alias analysis and array
dependence analysis are under active study within the academic world. Implementing
such analyses need tremendous man-power which is beyond the scope of this project.
Besides our work is the first step towards building a general optimization framework,
our analyses and transformations will be concentrated on C scalar variables.

There are two scopes of data-flow analyses used in compiler optimizations, intra-
procedural and inter-procedural analyses. The latter analyzes the interactions among
procedures and may expose more opportunities to optimize code at the cost of more
expensive analysis techniques. Intra-procedural analysis is also called global analysis,
which deals with the scope of a single function body. In this thesis, we focus on the
intra-procedural analysis since it is the base to build a framework for inter-procedural
analysis. Furthermore, many transformations are independent of which analysis is
used since what they rely on is the results of the dataflow analyses. Thus even

though we implemented our framework based on the intra-procedural analysis, we

22

have made our design open enough to contain a future inter-procedural analysis.

In conclusion, our design goal is to build a general optimization framework that
supports an intra-procedural analysis for scalar variables and later we can apply the
corresponding transformations based on the data-flow analyses gathered.

As a demonstration example, we implemented the common subezpression elimi-
nation (CSE) transformation within our framework to show the generality and effec-

tiveness of the framework.

4.3 An Example of Function-Preserving Trans-

formations — Common Sub-expression

B5 B5

t6 =4%*i t6 = 4*i1
X = a[t6] X = a[t6]
t7 =4%*i t8 = 4%
t8 = 4% t9 = a[t8]
t9 = a[t8] a[t6] = t9;
t10 = 4%y; a[t8] = x;
a[tl0] =x goto B2
goto B2

(a) Before (b) After

Figure 7: Local common subexpression elimination.

There are a number of ways in which a complier can improve a program without
changing the function it computes. Common subexpression elimination is a comrmon
example of such function-preserving transformations.

Frequently, a program will include several calculations of the same value. Some of
these duplicate calculations cannot be avoided by the programmer because they lie
blow the level of detail accessible within the source language. For example, block B5

shown in Figure 7(a) recalculates 4*i and 4%.

23

An occurrence of an expression F is called a common subexpression if E was
previously computed, and the values of variables in E have not changed since the
previous computation. We can avoid recomputing the expression if we can use the
previously computed value. For example, the assignments to 7 and ¢10 have the
common subexpression 4*i and 4%j, respectively, on the right side in Figure 7(a).
They have been eliminated in Figure 7(b), by using t6 instead of t7 and t8 instead of
t10.

B1
i =m-1;
j=m
tl =4*n
v =altl]
B2
i =1+l;
12 =4%*;
13 =a[t2)
if t3 < v goto B2
% B3
j =it
4 =4*
t5 =a[t4]
if t5 >v goto B3
! on
| if i>=j goto B6
BS / \LBG
x =13 . x=1t3
a2] = 15; t14 =aftl]
ald] = x; alt2] = al4
goto B2 altl] =x;

Figure 8: B5 and B6 after common subexpression elimination.

Example Figure 8 shows the result of eliminating both global and local common
subexpressions from blocks B5 and B6 in the control flow graph of Figure 6. We first
discuss the transformation of B5 and then mention some subtleties involving arrays.

After local common subexpressions are eliminated, B5 still evaluated 4*i and 4%,
as shown in Figure 7(b). Both are common subexpressions; in particular, the three

statements

24

t8 = 4%j;
t9 alt8];
al[t8] X;

in B5 can be replaced by

t9
alt4]

alt4];

Xx;

using t4 computed in block B3 . In Figure 8, observe that as control passes from the
evaluation of 4*j in B3, there is no change in j, so ¢/ can be used if ¥} is needed.
Another common subexpression comes to light in B5 after t4 replaces t3. The new
expression aft/] corresponds to the value of afj] at the source level. Not only does j
retain its value as control leaves B3 and then enters B5, but afj/, a value computed
into a temporary t5, does too because there are no assignments to elements of the

array a in the interim. The statements

t9
alt6]

alt4];
t9;

in B5 can therefore be replaced by
al[t6] = t5;

Analogously, the value assigned to z in block BS of Figures 7(b) is seen to be the
same as the value assigned to t% in block B2. Block B5 in Figure 8 is the result of
eliminating common subexpressions corresponding to the values of the source level
expression afif and afj] from B5 in Figures 7(b). A similar series of transformations
has been done to B6 of Figure 8.

The expression aft1]in blocks B1 and B6 of Figure 8 is not considered a common
subexpression, although ¢! can be used in both places. After control leaves B1 and
before it reaches B6, it can go through B5, where there are assignments to a. Hence,
aftl1] may not have the same value on reaching B6 as it did on leaving Bi, and it is
not safe to treat aft1] as a common subexpression.

We will show in Chapter 7 that how to use our optimization framework to perform

such transformation.

25

Chapter 5

Control-Flow Analysis: Building
CFG Based on CPC-AST

Control Flow Graph (CFG) is a widely used compiler intermediate representation to
facilitate data-flow analyses and transformations. Nodes in the flow graph represent
computation, and the edges represent the flow of control. In this chapter, we will
introduce the process of building a CFG based on a program’s CPC-AST represen-
tation.

First, we will generally describe what a CFG is. Then, we will introduce some
techniques to build a CFG. Next, we will give a formal definition of a CFG and

present a structural analysis based algorithm to construct CFGs for CPC programs.

5.1 Introduction to Basic Blocks and Control
Flow Graph (CFG)

Optimization requires that we have compiler components that can construct a global
“understanding” of how programs use the available resources. The compiler must
characterize the control flow of programs and the manipulations they perform on their
data, so that any unused generality that would ordinarily result from unoptimized
compilation can be stripped away; thus, less efficient but more general mechanisms
are replaced but more efficient, specialized ones.

When a program is read by a compiler, it is initially seen as simply a sequence

of characters. The lexical analyzer turns the sequence of characters into tokens, and

26

the parser discovers a further level of syntactic structure. The result produced by the
compiler front end may be a syntax tree or some lower-level form of intermediate code.
However, the result, whatever its form, still provides relatively few hints about what
the program does or how it does it. It remains for control-flow analysis to discover
the hierarchical flow of control within each procedure and for data-flow analysis to
determine global (i.e, procedure-wide) information about the manipulation of data.
Before we consider the formal techniques used in control-flow and data-flow analy-
sis, we present a simple example. We begin with the C routine in Figures 9(a), which
computes, for a given m > 0, the m!* Fibonacci number. Given an input value m,
it checks whether it is less than or equal to one and returns the argument value if

h member of the sequence and

so; otherwise, it iterates until it has computed the m!
returns it. In Figures 9(b), we give a translation of C routine into an intermediate

representation (IR).

unsigned int fib(m) {
unsigned int fO, f1, £2,i; .
1: receive m
£0 = 0, 2: f0=0
£1 =1, 3: f1 =1
4: if (m <= 1) goto L3
if (m <= 1) 5: 1=2
return m; 6: Li: if (i<=m) goto L2
else { T: return f2
for (i=2; i<=m; I++) { g: L2: £2 = £O+f1
£2= £0 + £1; S: £0 = fi
£0 = £1; 10: fi = £2
£1 = £2. 11: i = i+
} 12: goto L1
return £2; 13:1L3: return m
}
}
(a). A C routine that computes (b). Intermediate code for
Fibonacci numbers the C routine on the left.

Figure 9: An example of fibonacci

Our first task in analyzing this program is to discover its control structure. One

27

might protest at this point that the control structure is obvious in the source code-
the routine’s body consists of an if-then-else with a loop in the else part; but this
structures is no longer obvious in the intermediate code. Further, the loop might
have been constructed of ifs and gotos, so that the control structure might not have
been obvious in the source code. Thus, the formal methods of control-flow analysis
are definitely not useless. To make their application to the program clearer to the
eye, we first transform it into an alternate visual representation, namely, a flowchart,

as shown in Figure 10(a).

(a). Flowchart corresponding to Figures 9 | (b). CFG corresponding to the left

Figure 10: Flowchart and flowgraph corresponding to the fibonacci program.

Next, we identify basic blocks, where a basic block is informally, a straight-line
sequence of code that can be entered only at the beginning and exited only at the
end. Clearly, nodes 1 through 4 form a basic block, which we call BI, and nodes 8
through 11 form another, which we call B6. Some node forms a basic block itself; we
make node 12 into B2, node 5 into B3, node 6 into B4, and node 7 into B5. Next
we collapse the nodes that form a basic block into a node representing the whole
sequence of IR instructions, resulting in the so-called control lowgraph of the routine
shown in 10(b).

For technical reasons that will become clear when we discuss backward data-flow
analysis problems, we add an entry block with the first real basic block as its only

successor, an exit block at the end, and branches following each actual exit from the

28

routine (blocks B2 and B$5) to the exit block.

Next, we identify the loops in the routine by using what are called dominators.
In essence, a node A in the flowgraph dominates a node B if every path from the
entry node to B includes A. It is easily shown that the dominance relation on the
nodes of a flowgraph is antisymmetric, reflexive, and transitive, with the result that
it can be displayed by a tree with the entry node as the root, For our flowgraph in
Figure 10(b), the dominance tree is shown in Figure 11, in which a parent immediately

dominates its children.

Entry
|
B1
B2 Exit B3
|
B4
/\
B5 B6

Figure 11: Dominance tree for the flowgraph of fibonacci program

Now we can identify a loop using the dominate relation. Please note that edges in
control flowgraph are directed, representing control flow transfers from one program
point (statement) to another. A back edge in the flowgraph is an edge whose tail
dominates its head. For example, the edge from B6 to B4 shown in Figure 10(b) is a
back edge. A loop consists of all nodes dominates by its entry node (the tail of the
back edge) from which the entry node can be reached (and the corresponding edges)
and having exactly one back edge within it. Thus, B{ and B6 form a loop with B4

as its entry node, as expected, and no other set of nodes in the flowgraph does.

29

5.2 Approaches to Control-Flow Analysis

There are two main approaches to control-flow analysis of a single routine, both
of which start by determining the basic blocks that make up the routine and then
constructing its flowgraph. The first approach uses dominators to discover loops and
simply notes the loops it finds for use in optimization. This approach is sufficient for
use by optimizers that do data-flow analysis by iteration. (this method is also called
iterative method.)

The second approach, called interval analysis, includes a series of methods that
analyze the overall structure of the intervals. An interval is a region of a program,
which can be abstracted maintaining some program properties. The nesting structure
of the interval forms a tree called a control tree, which is useful in the structuring and
speeding up data-flow analysis. The most sophisticated variety of interval analysis,
called structural analysis, classifies essentially all the control-flow structures in a
routine. It is sufficiently important that we devote a separate section to it.

Most current optimizing compiler use dominators and iterative data-flow analysis.
And while this approach is the least time-intensive to implement and is sufficient to
provide the information needed to perform most of the optimizations discussed below,

it is inferior to the other approaches in three ways, as follows:

e The interval-based approaches are faster at performing the actual data-flow
analyses, especially for structural analysis and programs that use only the simple

types of structures.

e The interval-base approaches (particularly structural analysis) make it easier
to update already computed data-flow information in response to changes to a
program (changes made either by an optimizer or by the compiler user), so that

such information need not be recomputed from scratch.

e Structural analysis makes it particularly easy to perform the control-flow trans-

formations as we’ll discuss in the following.

Thus, we feel that it is essential to present all three approaches and to leave it
to the compiler implementer to chose the combination of implementation effort and

optimization speed and capabilities desired.

30

Since the structural analysis is the mostly used method among interval analysis

techniques in practice, we will concentrate on introduction to this analysis technique.

5.3 Structural Analysis

Structural analysis is a more refined form of interval analysis. Its goal is to make
the syntax-directed method of data-flow analysis (developed by Rosen for use on
syntax trees [Ros77, Ros79]) applicable to lower-level intermediate code. Rosen’s
method, called high-level data-flow analysis, has the advantage that it gives, for each
type of structured control-flow construct in a source language, a set of formulas that
perform conventional (bit-vector) data-flow analysis across and through them much
more efficiently than iteration does. Thus this method extends one of the goals
of optimization, namely, to move work from execution time to compilation time,
by moving work from compilation time to language-definition time- in particular,
the data-flow equations for structured control-flow constructs are determined by the
syntax and semantics of the language.

Structural analysis extends this approach to arbitrary flowgraph by discovering
their control-flow structure and providing a way to handle improper regions. Thus,
for example, it can take a loop made up of ifs, gotos, and assignments and discover
that it has the form of a while or repeat loop, even through its syntax gives no hint
of that.

It differs from basic interval analysis in that it identifies many more types of control
structures than just loops, forming each into a region, and as a result, provides a basis
for doing very efficient data-flow analysis. One critical concept in structural analysis
is that every region it identifies has exactly one entry point, so that, for example,
an irreducible or improper region (such as the rightest region shown in Figure 13)
will always include the lowest common dominator of the set of entries to the strongly
connected component that is the multiple-entry cycle within the improper region.

Figure 12 and Figure 13 give examples of typical acyclic and cyclic control struc-
tures, respectively, that structural analysis can recognize.

In the following section, we will use the structural analysis technique to build a

CFG for a CPC program.

31

| b1 |

Y
B2
if-then if-then-else
L_i?]

block scheme case/switch scheme

Figure 12: Some types of acyclic regions used in structural analysis

| B | | [Bi | B1_ | B1 |

|132J<_—’1133|

self loop while loop natual loop scheme improper interval scheme

Figure 13: Some types of cyclic regions used in structural analysis

32

5.4 Basic Blocks

Since all the approaches require identification of basic blocks and construction of the
flowgraph of the routine, we discuss these topics next.

Formally, a basic block is a maximal sequence of instructions that can be entered
only at the first of them and exited only from the last of them.

There are a sequence of consecutive statements in a basic block in which flow of
control enters at the beginning and leaves at the end without halt or possibility of
branching except at the end [ASUS86].

Thus, the statement in a basic block may be (1) the entry point of the routine,
(2) a target of a branch , or (3) an instruction immediately following a branch or
a return. Such instructions are called leaders. To determine the basic blocks that
compose a routine, we first identify all the leaders, and then, for each leaders, include
in its basic block all the instructions from the leader to the next leader or the end of
the routine, in sequence.

The easiest control flow is a linear chain, in which control flow passes each state-
ment consecutively. Basic Block (BB) is a formal definition for such a sequence of

statements.

tl = a * a;
t2 = a * b;
t3 = 2 * t2;
t4 = tl+ t3;
t5 = Db * b;
t6 = t4+ t5;

Figure 14: Example of Basic Block

The sequence of statements shown in Figure 14 forms a basic block, in which
control enters from the beginning (t1 = a * a) and leaves at the end (¢6 = t4 4 ¢5).

The algorithm that computes basic blocks based on three-address statement rep-
resentation is well known, and we quote as follows [ASU86]:

Algorithm1.1: Partition into basic blocks.

Input. A sequence of three-address statements.

33

Output. A list of basic blocks with each three-address statement in exactly one
block.
Method

1. We first determine the set of leaders, the first statements of basic blocks. The

rules we use are following.

(a) The first statement is a leader.

(b) Any statement that is the target of a conditional or unconditional goto is

a leader.

(c) Any statement that immediately follows a goto or conditional statement

is a leader.

2. For each leader, its basic block consists of the leader and all statements up to

but excluding the next leader or the end of the program.

The following example gives the fragment of source code in Figure 15(a) which
computes the dot product of two vectors a and b of length 20. A list of three-address
statements performing computation is shown in Figure 15(b). Two basic blocks are
shown in Figure 15(c). The first basic block consists of two statements and the second

basic block consists of ten statements, forming the loop body.

(1) prod = 0;
od =0;
2 i =1 ey BI
(3) t1 = 4%i; — |
prod = O; (4) t2 = altil; = 4%
i = 1; (5) 3 = 4%ji; ti=n£‘t.l];
do { (6) t4 = bl[t3]; o B
prod = prod+a[i]l*bl[il; (7) t5 = t2%t4; 5 =12%4; B2
i= i+1; (8) t6 = prod+t5; A
} while (i <= 20); (9) prod = t6; 7 =i+l;
- 3 . i=7;
21(1); 1:'7 B :;1’ if i<=20 goto B2
i = t7;
(12) if i <= 20 go to (3) i
(a) source code. (b) three address formats. (c) Two BBs

Figure 15: Example of three-address statements and basic blocks

34

However, partitioning basic blocks from a high-level AST-represented program is
not as straightforward as the above algorithm, because each compound statement such
as IF, WHILE, and FOR statements, consists of several basic blocks and can not be
treated as one basic block. Before we go into details on partitioning basic blocks for

compound statements, let’s first define what is control flow graph.

5.5 Control Flow Graphs

Now, having identified the basic blocks, we characterize the control flow in a procedure
by a rooted, directed graph with a set of nodes, one for each basic block plus two
distinguished ones called entry and ezit, and a set of (control-flow) edges running from
one basic block to another in the same way that control-flow edges of the original
flowchart connected the final instructions in the basic blocks to the leaders of basic
blocks; in addition, we introduce an edge from entry to the initial basic block(s) of the
routine and an edges from each final basic block (i.e., a basic block with no successors)
to ezit. The entry and ezit blocks are not essential and are added for the technical
reasons — they make many of our algorithm simpler to describe. (See, for example,
in the data-flow analysis performed for global common-subexpression elimination, we
need to initialize the data-flow information for the entry block differently from all
other blocks if we do not ensure that the entry block has non edges entering it.) The
resulting directed graph is the control flow graph of the routine.

We assume that we are giving a flowgraph G =< N, E > with node set N and
edge set £ C N x N, where entry € N and exit € N. We generally write edges in the
form a « b, rather than < a,b >.

Further, we define the set of successor and predecessor basic blocks of a basic block
in the obvious way, a branch node as one that has more than one successor, and a
join node as one that has more than one predecessor. We denote the set of successors

of a basic block b € N by Succ(b) and the set of predecessors by Pred(b). Formally,

Suce(b) = {n € N||3e € E such that e = b+ n}

Pred(b) = {n € N||3e € E such that e = n « b}

Therefore, a Control flow graph (CFG) tries to capture the potential control flow

transfer between two program points. Within a basic block, the control transfer is

35

trivial due to the definition of basic blocks. Thus, a CFG focuses on the transfer of
control among basic blocks.

Once flow-of-control information is added onto the set of basic blocks, the resulting
graph is called a control flow graph (CFG). The nodes of the CFG are basic blocks.
Two nodes are distinguished as entry and ezit. There is a directed edge from block
B1 to block B2 if

1. there is a conditional or unconditional jump from the last statement of Bl to

the first statement of B2, or

2. B2 immediately follows Bl in the order of the program, and Bl does not end

in an unconditional jump.

prod =0; B1
i =1;

(1) prod = 0; y

(2) i =1; ;

(3) t1 = 4xi; =4
t2 = a[tl];

(4) 2 = al[t1]; 13 = 4%i;

(6) t3 = 4xij t4 = b[13];

(6) t4 = b[t3]; {5 = t2%t4; B2

(7) t5 = t2%t4; t6 = prod+t5;

(8) t6 = prod+t5; prod = t6;

(9) prod = t6; 7 =i+1;

(10) 7 = i+1; i=17

(11) i = 47; if i<=20 goto B2

(12) if i <= 20 go to (3) ¢

(a). A sequence of three-address statements (b). CFG for the
three-address statements

Figure 16: An example of CFG base on three-address

For example, the edge from B1 to B2 shown in Figure 16(b) is due to that control
can enter the loop body after initialization. The edge from B2 to B2 itself is due to

that there is a conditional jump to the loop header from the end of the loop.

36

As we mentioned before, partitioning basic blocks from a high-level AST-
represented program is not as straightforward as the well known algorithm based
on three-address representation. The difficulty lies in the fact that each compound
statement such as IF, WHILE, and FOR statement, consists of several basic blocks
and cannot be treated as one basic block. Thus, we need to design partitioning al-
gorithms for these high-level constructs to derive the corresponding basic blocks. We
also need to obey the original control transfer specified by those high-level constructs
and build appropriate CFGs. .

Structural analysis is more appropriate than iterative method in constructing
CFG for a CPC program, since high level structures are still retained in the CPC
AST representation. In the following, we will show such an algorithm which builds a
CFG for a CPC program.

5.6 Building CFG based on CPC-AST

5.6.1 Representation of Basic Blocks and CFG in CPC-
AST

Basic blocks can be represented by a variety of data structures. For example. after
partitioning the three-address statements by Algorithm 1.1, each basic block can be
represented by a record consisting of a count of the number of quadruples (such as
(operator,operand-1,operand-2,destination)) in the block, followed by a pointer to the
leader (first quadruple) of the block, and by the list of predecessors and successor of
the basic block. An alternative is to make a linked list of the quadruples in each
block.

A CFG is a graph. Usually there are two means to represent a graph, adjacency
matriz and adjacency list [CLR90]. In our implementation, we choose a method
similar to the adjacency list representation since it is an efficient representation in
terms of space for sparse graphs. For each basic block, we use two lists, one is the
predecessor list and the other is the successor list of the basic block to represent
flowgraph structure. It is very convenient to build CFGs with double directed edges

so that forward and backward analyses can be supported in the same way.

37

CFG per Function of CPC-AST

In CPC-AST, a function definition is represented as a symbol node. Since we are
interested in the global analyses, a CFG for each function needs to be built. To
represent such a CFG, we first add one extra field in the symbol node definition, to
store a CFG for the function. Thus, the sym data structure is argumented by the
following field:

cfg-graph: points to a cfg graph of the current function.

The data structure of CFG graph is shown in Figure 17.

#define MaxBBNum (1024 * 2)
typedef struct cfg_graph {

int num;

bb_cfg bbs_array [MaxBBNum] ;
} cfg_graph;

Figure 17: Data structure of a CFG graph

Each CFG has two fields:
e num: the total number of BBs in the CFG graph.
e bbs_array[MaxBBNum)]: an array of BBs in the CFG graph.

A CFG graph consists of two parts, CFG = (V, E), where V is a set of basic blocks
and F is a set of edges, representing control transfer between BBs. In Figure 17, we
use an array of bb_cfg to represent basic blocks. Edges of BB are encoded in data

structure bb_cfg (see below).

Data Structures For Basic Blocks

The data structure for BB is shown in Figure 18.
Each CFG BB contains the following fields:

e type: There are four types of nodes in CFG:

— A normal basic block node. See B1, B3, B4 in Figure 19 and Bl1, B4, B7
in Figure 20.

38

enum node_type { NORMAL, MERGE, END, FUNCTION_END } ;
typedef struct bb_cfg {

enum node_type type;

struct edges *pred;

struct edges *succ;

struct stmtlist *front;

struct stmtlist *tail;

void *in;

void *out;
} bb_cfg;

Figure 18: Data structure of BB

int foo()
{

int x, y;

i=1

int 1i; x=5 Bl(normal)
if (i >0)

i=1;

X = 5; (normal) B3 Bd(normal)

if (i>0)
y = x*5;

else
y = x%2;

BO(func-end)

¥

(a). An if-then statement (b). CFG nodes of if-then statement

Figure 19: An example of CFG nodes of if-then statement.

39

void foo()
{ int x;
int y;

x = 10;
y = 10;

while (x > 0){

if (y > 5)
continue;

(a). A continue statement

y: 10 Bl (normal)

while (x > 0)

B2(merge)

/)B3 B4(normal)
Ccontinue > BS(merge)
(end) B6
X
y-- B7(normal)

(func-end) BO Q

(b). CFG nodes of continue statement

Figure 20: An example of CFG nodes of continue statement.

— A func-end node, which represents the ezit point of a function body. See
BO in Figure 19 and B0 Figure 20.

— A merge node, which merges control flow of its predecessors. For example,

a conditional statement usually has one merge node, combining control
flow from either then or else branch. See B2 in Figure 19 and B2, B3, B5

in Figure 20.

—~ An end node, which is only used in continue, break and goto statements

to represent the end of a basic block. See B6 in Figure 20.

e pred: pointer pointing to the predecessors of a current node.

e succ: pointer pointing to the successors of a current node.

front: pointer pointing to the first statement of a current BB.

tail: pointer pointing to the last statement of a current BB.

e in: a temporary storage used in computing input of BB’s.

e out: a temporary storage used in computing out of BB’s.

40

The reason that we use double-linked lists for both CFG edges and the statement
sequence within the block is to support forward and backward analyses in an equal-
foot manner.

We purposely set the type in and out fields as void, since in such doing, we
can store any type of data-flow information through explicit type casting. Thus, if
users want to use data-flow information stored in these two fields, they have to recast
anything retrieved from the above two fields into appropriate types. This scheme
is not very clean but general to support a framework to hold any type of dataflow
information.

Since the number of predecessors and successors of a BB may be more than one,
fields pred and succ are actual pointers to linked lists. The data structure for such

edge linked list is shown in Figure 21.

typedef struct edges {

bb_cfg * node_ptr ;
struct edges * next;
} cfg_edge;

Figure 21: Data structure of CFG edge base on CPC-AST
Each CFG edge contains the following fields:

e node_ptr: pointer pointing to a node in the CFG graph.

e nezxt: pointer pointing to next edge in the CFG graph.

Each edge is stored twice in CFG. For example, if there is an edge: BB, — BB,
then BB, will appear at the linked list pointed by the succ field of BB; and BB; will
appear at the linked list pointed by the pred field of BB,. As we mentioned before,
the reason that an edge appears twice is that we want to support efficient forwerd and
backward analyses within our framework. Generally speaking, in forward analysis we
need to access the out fields of all predecessors’of a BB; and in the backward analysis,
we need to access the in fields of all successors’ of a BB. By supporting accessing an

edge in double directions, both type of analyses can be supported efficiently.

41

Similarly fields front and tail are pointers to linked lists since statements in a BB
may be more than one. Furthermore, the linked list pointed by the front is a forward
linked list (original text order), and the one pointed by the tail is a backward linked
list. It is necessary to have such a double-linked list since we want our framework to
be general to support both forward and backward analyses.

In order to deal with goto statements, we build a mapping table, remembering
which BB a statement belongs to. In so doing, we can easily find the target BB for
each goto. We use an array of stmt2bb structure elements to store such information.
Figure 22 lists the stmt2bb definition.

typedef struct stmt2bb {
struct stmt *stmt_ptr;
bb_cfg *bb_ptr;
} stmt2bb ;

Figure 22: Mapping from statements to BBs

Each stmt2bb contains the following fields:
e stmi_pir: pointer to a statement.
e bb_ptr: pointer to a current BB contain the statement.

Thus, we can easily find the BB pointer using a statement pointer as hashing

index.
In our two-passes CFG building algorithm (see next section), the mapping table
is built during the first pass of analyzing a function and visited during the second

pass when goto statements are processed.

5.6.2 Main Control Algorithm of Building CFG Based on
CPC-AST

In Figure 23, we list the two-passes algorithm to build a CFG based on the CPC-

AST representation.

42

building cfg_function(symbol *sym)

{
initial_cfg(sym); /*initialize the current cfg_graph */
end_bb = get_bb_cfg(FUNCTION_END);/*create a func_end node for exit */

/*point a function body*/
current_bb = get_bb_cfg(NORMAL);/*#create a normal node for the current BB */
build_cfg_stmt (sym->compound) ; /*building cfg for each BB */
if (!IsEnd(current_bb))

insert_two_edges(current_bb, end_bb);/*Connect the current BB to the */
store_cfg(sym); /*store the total number of BB in the cfg_graph */
process_goto(sym); /*build cfg for goto statement by go through the each */
/*statement of the current function */

}

build_cfg_stmt(stmt *s)

{ for(;s;s=s->next){ /#*when there is a statement left in function body*/
/* Preallocate a basic block */
if (IsEnd(current_bb)) { /*if current-BB is end of a basic block*/
current_bb=get_bb_cfg(NORMAL) ; /*create a normal node for current-BB */
} else if (IsMerge(current_bb)){/*if current-BB is merges pointer of its */
/* predecessors */
prev=current_bb ; /*previous-BB point to current-BB */

current_bb=get_bb_cfg(NORMAL);/*create a normal node for the current BB*/
insert_two_edges(prev,current_bb); /*connect previous-BB to current- BB*/
¥
if(s~>label&&(!IsBBEmpty(current_bb))){/*deal with goto statement */
/*if there is Label: statement, the statement list should be separated */
/*into two parts with label as boundary*/
prev = current_bb ; /*previous—BB point to current-BB */
current_bb = get_bb_cfg(NORMAL);/*create a normal node for current-BB */
insert_two_edges(prev, current_bb);/*connect previous-BB to current-BB */

¥
if(s->code!=C_COMPOUND)/#if code type of the statement is not C_COMPOUND */
and the BB in stmt2bb table */
switch (s->code){ /*there is the detail algorithm for the particular type*/
case C_NOP: {...}/*of a statement */
}
}

Figure 23: Algorithm for building CFG

43

A function definition is represented as a CPC-AST symbol, which is the input to
function building.cfg. At the beginning of building_cfg, we do some initializations
and allocate two BBs, one represents the ezit point of the function and the other is for
the current empty BB. Then, function build cfg.stmt is called to recursively build
the CFG according to the algorithms described later in this chapter. At the end of
building.cfg, we call another function process.go to connect goto statements with
their target BBs.

Within function build_cfg_stmt, based on structural analysis technique we spec-
ify constructing rules for each C syntax construct. Then we follow such rules for each
statement and build its own CFG graph accordingly. Before we start to build a CFG

for a statement, we first check the following three cases:

1. If current BB is an END node, we allocate an empty BB for the current state-
ment, which will be used to take all statements of the BB to which the current

statement belongs.

2. If current BB is a MERGE node, we need to build an edge, linking the merge

node with the newly created current empty BB.

3. If current statement is a label statement, it is a potential target for a goto
statement, we end the current BB and create a new BB. At the same time, we

connect the last BB with the newly created empty BB.

After checking these special cases, we insert this statement into stmi2bb table,
preparing for the second pass to deal with gotos. Finally depending on the type of
the statement being visited, we call an algorithm to deal each C statement structure

accordingly.

5.6.3 The Algorithms of Building CFG for Each C Compo-
nent Based on CPC-AST

Our CFG is based on CPC-AST. There are four types of nodes in CFG, normal,
merge, end, and func-end, as we mentioned last section.

In Figure 24, we give the top-level algorithm to build CFG by recursive traversal
of a CPC-AST tree. Variable current-BB denotes the basic block under considera-

tion and end-BB represents the function exit point. Procedure partition-bb, see the

44

build_cfg_statement (S)
{
for each statement S dof{
if S is a compound statement
build_cfg_statement(S);
else
partition-bb(S);

Figure 24: Build a CFG based on structural analysis for a program represented in

CPC-AST

following parts of this Chapter, processes each individual statement.
For the time being, we assume there is no goto statement to make the algorithm
easier to be understood. We will come back to deal with goto statement in the later

section.

Expression Statement

For an Ezpression statement, we insert it to the current basic block, current-BB.

Return statement

For a Return statement, add an new edge between the current-BB and the end-BB.

Allocate a new BB and assign it to current-BB.

If then Statements

For each IF-THEN statement, we need to create a merge node and add three edges.

See Figure 25.

1. Insert the condition expression of if statement into previous basic block. Let’s

use prev.BB to denote it.

2. Prepare an empty BB for the first BB of then branch. Let’s use first.BB
to denote it. Connect first BB to prev.BB. This edge represents the control

transfer when condition is true.

45

3. Set current-BB to first_BB and recursively build CFG for then branch.

4. Create a merge node for the end of IF-THEN statement. Let’s use end_if BB
to denote it. Connect current-BB (the last BB of then branch) to end_if_BB.

Connect the prev BB to end_if BB, representing when condition is false.

prev_BB

w

® o«
von
(=

X = 2;

y = 3; l y =2%x; lJlrst_BB
if (x>0) i

{ 1
y=y*x; lfist_BB

<t
]
N
*
»

«
I
-
*
b

b

DA

end_if BB
(a). A sequence of if-then statements | (b). A CFG of if-then statement

Figure 25: An example of if-then statement.

If_then_else statement

For each IF_THEN_ELSE statement, we need to create a merger node and add four
edges. See Figure 26.

1. Insert the condition expression of If Then_Else statement into previous basic

block. Let’s use prev_BB to denote it.

2. Prepare an empty BB for the first BB of then branch. Let’s use first_then BB
to denote it. Connect first_then BB to prev_BB. This edge represents the

control transfer when condition is true.

3. set current_ BB to first_then_BB. Recursively build CFG for then branch.

46

4. Prepare an empty BB for the first BB of else branch. Let’s use first_else BB
to denote it. Connect first_else BB to prev.BB. This edge represents the

control transfer when condition is false.
5. Set current_BB to first_else BB. Recursively build CFG for else branch.

6. Create a merge node for the end of IF. THEN_ELSE statement. Let’s use
end_if_then_else BB to denote it. Connect the current-BB(the last BB of
then branch) to end_if_then_else BB, representing when condition is true.
Connect the current_BB(the last BB of else branch) to end_if_then_else BB,

representing when condition is false.

{
x = 2; r= prev_BB
y = 3; | =¥ [
x>0
if (x>0) {

¥ = X*y; first_then_BB I y =x*y; l x =x*y, || first_else BB

t<
[}
N
*

<

} I | |
else : .
= E 37 404
* .x v last_then BB || y=2%y| | x=2%x;|| 1ast_else_BB
X = 2%x;

’ ~(__)~

end_if_then_else_ BB
(a). A sequence of if-then-else (b). A CFG of if-then-else
statements statements

Figure 26: An example of if-then-else statement.

‘While loop

For each WHILE statement, we need to create two merge nodes and add four edges.

See Figure 27.

47

Create a merge node fo: the test expression of the While statement. Let’s use

test_BB to denote it. Connect prev_BB to the test BB.

Create a merge node for the end of WHILE statement. Let’s use end while BB
to denote it. connect the test BB to the end_while BB, representing the condi-

tion is false.

Push the test_BB on the continue-stack for continue statement. Push the

end merge BB on the break-stack for break statement.

Prepare an empty BB for the first BB while loop body.Let’s use £irst BB to
denote it. Connect the test BB to first_BB. This edge represents the control

transfer when condition is true.

Set current-BB to first_BB. Recursively build new cfg until the end of the while
loop and current-BB is changed accordingly. Connect the current-BB(the last
BB of the while loop body) to the test BB.

Pop the test BB from continue-stack for continue statement. Pop the

end_while_BB from break-stack for break statement.

Do-While loop

For each DO-WHILE statement, we need to create three merger node and add five

edges. See Figure 28.

1.

™o

Create a new merger node at the beginning of do-while loop, Let’s use

do-while BB to denote it. Connect prev.BB to the do-while BB.

Create a merge node for the test expression of the while statement. Let’s
use test_BE to denote it. Connect the test BB to the do_while BB when the

condition is true.

Create a merge node for the end of do-while statement. Let’s use
end_do-while BB to denote it. Connect the test BB to the end_do-while BB,

representing the condition is false.

Push the test BB on the continue-stack for continue statement. Push the

end_do-while BB on the break-stack for break statement.

48

x = 10;
i = 5;

while (i>0)
{

X = x%*5;

X = x*5;

(a). A sequence of while
statements

prev_BB

first_BB

last_BB

end_while_BB

(b). A CFG of while statement

5. Prepare an empty BB for the first BB of do-while loop body.
Connect the do-while BB to the

use first_do-while BB to denote it.

first_do-while BB. This edge represents the control transfer when condition

is true.

6. Set current-BB to the first_do-while BB. Recursively build CFG for the do-

while loop body until it ends, and current-BB is changed accordingly. Connect

Figure 27: An example of while statement.

the current-BB(the last BB of do-while loop body) to the test_BB.

7. Pop the test BB from continue-stack for continue statement.

end_do-while BB from break-stack for break statement.

For loop

For each FOR statement, we need to create three merge nodes and add five edges.

See Figure 29.

49

Let’s

Pop the

{
x =05;
do
{
y = x¥*y;
x -=;}

while (x>0);
}

(a). A sequence of do-while
statements

prev_BB

do-while_BB

y =x*y;

first_do-while_BB

last_do-whi!e_BB

x>0

test_BB

end_do-while_BB

(b). A CFG of do-while statement

Figure 28: An example of do-while statement.

¥

(a). A sequence of for statements

y =2
x = 1;

for(i=0; i<5; i++)
{
y

X*y;

X

Y

X*y;

prev_BB

—~>~<
]
L —-n

st B0w(ics J———=(_) endformB

y =x*y; first_for_BB
[e=xy]| tast_ror_nB
——‘ i+) expr2_BB

(b). A CFG of for statement

Figure 29: An example of for statement.

50

1. Insert the exprl of the for staterment into previous basic block. Let’s use prev_BB

to denote it.

2. Create a merge node for the test expression of the for statement. Let’s use

test_BB to denote it. Connect the prev_BB to test_BB.

3. Prepare an empty BB for the first BB of for loop body. Let’s use first for BB
to denote it. Connect the test BB to the first_for BB, representing the con-

dition is true.

4. Create a merger node for the end of for statement. Let’s use end for_BB to
denote it. Connect the test BB to the end_for BB, representing the condition

is false.

5. Push the test_BB on the continue-stack for continue statement. Push the

end_for_BB on the break-stack for break statement.

6. Set current-BB to the first_for_BB. Recursively build the cfg until the end of
for loop body and the current-BB is changed accordingly.

7. Create a merge node for the expr2 of the for statement Let’s use expr2_.BB
to denote it. Connect the current-BB(the last BB of the loop body, let’s use
last_for BB to denote it) to the expr2_BB. Connect the ezpr2_merger_BB to
the test point.

8. Pop the test BB from continue-stack for continue statement. Pop the

end merge BB from break-stack for break statement.

Break statement

1. Get a merge node BB from break-stack. Let’s use end BB to denote it .

2. Connect current-BB to the end BB. Then, Set the type of current-BB to end.
Let’s use break.BB to denote it.

See Figure 30.

51

¢

=x*y
y>5 prev_BB
for(i=1; i<10; i++)
{ Y
y = x¥y; @D break_BB
if (y>5)
break;

Y

4 {) end_BB

(a). A sequence of break statements | (b). A CFG of break statement

Figure 30: An example of break statement.

Continue statement

1. get a merger node from continue-stack. Let’s use header BB .

2. connect current BB to the header_BB. Then, Set the type of current-BB to end.

Let’s use continue BB to denote it. See Figure 31.

Switch statement

For each SWITCH statement, we need to create one merger node and add one edge.

See Figure 32.

1. Insert the switch() of the switch statement into previous basic block. Let’s use

prev.BB to denote it.

2. Create a merge node for the end of SWITCH statement. Let’s use
end_switch_BB to denote it. Connect the prev BB to the end_switch BB, rep-

resenting the condition is false.

3. Push the prev.BB on the continue-stack for continue statement. Push the

end_switch. BB on the break-stack for break statement.

52

i++ header_BB

for(i=1; i<10; i++)

{ y=x*y
v = xxy; y<5 prev_BB
if (y<5)
continue; Y

}
—@ continue_BB

(a). A sequence of continue statements | (b). A CFG of continue statement

Figure 31: An example of continue statement.

4. Prepare an empty BB for the first BB of switch body. Let’s use first_switch BB

to denote it.

5. set current-BB to the first_switch.BB. Recursively build CFG for the switch
body until it ends and the current-BB is changed accordingly.

6. Pop the prev.BB from continue-stack for continue statement. Pop the

end_switch BB from break-stack for break statement.

Case statement

1. Get a node from the continue-stack. Let’s use header_BB to denote it. Connect

the header BB to the current BB, let’s use case BB to denote it. See Figure 33.

Default statement

1. Get a node from the continue-stack. Let’s use header_BB to denote it. Connect

the header_BB to the current BB.

2. Get a node from the break-stack. Let’s use end BB to denote it. Connect current

BB to the end_BB.See Figure 34.

53

{

i=2;
x = 1;
switch(i)
{
case 1 : x = 10; .; break;
case 2 : x = 20; .; break;
default: x = 0; .3 break;
}
}

(a). A sequence of switch statements

i=2;
x=1;

prev_BB
switch(i)
first_switch_BB I el
A ="
| | |]
- end_switch_BB

(b). A CFG of switch statement

Figure 32: An example of switch statement.

{

1i=2;

{
case i=1 : x = 10; break;
case i=2 : x 20; break;
default: return O;

}

(a). A sequence of case statements

i=2; header_BB
switch(i)
case_BB RN .
casei=1: casei=2:
x =10; x =20;

(b). A CFG of case statement

Figure 33: An example of case statement.

54

i=S5;
{ header_BB
switch(i)
i=5;
switch(i): Y
{ default: default_BB
case 1 : return 10; return 0;
case 2 : return 20;
default: return 0; *V
}
(a). A sequence of default statements | (b). A CFG of default statement

Figure 34: An example of default statement.

)
a=1;
a=1; — b=a*5;
b = axb; goto A;
goto A;
y = 4;
y=4
T Z = a*b; ¢
= A:z=a%*b;
(a). A sequence of goto statements (b). A CFG of goto statement

Figure 35: An example of goto statement.

55

Goto Statement

For a goto statement, we need go through the sequence of statements twice. See

Figure 35.

1. At first step, when there is a Label:, we separate the sequence statements into
two parts. The statements before the Label: belong to prevBB and the state-
ments including the Label: belong to currentBB. When there is a goto, just to
initialize the type of currentBB as END.

2. At second step, if there is a goto statement in the function body, we need go
through the cfg again and try to find its target. Then we create an edge from
the goto to the target label. Since there is a stmi2bb table being built during
the first pass, searching the table to find the target of the goto becomes easy.

56

Chapter 6

Iterative Dataflow Analysis

Framework

In this chapter, we first review the safety principle that a compiler optimization must
obey. Then we introduce the lattice theory which forms the foundation of dataflow
analyses. Next, we present a general solver which can be used to solve a system
of dataflow equations. We illustrate forward and backward dataflow analysis tech-
niques through available expression and live variable problems respectively. Finally,
we present an implementation scheme of a general dataflow equation solver on top of

the CPC compiler.

6.1 Safe vs. Aggressive in Compiler Optimiza-
tions

The purpose of data-flow analysis is to provide global information about how a proce-
dure (or a large segment of a program) manipulates its data. For example, constant-
propagation analysis seeks to determine whether all assignments to a particular vari-
able at some particular point necessarily give it the same constant value. If so, a use
of the variable at that point can be replaced by the constant.

The spectrum of possible data-flow analyses ranges from program understanding
by abstract execution of a procedure, which might determine, for example, that it
computes the factorial function, to much simpler and easier analyses such as the

reaching-definition problem .

57

In all cases, we must be certain that a data-flow analysis gives us information that
does not misrepresent what the procedure being analyzed does, in the sense that it
must not tell us that a transformation of the code is safe to perform that, in fact,
is not safe. We must guarantee this by carefully designing the data-flow equations
and by being sure that the solution to them that we compute is, if not an exact
representation of the procedure’s manipulation of its data, at least a conservative
approximation of it. For example, for the reaching-definition problem, where we
determine what definitions of variables may reach a particular use, the analysis must
not tell us that no definitions reach a particular use if there are some that may. The
analysis is conservative if it may give us a larger set of reaching definitions than it
might if it could produce the minimal result.

However, to obtain the maximum possible benefit from optimization, we seek
to pose data-flow problems that are both conservative and, at the same time, as
aggressive as we can make them. Thus, we shall always attempt to walk the fine
line between being as aggressive as possible in the information we compute and being
conservative, so as to get the greatest possible benefit from the analyses and code-
improvement transformations we perform without ever transforming correct code to

incorrect code.

6.2 Basic Concepts: Lattices, Flow Functions,

and Fixed Points

We now proceed to define the conceptual framework underlying data-flow analysis. In
each case, a data-flow analysis is performed by operating on elements of an algebraic
structure called a lattice. Elements of the lattice represent abstract properties of
variables, expressions, or other programming constructs for all possible executions of
a procedure-independent of the values of the input data and, usually, independent of
the control-flow paths through the procedure. In particular, most data-flow analyses
take no account of whether a conditional is true or false and, thus, of whether the
then or else branch of an if is taken, or of how many times a loop is executed.
We associate with each of the possible control-flow and computational constructs in
a procedure a so-called flow function that abstracts the effect of the construct to its

effect on the corresponding lattice elements.

58

In general, a lattice L consists of a set of values and two operations called meet,

denoted M, and join, denoted U, that satisfy several properties, as follows:

1. For all z,y € L, there exist unique z and w € L such that zMy = z and

z Uy = w (closure).
2. Forallz,ye€ L,zNy=y Mz and z Uy = y Uz (commutativity)

3. For all z,y,z € L (zMNy)MNz=zMN(yMNz)and (zUy)Uz = zU(yU=2)

(associativity).

4. There are two unique elements of L called bottom, denoted L, and top, denoted
T,such thatforallz € L,zM L =1 and U T = T (existence of unique top

and bottom elements).

Most of the lattices we use have bit vectors as their elements and meet and join
are bitwise and and or, respectively. The bottom element of such a lattice is the bit
vector of all zeros and top is the vector of all ones. We use BV™ to denote the lattice
of bit vectors of length =.

A function mapping a lattice to itself, written as f : L — L, is monotone if for

all z and y ¢ C y = f(z) C f(y). For example, the function f : BV3® — BV? as
defined by

f(< T1T9T3 >) =< z1lzz >
is monotone, while the function g : BV?® — BV? as defined by
g(< (000) >) =< 100 >

and
g(< T1T2Z3 >) =< 000 >

otherwise is not.
The height of a lattice is the length of the longest strictly ascending chains in it,

i.e., the maximal n such that there exist z1, zs, ..., 2, such that
L=z1CaC.Ca,=T

As for other lattice-related concepts, height may be dually defined by descending

chains. Almost all the lattices we use have finite height, and this, combined with

59

monotonicity, guarantees termination of our data-flow analysis algorithm. For lattices
of infinite height, it is essential to show that the analysis algorithm halt.

In considering the computational complexity of a data-flow algorithm, another
notion is important, namely, effective height relative to one or more functions. The
effective height of a lattice L relative to a function f : L — L is the length of the
longest strictly ascending chain obtained by iterating applying f(), i.e., the maximal

n such that there exist z1,z2 = f(z1),z3 = f(22),..., Zn = f(Tn-1) such that

nnlCaoCxzC..Cz, & T

The effective height of a lattice relative to a set of functions is the maximum of
its effective heights for each function. ‘

A flow function models, for a particular data-flow analysis problem, the effect of
a programming language construct as a mapping from the lattice used in the analysis
to itself. We require that all flow functions be monotone. This is reasonable in
that the purpose of a flow function is to model the information about a data-flow
problem provided by a programming construct and, hence, it should not decrease the
information already obtained. Monotonicity is also essential to demonstrating that
each analysis we consider halts and to providing computational complexity bounds
for it.

The programming construct modeled by a particular flow function may vary, ac-
cording to our requirement, from a single expression to an entire procedure.

A fized point of a function f: L — L is an element z € L such that f(z) = z. For
a set of data-flow equations, a fixed point is a solution of the set of equations, since
applying the right-hand sides of the equations to the fixed point produces the same
value. In many cases, a function defined on a lattice may have more than one fixed
point.

For formal definitions of lattice, readers are suggested to refer to [HU79, Lid98].
The dataflow analysis theory based on lattice theory can be found in [Kil73, FKU75,
KUT77).

6.3 Iterative Data-flow Analysis

In order to do code optimization and a good job of code generation, we need to collect

information about the program as a whole and to distribute this information to each

60

block in the control flow graph. For instance, we can use knowledge of global common
subexpression to eliminate redundant computations. And this is a good example of
data-flow information that an optimizing compiler collects by a process known as
data-flow analysis. We first present an iterative implementation of forward analysis.
Methods for backward and bidirectional problems are easy generalizations.

Iterative analysis is the easiest method to implement and, as a result, the one
most frequently used. It is also of primary importance because the transformation of
the common subexpression elimination needs to be able to do iterative analysis.

We assume that we are given a flowgraph G =< N, E > with entry and exit
blocks in N and desire to compute in(B),out(B) € L for B € N where in(B) repre-
sents the data-flow information on entry to B and Out(B) represents the data-flow

information on exit from B, give by the dataflow equations

in(B =
(B) Mpepred(p) out(P) otherwise

out(B) = Fg(in(B))

{ init for B = entry

where init represents the appropriate initial value for the data-flow information on
entry to the procedure, Fig() represents the transformation of the dataflow information
corresponding to executing block B, and M models the effect of combing the data-flow
information on the edges entering a block. Of course, this can also be expressed with

just in() function as

tnit for B = entry

in(B) = {

rlpep.,.ed(B) FP(ZTL(.P)) otherwise

If U models the effect of combining flow information, it can also be used in place of
M in the algorithm presented in Figure 36. The value of Inzt is usually L or T.

The algorithm given in the Figure 36, uses just in() functions; The strategy is to
iterate applications of defining equations given above, maintaining a worklist of blocks
whose in() values have changed on the last iteration, until the worklist is empty.

The inputs to this algorithm are:

e a set of CFG nodes N (basic blocks);
e an entry node in the CFG;

e initial value Init on lattice L;

61

worklist_Iterative(in set of Node : N,
in Node : entry,
in Node -->L : FP,
out Node --> L : dfinm,
in L : Init)

{

Node : B, P;

set of Node : Worklist;

L : effect, totaleffect;

dfin(entry) = Init;

* worklist = N-{entry};
for each B in N do
dfin(B) = U;

do
{
* B = take one from Worklist;
Worklist -= {B};
totaleffect = U;
for each P in Pred(B) do
{
effect = F(P, dfin(P));
totaleffect = combining the data-flow information
of totaleffect and effect;
if dfin(B) <> totaleffect {
dfin(B) = totaleffect;
* Worklist = Worklist and {B};
}
}
} while Worklist is empty set;

Figure 36: Worklist algorithm for iterative data-flow analysis (statements that man-
age the worklist are S1, S2, S3)

62

e transformation function FP, F,(z) is represented by F(B,z);

e output function which produces L type of output for each node.

Initially the worklist contains all blocks in the flowgraph except entry, since its
information will never change. Then we initialize all output nodes (dfin) to U (In
Figure refworklist, we use U to denote L). Then, we enter a loop which selects a basic
block B from the worklist and computes its output based on its predecessor’s output.
If B’s output has been changed, B is put back into the worklist so that its output
will have another chance to be recomputed. Since the effect of combining information
from edges entering a node is being modeled by M, the appropriate initialization for
totaleffect is U, representing L.

The computational efficiency of this algorithm depends on several things: the
lattice L, the flow functions Fg(), and how we manage the worklist. While the lat-
tice and flow functions are determined by the dataflow problem we are solving, the
management of the worklist is independent of it. Note that managing the worklist
corresponding to how we implement the statements marked with asterisks in the
Figure 36. The easiest implementation would use a stack or queue for the worklist,
without regard to how the blocks are related to each other by the flowgraph structure.
On the other hand, if we process all predecessors of a block before processing it, then
we can expect to have the maximal effect on the information for that block each time
we encounter it. This can be achieved by beginning with an ordering we encounter
in reverse postorder and continuing with a queue. Since in postorder a node is not
visited until all its depth-first spanning-tree successors have been visited, in reverse
postorder it is visited before any of its successors have been. If A is the maximal
number of back edges on any acyclic path in a flowgraph G, then A + 2 pass through
the do-while loop are sufficient if we use reverse postorder [Muc97]. Note that it is
possible to construct flow graphs with A on the order of |N|, but that this is very
rare in practice. In almost all cases A < 3, and frequently A = 1.

In practice, a system of dataflow equations that relate information at various

points has the following typical form:
out[S] = (gen[S] U in[S]) — kill[S]

and can be read as, “the information at the end of a statement is either generated

within the statement, or enters at the beginning and is not killed as control flows

63

through the statement.” Such equations are also called data-flow equations.
The details of how data-flow equations are set up and solved depend on three

factors.

1. The notions of generating and killing depend on the desired information, i.e.,
on the dataflow analysis problem to be solved. Moreover, for some problems,
instead of proceeding along with the flow of control and defining out/S] in terms
of in[S], we need to proceed backwards and define in/S] in terms of out[S]. These

analysis problems are called backward analysis problems.

2. Since data flows along control paths, data-flow analysis is affected by the control
constructs in a program. In fact, when we write out/S] we implicitly assume
that there is unique end point where control leaves the statement; in general,
equations are set up at the level of basic blocks rather than statements, because

blocks do have unique end points.

3. There are subtleties that go along with such statements as procedure calls,
assignments through pointer variable, and even assignments to array variables.

However, dealing these issues are beyond the thesis topic.

6.4 Available Expressions

An expression such as z+y is available at a point p if every path (not necessarily cycle-
free) from the initial node to p evaluates z +y, and after the last such evaluation prior
to reaching p, there are no subsequent assignments to = or y. For available expression
we say that a block kills expression z + y if it assigns (or may assign) z or y and does
not subsequently recomputes z +y. A block generates expression z + y if it definitely
evaluates z + y and does not subsequently redefine z or y.

The primary use of available expression information is for detecting common
subexpressions. For example, in Figure 37, the expression 4 * 7 in block B3 will
be a common subexpression if 4 * ¢ is available at the entry point of block B3. It will
be available if i is not assigned a new value in block B2, or if, as in Figure 37(b), 4 x4
is recomputed after ¢ is assigned B2.

We can easily compute the set of generated expression for each point in a block,

working from beginning to end of the block. At the point prior to the block, assume

64

? B2| 1 =1
B2 0 = 4%i

(2) (b)

Figure 37: A potential common subexpression across blocks

no expressions are available. If at point p set A of expressions is available, and g
is the point after p, with statement x:=y+z between them, then we form the set of

expressions available at q by the following two steps.

1. Add to A the expression y+z;

2. Delete from A any expression involving x.

Note the steps must be done in the correct order, as x could be the same as y or
z. After we reach the end of the block, A is the set of generated expressions for the
block. The set of killed expressions is all expressions, say, y+z such that either y or
z is defined in the block, and y+z is not generated by the block.

Consider the four statements listed in Figure 38. After the first, b+c is available.
After the second, a-d becomes available, but b+c is no longer available, because b has
been redefined. The third does not make b+c available again, because the value of ¢
is immediately changed. After the last statement, a-d is no longer available, because
d has changed. Thus no statements are generated, and all statements involving a,
b, c, or d are killed.

Suppose U is the “universal” set of all expressions appearing on the right of one or

more statements of the program. For each block B, let in/B] be the set of expressions

65

Statements Avaiable Expression
....... None
a = b+c
....... Only b+c
b = a-d
....... Only a-d
c = b+c
....... Only a-d
d = a-d
....... None

Figure 38: Computation of available expressions.

in U that are available at the point just before the beginning of B. Let out/B] be the
same for the point following the end of B. We define e_gen[B] to be the expressions
generated at B and their operands have not been modified before their usages; define
e_kill[B] to be the set of expressions in U killed in B, i.e, any expression whose
operands have been modified by B.

The following equations relate the unknowns in and out to each other and the

known quantities e_gen and e_kill.

out[B] = (in[B]U egen[B]) — e_kill[B]
in[B] = ﬂ(P is a predecessor of B) (out[P]) for B is not entry
inlentry] = 0 (where entry is the initial block)

Here we should first notice that ¢n for the initial node (entry) is handled as a
special case. This is justified on the grounds that nothing is available if the program
has just begun at the initial node, even through some expression might be available
along all paths to the initial node from elsewhere in the program. If we did not
force infentry] to be empty, we might erroneously deduce that certain expressions
were available before the program started. The second, the confluence operator is
intersection. This operator is the proper one because an expression is available at the
beginning of a block only if it is available at the end of all its predecessors.

It may not be obvious that by starting with the assumption “everything, i.e the
set U, is available everywhere” and eliminating only those expressions for which we

can discover a path along which it is not available, we do reach a set of truly available

66

expression. In the case of available expressions, it is conservative to produce a subset
of the exact set of available expressions, and this is what we do. The argument for
subsets being conservative is that our intended use of the information is to replace
the computation of an available expressions by a previously computed value (see the
algorithm of computing CSE in the next Chapter), and not knowing an expression is
available only inhibits us from changing the code.

In Figure 39, there is a cycle surrounding B2, which represents a loop in the
CFQG. We shall concentrate on a single block B2, to illustrate the effect of the initial
approximation of infB2] on out/B2]. Let G and K abbreviate gen/B2] and kill[B2],
respectively. The data-flow equations for block B2 are:

in[B2] = out[Bl]Nout[B2]
out[B2] = (GUin[B2))—-K

These equations have been rewritten as recurrences in Figure 39, with I’ and
O’ being the jth approximations of in[B2] and out/B2], respectively. The figure also
shows that starting with I® = § we get O' = O? = G, while starting with I° = U
we get a large set for O?. Note that out/B2] equals O? in each case, because the

iterations each coverage at the points shown.

Ot = (GUI)-K
[+t out[B1] N O+1

(*12

r =9 P =U

o' = @ O = U-K

' = out[BIING I' = out[Bl]— K

0 = @G 0? = (GUout[Bl])-K

Figure 39: Initializing the in sets to @ is too restrictive

Intuitively, the solution obtained starting with I® = U using
out[B2] = (GUout[Bl])— K

67

is more desirable, because it correctly reflects the fact that expressions in out/BI1] that
are not killed by B2 are available at the end of B2, just as the expressions generated
by B2 are.

Now we give the details of the algorithm.

Algorithm. Available Expression

Input. A flow graph G with e_kill/B] and e_gen/B] computed for each block B. The

initial block is entry.
Output. The set in/B] for each block B.

Method. We use an iterative approach, starting with the “estimate” infentry] = 0
and converging to the desired values of in and out finally. As we must iterate
until the in’s and hence the out’s converge, we use a boolean variable change
to record on each pass through the blocks whether any in has changed. The
algorithm is sketched in Figure 40.

(1) in[entry] = Empty-set;

(2) out[entryl= Empty-set; /* in and out never change for the entry node */
(3) for (B != entry) do

4 out[B] = U ~ e_kill[B]; /#* initial estimate is too large */

(5) change = true;

(6) while change do

(7) A{ change = false;

(8 For each basic block B do

(9) { in[B] = intersection of (out[P]) (P, for all predecessors of B);
(10) oldout = out[B];
(11 out[B] = (e_gen[B] union in[B]) - e_kill[B];
(12) if (out[B] != oldout)
(13) change = true;
}
¥

Figure 40: Available expressions computation

We can see that the algorithm will eventually halt because out/B] never decrease
in size for any B; once a definition is added, it stays there forever. Since the set of all

definitions is finite, there must eventually be a pass of the while-loop in which oldout

68

= out[B] for each B at line (12). Then change will remain false and the algorithm
terminates. We are safe terminating then because if the out’s have not changed, the
in’s will not change on the next pass. And, if the in’s do not change, the out’s cannot,

so on all subsequent passes there can be no changes.

6.5 Live-Variable Analysis

A number of code improving transformations depend on information computed in the
direction opposite to the flow of control in a program; we shall consider one now. In
live-variable analysis we wish to know for variable x and point p whether the value
of x at p could be used along some path in the control flow graph starting at p. If so,
we say x is live at p; otherwise x is dead at p.

An important use for live-variable comes when we generate object code. After
a value is computed in a register, and presumably used within a block, it is not
necessary to store that value if it is dead at the end of the block. Also, if all registers
are full and we need another register, we should favour using a register with a dead
value, since that value does not have to be stored.

In contrast to the available expression analysis, we define in/BJ to be the set of
variables live at the point immediately after block B and define out/B] to be the same
at the point immediately before block B. Therefore, we actually use the control flow
graph in a backward way. Let def/B] be the set of variables definitely assigned values
in B prior to any use of those variable in B, and let use/B] be the set of variables
whose values are used in B prior to any definition of the variables. Then the equations

relating def and use to the unknowns in and out are:

out[B] = wuse[B]N (in[B] — def[B])
in[B] = U(S is a successor of B)Out[S]
infezit] = 0
The first group of equations says that a variable is live coming into a block if
either it is used before redefinition in the block or it is live coming out of the block
and is not redefined in the block. The second group of equations says that a variable
is living coming out of a block if and only if it is live coming into one of its successors.

Compared to the dataflow equations used in computing available expressions,

these are the differences:

69

e This is a backward analysis problem. The searching (fixed points) direction is
from ezit to entry and the output of successors of a node rather than that of

predecessors are used to compute the input set of the node.
e The “meet” operator is set union.

e The initial value for ezit node is empty since no variable will be “live” after a

function finishes its execution.

The similar algorithm used to compute available expressions can be adapted to
compute live variables through changing the algorithm with consideration of the above

differences accordingly.

6.6 Sets, Operators, and General Solver

In Section 6.3, we have introduced an abstract algorithm which can be used to solve
any dataflow equation.

To implement such an abstract algorithm, we need to specify the followings:

How to represent in and out on Lattice L?

How to manager the work list?

How to comstruct the “meet” operator on L?

How to know the search direction?

In this section, we will describe an iterative dataflow solver built based on set and

its operations.

6.6.1 Abstract Sets and Meet Operators

Sets are the basic concept used in describing data-flow equations, such as iz and out
sets. They are naturally selected as the mapping objects of program properties. On
the other hand, the power of sets and set operators forms a lattice L. Therefore, an
abstract set element can model dataflow analysis results while sets itself can be used

to represent the in and out of a dataflow equation. In addition, set operations can

70

be used to implement the “meet” operator. All these make sets and their operators
form the core of an iterative data-flow equation solver.

There are many ways to represent sets, forests, bit-vectors, and linked list are
named as a few. In our current implementation, we use the linked list representation,
because it has low implementation costs and is flexible to represent any set of objects.

Based on the linked list representation, we can implement various set operations
such as intersection, union, member, and insert. These operations are used to support
the meet operators used in both the forward and backward data-flow analyses, such

as computing available expression and live variable analysis.

6.6.2 General Solver

Our general dataflow analysis framework is based on a general dataflow equation
solver, which takes a specification of a system of dataflow equations and performs the

corresponding dataflow analysis. The dataflow equation specification consists of:

e Direction of analysis: forward or backward.

e Set merge operator: intersection or union.

Gen set: the results generated by a statement.

e Kill set: the results killed by a statement.

The precedence between gen and kill sets: which one is applied first.

Depending on such a data-flow analysis specification, the general solver will com-
bine the appropriate set operators and operate on related fields of each basic block
to perform dataflow analysis.

For example, computing available expression is a forward analysis and uses set
intersection to merge results from predecessors. The gen and kill sets are the ones
used in Section 6.4.

Please recall that there are two linked lists in our basic block representation (see
Chapter 5). These lists are designed to support the general dataflow equation solver.

Still taking the available expression analysis as example, the in set of a basic block
is computed as an intersection of all out sets of its predecessors. The solver then needs

to visit the out fields of all predecessors of the basic block. This can be done easily

71

because the predecessors of a basic block is stored as a linked list and the header is
pointed by pred field of the basic block.

For the available expression analysis, within a basic block the solver walks along
the nezt field of a statement linked list, whose header is pointed by the front field of
the basic block. For each statement, it will call the corresponding gen and kill routines
to its compute available expressions. The details of the linked lists are introduced in
Section 6.7.

For managing the worklist, we also delay its description until Section 6.7 since
some user code is necessarily embedded to make the worklist management clear.

Please note that some interfaces between the general solver and data-flow speci-
fications are C routines, such as gen and kill sets. Users still need to write certain C
code to use the solver. However, the framework provided can make user’s life easier

in developing a particular data-flow analysis program.

6.7 CSE Example

In this section, we use the common subexpression analysis as an example to show

how to use the general framework.

6.7.1 Data Structures for Solving CSE

As we mentioned before, the statements within a basic block are linked by a double-
linked list. Figure 41 shows its structure definition.

Every statement-list element contains the following fields:

o type: there are two type for a statement list element,

— EXPR: the type of the statement list is C_CEXPR in CPC-AST.
— STMT: any statement which is not C_LEXPR in CPC-AST.

e stmit_ptr: points to the statement node of CPC-AST.

e expr: when the statement list is EXPR, it points to the expression node of

CPC-AST.

e prev: pointer pointing to the previous statement list element.

72

enum stmt_ele_type { STMT, EXPR } ;

#define DataflowInfoSize 1
#define CommonSubExpr 0
#define ReachingDef 1 /* Not used */
#define LiveVars 2 /* Not used */

typedef struct stmtlist {
enum stmt_ele_type type ;

struct stmt *stmt_ptr;

struct value *eXpr ;

struct stmtlist *prev;

struct stmtlist *next ;

void *dataflow[DataflowInfoSizel;

} stmtlist ;

Figure 41: Data structure of the statement list in a BB

e nezt: pointer pointing to the next statement list element.

e dataflow[DataflowInfoSize]: store dataflow analysis information. This is an

array representation, storing different dataflow analysis results.

Due to the double linked list representation of the statement sequence within
a basic block, both forward and backward analyses can be supported in an equal
foot manner. We use a void pointer type to denote any potential result of dataflow
analysis. It is the user’s responsibility to do the appropriate casting to deposit to and
retrieve from any dataflow information through the fields. The above representation
for statement is general enough to support any dataflow analysis.

In order to support the CSE transformation (see Chapter 7), a special data struc-
ture is designed to hold a list of most recent definition points for a common subex-
pression. This structure is particular to the CSE transformation and it should be

provided by user programmers.
In Figure 42, every definition list element contains the following fields:

e s_def: pointer points to the statement in the original CPC-AST node, in which

the common expression is most recently being computed.

73

typedef struct def_list {
struct stmt *s_def; /* Defition point */
struct value *val;
struct def_list *next;

} def_list;

Figure 42: Data structure of definition list for CSE

e val: pointer points to the expression of the statement node which contains the

recent definition expression.

e next: pointer points to the next definition list element.

To compute common subexpressions, we also designed a special expression list.

In Figure 43, every expression list element contains the following fields:
e val: pointer points to the expression field of a statement.
e list: pointer points to the statement of definition point.

e next: pointer points to the next element.

typedef struct expr_set {
struct value *val;
struct def_list *list; /* Defition point */
struct expr_set *next;

} expr_set ;

Figure 43: Data structure of expression sets

The ezpr_set structure is used to represent in and out sets. The data structure of

the set header descriptor is as follows.

In Figure 44, every set header contains the following fields:

o type: there are two types of set header:

74

enum set_type {Empty, Full} ;

typedef struct set_header {
enum set_type type;
expr_set *set;
int count;

} set_header;

Figure 44: Data structure of set header.

— EMPTY: the set is empty when there is no CSE information for the current

statement.

— FULL: the set is an “universal” set which contains all common subexpres-

sions in a program.
These two values are very useful in initializing the in or out sets.
e set: store the common subexpressions.

e count: the total number of definition point set within this set header.

6.7.2 Algorithm for Solving CSE

In Figure 45, we list the main control algorithm of our iterative solver for solving the
CSE problem based on the CPC AST representation. Except for statement S5 which
is special to the CSE analysis and will be introduced in Chapter 7, other parts can
be used in any dataflow analysis.

After having the size of a CFG, the main control algorithm starts by initializing
each basic block. For the CSE problem, we can initialize set ¢n empty and set out
universal. Then, the algorithm enters a while loop, which will only stop when the ins
or outs are not changed any more.

Please note that for each iteration, we need to do extra initialization such as the
one done at statement 53. It sets each node unvisited, preparing for the search to
be started from the scrash. The real search of the CFG is performed in function

search_bb.

75

solving_cfg(symbol *sym)
{
bb_num = graph-> num; /* get the total BB number of a CFG */
bb_base = graph—> bbs_array; /* get the BB of the CFG */
/* initialize the input of each BB is EMPTY */
S1: initial_cfg_sets(bb_base, bb_num, 1, 1);
/* bb_0 is reserved for FUNCTION END */
/*get the first BB of the cfg_graph*/
first_bb = bb_base + 1;

S2: while (changes) { /* while the input of BB has been changed */
changes = 0; /* assume no changes for input of BB at first */
S3: initial_seaxrch(); /* initialize each BB as not visited,

and the queue as empty */
enqueue(first_bb); /* put the first BB in the queue */
s4: search_bb(bb_base, 1); /* visit each BB in the CFG */

¥
S5: compute_cse(bb_base, bb_num);/*computer CSE */

Figure 45: Algorithm for solving CSE

In Figure 46, we list the search algorithm to solve the CSE dataflow analysis.

There is a useful ordering of the nodes of a flow graph, know as breath-first or-
dering, which is generalization of the breath-first traversal of a tree. A breath-first
ordering can be used to detect loops in any flow graph; it also helps speed up iterative
data-flow algorithm such as available expression. The breath-first ordering is created
by starting at the initial node and searching the entire graph, trying to visit a node
before its “successors”. Of course, this definition is somehow inappropriate if there is
a cycle in the flowgraph. However, it is correct if we eliminate the back edges (in our
mind) and make the flowgraph a Direct Acyclic Graph(DAG).

In Figure 46, we list breath-first search algorithm to search all basic blocks of a
CFG based on the CPC-AST-representation. The parameter dir is used to indicate

the search direction. The algorithm performs as follows:

e At line 1 when there is a BB in the queue, we take it out. The worklist is

organized as a queue in our framework.

e From line 4 to 10, depending on the search direction, the algorithm selects the
appropriate fields. For example, if the problem is a forward problem, predecessor

and successor fields will be set the pred and succ variables accordingly.

76

search_bb(bb_cfg *bb_base, int dir)

{
1: while (bb_ptr=dequeue()) { /* Take out a BB from the queue */
2: i = bb_ptr - bb_base;
3: bb_visited[i] = 1; /* Mark the BB as visited */
4: if (dir) { /* For a forward data-flow analysis */
5: pred = BBPred(bb_ptr);
6: succ = BBSucc(bb_ptr);
}
T: else { /* For a backward data-flow analysis */
8: pred = BBSucc(bb_ptr);
9: succ = BBPred(bb_ptr);
10: }
11: if (pred) /* merge inputs by the direction */
12: in = merge_inputs(pred, dir);
13: else
14: in = (void *) creat_set(Empty);

15: if (dir) { /* forward data-~flow analysis */

16: BBIn(bb_ptr) = in;

17: first = BBStmt(bb_ptr);

18: prev_out = &BBOut (bb_ptr);

19: }

20: else { /* backward data—-flow analysis */
21: BBOut(bb_ptr) = in;

22: first = BBLastStmt(bb_ptr);

23: prev_out=&BBIn(bb_ptr);

24: %

25: in = copy_exist_set(in);

26: out = available_expr(in, first); /*compute available expression */
27: if (!'two_sets_same(*prev_out, out)) { /* same as before 7 */

28: changes = 1;
29: *prev_out=out;

/* Breadth First Order Searching */
30: while (succ) {

/* find next successor */

31: temp_ptr = BBNode(succ);
32: i = temp_ptr —~ bb_base;
33: if (bb_visited[i] == 0) /* if the BB has not been visited*/
34: enqueue(temp_ptr); /* put the BB in the queue*/
38: succ = NextEdge(succ); /* go to next successor */
36: }
37: }
38:}
T

Figure 46: Algorithm of searching BB for solving CSE

77

e From line 11 to 14, the in set is computed based on the dir and the above

selection.

e From line 15 to 24, the computed in set is put back and an appropriate out set

is selected.
e Line 26 actually computes available expressions.

e Starting line 27, if we detect a difference between two out sets, the new one is
put back and loop iteration flag change is set so that the main control algorithm

will search the CFG again.

e Line 30 — 36 implements a “breadth-first’ search by adding the successors of the

node into the queue.

Please note that except the available expression computation, other parts can
be applied to any dataflow analysis problem. Therefore, within the framework, a
user needs only to provide his own analysis C routines to compute the corresponding
dataflow analysis. The worklist management (queue plus breadth-first search in this
case) and the selection of right fields are automatically controlled by the general solver.

This will greatly facilitate users to develop their own dataflow analysis programs.

78

Chapter 7

CSE Transformation

Now that we have the mechanism to determine control flow and data flow information,
we next consider optimizations that may be valuable in improving the performance
of the object code produced by a compiler.

The optimization covered in this chapter deals with common-subexpression elimi-
nation, which finds computations that are always performed at least twice on a given
execution path and eliminates the second and later occurrences of them. This op-
timization requires data-flow analysis to locate redundant computation and almost

always improves the performance of programs it is applied to.

7.1 Common-Subexpression Elimination

An occurrence of an expression in a program is a common subezpression if there is
another occurrence of the expression whose evaluation always precedes this one in
execution order and if the operands of the expression remain unchanged between the
two evaluations. The expression a + 2 in blocks B3 in Figure 47(a) is an example of
a common subexpression, since the occurrence of the same expression in BI always
precedes it in execution and the value of a is not changed between them. Common-
subexpression elimination is a transformation that removes the re-computations of
common subexpressions and replaces them with uses of saved value. Figure 47(b)
shows the result of transforming the code in Figure 47(a). Note that, as this example
shows, we cannot simply substitute & for the evaluation of a 4+ 2 in block B3, since

B2 changes the value of b if it is executed.

79

entry entry I

b ~=— a2 tl—=— a42
c = 4% Bl b~ tl Bl
b<c c —-— 4*}h
Y b<c
N
Y N
b 1| B2

b--— 1| B2

E— a+2| B3 \
E— tl B3

exit I
exit

(a) ()

Figure 47: (a) Example of a common subexpression, namely, a+2, and (b) The result
of doing common-subexpression elimination on it

Note that common-subexpression elimination may not always be worthwhile. In
this example, it may be less expensive to recompute a + 2 (especially if a and d are
both allocated to registers and adding a small constant value in a register can be done
in a single cycle), rather than to allocate another register to hold the value of ¢1 from
B1 through B3, or, even worse, to store it to memory and latter reload it. Actually,
there are more complex reasons why common-subexpression elimination may not be
worthwhile that have to do with keeping a super-scalar pipeline full or getting the
best possible performance from a vector or parallel machine. In chapter 8, we will
show that some of the tested benchmarks do not achieve the expected performance
improvement, probably due to those reasons.

Optimizers frequently divide common-subexpression elimination into two phases,
one local, done within each basic block, and the other global, done across an entire
control flowgraph. The division is not essential, because global common-subexpression
elimination catches all the common subexpression that the local form does and more,
but the local form can often be done very cheaply while the intermediate code for
a basic block is being constructed and may result in less intermediate code being

produced.

80

7.2 Global Common-subexpression Elimination

As indicated above, global common-subexpression elimination takes as its scope a
control flowgraph representing a procedure. It solves the data-flow problem know
as available erpressions, which we discussed briefly in Chapter 6 and which we now
examine more fully. An expression ezp is said to be available at the entry to a basic
block if along every control-flow path from the entry block to this block there is an
evaluation of exp that is not subsequently killed by having one or more of its operands
assigned a new value.

In determining what expressions are available, we use EVAL(%) to denote the set
of expressions evaluated in block ¢ that are still available at its exit and KILL(?) to
denote the set of expressions that are killed by block i. To compute EVAL(¢), we scan
block i from begin to end, accumulating the expressions evaluated in it and deleting
those whose operands are later assigned new values in the block. An assignment such
as a «— a+b, in which the variable on the left-hand side occurs also as an operand on
the right-hand side, does not create an available expression because the assignment
happens after the expression evaluation.

The expression a + b is also evaluated in the block, but it is subsequently killed
by the assignment a « j + a, so it is not in the EVAL() set for the block. K ILL(3)
is the set of all expressions evaluated in other blocks such that one or more of their
left-hand operands are assigned to in block 7, or that are evaluated in block i and
subsequently have one or more of its left-hand operands been assigned to in block .
To give an example of a KILL() set, we need to have an entire control flow graph
available, so we will consider the flowgraph in Figure 48. The EV AL(Z) and KILL(z)

sets for the basic block are as follows:

EVAL(entry) = 0 KILL(entry) = 0
EVAL(BL) = {a+baxcd+d KILL(B1) = 0
EVAL(B2) = {a+b) KILL(B2) = {c*2axc}
EVAL(B3) = {axc} KILL(B3) = 0
EVAL(BY) = {d+d} KILL(B4) = 0
EVAL(B5) = 0 . KILL(B5) = {i+1)
EVAL(exit) = 0 KILL(exit) = 0

Now, the equation system for the data-flow analysis can be constructed as follows.

This is a forward-flow problem. We use AEin(z) and AFout(z) to represent the sets

81

c<— a+b
d =< a*c Bl
e < d*d

i - |

fli]<— a+b

c =< c*2

B2

c>d

B3 [glil = a*q glil~— d*d|B4

i i+1

i>0 BS

Y) N

Figure 48: Example flowgraph for global common subexpression elimination

of expressions that are available on entry to and exit from block i, respectively. An
expression is available on entry to block 7if it is available at the exits of all predecessor
blocks, so the path-combining operator is set intersection. An expression is available
at the exit from a block i if it is either evaluated in the block and not subsequently

killed in it, or if it is available on entry to the block and not killed in it. Thus the

system of data-flow equations is

AEzn(z) = ﬂjep,-ed(,')AEout(j)
AEout(i) = (EVAL(i) U AFEin(t)) — I{ILL(i)

In solving the data-flow equations, we initialize AEout(i) = Uez, for all blocks ¢,

where Ue,, can be taken to be the universal set of all expressions, or as it is easy to

show,
Uezp = UiEV AL(2)

is sufficient.

For our example in Figure 48, we use

82

Uezp = {a + byaxc,d*d,cx2,i+ 1}
The first step of a worklist iteration procedures
AEin(entry) =0

and the second step produces

AEin(Bl) =0
Next, we compute
AEin(B2) = {a+bya*xc,dxd}
AEin(B3) = {a +b,d=d}
AEin(B4) = {a+b,d*d}
AEin(B5) = {a+b,d=*d}
AEin(ezit) = {a + b,d*d}

There are changes for the input of each block. At end, we get

AEin(B2) = {a+b,dx*d}
AEin(B3) = {a+b,dxd}
AEin(B4) = {a+b,dx*d}
AEin(B5) = {a+b,dxd}
AFEin(ezit) = {a+b,d*xd}

And additional iterations produce no further changes.
Next, we describe how to perform global common subexpression elimination using
the AEin(:) data-flow function. We proceed as follows:

For each block 7 and each expression exp € AFin(z) that is evaluated in block ¢,
1. Locate the first evaluation of ezxp in block z.

9. Search backward from the first occurrence to determine whether any of the
operands of ezpr have been previously assigned to in the block. If so, this
occurrence of ezpr is not a global common subexpression; proceed to another

expression or another block as appropriate.

83

3. Having found the first occurrence of expr in block ¢ and determined that it is a
global common subexpression, search backward in the control flowgraph to find
the occurrences of expr, such as in the context v «— ezp, that caused it to be
in AEin(7). These are the final occurrences of expr in their respective blocks;
each of them must flow unimpaired to the entry of block ¢; and every flow path

from the eniry to block ¢ must include at least one of them.

4. Select a new temporary variable ti. Replace the first instruction ins that uses
exp in block ¢ by #7 and replace each instruction that uses exp identified in
step(3) by

tt «— exp

v o~ 1

In summary, algorithms for performing the code-improving transformations intro-
duced before rely on data-flow information. We also have seen how this information
can be collected. Here we consider common subexpression elimination and transfor-
mations for removing redundant computation. There are other transformations such
as loop invariant removal and eliminating induction variables which can influence
performance. If more than one transformation is implemented in a compiler, it is
possible to perform some of the transformations together. However, we shall present
the ideas underlying the transformations using CSE only.

The emphasis in this section is on global transformations that use information
about a function as a whole. Global data-flow analysis does not usually look at
within basic blocks. Global transformations are therefore not a substitute for local
transformations; both must be performed. For example, when we perform global
common subexpression elimination we shall only be concerned with whether an ex-
pression is generated by a block and not with whether it is recomputed several times

within a block.

7.3 Perform the CSE Transformation Based on
CPC-AST

In this section, we will describe how to perform the CSE transformation based on

available expressions computed by our general dataflow solver and thus perform the

84

corresponding transformations for programs represented in CPC-AST.

7.3.1 Available Results of CSE Dataflow Analysis

As described in chapter 6, we can use our general dataflow equation solver to solve
the system equations for available ezpressions. The results of such dataflow analysis
is stored not only in each basic block but also on each statement (assignment in this
case). The information stored on each assignment can be used to perform the CSE
transformation.

To perform step 3 of the algorithm described in previous section, which traces
back the CFG to find the occurrences of an expression, for each assignment we use
a linked list, def_list, to denote all most recent definition points of the expression,
which appears in the right hand of the current assignment. In so doing, we only need
to look into the list to find out all occurrences of the expression.

Therefore, the following transformation algorithm used for the CPC-AST repre-

sentation is based on the dataflow analysis results of def_list.

7.3.2 Data Structures for CSE Transformation

After def_list is computed, we can do transformation to eliminate common subex-
pression in a CPC-AST. To distinguish the first occurrence of an expression, we need

add two new fields in the statement node [Ta096] as following:
e visited: a field specifies if the statement has been visited or not.
e new_sym: a field points to a new symbol such as ti generated.

Assume a statement S computes an expression v = exp and S appears in two
def_lists of two later assignments S; and Sz. Suppose S is first processed and after

performing the CSE transformation, the original code will be changed to:

S: ti = exp;
S v o= i
S] e t’l:;

By setting the visited field of the statement node of S, we can avoid S being

transformed again when statement S, is processed.

85

The new_sym field is used to hold the newly created variable holding the common
expression. After S; has been processed, the new_sym field of S will point to ¢z. Then
when S, is processed, we can simply refer to this newly created variable and change

S, into:

Sz! ...=ti;

7.3.3 Algorithm for the CSE Transformation

In Figure 49, we list the algorithm performing the CSE transformation based on the
CPC-AST representation.

During the transformation, we walk through a CPC AST and change tree nodes
directly.

A function definition is represented as a symbol, which is the input to function
transform_cse. At the beginning of transform_cse, we need to know the total number
of basic blocks in the CFG graph and the first basic block of the CFG graph. Then
we start to visit each basic block to do the CSE transformations until the last basic
block.

Then, we visit each statement and do CSE transformation only for assignment
statements. Before we start to transfer an assignment to a new form, we need to

perform the following checks step by step:

o following the CPC AST stmt_list to make sure the statement is an expression

and the expression is an assignment.
o following the def-list to make sure there is a CSE definition for the statement.

e following the statement list to make sure the statement has not been visited

yet.

e assume the current statement is t=x+y and it has not been visited. If its CSE
def.list is not empty, we creat new symbol (new_sym) to represent the common
subexpression such as (x+y) and insert it into the current function declaration.
Then we creat a new statement like new_sym = x+y, and insert it before the
original definition statement. After this, we change the current statement to:

t = new_sym. If the statement found in the def list has been visited, we simply

86

transform_cse(SYMBOL *sym, bb_cfg *bb_base, int bb_num)

{
temp_num = O;/*use for creating a new symbol of first operand of CSE*/
for (i=1; i<bb_num; i++) {/*while there is BB in the cfg_graph */

bb_ptr = bb_base + i;
first_stmt = BBStmt(bb_ptr);/*get the first statement from the current BB */
while (first_stmt) { /* while there is a statement(s=x+y) in the BB */
if (IsExpr(stmts)) { /+* the statement is an expression? */
v = StmtExpr(stmts); /* get the expression*/

left_expr = v->exprl; /* get the first operand of the expression*/
def_s = (def_list*)InfoCSE(stmts);/*get definition point of
CSE of the expression*/
if (def_s) { /*if there is CSE for the expression */
if (!StmtDef(def_s)->visited){/*if the statement never being visited
in the definition list#*/

temp_num = temp_num+i;

left_sym left_expr->sym;

new_sym = creat_temp(left_sym, temp_num);/*creat a new symbol*/
adding_temp(sym, new_sym); /*add the ’new_sym’ in the declaration*/

/*creat a new statement ’new_sym=x+y’*/
new_stmt = creat_stmt(new_sym,v);

/*add the new statement ’new_sym=x+y’ before the current statement*/
adding_stmt (StmtDef(def_s), new.stmt);

/*transform the statement ’s=x+y’ to the ’s=new_sym’ */
do_transform(StmtStmt (stmts), new_sym);
}

/*remember the new symbol of CSE%/
new_sym = StmtDef(def_s)->new_sym;

/*get the next definition point from the definition list*/
def_s = NextDef(def_s)

/*while there is still a definition point in the definition list*/
while (def_s){
if (StmtDef(def_s)!= NULL)
/* transform the statement ’t=x+y’ to ’t=new_sym’ */
do_transform(StmtStmt (stmts) ,new_sym);
def_s = NextDef(def_s);

}
¥
else /* there is no CSE */
print£("%s has no cse\n", c_value_str(v));
¥
stmts = NextStmt(stmts); /*get the next statement from the current BB*/
by
}

}

87
Figure 49: Algorithm for the CSE transformation

do the transformation t = new.sym, where new_sym can be retrieved from the

new._sym filed of the statement node.

88

Chapter 8

Experimental Results and

Analysis

We have implemented an iterative dataflow-analysis solver in the CPC compiler.
Using this framework, we have implemented an optimization transformation, com-
mon sub-ezpression elimination (CSE). We report our experiments on four sequential
benchmarks, running on Sun Sparc workstations and the CPSS simulator. Our experi-
mental results show that for some benchmarks the optimizing transformation achieves
a significant improvement over the unoptimized programs on both Sun workstations
and the simulator.

In the following, we first introduce the benchmarks used, then describe two ex-
perimental environments and methods. Finally we analyze the optimization effects

on performance.

8.1 Benchmarks

We have implemented four benchmarks: quick-sort, double-loop, single-loop, and my-

suite to test effectness of the CSE optimization.

e Quicksort
Quicksort uses recursive sorting algorithm [CLR90, C.A62]. This algorithm
involves splitting an array of data through a ‘middle’ point, called pivot. The
algorithm first partitions the array into two parts so that items to the pivot’s

left are smaller than the pivot, and the items to the right are bigger. The

89

algorithm is then called recursively so that it will partition the two subordinate

arrays on either side of the pivot until the entire array is sorted.

In the partition phase, two loop index variables are used to scan the loop,
searching for the location of a pivot. One index is used for scanning from low
to high direction and the other is used from high to low. The pivot is detected
when both indexes are “met” in between. This loop based scanning involves

many array references and it provides opportunities for the CSE optimization.

To simulate the address calculation of array reference, we translate the inte-
ger based array index reference into a low-level byte based address-calculating
format. In so doing, many CSE optimization opportunities are exposed to our

compiler.

For example, the address calculation of a[i] is transformed as:

sizeof (int) * ij;

t1
£2

base + t1;

By exposing address calculation such as t1 = sizeof(int) * ¢, common subex-

pressions can be found more easily by our compiler.

double-loop
There is a double for-loop, in which CSEs appear in the innerest loop. We
expect to see that the CSE optimization can have a significant improvement on

performance.

single-loop There is a single for-loop, and its loop body consists of a conditional
statement. CSEs appears in both arms of the if statement. Due to the dynami-
cal nature of branch, we expect to see a marginal performance improvement for

this benchmark.

my-suite

This benchmarks consists of various C statements such as case, do-while, goto
statements. It comes from the CPSS benchmark suite, and it was used mainly
for testing the robustness of the CPC compiler. Since many loops exist in this

benchmark, we also expect to see a significant improvement on performance.

90

8.2 Experiment Setting

Our experiments have been done using the CPSS simulator and a Sun Ultra-sparc
workstation running Solaris 2.5.1. On a Sun workstation, the GNU C compiler, gcc
(version 2.7.2), is used [Sta92].

l C
l CPCC with CSE I GCC I
Executable 2
GCC I

Exccutable 1

1
l SUN Workstation l SUN Workstation

Figure 50: Experiment settings on a Sun workstation

Figure 50 shows the flow graph on compiling optimized or unoptimized code,
running on a Sun workstation.

To run a program on a Sun workstation, we first let the program passing through
our optimizing compiler, generating an optimized code with the CSE optimization
applied; then we call gcc compiler to generate executable code. To see the effect
of our CSE optimization, we turn off gcc optimizations by setting the optimization

switch of the gcc compiler to —O0.

#include <time.h>
clock_t start, finish, duration;

start = clock();

process();

finish = clock();

printf("The process took %f seconds to execute\n'",
((double) (finish-start)) /CLOCKS_PER_SEC);

Figure 51: C routine measuring execution time

91

On Sun workstations, we use standard UNIX routines to measure time. The
timing is measured by the method showed in Figure 51 and the unit is second [HJ95].

Figure 52 shows the flow graph on compiling optimized or unoptimized code,
running the CPSS simulator.

To run an optimized program on CPSS, we first call our compiler to emit optimized
code. The CSE optimization is applied during this pass. Then we call the CPC
compiler to generate CPSS code. Finally we run the code on the CPSS simulator.

To run an unoptimized program on CPSS, we use the CPC compiler to emit CPSS
code and run the code on the CPSS simulator hereafter.

On CPSS, the timing is reported by the simulator and we use the reported se-

quential execution time (cycles) as program total execution time.

{c

I CPCC with CSE I
l CPCC

Executable 1

o]

Executable 2

l CPSS l

Figure 52: Experiment settings on the CPSS simulator

CPSS

8.3 Static Profiling

Count of quicksort | double-loop | single-loop | my-suite
Iterative Loops 2.0 2.0 2.5 2.0
CSE numbers 5.0 14.0 6.0 29.5

able 1: Number of iterative solver iterations and the CSE expressions

Table 1 lists two numbers of counts, measured at compiler time. The first is the

average number of iterations in which the iterative dataflow solver is in the state of

92

solving dataflow equations. The second is the average number of CSE expressions
found. Both calculations are based per function base and the averages for a program
is computed as a mean of all functions contained. The first metric indicates the
overhead of the iterative solver. The smaller the number is, the less overhead of the
solver. The second metric indicates the potential performance improvement. The
bigger of the counts is, the more significant improvement we expect to see at runtime.

On average, the number of iterations for the iterative solver is about 2. This
indicates that the overhead of the solver is very low. You may notice that the count
of iterative loops of single-loop is 2.5. This is because we calculate the number of
iterations for the iterative solver based on per function. Thus the numbers showed
are the average value of iterations of all functions for a program. For example, the
single-loop benchmark has two functions, one iterates twice and the other iterates
three times, therefore the average iteration count is (2 + 3)/2 = 2.5.

The number of CSE transformations for each benchmarks ranges from two to
a few tens. However, please note that this count is not an absolute indicator for
performance improvement, since some common subexpression will never be executed
such as those lie on the false conditional branch at runtime. For instances, the number
of CSE transformations for the single-loop benchmark is 6 on average. However, this
number is the sum of those CSEs appeared in both arms of a conditional statement,

which is a constitute statement of the loop.

8.4 Runtime Measurement

In each run, we measure the total program execution time. For each version of a
program, several runs have been launched and the average execution time is then
computed as representative execution time for that version of the program.

We compare the execution times of two versions of programs.

8.4.1 Runtime Performance on Sun Workstations

Table 2 lists the percentage of improvement in optimized program execution time over
un-optimized program, running on input size of 1000, 2000, 5000, 10000 and 20000.
We use the relative improvement rate, r, to measure the execution-time improvement.

Let T*m°rt and T°P be the total execution times for un-optimized and optimized

93

programs respectively. Then, r is defined as:

r o= (Tunopt _ Topt)/Tunapt

The bigger r is, the CSE optimization has more impact on execution time. Thus,

r reflects the execution-time improvement.

Benchmarks | op/no-op Input Size Aver (%)
1000 | 2000 | 5000 | 10000 | 20000
Quick op 0.51 | 2.07 | 12.82 | 51.39 | 206.42
Sort no-op 0.53 | 2.08 | 12.94 | 51.72 | 207.06
r (%) 3.77 | 0.48 | 0.92 0.60 0.31 1.22
Double op 0.46 | 1.88 | 11.82 | 47.43 | 192.00
Loop no-op 0.70 | 2.78 | 17.38 | 69.61 | 277.79
r (%) 34.8 | 323 | 319 31.8 30.8 32.30
Single op 0.00 | 0.00 | 0.00 0.01 0.01
Loop no-op 0.00 | 0.00 | 0.01 0.01 0.02
r (%) 0.00 | 0.00 | 1.00 0.00 3.00 0.80
My- op 90.36 | 18.62 | 46.71 | 93.22 | 186.58
Suite no-op 20.00 | 40.00 | 99.81 | 200.02 | 399.62
r (%) 53.00 | 53.40 | 53.20 | 53.30 | 53.20 53.26

Table 2: Execution times of two versions of programs, optimized vs. unoptimized on
Sun workstations

From Table 2, we can see:

For most benchmarks, the experimental results met with our expectation. On
average, the optimized versions of double-loop and my-suite reduce the execu-
tion time by 32.30% and 53.26% respectively. The reason for such significant
improvements is that many CSEs appear within the loop body and the impact
of eliminating such common subexpressions can be seen in each loop iteration.

Therefore, the accumulated effects can be seen clearly for the whole benchmarks.

The influence of the CSE optimization on the quick-sort benchmark is not as
great as we expected, even though there is a little positive impact. We will

analyze this phenomenon in the next section.

The effect of the CSE optimization can be seen only if the paths which have

common subexpressions have been executed at runtime. Conditional statements

94

may divert real control flow to the paths which do not have CSEs. Therefore,
the impact of the CSE optimization on conditional statements may not be as
great as those based on loops only. That may explain why there is little impact
of the CSE optimization on the single-loop benchmark. This also confirms
our observation that the number of CSE transformations is only an indicator of
potential performance improvement. It is by no means an absolute performance

metric.

8.4.2 Performance Improvement on CPSS

Table 3 lists execution times of two versions of programs and related performance
improvement running programs on the CPSS simulator. Since the benchmarks run

on a simulator, the input sizes measured is smaller than those listed in table 2.

Benchmarks Input Size Average r
50 100 200 400 500
Quick- op 98545 | 347570 | 1295620 | 4991720 | 7739770
Sort no-op | 94485 | 331935 | 1234335 | 4749135 | 7361535
r (%) | -4.29 -4.71 -4.96 -5.11 -5.14 -4.84
Double op 80820 | 316620 | 1253220 | 4986420 | 7783020
Loop no-op | 116020 | 457020 | 1814020 | 7228020 | 11285020
r (%) { 30.34 | 30.72 30.92 31.01 31.03 30.80
Single op 2491 4841 9341 18341 22841
Loop no-op | 3373 6623 12523 24323 30223
T (%) | 26.15 | 26.91 | 2541 | 24.59 24.43 25.50
My-suite op | 112388 | 429740 | 1679440 | 6638840 | 10348540
no-op | 149988 | 574938 | 2249838 | 8899640 | 13874540
r (%) | 25.07 25.25 25.40 25.40 2541 25.30

Table 3: Execution time of two versions of program, optimized vs. unoptimized on
the CPSS simulator.

Except the Quick-Sort benchmark, other benchmarks show the same trends as
Table 2 shows. Furthermore due to lack of other compiler optimization influences
such as register allocation, instruction scheduling, and cache management, the effects
of the CSE optimization on CPSS is more evident than those showed in table 2. For

example, on average the execution time of unoptimized Double-Loop is reduced by

95

about 31%. In other words, this shows that even though the CSE optimization can
have great impact on performance, in a real compiler due to the influence of other
optimization factors, the impact of the CSE optimization might not be as great as it
is expected to be.

Because the Quick-Sort benchmark does not show as much positive improvement
as we could expect, we will concentrate on analyzing why the CSE optimization has
little or even negative improvement on Quick-Sort.

First, let’s see what kinds of CSEs appear in the Quick-Sort benchmark.

1:

2: 1 = i+1;

3: cse = sizeof(int)*i;
4: t2 = cse;

5: if(cond)

6: goto 2 ;

7: t6 = cse;

Figure 53: CSE pattern in the Quick-Sort benchmark

Figure 53 lists the CSE pattern appeared in the benchmark. A common sub-
expression is detected within a loop (line 2 - 6). However, within a loop, there is
no second-time use of the value of the common sub-expression. The first time-saving
access of the expression is outside the loop at line 7. Therefore such outside-loop CSE
will not produce great performance improvement.

Besides, other compiler optimizations have to be considered in analyzing per-
formance, such as the register allocation [Muc97]. Once a CSE transformation is
applied, the lifetime of the variable holding the common subexpression is extended.
For example, the lifetime of variable cse has extended from line 2 ~ 6 (loop) to line
2 ~ 7 (outside loop included). This may force the compiler generating spilled code
if there is no enough register to hold the expression value. Then when the value
is used later, CPU has to fetch it from memory. For modern RISC or superscalar
architectures, memory latency is the bottleneck of system performance. Therefore,

some CSE transformations may not be profitable if the register pressure (lacking of

96

registers) is big.

Then. why the extra assignment (line 4) does not cause the performance degra-
dation in a Sun workstation as it does on the CPSS simulator?

On a modern RISC architecture, instructions are executed in pipeline and multi-
issued, and data-bypass is widely used to pass data directly to the instructions ap-
peared in the same pipeline [HP96]. Therefore, the extra assignment does not incur
extra cost on Ultra Sparcs.

However on the CPSS simulator, the sequential timing is measured differently.
Assignment a = b takes 3 cycles while a = b * c takes 5 cycles. Thus, the extra
assignment introduced by the CSE optimization greatly slowdowns the program ex-
ecution. This explains the negative impact we noticed when running Quick-Sort on

CPSS.

97

Chapter 9
Conclusions and Future Work

This thesis concentrates on the development of a compiler optimization framework

for CPC.

Based on the structural analysis technique, we have developed a two-pass al-
gorithm that builds a CFG from a CPC Abstract Syntax Tree. Based on the CFG
representation, a general iterative solver for solving dataflow equations has been built.
This solver forms the core of compiler optimization framework, and it can solve global
data-flow equations in either forward and backward manner. As a demonstration ex-
ample, we have showed how to solve the common subexpression elimination problem
using the optimization framework.

We have applied the CSE optimization on a suite of four benchmarks. Static and
runtime information about program performance have been collected, by running

program on both workstations and the CPSS simulator. The experimental results

show that:

e The iterative solver is very efficient and the iteration number for solving dataflow

equations is very low.
e The CSE optimization has a significant impact for some benchmarks.

e Other compiler optimization factors such as register allocation might influence

the effectiveness of the CSE optimization.

We also identify some limitations of the current optimization framework. For

example:

98

e Programmers need to expose CSEs explicitly such as in the array index case.

For finding this type of CSE, another lower-level representation seems necessary.

e Array and pointer variables are pervasive in C programs. More advanced anal-
ysis techniques need to be designed and implemented to support optimizations
on array and pointer variables [Ban79, CK89, BCCH94, HHN94].

e The current implementation of the framework is by no means perfect. More ef-
ficient implementations need to be done, such as using bit-vectors to implement

set operations.

We will continue research along these directions and our goal is to build an effi-
cient yet general compiler optimization framework, supporting the Concordia Parallel

Programming Environment (CPPE).

99

Bibliography

[AALL93]

[ASUS6)

[Ban79]

[Bar78]

[BCCHY4]

Saman P. Amarasinghe, Jennifer M. Anderson, Monica S. Lam, and
Amy W. Lim. An overview of a compiler for scalable parallel machines.
In Uptal Banerjee, David Gelernter, Alex Nicolau, and David Padua, ed-
itors, Proceedings of the 6th International Workshop on Languages and
Compilers for Parallel Computing, number 768 in Lecture Notes in Com-
puter Science, pages 253-272, Portland, Oregon, August 12-14, 1993.
Intel Corp. and the Portland Group, Inc., Springer-Verlag. Published in
1994.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers — Prin-
ciples, Techniques, and Tools. Addison-Wesley Publishing Company,
Reading, Massachusetts, 1986.

John P. Banning. An efficient way to find the side effects of procedure
calls and the aliases of variables. In Conference Record of the Sizth An-
nual ACM Symposium on Principles of Programming Languages, pages
29-41, San Antonio, Texas, January 29-31, 1979. ACM SIGACT and
SIGPLAN.

Jeffrey M. Barth. A practical interprocedural data flow analysis algo-
rithm. Communications of the ACM, 21(9):724-736, September 1978.

Michael Burke, Paul Carini, Jong-Deok Choi, and Michael Hind. Flow-
insensitive interprocedural alias analysis in the presence of pointers. In
Keshav Pingali, Uptal Banerjee, David Gelernter, Alex Nicolau, and
David Padua, editors, Proceedings of the 7th International Workshop on

Languages and Compilers for Parallel Computing, number 892 in Lecture

100

Notes in Computer Science, pages 234-250, Ithaca, New York, August
8-10, 1994. Springer-Verlag. Published in 1995.

[C.A62) C.A.R.Hoare. Quicksort. Computer Journal, 5(1), 1962.

[CK89] Keith D. Cooper and Ken Kennedy. Fast interprocedural alias analysis.
In Conference Record of the Sizteenth Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 49-59, Austin, Texas, January

11-13, 1989. ACM SIGACT and SIGPLAN.

[CLRI0] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Intro-
duction to Algorithms. MIT Press; McGraw-Hill Book Company, Cam-
bridge, Massachusetts; New York, New York, 1990.

[CNO*87] Robert P. Colwell, Robert P. Nix, John J. O’Donnell, David P. Papworth,
and Paul K. Rodman. A VLIW architecture for a trace scheduling com-
piler. In Proceedings of the Second International Conference on Architec-
tural Support for Programming Languages and Operating Systems, pages
180~-192, Palo Alto, California, October 5-8, 1987. ACM SIGARCH,
SIGPLAN, SIGOPS, and the IEEE Computer Society. Computer Archi-
tecture News, 15(5), October 1987; SIGPLAN Notices, 22(10), October
1987.

[DDG*96] Jeffrey Dean, Greg DeFouw, David Grove, Vassily Litvinov, and Craig
Chambers. Vortex: An
optimizing compiler for object-oriented languages. In OOPSLA ’96, 1996.

http://www.cs.washington.edu/research/projects/cecil/www/www/Papers/.

[Fis83] Joseph A. Fisher. Very long instruction word architectures and the ELI-
512. In Proceedings of the 10th Annual International Symposium on
Computer Architecture, pages 140-150, Stockholm, Sweden, June 13-17,
1983. Computer Architecture News, 11(3), June 1983.

[FKUT75] Amelia Fong, John Kam, and Jeffrey Ullman. Application of lattice
algebra to loop optimization. In Conference Record of the Second ACM
Symposium on Principles of Programming Languages, pages 1-9, Palo
Alto, California, January 20-22, 1975. ACM SIGACT and SIGPLAN.

101

[GGMWS82] Harald Ganzinger, Robert Giegerich, Ulrich Méncke, and Reinhard Wil-

[GMS6]

[HDE+92]

[HHN94]

[HI95)

[HP96]

[HUT79]

[Kil73]

helm. A truly generative semantics-directed compiler generator. In Pro-
ceedings of the SIGPLAN ’82 Symposium on Compiler Construction,
pages 172-184, Boston, Massachusetts, June 23-25, 1982. ACM SIG-
PLAN. SIGPLAN Notices, 17(6), June 1982.

Phillip B. Gibbons and Steven S. Muchnick. Efficient instruction schedul-
ing for a pipelined architecture. In Proceedings of the SIGPLAN ’86
Symposium on Compiler Construction, pages 11-16, Palo Alto, Califor-
nia, June 25-27, 1986. ACM SIGPLAN. SIGPLAN Notices, 21(7), July
1986.

L. Hendren, C. Donawa, M. Emami, G. Gao, Justiani, and B. Sridha-
ran. Designing the McCAT compiler based on a family of structured
intermediate representations. In Uptal Banerjee, David Gelernter, Alex
Nicolau, and David Padua, editors, Proceedings of the 5th International
Workshop on Languages and Comptlers for Parallel Computing, number
757 in Lecture Notes in Computer Science, pages 406-420, New Haven,
Connecticut, August 3-5, 1992. Springer-Verlag. Published in 1993.

Joseph Hummel, Laurie J. Hendren, and Alexandru Nicolau. A lan-
guage for conveying the aliasing properties of dynamic, pointer-based
data structures. In Proceedings of the 8th International Parallel Pro-
cessing Symposium, pages 208-216, Cancin, Mexico, April 26-29, 1994.
IEEE Computer Society.

Samuel P. Harbison and Guy L. Steele Jr. C a reference Manual.
Prentice-Hall, Inc., 1995.

John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, Inc., San Fran-

cisco, California, 2nd edition, 1996.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley Publishing Company, 1979.

Gary A. Kildall. A unified approach to global program optimization. In
Conference Record of ACM Symposium on Principles of Programming

102

[Kog81]

[KRS8S]

[KU77]

[Lid98]

[LR92]

[MHS6]

[Muc97]

[Ros77]

[Ros79]

[Sta92]

Languages, pages 194-206, Boston, Massachusetts, October 1-3, 1973.
ACM SIGACT and SIGPLAN.

Peter M. Kogge. The Architecture of Pipelined Computers. McGraw-Hill
Book Company, New York, New York, 1981.

Brian W. Kernighan and Dennis M. Ritchie. The C Programming Lan-
guage. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 2nd edition,
1988.

John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis frame-
works. Acta Informatica, 7(3):305-317, 1977.

Rudolf Lidl. Applied abstract algebra. Springer-Verlag, 1998.

William Landi and Barbara G. Ryder. A safe approximate algorithm for
interprocedural pointer aliasing. In Proceedings of the ACM SIGPLAN
’92 Conference on Programming Language Design and Implementation,
pages 235-248, San Francisco, California, June 17-19, 1992. SIGPLAN
Notices, 27(7), July 1992.

Scott McFarling and John Hennessy. Reducing the cost of branches. In
Proceedings of the 13th Annual International Symposium on Computer
Architecture, pages 396-403, Tokyo, Japan, June 2-5, 1986. IEEE Com-
puter Society and ACM SIGARCH. Computer Architecture News, 14(2),
June 1986.

Steven S. Muchnick. Advanced Compiler design and Implementation.

Morgan Kaufmann Publishers, Inc., 1997.

Barry K. Rosen. High-level data flow analysis. Communications of the
ACM, 20(10):712-724, October 1977.

Barry K. Rosen. Data flow analysis for procedural languages. Journal
of the ACM, 26(2):322-344, April 1979.

Richard M. Stallman. Using and Porting GNU CC. Cambridge,
Massachusetts, June 1992, Available via anonymous ftp from

prep.ai.mit.edu.

103

[Tao96]

[TH92]

[WS91]

[WZ85]

Lixin Tao. Parallel programming environment prototype cppe, 1996.

http://www.cs.concordia.ca/ faculty/lixin/spark/.

Steven W. K. Tjiang and John L. Hennessy. Sharlit—a tool for building
optimizers. In Proceedings of the ACM SIGPLAN ’92 Conference on
Programming Language Design and Implementation, pages 82-93, San
Francisce, California, June 17-19, 1992. SIGPLAN Notices, 27(7), July
1992.

Deborah Whitfield and Mary Lou Soffa. Automatic generation of global
optimizers. In Proceedings of the ACM SIGPLAN ’91 Conference on
Programming Language Design and Implementation, pages 120-129,
Toronto, Ontario, June 26-28, 1991. SIGPLAN Notices, 26(6), June
1991.

Mark N. Wegman and Frank Kenneth Zadeck. Constant propagation
with conditional branches. In Conference Record of the Twelfth Annual
ACM Symposium on Principles of Programming Languages, pages 291~
299, New Orleans, Louisiana, January 13-16, 1985. ACM SIGACT and
SIGPLAN.

104

Appendix A

A.l

Benchmark of Single Loop

void test_for(int count)

{ int
int
int
int
int

int

t10

al
di

al, b1, cil,di,el;

a2, b2, c2,d2,e2;

a3, b3, c3,d3,e3;

Xs ¥V, 2 , U, V;

i,j; int m,n,o0,p,q;

t1, t2, t3, t4, t5, t6, t7, t8, t9,t10;

10; n =15; 0 =20; p=1; q = 2;
n¥o; v = 0o¥p; X = m*n;

nkp; Z = y*z;

= m*o0; t2 = mk¥o*q ; t3 = m*o*q;
= n*p; t6 = 200; t6 = m*o*q;
= n*¥p*o; t8 = 400; t9 = o*p;

= B0;
= t1%t2; bl = t3*%t4; cl = t5*xt6;
= t7*t8; el = t9%t10;

for (i=0; i<count; i++) {

if (1 < 100) {

a3 = ti*t2; b3 = t3*t4; c3 = t5*t6;

O = X*y; P = y*z;

105

else {
d3 = t7*%t8; e3 = t9%t10;
q = u¥v; m = q*0;

}

a2 = ti¥t2; b2

d2 = t7*%t8; e2

t3%t4; c2 = t5*t6;
t9%t10;

int main()

{
test_for(100);

A.2 Benchmark of Double Loops

int main()

{ int a, b, c,d,e, £;
int i, x, y, 2 , u, v, W;
int j,m,n;
int t1, t2;

int count;

for (count =0; count <10 ;count++) {
x = 10; y = 20;
u = x*y*10; v = xX*y;

tl = u-2; t2 = v+2;

for (x=0; x<count; x++) {

u*v; v = u*v;

a = uxv; b = uxv; c

d = tl*xt2; e = t1*t2; =z t1*xt2;

106

A.3 Benchmark of My-suiie

int main()

{ int a, b, c,d,e, f;
int i, x, y, 2 , u, v, w;
int j,m,n;
int t1, t2, t3;

int count;

for (count =0; count <10 ;count++) /* test for statement */

{
x=1; y=1; u=2; v =2;
tl = 200; t2 = ti*u; t3 = ti1*t2;

for (x=0; x<count; x++){

C = uxv;

d = tl*t2%t3;

e = t1*t2;

Zz = t2*%t3;

if (y > 5)

continue; /* test continue statement */

}
y = count; x = 1; £ = u*v;
d = tl*t2; e = tl*t2; z = t1*t2%t3;

= t2%t3;
doq{ /* test do-while statement */

c = uxv; f tl1%t2;
y--;} while (y >0);

x += 1;

if (x) { /* test if-then-else statement */
¢ = ukv; d = tl*t2; £ = wkv;
Z = tl*t2; e = ti1*xt2; x = y*z;

}

else {

107

a = tl¥t2; c = u*v; X = y*z;
= ukv; d = ti*t2; £ = u*v;
z = tixt2; e = tl*t2;
w=y*z; £ = ti*t2;
x = 3;
switch (x){ /* test switch statement */
case 1 : x = 2;
c =ukv; f = uxv; d = ti1*t2;
Zz = t1*t2; e = ti1%t2;
break;
case 2 : x = 3;
f = t1*xt2; d = t1*%t2; c = u*v;
Z = tl%t2; e = t2%t3;
break;
case 3 : x = 4;
c =ukv; £ = uxv; d = ti*xt2%t3;
Zz = ti*t2; e = ti*t2%t3;
break;
¥
i = count;
a=x+l; b = y+l; c = u*v;
d = ti*t2; 2z = tl*t2; e = ti*t2;
while (i>0) { /* test while statement
c = x+1; d = y+1;
Z = t1%t2; e = ukv; £ = t1%t2;
i=i-1;
= y+1; z = x+1;
a=1;
goto B; /* test go-to statement */
b = 4;
B:b = 8;

108

Z = t1*xt2; e = uxv; £ = ti*t2;

A.4 Benchmark of Quick Sort

static void byte2int(char *v_int, char *s_arry)

{ int i;

for(i=0; i< sizeof(int); i++)

v_int[i] = s_arryl[il;

int partition(char *4, int m, int n)

{

int x, my_temp, i, j;
int t1,t2.%3,t4,t5,t6,t7,t8,t9,t10;

i m-1;
j = ntl;
tl = sizeof(int)*m;
byte2int((char *) &x, &A[t1]);
i= i+1;
t2 = sizeof(int)=*i;
byte2int((char *) &t3, &A[t2]);
if(t3<x) goto C ;
j=13-1
t4 = sizeof(int)*j;
byte2int((char *) &t5, &A[t4]);
if(t5>x) goto D ;
if (i >= j) goto E ;
t6 = sizeof(int)=*i;
byte2int((char *) &my_temp, &A[t6]);
€7 = sizeof(int)*i;
t8 = sizeof(int)*j;
byte2int((char *) &t9, &A[t8]);
byte2int (&A[t7], (char *)&t9);

109

[*

[*

[*

x = A[t1] */
t3 = A[t2] */
t6 = A[t4]; */
x = A[t6]; */

t9 = A[t8]; */
A[t7] = t9 */

t10 = sizeof(int)*j;
byte2int(&A[t10], (char *)&my_temp); /* A[t10] = x; */
goto C;

E: return (j);

}

void quicksort(int =*A, int low, int high)
{
if (low < high)
{ int q;

char *B;

B

q
quicksort (A, low, q);

(char *)A;
partition(B, low, high);

quicksort(A, q + 1, high);

int main()

{
int foo[100], n;

int i;

n = 100;

for (i = 0; i < n; i++) {
fool[i] = n~-i ;

}

quicksort(foo, 0, n-1);

return O;

110

