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« INTRODUCTION

-

Those who fall in love with practice without science are
like a sailor who enters a ship without helm or compass

and vho never can be certain whither he is going. 2> !

ki
o

"?

L. da Vinci

/(%\
1 st ed this thesis with the unique idea of treating fission)product beha-
vior in CANDU reactors. Suddenly I realized that fission product poisoning
of thermal nuclear reactors requires a clear understanding of nuclear reactions,
cross section, fission process, and neutronics.
Based on these r:'equirents, the steps in this thesis are arranged so as to
present the material with a grow‘:‘ngvcomplexity level. It begins with basic
elements of power reactors and is extended to include the treatment of neutron

density, neutron transport equation, its simplifications, and the derivation

of the one-group diffusion equation which is heavily detailed, including its

A ) )
In conclusion, this thesis give for the first btime, a detailed and sys

applications to various reactor geometries.

tematic descriptibn of the time dependent differential equations governing

) /
the fission product behavior in thermal reactors.

-
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The differential equations are solved ip detail jw"~v&rious nuclear reactor

N

utions are tabulated in Tables

conditions (startup, shutdown) and the

4 -

t

Compliter programs have been written for each individual solution"given in
Tables V-1 and V-2 and also for reactivity changes following reactor

shutdown.

The flux levels, cross sectionél, decay constants and }yieids used for the cal-

]

cilations are gi\fen in Appendix C.

Some of the data used in this thesis is the same as the parameters used for

calculations in modern CANDU power reactors (Slowpoke, Darlington for example).

f ~

These programs are now available for simula:ting figsion product behavior and

they can be used for more extensive analysis.

L3




v

NUCLEAR FISSION REACTORS

.

INTRODUCTION

The term nuclear reactor will be used in this context to refer to devices

in which controlled nuclear fission chain reactions can be maintained.

.

(This restricted definition may offend that segment of the nuclear com-
Yoo

munity involved in nuclear fusion research, but since even a.prototype
nuclear fusion reactor seems several years down the road, no confusion
should result.) In such a device, neutrons are used to induce nuclear
fission reactions in heavy nuclei. These nuclei fission into lighter

nuclei (fission productqz, accompanied by the release of energy (some
A
200 MeV per event) plus‘séveral additional neutrons. These fission neu-

trons can then be utilized to induce still further fission reactions,
thereby inducing a chain of fission events. 1In a very narrow sense then,
a nuclear reactor is simply a sufficiently large mass of appropriatély

fissile material (e.q., 235

U or 239Pu) in which such a controlled fisgion

¢ 235

chain reaction can be sustained. Indeed a small sphere o U metal

slightly over 8 cm in radius could support such a chain reaction and hen-

ce would be classified as a nuclear reactor.
’
S
However a modern power reactor is a considerably more complex device.

It must not only contain a lattice of very refined and fabrxcated nu-

o

clear fuel, but must as well provide for coollng this fuel during the

course of the chain reaction as fission energy is released, while main-

taining the fuel in a very precise geometrical arrangement with

§




4
appropriate structural materials. Furthermore some mechanism inast be

-

{
provided to control the chain reaction, shield the surroundings of

the reactor from the intense nuclear radiation generated during the
fission reactions, and provide for replacing nuclear fuel assemblies

when the fission chain reaction has depleted their concentration of

fissile nuclei. If the reactor is to produce power in a useful fa-

;hion, it must also be designed to operate both economically and sa-

\
»

_fely. ' A

~

~zr LY
Nuclear reactors have been used for over 30 years in a variety of ap-

\ . °
plicafiions. They are particularly valuable tools for nuclear research
3y

since they produce copious amounts of nuclear radiation, primarily in

the form of neutrons and gamma rays. Such radiation can be used to
y

robe the\ microscopic structure and dynamics of matter (neutron or gam-
P . P

\
ma spectrogcopy) .

1
L

The radiation\\produced by reactors can also be used to transmute nuclei

into artificia\\ isotopes that can then be used, for example, as radio-’
active tracers l{) industrial or medical applications. Reactors can use

the same scheme t\; produce nuclear fuel from nonfissile materials. For

\
Y
example, 238U can-he irradiated by neutrons in a reartor and transmuted

into the nuclear fué 239Pu. This is the process utilized to "breed"

1
fuel in the fast bree?er reactors currentlj( being developed for commer-
. - .
. \
cial application in thg next decade.
. i | \\ N (‘\
©

Small, compact reactors kave been use& for propulsioxi in *su;guarines,

ghips aircraft, and rocket\ vehicles. Indeed the present generation

\ u 2

o 1 e

P
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of light water reactors used in nuclear power plants are little more

than the very big younger brothers of the propulsion reactors used
in nuclear submariﬁép. Reactors can also be utilizéd as small, com-~
pact sources of long-term power, such as in remote polar research

stations or in orbiting satellites.

“Yet by.far the most significant application of ntclear fifsion reactors
is in large, central station power plants. A nuclear power plant is
actually very similar to a fossil-fueled power plant, except that it
replaces the coal or oil-fired boiler by a nuclear reactor, which ge-
nerates heat by sustaining a fission chain reaction in a suitable lat-
tice of fuel material. Of course, there are some dramatic. differences
between a nuclear reactor and, say, a coal-fired boiler. However the
useful quantity produced by each is high temperature, high pressure
steam that can then be used to run)\turbogenerators and produce electri-
city. At thebcenter of a modern nyclear plant is the nﬁcle;r supply
system (NSS5S), composed of the nuciear reactor, its associated coolant
piping and pumps, and the heat exchangers ("steam generadprs") in which
water ig §§rned into .ste;m. The remainder of the power plant is rather

conventional. Refer to Figure I.1l for typical fossil énd nuclear power

p‘ints . ) i

. Yet we must not let the apparent s:l.\nilarit%gs between nuclear and fossil-

fueled power plants overshadow the, very ‘sig ificant differences between

;:he two systems: For example, ;i.n a nuclear piAnt sufficient fuel must be
inserted into the reactor core to allow operation fér very long periods

of time (typically one year).. The. nuclear fuel cycl'e itself is extremely
comélex, inv‘olving\fuel refin‘ing,‘ fabrication, rep_frocessing after utili-

Ved
zation in the reactor, and eventually the disposal of radioactive fuel

B e A DR Sk A, A e

. i gaE iy
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4. heat .
‘fuel Heat produced by
(coal)
(chemical reactior})
/

N

H

. ‘.
CANDU NUCLEAR POWER PLANT A~

burning coal or oil

heavy water 'coolant’
transfers hea®from uranium
fuel to ordinary water in

§ heat boiler (steam gemﬁ:’{:r)

fuel (uranium\_—~

Fig. I.1 Comparison of Fossil and Nuclear Power Plants.
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v wasfes. The safety aspects of nucléaar plants are also quite different,
since one must be cogcerned with avoiding possible radiological hazar.ds.
L/ fFurthefmore the licex;sing required by a nuclear plant before constrqu
tion or operation demands a level of sophisticated analysis totally

alien to fossil-fueled plant design.

o

4 Therefore even through the &S\;&SS contributes only\a relative.ly modest frac-

" tion of the total capital cost of a nuclear power plant (presently about
’ ’
20%) , it is of central concern since it not only dictates the/detailed

design of the remainder of the pldht, but also the pmﬁéﬁﬁ?ﬁs required
= el J‘ v
in plant construction and operation. Furthermore it is the "low fuel costs

-
- .

of the NSSS that are responsible for the economic advantages presently
. ;

¥\joyed by nuclear power generation. -
v " ‘ Vo : \ .
N «

) , ‘ § -

r ., 2 CLASSIFICATION OF REACTORS A

; .. y ‘ . , { ]
Nucltear reactors can be classified in various ways depending on neutron f?’ ‘

* énerqy, fuel, heat removal, purposes, fuel and moderator arrangement and i

v

materials used in the reactor components.

#\ . ﬁ' ‘ g e i . >

N\ Refer to Table I.l for more detailed reactor classification.

\ » 6 - . |
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} d CLASSIFICATION OF REACTORS

;- ] Ad v

| \- .
N Energy of neutrons that produce fission B

: { .
b fast s

intermediate (or epithermal)
[

5 o

N thermal d
Nuclear fuel
. natural U (0.7% 0235)
\ N s

slightly enriched U (1-2% v233)

. ’I' ‘highly enriched U (=90% y235) -
- Pu239 = ) B ‘n - 4
{ ‘ y233 : |
! -
. N )
it . , %

Method of heat removal, by circulation of
. coolant only
s fuel mixed with coolant

. oderator-coolant

fuel, moderator, and coolant

'

Purpose . ' R
4 research

prototype .

propplsion N .
heat source

electric power generation

s . isotope production (fissionable or for industrial use)

~




TABLE I.1 (Cont'd)

Arrangement of fuel and moderator

heterogeneous

homogeneous

\
Materials used in the following reactor components
1

4
“

moderator : -
coolant
structural materials

reflector

shield
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N e *
4 )

If one formed a the possible combinations of reactor features accord-

ing to the classifdcation in Table }.1, about 1000 reactor types would
=3
N . be found. Many would not be feasible at al’thers would be inordina-

I

‘. tely expensive. Some of the types that have been operated or show the
most promise are now described briefly, to aséist in orientation.

. N .
5 % “

1.2.1 THERMAL AND FAST REACTORS " -
) ) .

The thermal reactors are those devices in which reactions are maintained

by neéutrons with characteristic energies comparable to the energy of
I 1
thermal vibration of atoms comprising the reactor core.

«
- o

N - ' .

-

Those devices in which the average neutron energy is more charactepigtic
' of the much higher engrgy neutrons released in a nuclear fission reactioy
’ i -

[ .
<

are.called fast reactors.

N

°

1.2.2 . LWR (BWR AND PWR) °

™ ;o

In the United States, an%?;p&eed throughout -the world, the most popular |

the present generation of 'reactors, the light water reactor (LWR) uses of-

dinary  water as a coolant. Such reactors operate,at very high pressures

AN

. oy
(approximately J0-150 bar) in order to achieve high operating temperatures

. while maintaining the water in its liquid phase. If.the water is allowed
¢ ’ ) El

to boil in the core, the reactor is referred to as a boiling water reactor

LY

(BWR), while if the system pressure is kept sufficiently high to prevént

N

bulk boiling (155 bar), the reactor is known as a pressurized water reaasor

(PWR). Such reactors have benefited froﬁ-ijwell-developeﬁ technology~and

performance experience achieved in the nuc;gar submarine prbgram.

B
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-

“MAGNOX" REACTORS

4

These are dgraphite moderated, CO2 gas-cooled reactors fuelled with na-

tural uranjum metal ciad,with.é'magnesium alloy called Maégéx. They

have derived their.generic name from this latter feature.

L

FigureI.2 shows a schematic arrangement of one version of this reactor.

"

“This type was pioneered by the aritish and French and was a naﬁural out~

growth of the early air-cooled, graphite-moderated research and pl

nium preduction reactors.
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The use of uranium metal fuel and the Magnox claddiné, leads to relative-
ly low turbine steam conditio?s, limiting the staFion overall efficiency

‘to 30 per cent.
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As is typica
are fuelled on-load. This 1§ because large quantities of excess reacti-
vity, in the form of additional\y-235, is not "built into" the new fuel.

The availability record of 'the,}daqnox reactors has pr,oven to be good.

/
On-load refuelling helps },«{ this regard. Nevertheless, their high ca-
pital cost’“‘and modest’ ach:.evable fuel utilization has led to the dis-

continuation of construction of further reactors of this type.

v

"1.2.4 ADVANCED GAS COOLED REACTOR (AGCR)

)

°

]
The AGCR has been developed in the U.K. as a successor to the Magnox line

v

of reactors. Several are now under construction.
v ‘

The most significant cha“mge is that the fuel is clad in stainless steel.

This permits rather higher fuel temperatures leading to conventional fos-
sil guel steam conditions (2400 psi, 1025°F). The fuel is in the form of
a cluster of small diameter rods; permitting 'relatively“ high power levels
to be achieved. This reduces the size of the reactor core compared with

the Magnox reactors, but, because of these fuel changes, the AGCR requires

some fuel enrichment. p .

-

I.2.5 HIGH TEMPERATURE GAS COOLED REACTOR (HTGCR)

¥

This type répresents the next evolutionary step in the Magnox-AGR line of

gag-cooled, graphite-moderated reactors. It is being developed by Gulf

, General Atomic in the U.S. and by the West Germans and the Britisgh.

o . ol Y S
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The HTGCR differs from the AGR in two major respects. The first is

the use of helium as the coolant in place of CO This permits even

2"

“

R ! (PN
higher coolant temperatures without inducing a chemical reaction

with the graphite moderator. The second relates to the fuel. __
- . o P,

- o
.

The fuel is fully ‘enriched (93 per cent) U-23%5 mixed with thorium, N
Thorium absorbs neutrons and is converted, after d4 radioactive de-

AY

cay chain to U-233 which is '-,(f:'ivssile. o
“

ar
<

1.2.6 FAST BREEDER REACTOR (FBR)

-
All present coé;erci‘al power reactérs utilize neutrons at "thermal"
speeds (i.e. the neutrons are slowed down by a moderator to maintain
the fission,brocess). It is also pessible to sustain a chain reac-
tion with "fast" neutrorbs provided the fuel is highly enriched with
figsile material such as U-235 or Pu-239.

$ LT
Under certain conditions the de;truction of one fissile atom (by neutron
absorption) can ;goduce a little more than two netitrons, and only one is
required to maintain the chain reaction. The surplus neutrons can, be
absorbed by a "fertile" material such as U-238 for conversion to fissile
Pu-239.u‘ In fact it is possible to "breed" more fissile material than is

used up in the caPture fission process if few neutrons are wasted.

»

This possibility of breeding is very attractive as a mean‘s~ of extracting

more energy from uranium. Less than one per cent of natural uranium ds
Q

fissile so that if a substantial part of the other 99 per cent can also
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be used then the world's energy resources would be considerably extended.

A J L}
;

One practical form of %this concept is in the development of the Liquid
Metal Fast Breeder Reactor shown in Figuré I1.3. The reactor core con-
sists of a closely packed array of highly enriched U-235 or Pu-239 oxi- %

de rods clad in a high temperature resistant material. The core is
é
) . :
’ surrounded on all sides by a "breeder" blanket of fertile U-238 rods. ‘

No moderator is used. The excess neutrons from the fission process
. are absorbed by the blanket. Both the core and blanket are cooled by )
a circuit of liquid sodium. The hot s8dium passes through a heat ex- o

changer where the heat is transferred to an intermediate sodium cir-

’

cuit. This in turn is cooled by another heat exchanger where water is

converted into steam to drive the rturbi;e. ‘

Fa§t Breeder reactor prototype stations are in operation in Britain and

France and the USSR, but %ercial versions are some years away.

. a
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; 1.2.7 CANDU

[ The Canadian program like most others, had its 6rigin in the Second World

]

| : \ )

’E War- when Canada was assigned the task of aWIoping the heavy water mode~

; ) . rated reactor system as a method of plutonium production. With the end

) ) of hostilities all weapon activities ceased but.this experience has made ]

x B
- » 3

Canada the centre of world scientific knov}ledge and technology in heavy - ?

:

:

3

™ water moderated reactors. ‘ ‘\\
It was natural in the early 1950's when a prototype power station was
being considered in Canada that the heavy watér systems should be pre-
ferred. The system chosen exploited the merits of heavy water as an % ,
extremely low neutron—ab&brption moderating material. The use&t&pres- ) s

sure tubes in place of pressure vessels for the primary coolant matc

the national manufacturing capability, and’ the use of natural uranium

as fuel allowed the direct use of Canada's national resources of uranium.

.

. »
The reactor system is known as CANDU (CANada Deuterium Uranium) indicating
[

the use of deuterium or heavy water as a moderator and natural uranium as
h ' LY

a fuel. There are a number of alternative coolants available, the one
brought to full commercial exploitation being the CANDU-PHW (Pressurized

Heavy Water), with the heavy water coolant at a maximum pressure of about
2,

11.5 MPa and maximum temperature of 285°C. Canada is also experimenting
~

with light water and organics as coolant. )
- ~ 9
- = Vel » 0 ‘
"~ In the CANDU-PHW the calandria or reactor vessel is a cylindrical tank

}
laid on its side with its end faces forming vertical plates. This tank

3
L) i




‘ . . 14
is filled with low temperature, atmospheric pressure heavy water mode-~
Y
rator. Several hundred tubes (called pressure tubes) penetrate the tank

and contain the uranium fuel. A fluid, called a coolant, is pumped past

' the uranium fuel within the pressure tubes, and the heat of fission is \
. [ ,
transferred to the coolant. The coolant flows on to the boilers or steam
/

~t

generators where it gives up its heat to ordinary or light water to pro-

e

duce steam. ' Figures I.4 to I.7 show some CANDU reactor characteristics.

Rl LT T
N

“

- Present CANDU reactors use natural uranium fuel. The fuel bundle is
simple (see Figu;e 1.8}, the fuel cycle is simple, leading to a very low ‘
fuel cost of about 1 mill/kWh with no plutonium credit, and one that will

stay low relative to other fuel cycles. Fuel fabrication is simple and

fabrication facilities are inexpensive. Natural uranium is available
'

E from many sources, allowing diversity of supply.

CANDU reactors are fuelled on-power. This was originally introduced

because it improves the neutron economy, but it is also very valuable

in allowing .rapid discharge of any failed fuel, a safety advantage.

o

It also leads to high availability of the reactor system.

v - ., N

The magnitude of Canada's contribution to world development of nuclear
powver can be appreciated by the fact that Ontario Hydro's Pickering
Generatifg étatidn is one of the largest operating nuclear power stations
in the world. The Pickering"Station has an installed capacity of

2,160,000 k_ilowatts. ‘{Ontario Hydro production is “17% nuclear./)

a

The Pickering station has operated in a highly creditable manner since

~

it wvas started up, partigularly during the winter peak periods when re-

liability is most important. It is one of the world's most productive

°
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in terms of electrical éutput illustrating the capability of the CANDU

system and the effectiveness of on-~power refuelling. >

The performance of Pickering Generating Station encouraged Ontario

Hydro to build even larger Nuclear Power Generating Station. Next

multi-unit will be Bruce Generating Station with an i{nstalled capa-
™
city of 3,000,000 kilowatts. Larger multi-unit stations are considered.

-
The in-service performance of the CANDU f’ue‘l‘has been excellent. Evo-
lution of design and impr@vements in the fuel management schedules ha-

: . .
ve already resulted in a defect rate of legg than 0.1 per cent.
\\ '

°
In conclusion, the CANDU system is one which offers a number of advan-
tages for Canada and some other countries. It is a proven, commercial-
ly successful system. The use of natural uranium, which is readily .
available in many countries of the world, permits self sufficiency

in fuel supply.

The pressure tube concept results in a reactor which can be manufactured
* in Canada, and in other countries with similar industrial manufacturing N
capabilities. For countries just entering the nuclear power field, only

4 ' ' modest investments in industrial plant and equipment would be needed to

.

begin /indigenous manufacture. The system is also consistent vgith the eco-

\
by

nomic structure of Canadian provincial utilities. No large investments
in fuel enrighment plants are necessary. ' Capital investment in heavy water
plants would be necessary if a large program, such as that of Ontario Hydro,

J\

were undertaken but these plants cost very much less than enrichment plants®

t

™
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and can be built econ,omicallﬂr in much smaller modules thus allowing the

utility. to spread capigfl investments over a large period of time.

Q 5 *

1
Overseas, Ardentina and Korea have decided to buy CANDU power reactors
and other nations are showing intense interest. , . -

+

1.3 MODERATOR

The neutrons that are produced by the.fissd®dn processes come off at a
/

very high velocity. At these high gpeeds, the probability of collid-

ing with a U-235 atom and causing fission is very small. Hence, a ‘ma-

terial called a moderator is used to slow down the neutrons so that -

they will have a better chance of causing fission.

a
.

The first reactor to be built used a graphite moderator. This was the
& v ' ) )
Fermi reactor built in the United States in 1942. It consisted of a /
T
stack of graphite blocks 32 feet long by 30 feet wide by 21 fest™high, PR

ey //‘

with six-pound lumps of ur'anium on 8 1/4 inch centres tﬁ?bughout the

assemply .

—4
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Other materials«é&ﬁMUni§ used as a moderator’ include light water and
} Y e

heavy water. Figure 1.9 shows the moderator sibwing down the‘neutrons.

ar

by a series of collisions. The material used as a moder 2€G2 ;'

7

1) Must not absorb many neutrons, since they are required to collide

PR A i AOMROAIRARY, {4 Y A s i -
N

ultimately with U-235 atoms to cause further fission 8

.

[V N

' . ) -
2) must be 1ight in mass so that a very few collisions are required
) - . P . F

to slow the neutrons down to the required velocity

"~ ’ 3) must have a high pxobability of cqllision with a neutron

hin

4 ; : ¢ ord
There are a number of materials which have these characteristics to

. . Lt }
.. " varying degrees. Their overall performance as moderators can be

. kS
stated numerically by their "moderating ratio". This is a calculat-
i £
§

ed value which takes into account the relevant cparacteristics (I1.6.2.3).

! - v

£
[3

’ Some ccmmon moderating materialssand their moderating ratios are shown <«
oo in Table I.2. (Refer to later sections for moderating ratios.) .

'
*
et
¢

TABLE I.2

-4 \, -

£ MODERATOR k MODERATING RATIO
. - - “ :

Light Water . . . 62 -

Graphite 170

Heavy Water (Deuterium Oxide) .' ’ 2000

. “ - .
- )

TLIEG, ‘fhgv :;h,?, ,‘! ,4

,wr ,¢
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To gummarize the choices facing a power reactor designer, there is first

the basic choice of natural or enriched uranium. If natural uranium is

chosen, than a moderator of high efficiency such as graphite or heavy

PS

ra
v water is necessary.

Whatever type of reactor is used the final product is steam to drive the
turbine generator. From the main -steam line on, the nuclear power sta-
tion is the same as any conventional coal or oil burning power plant as

\

shown in Figqure I.1._
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. Fig. 1.9 Moderation of Neutron Speed.
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EN

I.4 THE NUCLEAR STEAM SUPPLY S¥S'l"EM (NSSS) AND NUCLEAR REACTOR

CORE TERMINOLOGY

o [l

The NSSS consists essentially of three major components: (a) a nuclear

reactor supplying the fission heat energy, (b) several primary coolant
loops and primary coolant pumps that circulate a coolant through the

.

nuclear reactor to extract the fission heat energy, and (c) heat ex-

-

changers or steam generators that use the heated primary coolant to

P TN N S

turn feedwater into steam.

Several very simplified diagrams of Nss$, components are given in Figure ‘
I.7 for most of American type reactors and in Figure 1.1 for®canpu typé reac-

tors.,

ot

At the heart of the NSSS is the nuclear reactor core. Far from being

just a relatively simple "pile" of fuel, a la Fermi, a modern power re-

N

actor is an enormously complicated system designed to operate under the

: most severe conditions of temperature, pressure and intense radiation,
. \

To introduce the general components of a typical power reactor, we will

4

consider the spec.i?fic example of a modern, Canadian designed type reac-

-

tor: The CANDU as illustrated in Figure 8 on page 13.

3

Basic components forming the CANDU reactors are listed below.
\

e grrwg e et patre ) il
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I.5° INTRODUCTORY CONCEPTS OF NUCLEAR POWER REACTOR ANALYSIS

i . .
- -

e

(1) Fuel: Any fissionable material. This can be either fissile mate-

241Pu or fissionable material

* rial such as 2330, 235U, 239?u, or
: }V. such as 232Th, 238U, or 240py,, Most modern power reactors utilize
. I
this fuel in a ceramic form - either as an oxide such as U0y, a

carbide such as UC, or a nitride, UN.

(2) Fuel element: The smallest sealed unit of fuel. In a CANDU reactor

\

the fuel element is a metal tube containing ceramic pellets of fuel

.

* (such as UQj). .

(3) Fuel assembly or bundle:# The smallest unit cgmbining fuel elements

into an assembly.

{ N “} (4) Moderator: Material of low mass number which is inserted into the

reactor to slow down or moderate neutrons via scattering collisions.

. Typical moderators include light water, heavy water, graphite, and .

beryllium. M

(5) Coolant: A fluid which circulates through the reactor removing fis-
A

sion heat. The coolant can be either liquid, such as water or sodium,

or gaseous, such as helium or carbon dioxide.

b )

\ (6) Coolant channel: One of the many channels through which coolant

flows in the fuel lattice.

i S <3 i e M

i ok it

(7) Structure: The geometry and integrity of the reactor core is main-

tained by structural elements such as support plates; spacer grids,

or the metallic tubes used to clad the fuel in some reactor designs.

fom .
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(8)

(9)

(10)

(11)

(12)

(13)

26

Control elements: Absorbing material inserted into the reactor
to control core multiplication. Although most commonly regardeé
as movable rods of absorber, control elements may also consist of
fixed absorbers or absorbing materials dissolved in the coolant.
Common absorbing materials inélud,e boron, cadmium, gadolinium,

and hafnium.

Reactor core: The total array of fuel, moderator, and control

elements.

Reflector: A material characterized by a low absorption cross

-section used to surround the core in order to reflect or scatter

Cot - ’
leaking neutrons back into the cor;. )
Shielding: The reactor is an intense source of radiation. Not
only\lmust operating personnel and the public be shielded from
this radiaiion, but reactior components must as well be pro}ectedx

Hence absorbing material is introduced to attenuate bpth neutron

and gamma radiation.' Thermal shielding is used t& attenuate the

emergent core radiation to levels that do not result in significant

heat generation and hence damage in reactor components. Biological

shielding reduces the radiation still further to acceptable levels

P

for operating personnel. - .

‘Support structure: The support plates’that serve to maintain the

core geometry.

Reactor pressure vessel: The high pressure containment .for reactor

and associated primary coolant system.
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It is also useful to introduce at this point several quantities which
# are used to desgkibe reactor performance. The units in whféh thesge

quantitiés are usually expressed areglenoted in brackets.

(1) Reactor thermal power (MWt): The total heat produced in the

e

reactor core.
(2) Plant elettrical output (MWe): Net electrical power generated
14 by the plant. :

Plant electrical output.
Reactor thermal power

(3) Net plant efficiency (%):

. . Total energy generated over time period
) (4) Plant capacity factor (%): (Plant rating) X (time)

\

(5) Plant load. factor (%): Average plant electrical power level

Peak power leyel

(6) Plant availability , . -
, factor (%): Integrated electrical energy output capacity

( Total rated energy capacity for period

Reactor fhe;mal powdr
Total core volume ~

{7) Careypower density (kW/liter):

(8) Linear power density (kW/m): Thermal heat generated per unit
length of coolant channel.

-

Reactor thermal power
Total mass of fissionable material

(9) Specific power (kW/kg):

s

S

<

(10) Fuel loading (kq): Total mass of fissionable material. !

(11) Fuel burnup (Megawatt-days)metric ton uranium = MWD/TU) : ﬁ2§

13

Energy generated in fuel during core residence
Total mass of fuel

\
(12) Fuel residence time: Fuel burnup

(Specific power) X (capacity factor)
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The foregoing are the more common terms used in characterizipg nuclear
»

: plant performance. We will introduce other more specific concepts and

Wy
terminology Iatsr as we develop-the more detailed theory of nuclear

reactors. . ' ” .

PUROREOst LIS L P
\




RFACTOR PHYSICS: NUCLEAR REACTIONS

I1.1 INTRODUCTION : ;/Mug‘
7 } '

» . . 29 ‘
”t' v.‘. ° ! ‘ ' v
2 / . CHAPTER II
i
5
i
; When a neutron does get within range of the nuclear force of a nucleus,
it is pulled into that nucleus very abruptly. To put it another way,
the potential energy it had by virtue of being outside the range of the
nuclear force is suddenly transformed into kinetic energy when it en-
ters the nucleus. Thus the neutron suddenly picks up great speed and
then, by "collisions" with the other neutrons and protons making up

the nucleus, increases {he average kinetic enerqgy of all the particles

in the nucleus. The nucleus thus gets energized to an unstable excited

state! Because of the presence of the extra neutron it is said to be a

L Al

.
compound nucleus.

Excited states of a nucleus can persist anywhere from 10-14 seconds to

years depending on the nucleus and the state in question. Yet even the

st

: short time (10-14sec) is around a hundred million times longer than the
v / -
time required for a neutron to make one trip across the nucleus. Thus

it is proper to think of the excited nucleus as being in a well-defined

state.

</

When the excited nucleus does give up its excess energy, it cgn do so in

E—

a great variety of ways. ‘Most of the nuclear reaction types thatﬁsahur

.

/

- in a nuclear power reactor are presented in following examples.

I

LRI AN,
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g | II.1.1  ELASTIC SQATTERING

B s
E ; , A neutron is emitted and the nucleus returns to its initial ground
[ ~) state. The emitted neutron need not be the’same one that original-
ly struck the nucleus; buE, nevertheless, the elastic~scattering
process is in an important sense analogous to thg collision of one
billiard ball with another. The lifetime of the excited compound

2
12 sec) that, for the purpodes of reactor

nucleus is so short ( 10
calculations, it may be neglécted and the process of elastic scatter-~
ing may be analyzed as a billiard-ball collision.

This type of elastic scattering, called resonance scattering and in-
olving the formation of a compound nucleus, is actually very rare.

A far more common form is potential scattering, in which the imping~

ing neutron does behave exactly like one billiard ball striking ano-

e S

ther. It interacts with the nugleus as a whole without entering and
{

forming a compound nucleus. Reaction times can thus be on the order

3

of 10"22 seconds.

Thus, whether the elastic scattering is anomalous resonance scattering

or the more common potential scattering, we can picture the Briginal

Iutron as striking the nucleus, imparting some of its momentum and
inetic energy to the nucleus, and then moving off in a direction dif-

ferent from its original flight path., Elastic scattering is an extre-

», AN =
LN & - i
mely important process fr nuclear reactors since it is one of the chief

’

mechanisms by which theghigh—-energy neutrons born in figsion lose their

kinetic energy. :&yﬁggll analyze the process in detail later in this
P

Chapter. . - .

-
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11;‘391’;2 INELASTIC SCATTERING

A neutron is emitted from the compound nucleus but the nucleus still

remains in an excited state. Again the process is effectively ins-
-12
tantanecus (10 sec) with respect to the time-scale of processes

important to reactor physics. Thus we can stfir picture the initial-

:unusuallggdarge amount of energy in the process.

4
‘

R =, . "
CI11.1.3 CHARGED~-PARTICLE EMISSION -

i
i
é i 1y incident neutron as being scattered by the nuclews and‘losiﬂy*aﬁ“\~\\ h
H
3

*

. The excited compound nucleus becomes de-exited by emitting a charged

»

. . Y
particle (proton, deuteron, a particle - occasionally an electron).

» From the viewpoint of the free-neutronlpopulation in the system, this
r results in the loss of a neutron an hence is equivalent to a neutron
A

* capture. .

II.1.4 NEUTRON CAPTURE

[ A )
The compound nucleus de-excites itself by emitting a y rax, a high-

energy photon or quantum of electromagnetic energy. The E of a vy
ray, (as is the case for all photons) is related to its frequency
Vby E = hv, where h (Plaﬂck's constant) =; 6.6 x 10-27 erg-sec.
nTypical frﬁquencies for vy rays are around 2 X 1020 Hz, whereas,

those for the photons of visible light are around 6 x 104 Hz.

-
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I1.2. INTERACTION OF NEUTRONS WITH MATTER ' te

The operation of a nuclear reactor depends fundamentally on tlHe
way in'which neutrons interact with atomic nuclei. It is necessary,
therefore, to consider the nature of these interactio‘ns in some

)

detail. . w

M -

{ L}
Neutrons interact with nuclei in a variety of fways. For instance, if

A

the nucleus is unchanged in (either zisotppic composition or internal

energy after interacting with a neutron, the process is called elastic

i

scattering. On the other hand, if the nucleus, still unchanged in" com~

. 9
position, is left in an excited state, the\<ocess is called inelastic
\
scattering. The symbols (n, n) and (n, n') are often used to denote\

the'se processes. In referring to these interactions it is common to

lastically, as the case may be, because a neutron reappears after th

interaction. However, this term is somewhat misgleading, since the em-

erging neutron may not be the same neutron that originally struck the

1

nucleus. -

Neutrons disappear in a reactor as the result of absorption reactions,

the most important of which is the (n, Y)“ reaction. This process is

e
1l

1so known as radiative capture, since one of the products of the re-

aXtion is y-radiation. Neutrons also disappear in charged-particle
react ch as the (n, p) or (n, a) reactions. Occasionally, two
Oor more neutrons are emitted when a nucleus is struck by a high-ener-'

°

gy neutron. The processes involved here are of the in, 2n) or (n, 3n)

‘i-y@gi GRS LA RO SR a it et L L i

\
\
say that the incident neutron has been "scattered," elastically or ine-

\

\

\
P
ANN
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9

type. A closely related process is the (n, pn) reaction, which also

occurs with highly energetic incident neutrons. Finally, when a neu-
tron collides with certain heavy nuciei, the pucleus splits into two
large fragments with the release of considerable energy. This, of

. o N -
course, is the fission process, wh\lch will be discussed later.

.

e

We introduce here 4.general notation for a nuclear reaction in which

a particle or nucleus x strikes a nucleus X and results in the emis-

‘sion of particle y, leaving nucleus Y behind.
-

X+ X—» Y +y - C (IT.1)

R T R e i

This is often abbreviated as

. - X(x,y)Y e ‘ (11.2)

=

in which we write firé?he symbol for the struck nucleus, in parentheses,

the incoming and outgoihg particles, fzﬁ'éépectively, and after the paren-

theses, the residual nucleus.
w
In one way or another, most of these interactions must be taken into
account in the design of a nuclear reactor. Before considering the
\ specific interactions, however, it ié’ necessary to set up a frame-

work with which these interactions can be discussed quantitatively.




EXOTHERMIC AND ENDOTHERMIC REACTIONS
-

N e
Nuclear reactions are generally accompanied by either the absorption
or emission of energy. One can calculate the energy released by (or

required for) a given nuclear reaction by using the important result

from the theory of relativity:

L
where ¢ is the speed of light and m is t;he‘pass converted into energy
in a reaction. The appropriate quantity to use for the variable m
that appears in this formula is the mass difference between the in-

teracting pérticles before and after the collision.

For the reaction a(}:,c)d we would ca\lcul‘ate the Feaction energy as

L)

- ’ 7 .2
0 = o, ey - or e m]e | ana

If Q@ > 0, then we say the reaction is ‘exothermic, which corresponds to
a release of energy in the reaction. 1If Q < O, then the reaction is
salid to be endothermic, and energy must be supplied to the colliding
nuclei in order to stimulate the reaction to occur. Obviously, nuclear

fission is an example' of an exothermic reaction.

)

4
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’ I1.2.2 RADIOACTEVE DECAY / -

y

Certain nucl(éi are unstaﬂ/e in t* sense that they may spontantously

+ undergo a transformation into a different nuclide, usually accompa- -

-

/

-

N

nied by the emission of energetic particles. Such a spontanefo-\;;rm/-’

oo 4
(- ERY A
clear transformation is referred to as radioactive dec?.yAe three
9 * B
most common types of radioactive decay found in urally occurring
‘\’ . / \
nuclides include alpha decay, in which the-hucleus emits a heli’um
. .

Loyt

7 <

‘ nucleus gﬁe; beta decay, which correg€ponds to the conversion of a neu-

v

tron in the nucleus into yycﬂ:on,, generally ’a,ccompanied by the emis~

{4 sion of an electron ar;d"/si neutr}?{o; and gamma decay, the transition of

a nucleus from oneé:ited state to a lower excited state with the ac-
- . ’ < 3 3

companying emission of a proton. However other types of radioactive

; decay are possible in a nuclear reactor since many unstable nuclides

are produced in fission which do not occur in nature. For example,
,/

- . ,
g;h may decay by emitting a neutron. (We will
>

later find that this particular “type of decay process is extremely im-

certain nuclei such as

portant for reactor operation.)

o

L

The fundamental law describing radiocactive decay is based on the experi-
mental observation that the probability that a nucleus will decay in a

: given time interval is essentially constant, independent of the age of

the nucleus or its environment, dependent only on the type of the nucleus
itself. Hence the time rate of change of the number of original nuclei

of a given type must be proportional to the number of nuclei present at
/

that time. ILet us call the proportionality constant A. Then if N(t) is

the number of original nuclei left at time t, we £ind

[y
.

e w8
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Here A is referred . to as the radioactive decay cangtant characteristic of

-

the nucleus and has units of inverse timel If we jinitially have No nuclei
present, then at any later time t the number of ruclei present will b4L9i;

ven by an exponential law:

“

From this time behavior, it is apparent that the probability that a

given nucleus will decay in a time interval t to t + dt is just

T

pwyat = aear . ~ L

o ~

Since radioactive decay ‘is a statistical phenomenon, we cannon predict
with any certainty precisely when a given nucleus will decay. However

we can cajculate the mean lifetime t of the nucleus before decay using
. 7

our expression for p(t) from Eq. (II.7).

£ =S °o° at tp(t) = xf: at te Mt = -i— (11.8)

Hence on the average a given nucleus will decay after a time 1/)%

.

A closely related quantity is the length of time necessary for half of

~ the original number of nuclei presen€ to decay away. Such a time T1/2

is referred to as radiocactive half-life for the nucleus and can be cal-

culated from its definition by noting

L d
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(11.10)

!

It is common practice to tabulate such radiocactive half-lives of various

Lo

s s Y3 s s . - .
unstable nuclei in preference to their mean life time t or decay /cons- /

tant A. : g .
\ ‘ //‘
¢ S .
Yet another definition of some importance is that of the activity charac- /,

terizing a sa’mple(ofi radioactive material. This quantity is simply the

—_

total nunmper of disintegrations occuring peir second AN(t). Activity is
usually measured in units of curies, where one curie (Ci) is defined to

be that quantity of radioactive nuclei f’or which the number. of disinte-

10

grations per second is 3.70 x 10" . (This is roughly the activity of

N

1 g of radium.)

-

Actually it is more common and far more useful ,to regard the dependent
] ; .
variable N(t) as the atomic fulnber density (#/cm3) of the nuclide of

interest rather than the total numbgr of nuclei present in the sample.
« '* R R

.

We will adhere to this practice in our subsequent discussion. ) v

- °
< [

Most radioactive decay processes are sqné’what more complicatedrthan those

.

described by Eq. (i'I.S ). For example, the decayix-xg nucTide may it:,_self be

-

pg:bduced by somg type of source, say, R(t) nuclei/cm3.sec., Th;an the nu-

clide .balante equation becomes . . .
N | . ;
qt — TAN(t) ¢ R(t), (11.11)

. at !
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I1.2.3 THE DECAY OF EXCITED STATES

It has beeh found that the fundamental law of natural radioactivity, i.e.,
ty

the probability per unit time that a system decays 'is a constant, also ap-
plies to the spontaneous decay of nuclei in excited states. It is custo-
mary, however, in discussing the decay of an excited state to express the

decay constant A in terms of a new quantity, I', called the level width,

.

which is defined by the relation

. : \
T = hi, h is the Planck's Constant. (I1.12)

4
oo

Since h has the units of energy times time, and A has units of inverse ti-
me, it is evident that I has units of energy. 1In other words, I' is the

decay constant of an excited state expressed in energy units.

§

The level width can be used instead of the usual decay Eonstant to descri-
, be the decay of nuclei from excited states. If, for example, there are

no nuclei in a certain excited state at t = 0, t sec later there will
\

be -

-Te/m ‘ (I1.13)

nuclei left in this state. Férmulas such as Eq. (I1.13)are not often use-

ful, however since the decay of excited states usually occurs so quickly

<
S

that the time dependence of the process is not ea@ily observed.

\ - .

From Eqs. (1I:8) and (II.12) it follows that the mean-life of a (state of

° ¢




.width T is given by

-

t = 1A = n/r : , (11.14)

o

§§ Thus a,state of large width tends to be short-lived; a state of small

width is long-lived.

[0 N

The widths of a great many excited states have been measured. For ins-

tance, the first virtual state of 0239 is at 6.67 eV above the virtual

Vo R I e |

2
energy and has a width of 27 millivolts (i.e., 0.027 eV). The mean-

life of this state is therefore~about
L3 -
[}

, 6.58 x 10 2%/0.027 = 2.4 x 10”12 gec

n
i
~- \

|

r Lifetimes as short as this cannot be measured by ordinary methods, and
r p this state appears to decay (in this case Primarily by y-ray emission)
]
i

as soon as it is formed.

-
i

o ket S o S

2 . [
The decay of a nucleus from an ex%ited state can frequently occur in a

| T

number of ways. If the nucleus is in a bound state, however, nucleon

B

emiggion cannot occur, and, with few exceptions, (the first excited

a state of 016 at 6.06 MeV, for example) decays by emitting an electron-

; positron pair; decay by B-ray @mission is also possible from certain

} ’ ‘ long-lived 1isomeric states - the nucleus decays by the emission of

o Y~-rays. On the other hand, if the nucleus is in a virtual state, thén

one or more nucleons, in addition to vy-rays, may be emitted, depending

: . on the energy of the state.
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The probability per unit time of each mode of decay of an excited sta-

; te is described in terms of a paftial width characteristic of each pré-
cess., For instance, the paftial width for y-ray emission, FY' which is
. .

also known as the radiation width, is the probability per unit time
. ~ N A

. . T
(expressed in energy units) that the excited nucleus decays by y-ray

s e e

1 . - emission. Similarly, I‘n, the neutron wi?th, giving the total decay
probability is the sum of the probabilities for all possible proces-

¥ N ses, the total width is the sum of the partial widths:
: \

I= 7T, +I - ‘ (11.15)

The relative probability that an excited state decays by a given mode

is evidently the ratio of the partial width of the particular mode to

the total width. Fc\;r example, the relative érobability that a state

decays by y-ray emission is I‘Y/I', that it decays by neutron emission

in 'I‘n/l‘, and so on. ) \

v

°
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) We have indicj'lted ‘the units of each of these quantities since they imply

-~ . ' a1

I1.3 MICROSCOPIC CROSS SECTIONS

The probability‘ that a neutron-nuclear reaction will occur is charac-

terized by a quéntity called a nuclear cross section. Let us first

define this qhantity operationally by considering a beam of neutrons,

4 -

all traveling with the same speed and direction, which is incident
normally upon and~yuniformly .across the face of a target of materiall.

If th; target is sufficiently thin (say, one atomic layer thick), then
no nuclei in the tafget will be shielded by other nuclei from the in-
cident neutron beam (see Figure J1.3). 1In this‘ case we would expect‘
that the rate of neutron-nuclear reactions in the target will be pro-
protional to both the incident neutron beam intensity I (in units of
number of neut:rons/cm2 Jsec) and the number of target ~atoms per unit
area NA (#/cmz). If we call the constant of pro’portiona;\ity“ o, we

can write the rate at which reactions occur per unit are; on the target

as

Rate= R 1 Ny

= g
(1I.16) i
# 2 # #
cm . sec cm .8ecC cm .

that the proportional%ty factor ¢ must have the units of an area.

’ " 3

If ‘the incident neutrops and target nuclei could be visualized as clas-
sical particles, 0 would quite naturally correspond to the cross sec-
tional area presented by each of the target nuclei to the beam. Hence

0 is known. as the microscopic cross section characterizing the probabi-

ity of a neutxon-nuclear reaction for the nuclens. We might continue g B




42

to think of ¢ as the effective cross sectional area presented by the

-

nucleus to the beam of incident neutrons. Since the nuclear radius

12cm,‘t:he geometrical cross sectional area of the nu-
cleus is roughly 10_24 cmz. Hence we might expect that nuclear cross

sections are of the order of 10"24 cmz. In fact microscopic cross

is rouqﬁly 10~
A\

sections are usually measured in units of this size, called barns (b).
However this geometrical interpretation of a nuclear crosg section
can frequently be misleading since 0 can be much larger (or smaller)

than the geometrical cross section of the nucleus due to resonance
n v

" effects which, in t\irn, \a{re a consequence of the quantum mechanical
nature of the neutron and the nucleus. For example, the absorption

135
54

larger than its geometrical cross section.
S

cross section of Xe for slowcneutrons is almost one million times

' Na \nuclei/cmz
e
N .
. am—
< I neutrons/.m2»gec.

A

—y
—_—

- ’ ' 4 . -

-

Fig. I1.1 Monoenergetic Neutyon Beam Incident
Normally Upon a Thin Target.

!
S -,




e s

43
- r.\ » ' R ’

b

We can give a slightly more ﬁormal definition of ihe microscopic cross

1

section by rearranging Eq. (I1,16) to write )
7/ i —
LA
Number of reactions/nucleus/sec (R/N_)
o = - B (11.17)
Number of incident neutrons/cmz/sec '

o

. . ] {
3 '\
In this sense, then, if the target has a total cross sectional area éz,

all of which is uniformly %xposeQ to the incident beam, then

g P ili eu
- Probability per nucleus that a neutron (11.18)

fi, in ﬁhe beam will interact with it "y

Thus far we have beeﬂ discussing the concept of a nuclear cross section
ih a rather abstract sense without actually specifying th; type of reac-
tion we have in mind. Actually such cross sectiéns can be used to cha-
racterize any type of nuclear reaction. We can define a microscopic‘
cross sectioh’for each type of neutfqn—nuclear reaction and each type
of nuclide. For example, the appropriate cross gections charaééeriz-
ing the three types of reacgiahs we discussed earlier, fission, radia-
tive capture, and scattering, are denoted by of, oy, and oe in which
the target nucleus'remains in its ground étate, and inelastic scatter-
ing oin in whiiE)thé ;arget nucleus ié left in an excited state. Since

cross sections are related to probabilities of various types of reactions,

it is apparent that the stattering cross section is -

'

9% = % * %, . ' (11.19)

o




In a similar sense we can define the absorption cross section charac-
o

terizi;ug those events in which a nucleus absorbs a neutron. There
are a number of possiblen types of absorption reactions including fis-
sion, radiativé capture, (n, a) reactions, and so on. (Actuaily one
could argue that fission is not really an absorption :eactioh since
Fsevera-l_ neutrons are created in the fission reaction. It\ has become
customary, however, to tBeat fission as an absorption event and then
add back in the fission neutrons released in tl';e(reaction at another
point,— as we will see later.) Finally, we can intr&duce the concept
of the total cross sectiomn ¢, characterizing the probability that any

@
type of neutron-nuclear .reaction will occur. Obviously

= + = + + + a + ...
Ut; cs 0a c’in c’f OY na (11.20)

A schematic diagram9 of the heirarchy of cioss sections along with their

.

conventional notation is shown in Figure II.2, Notice that in general one

’ S (II.21)

}

In a simi \r fashion, one occasionally defines a nonelastic cross section

ey o]

as any eve { other than elastic scattering , )

0,

A

. ane b ot'_- Ke - (11.22)
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Thus far we have defined the concept of a microscopic cross section
by considering a beam of neutrons of identical speeds incident nor-
mally upon the surface of a target. However it is certainly concei-

vable that such cross sections will vary, depending on the incident

. peutron speed (or energy) and direction. Indeed if the microscopic

cross section for various)incident neutron energies is measured, a

- \
very strong energy depéndence of the cross section is found. The de-

pendence of neutron cross sections on the incident beam angle is usu-
ally much weaker and can almost always be ignored in nuclear reactor

applications.

’ -
s

- | ‘ o

I1.4 MACROSCOPIC CROSS SECTIONS

v

Thus far we have considered a beam of neutrons incident upon a very thin
B - \g:"’

- &
target. ' This was done to insure that each nucleus in the target woul

3

exposed to the same beam intensity. If the target were thicker, the nuclei

TIPS AT & R R 3
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deeper within the target would tend to be shielded from the iricident
»x
beam by the nuclei nearer the surface since interactions remove neytrons

-

from the beam. To account for su?h finite thickness effects, let us
now consider a neutron beam incident upon the surface of a target of X
arbitrary thickness as indicated schematically in Figuré%II.3 . We willry
derive a.n equation for the "virgin" beam intensity I(x) at any point x in
the target. By virgin beam we are referring‘y to that portion of the neu-
trons ;'Ln the beam that have not interacted with target nuclei. Consider
a differential thickness of target between x and x + dx. Then since dx
* is infinitesimally thin,vwe know that the results from our study of thin
targets can be used to calculate the ‘rate at which neutrons suffer inter-
-actions in dx per cmz. If we recognize that the\ number of target nuclei
per cm2 in dx is given by"’?iA = Ndx, where N is the number density of

nuclei in the target, then the total reaction rate per unit area in dx is

just

- - ' ] I1.23)
dR = 0 1N, = 0, INdx o«

. . . .
Fig. II.3 Attenuation of Neutron Beam Incident
\" Normally on a Thick Target.

|8
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Notice that, consistént with our prescription that ;.ny type of

interaction will deflower an incident neutron, we have utilized

the total microscopic tross section 9 in computing dR.

<

We can now equate this reaction rate to t¥e decrease in beam inten-
. *

sity between x and x + dx

-dI(x)-—[I(x+dX)-I(x)] = ogINdx ., (11.24)

o

Dividing by dx we find a differential. equation‘for the beam inten-
4

" sity I(x) ‘ ) . T

& ‘ ‘
dl !
E; =°NUtI(X) ; * N (II1.25)

If we solve thigs eguation subject to an incident beam intensity of .
Io at x = 0, we fi ponential attenuatiz}\ of the incident beam
i » . 7

of the form
»

v

/

exp (-Notx) ' : (I1.26)

’ o N

. I(x) = I0

v
£
B

The 15roduct of the atomic number density N and the microscopic cross
section ot that appears in the exponential term arises so frequently

. in nuclear reactor studies that it has became customary to denote it

., —....by a special symbol:
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me refers to Zt as the total macroscopic cross section charac-

terizing the target material. The term “macroscopic" arises from
the recognition that Zt characterizes the probahility of neutron
interaction in a macroscopic chunk of material (the target), .whereas

the microscopic cross section characterizes the probability of inter-

action with only a single nucleus.

‘ It should be noted that Zt is not really a “cross section"” at all,
however, since its units are inverse length. A more appropria;te
interpratation can be achieved by  reexamining Eq. IT.24) and noting
that the fraactional change in beam intensit‘.y occuring over a distance
dx is just given b){ .

. \
-dI ) .
L C. : (11.28)
Elx 't
Hence, it is natural to i.nterpre't Zt as the probability per unit
path lengt)‘ traveled that the neutron will undergo a reaction with
a nucleus in the sample. 1In this sense then

exp(-I tx)E probability that a neutron moves a distance dx

(any interaction); )

M4

):texp(-z RPLLS ability that a neutron has its first

. interaction in dx

= p(x)dx - -

.
R PR W T IR R

-8
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With this interaction probability, we can calculate the average dis-~

A
tance a n€utxon travels before interacting with a nucleus in the sam- "
ple.

o
@ 3
I dx x exp (-th)

bl
1]

jogx xp (x)=Z (11.29)

t = %

t
It is customary to refer to this distance as the neutron mean free
path since it essentially measures the average distance a neutron

Ve

is likely to stream freely before colliding with a nucleus.

3

The reader has probably noticed t;'ne similarity of this analysis to
our earlier treatment of radioactive decay. The spatial attentu.ation
of a neutron beam passing through a sample of material and the tempo-
ral decay gf a sample of radioactive nuclei are similar types of sta-
tistical phenomenon is which the probability of an event occuring that
removes a neutron o¥ nucleus from the original sample-depends only on
the number of neutrons or nuclei present at the position or time of
interest. It should be stressed that both the mean free path and. the
mean lifetime for decay are very much average guantities. There will

be statistical fluctuations about these mean values. ) -

N

1f we recall that.Et is the probability per unit path length that a
neutron will undergo a reaction, while the neutron speed v is the dis-
tance traveléd ‘by the neutron in a unit time, then evidently
) (11.30)
vxtf: [gcg-c][cm—]] - [sec-l] = Frequency with which reactions

occur for one traveling neutron.
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This quantity is usually referred to as the collision frequency for

the neutron in the sample. Its reciprocal, [Vztu]-l’ is therefore

- !

interpretable as the mean time between neutron reactions.

2]

Thus far our discussion has been restricted to total macroscopic cross

_sections that characterizq the probability that a neutron will undergo

any type of'reaction. We can generalize this concept by formally defi-.

ning the macroscopic cross section for any specific reaction as just

\

@ the microscopic cross section for the reaction of interest jmultiplied

. -~
by the number density N characterizing the material of inteyest. For

example, the macroscopic fission cross section would be defined as =
’ * .

i

L =No, ) . AR 25 3§ R

In a simflar fashion we can define
I SN0 , I ENo ' ~ (I1.32) o
a a s s . ;

Notice also that in analogy with Eq. II1.20 ’

Zt =Za+Zs

) T
1 o

It should be stressed that while one can formally define‘such macros- )

copic cross sections for specific reactions, our earlier discussion

.
a

pf neutron penetration into a thick target applies only to the total )

macroscopic cross section Zt. We could not extend téis discygsion,
L ‘ <

y . ¥ )

e 2o
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for example, to the calculation of the probability of neutron pene-
- . . ﬂ' 0 .

e

. ) tfati:pn to a depglh x prior to absorption by merely replacing Zt in

, Eq. (1I.26) by'e).'.a since it iua}"_ be possible for the neutron to undergo -

5

R PR 3 . ¢

a number\ of ,scattering reactions before finally suffering an absorp-

4 3 . - R N

. . A

tion reaction. D . -
Q : ~

M ¢

~

o B ] .

: _ II.5  CROSS SECTIONS OF MIXTURES AND MOLECULES
S o

,

i
J
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f

The concept of a macroscopic cross section can also be generalized

Fd

to homogeneous mixtures of different nuclides. For example, if we
, have a licmogen:eous mixture of three diffgireﬁt species of nuclide,
’ / ’ b ‘ . &
X, Y, and.2, with respective atamic. number densities Nx' NY and Nz then
. . - ; ’
F) . a

the total ﬁaaifréscopic cross section characterizing the mi{xture is

- ’ . ™
«

[, - givén by S - )/ -
o . : ~ . { o .

o ' s
| P ) ' - o X 2 . ’
¥ Lo = N0 + N 0f +N0% . (II.34)
- 2 ' - . . {
e ] ! . =g » -
L ' where. otx is the microscopic.total cross section for nuclide X,
Y e . rt . . . R
- A N ’ .. \
¥ .. . ‘and so on. It should be moted that such a prgscript;.io for de}{r;-
: {J : " mining the macroscopic cross section for a mixture arises te natu-
¥ rally from our interpretation of such gross sections‘as robabl/htxes . )
- of reactiona/ ) o ,
,};.,/‘ . % . ’ . ' ) N ) C . “
/"'" . P ‘ "~ T ' -
’ As we uem:ioned eatrlier, all neutron—nuclear reaction ctoss sections
"‘)‘ ’
’ (fission, radiative capture, scattering, etc.) depend to some degree
i P Ed
-§ . on the enerdy of theé incident neutro{; If we denote’the neutron energyd
e
\ by E, we ackqowledge, this dependence by includmg a functlonal dependence
4 , \
i

~ on E in the nicxoscopic Cross section o (E) and hence by .mference also

s . I

. \ s,
iy ‘ ' k,\,/ I " h
‘ ' [ , .
. . .
v
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~ id

in the macz"%copic cross section I(E). . /
~N ) - ' «
° [

However, the macroscopic cross section can depend on additional variables
as well. For examplé, suppose that the tar:get material does not have

a uniform composition. Then the number density N will depend orn the

“

position r in the sample, and hence the macroscop'g cross sections

themselves will be siaace—depenéent. In a similar manner, the number
densities might dex;end on time - suppose, for éxample, that the nu-

clide of .ipterest was unstable sﬁch“that\its number densit”; was deta-
ying as a J‘:;Jnction of time. Therefore in the most general,casetwe

would write . . /

. L{r,E,t)'z N(r,t)o(E) (11.35) -

- ¢
‘ e

. 2 . . ]
to indicate the explicit dependence offthe ﬁacx:oscopic cross section
. ’

3

In summary then, nuclear cross sections cRn be used to characterize

- ¢

- ’ the probability of various types of neutron'-n;ﬁear reactions "occuring. l

They obviously will be a very basic ix_’lgredient in any study of fission‘

chain reactions. The determination of such cross seci:icmq is the task

v

of the nuclear physicist and involves both experimental measurement and

4 B N o

theoretical caicu}.ations.' The enomous uﬁpﬁnt of cross section informa-

- 3
- s

 tion required for nuclear reactor analysis is gathered by numerous nuu-
- ’cle'a;: researg&h ﬁenter's throughout the wo_rld._ These cross section data

are compiled,’ ev;;luited, .and then organized into data sets to"be used

kS 1

o by nuclganengiineera. We will return /*1 a later section to qiccuss
. . <2 ; N . @ . ‘ e
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in further detail such nuclear cross section data sets. “For convenience, ~

however, we have included in Appendix € a table of smé of the more

important cross sections characteristic of “thermal”™ neutrons - that

N vma e e

is, of neutrons whose energies are camparable to the thermal energy

of atoms in a reactor core at room temperature, E = 0.025 eV - which 1

'3

serves to illustrate typical orders of magnitudes of these quantities.

C R TR R T TR TR TS e TN L N T T T e TR
. e et e = sty

- : 0

11.6 GENERALIZATIONS OF THE CONCEPT OF T CROSS SECTION
7

B P

+ 4 ~ '

3 ke b

‘ 11.6.1 DIFFERENTIAL SCATTERING CROSS SECTIONS

, Neutron cross sections provide a quantitative measure of the pro-
bability that various types of neutron-nuclear reactions will occur.

’ 0
For example, we have introduced ca (E) to characterize the probability
(

\

that a neutron with kinetic energy E incident upon a nucleus will he
v

absorbed. Similar cross sections have been introduced to describe
B r

o

! reactions such as scattering. . ’

v Te

. N 14

feo

It is frequently useful to introduce a generalization of the concept

[

c}fg a neutron cross section characterizing the scattering reaction.’

3

In such reactions the incident neutron will usually experience a
- -change in both direction of motion and energy in the sc:attering event. -
(Just imagine a billiard-ball collision). The microscopic scattering

. N \
cross section will describe the probability that such a scattering

LN

collision occurs. ' However. it provides no information about the change,
. ) /
. } in neutron direction or energy that occurs in 8Such a collision. This

latter infomég;on is very important in certain types, of reactor stu-

dies. To characterize it, we must introduce the concept of the ‘ . 4

T
o
1
N
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differential scattering cross section. - . .

1

First we \must introdubce variables that characterize the motion of
the incident neutron. The naturdl choice would be the neu‘tron velo- k)
city,\v. Ther)l the cross section we wish to define would describe the 'R
probability thgt a neutron incident with a velocity v would be
scattered by a{nucleus to a new velocity v, !

f
Howev%:, in reactor analysis it will be more convenient to describe

the neutron motion with slightly different variables. We will essen- \\

tially decompose the neutron velocity vector into two components, one
variable characterizing the neutron speed and a second variable for
the neutron direction of motion. We use the kinetic energy-of the

neutron E = imvz instead of the neutron speed itself. Then to specify

3
the direction of neut‘}on motion, we introduce a unit vector in the
|

:

Q= v/|v| = é;sinBcosg + éy sinfsing + chos.G (I1.36)

-

where we have chogsen to represent this direction unit vector in spheri-

cal velocity-space coordinates (6.8) (see Fig. II.4)." Notice that to

describe the incident nettron velocity, we now specify both its energy
J

"~
E and ‘its direction §1. ' , N




Fig. II.4 The\ Neutron Direction Unit Vector
in Spherical coordinates.

1

) )

At this point it is convenient to consider how ‘one integra.tes over these
variables (as we shail hquIe cam?:. to do later Din this section). Suppose
we wished to integrate over \all possible neutron velocities. This inte-

gration could then be performed in either Caitesian or spherical velocity
{ ) : ‘

9 ¢

coordinates:l , . ’
P > o h - Year ) ;
L a6 sinbf (v)
ferseinr T ouf on £ o, 2= vt fo o |
A3 . N (II 03
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However we have defined the unit vector in the direction of the velocity

' vector as . Hence we can identify the angular portion of the integra-

tion in Eq.(II.37) as just the integration over all directions:

0

545‘1 Q ssz" agly  sinede (I1.38)

In this sense we see that the differential df) corresponds to a differen-

\

tial solid angle (not a vector)

dl= sinbdbag (II1.39)

One final modification is)useful here. We will usually choose to work
with the neutron energy E rather than the neutron speed. Hence rather

than choosing to integrate functions of v over all neutron velocities,
we will integrate functions of E and 2 over all possible neutron ener-

-

gies and directions: y

2

/ '$d3\)f(v)+ “3’ aE fmr anf (E,R) . (11.40)"
i ,

- -

So much for mathematical prelimiraries. We will now préceed to intro-

duce the concept of a cross section that characterizes the probability
. - 3

9

that a neutron is scattered frdn an initial enerqy E and directioen of

motion 5 to a final energy E' and direction of motion . To make life

n.
[ " . .
siqple, we will first do this for the Aituation in which we are only

interested in the change in/neutron energy in scattering. Imagine a

beam of neutrons of incident intensity I, all of :energy E, incident upon
A

a thin target of surface atpmié &ensity PA Then the rate/cm2 at which

! 9

I P
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)

neutrons will be scattered from their original energy E to a final ener-

i

gy E' in the range E’' to E' + dE' is proportional to the beam intensity I,
the target surface density N.» and the differential range dE' of final
energies. We will define the microscopic differential scattering cross

section Og (E*E’) as the appropriate proportionality parameter

i

2 ' R '
- ' I1.41
Rate/cm™ = os(E -+E'")4E INA }‘OA ( )

Hence we find that Oy (E#E') characterizes the probability that a scatte-

‘ - Y : - ¢
ring collision changes the original neutron energy frofit E to E' in 4E'.;

-

It is important to notice that this differential scattering cross section is
, .
a "distribution" in the sense that it is associated with a certain range

of final energies, E' to E'+ dE'. Hence its dimensions are cmz/ev.

There is a very simple relationghip between the differential scattering

14

cross section os (E+E') and our earlier definition of the microscopic
. .

scattering cross section Og (E). If we recognize that the latter guan-
tity is just related to the probability that a neutron of energy E will .

suffer a scattering collision, regardless of the final energy E' to whiqéh

v

it is scattered, then it is apparent that 08 (E) is just the integral of

Vi
the differential scattering cross section Us (E~+E') over all final ener-
. : L :

gies E' : ~ '

7

os(E) =S dE"os(E-rE') ) © {11.42)

A
F
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;
4
i
l

R
. { ’
It should be _‘erntioned that occasionally one encounters a somewhat differ-

[

ent notation for the differential scattering cross section which may be
written as do/dE. We find the convention of denoting differential cross

' B
sections by a multiple variable argument such as (E*E”) to be more

e

convenient for our purposes, and hence will use this notation throughout.

ce

We can similarly introduce the concept of a differential scattering cross

section describing the probability that a neutron sca'tters from an inci~-

dent direction 2 to a final 'diract‘iqg,ﬂ’ in a very similar manner:

[ |
] '

.

) / ‘ 3 Q-
os(ﬁ-)?z’) ’ : o

\

Once again, Gs(mﬂ’.) is related to our earlier microscopic acattei:ing ) .

cross section by an &r(tegration over all final directions.
Y .

o, @ = o (bdYan” =
s gﬂ 9( d s (II1.43)

4. |

Two comments are useful here. First, it should be mentionéd that the

.

'S

dependence of the scattering cross section os(ﬂ) ‘on the incident neu-~
.. o~

tron direction is usually ‘ignored. Indeed very° few microscopic gcatte-

\’ring cross sections in reactor-applications depend on the incident neu-

tron directién bécauée the nuclei in any macroscopic sample are usually

H]




-~

randomly oriented, and thus any directional dependence averages out , \

when averaged over all possible nuclear orientations. , &me could ima-

gine a sample in which most of .the nuclei could be aligned--eg., a

ferramagnetic material-- but such situations can safely be ignored in

or

reactor analysis). ' S/

In this case, however, even though the differential s;attering cross
section o (;Ha') \;rill not depend on the incident neutron direction, it vl
will depend on the change in neutron direction. This is most com.lenien—
vtly expressed in terms of a functi?\nal dependence on the a;gle through
which the incident neutron is scattered--the so-called scattering angle 9,
or more conveniently, the cosine of this scattering angle, u OEcose,
which can be conveniently expressed as the dot product between the unit

direction vectors H = 0.1 . (hAgain, the dependence on azimuthal angle ¢

0

does not arise for materials in which the nuclei have a random orienta-
. Fand

tion.) One occasionally denotes this functional dependence by writing

Fig. 11.5 Definition of scattering
angle @ ‘ } &

.
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We will continue to use the somewhat more formal notation by writing

o (WQ'L,{}even though we know that this differential cross section

usually depends only on U 0

Thus far we %ve developed the concept of differential scattering cross

sections that characterize the probability of scattering from one energy -

to another or one direction to another. We can combine these concepts

by defining a double differential scattering cross section that charac-

' ~

terizes scattering from an incident energy E, direction Q tona'final

\

E' in 4E' and Q'in 4du .

A A -

o (BE',0') . '

~ ~

Again, alternative notations are occasionally used such as os (E,»E',Q') or

dzos / 4E daf. ! Co |

7 ~ - N .
We can again relate the double differential scattering cross section to

the differential scattering ¢ross section or the scattering cross sec—

tion by integration over energy or angle:

= 9

A L oot e W o
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ca\(E"E } = S41r dan OS(E+E s XRY, v (IT.45) )
or '
o_(E,Q +07) =$0°° aE” cS(E»E’, 07D, ' (11.46)
o
[« =] A A ~

o (E) = f dQ"lS dE” o4 (E-E’, Q%) (11.47)
s 4 o )

' ' - , 13
The concept of a differential scattering cross section can also be applied

to macroscopic cross sections by merely multiplying by the atomic number

density N:
I_(eE, ®Q')=No_(BET, 2+0”) (11.48)
z (E'*E')ENGS(E-PE') . , ‘ (1I.49)
I {H7)ENo _ (#07) R {11.50)
s s !
£
Such differential cross sections are quite important in nuclear reactor -

analysis since they determine the manner in which nedtrons move about
in a reactor core, as well as the rate at which they leak out of the
reactox. To prepare the way for the calculation of such cross sections,

let us first decompose the differential scattering cross section into 2
-

)

two factors:

0 (BSE") = o_(E)P(ESE”).
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If we recall our earlier definition of the scattering cross section,

»

cs (E), then it becanes' apparent that we can identify
@ &
P(E+E')dE' = Probability that a neutron scattering with
initial energy E will emerge with a new
energy E” in the range E* to E” + dE”.

We can explicitly calculate this quantity for the situation in which
neutrons of moderate enexgies (E <1MeV) scatter elastically via poten-

tial scattering from stationary nuclei of low mass number A.
1I.6.2 KINEMATICS OF NEUTRON SCATTERING FROM STATIONARY NUCLEI

The kinematics of any two-body collision process is simplified very

considerably when analyzed within the center-of-mass (M) coordinate N

frame. We have sketched the collision everit before and after the colli-
. .

sion in both the LAB and CM coordinate ¥rames in Figure II.6. Here, lower-
case notation corresponds toche neutron and upper-casé notation to the

o
nucleus. The subscripts L and C refer to LAB or CM frames, respect}vely.*

;oo S
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the CM frame are_given by . )
v
\
A ® !
v, =Vv, =~V = v ’ ,
c L Al L . (I1.53)

.We can relate the total kinetic energies in the LAB and (M frames by

. the important relation between the energy in the (M and the LAB frames as’

64 '
.A'
The velocity of the CM frame is defined by N
v = 1 1 .
] ™M (va + MV ) =(__‘) VL (11.52)
{m+M) 1+A

\

where we have assumed that the initial nucleus velocity VL is zero noting
. . ‘
that the nucleus~-neutron mass ratio M/m is essentially just the nuclear

mass number A. If we note that the neutron and nucleus velocities in

(I1.54)

| ) N
then it is apparent that the total momentum in the CM frame is zero,

<

as it must be.

4 )

comput ing , \ o -
¢ ; o . N ?
2 2 » : -
LAB: E = imv + 3gf ‘ © v (11.85)
' oM: E, =dmwr? ¢+ iy’ w 3pul B v (T1.58)
*FC s \{: L ) .

13

° n

where we ’have lintroduced the reduced mass U ZmM/(m + )i) . Hence uwe find

N

S
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- - N \ 4 -, - . v
- E_z " E, = A E_ ’ <
. me+ M 1+
’ i N © V’h
("ﬁ' ? N rd ° ‘.
PR L] N : t \
\ . In partxculan it should b¢ nnated that the total energy in the ™ system- ,
) '

. is always less than t.;nat }.n the ' LAB system. 'l'he qnergy dxfferen;:e is © N\

taken up by thg center op mass mo;ion itself. ™

o
1

Ve - ' ° .
Uslng conservatmn of tum and energy, it is, easy )'for one tp 'demons-
trate that the nagm.t des of the ™ velocitzes do nct change in the
collosion: = - ', ) R ©y ’
. ' ' . i
v L < - ’
. ¢ . o
-~ A- ° / . ¢
? LV] c. =V M v /r\l LA (II 58)
A+l L Ry "
. > ' -,
. * _ : 1 ® ’ N —— -4
UC sl}E = v Y . — N ) : “’ (1'1.59)
’ 1l 1 A + 1 Li e > . N “
[ | Do ¢ []
. -f . \ -
I ), // s . . ; ¢ p o
i e '

lotity vecbo?s are to’ca!:ed through the'M scattering angle 8 ..

This fac:t/gl ows due to relate t.be scattering angles in the LAB and CH

ider the vector diagrun in f‘lgure II'I ﬁlustrating the velo-

‘

.}\ v LA -
. - 4
If note ?éan this diagrm that. . T
K D‘ , LN ) -
E . ' . i ', PR
' PV > -~ . ) > : Co * ®
. Yisine, = VG sing L (11.60)
. * - ) e ‘Ii -
AN
., . 4 :
i i » ' ’ -, ® ’ d N . n :
. ngBi- = \)cn iUcc?yeq % o (I1.61)
6 " . a y . ' :
[
. y 3 A
‘. R ° i ’ e ¢ ' °
- ' , 0 B
P 7’ '\y .’ °
s - » *
. - - * . 13 . '
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Ean’ rehte the scattgr angles in the CM and 1AB frmgs by

B . -

"y ‘ . - v sing ~ 7 sind R
.o tan6, = c <. = _° (11.62)
o e Ucn #V C~cosec % + cosfc '
- . ) A . " - \ ? ’ 4
This relationship 1s particularly use‘ful since cross sections are usually ,
) - .
’ : calculat:ed in the CM frame; hut are measured and used in the LAB frame. A
. " \
*
’ If we denote thé differential gcattering cross secticmz characterlzing
- \ ,
Bcat&enng thtough angles 9 and - in the 1AB and M frames, GL(G ) 1
Y : and L (ac) respectivel}:, we can use B
- ’ . ’ 'ﬂ k]
+ ; ‘ . , / Ey
. ) . 4 . ' w N '. « ]
‘ o (BL)slxneLaeL = 0, (0. )8ing a0 . | S )
. . " ' - ! c
Iy ’ A * ’ » ‘ - » PR e <
to relate the LAB and (M differential scattering.cross sections by p
a Ty - ' t * Iy
. . l" . ) . ) . . ' -
v . : £ 3/2 “ _
/J}\ﬂ ) 1 :. 2 Qs ec 41 ¢ % .
-] . (11163) i
2 > v ’
3 ’, o
..’
’ :. b wy =" t .
H ‘, ° [
) . ’ ™, 3
S - - 3
oty ’ , A
' h 3 ? ' ’ -3
Q! N
- ‘) .
. G . . X, ra E ¢
) & Fig. I1.7 - -Relation Between the Scattering Angles. =~ =~ = ¢ N
, o . . in the 1AB.and CM Frames. o .
- R o ‘ % . . . J (. )
: ’ T 4 <A
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( Returning to our. vedtor diagram in Figure 1I.7 and using the law of

. - that it inpli%l. that the energy transfer from the neutzm ‘to the nucleus .

[ 4 67
4 . Y o

. . s . I

\°

cosines, we can find

i} ~
o vi2 g2 2 . s
cos(180 -8 )= €. ‘e T L . (IT.64)
R c o3 ,
RVAVRY L o
. RCAE-

but using Eqs.(II.52) and (11.56) - We can rewrite this as

\

It is useful to introduce a parameter rélated to the nuclear mass number .
’ S . ~
¢ ;

' B
. , .
° “
. ®
° N ,
+ f
a

- - a"‘_'(A—l)~ . o. ““ z N ) - (11.663
At L ’ p S :

¢
N

s+

Then we éan yxite the final neutron en;atgy after coll‘f‘si(m, 'EfEE' , in
@ / —

terms of the incident njputron energy, E,5E as o C W
) /’ . T ~ ' . t , . ’ ' ,‘l B 4 0‘:

L B .[:uw a) + 1 -a) conﬁc] 4 A (11.67)

T . 2 _; . i e . T .

. . o ’ ’ ‘_‘ P " 7
4 ¥ -~ 4 N 5&
S . .o . ~ :
I.et us study this Yyery i.nportant relationh in. norc datail First notice: 3
¢

is’ directly related to thn scattering angle in tbe CH fraue. For example,

1£“e = O, then t.he neutron would lou no energy (B, = B,). TRis corres- .,
Y —
. N ’ ﬁ " - , » y )\ - .
. - » i -~ il
) ‘ ~.
@ o . " - N ’ } "
H . ) ) “ o . ‘ s
4t T .
s S ¢ B

+3

1/2m'uzi 2 !. E' = AZ +14 25c939c (II.GS(’
1/2my 4+ 12 ’ - > :
~ ‘/ e i,

fu
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. ! <
ponds, of course, €o no tollision at all {a "miss"). The maximum energy

loss occurs in a backscattering collision in "whichg,\e": = 1§O°. " In this.

-

case, E_=QE., Hence the maximum energy that a neutroh can lose in an

f i’

e{astic scattering collision with a stationary nucleus is (1 ~« )Ei'

A s
For example, in scattering collisions with hydfogen nuclei (A = 1), the

neutron could conceivably lose all of its energy, while in collision N

2380 it could lose at most 2% of its

ok
7.

with a heavy nucleus such as

incident energy. .

In sumary, then, we have' discoverd two very impo

7

v

ant facts. Pirst,

a neutron cannot gain energy in an &lastic collision*with a statiopazy

€

nucleus, (E, fs always less than E ). ~Second, the neutron cannot’ emerge

15f less thap aLEi.

fram an elastic scatf.ering collision with an energy

ki . . PR . ‘ PN v
We can now go oné step further and act.ué\lly caiculate the scattering P
. iy 3 .

“ o~

prohability dist:ibution,,, P(E®E'), or in our present notation, P (Ei-’Ef) ‘

Pirst ve

for the case of ela:tic sc.lattering frae stationary nuclei,
‘note fxom our preceding discussion that. ?( +E ) must vamish if the

" £inal mergy E does not fa11 vithin the range .\ zi<z <E

To calculate '

° P(B -*B )\ in this range, we will utilize the telatimship Eq' (‘E_-‘"{) .

4 o

. &

3

, If we will recall:sthat L.m, is a'one-to-me re}.utiomhip between ‘the .

a !

%autton ‘energy tran-for and the scattering anqlc, wc can 1n£er that

thare must u;milaxly be asrelaciomhip betvnn thc pmbahilit Of ‘the
p:o&i

E, 2 lity

i 4
‘ t.hrw)gh a given scatt.ering angle 6 s Yet th;

and- the

.

neutron expe:iencing a given energy trmfcr
that it will be scatt
pmbability of scattaring through\an angle 9 into. de about € is just Ly e

given_ by"

-

?




%em’ (8)

: W
?wsinecdec ’ (11.68)
& . - : g )

" P (0) 2nseind 40 =
c c ¢

3 .

' B

t ) Hence we can equate - 4 L -
! ° k

.

F’

1

]

) Ocm( 2 :
PESE,, = - CMOc) wés‘.nectmc

-~

-4
-

-  and snbst;tu}e—thi %to Eq.(II1.69) , we find the very important result

e" 6

- \

...<.E i ¢

. = <
P(Bi-rl!‘f) 41:0.@1(34:) +@E<EZSE o
~ @-ey'Eo - : -1
R i's e
<= 0, R othezvise b .
o * * ‘. . 5
- To complete the dete ation x:f P(Ei-'zf) , we still need to know the

Aifferential scattering cross section in the CM, frame. -Thi-’dl};xawlcidge

S must come from bothia coﬁp_idoration of tiuﬁﬁ:m Lchmicl and the Jetai~

[N
b

.+ led nuclear physis of the interaction. Fortunately, h%c;iex, we can

'_avoid such considerations since the CM potenti scattering cross sec~

w

tions characterizing neutrons of interest in reactor,ap;;lications (with
- - » v ‘ f

energie E<10¥eV) do not depand on 8  for light nuclei (say A<12).

3 ’ S
) +(11.72)
A L /s .

5 (11.69)
. . 4 . , A
a Y )
: , ! 8 R /~
. ‘ . . .

- ) - . ) Q L
If we now differentiate Eq. (1I.67) ) . : «
1
i ) E,(1 ~a) sing 48
F J . .
\ dﬁfg -2 3 £.C o, : ‘ (11.70),

‘ : X = : . . .
T That is, the scattering in the CM frame is imotropic such that- T,




N
c 70 .. v,
‘ . ' %: : i »
- ¥, -
H
!

Such behavior is known &’5 "s-wave” scattering (a term fwhich arises from o

quantum mecharucs) and is the most common -form of ‘elastic scattering in

§ . nuclear reactors. II-‘or heavier nucleik_thg:e will tend to be some mild
] . v F )

angular dependence of ocu(e o)+ but sinde elastic scattering from such’

nuélei does not contribute appreciably to neutron enerqgy loss i‘x most

!

nuclear reactor types, we will confine our attention here to s-—wave

& T T T T R R R T e TR R

elastic scattering from stationary nuclei. " Then, us:léx(g Eq. (1I. 12) in

Eq. (II.T1), we find that the scattering probab‘ility distribution for

N

\ . velastic s-wave scattering trom stat,:ionary nuclei t’.a.l':tasé)L the form
[ ) 1 - 1 L v
: = (1 =a) E__ ; <E_<
! PEPE) = (17a) By ,OF SESE (11.73)
. . v
< ! N
) : = 0, otherwise . ‘
: - ' oL
Notice in pa;ticular that the probability of scattering from an erergy
: Ei to a final energy Ef JAs independent of the final ensrgy Ef.
: B

) /’
’ «
.

U'sing this probability distribution, we can compute tze,'average final

exw'rgy of a néutron mffermg an elastic scattering collision as

/\ e L - i .
E -z:'ré? ' ‘
- i . - 1 90
i E.= deE,P(E0E,) = (..__ ) B : (11.74)
: ‘ a . 2 -, ,
) . E .
) 7 ' . i ¥
. - . B N )
. Hence the average energy loss in such collisions is
e \ ,
A ) By o ' ans)
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N - _ L1 .
For exdmple, neutrons suffering scattering collisions in hydrogen (az O ).

will lose on the average "half of th'e,iz: original energy in each colliailn.

. 238

By way of contrast, in a scattering collision with a U nucleus,

they will lose on the average less that 1% of their original eriergy.

s,

man now write Ehe'differential sscattering c}ogs section characteri-

[y

zing elastic (s-wave) sc.attering f?om stationary nuclei by substituting

Lo~ ’
Eq.(II.73) into Eg. (II.51)

o (E)) :
o (E{'Ef) = s i , QEi-EEIfEi (11.76)
‘(1 -a) E ‘
Y
0, . " otherwise '

/ N - . * -
This ig about as far as we can go in determining the explicit form

of o (‘Ei-*l;f) since the elastic scattering cross section 9 (E) itself\
depex;ds on the details of the nuclear potential and is generally oht.g;l—'
nable only by mc;lsuument. Fortunately 0'(3) c_hii:atte,rizihg potential .
scatterigg is cml‘;'r weakl& flcpendent on energy and. can treque’ntly be

{

taken as constant over a wide range of neutron energies.

Such elastic scittetinq plays a very important role in nuclear reactor
behavion gince it tends to slow the g&ht fission neutrons down to tl?'er-y
»al igs. However i.nelutic\s}\t\toring pt:cgss;l are also important,
p&rtic\:].arly in fast ma&oﬁs where neutx_'o;z moderation by Ij:ght isotopes.

[+

is minimized. | Since kinetic energy is not a conserved quantity in an

. inelastic scattering collision (the nucleus is left in an excited state),

o~

.- ) . o

-

5
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we ‘can no longer use s-i‘mple ‘kinematical arguments to determine P(E{*Eg) \
for sucﬁ processes. Rather one musf rely on measgrementé 'of the diffe- ’
raﬁ}a} scattering cross section or on nuclear moaéle. Althohgi‘x sucl{
models aré"useful for qualitative estimates of neutron-scattering, most
detailed reactor studies simply use the measured cross section in essen-
tially tal?ula‘r form for the various different “énafrgy transfer combina-‘
tions E4*E¢. ’

One final comment ﬁﬁould’be made ct;ncem}ng the "other half” of a
scattering event, namely the nuclesr recoil. ’Althoug'h this is of
little concern to the neuti'on‘economist. it is of very considerable
concern to the reactor é?signer s/ince.the recoil energy of a nuc;leus
suffering'a collision with a fast neutron will be qufficient to rip
it completely out of its crystalline lattice.' To be more specific,
the average recoil energy of a nucle?xs su:feri;\g an elastic scattering
collision wilth a neutron is just ?(1 -a) By (recall Eq. (x1.3s)).
Por fast neutrons, this recoil energy will be An the\ XeV to low yeil

’

range. Hence the recoiling nucleus will not only be torn out of its

o:m Inttice position by the collision, but will possess sufficient recoil
energy to disioqato other nuclei in the lattice, leading to signiﬁcnnt i
radiation damage-to ’the material. This is an extremely important
p'x'oéeu i:) fiaterials exposed to the high radiation environment of a
nuclear reactor core, and must be taken ;Lnto agoount’ in nuclear reactor

o

desidn.

j’ ' ‘

LN
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“11.6.2.1’ THE AVERAGE LOGARITHMIC ENERGY DECREMENT ‘ \

€

c

) }very usé’"fu}‘quantity in the study of the élowing down of neutrons is

\ { , ‘
e average valyé of the décrease in the natural logarithm of the neu-

N I ~
, tron enerqgy ‘Lper collision, or the average logarithmic energy decrement \
| o .
per collisien. It is the average for all collisions of 1In Ej - 1n Ej, .
) L, . .

i

‘

? . d.e., of 1n (E{/E;), where Ej is the energy of the neutron before and
. T . B

E is that after a collision. If this quantity is represented by the

symbol £ then, taking into consideration the equal probability of all

o

; values of' cos ecfrom -1 to +1, it follows that .
| ’ B

i , By, -
! —_— 1 1ne=d (cos 8)
§ £z1 Bl = J, "E’z 0 o]

1
4 | /“' f.y dlcom) |

et

" . (11.77)

? («

'

5

* “'\

*» | ‘ .
where the integration limits refer to cos 6. Upon substituting the

'éxpression for EZ/EL from equation (II.65), it is found that T ay
| ,

{ . -
v G

»

a

. ) ,
A-1) , A-3 B  (11.78)

\ . E-l-.-

2

o

or, using tfie definition of & from equation (IX,66) ‘
- \ ' .

Eml+—207na )

l -« "

. ¥ »
For w’}alues of A in excess of.,' 19, a good gpbmximntion to equation (IX.79)

may be written as

. ‘ - " (1E.80)
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" by E for <t:he given moderator; thus,

*

¢
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-

Even for A = 2, the error o;E equation (II.80) is only 3.3 per cent.

It will be seen from equation (11. 79) that the value Of £ is 1ndependent

Y 2 ) 1

of the initial _energy of the :;utron, provided scattering is symmetrical

rl

in the CM system. In other words, in any collision with a given scattering

nui:leus, a neutron loses, on the average, the same fraétion of the energy
N

it had before collision. ' This fraction decreases with increasing mass of

‘/’\\ ' ) t‘\“)'f/
the hycleus. , It may be repeated here that the foregoing results involve {
\ b - -
/ [V
the assumption of an essentially stationary nucleus prior to collision; AN

this“'is justified only if‘ the vibrational energy of the scattering nucleus

is small compared to the kinetic energy of the neutron. Such is t';he case

for .neutron energiles in excess of the thérmal value. The values of a and i
£ for a number of elements,bespecially those of low mass number, are

given in Table (II.1). The average number of collisions with nuclei of

a particular moderator required to decrease the ‘energy of fission neutroun, ’ ? f~

with initial energy of, say, 2 Mev, to the thermal value at ordinary tem-

5 3 .
peratures, i.e., 0.025 ev, is obtained upon dividing 1n (2 X 10%/0.025)° 3 ]

Al

¢

o : 2 2308 ,
@uage number of collisions to in oEozs‘ 18.2 (1I.81)
3 4 N . o = * e - .
thermalize (2 Mev to 0.025 ev) £ g

Some of the results obtained from this equation are includéd in"ra.ble

II.1. ‘ . : ' - - B

)



TABLE II.1 SCATTERING PROPERTIES OF NUCLEI "

| o ! ]

Ev' | ‘ “.- Element : ' Masf ?Jo. a £ Corlhlei:.i:? iszeto

’» | \ . ‘

| , Hydrogen........ 1 ‘ 0 1.000 ’ 18 t

-, Deuterium....... 2 0.111 0.725 25 i

| Helium. .......:. 4 0.360 | 0.425 43 T

| Beryllium.......[ \ 9 0.640 | 0.206 86 t
CATDOM. « e yevenns 12 0.716 | 0.158 114
Uranf\m’:/.f. ool b 238 0.983 | o.000838| 2172

.‘\- ‘

[N -

11.6.2.2 THE § FOR HETEROGENEOUS MODERATORS

. -

If the moderator is not a single element, but a compound containing n

nuclei, the effecti;le (or mean) value of £ is given by

\ -
P - Uslgl + 03252 + ..t.- + Ugngn ’ . (11.82)
091 + 082 G ree csn Y
Ve * :

a

where Og’ is the microscopic scattering cross section; the subscripts 1, 2,

«++, n refer to the respebti've muclei. For water, for example, containing

two hydrogen nuclei and one oxyg:éx nucleus, the appropria-te expression for

E1,0 16 A “ '

. . |

4 ~ Eiyo = o) T 90)E© g e »

' 20g{n) + 98(0) ' ’ , k)

" E 3
t -

. 3

. ‘ N - o . ) .o » .
+ -since E{ is unity. Similar expresaions are applicable to mixtures of

elements or compounds. : - ol




o \
{ II1.6.2.3 SLOWING DOWN POWER AND MODERATING RATIO -

According to equation (II.81), the value of £ is inversély propoxrtional
to the number of _‘scatterinq collisions required to slow dqwn a neutron
from fission enéxgy to thermal values. It is thus a partialfm;asure of
the moderating abilit\y of the scattering material. (“A good moderator is

L SN T

one in which there is a considerable decrease o%eutron energy per’

[

collision on the average and ,/;1ence. it is deﬁirabl‘e that £ is of 1little
’hsignificance unless the probability of scattering, as indicated by the

scattering cross sectlion for reutrons. with energy above thermal, is also”

‘large, The product ELg, where Iz is the macroscopic scattering cross
k ' n e .
section of the moderator for epithermal neutrons, is called the slowing

down power. For a compound, the slowing down' power is given by \ 1

1
l

»ELg = N(V1Og1p1 * V2Ogpp2 * *** Vi%iEi * *"" VnOsnfn) »  (11.84)

+

where v; is the rumber of atoms of the ith kind in the molecule and N is

the nuber of molecules per unit volume- of the moderator. The slowing

7 ~

in the logarithm of’ the neutron energy per cm of path. The slowing down -
. powers of ‘a number of materials consisting of (or containing) elements /

of low mass number are recorded in Table (II 2). (Cross sections are §

assumed to be constant in the enargy range\from 1 to 105 ev.
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-
sponds to the first virtual state in 017, \has a total width of 4lkev,
giving a mean lifetime of 1.5 X 10 21 sec.” Thus it is highly likely
tﬁat the compouiid state in U‘z39 decays at least to some extent by y-ray
emission, while the_compound state in 017 must decay primarily by Pugleon

.. . 16 ., .
emission. The 443-keV resonance in O is clearly a scattering resonan- .

: , 238 , ,
ce, whereas the 6.67eV resonance in U is in part (and almost entirely,

v 2

2 i ey

as it turns out) a capture resonance.

ik

t

In view of the fact that the cross section for radiative capture is only
large at low energy, ft follows that it is primarily s-wave neutrons which
are Ainvolved in this process. In this case, near an isolated resonance

‘at the energy E cY is given by the Breit-Wigner one-level formula: (Ref.l,2 )

v

ll

2 ] rr
GY(EC) = 'nXlg ‘,El\’ ny ‘
E 2 2
c (EC - El) + T°/4

o

(I11.86)

» . ' ‘ ;
.

Here, Tn and I‘Y are the neutron and radiation widths, respectively,

° |

capture resonances are found only in intermediate and heavy nuclei, the
center-of-mass energy Ec is essentially equal to the labora,\:ory energy E

¥ -of the incident neutron. This is true, of course, provided the target
ﬂ" t ‘

5

E]
and the other symbols have the same meaning as in Eq. (II+85). Since %
f’é
8
¥,

~

leus is at rest in the laboratory system.

1
- ",
R

T
PR

» It sheuld be observed from Eq.(II;86) t:.hat when E( =Ec) is very much Q .

°

> SEATRR]

less than El,cY behaves as 1/ /:E:, that is, as 1/V, where v is the s'.peed

of the neutron. The magnitude of OY at low energy depends, however, upon

13T s

whether or not there is a resonance in this energy region. 1If there is

b

a low energy resonance, U_Y is quite large and the 1/V-portion of GY is

e ek T - - - —e— =
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short.. This situation is illustrated in Figure I1.9 for several ifmportant

nuclides. T : p— T
1,000,000 »
) 100,000 .
-
Q
.2
2"

el
-

£ 10000 -
X3
in
2
Q
x
3]

7 1000 —

v 100 -

l | ]
| 0001 0.01 0.1 1.0 - 100

Enorgy (aV)

Fig. II.9 Low energy cross section behavior. of several important
nuclides.

»
t

CHARGED-PARTICLE REACTIONS

. [, ~
: .

Neutrons also disappear as a result of charged-particle 'reactioﬂs, such
as the (n,p) or (n,0 ) reactions. These reactions are usually endothermic

"and do not occur below a threshold energy. For a few light nuclei, however

N they are exotghermic . , —

T T Lipni e o R




‘The most important exothermic reaction of this type is the Blo(n,u ) ,Li7‘ )

reaction. The low-energy cross section for this reaction is very high,
and)for this reason boron is widely used to absorb slow neutrons. The total

. 10 . : . .
cross section of B at low energies, which is almost entirely due to the

<
(n,Q) reaction, is shown in Fig. (II,10). It will be noted that o,

4
is 1/v over a wide range of energy.

.
3

} 10000 — i
f - .
s \ ' , \ ’
{000
| - ‘ h
; :
G, = | %
s , - .
| 100 N
z . '
, .10 g

.
-

!, T s )
’ wt o e 1o o .
. . - \ 10 5
L, Figure II.10 ghé}!‘otal Cross Section of B from .01 to 10 eV
. ,,{ s‘ .
&, - )
The reason for'this is as follows. It can be shown [Ref. 2) that except in the
V ' vicinity of resonances the- cross section of any reaction of the type (a,b) . }
| ' . 3
V)is given by the formula~ 3
* -
‘ ¥
- % - o’ < &
( Eb ) H(Ea) r 3 e
.- %a,p TI E — . (I1.87) 4
- - - a - ! i
. %
' i
i

‘where Ea and Eb are the kinetic qnergies of the incident and emergent
/

S
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particles, respectiveiy, and H(Ea) is a slowly varying function of Ea'

1f the reaction’is exothemmic, Eb will usually exceed Ea by several MeV.

Hence, at low energies of the incident neutron, i.e., eV, changes in Ea .

have almost no effect on E . The cross section therefore behaves essen-

¢
. tially like 1/ /Ea, that is, like 1/U_. . ®

[N

A similar excthermigc reaction which also shows a strong l/u behavior is

Lia(&,a )H3. This reaction is used for the production of tritium, H3.

{

-

Ancther important charged-partifle reaction which occurs with low-energy

, 4 1 . ' , .
neutrons is the Nl (n,p)C" " reaction. Although the cross section is not

partic&larly high (1.8 barns at 0.025eV), many neutrons emitted from nu-

clear explosions are absorbed in the atmosphere via this reaction and

a

produce the long-lived and potentially dangerous B-emitter Cl4.

-
. -

Some endothermic charged-particle reactions are important in reactors

even though their thresholds are high.s, In water reactors, for example,
. A
16 16 S o N U
. the 0" (n,p)N reaction is the principal source of the radiocactivity of

*

"the water (the Nl6 undergoes f-decay with a half-life of approximately 7
sec, which is accompanied by the an%;sibn.of 6- to 7-MeV y-rays), despite

>

the fact that ordinarily only one neutron in several thousand has an ener--.

gy greater than the 9~MeV threshold for this reaction. o ‘n

v
{

-

.

&

£V
With intermediatg and heavy nuclei, the cross sections for charged-particle /jy
P %

regactions are' so small they canqgt usually be measured. This is because

the emitted charged partigle must pass through a coulomb barrier in order

to escape fram the nucleus in much the same way that a-particles do when

4

B N -]
.

'
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- {

emitted from radiocactive nuclei. Except for light nuclei, 'this barrier

: t .
is so h,igk\) and the associated delay in charged-particle émission i's so
)] ’A 9 'S
fong that the compound system almost alwsys decays by the emission of
— ) ;
an elastic or inelastic neutron before a charged particle ‘can be emitted.

4
>

> - ¥
I1.7.3 NEUTRON PRODUCING REACTIONS f\

-
A

. ' .
!

The principal source of neutrons in reactors is nuclear fission, and

this reaction is discussed in detail in Section II.8. Neut\yrons are also
Lad

produced in certain other reactions, however, though to a much\wler

extent.

v

1%7.3.1 THE (n,2n). and (n,3n) REACTIONS

«\ ‘ 3

The h,2n) reaction usually proceeds in two steps. First, the incident Pr
. - .

neutron is inela;tically scattered by the target nucleus. Then, if the
residual nucleus is left with an excitation energy.above the binding

\

energy of its least bound neutron, this neutron is free to escape fram

the system. According to the discussion on inelastic scatterifxg, ine,las-
~ -~ -

tically scafggered neutrons usually leave most of their initial energy

in the residual nucleus. This means that if the jincident neutron has aﬂ .

M

energy above the threshold for the (n,. 2n) reaction it is likely that a
second m\a‘utron will appear. As a result, the (n,2n) cross séct‘ion rises
rapidl* a;) wve its threshold at the expense of the inelastic cross section,
since the bulk of the inelastic neutrons :re now included as part of the , /

" (n,gn) reaction. This situation is illustrated in Fig.II.1l1, vwhere the

" 238

.

inelastic and (n,2n) cross sections are shown for U

il

IR




L

The Q-value of the (n,2n) reaction is equal, of éourse, to the binding

’ v - ¥
"energy of the "loosest" neutron in the target nucleus. The threshold

energy in the laboratory systexh is }hen given by

»
Ey =(A+1) Q. . ) (11%88)
A ,

12

o

' &
Nuclei which contain a loosely bound neutron, thus have a low (n,2n)

e

. threshold. One of ‘the most important examples of tpis kind is Be?, whose

{n,2n) threshold is only 1.8 MeV. Berylljum is often usedﬂzin gubstantial
quantities in reactors s and when this is the case special attention must
&

be given to this reactiqn. With most nuclei, however, the (n,2n) threshold

4
is in the ringe from about 7 to 10 MeV.

y

The relationship of thé?{:,Bn) reaction t}: the (n,2n) reaction is similar
¥
to that on the (n,2n) reaction to inelastic\a!cattering. Thus a third

'neutron will be emitted ‘provided t&’xe nucleus retains sufficient excitgtion

energy, after the emission of the second neutron in the (n,2n) reaction.

3.0

/

7
\

Y

& 7 ; 10 llrll ljl 4 1S f
neltcon enerqy MeV

¢ Pig. IX.11 The inelastic, (n,2n) and (n,3n) cross sections of U23?.

. (Based on R.J. Hawerton, "Semi-empirical Neutron Cross
Sgctions 0.5-15 MeV,"™ UCRL-5351, November 1958.)
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The (n,3n) cross section therefore .rises from the (n,3n) threshold at

the expense of the ‘(n,2n) cross section, as indicated in Fig. IX.1l.

Ordinarily, how&&gr, the -(n,3n) threshold is so hibgh (it ranges from
y X

about 11 MeV to 30 MeV) that this reaction i not important in most

-

reactor calculations.

-

In thié connection, it may be mentioned that if a nucleus has a low (n,2n)
N ,

threshold, it does not necessarily follow that its (n,3n) threshold will

also be low. For .instance, while the (n,2n) threshold of Be9 is only

1.8 MeV, its (n,3n) threshold is 21 MeV. The origin of this disparity

S \
%ies in the fact that although it may require only a small amguégof

»

energy to remove one neutron from a nucleus it may take considerably more

F
enerqgy to remove a sec%d neutron. .

Y9
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11.7.3.2 THE (Y,n) REACTION 2 v P
’ A% - N ' ' © N - °
When a ‘nuclear reactor is in operation, a.great many energetic Yy-rays T
a N L3
. A ) .
are produced in~its interior as the result ogffission; from the decay of
1 -t a a
radioactive fission products, and from various neutron interactions, in )
3 °' : . ' ) N . \}.
particular, radiative capture and inelastic scattering. The more ener=- . ’

T ] " ’
getic of these Y-rays can produce neutrons by the (Y,n) reaction. This °

reaction is similar to the (n,2n) reaction in that a neutron origimally

.

N .
bound in the nucleus is ejected in the .process. It is easy to see, in

< —l

4
- fact, that except for ce’ter-of—mass effects, the thresholds for the ,

. : . . . : L]
(y,n) and (n,2n) reactions are identical, and these reactions are there- 1

’ . B

° fore important for the same nuclei.. However, unlike the (n,?n) reaction,

L -
1
} the (Y,n) reaction continues to produce neutrons even after a reactor b

L]
.

, " shut down, owing to the continuing decay of the fission ‘products. .
. \ . :
. r | )

e
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NUCLEAR FISSION

II,8.1 FISSION PHYSICS
\

The binding energy per nucleon in atomic nuclei reaches ‘z;}s::\ximum of
(‘ -

8.7 MeV for nuclei mass numbers of about.50 (Fig. II.12). Hence

+

it is possible to produce more tightly bound nuclei and thereby re-

1ea§e energy by €ither fusing together lighter nuclei (nuclear fusion)

.or inducing a heavy nucleus into fissioning into two nuclei of inter-
.

R }
mediate mass number (nuclear fission). The observed stability of

heavy nuclei against spontaneous fission is due to the short-range
nuclear. forces within the nucleus giving rise to a potential energy

barrier that must be overcome before the nucleus will fission. - The

size of this fission barrier is typically 6-9 MeV in most heavy nu-
clei of ‘interest. Hence to induce fluclear fission, one must add a

ssufficient amount of energy to the heavy nucleus to overcome thik 2 .

5

fission barrier. C

This can be done in a variety of ways. Ohe could simply slam an ener-
getic particlé (with kinetic energy greater than the fission barrier)

into the nucleus. An examplelof such a reaction wouid be photofission,
o H

in which a high-energy gamma strikes a heavy nucleus, thereby inducing
fission. An alternative scheme would be to let the heavy nucleus cap-

ture a ‘neutron. Then the binding energy of the added neutron itself
x

might be sufficient to overcome the fission barrier and induce fission.

. . . : . 233
This latter process can in fact occur in certain heavy nuclei as u,

2“350, 239Pu, and 241Pu. Such nuclides that can be induced to fission

v
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L e ek e e

with neutrons of essentially zero kinetic energy {or of more relevance
to nuclear reactor applications, thermal neutrons having very small
kinetic energies, at least compared to nuclear energies) are refer-

red to as fissile nuclides. We will see later that such fissile nu- ' d

clides represent the principal fuels used in fission chain-reacting

systems. %
} l,.l._.,l..._.T | ] 1 ] 1 i s :
N Mn\.’- _ @ ‘j
= -
8 —.\“ , a.
. 8 e 7 . %
o ! .
~
R : -
4 ’
3 sH ]
1 'Q,, i %
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Fig. II.12 Binding Energy per Nucleon ‘ |
Versus Mass Number. . f\

.

With most heavy nuclides, the additional binding enexgy provided by a
' 4
captured neutron is not sufficient to push the heavy nucleus over the -

fission barrier. Frequently, however, one can add a dash of extra
. //
. . /. . . .
energy to the neutron, for instance by giving it a kinetic energy of
\ S
. an MeV or so, and this is sufficienj: to lift the nucleus the rest of ,

the way over the barrier to cause fission, Nuclides that can be fis-

B L et A S

i

e

sioned with such "fast" neutrons are referred to as fiégionable. Ex-

* J
amples are %;2Th, 2380, and 2409\1 (as well as fissile nuclet sqch as

v / ?
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35U) . RAlthough such fissionable nuclides do play an important role as

/nuclear‘fuels they are unable to sustain by themselves a stable fission

chain reaction and hence must always be used in combination with a fis-

sile nuclide such as 235U o 239Pu

There is also a small possibility that certain heavy nuclei will fission
spontaneously via the barrier penetration mechanism familiar frgm quant-
um me.chanics.‘niﬁowéver the probz;bility for such an event is quite low in
modt nucliﬁes of interest as nuclear fuels. For example, the half-life
for spontaneous fission in 2380 is some 6.5 x 1015 years. However even
this very slow spontaneous fission rate can be of importance in nuclear
systems, since even a few neutrons can be rapidly multiplied to appre-
cigble numbers in ;'a growing chain reaction.
f? N
I1.8.2 FISSION CROSS SECTIONS

v (‘\ "
AV ‘
We noted earlier that nuclear fission is a process that proceeds via com—/
pqund nucleus formation, such as does radiative capture. Hence ﬁ is noZ
surprising that fission cross sect\ions show considerable resonance structure.

N
InFigs. I1.13, II.14, YI.15we have "shown the fission cross sections character-

233 235 239
izing the principle fissile nuclides u, u, Pu, taken from ENDF/B-IV.

The indicated cross section behavior is very similar to that of radiative

&
capture cross sections. However this would be expected since we have seen
¥ .

that compound nucleus formation via neutron absorption is essentially in-
. : \

dependent of the mode of compound nucleus disintegration or decay, for ex-

ample, via fission or gamma emission. It is particularly important to note

that the fission cross section is over two Qd?rs_)of z‘nagnitude larger for

i
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Fig. II1.16 ° Fission Cross Sections of Principal
Fissionable Isotopes.
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low-energy or thermal neutrons than for high-energy fast neutrons !(above
1 keV). The thermal neutron fission cross sections are indeed enormous
for these fissile isotopes, ranging up to thousands of barns in magnitu-

’ .
de. Such behavior will prove of very considerable importance in our |

\

later %tudies of nuclear reactors.

c
1
\

-
o

We have Llso indicated the fission cross sections characterizing the prin-

cipal fissionable nuclides of interest, 232Th, 238U, and 24OPu (see Figure

I1.16) . Th&s cross section behavior is somewhat different than that cha-

* a

racterizing fissile nuclides since fissionable’ nuclides can only be fis-

sioned by sufficiently high-energy neutrons. This implies that their

{

fission cross sections will have a th¥eshold energy, below which the cross

\
section drops to zero. Even above this threshold energy (roughly 1 MeV),

\
the fission cross sections are quite low, being less than two barns.

B

A
o . 235 .
When a neutron is absorbed by a fissile isotope such as U, it may, in-

\
duce that isotope to fission. VYet is is also possible that the compound

nucleus formed by the neutron absorpticn, 236U";, might simply decay to :
\ -

its ground state by gamma emission., The relative balance between the

\
probability of fission é\nd radiative capture is an extremely important
\

factor in nuclear reactor\\ applications. We cHaracterize this balance by
X ¢

A B
the capture-to-fission rat\§o, defined by
Y
o
a = X : \ ' (11.89)
¢

\

This ratio depends not only on él\'xe isotope of interest, but as well on the
incident neutron energy E. It i;\ plotted in Fig. 11.17 for'the three pri-

mary fissile nuclides. It can be ?een that most neutron absroptiox?"m

]
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such isotopes leads to fission events (with the exception c‘>f-a small ran-
2
ge of o' > 1 for 35U). It should be noticed that a decreases quite ap-

preciably above 0.1 MeV. This latter fact will prove to be of conside-
‘ %
rable importance when we discuss the concept of a fast breeder reactor.

e I

(o]
o
o= m{U-235
g = a u-233_ e
& - x{PU-23f
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II.9 o THE CONSEQUENCES OF FISSION: Particles Emitted
; II.9.1 FISSION FRAGMENTS
; \’g\ N
; = .
{ s : With very rare exceptions a nucleus that fissions splits into two frag-
i
. mentsg.
Because of certain nuclear stability effects having to do with the nuffber
. ) .
/ of particles in the.nucleus, the two fragments are unlikely to be of egual
: .

’
-
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mass, In fact, curves of the probable distribution of masses, of fission

fragments (Fig. II1.18) have a decided dip in them when the masses of the

¢

fragments are equal. @

-

As can be seen only for the case of fission by high-energy neutrons is
J

there a significant probability of al split.

The fission fragme‘nts, as they appear initially, are unstable with respect

to the number of neutrons in their nuclei. Most commonly they become stable

. again through a series of B decays (emissions of electrons) which, in effect,

, -

transform the.excess neutrons in the nucleus into protons. Thus, in the

ey

course of their.gjagioactive decay to a stable end product, ®hg fission

Al
fragments assume a sequence of chemical identities, each successive one

. A
having a nucleus containing an additiondl positive charge. Some of the

[
members of these decay chains are nuclei that have a high probability for
L3
capturing neufrons. Such nuclei represent-a "poison" in the system in that g
they compete for neutrons with the fissile material. thus the details of

[ the splitting curves shown in Figure II.B are of some importance. It is
e

unfortunate in this regard that xel35, which belongs to the mass<l135
! | \

decay chain, is the isotope that has’ the highest probability for capturing

\ ‘ |

low-energy neutrons. Examination of Figure II.18 shows that the mass-135

R chain is one of the most likely products of a fission event.
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Fig. II.18 Mass-yield curve'for fission of 0235 by thermal, v 2-MeV

(fission-spectrum), 5~MeV, 8-MeV, and 14-MeV neutrons.

’

I1.9.2 NEUTRON EMISSION ( /
N '

Neutrons are also emitted in fission -~ on the average .2.5 of them,

the part:.cular number for any given flssxon event depending ony

’

the parﬁcufar split that occurs. The average total number of 1\eutrons

emitted per fission is symbolized by V. This quantity differs for the w

different fissionable materials and is slightly dependent on-energy.

Thus a more precise notation for the neutrons emitted per fission in,

) .
say U 35 is v235 (E'), where E' is the kinetic energy of the neutron

causing the fission.
/

The fraction of the V neutrons emitted in fissidn that are emitted bet~

%
3
\
%
g
‘
.
i
¢
9

ween the energies E and E + dE is symbolized by xj {E) being called the
fission spectrum fgr isot:ope j. Strictly speaking xj (E) also depends
pn the energy of the neutron causing the fission. -However this depen-
dence is slight and can, if necessary, be accounted for by'letf:ing the

j(li:) for different isotopes be almoat¢.ndistingulshable. An empiri~-

cal expression for the fission spectrum xj (I-_\z that can be use? in most

<
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applications for all isotopes j, regardless of the emergy of the neutron

-

causing the fission is

-

o

X(E) = 0.453¢"1-036E sinhv (2.29E) / (I1.90)

where E is in MeV. Since X(E) is a probability density, IZX(E)dE = 1. ’
The curve is plotted as Fig. I11.19. Note that the most probablé energy

of an emitted neutron is slightly below 1 MeV and that very few neutrons

Y _ are emitted with an energy’ greater than 10 MeV.

a

2

The neutrons emitted in fission pay be assumed to emerge with equal pro-

. bability in all directions. 1In otheg words fission neutrons are prbduced

isotropically. They preserve no "memory" of the direction of travel Q of

the, neutron that caused the fission.

] ' - /\\

I1.9.3 DELAYED NEUTRONS

R e

i
S u‘%

Not all the V neutrons emitted in an average fission event appear at once.

s A small fraction (0.65 percent for 0235) are emitted’ from certain of the

"

] " \ ‘fission fragmen&%\i after a B decay makes these fragmenté unstable with res-

., Al

o

: pect to their neutron content. ~ T};e_‘ggdecay that precedes .the emission of v

k L4 / T /‘

these delayed neutrons is a/élatively slow f;r"bces_s, the half-lives of the
o . \ )

4 i

unstable fission fragmex}tls involved being between 0.2 sec 4nd ¥ 54 sec.

SOCREIMGEAREN i ¥y

/
There are believed to pe about twenty fission fragments that emit delayed

neutrons. Such fissign fragments are E:alledﬂ delayeqs-ﬁ'e'ﬁtron preclirsors.

”

Eéch precursor has a ynigue half-life for B dec“a*};' (after which the de-
~

layed neutron is emitfed essentially instantaneocusly). The amount of pre-

cursor formed on the a )rage as the result of a fission is, however, not

*

/ e , X




. . _
unique; it depends both on the isotope undergoing fission and on the

enerqy of the neutron causing that fission. Thps the number C(t) of ——
o4 . ? ‘
delayed-neutron procursors present at a time t after a single; avera-

-

ge fission of fissionable isotope j is given by v

.20 . s
5 ciey =& vigngdeetidt
. 1 l

« (II.91)
i=

-~

z

where VJ (E') is the total number of neutrons emitted when a neutron of
energy E' causes fission in isotope j, BJi(E') igs thé fraction of vJ (E")

that will be emitted from precursor i, and A, is the. decay constant

. o
(Ai = 0.693/half-life) of the fission fragment that constitutes the

{
ith precursor oS5~ |

, . | N

/
. ’ E [MeV) °
R Fig. II.19 Fisg:ia.cgn Spectrum for Thermal Neutron Induced Fission
. i in u.
& .
4 . i
-— g . Rd ™
C-—\éf\\ F

n Wic: it is found that an adequate representation of C(t)/can .be
made if only six "effective" precursor "groups" are used (rather than

Y v

the twenty physically real frs:gments) . When this approx?tion is made,

‘however, the six "equivalent" A j's are no longer physical quantities and

)

F
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-

i 4re, therefore, slightly dependg:F on j and E'.

P »
s

Delayed neutrons (those coming from the precursors, as distinct from

prompt: neutrons which are emitted at esseq§ially the instant the fis-

4 sion takes place) are ext.'lely important in_determining the time-de-
pendent behavior of a reactor under non-steady-state conditions (when »
the number of neutrons cre;ted per second through fission differs from
the number used up per secopd by abs;rption and leai;qe).

!

I1.9.4 Yy Rays, B Particles, and Neutrinos . .

L%

E

F

3

E s

i ’ In addition to producing fission fragments and neutrons, a fission eyt -
L

'
also results in the release of y rays, B particles (often still rgfferred

&

to as "B rays"), and™aeutrinos. -

The Y rays come from three sources: those released Wt the ftime of the
* ~ ©
fission (called prompt 7Y's), those released as the result\of/subsequent cap-

, ture of some of the neutrons emitted in fission (capt.ra Y*'s), and those
9 L :
following B decay to an excited state of a daughter nyfleus.

-

It has already been pointed gﬁh that the B rays releaped as a result of
. the fission process come from the radioactive decay of the fission frag-
: ments and that neutrino release also accompanies this fradioactive decay. .

In fact the neutrino, the existence of which was orginaly postulated, to

vy

3
B
&
4
3
%
b
&
3
&

account theoretically for the observed characteristics ok B decay, was
first observed experimental}y with a nuclear reactor actind as the neu-

trino source.

Mok 3 et o Vot St s . .
: T T A W e
N N *

N




106 '
11,16 THE CON$EQUENCES OF FISSION: Energy Released
. . . L . = o
The energy emitted as the result of a fission is transmitted to the o

16cal environment by the particles and photons released as a conse-

-

o

quence of the fission. Thus, to see how this energy is converted in-

' to heat (the form desired for present power-generation methods), we o
+ ’ s

- shall follow the history of these emanations.

[ .

;I.lO.l THE ENERGY FROM'fISSION FRAGMENTS g

3 "r ' -

» . v The two fragments into which a fiséioning‘nucléus splits quickly re-form
into roughly spherical shapes, after which, since they are separat?d by
a distance greater than the range of the nuclear force and are highly .

.o charged, they are pushed apart by a very great Coulomb répulsivexforce.

Hence they pick up speed and go careening through the medium, repelling

< (by Coulomb interaction) other charged nuclei and, thereby transmitting

kinetic energy to them. These charged nuclei, in turn, push .their neigh-

bors. The net result is that the initial kinetic energy of the fission

o T Y s o

b

fragmehts ( Vv 168 MeV) is transmitted via Coulomb interaction in a cas-

u “r

+ cade faslion to the nuclei in the Yiéinity1110-3 cm) of the site where
§ ’the original fission took pla?e.l Thus the average kinetic energy of
these neighboring nuclei (i.e., their temperature) increases in a time
which, for purposes of reactof calculations, is instantaneous. About

Sé,percent of the energy released in fission is converted to a local

™

3

. ) e
increase in temperature in this manner.

-
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II.10.2 DISPOSITION OF THE NEUTRON KINETIC ENERGY

-

The total_kinetic enefgy of neutrons emitted in a fission'is 5 Mev.
This energy; corresponding to a speed of ™ 80 x 106 km/hr, is convert-
ed into heat as the neutrons collide with the nuclei in the reactor,
thereby increasing the average kinetic energy of these nuclei. If
they don't leak out of the reactor and are not absorbed, the neutrons
thus slow down until their average enerqgy approaches that of the atomsl
of the material making np the medium, v 0,025 eV, which corresponds to

a neutron speed of vV 8000 km/hr. Eventually (in 10“3 to 10-7 seconds,

depending on the medium) the neutrons are absorbed.

I1.10.3 8- AND y-RAY ENERGY-DECAY HEAT

s '

I

Tge prompt and delayed y rays emitted at the time of fission and later
on from the fission products each contribute "about 7 MeV of energy. -
Th; amount of Y energy rele;sed as the result of neutron capture de-~
pends on the material in which the capture takes place but is usually
in the range 3712 MeV. Strictly speaking this cagturejy energy should
not He counted as part of the’énergy released by fission since it real-
ly requires active contributions from other nuclear species. Neverfhe-

less, since its release always accompanies the fission release and since

it contributes to the overall reactor power level, we ‘shall include £t.

v
/ ’

N
Since v rays are not charged particles, they are not subject to Coulomb ,
.

S

interaction. Instead they lose their energy by’other kinds of electro-
magnetic interactions with charged barticles. Specifically three mecha-

nisms are involved: the photoelectric effect (most important for Yy rays
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' iy
\
)

of low eneféx, < 0.3 MeV), the Compton effect (most important at inter-
mediate to high energies, q.3—1o Mev), and pair production (most impor-
..tant at energies > 10 MeV)) All these mechanisms result in an energy
transfer to a charged particle, which then, 'because of Couloﬁb inter-
actions, moves only a short distance before its enerqgy is converted to

heat by the cascade effect mentioned earlier. Thus, once a’y ray inter-

-

acts with matter, the energy it transfexs isxgeposited localiy. However

» <
@

the vy ray itself may move a number of centimeters, or, occassionally,
\ ;p‘ L F .
meters before losing all its energy. In this respect ‘it is like the s

-

neutron, which also moves a number of centimeters, on the average, be-

1 N

fore being absorbed. Except in verj‘small reactors neither ¥-ray nor

.

neutron leakage out of the reactor amounts to more than a few percent.
However, even though most of the energy of these partitles is absorbed
within the reactor, the small leakage can be a severe bioligical hazard,‘
and it is therefore necgssary to provide a radiation shield for reactors.
The B rays released from radiocactive decay of the fission fragments con-
tribute an energy of about 8 Mevbper fission, and, B rays being charged,
this energy is immediately converted to heat locally.
Because radioactive decay can be a slow process, the energy of B8-and Yy

rays coming from fission jragments and from capture Yy rays is trans-

<

formed into heat relatively slowly. On the,average the fragments from
\
a single fission decay in time approximately as t~1.2 (1L sec < t < 106

sec). To be specific the average decay power (energy released per se-

cond) following a single fission is

P,(t) = 2.66 712 Mev/sec, t > 1 sec (IT.92)

i
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where t is the time (in seconds) since the fission took place. 1If a
reactor has been at a constant power cof;esponding to F fissions per

second for a very long time and then. at some time t_  (prior to t) has

1

been turnedwtff, we must add the average decay power from all past fis-
‘ -

(0]

sion to get the overall average decay power. To do this we note that
A

the contribution to the total~dec§y power at time t due to fissions

which occurred in time dt' equals the number of fissions F dt' that
&

€

12 W .
ARG T VRIS

occurred between t' and t' + dt'.times Pa(t + t'). As a result the

3

total decay power at t is

. "(I1.93)

. t
) 7o - 1.2, _ 2.66 -0.2
o (Fat') 2.66(t + t*) 53 Flt+ )

, (£ + to) > 1 sec

; wnt ' , H
1 . | .

Thus the total decay power following sustained, cohstant power operation

of a reactor falls off only as the 1/5th power of the time after shut~

- -~

down. Only a few percent of the total reactor power is involved in -

this decay. However, for a reactor which operates at, say, 2400, mega-

- »
watts, this is a substantial, long~lived decay power. Thus a power reac-:

-~

ql%or must be both cooled and shielded after shutdown.
rne?

a

N -
e s et Sanal G

11.10.4 NEUTRINO ENERGY . ’ .

About 12 MeV of the eBergy released in a.-fission is tied up in neutrinos.
" '

However, since these particles are not charged and have zeroc rest mass, N ot
’ the probability that they will interact with any of the atoms of mate- - N ;
. . it

rial cénstitutingtﬂuareacto¥ is negligibly small. Hence the 12 MeV of ?}

neutrino energy out of the = 200 MeV, released by a fission is lost to ‘ E

. b . £

gi

.~ W

L2
the reactor. To some extent, however, this energy loss is made up by ﬁ////
i

+
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’ ’ N
the energy released by the capture Y's. Thus 200 MeV is a reasonably

accurate approximation for the energy released in a reactor as the re-
[y

N

sult of a fission. K

-

I1.10.5 THE OVERALL ENERGY BALANCE

\ ¢ .
.- We have not yet discussed the qpe;tion ofvuwhere th=iiQQ§g?V of energy

f . released.in fission "comes from". The énswer is that it cémes from

the mass of thehfissioned atom.. Thus, if we measﬁre the -sum of the

F : A .
rest masses of all the products of a fission {fragments, neutrons and

4

B's) and subtract that sum from the mass of the original fissionable

atom, we get a mass difference which, when-multiplied by thé'square

‘of the velocity of light, gives (after a change of units) 200 MeV.Y

- Hence the immediate result of a fission is the conversion of mass

energy into the kinetic energy of the fission fragments and prompt
neutrons and the radiation energy of ¥y rays andrneutrinos."The fis-
sion fragments subsequently decay, further converting mass energy in-
to Y rays and neutrinos and into the kinetic energy of released B rays
"and delayed neutrons. The neutrons, by direct collisions with nuclei,

. »
and the Y rays, by electromagnetic interactions, transmit their energy’

- . L .
N to charged particles. Thus, except for the neutrino energy, all the \3

energy released as the result of a fission is transmitted to cQarged
- )
particles. These, because of the long~range Coulomb interaction with ;

the nuclei making up the material medium, transmit their energy to other

\
X ’

1 . charged nuclei in a cascade effect, thus raising the average kinetic ener-

gy, or temperature, of the material comprising the medium, <.

Al

. . *
r~
- The amount of energy obtaiged from.the fissioning of a small amount of
>

.
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fissionable material is réﬁarkable. A good fiéure to keep in mind in

/ this regard is that a power level of one watt results from a fission

S

10 . . .
rate of 3 x 10 fissions per second. In an absolute sgnse this is

a sizeable fission rate. But, if one remembers that there are 6 x 1023

. 235 . .
atoms in 235 grams of U ,it seems relatively small. In fact to sus-

tain a power level of 408? megawatts for a day requires the fissioning

| ) of only about 4 kilograms of fissionable maferial.

II1.10.6 FISSION FUELé

-

(e ! -

bilities available for fueling a fission chain-reacting system. In par-

N

ticular, we have noted that the principal nuclides of concern in nuclear

o

reactor applications are:

Fissile nuclides: 233U, 235U, 239Pu, 241Pu

while those susceptible to fast neutron fission are:

”

|

f n

Our previous discussion has indicated that there are a number of possi-
|

|

. . 232 238 240 2
Fissionable nuclides: Th, u, 4 Pu, 42Pu

| " S

Because of both the energy threshold that neutréﬁs must exceed in order

to induce fission in fissionable nuclides and the relatively large va-

<

lue of A characterizing such nuclides, only the first class of nuclides

are capable of sustaining a fission qhain reaction. Of the isotopes,

only 3BSU is found in nature - and then, only as 0.711% of natural ura-

/ nium (which is composed primarily of 238U). v
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Ways to obtain fissile isotopes, are illustrated in Figs. 11.20, 11.21.

It is found that when certain nuclides absorb neutrons, they then under-
go a seqguence of radioactive disintegrations that eventually result
in the formation of a fissile iQ?tope. The two most important exam-
N ples of such neutron transmutation reactions are:
v
e a
238 239 BT 239 B a3 x
U(n, v)"77u » Np -+ Pu
P 23 min 2.3d
Vol
(I1.94)
B- 8-
232 233 23 233
. Th(n, Y)  "Th -+ 3Pa + u
' 22 min 274
£

Isotopes that can be transmitted into fissile nuclides via neutron ca?ture

. . ; ‘ . 2
are referred to as fertile. The fertilepisotopes of most interest are 380

and 232Th, which are in abundant supply throughout the world.

Yet whe¥e does one find the neutrons necessary for this process? 1In a nu-
clear reacfbr. Indeed since most present-day power reactors are fueled

\ with natural or low-enrichment uranium that may contain’as hﬂ.h‘f@ 98%

L 238 . , :

U, such transmutation processes will occur quite naturally as the fer-
tile nuclei capture excess neutrons from the fission chain-reaétion. The
key parameter in such processes is the number of neutrons produced in each
fission reaction per néutron absorbed in the fuel nuclei. (Here we must
remembér that not alllgqutron’absorptions in the fuel lead to fi,Fion -

- -~

some result in radiative capture). We will define

' - N b
-

. n = average number of neutrons produced per neutron

absorbed in fuel- ) .
Li‘ .
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can write ¥

v

. (I1.95)

Most fuel;,\however, contain a m}xture of isotop&€s. 1In this case, we

would use the macroscopic fission and absorption cross ,s’ectlons cha- . - -

racterizing each isotope to write N

j
;vjzf i 7
n o= (11.96)
L) : ' } .
. 3 !

The dependence oé' this very important quantity' on energy E is shown for
the principal fissile isotopes in Fig. II.20. It should be noté\dq’that
n(E) is generally of the order of 2 for low-energy neutrons, but i?:rea-
ses with energy above 0.1 MeV as the capture-~to-~fission ratio a f\alls off.
If we a;re to attempt to utilize the neutrons "left over" from the chain
reaction to convert fertile isotopes into fissile material, is is appa-
,x‘ent\tt}at we require n(E) to be at least greater than 1, since ore neu- -

tron per fission is needed to sustain the chain reaction. Of course, a

certair{ fra n of the fission neutrons will be absorbed in nonfuel ma-

terials, and others will leak out of the reactor and be lost to the chain

reaction. Nevertheless it is apparent that n(E) is.sufficiently greater

than ynity to enable apprecjable conversion using any of these isotopes.

A

{
Indeed it mightﬁeven be possible to produce more fissile material than one

depletes in maintaining the fission chain reaction. For this to occur, one

P .

would have to operate with ¥issile isotopes and neutron energies for which

y

\

N
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-~ ' -
n(E) was greater than two, since one neutron would be needed to maintain
Ny 1

the chain reaction, while one neutron would be used to produce a new fis-
. N'

. »
sile nucl& to replace the one destroyed in the fission reaction. Any
s

excess over this (and over the number of neutrons lost to the chain reac-

-~

/ .
tion via nonprodyctive capture or leakage) could then be used to produce

or breed new fissile material.
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Fig., II.22 Variation of n with energy for 233y, 235y,

23%y ang 241py.
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It is apparent from Fig. II.22 that the most favorable situation for "accom-

Y

«

plishing this would involve relatively fast neutrons in the 0.1 —= 1 MeV

range. The most suitable fuel would be 239Pu. Such is the'motivatdon .

N

behind the dgvelopment of the fast breeder reactor which operates with /

a chain reaction in a 239Pu/zz"eu fuel mixture maintained by fast neutrons

B G Rawie SRR AR

:

in order to achieve this large value of n.

T T
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. <
However if we recall the energy dependence of the fission sross section

itself, it is apparent that it is more difficx.xlt to use fast neutrons
tc/sustain the chain reacti’on, since the croses sections for fast fis-
sion are some two orders of magnitude smallexr than those characterizing
thermal neutrons. This suggests that it might be easier to achieve a
sustained chain reaction using slow neutrons, since then the probabi-

lity of fission.is appreciably larger. Yet we must remember that the

-
B

neutrons produced in the fission reaction are quite energetic with ave-
rage energies in the MeV rangd, Hence in order to take advantage of the

laxrge fission cross sections for slow neutrons, one must'slow down the

fast neutrons to thermal energies (< 1 eV). ®

¢

I1.11 FISSION CYCLE: Criticality T

In order to sustain a stable fission chain reaction and thereby achieve
a constant production rate of fission energy, one must design a nuclear
reactor in such a way that the rates of neutron absorption and leakage

are balanced by the rate of fission neutron production.

It is evident from this that the principal elements in a nuclear chain
reaction are the fuel and the chain carriers. The fuel of a nuclear-

reactor is fissionable material; the chain carriers are the neutrons.
s

Common to all chain reactions is that the chain carriers react with

fuel to liberate energy and produce new chain carriers. These new cé;-

4

riers react with more fuel and produce more ‘energy and chain cax;riers,\ .

the process repeating itself from generation to generation. . \

C vt i P AT SRR IO I
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The word "chain" thus refers to the fact that the carriers (i.e., the

neutrons) are produced anew by the same energy-liberating process

-

which they induce when they are absorbed in the fuel. Refer to Figure

(11.21) for a pictorial fission chain Q;eaction. -
o]

IS

3

Prompt ;
' Insiastic :

/ fcattering 's
5

. o Fast B
g - neutrons
Fiion
fragment @ / .——'—"""l .
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Fission Neutron - Mﬁﬁ,)
. siowing Radutive Capture v's -
. @ o down capture
Rldloocnve\ S - 4
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fragment [ ’

~ : ;
s \*—\-\\‘ .
Fig. II.23 Fission Process. - \ /D'"YB': -

a

.
"

We can express this process mathematically. Suppose that we could some~

how méasure the number of neutrons in)the two successive fission genera-

N - @

tions, we would then define the ratio of these numbers as the multipli-

]

cation factor k characterizing the'chain reaction k

'

o]

« k = Multiplication factor

El

Number of neutrons in one generation 4 ’

Number of neutrons in preceding generation

) | i

° -

s

Notice that if k = 1, the number of neutrons in any of two cofisecutive

: . - *
» fission generations will be the same, and hence the chain yeaction will

a 3 . 2

.
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be time independent. We refer to a system characterized by k = 1
4 .
ERSSN -

4 as being critical. . N

.,
) 4 &

~ N S .
By a similar argument we can conclude that if k < 1, the number of. neu-

trons decreases from generation to generation, and hence the chain Peac-
tion dies out. We then refer to the system as being subcritical., Final- ‘
‘ly, if k > 1, then the chain reaction grows without bound as the number’

1 N + .
‘of neutronsg in each successive generation is larger. Such a system is

said to be supercritical,

> 4

~

In summary .

k<1 subcritical
e k = 1 critical

k>1 supercritical X Y

i
\
}
i
M

4 -
//\3 The definition of the multiplication constant k in terms of successive ’

fission neutron generatjions is sometimes Xnown as the ")ife-cycle"
point of view because of its similaritx;to biological population ggowth.
This definitiof is a bit awkward, however, since it is usually r;ther

difficult to determine the neutron generation time. For example, some
o

U ' o
neutrons may. induce fission immediately after their birth in a fission

“reaction. Others may first slow down to thermal, energies before induc~

ing fission.  Some neutrons may not induce fission reactions at all, but

" will instead be abgbrhsdxupquproductive capture or leak out of the sys- .

tem. i .

-

"*\ A somewhat more practical definition of the multiplications factor k z‘R
~p N

Y e~ % T T Pag ., s r
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3 )

be given in terms of a neutron balance relation by defining ,

\

-

Rate of neutron production in reactor P(t)

k' = =
Rate of neutron loss (absorption plus capture in reaction) L({t)
H

\ (I1.97)

’

Here we have explicit; noted that the production and loss rates may chan-

ge with time (e.g. , 'due to fuel consumption) .

We will find the "neutron balance" definition of multiplication a some-

!
|
|

what more useful concept, since it is consistent with the approach that
, ‘

we will use to develop more elaborate models of nuclear reactor behavior
in later chapters. 1In particular, we can then define the neutron life-

. time, 1, in an unambiguous fashion as

N(t)

(1I.98) ’ p
L(t) -

where N{t) is the total neutron population in the reactor at a time t.

This latter approach is also particularly convenient for studying the
o ¥ »
. time behavior of the neutron population in a reactor.

. | 4

'
I1.11.1 SIMPLE KINETICS OF CHAIN REACTIONS

8
| Imagine that we could somehow count the ‘n'umber of neutrons N(t) in a nu-
i ‘ Co- clear reactor at a time t. Then obviously.the time rate of change of

N{t) is given by

a Production rate - Loss rate = P(t) - L(t) * (11.99)

dt
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[ 8
However if we use our definition of the multiplication factor K‘as gi-
&
‘ ven by the neutron balance relation, we can write N

-

: dN P(t) . ' Lo

; — = | — - 1] L) = (k- Lt (11.100) "

| dt L(t)

.
2

«

To proceed further we can use our definition of the neutron lifetime 1

to write

C dN k-1 ‘ ' |
—_ = — N (t) (11.101)

dt 1 . ' -

)

I4

-If we assume that both k and 1 are time-independent (of course they will
not be in general), ~then we can soclve thig simple ordinary differential

N, .
éﬁgation for the neutron population at any time t, assgming that there

B Amadal s AR o A e S

s

are initially N, neutrons in the reactor at time t' = 0, to find

0

k-1
: N{t) = N_exp t (I1.102) '
] ; 0 1 -

s

In particular, note that this very simple model of nuclear kinetics agrees

-

, ' ) with our earlier definition of reactor criticality in terms of k (see Fi-

L2
A i

gure II.24). Yet this model also tells ug that the growth or decay of the

neutron population in a reactor obeys an exponential growth law. Such

ot

LS

exponential growth is quite commonly found in the study of population dy-
namics. Indeed the study of the "neutron" population in a reactor core

is mathematically rather similar to the study of biological populations,

and hence the terminology of the latter field is frequently adopted in
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* ) > reactor physics (e.g., generation, birth, life, virgin, daughter). .

e

We will later find that the power level of a nuclear reactor is essential-~

’

!
ly proportional to its neutron popul'ation. Hence we can also regard the -

time behavior of the reactor power level as being-exponential with a time

'
-
i

constant or reactor period T given by

T = ' , (11.103)
X -1

4

In particular is should be noted that as the multiplication factor k ap-

proaches unity, the reactor period T approaches infinity which corres-

s PU, e i . - &
T W RS NGt e MU AT - - . N - - FELPY
. . R R a0 RN i s R fi o Rl Bl At S el LI
akdialy ‘ NS 2

ponds to a time-independent neutron population or reactor power level. -

“ 8 TN :
However suppose that k is not equal to unity. Then how rapidly might we .
expect the power level of the reactor to change? Suppose, for the sake

° ' of illustration, we increased k to make the reactor ever so slightly su-~

- .

percritical by an amount of k = 1.00l. Since the neutron lifetime in ; .

a typical power reactor is about 10_4 sec, we find this corresponds to %

a reactor period of T = 0.1 sec. Hence in one second the power leveél v %

of the reactor will increase by a factor e10 = 22,000. Thus it appears :

that the reactor will respond very rapidly to changes in the multiplica-

tion factor. In fanct, if a power reactor did indeed respond this rapidly,

then it would be difficult to control the reactor power level, for a 0.l1% ;
~ i

change in the multiplication factor is rather common. Fort\inately we have ¢

omitted something from this simple model which tends to greatly increase p

the neutron lifetime I and hence T, thereby slowing down the reactor time

response. This is the effect of delayed neutrons on the chain reaction.

[} P
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1 -
However this is a tale for another time, so we will leave our study of
’feactor kinetics with the promise of returning later to patch up this

model in order to provide a more optimistic picture of nuclear reactor

N  time behavior.

~o

k = Critical

N(0) é .

k<.Z |
Sube, "y
Ca

I

; . ‘ '
»
: g

Fig. II.24 Time Behavior of the Number of Neutrons in a.Reactor.
- 13

< | )
i L

¢

II1.11.2 A FORMAL CALCULATION OF k: The Four-Factor Formula

- 4 b
Let us now turn our attention to the calculation of the multipli-

cation factor for, say, a pile of uranium that one wishes to makeginto a

\
nuclear reactor. We probably should add some coolant to remove fission
heat and perhaps some structural material to hold the core together. How-

ever we will assume that we can treat these materials as intimately and

- homogeneously mixed so that the composition of the reactog/is uniform.

» ¢

Now to calculate k we must determine the possible faté of neutrons in a
given fission generation. Fortunately this is rather easy to do since

there are only two possible alternative destinies available to the neutron.

-
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First it might leak out of the reactor and be lost to the chain reaction.

| If it does not leak out, then it must‘eventually be absorbed.* This ab-

-

sorption may correspond to a nonproductive capture event in either the
Y
ﬁfuel or otf)er materials, or the absorption may induce a fission reaction,

in which case a few fission neutron generation is‘broduced. We can re-

present these destinies schematically, a§ shown in Fiqure II.25

> . Leak out of system Absorbed
n junk Racditive capture

Fission / of ’ or * .
neutron N v
P, or
4 &m\ Absorbed 10 system N
Pas Absorbed n fuel
P, Fission
' ") .

v new {ISS10N NEULTONs ===

L \ ~ Fig. II.25. Fission Prdcess Development.

To make this more formal, suppose we define the probabilities for each of

these possible events as follows:
AN

Conditional probability that if neutron is absorbed in

A t fuel, it will induce a fission reaction
7 —
/ : S
* Of cou?ée, yet a thrid alternative would be a decay o{ the neutron into ,

a proton, electron, and neutrino, but since the half-life for decay of a

free neutron is 11.7 minutes, and the typical neutron lifetime I in the ‘

reactor is less than 10-3 sec, we can safely ignore this alternative.

\

2

i e R et i & ol PN - . . e « LT T s s Gy *wiagd

oy P , N o . i
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o o 30 e g .-m-..;

‘ N
A
Probability that neutron will not leak out of system o
o A . »
Q before absorption . . :
¢
{
{ % . . .
Conditj;onal probability that if neutron is absorbed, it
bty
' P = v -
AF will be absorbed in the fuel )
P

H
’
g
?
4
&




v

These latter two conditional probabilities are easily gzlculated. The

conditional probability for absorption in the fuel PAF can be expressed
- simply as the ratio of the macroscopic absorption cross sections for the
F ¢
fuel Ea, and for the fuel plus the rest’of the material in the core Za.

(We will usually indicate with a superscript the material to which we_
! <&
are referring. The absence of the superscript will imply that the macros-
p .
U4 ¢
1
copic cross section .is the total for all of the materials in the system.)

Thus we can write

F
C oz
P = z_a (1I1.104),
a

' \ f :

'

It should be kept in mind that this expression has been introduced only

= 1

. A S o
‘for the situation in which the reactor has a uthiorm composition. Un-

sk

v

fortunately for the reactor analyst all modern reactors have nonuniform ?? :

compositions varying from point to point (e.g., due to fuel elements,
) y
coolant channels, support structure). In this more general case one can N

S

-

still use Eq.(IT1.104) if the‘'macroscopic cross sections Za are regarded

. - \
as averades over the reactor. It should also be noted that we have not

yet specified the neutron energy at which these cross sections are to be

evaluated. Again, we will later find that the cross sections appearing

in Eq. (IT.104) must be appropriately averaged over energy, just as they

¥ are over space.

It is]customary Yn reactor terminology to refer to this probability as
the thermal utilization of the reactor and denote it by PAF = £. This

’ term arose in the éarly analysis of thermal reactors in which essential~

| -
|
z

-~

ly all fissions in the fuel were induced by thermal neutrons. In this

A
J \\
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case the cross sections in f would be evaluated at thermal neutron ener-
gies and would represent the effectiveness of the fuel in competing with '
$ =~ other materials in® the reactor for the absorption of thermal neutrons,
that is, the effectiveness with which tﬁe reactor utilized the thermal
neutron in the fuel. fhe expression in Eq. II1.104) actually gpplies to
any type of reactor. However we will fall in line with convention and

]

refer to it as.the thermal utilization and denotegg§by "EY R
. “

s

i

[ . .

The conditional probability for inducing a fission reaction in the fuel

can also be expressed in terms of cross sections. In this case we sim-

L

. ply take the ratio of ‘the fission cross section to that of the absorp-
4

tion cross section (due to both fission and radiative capture) in the

- ‘.

fuel mate?lal:

N

ZF oF ¥

il P, = —; = -—i,t— . ‘ (11.105) )
b o ’ ¢
a a

w
i

We are now ready to utilize these probabilities to determine the multi-
plication factor k. The general scheﬁe is to play a game of "follow the
neutron". Suppose we start with Nl neutrons present in the reactor in a.

given fission generation. Then with the help of the abovelprobabilities

and our diagram, we can compute the number of neutrons in the next genera-
tion as: ~

» o« -

g N2 = thPAFpNLNl (I1.106)

. Ny TP ©(11.107}
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|

a Q
where we have recalled that n = v(oi / oi) is the number of fis Yidn
ke -

neutrons produced per absorption in the fuel. We can now use our de-
e

finition of the multiplication factor k as being the ratio of the nym-
A
ber of neutrons in two successive fission generations t)o/write

/

2],

= anNL ‘ (11.108)

7

The nonleakage probability PNL appearing in Eq. (I1.108) ar‘:d characteriz.ing
neutron leakage from the core is much more difficult to compute. It will
require more, elaborate mathematics (and in a re'alistic calculation, the
use of a digital computer), and hence we will defer a discussion of it

r

until later.

s

L

As a n&entary detour, however, suppose our reactor were of infinite ex-

tent. Then since no neutrons could leak out, we immediately conclude

.

that we must set the nonleakage probability PNL = 1. The correspond-

ing multiplication| factor is then known as the infinite medium multipli-

A}

cation factor and denotéd by
k = nf © (II.109)

Now of course no r‘eactor is of infinite size. Neverthelesg k_ is a pse-
ful parameter in reactor analysis since it essentially characterizes the
multipli*tio_n properties of the material in the reactor as distinct from
the geometry of the reactor‘ core. Of course since PNL < 1 more generally
for a finite reactor from whi some meutron leakage can occur, we must

have k, > 1 in order to have an ‘ chance of achieving a critical chain

-

A

‘.
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reaction.

{

There are a c@up'le of important modifications that must be introduced
inte this simple development in order to understand how the present
generation of so-called “thermal" reactors works. We must account

for the fact that the neutrons in a nuclear reactor have a distribu-
tion of energies. As we saw previously, the fission neutrons are
born at very };igh energies in the MeV range. However the fission
cross section is largest at very low energies - indeed, at t_hoge ener-
gies corresponding Y8 neutrons in thermal equilibrium with thé reactor
core at a température T, e.qg., for T» = 300°C, E =" kT = 0.05 eV.
Hence it is obviously to our advantage .to try to slow down, or in the
language of reactor physics, "modérate", the fast fission x.xeutrons to

take advantage of the fact that slow neutrons are more likely to indu-

. I3

J/'ce fission reactions. This can be accomplished rather easily, simply

X

&,

by letting the fast neutrons collide with light nuclei, thereby losing

2

some of their kinetic energy in elastic scattering collisions. The
ligzhtef the nucleus involved, the more kinetic energy per collision
will be lost on the average by the neutron and hence the more effective
the slowing c}own or moderation. It is well know that in CBANDU reactors

the moderator is D_O (Heavy Water). Hence if we just let the fast neu-

2

trons rattle around in water for a bit, they will quickly slow down to
the desired thermal energy. In this sense, we refer to water as a neu-

tron -moderator. Numerous other materials can be used as moderators in
L3
nuclear reactors, and we will discuss these in greater detail later.

The presencé of such neutron moderation in a reactor suggests several

-

modifications to our earlier calculation of the multiplication factor

N
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o

s v - w

k. Suppose we first modify our diagram of the various possible neutron

1

destinies to take into account neutron energy as sb&@n in Figure 1I.26

Now since most fissions will be induced by thermal neutrons, we will
’
regard f and n as being evaluated at thermal neutron energies. For

examplé;'f would pow refer to the ratio of thermal neutron absorptiong4

a

in the fuel ta: total thermal neutron absorptions and thereby become mo-

re deserving of its designation as the "thermal" utilization. Similarly,
' 1]

n is now identified as the "average number of fission neutrons produced
y M , ) . it o7
per absorption of a thermal neutron in the fuel. : .

| y o

Then to account for processes that gccur wbhile a neutron is slowing down

<

—

-~

to thermél energies, we wil; introduce two new quantities: We first

define a factor that takes account of the fact that, although.most fis-

sions will be induced in fissile material by thermal neutrons, some fis-

sions will be induced in both fissile and fissionable material by fast
neutrons. Hence we will scale up our earlier expression for k by a
fast fission factor e:

t

Total number of fission neutrons (from both fast and thermal fission)
Number of fission neutrons from thermal fissions

. ’ (I1.110)

The fast fission factor € is usually quite close to unity in a thermal

reactor with typical values ranging between ¢ = 1.03 and € = 1.15. \

L

o/
The second factor we will introduce will characterize the possibility that

the neutron might be absorbed while slowing down from fission to thermal

energies. Since most absorptions occuring during the slowing down process

. .- 238
correspond to resonance capture in heavy nuclei such as U, we refer to

H o
™~

I
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Fig. IIr.26 Process Characterizing a Neutron Generation
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this factor as the resonance escape probability p:

-

Fraction of fission neutrons that manage to

L

p £ slow down from fission to thermal enérgies 9 (I1.111)
: )
without being absorbed

Finally it is useful to modify our definition of the nonleakage proba-
bility to‘ take account of the fact that there will be two distinct J

phases of neutron leakage ;;hat will require two rather different ty-

pes ;f analysks in our later work. First the neutron may 'leak out °
while slowing ddwn. Indeed since the neutron mean free path is re-

lativ‘a;‘ly large for high energies, suc?fast neutron leakage may be - ' ’
quite appreciable. A second leakage process may occur after the neu-

tron‘ ha.s managed to slow‘ down to thermal energies. After slowing down,

the neutron may continue to scatter and eventually leak out before it

has had an opportunity to be absorbed. To take account of these two

processes, we will break up our earlier nonleakage prof:ability as fol-

v

lows:
Par PenciTNL . (TI.112)
where
P . Probability that fast neutron will not leak out
FNL . (fast nonleakage)
P - Probability that thermal neutron will not leak out
TNL (thermal nonleakage) -
o
g
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If we now insert these new definitions into our earlier expressions ,
B <

(IT.108) and (II.109), we find that the infinite medium multiplication

. N
factor becomes

L /

k= nfpe & . {I1.113)

a0
s ,\\L <

-~

This is known as the four-factor formula. Moreover one now writes r—~\\

[
N

i d
P - : II.114
FNL TNL ) . )

o C v
t

k = nfpep

/

which is known, suprisingly enough, as the six-factor formula. .

O ¢

/
Hence provided we can calculate each of ﬁ?ﬁge factors, our critically .

condition k = 1 can then be easily checked (in the above example we

- ; M . ! . . , -

fudgedtq>¢pe parameters a bit to yield a critical system). Of course,
. |

the calculation of these factors is gquite difficult in general. Indeed

T Y Vit A R oL 5y RS

[CRTUTNpNY

one cannot really separate the various.conditional probabilities as was

. .
done in thgse formulas. Instead alternative schemes based on iterative

numerical methods must be used in practicepto arrive at a critically

condition.

a \

Nevertheless the four-factor and six-factor formulas are quite useful

because they provide insight into the various mechanisms involved in

R RPPT CRCRR Y

7

nuclear fission chain reactions and on rare occasions may actually be

*

of use in making crude estimates in nuclear design. They are alsc use-

ful in illustrating the trends of parameter variation in a core design.
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‘been chosen, the thermal utilization f and resonance escape probabili-
ty p can be varied considerably by changing the ratio of fuel density
to moderator density. All of these parameters can be varied by using

a heterogeneous lattice of fuel elements surrounded by moderator ,ra-

ther than a uniform, homogeneous mixture of fuel and moderator.

”

N
\

One can also vary the nonleakage probabilities by simply making the reac- i

: c L

tor core larger, or surrounding the reactor by a material with large scat-

AT IRt TR,

PR

tering cross section so that some of the neutrons leaking out will be . j

scattered back into the reactor. Actually when leakage is changed, there ¥ ﬁ

will be some change in the parameters in the four-factor formula as well e

since these are actually averages over the various neutron energies‘in
the reactor, and this distribution of energies will vary with the amount N

of leakage. Such considerations have given rise to a somewhat different

T e 27 Kbnnan

notation for the multiplicdtion factor characterizing a finite system

which is occasionally referred to as the effective multiplication factor

[t
and denoted by keff

R

= L

% = .
keff kNPFNLPTNL (I1.115)

There are other prescriptions for defining the multiplication factor. .

In particular we will introduce one of these schemes later when we

consider the analytical treatment of the neutron energy~de§endence in

fi
n
3
3
4

c more detail. However for now we will continue to regard the multipli~

cation factor as the ratio between either the number of neutrons in

two successive fission generations or the neutron production and loss

T
rates in the reactor.

<
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We can use the six-factor formula for the multiplication factor to gain

a bit more insight into the goals of reactor design and operation.
There are several ways to adjust k in the ié}tial design of Lhe reac-
tor. 'Oné could first regard thé size of the reactor as the design va-
riable. Since the ratio of surface area to’volume decreases as the
reactor geometry is enlarged, one can control the relative‘importance
of the leakage factors by adjusting the reactor si;e. For a given core
composition (with k_greater than 1, of course) there will be a certain
size at which kK = 1. An alternative way to achieve the same reduction
in leakage is to surround the reactor with a scattering material that
acts as a neutron reflector. Most thermal reactor cores are so large
/that leakage represents a“rather small loss mechanism (typically about
3% of the heutrons leak out from the core in large thermal reactors).
Usually the core d&ze and';eometry for a power reactor are dictated by
thermal considerations, for instance, the size of the core necessary to
¢
produce a given power output while being provided with sufficient cool-
ing so that the temperature of the reactor materials will not become
excessively high. The primary design variable at the disposal of the
nﬁclear engineer ig the core caﬁposition. In particular he can vary
tge~composition (enrichment) and shape of the fuel, the ratio of fuel -
}o moderator density, the type of moder;tor, coolant and structuralrma—
terials used, or the manner in which reactor multiplication is control-

.

led. One would refer to the amount of fuel required to achieve a cri-

tical chain reaction as the critical’ mass of fuel.

5

e

In reality, however, a nuclear reactor is always loaded with much more

" afuel than is required merely to achieve k = 1. For example the PHW
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is typically loaded with sufficient fuel to achieve a multiplication of
about k = 1.2, This extra multiplication is required for several rea-
sons. First if the reactor is to operate at power for a period oi time,
one must provide enéugh excess fuel to compensate for those fuel nuclei
destroyed in fission reactions during the power production. Since most
contemporaty reactors are ryn roughly 'one year between refuelling a si-
zable amount of excess fuelﬁ&s needed to compensate for fuel burnup. A
second motivation arises from t V fact that the @ultiplication of a reac-
tor tends to decrease as the reacbor power level and temperature increase
from ambient levels to operating levels. Additionél multiplication is
needed to compensate for this effect. ?igi}ly one must include enough

b
extra multiplication to allow for reactor péﬁb{_iszfl changes. For ex-

ample, we have seen that if we wish to increase the ;Qactor power level,
we must temporarily adjust k to a value slightly greater than 1 so that’
the reactor is supercritical. The reactor can then be returned to cri-

\

tical when the desired power level has been reached.

5
Of course when this excess multiplication is not being used“ some mecha-
nism has to be provided to cancel it out to achieve reactor critically.
This is the function of reactor control mechanisms. Such control is usu-
ally achieved by introducing into the reactor core materials characteriz-
ed by larée absorption cross sectionq. They will then tend to eat up the *
excess neutrons éroduced in the chain reaction. In terms of our six-fac-
tor formula such absorbing materials lower the value of the thermal utili-
sation £, since they éompete with the fuel for neutron absorption. Some~
ﬁimes the absorber may be diséofved in the reactor coolant. When such

control absorbers are used to hold down the excess multiplication intro-

i

~

duced to compensate for fuel burnup, one refers to them as shim control.
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They may also be used to force the reactor subcritical in the case of~

-

emergency; then they are known as scram control. Finally they may

- just be used to regulate the power level of the reactor; then they
o
\

o~

| : The case with which such control elements can control the fission chain

are referred to as maneuvering control elements.

reaction will depend on how rapidly the reactor responds to variations

hes § , . \J —
ifp multiplication. Since fuel burnup occurs over very long periods of
time (typically weeks or months), a rapid response of shim control is

not required - which is fortunate, bacause rather large amounts of mul-

tiplication must be manipulated (typically changes of 10 - 20% in k).

o b b AT Bt 14w e R s A

: The normal power variations in the reactor areadue to .much smaller chan-

«

ges in multiplication (< 0.1%) and are characterized by essentially the

reactor period T which in turn is proportional to the neutron lifetime 1.

LS SV

However we saw earlier that the lifetime og proﬁ%t fiskion neutrons was . H
. . -4 . . . .
quite short, typically about 10 "sec. The effective neutron lifetime is

greatly increased by the presence of delayed neutrons, however. We re-

call that about 0.7% of the neutrons produced in fission are delayed any-

Tt

»

. ‘ *
where from 0.6 to 80 sec since they arise from fission product radioac- ;

‘i
tive decay. Hence the effective neutron lifetime is actually the avera-

ge of the prompt neutron lifetime and theé average decay time of these de-"
{

P TR . S5

cen layed neutrons, properly weighted, of course, by their relative yield frac-

tions. When this is taken into account, one finds that the effective neu-
’
-1

trén lifetime is almost two orders of magnitude longer, 1eff 10 se-

.

[ R RN

=S

cénds. Hence a multiplication of 0.1% ?puld now correspond to a rea&tor

24
RS

.

.~

period of T = 10 seconds, well within the control capability of a reac-
N

A
tor control system.
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b
I1.12 INTRODUCTORY CONCEPTS
I1.12.1 NEUTRON DENSITY AND FLUX R \
o P
4 o .

Having intro@uced the concepts of cross sectior‘xs, fission, multiplica-
tion factor \;e now turn our attention to »det:armine the distribution of
neutrons in a nuclear reactor core. This requireé accounting for the
neutron motion about the core and neutron interactions with nuclei in
the core. We will begin by defining the neutron c{ensity N(Z,t) at any

point_f in the reactor core by (Fig. II.27) ' .

) 3 .
N(r,t)d " r = expected number of neutrons in

3 L (11.116)
d’r about £ at a time t

For simplicity we now define N(Z,t) = N(r,t) ° T T
The word "expected" has been inserted into this definition to indicate
“%at'this will be a statistical theory in which only mean or average
values are calculated. (T/ﬁe\a‘ctual neutron density one would obtain
from a éeries of measurements would fluctuate about this mean value,
of course.) Thé neutron density N{r,t) is of 'interest because it al-
+
lows us to calculate the rate at which nuclear reactions are occurring
at any point in the reactof\. Tp understand this, let us suppose for
con;renience that all the neutrons in the reactor have the same speed v.

Now recall that one can express the frequency with which a neutron will

experience a given neutron-nuclear reaction in terms of the macroscopic

/
cross section characterizing that reaction I and the neutron speed L as

-VL = interaction frequency

- © e e e o e g

N . = »xmn«mﬂgﬂq‘W ey
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.

Hence we can define the reaction-rate density F(r,t) at any point %:
the systg?ﬁby merely multiplying the neutron density N(r,t) by the
‘ |

interaction frequency Vi:

expected rate at which

It

F(r,t)d3r z UZNTr,t)d3r £ interaction are occurring (I1.117)

in d3r about r at time t.

-
N(r,t)ad’r

.N‘

'

Fig. 1I.27 The Neutron Density N(r,t) ’ .

For example, if we considetr a thermal neutron density of N = lO8 cm_3

in a graphite medium then using the total cross section tabulated in Ap-
pendix A of Zt = 0.385 cm--l and a corresponding neutron speed of
2.2 x 105 cm/sec, we would find a reaction rate density of 8.47 xlO12

reactions/cm3/sec. In this particular case, most of these reactions

would consist of scattering collisions.
¥

B

2
‘These concepts can easily be extended to the case in which the neutron

density is different for various-neutron energies E by defining

i by £
et A7 T IR D,
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‘ ~ , .3 e
r expected number of neutrons in d°r yﬁ
I

i/
ut r , energies in dE about E, aLﬂy (I1.118)

| N(r,E,t)

time t

Notice that this "density" ié defined with respect to both space and
\ N N A}
2 - - energy. One can also generalize the concept of reaction rate density

to include energy dependence as

F(r,E,t)d°rdE = UL(E)N(r,E,t)d°rdE : (11.119)

The product UN(r,t} arising in Egs. (I1.117 and (I1I.119) occurs very fre-
e

quently in reactor theory, and therefore it is given a special name:

~

$(r,t) = UN(r,t) = neutron flux cm °.sec (I1.120)

M

Although it will certainly prove convenient to work with ¢ (r,t) r;ther
than N(r,t) (since then one does not have to worry about including the

\\\%,_,\\ - neutyon speed v in the reaction rate densities), the tradition in nu-

clear engineering of referring to this quantity as the neutron "flux"

. is very misleading. For ¢(r,t) is no} at all like the fl?xes encounter-
ed in electromagnetic theo;y or heat conduction, sincé these latter
fluxes are vector quantities, whereas ¢(r,t) is a scalar quantity. Ac-
tually the "neutron current" J(r,t), which we shall introd&ce momentari-
ly, corresponds more closely to the conventional interpretation of a
"flux". To avoid unnecessary confusion ovgf this unfortunate conven-

tion, the student would probably do best at this point to think of the

J‘l’ neutron flux as simply a convenient mathematical variable (speed x den-

sity) to use in computing reaction rates:

T A e e s & o oeagat
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F(r,E,t) = L(E)¢(r,E,t) . (I1.121)

b

\

A bit later we will introduce a physical interpretation of the neutron
flux.

/

11.12.2 ANGULAR DENSITIES AND CURRENTS

4

The significance of the neutron density N(r,t) or flux ¢(r,t) in deter~-
i
mining nuclear reaction rates leads us to search for an equation that

s / . .
describes these quantities. Unfortunately there is no exact equatloﬁ

that is satisfied by N(x,t) or ¢(r,t) =~ only approximate equations. To

understand why, we must generalize the concebt of the neutron density
¢ /

somewhat.

First let us determine just which variables characterize the state of an S
individual ﬁeutrdn. Certainly these include the neutron position r, en-
ergy E (or speed v = «ZE/m)l/z), and the time t at which the neutron is
observed. Yet notice that to specify the state of the neutron we must
also give its direction of motion characterized by the unit vector

Q = V/]v]. (Actually one could worry about specifying other variables

such as the neutron spin; but for reéctor_calculations, the variables

r, E, ﬁ, and t provide a sufficient description of the state of the neu- :

"
4

tron.)

Let us now generalize the concept of density by defining the angular neu-

tron density that depends on all of these variables

P - T ror ot . ' - - s i P U8 LR W - x
P v i K r.m . Y
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expected number of neutrons in

d3r about r, energy dE about E,

A 3
n{(r,E,Q,t)d rdEdAQ = (I1.122)
. moving in direction & in solid {ff‘——ﬁ\\\

angle d@ at time t
The term "angular"” arises from the fact that n(r,E,;t) depends-on £ﬁe
velocity spherical coordinate angles 6 and ¢ specifying the neutron di-
rection §§ (Figure (II.28)). This is the most general ﬁeutron densi-
ty function we need to define since it happens that one cag,dé?izg an
essentially exact equation, :%e neutron transport equation, for the an-
gular neutron density n(r,E,{,t).

o

)
However before deriving jhis equation, it is useful to introduce several

other definitions. We will first define the angular neutron flux in a

manner similar to that in which we earlier defined the neutron flux,

S T e Y

simply by multiplying the angular density by the neutron speed v:

z un(r,E,Q,¢) (11.123)

§
A reieted conc &\ds the angular‘cuxﬁent density; defined by

vin(r,E,8,t) = fv(r,Ef,t) : (I1.124)

Notice that sznceﬁﬁ a unit vector, the angular flux is actﬂ&lly nothing -

¥

more than the mag. Ai ude of the angular current density
4
I
w

- q], By = v ‘ (11.125)
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Pig. 1I.28 The neutron position and direction variables

Ed

The angular current density has a useful physical interpretation. Con-
~

sider a small area dA at a point r. Here we will use the convention
that dA = ésdA where és is the unit vector normal to the surface.

In particular note that if we consider a small area dA at a point r,

L

then

expected number of }xeutrons passing

through an area dA per unit time with

i1}

j(z,E,{,t) .dAdEAQ )
energy E in dE, direction {l in 4@

at time t (I1.126)

~

We can also define an angular interaction rate

' s

”

f(r,E,ﬁ,t) = wI(r,E)n(r,E,f,t) = _X(r.E)vb(r,E,ﬁ,t) (11.127)

All of these anglerdependent quantities cafl be related to ou}x earlier

definitions in Section L(II.12.1) by simply integrating over the angu-

lar variables. For example:

To

3
3
A
1
i
i
}
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N(r,E,t) = f4ndQn(r,E,§,t) (1I.128)
\ ,
« ¢
\M‘ L . .

3

. 8

.Fig. II.29 Neutrons incident on differential element of ‘area dA

or N(r,t) = f"o"dEmr,E,t) = f;dEf4ndQn(r,E,§,t) (I1.129)

°

~

Sometimes quantitggs such as N(r,t) and ¢ (r,t) which do not depend on 9}
are referred to as scalar or total densities and fluxes, to distinguiéh

' them from n(r,E,ﬁ,t) and \p(r,E,ﬁ,t) . We find this nomenclature cumper—

g

some and will avoid it in our developmé’nt.

.
) 1
"Notice t}:‘?t if the angular density is independent of & (i.e., it is iso-

tropic) then we find that Eq. (I1.128) demands the ‘presence of a 47 nor-

malization factor in the angular density

n(r:E,ﬁ;t) = Z:Y'N(rlErt) (II.130’

4T ni i HEn S

S i

-

More generally, however n(r,E,ﬁ,t) will have a directional dependence -

particularly if Y\e are near a bqundary or ‘@ source of neutrons, as a .

little geometrical reasoning applied to Figure II.30 should indigate.

R A e
“

- ¢

In a similar fashion, we find
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¢(x,E, t) = f4“dﬂw(r.E,§,t) ‘ (1r.131)°

and ’

4

. ¢$(r,t) = fodE¢(r.E't) = fodli‘.f4" aQ¢ (r,E,0,t) ' (I1.132)

o

, 4
Finally, we can define the neutron current density J(r,E,t) in terms of

.

*the angular current density j(r,E,ﬁ,‘t) as '

\

, 2 ;
3(r,E,t) = [, a0j(r,B,Q,t) . (I1.133)
s ’V N
'c ’ " v 4,
and ! L ' L. ‘
» Y
- o0 N o A~ i
%, t) = JodEI(r,E,t) = [ &ES, -d2j(r,E,Qt) (TI.134)
L
Fig. IT1230 Anisotropies in the angular density . ’
, & ar

Notice that J(r,t) is actually what would be referred to as the "flux" in -

other fields of physics, since if we have a small drea dA at a position

r, then
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neit rate at which neutrons pass
—

J(r,/y—v—dﬁrnf‘w (11.135)
{ . through a surface area da . o

l

The units of b&\J(r,t) and ¢(r,t) are identipal (cm-2.sec-1) .  How-

ever J is a vector antity that charad{terizes the net rate at which
nelitrons pass througlva surface oriented in a given direction. Where-
as. ¢ simp;l.y characterizes the total rate at which neutrons pass through
a unit area, regardless of orientation. Such an interpretation would
suggest that J is a more cor;venient quantity for describing neutron lea-
kage or flow (e.g., through the surface of the reactor core), while ¢ is
more suitable for characterizing neutron reaction rates in which the to-

tal number of neutron interactions in a sample (e.g., a small foil) is of

interest. Although the angular flux and current density are very simply

-
-

: R »
related, we will find that there is no simple analogous relationship
: i

between J and ¢. These concepts may appear a bit confusing at first, but
they will become more familiar after we have illustrated their applica-

tion in botL our further theoretical development. -

A closely related concept is that of the partial current densities, J+(r,t)
which correspond to the total rates at which neutrons flow
through a unit area from left to right (J+) or right to left (J_).

I1f we recall our earlier definition of j(r,E,ﬁ,t) then it be;comevs ap-

parent that ~

Jt(r,t) = fodEfz_"i_ dQes.j(r,};:,Q,t) II. 136

19
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where 2‘n# is merely a convenient notation to indicate that the angular
integratic;n is performed only over directions wit’h components alonc_g the
surface normal (2n+) or in the opposite direction (an).' For example,
if we choose to define the polar coordinates that specify & along the
normal to the surface, then in the integration for J*, ¢ would rang‘;e

h from O to 2n, while 8 would range only from 0 to n/2.

o

T It is evident from this definition that

§S:J(r,t) = [:J+(r,t) -~ J_(r,t)] (21.137)
Hence J is sometimes referred to as the net current density, since it

can be constructed as the sum of the partial current densities.

-
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CHAPTER III . \\3

)

111 NEUTRON TRANSPORT

I11.1 INTRODUCTION

‘
-

The central problem of nuclear reactor theory, as pointed out previously,

is the determination of the distribution of neutrons in the reactor. For f

it is the neutron distribution that determines the rate at which various

nuclear reactions occur within the reactor. Furthermore by studying the

§ ) behavior of the neutron population we will be able to infer the stability
[

of the fission chain reaction. To determine the distribution of neutrons

ot e Bl Lt

in the reactor we must investigate the process of neutron transbort, that

is, the motion of the neutrons as they stream about the reactor core, fre-

<
’

quently scattering off of atomic nuclei and eventually eithgr being absor-

bed-or leaking out of the reactor. Most reactor studies treat the neutron

motion as a diffusion process. In effect one assumes that neutrons tend to

.

diffuse from regions of high neutron density to low neutron density, much as
heat diffuses from regions of high to low temperature, or even more analogou-

sly, as one gas of molecules (corresponding to the neutréns) would diffuse 9

()

e

through another (the nuclei) to reduce spatial variations in concentration. ,

o

Uhfortunately, however, while the treatment of thermal cohduction and gaseous W

. diffusion as diffusion processes in usually found to“be quite accurate, the

tréatment of neutron transport as a diffusion process Has only limited validity. -
. ~ ,
The reason. for this failure is easily understood when if is noted that in most
«diffusion processes the diffusing particles are characterized by veri frequent
e
. ‘ . . ”»

‘ » . ! }\ ) . J
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collisions that give rise to very irreqular, almost random, zigzag trajec-

. A bl
f’pries. However, we have seen that the cross section for neutron-nuclear

4

.. LA . -2 2 .
collisions is quite gmall (about 10 “cm ). Hence neutrons tend to stream

. relatively large distances between interactions (recall that the mean free

U’-,

‘typically about 1 cm in diameter).

: & °

path characterizing fast neutrons is typically on the order of centimeters).

. .
Furthermore, the dimensions characterizing changes in reactor core composi-
. , :

tion are usuallir comparable to a neutron mfp (e.g., a reactor fuel pin is

A
1 ! » -

Hence we require a more accurate deseription of neutron transport that’takes

. .8 . .
into account the relatively long neutron mfp and neutron streaming. Such a-
descrigt/:ion has been borrowed from the kinetic theory of’rarefied gases
(which™are also charécterizgd by long mfp) - more precisely, the kinetic
. < L N Y ) g v
theory of gas mixtu”r.{es. The fundamental equation describing dilute gases

was first proposed more than on‘e;century ago by Boltzmann, arid even today

°
¢

the Boltzmann equation remains the prin ; tool of the gas dynamicist.
- . . . / s
Its counterpart‘ for th%la neutron "gas", Ehe s$~-called neutron transport‘:{ equg-—
tion, is f.‘ar younger (less-than 40 years.old), far simpler (ea.g. , it isa ~
1ine:ar equation in contrast to the.Bc;)ltzm@‘n:m" ,equagg.on, which is nonlinear),

‘but usually strikes far more terror in the hearts nuclear reactor physicists

who aré intimidated by its frightening reputation within the nuclear reactor

rt .

cammunity. Neutron transport theory has come to be associated with a hidepé

[

]

plethora of impenetrable mathematicé, unwielgiy formulas, and (eventixal ) the-

s

expenditure of enommous .amounts of money on canpute‘; number-crunching.
] - & e

/ . &
o/ -

The job of the reactor analyst is to ‘deve_l\op'suitable (i,e., calculationally

o . - :
feasible and /accurate) approximations to it. Usually, however, only by com-
/' : - * ' ‘
paring these various approximate theories to the transport equatian from

. 7/

< a _%w - : , »
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which they originated ca:? one really assess their range of validity.

“

There is another reason)or including an introduction to the neutron trans-
port equation in even an elementary discussion of nuclear reactor analysis.
Although neutron diffusion theory is usually found adequate for reactor

applications it owes its accuracy to various schemes that have been deve-

e
loped to "“patch it up" using results frgn more accurate transport equation

solutions. For example, we will find that the neutron diffusjﬁn equation
is/q{.lite invalid near the boundary of a reactor, or near a highly ébsorbing

material such as a fuel rod or a control element. Nevertheless we can con-

tinue to use diffusion theory to describe the reactor provided we fudgg it

a bit by inserting so-called "transport corrections” into the boundary con-

. ditions accompanying the diffusion equation.
, ]
I .
III.2 THE NEUTRON TRANSPORT EQUATION

[N

I11.2.1 THE GENERAL BOLTZMANN EQUA':I‘ION: TIME DEPENDENT -
R ,
\
The exact equation for the angular neutron density in a system is derived

by 'simply balancing' the various mechanisms by which neutrons can’be gained

k-3 losf: from an arbitrary volume'V within the system. Tha&is, we will
> By

i

consider mechanisms that will change the number of neutrons in this volume

that are characterized by a specific energy E and are traveling in a speci-

It
"

~ “

fic direction 2. It is convenient to use a bit of vector calculus here,
but hopefully this will not cobscure the simple physics behind this equation

"

',(which is just the mathematiéal expression of a "count-the-neutrons" game).

{/) v

Td this end, consider any old arbrtrary volume V. ‘The number of neutrons

\ Al .

in V with enexgy E in dE and traveling in a direction 2 in dp within this

-

B e s 2 i TN e A N L Y e s e

frrume ¥ -

[
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6 v
: volume is just
-
| <
1 o
-~ 3 -»
3 [fvn(r,E,Q,t)d r] dEdQ w {I1I1.1) .
(Since n(r,E,%,t), is a "density" in E and  space, we must multiply it
by dE and 4 in order to get a number.) The time rate of change of this
number, then, is given by a balance relation
‘ B
> ! 3 [f n(r,E,R,t) d:’.’r]dEdQ - gain in V - loss' from V. (III.2) E
. pe. o
ot \Y
a
If we assume that the Brbitrary volume V is chosen not to"depend bn time, | * ”
s ° +
we can bring ‘the time differentiation inside the’'spatial -integration -
Pl
“ 2 3 3_q
3 [I n,E,Q,t) d°r | aean = [f an  d°r ]dEdQ (1I1.3)
‘ at ' v y ot
»
We will now classify the various ways that neutrons can(appear or disappear
v v -
! from vV, and then we will try to write mathematical expressions for each of ;
‘ ‘ . * . i ~ t !
: these mechanisms in terms of the angular demnsity n(r,E,Q,t).
o ' N
IIT1.2.2 GAIN ANDALOSS MECHANISMS ‘&
} \ Gain mechanisms: , . }
: R - 4
’ @ Any neutron sources in V (e.g., fissions).. - %
1
.o N P
. @ Neutrons streaming into V through the surface S. 4
@ Neutrons of different E*, §° suffering a scattering collision

in V.that ,changes E*, 9 into E,Q of interest.




‘ ' ’
Figure III-1 An arbitrary Volume V with Surface Area S..

&
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. Loss mechanisms: ‘
. @ Neutrons leaking out through the surface S.
@ Neutrons in V suffering a collision. (It is obvious that an

absorption interaction removes a neutron from V; and since by

S definition a scattering collision changes E,Q and since we are

only keeping track of neutrons in V with this specific energy and

A ow v e

direction, a scattering collision also amounts to a loss of neu-.

e
trons). (See figure III.1 for physical int{e\pretation.)

e

¢

X o o
‘ TI1.2.3 MATHEMATICAL EXPRESSIONS FOR GAIN AjD LOSS MECHANISMS

v

- . . N . .
¢ We cap now write a mathematical expression for each of these contributions.

;' *
! () Source terms: If we define
*

~ 3 rate of souré‘e neutfons appearing
s(r,E,,t) 4 xdEdN = 3
in d'r about r, dE about E, and (ITI.4)

an about f

t'henpbviously the contribution to the point @ in Section (III.2.2).

1]

@ = spE a6 &r aaa (111.5)
{ ¢

This term was really easy-we only'needed ato define a source density, N
- (r IE ’ nlt) .
¢ : . R

A @ Py ' s . /
@ Loss due to cdllisions in V: The rate at which neutrons

. suffer collisions ‘at a point r is

.

o
- gr—— e et e | eahd bher e g e
+
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ft(r,E,Q,t) = th(r,E)n(r,E,Q,t) ' (IX11.6)

Hence integrating this collision rate over the volume V, -we find

® - [fvvzt(r,z)n(r,z,n,t)d3r] dEdQ (111.7)

s -
- 3. Gain due to neutrons scattering into dE about E, 40 about I from other
energies E~ and directions 2: If we recall from Chapter II that the pro-
~ ~ 1
bability of scattering from E , § , to E,  is given in terms of the

o

double-differential. scattering crass section, then the rate at which ]

~ ~

neutrons scatter from E', 2 to E, 2 is

[fv v'zs (E™E,0° n)n(r,E‘,n’,t)d3r] dEAQ (I11.8)

-~

However we must consider contributions from any E~, 2°. Hence

A el s vae

I’
[

*

~ ~ ~

- 3 - © - - - - -
) -@ = [fvd r f,a0" J " dETWE_(EE Q)0 E n,c)] dEAR (III.9)

? ' )

This is known as the inscattering term since it characterizes neutrons scat-

Vs
NPTENIRA T et
v .

tering fro?/e?ergies or directions into dEdQ. ' r
@*@ Leakage into or from the volume V: ‘We will combine these temms

‘together and calculate the net leakage tfxrough the surface S.

v -~

I DRI~ TSRt SR

. S I1f we use the concept of the angular current density j(r,E,Q,t},

~ \
| we can write the rate at which neutrons of E, f leak out of a

A

- piece of the surface, 4S, as
1./

-

o -~ ~
j(r,E,8,t).dS s¥in(r,E,Q,t).dS (I11.10)
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Hence the leakage contribution over the entire surface areas S is

@-@ = /gds.omix,E Q). © (11111

\

We can rewrite this in terms of a volume integral if we use Gauss's
? |

theorem (reference 4)

fst.A(x) = fvd3rV-A(r), : | {I11.12)

)

[fsds.ufh(r,E,Q,t)]dEdQ [/va3rv.um(r,z,n,t)]dsdn
’

-

[fvd3ruﬂ- Vn(r,E,Q,t)] dEAQN (II1.13)

Here we have noted that

A

V.o = viieV . (II1.14) -

~

Since § and v do not depend on r
¥ 4

1f we now combine all of these terms such that

rate of change\of number of neutroms in Vv = D+ @+ @o@-@ .
-«

¢ A Y

therz we find

;& [on 4+ UR.Vn4vE_n(r,E,Q,¢t)
Sl tS &
(cont'd)
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~ ~
[=-3

~f,T GE'S, dRV'I_(B'9E, Q'n(r,EAt) —s(r,E,Q,t)] dEdQ = O.
\ (ITI.15)

‘\ . .
However we now apply the fact that the volume V was guite arbitrarily
chosen. Hence the only way for the integral to vanish for any V is

for its integrand to be identically zero - that is,

J d3rf(r) = 0 flx)=zo0. (I11.16)
any Vv )
Hence we arrive at a balance relation
on  v@.Vn + v nlr,EQt) .
at ¢

) ' (I11.17)
~ AL ~ - ~ A 3
= I, A T dE'u'ES(E'+E,Q,4—>Q)n(r,E',Q,t) + s(r,E,0t).
{ :

This is- known as the NEUTRON TRANS!POR’I‘ EQUATION.

‘ o

e .

111.2.4 COMMENTS ON NEUTRON TRANSPORT EQUATION

A

Several general features of the equation (III.17) should be noted: First, it is a
linear equation in the unknown dependent variable n (r,E,ﬁ,t) with seven independent
variables (r = x,y,z;E;§=8,¢;t). Since it contains both derivatives in

space and time as well as int:éf;rals over angle and energy, it is known
A4

0

as an "integrodifferential" equation.

4
However the presence of the derivatives suggest thatﬁre must also spe-
4
cify appropriate initial and boundary conditions for the angular density.

Since only a single time derivative appears in the eqhatiém, we can sim-

ply choose the initial condition to.be the specification of the initial

L

%.
i
z -
i
¥
3
x
b
4
{
¥
£
3
!
g
1

e

2,

i Ty B w2 T ¢ e
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value of the angular density for all positions, energies, and directions:

.

Initial condition: n(r,E,Q,0) = no(r,E,Q), all r, E,Q. & (111.18)

[ ~ ‘A A

i , 'fhe boundary conditions will depend on the particular problem of “inte-'
' rest. In the case of nonz“eentrant surface then appropriate boundary

i conditions would simply express the faf:t that there can be no neutrons

| entering the system from the outside. That is,‘y\e require the angular

neutron density on the surface to vanish for all inward directions

~ S

n(rS,E,Q,t) = 0 |if Q.é‘g < 0, for all r_on s, ¢I11.19)

where'rs denotes a point on the surface S.

It is convenient to rewrite the neutron transport equation along with

its initial” and boundary conditions in terms of the angular flux

3

Y + LYY + Et(r,E)w(r,E,Q,t)
t

-

N

i
*

= IMdQ' f0°° dE’zs(s’+z,9’+n,)\p(r,E‘,ﬂ‘,t) + s(x,E,Q,t), {III.20)

Initial condition: . VY (r,E,R,0) = 'lpo(r,E,Q), (III1.21)
Boundary condition:  ¥(r_,E.Q,t)= 0 if 9.és<0. © v (I11.22)
3 all r on S,
R . 8
i
»
. ' @
/
Ny N

e e e T - T R R it

?
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III.3 SIMPLIFIED CASES OF THE NEUTRON TRANSPORT EQUATION

III.3.1+ ONE-DIMENSIONAL FORM »

~
'

Suppose we try to make the Eq. (III.20) a little bit less abstract by apply-
ing it to the special cvase in which there is plane symmetry, that is, where
_ the neutron flux depends only on a single spatial coordinate, say X (as

shown in Fig. III.2). [Then the directional derivative .V reduces to

Wx) =0 3+0 3 +8 3| ¥ve = Q W ey

For convenience, we will choose our angular coordinate system with its polar

-

coordinate axis in the x-direction. Then Qx = ¢cosB. The assumption of

plane symmetry also implies that there is no dependence on the azimuthal

angle ¢#. Hence the one~dimensional form of the transport equation becomes

»

cl+

Ny 3y
T + cosb % + ZtW(x,E,B,t)
. . (1II.24)

Jo™ a” sing” f0°° dE’L(EE8™8)P(x,E7,87) + s(x,E,0,t)

3

)

7 v

Fig. III.2 Coordinates Characterizing Plane Symmetry.
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A final modification of the angular variable is useful. It is customa-
y

ry to rewrite this Eq.(II11.24) terms of a new. variable, pyzcosf. Note

that as € ranges between 0 and m,y ranges from 1 to -1. Hence the usual

form of the one-dimensional transport equation is written as

_l_iw + U _a_w + L Y(x,E.u,t)
v 3t ox t
o
. (II1.25)
; ¥ L, . R |
= [ a’ /s, dE’E;(E +E, 0 )y (x, B ,9°,t) + s(xE,¥,t).
-1. ) .

We can easily generalize Eq. (III.20)to inc}ude nuclear fission by inclu-
ding a camponent in the soutce temm to account for fission néutrons. The
rate at which neutrons with energy E= and direction s;’ induce fission
events is just Z% (E’)t,b(r,E’,?Z‘,t). If v(E”) is the average number of
fission neutrons produced by a fission induced by a neutron of energy E;,
then the total rate at, which fission neutrons are born at' a position r

is just

~

a’s © ag'v (EVE (B )V (B, 1), (III.26)
0

fthr
These fission neutrons will have an energy  distribution given by the

fission spectrum y%(E). If we assume that they are emitted isotropically, .t
then the fission source term we should include in the transport equation

is just

5. (£,E,Q,t) = XB)  r a0 r T GEVEDL. (BT (,EC,Q% L)
ammesrt— f
4T 4n 0

(111.27)
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Actually we should qualify this argument a Qit by admitting that we

- have assumed all of the fission fieutrons to a r instantaneously at

the time of fission. Hence S¢ is actually the source term corresponding

3

h to prompt fission neutrons. Delayed fission neutryons will be included

- later.
. .
*

. ' The neutron transport equation provides an esééntially exact description , '

\

~ \ N .
of the neutron distribution within the reactor (at least, provided one -

AN T

: is’'supplied with appropriate cross section information) .~ Its solution ‘
- - \

S would yield the angular flux {({(r,E,Q,t) containing essentially all the’

i

information (actually considerably more) we require concerning the ,nh— e

/
All we have to do is solve this equation.
/7

é ( - *

Yet notice that: (a) the neutron transport equation has seven independent

clearsbehavior of the reactor.

®

variables x,y,z,8,#,E,t, (b) the dependence of the macroscopic cross

sections on position'r is extremely complicated because of Ehe,complex, Y
L

nonuniform structure of most reactor 'cores, and (c) as we have seen in

R

Chapter IT, the cross section dependence on energy is alsc extremely com-

H ~

5 pligated including resohance.

LY

. 4 . ]

<«

III.3.2 THE ONE-SPEED APPROXIMATION . .

*
/ ,

1

! ! s
It is frequently conv/énient to suppress the neutron enerdy dependené

by assuming that one can characterize the neutrons by a.single energy

or speed. We will find later that if one chooses the appropriate effec~
tive cross sections, such a representation will in fact frequently yield

a reasonable description of the reactor. However for now we will intro-

N i \

\
'
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the inscattering term in Eqg. (III.20) becomes

e e e ot - ]
160 ; 7
duce the one-speed approximation in a ra‘ther artificial manner by
simply assuming that the neutron energy does not change in a scatte-
ring collision. This can be inserted into the transport equation (Eq.III.20)
in a rather convenient manner by simply assuming a differential scatte-
ring cross section of the form i
zS(E’-»E,Q’—»m =zs(E,Q’+md(E‘ - E), (I11.28)
where 6 (E” - E) is the Dirac §-function defined by the property
' .
fAx" £ (x7)8(x - x7) = F(x) . (II11.29) 3
for any sufficiently well-behaved function f(x). (Consult Ref. 5 for i
a more detailed discussion of the §-function.) Using this definition. ¢
o4
!
{

Al A -~ A A

roaa’s ” dEE_ (E™+E, Q) ¢ (r,E",Q7,t) = / AN’z _(E, 23Q)y(x,E,27,t).
4‘" 0 4“' o
(I11.30)
Since all of the terms in the tra}\sport equation are now evaluated at

the same energy, we may as well eliminate the explicit dependence on

energy to write the one-speed heutron transport equation as

~ ~ -~

13y + QW +Zt(r)¢(r,9,t) = f dQ'ES(’Q/—*sz)\p(r,Q',t)+s(r,9,t), (III.31)
v at 4m

4

III.3.3 ISOTROPIC SOURCES AND SCATTERING

One major simplification that can be introduced into the transport equa-

tion arises $hen one assumes both isotropic neutron sources
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s(r,,t) = L S(r,t) ' ) - (II1.32)

: N

and isotroplc scattering (in the LAB system) -

a
o

T =1 T, {111.33)
s -— S . N
47

i

The assumption of isotropic neutron sources is usually not too restric-

tive since most sources such as fission are indeed. éssentially isotro-

pic. Unfortunately although neutron scattering is usually isotropic in

the CM system, it is far from isotropic in the LAB systém, partiFularly .

~n

Ehal
4 2
e
B
A
i
¥
1
1
' g
k3
¥
rs
. H
1
H

- . for low mass number scatterers such as hydrogen. Undeterred by such’
physical considerati%ns, we will assume for Epe moment that iso;ropic

scattering is present. Then the oné-speed transport equation simplifies

S

Ay

\

{ still further to B

| ,

} V :
‘ {
| o " I . . ,

} %'g—% + Q.V‘P"'Et‘b(rlﬂlt) = __S_ J an \P(I,Q,t) + S(r.t) (III.34) H
: T 4n 4 aT

i 2 , . 7

|

' ' . -~
I11.3.4 STEADY-STATE |
Thqs far we have mutilated the energy and angular dependence of thé
transport equation in the int;feét of mathema;ical expediency - and- ' . .

‘ still have ndl ariived at anyghing we can hope to solve (at least anaL .
lytically). So in frustraéion we now turn our attention to the remai-
ning time and spatial variables. First w; will completely eliminate the

7 time variable by agreeing to consider only steady-state transport problems.

Then Eg. (III.34)simplifiesto , ‘

=~

v




. - - - ' ~ I S ’
QVYAT W (x,Q) =§ f41r any(r,Q%) + sy - (III.35)
m a ] . ' ¢

a

w

\

i ™

. N - NV
Next, we will assume that the system under study has uniform composition

. «_such thaj e, cross sections 8o not”depend on positioh. Finally we vgil'l
. A lx‘: ’

. A . \ .
simplify the system geometry, for example, by considering only planar or
. £ N \

*

A

£ . AR A
spherical symetry./.’ I&:f case of planar symmetfy we arrive at a rather

. ; o g S
simple~-looking equ;tion S .
N o ’ : W
, { . ,
~ A | , >
- o B !, ‘ z + . i ‘ .
WAy 4 Iopix,u) = s ST anbix, )+ six) (II1.36)
x5 2 2. L
. ' .

- .
N

- -

. ;f § P : ;
This equation/é:an ‘actually be sblved analytically but only with rather

’

. '

~sophistiéateq‘ mathematical techniques. So‘even after a number of rather.
a ) . s ) ! .. . .
questionable approximations, one arrives 4t)an equation that can still

* s

only be solved with great difficulty.
1 M .

K . K
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II1.4 ° THE [IFFUSION APPRCXIMATION ¢ , / :
~ o > -
; s . - ' . E ]
., ) ( ’} . o~ 3
III.4.1 NEUTRON CONTINUITY EQUATION
. - bl . \ . ! ”
\ " »
’& - For most reactor calculations, the details of the angular dependence of *: :
' ' N ’ : . ° 3
- ) the flux are not necessary, and we really only. need to calculate the. E

' angre-i}xteqrated flux: % - ¢
L ] . ‘ . '3
. v . { . '
st : ‘ ¢(I,E,t)“ = 'rdﬂ ?’6;:%' (rIE'ﬁ't) : (IZII'37) E‘\» '
[ ' - R r 2 -
L W . ’ t ’ ’ L
A’ . ' ' - . < 2
f in order to calculate ‘nuclear reaction rates and hence study the chain o 74 9
: - o ’ :
- reaction (e.g., by calculating the multiplication factor k).
‘ A [ . . ~ .
. - " Surely we can .formulate an equation for ¢(r,E,t) by Bdnply integrating s 2
3 . 1".l . ) . . N B
the transport equation over angle.. Let's try and see what, happens.
Y
. That  is, we will'integrate each term of the transport equation (IIE[.20)' ’
4, . # - v “
o over' the direction variable f: - ‘ ?0 ;
4 "' “ ° '
Caald 3 : -3
' p ) SR sy b T aniv f.f“ém: v, (111.38) & 1
R o ® o] - =
. : R \ : S0 :
G ) . ¥
' - C ’, v : N - T - A ! '
: = J[d0 S, a0 [ aE {:s(z*+ EA D v (e B R7,0 4/ al s(r,EQ,t) ;

)
4+ A 2

“'We can simplify each of these ‘terms somewhat
n‘ipulations indicated below:




| -7 Ol?i -1 3 - 193¢ ' III.39
; ", @ T4n9 5 3¢ o 3t TendW U 3t ( i )
{
E . ' o J s
F { v ‘ . \
LY ~ = - =
s ( ® ! Q0L Iy S g 000 I b | (III.40)

® = s, 99(r,E8,t) = S(,E ) (I1I.41)

v

N ¥ )

. ¢ 4
L . .
_ Here we have used our ear?er expresgion Eq.(II1.131) for the neutron flux

; ' ¢ in terms of the angular flux ¥ and also simply defined a source term

$(r,E,t). To evaluate the inscattering term @ we first recal that
° B ~ -~
A ; ZS(E’—r E, 27+ Q) usually depends only on the scattering angle cosine

L

o — BB This implies that .

»

\,

g - ] - _ +1 4 - - '
Jgn@OL B> B D) = on T au z (7 Eoup) L (E™+E)  (I111.42)

N
| ¢

o . wheere ES(E + EM is just the “"single" differential sca%erxng cross sec-
. . « O
" . . 3

-..’ r o B
E ’ o tion defined in Eq.(III.37). Hence we can interchange thé order of in-~
3 e a as . ' . %
tegrations over ! and {I to write:

. w

’ P - “4 ' » A ~ ‘.‘ -l v
) @ = 7,99 /) a Land BB B v e
i b ‘ (111.43)
. . N . = > dE"L (E™+ E) I“cm‘wr,z’,ﬁ’,t) ,

w{ 7 ’ 8‘
! ,
1 . ‘ , T

| " o . ce o !

i = [T'QE”T (B+E) ¢ (x.E',&) . ° . e

- AN 0 s v T

3 .’ - "~

¥ e ! t

¢

So'far everything is stra;ighﬁforward; but unfortunétely the last term @

13

cannot be evaluated in terms of ¢(r,E,t). 1In fact we find that (2)-must
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»

be evaluated in terms of the neutron current J by using Eq. (I1.132)¢

oy
© == . A. == QA =
‘ #)) J §;48 2.9y V.S 400 V.J(r,E,t) (I11.44)
If we now rewrite Eq. (III.38) it takes the form -
5 )
1 B_?L ' . LR S ’ . A e
by V. 2= [ ' - ’ ’ E,
T 3¢ + V.J(r,E,t) 4 Zt(r E) ¢'(r E.t) IO dE ts(E +E) ¢ (r,E",t) + S(r,% t)
] {I11.45)

This is_known as the neutron continuity-equatiog, since it is fust the - )
 mathematical statement of neutron balance. “

: | |
It is important to note that this eguation contains two unknowns, ¢(r,E,t)

and J(r,E,t), unlike the neutron transport equation, which only cbntgined

) -

one unknown, the angular flux w(r,E,ﬁ,t).

) o
It is impossible to express J(r,E,t) in terms of ¢(r,E,t) in a general and
,‘\‘ [ -

exact manner. This is more appérent if we recall the definitions Eqs.

(11.130) and (II.132): " -
- -~

¢(r,E,t) = [, amy(r,ERt) . (I11.46)

J(x,E,t)- =S, aol (r,E,Q,t) . T (111.87),

) o '.‘ Ve . i o
It‘gs obvicus that these two quantities are entirely different functions,

o

although they can both be expressed in terms of an angular intégra&qff '
N . y . Ve

the angular flux W(r,E,ﬁ,t). Hence there is no xeason why one would ex-
' . V) . A

~

pect these functions to be simply related.
A

- » i
; - - e T g
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Undaunted by our failure to find a simple equation for ¢(r,E,t), sup
»
"pose we shift our attention instead to developing an équation for th
: )
current density J(r,E,t). By comparing the -definitions in Egs.(II.130)

9

and (If.132)ab9ve, we are tempted to try multiplying the transport =

L

equ%tion by ! and then integrating once again over angle. Actually

(o
- .

since the direction variable { is a vector,

A & ¢
7.

§ = 8;(51n9cos¢ + Eysinesimb + Ezcose (111.48)
i ‘ \

i f 2~
X y z

. ' “«
we would multiply the transport equation by each component separately and
integrate. For example, the ﬂx component would yield:

- ‘ ﬂ/ - ) .

{
\ ? ~ ~
[,809 o+ [, a0 0y 4 S Mdmxztf (1II.49)

o 2o ®

" ~ . 2 ° ~
= fdﬂdﬂﬁxf4"dﬂ IOdE’ZS(E +E,Q+8) ¢ (r,E] #t) & S, 490 s(r,E,,t)

- " &y

® T o

)

<

~

|

.
v

’ Ll
Each of these terms can be simplified in a manner similar to that used

LY i -
in deriving the neuatron continuity equation Eq. (IIX.45)

13 : 1 aJx B
. ~ = 13 = 1_x : 111.50
O = Salud™y = 55 ¢ )
il A . ( *
‘ - \. (:‘ : \
) .
. y @ = 1,9y LI, , . AIILSL)
- 7 4 .
. . s . B
- / . g
© = 1,80 st 25 _(EL T (Is2)
! ‘ i,
. “ )
» I .
ot 1___ PO . Py TG AN 5 -
. Lﬁg‘; Yo, ) ':A\; Y
A e :.s....'.:.‘.:..;.;‘,.;e&.-.z,.'. e ot N L




167 . ' -

’ > 14 .
Now to handle the inscattering term @ , wWrite

o ; . ¥

- 00 - o - P ~ . n -
@«— f4"d§2 [0 de [Ihdﬂﬂxig\sz > E, 17+ ) ] v{r,E ,Q,t) (I11.53)
4
Ll 4 ‘ ¢
Next we do something abit sneaky. Slnc‘e\fxs a unit vector, we can
. 1 ©
write 7.8 = 1. We will insert this into Eq. (II1.53) so that we

: s & A2 ]
! can rewrite it as:

s‘ ’. &

' «© P - ,q » AL A ~L - Af"l ¥
@ = SoaE” J, an [Ihdmxﬂ I (B A% ) ] 87,27, (111.54) .
v N ‘
. , 5 .

v Now wewrecal again that. ES(E’+ E,ﬁ‘* 1)) depends only on the cosine of

the scattering angle o = §{°.8. Thus we can write ’

§;‘)

o - - - - - P ., -
@ = 3 /g aE” [, 40 [dennxa (LB BT ] 2 v E".Q,¢)
: 3 . {I11.55)

P

We will define

&

1 *
"

. - - Ny A = -1_._ ' » - A,; ~
fﬂdﬂﬁxﬂ g B BRI 3 {\“dnﬁ.ﬁ I(E+EQ7.D)

“

2n 1. .
= ._._ s = L .
‘ st ld oFog B E,uo) 7 I, &~ E \ & (1I1.56)

-

’. so that @ finally becomes j

-
- ¢

o » » P - » ) o« ‘J » ) -
® s eI EE) S, 40000 yirE (ﬁ t) o GE"L_ ) (E+ E) J_(r,E",¢)

> J (I11,57)
9 ~ "

Thus far each of our terms has been expressed in terms of the current

1 ’ L

. 1
\\ . -
. . - - e - - * A
. LY L Wt TR F
! . y [V ek, a ; ‘ '”"?,
. w7, ! ,
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L)

I Vdensity Iy except for the source term Slx which is a known term. But

J:ﬁfb still haven't considered the stgeaming term:

’
A ”~ A : I

@== S g0 0.0 = 9. s, am fy(r,edt) 1158

A quick glance at the integral term confirms our fears; onc;e again the
streaming term has kicked out yet another new unknown. To see this more
clearly, wemx combine *:hese results along with 'similar rgsults for an
rand Q to write Eq. (II1.49) as an equation for the current density J:

(o

13

J
Sat V. f 49 Gv(r,e,8,t) + I J(EE)

% " : , (I11.59) ey

¢

!

L » P -»
= fo 4 zsl(z +‘E)J(r.E t) 4 Sl(r,E,‘fz)

.

// Here we pave taken the luxury of using a symbolic notation of writing

B ~ \~ : RN

‘ . two vectors together, i, we interpret this as a convenient notation

. ' ‘
A

for ng each of the various combinations of components ﬂxﬂx,ﬂxﬂy,.. .y

}' anz separately to construct a quantity with nine components, Hxx,ny,

| - «eesll__. Such quantities are referred to as tensors (or, in tl:xis case,
} 2z 4
; : dyadics), get so formal here. It should be evident that we. can get

a nev equation for II(r,E t) by multiplying the transport equation by

TN fiff and integrating, but this new equation will contain yet another un&\“ )

S e 3 G e

3 krlown] - ) N .
S 430 %y (r,E,0,8) -~ (111.60)

3

Hence ‘a.l'l we are doing by multiplying by 8™ and integrai:ing is generating

- 3 i




]

L * ( .
an infinite set of coupled equations (which we can't solve). Inci-

dently, it should be apparent that the culprit is the "streaming"” or

"leakage" term ﬁ.Vuf which contains a factor of { and hence generates

v

the new unknowns in each equation.
] A Y

v

" ~
The onlyﬂway to cut off this chain of equations is to introduce an 4p-

proximation. We shall do this by assuming that the angular flux is

only weakly dependent on angle, and in so doing, -we will generate the
, : 4
neutron diffusion equation. < ’

s

I11.4.2 THE ONE~SPEED DIFFUSION EQUATION‘

Iy

-

We now turn our attention toward the development of an approximate des-

cription of neutron transport more amenable to cyiculation than the neu~
)

tron transport eéuation itself. To make life simple, we will first work
with"in the one-speed approximation represented by Eq. (I1I1.31). Let us

e
finst note the explicit forms taken by the neutron conservation equation:
/ »

and the corresponding equation for the current density J in the one-speed

\

case:




e e s 2, A A R ., N

specifically,
v ] | /
0o » » - N
[y @E'I_(E'+ E) ¢ (r,E7,t) + L o(r,t) - (111.63)
.S ’
and
fo dE Zsl(E -+ E) J (r,E,t) + Dle(r,t) (111.64) .
and ~ ‘ ¢
o= My @ = ﬁ'z : (111.65)
sl . '-1700s"" Os ' )
S | :
“ where we have defined the average scattering angle cosine n 0 as
5 < te
(3
- - A - — _21 +1 .
= 0.8 E Foyauguglstug) | (111.66)

170 .

12 '
35{- $9.0 4 T oMt) = I(r,t) +S(r,t) (III.61)
1 33 an - ¢
vor t U g0 A, 8,0 Y It = u I I(r,e) 45 (r,t)  (II1.62)
- / .
.

Here w} have noted explicitly the simplificzltiohs that occur in the in-

scattering term when the one-speed approximation is introduced. More .

- 1 Y-~ [~ R~ h \
. ———4“_25\/'4“&9 f‘”dﬂ 2.0 28(9.9 )

\ . \
- N

aAs an\'aéide, it should be noted that one can easily calculate ;0 for the

case of elgt‘-;tic scattering from stationary nuclei when s-wave scattering

v

is present. For then we know that i}l/the CM system, o (0) = os/dm.

N °

’ .- &
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. . .
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Hence if we use OCM(ec)dQC = aL(GL)dQL, we find . (I11.67)

- 27 N,
k . W, Ts fo smecdeécosBLECM(Bc)
L .

L)

1 T,
3 fo smeccoseLdec

. :
1 4 ‘ -0

But recall v :

l4+4A coseC
’ cosBL = - (I11.68)
- ,/Az + 22 cosd, + 1

.- i . r
If we substitute this into Eq.(III.67) and perform the integration, we

'
find the very simple result

Vo < 3% - \ (III.69)
Now that we have justified the forms of Eqs.(IIX.6l) and (III.62) let us con-
sider how we might eliminate the annoying appearance of the third unknown,
rdafity(x,8,t) ( We will accomplish this h.y.assuming that the angular flux
is only weakly dependen(:kon angle. To be'more specific, we will expand
the angular flux in angle as ' \ {

&. - ‘ (5’

w(r’ﬂ’F) i wo(rrt) + wlx(r't)nx + wly(r;t)ny + wlz(t,t)ﬂz ~ eee
1 (I1I.70)

and neglect all terms of higher than linear order in f. Actually a slight- f

ly different notation for thg ‘unknown functions wo, wlx' wly' lplz

-

L

ig useful.
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Write Eq. (III.70) as

+

PO 3
Yi{r,Q,t) = an ¢ + o [anx + JyQy + Jzﬂz]

’ {1IX1.71)
=§%;'¢(r,t) + -3;-3(r,t),ﬁ
‘,‘ - \ -
)

Notice that we have labeled the unknown ‘expansion coefficients as the
flux and current. That this notation is perfectly consistent can be

v

seen by noting from Eq. (III.71) that

o P S e b

' '
i p, |
i [
i ! dnw(rfzt)‘w-—v((r ) 1 r a0 ¢ g, f Qg = ¢{r,t)
. an e ' ogm Tan 4n TRt e '
’ (II11.72)
and,
£ S ~ — -1—_‘ ~ _3_ ~ A
1 f 4 8% (z B, ) ¢(x,t) = [, anll * Jx(r,c)_ I
- (I11.73)

. . A o~ oA A
~ + Jy(r,t) f"dﬂnyn * Jz(r,t) f“dnnzn

.
[ . - -

However it can easily be demonstrated that the integral

of the product of any two components of & gives
<

‘?
: nn - LA j
U O ‘ Vi, = x,y,z (111.74)
) 0 i # o
Hence ' - s -

- 1,80 e, 0,60 = Jx,v)

\ ! ..
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Of course Eqs. (III.72) and (ITI.75)are identical to our original definitions

]

of the flux and current earlier in EgS. (I1.130) and {(II.132).

We will now use the approximate form of the angular flux .in Eq. (iII.’ll)
gvaluate the second term in Eq. (I11I.62):

£

favede = vs antal oeeiga |
v.fMdn Gy (r,0,t) V.f4_"d$'2 ﬁﬁ[ eI g.n l (III.76)

Next note that the integral of the product of any odd numby of co\mponents

) ;
“ p

of { vanishes by symmetry: (’

7 dn 82aMa" = 0 if 1,m or n is odd (IX1.77)
4 Xy z . v
If we use both Egs. (II1.74) and (III1.77) we can evaluate
L\ === L ‘. ;
V.J 00 #1910 3 Vo(r,t) (I11.78)

Hence by assuming that the ahgular flux depends only weakly o'ﬁy angle - more
specially, that the angular flux 4is only lipearly apisotropjc - we’ have
managed to express the third unknown appearing.in Eq. (III.62) in terms
the neutron £lux ¢{(r,t). Lw«; have now achieved our goal of obtaining ;

‘closed set.of two equations for two unknowns, ¢(r,t) and J(r,t):

.

/

12 ) -
LTI L) 6 ) = St (II1.79)
3 ‘ \
1,1 (I11.80)

3TV LM T = s e

v 3t
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f

depéndent diffusion coefficient as defined by Eq. (III.101). If we .

< npow substituq; this into‘Eq.aII.QIL we arrive at the energy-dependent
T 1

.

diffusion equation ! , .

1 3¢ —vV - DIr,EV¢+ Ly(xr,E)e(r,Et)"
at

(111.102)

= /2 QE'XL(E'+> E)¢ (r,E',t) + S(r,E,t) | {

This equation plays a very important role in nuclear reactor analysis

since it is frequently taken as the starting point for the derivation

[y

. [
of the multigroup diffusion equatﬁ?ns. These latter equations represent 3

the fundamental tool used in moderm nuclear reactor analysis. ,

L
«
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I11.4.4 DIFFUSION TH%)ORY BOUNDARY CONDITIONS
. .

i

4

i}nqe the neutron diffusion equation has derivatives in both ghace and

= *

/%ime}.it ig'apparent that one must assign suitable boundary and initial

L

-y

conditions to complete the specification of any particular problem.
Since the diffusion equation itself is only an approximation to the
more exact transport equation, we might suspect that we can use the

transport theory boundary conditifns as a guide in our development of
!

appropriate diffusion bdundary conditions. 1It.will suffice to con-

sider this development within the one-speed approximation.

~

III.4.4.1 MATHEMATICAL BOUNDARIES ON FLUX

.

Although\strictly‘speaking they are not boundary conditions, we should

first mention those mathematical properties that the furction ¢(r,t)
S

must exhibit in order to represent a physically realizable neutron

flux., For example, ¢ (r,t) must be a real function. Furthermore since

N

both the neutron speed v and density N cannot be negative, we must

o

require that ¢(r,t) be greater than or equal to zero. In most cases-

!

we can also require that ¢(r,t) be bounded. However we should add

here that one occasionally encounters pathological models of physical

‘neutron sources that cause é(r,t) to diverge.

(

I1I.4.4.2 BOUNDARIES AT INTERFACES . ’

-~
3

Consider next an interface between two regions of differing cross

I

B\l

&'

S i

+ e AT A7
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1
4

sections. Now clearly the correct transport boundary condition is

Yy (rg.fit) = Yo (rg,f,t) for all 0,

that

)

3

where yj is tﬁe angular flux in region 1, while y, is the angular
flux in reéion 2./ This conéition ensures conservation of neutrons
across the bouh can‘easily be derived directly from the y
transport eguation. -

Unfortunatq}y we cannot satisfy this boundary condition effctly using
diffusioﬁ theory. At best, we can only ensure that angular moments
of EqQ. (II1.103) are satisfied. And since diffusion theory yields only
tﬂe first two moments of the angular flux, ¢(r,t); aﬁd J(r,t), at
best we can demand

-

)f411’ dﬁ‘l’l(rs,ﬁ,t) == 14" dmz(rs,ﬁyt) g ¢1 (rslt) - ¢2 (rslt)l
9

(I11.103) '

(1¥1.104)

\
. and ’ ) -
/!
. - )
> . o -’ \ ~
N *
’ Say A0V (xg,8,t) = Say Al (xg, R,0)> 31 (x5, t) = T2 (xg,t)
\< . (I11.105)
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Hence the interface diffusion theory boundary conditions are simply .

those corresponding to continuity of flux and current density across

the interface:' v . 2
. 4 .
¢ (rg,t) = @ﬂrs't) y ) ¢
L A ‘ -- ' (1II.106)
AN - D1V¢1 (rg,t) = - D2V¢2(rstt) -

LS

—

We will oécasionally find it mathematically expedient to imagine an

infinitestimally thin source of neutrons S at an interface boundary.

Then the interf@;e boundéry conditions are modified to read: .

>

$1(rg t) = ¢5(rg,t)

- v
N

. . (III1.107)
8g + Jy(rg,t) - &g - J1(rg,t) = S(t),

where &g is. the unit normal to the surface.

-

' “
III.4.4.3 VACUUM BOUNDARIES \, h

Recall that our transport theory boundary condition was merely a“

. o - i -
t
mathematically statement “shat there could be no incoming neutrons at ‘
; . *
a free or vacuum boundary f}
o y ]

’
i

a

(rsrﬁ:t) = 0 for ﬁ"aS<O,

L

< ) : : L
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- * condition Eq. (III.108) is just

Once again diffusion theory will only be able to approximate this

“

boundary condition. Notice in particular that the boundary condtion

iq\given only over half of the réngg of solid angle (corresponding to
L - . ' .
incoming ngutrons). Hence suppose we again seek to satisfy the trans-

N LY

port boundary condition in an "integral" sense by demanding
) -
on

' \

A dQes-ﬁw(rs,ﬁ,t}= S pp-8085-3 (xg 0, 0)2 T_(xs, €)= 0 (111.109)

where we have.recognized that this integral condition is equlyalent to

demandlng that the inwardly directed partial current J. vanlsh on the

‘Bdundary. ‘ : érL .

9

Unfortunately diffusion theory is capable of only approximating even

’

this integral condition, since it cannot yield the exact form for Js.

indeed if we use the Py approximpation (III.71)for the angular flux, we

_ find that‘tﬁe partial current densities J, are approximated in diffusion

v

theory by . .

7

D
+ — A
-2

Iy (xt) = I, gbaleg d (802 1 (e) 8s-V0(r ).

4
- (II1.110)

Hence our diffusion theory approximation to the transport boundary

N

Ja(Xgit) = i o (rg,t) gas . V¢(rg,t) = 0 . (III.111)

(S

| | /
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For convenience consider this boundary condition applied to a one-

¥ . li Y
dimensional geométry with the boundary at X = Xg [} ‘ ’ .
. ) . _ . ‘ <
J-—'(,XS) = l_ ¢(X5) + 2 ﬂ =0 - . coe
i .4 2 4y ‘ R ‘ .
- AT Xg - . , :
*
or . ’ . ’ * {I11.112) o
STy B | PR
v Ae) x|y b .

ve

a

Notice that this relation implies that if we "éxtrapolated” the flux

linearly beyond the boundary, it would vanish at a poinl

' ° Y \
. R ’ [ 3

R Zxg 2= X 2 A ' 1 (III.113)
3

°
» \ / ' !
B

1

For this reason, one frequently replaces the vacuum boundary condition
- / i ¢

- ) ’ . - \
/ J_%) =0 ' @ . (II1.114) ‘
! : @ ’ N T .
by the slightly sjmpler condition - v ’
[
° ’ t ® (b
| lI v
. .
${Xs) = O i N ' - (FII1.115) A
. " . - r »
3 ()
, 3 R )

-

where is is ieferrg@ to as the “éxtrapolated" boundary. More advanced
. .

: - . TS 4"
transport theory calculations df the extrapolated koundary indicate that

” IN

one should choosé
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ig9

where the "extrapolation lerngth" z, for plane geometries®is given by

.

f

Zy = 0.710&%;{\ . (I11.117)

. e \\\\’\\ .

. 4 '-"5
These boundary conditions complete our\gzscription of neutron transport

: |
within the diffusion approximation.  The neutron diffusion, equation will

play a very fundamental role in our development of nuclear reactor analysis

w

methods. We will begin our study of nuclear reactor behavior using

b4
- z

one-speed diffusion theory, since while.this description has only limite

>
*

quantitative validity, it does allow us to illustrate rather easily

r

the principal concepts of nuclear reactor theory, as well as to develop

the mathematical techniques used in more sophisticated models.

¢ - A

; Cb .
111.4.4.4 SUMMARY OF THE ONE-SPEED DIFFUSION MODEL
o ‘

0
13

To supmarize then, the model we will “ipitially use to describe the -
neutron population in a nuclear reactor consists bf the neutron diffusion

eguation:

s

3¢ _ V. D ()4 4 I_m)é(r,t) = S(r,t) (1I1.118)
at [ *

L]

i
v

1
along with suitable initial conditions:

b(r,0) = ¢0(§r), Callr T (111.119)

and boundary conditions:

a) Free sufface: ¢(;s,t) = 0 {or. J-(rs,t) = 0}

(XI1.120)

b) Interface: ¢ and normal component of J contin@éﬁs across

-

‘ .
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‘ interface
A : i

g c) 0 < ¢(r,t) ¢ o (except in the neighbourhood of localized sources). ’

1
whilgithe

extrapolation length characterizing a free surface boundary condition

Here the diffusion coefficient D = Atr/3 = {3()::t - pOZs)}
i = 0. Ao . ¢
is z0 = 0.7104 tr

The equation has been thoroughly studied in mathematics and physics

'[J'

alike for years, since it also describes procefses such as heat condition;

P ‘
gas diffusion, and even a wave function (notice, if we stick an "i" in

front of the time derivative, we have essentially just the Schrddinger

equation familiar from quantum mechanics). ) - E

»

—

| .
.
, :

In many cases we will deal with situations for which the medium in whi‘ch
-~ 14
the neutrons are diffusing is uniform or homogeneous such that D and Xa '

do not depend on position. Then the one-speed diffusion ‘equation simplifies

to

3 - DV 4+ I_ ¢(r,t) = S(r,t) (I11.121)

1
v ot

The explicit form taken by this equation will depena on the specific
¥
coordinate system in which we choose to express the spatial variable r.
o ~ *
oy V2 is called the Laplacian operator which can take different form for
k] //

different geometires (Ref. - 5). ‘

R . e A\ 3 .

s

III.4.4.5 TH/E "STEADY STATE DIFFUSION EQUATION

We will frequently consgider situations in which the flux is not a
~ 1 . ‘ .

~ 3

e . .

o, G E
AL, | ey e, sk s,



C . function of time. Then Eq. (1I1I1.121) becomes

/ . -
r ' -§\2 d(xr) 4+ Ea¢ (r) = S(r) , (I111.122)
3 ¥ |

This equation is known 'as the Helmholtz equation and is also a véry
AN

3 ' familiar in mathematical pr}ysics. It is useful to divide by -D to

A . . L
: . rewrite Eq. (III.122) as

E
: Vo) -1
E e $(r = ey = - §Dlr_) ' (111.123)

E
g ‘ .
f where .we have defined the neutron diffusion length L

g 'I ~\ . f «
' | Y | (II1.124)
a

|
b
t

™ .
L is eskg_ptialf}\e measure of how far the neutrons will diffuse from !

a source before they are absorbed. : j ,
- o
.We now turn our at\\;ention to the application of this model to some im- .

‘ -portant prob'lems in nuclear reactor theory. We will first study neutron

diffusion in "nonmultiplying" media - that is, media containing no flux

-
'

in fissile material and begin our investigation of nuclear reactor core
physics.

' !
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I111.5 NEUTRON DIFFUSION IN NONMULTIPLYING MEDIA

AR IR TR

The neutron diffusion theory may aﬁply to multiplying media as well

STl TR

as to non multiplying media.

B

We will first apply Eq.(IIIlez) to study the diffusion of neutrons
s from a steady-state source in a nonmultiplying medium. All of, the mathematical

techniques we will use are standard methods which arise in the ) LR

T T oA

solution of ordinary or partial differential equation boundary value

¥ B T

: problems. ' ' ¢
?; N

:

E II11.5.1 Elementary Solutions of the Diffusion Equation

s ‘

]

<

i,' II1.5.1.1 PLANE SOURCE IN AN INFINITE MEDLPM )

The simplest problem in neutron diffusion theogy is that of an
infinitely wide plane source located at the origin of Qn infinite,
homogeneous medium. The source is assumed to be emitting neutrons '

isotropically at a rate of S neutrons/cmz-sec. Since both the

0

source plane and the medium are of infinite. extent, the neutron

A,

flux ¢(r)+¢(x) can only be a function of“the distance x from the

source plane. Hegce‘;fg/diffusion equation {Eq.III-123 reduces to

the one-dimensional form

A

| 1

e
‘ G0 Lo S So : (111-125) ) 3.

2 1

dx D D, 3

vhere we have mathematically modeled the source by a Dirac 6-function.
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"

Hence we just have an infomogeneous ordinary differential equation
e
to solve with a slightly weird source. Note that if we restrict Xy0,

the source term disappears from Eg. {(III-125)

!

2
é_.% — 1¢(x)=0, x50
ax2 12 . . III-126

- ~ (

1

Our approach will be to solve this homogeneous equation for xy0, and

then use a boundary condition at x=0 to "fix up" these solutfions.

i

We would obtain this bouaéary condition directly by integratingU
\

% ]
" Eq. (III-125) from x=0—€ to x=0+¢ across the source plane and then
"taking the limit as e+0 to find
P
¢, d¢ ; ) ‘
-D— +D—| T, (0% -3, (07) =5,. ’
dx dx I11-127
+ —€

If we use the symmetry of the geometry to assert that Jx(0+}=-{rx (0 )23(0),

then our boundary condition at the source plane becomes just

' SO
lim J(x)= __ .
x-+07" 2 III-128

This source boundary condition makes sense physically, since it merely
says that the net neutron current ay 'the origin on either side must be
just half of the total source strength.

We are not through with boundary conditions yet. Since we have a

second-order derivative,-dz/dxz, we need another boundary condition. . .

)

/
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\We will use the boundary condition of finite flux as x-+=,

Hence the mathematical problem t9o be solved is

‘

o . 2 :
. a‘e 1,
i — - —-—2-¢(X)=0, x>0, ‘
% i H dx2 L
' with boundary conditions: .
. 4o So , .
(a) lim -D— = —— . .

x+°+ dx 2

8 (b) lim ¢ (x) <o,

X-rca s
E: . 1
We will then use symmetry to infer the solutiox}m for x<0. -

) . To solve tflis equation, we note the general solution
E : ‘ ¢(x)=A exp(- =)+ B exp(¥ ).

Applying the boundary conditionsg «, we ‘find

(b)> Bx0 ' .
. A x,,_AD 5 .
| (a)3 Lim-D(- T exp(- T N=T %3 \
- .
or
v o L &

A=z _Sf_ o

i ey

Figure III-6 A plane source of neutrons in an infinite medium

I1I1-129°
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Hence our solution is

and by symmetry we can infer

L

p(x) = SOL exp (x), x < 0, y
. 2D L

Hence the neutron flux falls off exponentially as one moves away from

the source plane with a characteristic decay length of L. As one might
expect, the larger L (i,e:, the smaller Za), the less the neutron flux
is attenuated as we move into the medium. Notiée also that the magnitud
of the flux is proportional to the source. That is, doubling the source
strength will double tRe neutron flux ¢(x) at any position x, but this

. N

should ha;e been anticip;ted since the neutron diffusi&n equation is
linear and hence the principle of superposition holds.

III.5.1.2 POINT SOURCE IN AN INFINITE MEDIUM .
As a‘variation on this therme, let us repeat this calculation for the

case of an isotropic point source emitting S_ neutrons/sec at the origin

0
of an infinite mggium. Since the source is isotropic, there can be no
dependence of the neutron flux on angle. Hence the diffusion equation

in spherical coordinates reduces to

‘rz a4 -1 ¢ (x) =0, r > 0.

III-132

e

IIT-133
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-

We will use our previous problem as a guide, and seek solutions such that

the boundary conditions are

(a)  [Qim anria(r)
: -+

4
o

(b)  lim ¢(r) < =
r+

v

One can readily verify that the fundamental solutions to Eq. (III~133)
) “ -
ﬁ { are of the form r-lexp(¢r/L): hence we are led to seek - N
1
3 . .
2 / ‘ \
\ = exp(-r/L) exp (r/L)
\ ¢(xr) = A | +B ____ (1T1-134)
r

\ ° a T

Apﬁ}ying the“ﬁound#ry coﬁd%tions,‘wé find that (b) implies that we A

chooge B = 0, while (a) implies that A = So/4ﬂD. Hence the solutioﬁ
\ »

is \‘

, ¢(x) = s exp(-x/L) . . (I11-135)
41rD

An interestiing application of this result is to calculate the mean-

. s

square dista?ce to absorption in a nommultiplying medium. Note the

number of neuk:ons absorbed between r and r + dr is just

.A\. .
47D " (III-136)




-
and thus the probability that the neutron is absorbed in dr is just
A

%

~
-
p(r) dr = r_exp (-r ) dr. 111-137
L2 L
<
We can then calculate
2 © 2’ 2
<r®> = 1,7 ar p (r) = 6L . , Q I11-138
. J X
Hence the neutron-diffision length L has the interesting physical inter-
¢ pretation as being 1/Y6 of the root mean square (rms) distance to absorp-
) ~
tion
. N .
/ L]
2 2 .
L = %Q > 111-139

AN

That is, L measures the distance to which the neutron will diffuse {on

the average) away from the source beforé it is absorbed. It shoquld be

&

stressed that we have calculafied the xms distance from the source to the

. point of absorption, not the total path length traveled by the neutron.’
A ~ This path lex;gth will be very much longer since the neutron suffers a
qrgg_t many scatter;'.ng collisions befofe it is finally absorbed. For ‘ )
d example, in graphite the thermal diffusion length- is 59 cm. Hence the i
} Q rms distam;e to absorption from a point source is (_<r2> L /6 L = 144 cm.

. If we recall that the mfp characterizing thermal neutrons in graphite
& ’ ]
is 2.5 cm and al€o recall that the average number of scattering collisions

B ’ suffered by the neutron before absorption is 1500, then it is apparent-

-
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] 0T

that the average p[fh length or track length traveled by the neutron

is about 3700 cm, considerably larger than YeL.

One can actually use Eq. (III-139) to define the neu’:roh diffision’

length in sijtuations in whinch diff;\sion theory ‘Zvoﬁld not apply (e,q.,
strongly anisotropic scattering or large absorption). Then one would
first determine the flu:; $(xr) resulting ffom an isotropic point source

.

using transport theo .whatever description is relevant) and then
calculate L by usizg

®

3. 2
12 =1 <x% = [T o) ITI-140
. > .
© &
where the integral is tﬁien over all space. . ‘ g
C %

Sl .
. <o, .
. L

I3

. .
The' cylindrical geometry problem of a line source at the origin of

’ 1

an infinite medium can be worked out in a very similar way.

: \ S

. ,\A\/» ' .

III-5.1.3 FINITE SLAB GEOMETRIES - N

. . .

Let us now modify our isotropic plane source by assuming that it is -
iy

imbedded at a cer‘er/gf a slab of nomtiplying material of width a.

s;irro@de& on both gides by a vacuum (see Figure III-G)' We will .

-
t
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set up this problém in a manmer very similar to that for infinite
D / .
plane geometry, except that we will add vacuum boundaxy conditions

-

on either end of the slab.

R -~
2 .
dQ_-l ¢ (x) = 0, x ¥ 0,
dx2 L2 ]
{
with boundary conditions: -
A
R t
t .
. (a) 1fm - D d¢ =8,
x+0t —— ) )
. &* 2 III-141
. () (£ £ = 0. 7 ‘
: 2N\ ¢
p .
) L] - ¥ [’
Here we have replaced the boundary condition at infinity by the
vacuim boundary condif:ion*- in this case, using an Extrapolated boundary
. e -
51/2 = a/2 + Zqe If we again seek a general solution of the form of \
N
Eq. (III-130), then applying the boundary condition: (b) implies

— » a
;

— e

$(3) =0=A exp(- 3 ) +Bexp (3 )+ B = -A exp(~ a).
2 2L 2L L

. Figure III-7 A pl§?re source! at the originé of an infinite slab.
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Then boundary condition (a) implieso

. - N
* a A=SL[1 +exp(-a)) ".
’ 2D L I
!/
/
' Our final solution i% therefore
f { .
3 \ ,
exp(-ﬁ’—exp - (3-x) sinh (3-2]x]) I11-142
$(x) = SL L L = SL
‘ 2D 1 + exp(-a) 2D , 2L J

s ¢ L

,. ' | = i o

°

-

This solution is sketched in Figure III-7. It looks somewhat similar
to the infinite medi\um result (Eq. ITI-131), except for dropping off more

rapidly near the boundaries due to neutron leakage. We should mention

] ‘once again that the solution is not valid witlh'in several mfp . . @
:
;~ of the.\vaguum bounda‘ry (just as it is not valid near the source E)l'ane at RSy '
) ‘\t\bg_\o:dilgin) ) C. | | ‘
\ -
II1.5.1.4 | TWO REGIONS SLAB GEOMETRY - | )

- \

» -

&\variant or; the above problem involves replacing the vacuum by, a . .
material of different ‘composition than the slab itself (as sketched in

Figure TII-8). The general procedure for éttacking such multiregion ‘ ‘
problems is to seek solptions of the diffusion equa;:ion characterizing

each region, and then match these solutions using interface boundary con-

»
ditions. Once again we can use geometrical symmetry to allow us to res-

trict ouﬁ attention to the range 0<x<,
™~

BN
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R . . H . ‘ " 1.5% ren 4 5 R " 4 ) ., L
... ¢ . A 5 4 vk . [ ‘e B . % ’ B .
- 0 K " Tk .

b o



R
v ") ) “ . .’
- ‘ 201 < <,
’ 3 LI ~ , ~ ¥ \\ .
‘ ' ' ; s 3
g “ . ' . . 5 \\. ~ ; T
: . : 5;// _ \\:f .
3 - » .
3 » 0 —

% N |

77

¢

H

-
7

A R R RS T R R TR TR SRR TR
[~4

N o
¢ \ A v
Figure III-8 Multiregion or reflected slab
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In region (1) we will seek & solution of < p

¢1 (x).= 0, 0 <x< a
) 2 I1I-143

VRN
S

-1
2
!

S
+ where L_ = /Dl/Za is the diffusion length characterizing region (1).
. @

1 1

. .

, Similarly in region (2) .
o : -

: a’p2 ! ¢, x) =0, a ’
2 2 ) 2 <x< ®, .
‘ dx qu .
Il ) ) L] " .
¢
j ‘ +
. Ty -
o N v

oy s
T,

1
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‘Now we will need several boundary conditions. We can use our earlier
X conditions (Eq, III-129).: N . )

0

(a) lim Jl(x) =
x+0+

0 .
.

* .

’
N
lo
&

(B) b (x) <= as x + o,

In addition we will use the interface conditions

- 2

A\
(c) -¢,(a) =¢_(a) ?
13 23 .
I ’ O - .
- . (@ ° 3,(a) =3 (a ar D db | _ _
- ~ 1l > 2 > ) 1 dxl = D2 d¢2
ERES dx |a
2 2
T T ~ .
= Using our earlier work as a guide, we can seek general solutions
; ' . ° .
] ¢, {x) = A_ cosh x*.+ B, sinh x in region (1)
E 1 1 I 1 L )
A . . ’\ 1 .
P 6. (x) ='A exp (-x ) + B_ exp (x ) . in region (2)
. 2 X - 2 T 8
. . 2 2 ~
N o
- . .
and apply the boundary condition. We find .
a i
; < 52 = 0, Bl = - sLl
®, - v Y
? . SD1
! ) '
f ' . ol
‘ D‘

T S g st S B,

¥ .

N



o D L.cosh(a J}+ D.L.sinh {( a )
SL 12 ——— -

) - 271 .
A= SL 2Ll 2L, ) .
1 — ; .
‘ '\b 2D ’
. . 1 D.L cosh( a ) + D.L_sinh ( a ), I11-144
. 2 1 Poma 12 —
¢ ) 2L2 2L1

exp (a) o o

- - Ry ESLL 2L,

. DZLlcosh( a ) + D1L2 sinh ( a )
2L2 2Ll

t

We have sketched the form of this solftion in Figure (III-B ), sSeveral

¢

features of this solution are of some interest. Note that while the neu-

AV et SN 2

tron flux is continuous across the interface, the derivative of the flux

is not. This latter discontinuity is, of course, a consequence of the

G
e fact that the diffusion coefficients in the two regions differ; hence

LS PP U

to obtain continuity of current J, we must allow a jump in d¢/dx across

the interface.

o

We have compared the solution for this problem with that c;btained earlier
for the slab surrounded by a vacuum‘.’ It should be noted that the flux
in the ‘central region falls’ off somewhat more slowly when the vacuum is
replaced ’by" a diffusing material. This can be readily understood by

¢ noting 1l'.hat the material s.urrounding th; slab will tend to scatter neu-

trons back into the slab that would have otherwise been lost to the vacuum.

J . : . '
« Such materials used to reduce neutron leakage are known as refleckors.

Any material with a large scattering cross section and low absorption

A
'y 0y - . . . b e
WK i A A D K 57 S o A AN o e

cross section would make a suitable neutron reflector. For example,

the heavy water surrounding PHWR cbres act as reflectors.- In the HTGR,
o N

‘
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graphite blocks are added to the top and bottom of the peactor core

to serve as neutron reflectors.

o

N
b

ORI NY L e
-
<

111-5.1.5 GENERAL DIFFUSION PROBLEMS

L

Recall that the neutron flux resulting from an isotropic point source-

of strength SO located at the origin of an infinite medium was found

.

to be

S, exp(-r) K I11~145
$(r) = L
47D

-

Ssuppose this source was locatéd at the point r” instead. Then the
' )

3

flux could be found by a simple coordinate translation as o

. exp(=]r-r’]) T
L

ITI-146

¢(xr) = S

0 4WDIr—r I

)
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o
N
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| Simple point source. ‘Several Point Sources Distributed Source
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3 . Figure III-9  Superposition of several point sources,
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Wi

- Next suppose we have several point sources at positions ri’, each of

strength si' Then we can use the fact-that the diffusion equation
‘\ . .

is linear to invoke the principle of superposition and write

S.e -'r -7
i xp( R |

- L ' 111-147
41D |r-r] | 3
> 1 d
o ™ - ) 2
- c ’ ' ‘
f % Finally suppdse we have an arbitrary distribution of sources charac- .
L ke ' 4
:{ terized by a source density S(r)., Then the flux resulting from this ] . %
4 » o
E‘ distributed.source is just N
‘E‘
;

e:ip(-] -r’l) )
o d(e) = f.a0x” L ] 5. II1-148 /

‘. A ‘ 4TTD|r-r'|.,‘
h \ L] i

o -
'- j
This is féquently rewritten as . I - -

. Ll

| N C T -
ty ¥ 3 . i
E d(x) =/ a r’Gpt(r,r’)S(r’) . I11-149 ,
f "] ' ., '
:v
E «
- where .

s oo \ :

ﬁ - ekp(—]r—rﬂ) o N- -
‘ ' L. | I11-150 ,

Gpt(r,r )= i .

& 4mD|xr-r”|

R R TR ST

'y
3 . .
is known as the point diffusion kernel for an infinite medium. (The

’ -
St ottt e AR

- expression kernel is a mathematical term used to denote a function
’

.
AN

of several variables (including the wvariables of integration) in an

!

Ve
-

integral of the form

b

§
E
E
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Jax “K(x,x Y E(x7).
o

Here K(x,x”) would be the known kernel, while f(x) might either be
known (as the source ‘density S(r)) or unknown as«sthe flux Y in the

inscattering term of the trénsport equation,

a
~ oo -~ ~ ~
f411 an”’ fo dE'Y;S(\E'-’E,Q'-'Q) Y (r,E7,G,t) III~-152

. where ZS(E +E,1"+Q)is known as the scattering kernel).

; .- /
. b
: As se'cond example of sucI:x kernels, consider the flux resulting fro:p
=~ a plane source at the origin
E 4
¢(x) = SL exp (-]x] ). III-153
i - - 2D‘\‘ L R %
If this had been located at x”, then jhe flux at a ‘position x would
~ N * : \
' be v
* - ‘ -
¢ (x) » _EL exp (-]x - x'l) . ITI-154
’ 2D

L ‘

.

Hence in general, for S =+ S{(x”) dx”, we find

¢ (x) = /7 ax

-0

L_exp (-|x=x"]) s
2D L

__J.°° ax Gpl(x,x )S({x7), - D,

-0 5

)

‘e

et a8 w3 0 ot 13 vatm o o 5 e a1 o e
) ) ; e ¥ "
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where we have identified the plane source diffusion kernel for an

infinite medium.

. '

i

Gpl(x,x )

111.5.2

[3

“

~

= L exp(-[x-x"|)
2D L

_—

’

3 ;

I1I-156 - /

EIGE&FUNCTION EXPANSION METHQODS .

A%

One of the most powerful methods available for solving boundary value

¢

problems is to seek the solution as an expansion in the set of normal

4

modes or eigenfunctions characterizirig the geometry of interest. As

an example we will attempt to determine the neutron flux resulting from

an arbritary distributed source in a finite slab of width a. That is,

" we wish to solve

[ 8}

<

©

» -8 £x§ a, II1-157
2 2
*\& @
N
e

Since we have taken the source S(x) to be arbitrary, we cannot assume

symmetry to restrict our attention to th range 0<x€a/2.

rd

4




We begin by considering a homogeneous problem very similar to

>

Ea. (III-157). R
' IS

a®p + 8%y = 0 » &%y =87y ()
ax?

~ .o
with boundary conditions: ‘ 1II-158

Y (3) = 0 = P(-a).
2 2 -

Here 82 is just an arbitrary parameter - at least for the moment.
Let us now solve.this associated homogeneous problem b& noting the

general solution

re

Y (x) = Al cos Bx + A, sinBx III-159

~ Our boundary conditions require

" op(2d) = A

3 cos (Ba) tA,_sin (Ba) . III-160
2

1 2 2

14
/ . ' .
Adding and subtracting these equations, we find that we must simunlta-

: &
neously require - N

A.cos(Ba) = O
17

»

A_sin(Ba) = 0 III-161
2 ?r .

-

Sk R s e e s 1 (4 b AR ? ¢
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Certainly we cannot set Al and A equal to zero since then we would .
2

have the "trivial" solution Y(x)=0. Instead we must choose the para-
meter B such that these conditions are satisfied. Of course there are many
Y v

‘values of B for hpich this will occur. For example, if we choose A2=0,

then any

B=B_=nT : 111-162
" E

/ v

will give rise to a solution

¥ (x) = A cos nmx, n=1,3,5,... 11I-163

S5

5

which obviously satisfies hoth the differential eguatipn (eq.III-lgs)

g I

-
g

. P .
and the boundary conditions. Alternatively, we could have chosen

A A = 0, in which case ‘
p B=BInm, n-=2,4,6,... 111-164
nE
yields solutions » , .
_ . nmx < .
. Y, (x) = A sin — n = 2,4,6,1.. III-165

“

3 Hende our homegeneous problem can be solved only for certain values
T? . ANu i 2
3 of the parameter B. One refers to the values o{'B for which nontri-

3 ) vial solutions exist to the homogenous problem as eigenvalues:

~ A\

B N Ry

’

~); =n=1.2,... III-166

' Eigenvalues: Bi = (nw 2
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¥

The corresponding solutions are referred to as zhe eigenfunctions of

- [ A = .
. ) the problem: . /
’\; . ‘h 3»’5/ ‘
Eigenfunctions: A cos(nmx), n=1,3,5+7.. ” )
n —
a 111-167
\Pn(x) =
A sin(nmx), n=2,4,6,... g
n —
2 .a
- .5 ;'1

FLY

We may have already encountered eigenvalue problems in a somewhat

different form:
3

o

' HYy = ann 1 III-168

’

where wn is the eigenfunction corresponding to the eigenvalue X .
n

However by comparing this form with Eq.(III-15€), one can %isily s

e

3 identify H = d2 / dxz, A+—Bz, and wn+wn(x)- . :
Notice that in the example Eq.\ (III-158) we actually find two types
of eigenfunstions: the cosine functions corresponding to odd n and

« symmetric about the origin, and the sine functions corresponding to
even n and antisyméetric about the origin. Had we restricted oursel-
ves to symmetric sources s(x)\= S(~x), we could have eliminated the
éntisymmetric solutions (Eq. III-165) from further consideration.

We have sketched the first few eigenfunctions for the slab geometry ‘ -

in Figure III-10 . . ¢

’ bt < e - PR
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In acoustics these eigenfunctions would be identified as the normal

. ¢

modes or natural harmonics of the system, and this terminology is

frequently carried over to reactor analysis. Notice that the A:Rare

still undetermined and are, in fact, arbitrary. These can be chosen

[4
in a number of ways, but for now we will just set An = 1 for conve-

nience.

ot .

1
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A4

So now this auxiliary prﬁ?lem has given us an infinite set of solutions

) "
wn(x). WhicH have a couple of very useful properties. First notice

el that the product of any two of these functions will vanish when -Q‘lt'e- ¢

grated over the slab unless the functjons are identical:

\ i . .
' 0. ifm#n
SO axy (x)P (x) =a, - ifm=n III~169
m n ‘2— /

N

|
NITY]

This property is known as orthogonality and proves to be of very ,

considerable usefulness, as we will see in a moment.

. " ¥ 3
4
’ * ‘:ﬁ
The ifcond property of the eigenfunctions wn(x) is that they form a ‘ ) i
- complete set in the mathematical sense that any reasQnable "well-behaved" 3
v L]
\“ function f(x) can be represented as a linear combination of the wn(x): s ) é
F; ) i
w0 . »
¥ = 1 . -
(x) L cnwn (x) II1I-170 |
n=1 . I
%
Of course, such a representation is only of formal interest unless some
scheme is available for determining the expansion coefficients Cn' but f -
is is where orthogonality comes in handy. Multiply Eq.(III-170) by
wm(x) and integrate over x to find b
\ ik
\ ' N ]
I ¢ s i . E
' = d- = O ,' X
ff dxf (xlf(x) = I C 2 axy )y (x) =c [2 axy (x) <
\ ~ n=1 ~ . a
'a . 2 Y .
-2 -2
or III-171
~ a -
. c =2 /,3 dxf(x)wm(x)- ' )
m =
- S G S
-2 -

A
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»
Hence given any function f(x), we can evaluate the appropriate expan-

-~ .
sion coefficients C‘u by a simple integration.
e

- - | :

With this background, we are finally ready to return to solve our ori-

e

ginal boundary value problem. As we mentioned, the essential idea is

b
t?{ seek the solution as an expansion in the eigenfunctions lpn (x):

BN

I1I-172

We will also expand the source term in a ?ﬁnilar fashion

*
©
|8

S(x) =L SV (x). /
n=1 AR -

ITI-173

@

a

4
Notice that since S(x) is known, we can use orthogonality to deter-

mine the source expansion coefficients (as in Eq. III-173) as

a
2 III-174

daxs (x)wn(x)

=
g
Nofpe

Of course since ¢(x) is unknown, we cannot determine the Cn in a

\

similar fashion, but that is just what we can use the originalf

equation (Eq.III-157) to accomplish. If we substitute Egs.('III-172 ) .

»

and (T1r1-73 ) into Eq. (III-153), we find

o0 2 =]

I c | a% . L )

~, n n - ly FL -
n=1 5 5 [ T nels . III-175

A

YT e s s b AR ..
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¥
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o .
However using Eq.” (III-158), we can eliminat® dzwn / dxz,to find
- 2
w
+¥ :
nil Cn (Bn % wn =1 I sntpn. III-176 "f:
L D n=1 s
N /
. /w
Thus we are left with one equation for an infinite number of unknowns,
Fortunately orthogonality once again ‘comes to our rescrue.

the C .
n

‘ Multiply by wm(x) , integrate over x, and use orthogonality to find

] ~N
o s /D s I ,
3 e o= T = N ' I1I-177
g 2
3 82 + L 3+ %’
n 2 n
; L
iY - L4
f Thus we £ind the flux-fot any source distribution as
L + . ) - B
d(x) =1 I Sp P (x) III-178
3 Ny ¥ n=1 2.2 n <
a 1l +L Bn

where lbn(x) = cos(nmx/a), n odd and wn(x) = sin(nmx / a), n even.

., T ‘ We can rewrite this in a bit more familiar form if we substitute Eq,

I1I-174 into Eq. III-178 and rearrange things. a bit:

> a “
d(x) = 2_ x|l 2 1 xpn(x)\bn(x ) S(x”)
, , . a aZa n=1 1+ Lsz
*./ -‘2 ° n
LN <
- II11+179
. X -
=j 2 dx’c .l(x,x‘)S(x’).
a
' B 4 -2
p = )
i ‘ P

¥t ot e i P aalfB age it
°
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%
/// -
; G (x,x) = 2 z
. pl o al n=l
a
‘ [w

3

s b

|

*
Y oY (x7)
—1‘-—-2—’3———- III-180 . y
1 +LB
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_Note in particular that the Green's functiorl\}&

v

&
as it was for infinite geometries. ‘

no longer a displacement kernel, that is, a function only of x - X7,

‘.

L

a finite geometry is
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I11.6° THE ONE SPEED DIFFUSION THEORY IN MULTIPLYING MEDIA -

FLE N

III.6.1 GENERAL

—

{

} P .
. AS

v )

The diffusjon of neutrons in a nuc¢lear reactor which contains fissile

materials dictates the use of a fission term in thesdiffusion equation. ’

. To this end, let us first recall the sequence of events involved in. a
\ L .- . . ' .
fission chain reaction. Specifically we consider processes occurring

. : &
’ in thermal reactors. (see Fig. IIIfll)._ Fission neutrons are born at

high energies in the MeV range. It is possible that such fast neutrons

° . 235 239 h
induce fission in either fissile ( U or Pu) or fissionable isotopes

238 v ' .
( U): It is far more likely that the fast fission neutrons will be

’
moderated to lower energies by elastic scattering collisions with

A o 2 12
light moderator nuclei (e.g., |D or gC). As the fission neutrons
]

are slowed down, they pass through energies comparable to the absorption

. . 238y and hence experignce an F
resonances in heavy nuclei such as

appreciable probability of being absorbed. They may also leak out

~  of Eheﬁreactor core during this slowing down process. In a thermal

reactor, however, over 85-99§ of the)n?;}rons will manage to slow d3wn
to thermal energies. They will then diffuse about the reactor core

until they either leak fxom the core or are absorbed. If they are

absorbed in the fuel, then they may induce a new fission, thereby re-

k # .
2 peating the cycle. . o

e
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III.6.2

It is evident from previous sections that the slowing down process of
neutrons born from fission is energy dependent.
that diffusion, abso;ptjon, and fission all occur at the same energy.
Then a term to represent fissions can easily ber derived by noting that
if Zf¢(r,t) is the fission reaction rate density, then the rate at
which fission neutrons appear in the reactor - that is, the "fission

source" - is given by

If this is the only source of neutgons in the reactor, then the

appropriate diffusion equation becomes

Note here that we can identify the various components of the macroscopic

absorption cross section which appear in Eq.

and

I11.6.3.1

Considering a uniform slab of fissile material characterized by cross

THE FISSION SOURCE TERM

%

‘/’>’

Sf(r,t) = V2f¢(r,t)

1
v 3t

£ = Zmoderator 1
a a

fuel fuel » _fuel

Za = ZY + Zf

GENERAL SOLUTION

However, we will assume

3¢ - V-DV¢ + Ea¢(r,t) = v2f¢(r,t)

(ITI1.182) as:

/
structure +

(IX1.183)

B" REACTOR (ONE-SPEED)
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sections Za, L__, and Ef. This unrealistic appearing "slab reactor"

~

tr

is chosen to introduce many of the concepts of nuclear reactor analysis,

since its one dimensional geometry greatly facilitates the detailed solu-

tion of the one speed diffusion equation. The appropriate mathematical

description of the

x=

g=-2 (]
2 2
Fig. III.12 The Slab Reactor. )
D
neutron flux in such a reactor is -
. A
2 L4
} (1;_ %% - D _a_g_ + an’ (x,t) = sz¢(X:t) (1II.184)
. . % N )

with initial condition: 4ﬁx, 0)~ = ¢g (~x) (symmetric) Te——

t) 0 (III1.185)

and boundary conditions: ¢(_§_,t) = ¢(— a,
2 2

r

The initial flux is assumed to be symmetric.

Unlike our earlier studies of time-independent neutron diffusion, weygy
are now faced with a partial differential equation to solve. The simplest
way to solve the eguation is to use separation of variables by seeking

A

a solution of the form ’ . ,

Q d(x,t) = w(x)T(t)./ (1IT..186)
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If we substitute this&om into Eq. (III.184) and divide by y(x)T(t),

we find L

2
141 =Y ay - -
T at m [D + (vzf Za)tp(x)] = constant

dx2 - A (111.187)

4

Here we have noted that since we have a function only of x set equal

to a function only of t, both terms must in fact be equal to a constant.

*

We name this constant separation constant and indicate it by ~A. However,

A is as yet unknown. '. g
]

" o

‘ ‘Hence the separation of variables given by Eq.(ITI.186) has reduced the

¢
i
{
f
)
‘.
L
é“
4
¥
&
§
,A
.
&
H
v
5
L
i
£
i
#
)
H
5
%
¥
:
“
h

original partial differential equation in two variables to two ordinary

R e I A AR

B

differential equations:

3 ' - ’ A g - o . /
§
ar = -aT(e) L
g dt ,
i (111.188)
4 a2y - S
A ?de * (VZf za)w(x) =g v .
; ' v
4 We can easily solve the time-dependent equation * .
$ ' \ # 2
/ -At ‘
Hy > T(t} = T(O)e (II1.189)
1 P
~ ' . where T{0O) is an initial value which must be determined later. To
:F v M . el l
. ‘ solve the space-dependent equation, we must tack on the boundary conditions:
. . X )
: . . d "
; A - = III.190
2 DI+ VI = LG = 0, (111.190) \
f
; . Boundary condition: w(%): q,(;%) =0 (I1I.191)

.
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. Here A is still to be determined. However we recall the eigenvalue
e problem - ). ~
A 2y
-
‘ dz‘pn 2 ' *
dxz' * Bn wn(x) =0
. &
(I11.192)
. a E

w = wn(Z =¥ -3 =0
‘ . '
, R h has symmetric solutions (we are only interested in symmetric solutions

}

/

since ¢p(x) is symmetric):
¥

P LA

eigenfunctions: ¢ _(x) = cos an

’2 n-1,35,... (I11.193)

4

eigenvalues:

=

ﬂnlg

-

et

If we \identify Eq.(IIT1.190) as-the same problem, it is apparent that

vohten

we must choose &

%

4

* 2

y N = VI + VDB - UVE, =\ n=1,3,5,... (II1I.194)
b a £ n
Y | .
¢ . » o
g i " Ve ” 1
& These values of ).n are known as the time eigenvalues of the equation,
¥

since they characterize the time decay in Eq.(I11.189). The general

solution to Eq.(I1JI.184) must therefore be of the form

4 - _ nnx
3 p(x,t) = L An exp ( /\nt) cosra— (IXr.195)

n S

) - odd N f

This solution automatically satisfies the boundary conditions. To @-
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termine tha A, we use the initial condit4Qn to wrkte"? )

\
Initial condition: ¢(x,0) = ¢,(¥) = © A cos TZX  (111.196)"
» odd ¢
Using orthogonality, we find :
Ny
& .
2
2 ! . DX . :
AL =3 f—-S ax¢, (x) cos —3 (axrf.197)

Thus we have found that the flux (for any symmetric initial distribution)

can be représented as a superposition of modes, each mode weighted by

N s
an exponential factor:

( \ p :

a
z
§ . . - 2 ' ' ' -
; d(x,t) = -L [ s f—E dx’ ¢ (x ? cos B x ] exp (=X _t) cos B X,
, N & n T \ .
E odd o (I1I.198)
A where the Q}me eigenvalues An are given by ?T
‘ 2

f . nm
3 An = m:a + UDBn - Uvzf, Bn =z (I1I1.199)
4 N R R .
-~ N - ‘
§ 111.6.3.1.1 LONG TIME BEHAVIOR

. 2 2
: Notice that one can order Bl< B§< e Bn = (nn‘/i)2 . . . Hence the time

b eigenvalues must similarly be ordered such that Al< A3< AS < A7< . e .
This means that the modes corresponding to larger n decay out more rapidly

W in time. If we wait long epgygh, then only the fundamental mode remains:
L . . g

¢(x,t)-Al exp(—llt) cos le ag t-o (I1I-200)

7




.

This implies that regardless of the initial shape of ¢0(x) the flux % i

I
will decay into the fundamental mode shape. Of course, we have N\

impiicitly assumed that Al will not be zero. The coefficient of the
. <

y

fundamental mode is just '

2 4 wx'
£ 7 ' ' LA
3 f_ dx ¢O(x ). cos ruk (XII.201)

-

a
2 . /’M ¢
:i%hysically.

" Since ¢O(x) must be nonnegative in the slab to represent ar

realizable flux, then,it is apparent that Al>0'

Actually for sufficiently large ff, —An may be positive corresponding

to an exponenfially,growing flux. However the same argument will hold

.

since —Al >-A3 > . . . Hence regardless of whether the flux grows or

decays, it will eventually approach a "persistent" or fundamental co-
!

sine distribution.

4

I
It is customary to refer to the value of Bi characterizing this mode as

.

‘'

?

)2 = B2 = geometric buckling. (ITI.202)

2
Bl = ( g

A

. , ) 2,
This nomenclature is used since Bn is a measure of the curvature of the

modeishape

! A

' ‘
S __.W_z_d n (I1I1.203)
Ba S TV a2’ ‘

‘9 n . -
\

[
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Since there will be a larger current density J and hence leakage in-

duced by a mode with larger curvature ¢of buckling, we might expect

that the mode with least curvature will persist in time the longest.

\ N
II1.6.3.1.2 THE CRITICALITY CONDITION /
~
The criticality condition in a nuclear reactor can be interpreted as
that situation for which the neutron flux is time-independent. That is,
¢
to make the fission chain reaction steady-state. We will define this
situation to be that of reactor criticality:
Criticality: = When a time-independent neutron flux can be
sustained in the reactor (in the absence of
g . sources other than fission).
If we write out the general sollution for the flu
d(x,t) = A,l exp (-Alt) cos le
oo
#L A, exp(-Ayt) cos B X ' (II1.204)
n=3 - i
n:odd -
ic/( }is evident that the requirements for a time-independent flux is jugt
A .
that the fundamental time eigenvalue vanish o
'A-o-U(z-vz)+uD32 I
L =0 = VI ¢ 1 (III.205)

'
v s
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since the higher modes will have negative An and decay out in time,

leaving just

¢(x,t) = A; cos B,x £ function of time . ' (III1.206)

’

. . R . - ; 2
If we rewrite this "criticality condition" using the notatfgh Bi = Bg'
then we find we must require
VI, - I 2 ‘ "
£ a - B (ITI.207)
P . - g . , \4_/\
D \
L%
It has become customary to refer to
*
Vi - I ¢ Bi = material buckling = (IIX.208)
D

Since it depends only on the material composition of the reactor core
2 ‘ : :
{(whereas Bg depends only on core geometry). Hence our criticality con-
A ]
dition can be written very concisely as:

i

(material composition) B; = Bé (core geometry). (II1.209)

. \
s

o

. . s . . . 2
Thus to achieve a érltlcal reactor, we must either adjust the size (Bg)

. 2 2
or the core composition (Bi) such that Bm - Bg. We also note:

+ A, < 0 -+ supercritical

It
w

+ A, = 0 = critical (I11.210)

o

+"X. > 0 + subcritical
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¢ i
In particular notice that by increasing the core size we decrease Bs ’
while by increasing the concentration/éf fissile material we increase
Z'f and hence B:‘.f Both of these modifications would, therefore, tend

to enhdnce core multiplication.

AR

-

We can write the time eigenvalue as’

y

, ‘ ' 2.2 vEg/Ea »
/ > + -

i ‘ M2 VI (L4 LB (1 - o2 . (Irr.2iy)
, . : g9

3
E LN
i ; - where /
' ; | J ) . -
1 a { =~
% L2 =. (,/ 2 )2 - % \ (II‘I.212)
2] . : £ a ‘
. ! a ‘ i

F

] -

1 Now recalling that (VL) 1 is the mean ]&etime for a given neutron-

r' H

nuclear reaction to occur, (\)Ea)-l is just the mean lifetime of a

neutron to absorption. Furthermore we can identify (refer to earlier

N

Eg. no.) .
Fuel Fuel )
VIfF * = VIf . Za _ _ (ITT.213)
. 3 Fuel I = sk
a v I a
a
. - . , \ , 2.2.-1
Now the only remaining task is to identify (1 + L Bg) .
. We recall that the rate of neutron leakage is given by:
- i ! _ 23 3 2 e
" Leakage rate = [gdS - J=/, d°r Vd = -f, dr DV (IX1.214)
N < ° )

st 4 PR AR R
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p z
Where we have used both the Gauss theorem(B-6) and diffusion approximation

(III1.86). Hence we can write

EN

%

Rate of neutron absorption =
Rate of neutron absorption & leakage

L‘b}, 3 4
- *zaf'vd re ;

3
fvd rZa¢

3 32
[,7cL_§ [, eV

N “)‘
: v = ____l___2_ (111.215)
. 3 2 3 2
. Zafvd r¢ + Bngvd rQ\ l + L Bg v -
) [) AN

However, we can identify this ratio as just
N

Non Leakage probability z P __ = 1
ge P Y= PyL 5 (I1I.216)
1 + LB
LY
Therefore we can interpret * :
et ) L = P (-L—) 2 1 = Neutron lifetime ixll a
‘oL 22 ~ °NL Vg T
- a finite reactor.

1+ LB (I11.217)

-

Since we have just reduced the lifetime to absorption in an infinite
medium to take account of neutron leakage. If we now combine Eqs.(ITII.213)

and (III1.217) we find that the multiplication factor k for this model

v

becomes just:

_ VIf . 1
NL 7“a. 1+ LZB;

k = nf P (I11.218)

Thus we can identify our fundamental time eigenvalue as just the,inverse

of the reactor period

' . (I11.219)

T ST T PP S SR
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~ subject to boundary conditions

\
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& a

If we also recall from equation (III-199) that

.2 2 : :
= - B ITT.220

)

M

then it is apparent tha¥ the various forms of the criticality condition

.

are indeed equivalent:

(rn.nﬁ) .

o
IT1.6.4 THE CRITICALITY CONDITION EOR MORE GENERAL BARE GEOMETRIES <
IIT1.6.4.1 A RIGHT CIRCULAR CYLINDRICAL CORE (ONE REGION) ¢ ) . ¥

v

The most common reactor core shape is that of a right circular cylinder ;

of height H and radius ‘R. (Actually a sphere would be the more optimum

174
geometry from the aspect of minimizing neutron leakage, but spheres are ’

very inconvenient geometries to pass coolants through). The appropriate ot

form of the Helmholtz equation is then

Y -
1 3 .3 3 2 (III.222)
- arrar +3—z% + B ¢(r,z) = O, P

[ 33+ o]

¢(Ryz) =0 =6 (r23), t (IIT.223)

©

g ) ?

e bt



Since this is a homogeneous partial differential equation, we can seek

’ . .
its solution using separation of variables )

, !
o plx,2) =&r)2:(z) (II1.224)
T

s . \, !

Then if we substitute this form into Eq.(III.222) we arrive at two

ordinary " o ™

4 Figure ITI.12 ‘Finite;?ﬂindrical Reactor Core.

9 differential equations ™~ /

’ ’ h e

" N d .d ) ~ . “ -
- -i"— i r -(§+ 32’%1‘).: 0 R(R) =0 (I1I1.225a) . )

. 2 i . '
3—2; + lzg(z) = 0, > QZ(i 'g') =0 ' (III('.225b)

°

»
where the separation constants a2 and Az are constrained by the relation-

s ) ship B = a4 A2,
' 2
problem that one can use !!h determine o and X (and hence B”). The

Each of these equations represents a sepafate eigenvalue

eigenfunctions and eigenvalues of the axial equation are well known to us

s

~N
o]
E |
N

n=1,3,... - (III.226)

=]
1]
e =]

Zn(z) = cos (5%5), A




To: construct the eigenfunctions of the.radial Eq.(III.zzsa)'we'first

~ identify its general solution in terms of zeroth order Bessel functions

K
.

R_(r) z Y, (ar) + c¥, (az) (IIX.227) ;

2

Since Yo(ar)*f as r+0, we must set ¢ = o0. Applying our boundary

N -

condition at r = i, we find B

&ﬁ) = mo(uﬁ) = 0+al = - (III.228)
‘ . . ~
N . [N
where v are the zeros of JO' In particular, the smallest such zero . f
' a° o . '
is Vg = 2.405 ....(kind of like 7 to a Bessel ‘function). Hence we find

h

the eigenfunctions and eigenvalues generated by the radial equation

, ‘ r
(III.225b) are just - °

. ! 2 _ - 2 _ .
‘{S(r) = Jo(l'%-’i) s Op = /RT, = 0d,eee o (177 229)
9 :

Thereforg, consistent with our prescription of seeking the smallest

value of B2 as our geometric buckling, we fina

% . .
B2 = (2, 2, (T11.230)

L

corresponding to a spatial flux shape

1

$(r,2) = AT, (°§F) cos (1%) ~ o (1I1.231)
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. 3
g

%.
Since this is the’ geometry most ‘frequently encountered in reactor design,

it is useful to calculate. the normalization factor A in térms of the core

; power level P by noting ‘ ‘ )
« . ) Ei—
] v 3 ' , Vor\ 2 Tz w_I _A4VI_ (v,.)
P =/ dlrw l 4(x) = wgL 2mA [ dr rJO(T) 1% 9z vos () = Ve f:“ 1!
1 c o, ) ) 2 0
) (I1I.232)
Thus we find "
.63P i2a ‘
A= 3 g3v, v = nR4H ‘ (211.233)
o, , o
where wf is the energy released per fission event.
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For convenience we have tabulated the &eometric buckling and critical flux

profile for most common core geometries.

"

Geometric '‘Buckling Bg2

Flux Profile
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III.7 MULTIGROUP DIFFUSION THEORY

v

The one ébeed diffusion theory which has been derived in previous
sections, certainly suffices to introduce most of the important con-

[} J
cepts of reactor analysis as well as many of the computational methods

used in modern reactor design.: It can even be used on occasion to pro-

vide useful qualitative information such as in preliminary survey de-

53 ™ \/
¥
E. g sign studies. However for most of the problems encountered in practical
ﬁ ' nuclear reactor desig one-gspeed diffusion model is simply not
b= adequate. .

-~

& Two very significant assumptiong were made in deriving the one-speed

difgpsion model. We first assumed that the angular flux was only

e

Jokb

weakly dependent on angle (linearly anisotropic, in fact) so that the

f | J .
diffusion approximation was‘ﬂalid. Usudlly this assumption.is reasonably
well satisfied in large power reactors provided we take care to modify

the analysis a bit in the vicinity of strong absorbers, interfaces, and

; : boundaries to account for transport effects. p
. “
The principal deficiengy of the model is the assumption that all of the

neutrons can be characteri%ed by only a single speed or ehérgy; As we

«a have seen, the neutrons in a reactor have energies spanning the range

from 10MeV down to less than 0.01 eV - some nine orders of magnitude.

ot WA e Nl R

7 Furthermore, we have noted that neutron-nuclear cross sections depend

rather seﬁ%itively on the incident neutron energy. Hence it is not

A

surprising that practical reactor calculations will require a more
N

' , realistic treatment of the neutron energy dependence. (Indeed it is
) .
- - Y




0

surprising that the one-speed diffusion equation works at all. Its
success depends on a very judicious choice of the one-speed cross

sections that appear in the equation).

Id

- . -
l’f * :
We will now allow the neutrbn flux to depend on energy, but rather .
- 3
than treat the neutron enerqgy variable E as a continuous variable, we

will immediately discYretize it into energy intervals or groups.i‘ggat

is, we will break the neutron energy range into G enérgy groups, as

s shown schematically below: f

-
-

\ ! —17 —f e

E..

We use a backward indexing scheme, because it corresponds physically to
the fact that thé\neutrqn usually loses energy during its lifetime
{and mathematically to the fact that one always solves the discretized

equations stafﬁinq at high energies and working succeéssively to lower

energies).

*

As in our earlier discrete ordinates approach, it would be possible

to discretié% ¢(r,E,t) by considering it only to be defined at each

-

energy mesh point Ey. However it is more convenient to define the
~ -

» discretized fluxes instead to be the integrals of ¢ (r,E,t) over the

- > energiés of each group, such that the multigroup fluxes ¢g(r,t),'re-

present the total flux of all neutrons with energies E in the group

Eg<E<Eg-1. Then our task is to determine equations for ¢g(r,t). We { ) d
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will find that these equations take the form of a get of diffusion
equations describing the neutrons in each energ; ghoup. The equ;tions
are coupled to one ;nother since neutrons may experience changes in
energy and hence pass from group to group. For example fission neutrons
will usually be born iﬁ the highest energy groups and then cascade &own-

ward in energy‘from group to group as they are moderated by scattering

¢
collisions. .

Recalling the rather detailed dependence of neutron cross sections,on
neutron energy E, one might expect that a great many such energy groups

\ . -
would be necessary to adequately describe a nuclear reactor. Surprisingly

enough, however, most nuclear reactor calculations achieve sufficient

accuracy using only few-group diffusion descriptions. The ability tc

describe a reactor adequaéely with a relatively small number of energy

groups is not simply fortuitious, but rather is a consequence of a
carefulchoice of the energy-averaged cross sections that characterize

.

the neutrons in each group. ‘ :

I1r.7.1 DERIVATION OF THE MULTIGROUP DIFFUSION EQUATIONS

Perhaps the most straightforward manner in which to arrive at the form N ;
H
of the multigroup diffusion equations is to apply the concept of neutron %
¥
2

balance to a given energy group by balancing the ways in which neutrons

can enter or leave this group. Consider then a typical energy group g:




A T e RN R

4

rs
v

Eg+2 Eg-1 Eg-2 .

After a bit of reflection, it should be apparent that such a balance

would read as follows: '

J
Time rate of change due Cabsorption] source
change of - to - in + | neutrons
\\ neutrons in leakage group g appearinq R
group g : i J in group g
neutrons [ neutrons
- | scatteriew + scattering .
out of into (I1I1.234)
. group g | group g ]

It should be noted that we have taken explicit account of the fact that

~

a scattering-collision can change the neutron energy and hence either

remove it from the group g, or if it is initially in another group g~,

scatter it to an energy in the group g. We will characterize the
Vs

I4

probability for scattering a neutron from a group g~ to Fhe group ¢

by something akin to the differential scattering cross section

I (Eg~*Eg) (a so-calléd group-transfer cross section), Isg”g. Note

that the cross section characterizing the probability.-that a neutron

-

will scatter out of the group g is then given by
et

Lsg = Zg-_ L . (III.235)
g =159 " ‘ .

We will similarly define an absorption cross section characterizing the

SR
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group g,Eag, and a source Term sg giving the rate at which source neutrons
appear in group g. F%nally we will define a diffusion coefficient Dy
so that the leakage from group g can be written within the diffusion

l

4
apprbxémation as V‘DgV¢q. If we combine all of these terms, we find

a méthemat%fal representation of the balance relations (Eq. (I1I1.234).
/

Ug a8t

; o ) (III.236)

- {
f

N

If we separate cut that comécnent of the source due to fissions, then
)

we can write

G
ext
Sg=Xg gz:l\’q Leg”ég” * Sg \ (111.437)

\

where Xg is the probability that a fission neutron will be borngyith

an energy in group g while Efg» is the fission cross section characterizing
a group g” and Ug” is the average number of fission neutrons‘released

in a fission reaction induced by a neutron in group g~ .

Hence we now have a set of G coupled diffusion equations forx the G

unknown group fluxes $g(r,t). It shouldn't take muéh imaginatioq to

see that many of the same techniques that we used for the one-speed

(or one-groyp) model will also hold for the G-group system.

The more serious problem concerns just how one determines the group

-

: X G
1 3%g _ VD Vp — Iagdg + Sg = Isghg + ; Lgg’bg”r 9=1,2,...G.
g =1

P P

-
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4
constants that.-appear in these equations: i
R Ve
\' Dg, Zag,Esg,Esg’g,xg,ng,\v (X11.238)

' a

I11.7.2 DERIVATION OF THE MULTIGROUP E S FROM ENERGY~
DEPENDENT DIFFUSION THEORY .

Perhaps the most satisfying manner in which to derive the multigroup
diffusion equations characterizing the average behavior of neutrons

in each energy group is to integra{te (i.e., average) the equation for

-
the energy-dependent neutron flux, ¢(r,E,t), over a given group,

Eg<E<Eg~]1. We will assume that this flux can be adequately described

by the energy-dependent diffusion equation:
[+

1 3¢ _ V-DV$- I b(r,E,t) _ SO dE I (E+E) ¢ (x,E , L)
Ut

+ X(E) S5 aEV(E)Ig(E)9(x,E L) T

+s ,
ext (F/E,t) (III.239)

AN
\

Notice that we have inserted the explicit form for the fission source

loped earlier. .

§
i

v

i

ill begin by eliminating the energy variable in the energy-dependent

dift%qsion equation by integrating Eq. (ITI.239)over the gth energy group

9t

i , ,
ch \ \ct:enzed by energies Eq<E<Eg_l. j
\3‘,\
. Eg-1 Eg-~1 Eq-1
9 =
fﬁ‘ 3 ng dE Lp V. qu dEDYY + J'Eg dEZtcp
i\ U

4
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2 ' . ‘ T I
- » » E - . e
_ /2971 QEff aE"E (£ E) ¢ (x,E ) - /o971 aEs. (III.240)

Eg J~Eg

» -
{Q We will proceed further by making some formal definitions. First

define the neutron flux in grou§ g as

bgtr )=l QB (rE ) - _(1IL.241)

Eg

Next define the total cross section for group g as

gl S Fg-1 dEEt(E)tb(r Est) (III.242)
bg Fg
v ~ .
i ~ the diffusion ¢coefficient for group g as ( N
E )
% E )
¢ De= JEZ™l dE D (E)V:4(x,E,t)
3 9 —Eg = 3ol B (I1I.243)
v Ig dE de:(r,E,t) :/
: - /
; ¢
] . ‘ .
i and the neutron speed characterizing group g as
3 . .
] .
= Eq~1 )
1 =1 ng dE 1 ¢(r.E.t) (II1.244)
U g
g bg v . -

The scattering term requires a bit more work. If we break up the

integral over E” to write

3 \

, fg‘;‘l‘ dE [3 dE"E (ESE)$(r, B ¢)

¢ = Z f g"'l dE ng -1l ‘'dE : (E ‘*E) ¢ (Z,E ) (1TT.245)
5§ \ )
3
ﬁ;.;{',
gt 'c;:"‘, TL’};{'”“’ ’u . *‘q‘ "
L; Wﬂ > 4 éqp »;,1 :
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then it becomes evident that we want to define the group-transfer

cross section as

Loee 21 SE9-1 aE fB97-1 ap”1_(83E) 4 (r,E,t) (IIT.246)
Sg g - E Eg s
f ¢g’ -
7
A very similar procedure is followed for the fission term by writing

3 : &
4
» E Eg-1 %‘_ -1

,rEg-l dESg (r,E,t)= JEg  4EX(E) f de v (& ;Zf(E ) (x,E, t)

g g -]_, 9
Iy
y (ITI.247)
[f and then defining the fission cross section for group q‘ as .
4 R
4 ; !
- = E ‘_l » » - . ’ -

Vg Iggr = L qu, dE V(E )Ig(E )¢ -(x,E ,t) (IIT.248) | 3
X - . )
| € , | O

| while defining ) 3

r—. ' &
3 E -1
: Xg = Eg FEy (E) ‘ (III.249)
f‘ » v
. If we now use these purely formal definitions to rewrite Eq.(III.240) ‘

‘ : ‘ \ b

we arrive directly at the multigroup diffusionh equations:

]

. G ‘G ’ R
: 1 3¢ _V'DgV¢ + Ztg¢g(r,t)=z Lsg” g%q” * Xg 2; Vg Efgrdy *+ Sq
‘ . . Ug It . g =1 ‘ : g =l ,
1 ; r

g=1,2,...,G . : (III.250)

-

Several comments concerning these equations are necessary. The multi-
Xgroup diffusio?f’gquations (II1.250) are still quite exact (within the

diffusion approximation, that is), but they are also quite formal in b

4 4
the sense that the group constants are as yet undetermined. -

n *
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The»decision of how many groups we need depends on the problem one 'is
considering. For example, in vefy crude survey calculations of thermal
reactors, two groups (one to characterize fagt neutrons and the other
to characterize thermal neytrons) may be sufficient. Most LWR calcula-
tions are performed using a four-group diffusion model Ythree fast
groups, one thermal group) while ga‘g—cooled reactor analysis typically
uses seven to nine groups. For fi;"r}e detail’, one may have to go as

high as 20 groups (this is particularly true In¥fast-reactor calculations),

and in spectrum calculations, the number of groups can range as high

as 1500 (so-called microgroup structure), which is almost as detailed

as the tabulated cross section data itself. A

“

Let us look now in a bit more detail at ‘."he structure of the multigroup

\ ) w

diffusion equation. In particular, consider .rhe scattering term in the

»

a

equation. Re;all that in our study of the kinematics of neutron scattering

Chapter 2, we noted that if the incident neutron energy E

N

was subsequéntly greater than the thermal energy of the target nuclei

collisions in

P e R P T A Bl AR R

t “

(typically less that 0.1 eV), the neutron could never gain energy in

P—

a scattering ion. Such "fast" neutrons will only, slow down in a

scattering collision. Hence in these fast groups, we can set
f

i S

Esg'g = 0, :for > g A

Since most few-group diffusion calculations utilize only one thermal ®

group to describe the neutrons with E<leV (assuming that neutrons

cannot scatter up out of the thermal group), we can generally simplify

-
§ oo



.the scattering term to write

g-~1

L, = X + L
=1 59 gty g'Z=1 sa'g’y' ¥ Fagg?y

Her.e,we hgve taken caré to separate out the in-group scattering term
ngg which characterizes the probability that a neutro;x can suffer a
, scattering c‘ollision and lose sufficiently little energy that it will
still remain within the group. It is customary to transfer this term
to the lefﬁ—hand side of the multigroup equation (III.236) and to de-

>

fine a removal cross section,

ifn
t

' L L . '
. Rg tg 599 )
N ‘ \ ¢

B ~

which characterizes the probability that a neutron will be removed from

AT R T T T e
o
-
'
.
I
A
‘

the group g by a collision. , Note that the removal cross section is some-

-

P
f
)

times defined such that it does not contain absorption zag

use the above definition in our development, however. We will see

.

We will “

|

later that the neglect of upscattering (that is, the assumption that

the neutron can never gain or scatter up in energy in a collision)

greatlyulsi_mplifies the solution of the multigroup diffusion equations.
’ 7

One frequently achieves an additional simplification of the multigroup

A T B
.

1 i . A
- // _ equations by choosjpg the group spacing such that neutrons will only
scatter to the next lowest group = that is, such that
k
p: I 4 o
=
' L = L + I £y
; gr=1 sg'g¢q sg-l.g¢g-l sqqq’q . . g
i

. H:;ﬁ{; t-

L
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fn this case, one refers to the multigroup equations as being directly

coupled. (Fig.III.13 ) If we recall from Chapter II that a neutron of

enefgy E cannot scatter to an energy below 0E in a single elastic scattering

collision, then it is apparent that to achieve direct coupling we should

Y

chogse our group spacing such that Eg_l/Eg>1/a. For heavier moderators

n

(e.g. 12C), this is easy to do. Unfortunately in hydrogeneous moderators

a_ = 0, and hence direct coupling cannot be strictly achieved. However,

H

if one chooses Eg_l/Eg>150. then the probability of the neutron 'Skipping"

the next lowest group in a scattering collision with hydrogen is less

than 1%, and hence direct coupling is effectively achieved.

We will most frequently be concerned with situations in which both the

time dependence and the presence of an external source can be ignored

(e.g., criticality calculations).

Eg-2 - Eg-2 g-2
Eg-l Eg-l ‘—_"_“Eg—l
————]
(L Eq Eg g
‘*. 1
L ¥ -
‘ L]
e ———
. Eg+l g+l g+1
- .' ,
l‘ . ~
—---.--—__Eg.'__2 Eg+2 _____Eg+2
No upscattering Directly coupled’ Not directly coupled
ny ’
- Figure III.13 Multigroup Coupling.
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In thig case the multigroup equations can be written as §

a
A

Q
]
—

+

¢

bl L

-y e V + = Z - - ’ e
VoD oy * Ipg®q g Vy-Trg¥q

o

sg’g 1

G
xg;[,'_;

i

(III.254)

The structure of these epquations can be seen more clearly in matrix form.

v, eee 1 a7
~VeD V4L 0 0 ¢ f
1
~-L ~Vep V+I 0 se ¢
512 2 Rz 2
- ) -z ~Vep V4L - )
913 923 3 Re 3
. . . : || - -
L Ny ) P
M ] =
. ”lelz,fl AR “’1
. >
v, .L v, .5 Tt ¢
B 1x27f, 2x2°f, 2
v, .2 v, L., ¢
1x37f; 2x3°£, 3|,
- J A .' J
N 4 1
E . A
oxr shortly b ’
. 1 ’ :
M'g - KFQ ) ‘c (/\\-
S )

where we have inserted the usual criticality eigenvalue k. Notice in .

I

particula}: that the neglect of upscattering has led to a lower trianéular

form for the "diffusion" matrix M. The fission matrix F is full, however,

-
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‘III.7.3 SIMPLE APPLICATIONS OF THE MULTIGROI DIFFU{SION MODEL
1 =~}
- - . - .
III.7.3.1 ONE-GROUP DIFFUSION THEORY i -
s \ / , ) ’
g First suppose we set up the "one=group” diffusion equation by defining
R ' .
E. = and E. = 0. Then if wé note that :
0 1. ) & ‘ ¢
«/ @ ' , -~ . . ’ R ke ;
Y e m =1, o - )
. * X : —r = ® s
and S ! 1 Grou 0 S
e - < (IIX.256) .
/;}ﬂ“‘ . ,I”- ’z . z . El 0
* = L .
ot N o 4dE s(E{-’E ) s(E’ N .
o o , ’
- t ¢ ¢ / - i
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sifice fission neutrons induced by a neutron absorption in a lower group

will apgeai' distributed among the higher energy groups.
[

°

— ~
L .

In the case ®Ff directly coupled groups, M becomes a simple b:'gdagohal

’ <

. \
matrix of the form .

-g‘
L [ , .
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L ™\ : | o

' ) Vo Ty
we find that the multigroup equations yield an old friend, the one-speed ;-
diffusion]equation ¥ N v "
13 - VD% 4 L gir,t) = Fb. . (IIL.257)

vt ° a — ;

~ . L ) .

t
2 <

Of course it should be stressed that this equation is still of omnly
4

N . . -
formal significance until we provide some prescripti?n for calculating -

¢ -

the group constants (that is, the intragroup ﬂms— which, in this case, -
. ’ Y N

is ¢(r,E,t)). Nevertheless it is comforting to know that if we chose ~

=

the group constants properly, even one-speed diffusion ‘theory could

give an accurate description of nuclear reactor behavior. !

N o

A .

-
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III-7.3.2 TWO~GROUP THEORY

. ™ .
The one group theory fails at ‘boundarie§ of two regiopns (1) and (2)°
’ | )
of the reactor, the core region-and the jreflector for example.
N/

At an interface between core and reflector material, the net leakage

o of high-energy neutrons, which are -originally created by fission in

\ I3

[y o
the core,is from the core to the reflec:tor, whereas the net leakage
of low-energy neutrons, created in abungance by the superior modera-~

ting power of the reflector material, is Xn the opposite direction.

~

A one-group model cannot describe this process.

Co . <
Two-group theory represents an attempt to improve the accuracy with

which the flux can be described near such interfaces. The basic idea
is to split the energy.spectrum into two rauges:
‘The thermal spectrum annd the fast spectrum. If for thermal specgrum
usually it is choosen the energy rénqe O~lev while for fast spectrum

\i
. the rauge lev—-=, then we can identify

~ o

’

¢ (r,t) = [ Eo dE¢(r,E,t)Zfast flux,
. 1 ° ' N
N « El ' 4 /E
. El “
$,(r.,t) = S dE¢(r,E,t)Sthermal flux.
oy :, !

N

We can simplify the group constants for this model somewhat. Consider

-
¢

first the fission spectrum. Since essentially all fdission neutrons are

‘born in the fast group ) , -
. * » . .

1

ii‘" g it et b e 2 e , - . gt o e e -
. . .. s

. o it pen ey e el o m L . PR " e s - . . 4

~ iy Ty P Y 5 . N

| R v
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- E 1
X154 70 aeyimy =1,
El .

-

X2

J El dEX(E) =

E

2

0.

Hence the fission source will only appear in the fast group equition:

¥

=V
Sep = ViTa % Vol

%)

f2

g (

We can -proceed to calcv.f'iate«the scattering and removal cross section.

b
"

|
% ’ E. VvieV

[ 1 del (E*+E) = I (E7),
S S
. = 0
E,
- 4
Hence we find ’
. \ \
E ) E )
b =1 S ®1de/_ "1 dE'I (E™E)¢(r,E”) = 1
s . — “E s —
22 ¢, E 2 %,

-
.

E_<E<E
2

+

1

) First{ since there is no. slowing down dut of the thermal group,
\

E . - P
J 71 @E Zs(e\)¢(r,E )-Z'

I11-260

IT11-261

1114262

N

g

III-263

2

I1I-264 ;
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q
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as we might have expedteqr The remainder of the group constants are

L, - defined as before in the previous section. 1In practice they would be
§ calculated by first performing a fine spectrum calculation for the group

of interest, and then averaging the appropriate cross section data over

this spectrum to obtain the group constants.

4 ‘ We will consider the application of tworgroup diffusion theory to a

s reactor criticality calculation. Then we can set both the time deri-

/

)
vatives and the external source termé\Equal to zero to write the two-

& group diffusion equation as ' ®

¥ . ) e '

- .

4 1 s

¥ < -v. + = + ' : -

- \ V.oVe, +I. ¢ =1 VI 4 +v,I 0, I11-266

b n ; 17k 1 2 o
- + = Y L
VD Vo, + I, 0= L ' . , :

g 2 2

Notice that we have inserted a multiplieation factor (1/k) in front
u N
of the fission source term since we are eventually going to be perfor-
A {
ming a criticality search. Also notice that while the source temms in

the fast group correspond to fission neutrons, the source term in the

«

thermal group is due only to slowing down from the fast group.

+ . 4

13

¥ .
As a specific illustration, w$ will apply the two-group diffusion equa-
/
tions, (Eq. III-266), to analyze the criticality of a bare, uniform

! ¢
reactor assuming that both fast and thermal fluxes can be characterized

a
. by the same spatial shape Y(r): o g

A »

vy + B%(x) = 0, y(x) = O.
o ¥ o '

I1I-267

o A it e 4 et AR a1 e
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We have omitted the subscript g from the geometric bucklin§ B: = B2

so as not to confuse it with the group index g. Then if we substitute

¢l(r) = ¢l¢(r), ¢2(r) = ¢2w(r) ) I1I-268

into (Eq. III-266), we find the algebraic equations

2 8 -1 e ¢ .
+ - X - = ° -
(DlB LR Ky I, ) ¢1 k \5 Zf ¢2 0, I11-269 ;
1 171 2
-5, b, + (D.B°+ L ) ¢, =0
1271 2 a2 2 :
- v
However this algebraic system has a solution if and only if
! ’ 2 v Ig 2 .\)zzfzzslz “
(D.B” + Z_ =~ 1 ) (DB +Z% ) - =0 II11-270
1 Ry 2 a, ———
K K

R TP SR

We can now solve for the value of the multiplication factor kf which i

A
N will vield a nontrivial solution of the two-group equations:
. ?’ | ;
; ’ k= I 2512 \)szz LN
, 1 t_ III-271
) [/ i ZRl * D1B2 (le +D, By, Zaz * DzEz s !

) ‘ 1

.

It is of interest for us to see if we can relate this expression to

a 3
our earlier expressions for k-notably the six-factor formula. First

notice that the first term in (Eq. III-271) represents neutron multi-

L

plication due to fissions occurring in the fast group, whereas the

S

3
[ . [ o e e
Bt S v i BN P Jot e




251 ‘

«
.

second term represents multiplication due to thermal fission. Since

we expect the thermal fission contribution to be dominant in those

situations in which such a two-group analysis makes sence, let us first

a

examine
\ I -
\ 512 NI,
k. _ 2 .
'\ ‘T L el
| ( R DIB (Z +D Bz)
) 1 X 2
2
/
-
L /L N (2, /2
_ 512 Rl 2 f} a, |
) - 2 2 2 s

From previous discussions, it is evident that'?

*

-1

-1
2 2 2 2

+ B
(1+L BY) , P (1+ 1, 8

1 2

P =
, NL

°

- are just the fast and thermal nonleakage probabilities. Notice that

the diffusion ‘le:llgth Ll characterizing the fast group is de\fined some-

’ \
what differently as . ’

’

’ -
but this is consistent with our earlier definitioh of the diffusion
4 ~
length, since both )'Ja, and Zs act to remove neutrdns from the fast
12 '

The only unidentified term is the ratio I " However

/L .
812 &y ’
for a homogeneous reactor we know that this ratio is just:

<

group.

Nar

)

II11-272

I11-273

II1-274

—
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1
! .
| SOl ¢ () I ‘
Rate at which neutrons glow J 8,51 )5
down to thermal group = = = p, I11-275
Rate at which neutrons are 3 R >
removed fr}lom fast group Ja rle q)1(15) - R
! ? 9
which we can identify as the resonance escape probability p charac\r.e-
rizing slowing down from group 1 to group 2. Hence
: - n £ pP : -
k2 n2f2P NL pNL I11-276
: 1 2
In a very similar manner we can identify that fast multiplication factor
as ,
f“/“A“" ~ S
-
j vlzfl/ le o
k) 3. =nf N - 111-277
2.2 1
R + B .
. / (1 ‘Ll \
° /s L4
‘where nl = 1 Zi /Za and we have defined a "fast utilization factor" :
171

‘F ,.F
£, 0= L /L in analogy to the thermal utilization f_.
al Rl 2

K

To complete our identification with the usual six-factor formula, we

evidently must identify the fast fission factor € as just

NN
.

T 2
r a. + DB
‘\j e=@+ Sl P H 22 111-278
. k
2 NI , z A
2 f2 512 0
Then we find ; i
4
i
k = kl + k2 = Ek2 = n;zfszPNL PNL =
% ' 1 2
= n,_ £  pe FNL TNL - III-279
. th thp roe \ ‘ >
- ) \ _‘
e st i,

(AN o,
;.

- ‘(y*‘m 3] LIS
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The two-group diffusion model can be used to demonstrate a number of
the various‘applications of the multigroup formalism. For example,
one frequently wi;hes to generate the group constants for a few-group
caiculation using the neutron spectrum generated by a many-group cal-
culation. Such a procedure is known as group collapsing, since it
éxpresses few-group constants in terms of many-group constants.

To illustrate this we can derive expressions for the one-group constants

in terms of two-~group constants. For example,

E E E

/  © dEL (E)4(E) ./ SaEL (E)O(E) + S L4EL (E)(E)
E a E, a g ~ @ \
_ 2 _ 2
La= =
J o are(e) ' fEEo dEé (E) + [ F1aE(E)
5 1 E, 11I-280
¢ +IZ ¢.-L ¢
- Rl 1 a2 2 512 1 ,

or using (Eq. III-269) to eliminate ¢2 in terms ‘of ¢1:

(ZR - Zs, )(0282 + L )+ Za Zs II1I-281
1 12 a4 22 512 \
za= 2 \B
I DZB +I +1I :
a3 ®in2
‘The remaining one-group constants can be given as \ A
" D¢ + Do B2 +% )b, +I , D e
) . 171 22 . 2 - !
- 23 22 a, 1 512 2, 111282
$ + N
'#1 ¢2 D£2+Z + I
2 a

8
2 12 - ¢
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£ "1zf1¢1 + "2212%

254

2
(DZB + Za )vlzf + \1225 Zf

= 2 1 12 "2 I1I-2B3

N 2 -
DB+ + 1
. 2 a2 =1
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III.8 KINETIC EQUATION °

Reactor dynamics is concerned with time behavior of neutrons in an
arbitrary medium whose nuclear and geometric properties may change with
time. In obtaining the kinetic equations, we shall present the descrip-
tion of various physical phenomena influenciné the temporal behavior of
neutrqns( in detail to provide an adequate understanding of the Jphysics

of reactor dynamics, and to point out the reﬂtionships between various
N o~y

phenomena in a sufficiently precise manner.

The basic equation of deterministic reactor kinetics may be obtained by
simply extending the basic flux equation to the time dependent case.
i, o However, since we shall be concerned exclusively with the diffusion theory -

approximation we shall immediately apply Fick's Law, and base the ana-

lysis on the continuous energy diffusion equation (III.45). We must then

3 incorporate into this equation the fact that the neutron density may be

changing with time and that some neutrons produced as the result of

fission events may be delayed. Delayed neutrons come from certain fission

fragments “precitrsors® which, after a B~decay, happen to be unstable with
respect to the number of neutrons in their nuclei. Once the B-dec:ay

5

occurs, a neutron appears essentially instantaneously. To determine
the rate of neutron emission from this source it is necessary to keep
account of the concentration of all the "delayed neutron precursors"

4 which, when they emit a B particle, become neutron-unstable. If the

concentration of the i-th precursor at location r in the reactor is

J




ko]

Ci (r,t) (precursor nuclei/cc) :

and its time constant for f-decay is Ai (sec-l) + we have: .

»
(3

Total number of delayed neutrons emitted per dc
! per sec at point r and time t ,

¥

I )
s = 2 A, C1 (r,t) (ITI.284)
< i=] +

Where’ the sum is over all the different fission fragments that are delayed-

neutron emitters. There are about twenty of- these, but most of them
have such a small yield that it is possible to fit the data by assuming

I=6. The delayed emitters are created by fission. Thus, if B‘iJ is the

fraction of the neutrons from a fission of isotope J (U235, P249, U238

u ’

etc.) that eventually appear from the decay of precursor i, we have:

™

©
J J J
él IO v Ef (r,E,t) ® (r,E,t) dE, (ITI.285)

\

Number of delayed precursors of the i-th kind
created per cc per sec at r and t.

kS

o
1]

oo

T ot

N [, - - - Nty WA s WA T e Loiran s e 1y w ..,»M,rm,,‘,,;;,.‘g.‘ ~
\

\

NOALE

I



THRPIAR AT O W smas @ A R SR AN e e

257

It follows that the rate of change of Ci i?ﬂ&) for fuel that is stationary

in space is given by:

Ci(r,t) -y gJ ;= I g (LERIG(,E,L), dE -, Ci(x,t) (I11.286)
ot g * 0 f

The migration of the precursor before the emission of a delayed neutron
can be neglected in solid-fuel reactors, because they lose their kinetic

energy very rapidly as a consequence of their large electric charge.
?

o

They are stopped within a short‘distance from the point of their

formation by fission. It is therefore a good approximation .to assume
that in a solid-fuel reactor, which we shall mainly be concerned with
(CANDU tgpe for example), the delayed neutrons as well as the prompt

neutrons are broduced at the same point in the space where the fission

event takes place.

Delayed neuﬁrons are émitted with energies that are, on the average,
lower than those of prompt neutrons. Designating the spectrum of

emission energies for the i-th précursor by xi(E) we have from (III.284).

Rate at which neutrons appear in dVAE because of the decay of delayed

precursors

“

=L Xi(E) Ai C; (x,E) AVAE (III1.287)
i . .

Designating the spectrum of emission energies for the prompt neutrons

s

: J
from isotope J by xp (E) we also have:

et s E
e

20" 1.-ﬂ”',
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5 ,

. ’ \) N

Rate at which prompt neutrons appear in dVAE = 5 ’

- ¥

© J J © J'J > x
(T, (B) (1-8) S v I (F,E,t)8(r,E,)} x dvag (TT1.288)
J .

2
o~ 4

|

i A ) .
where BJ is the total yield of .déiayed p;‘g’:\\irsors from isotope J:

1f, for the sake of completeness, we also assume ;;hat there is an

.

additiopal neutron source (usually referred to as the "external source

’ -
.

and taken to include, ‘for example, neutrons from the interaction o'f -

\

. “

radium y rays with beryllium or of deuterons with deuterium in an

accelerator) which isotgopically emits Q(Y,E,t) AVAE neutrons per sec.

1

into dEAV; then we can extend the continuous-energy diffusion equation

’-_ (II1.45) to the timé dependent case by e’xpreéging mathematically the

)

fact that L

' o '- "The net rate of increase of neutrons in d{@E :
o . . ’ * ’
S is the difference betweer their rate of appearance

) and their rate of disappearance." - ' !

i oA
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1f introduce two integral operators A

_© ation on any function f(r,E,t) by:
I

y o o . :
' A, = I (r,Et) £(r,Et) - f: I (r,E"+E,t)E(r,E ,t) dE”

. £
. . i (I11.290)

~
1§ .

' ; o 3. 3 ) \.
FIf = fo ,\»sz(r.x-: (t) f(r,E ,t) AE" . \ (111.291)
' . i
) S % .,

. % . .
then the time-dependent continuous-energy diffusion equation and the

+rate of change of si(r.t) for a reactor in which the fuel is stationary

r \,;;\ ) H e\b .

. become : \

’ ! ' . . *
£ R ' 4

| \ ' .

1. ¥-D(r,E,t)V¢(r,E,t) - Ad(r,E,t) + 9(r,E,t) (111.292) °

3 s
) C s . I A - }
c ¢ £ x3E) a-87) P e(r,ET ) ¢ I IE)A Ci (r,0) = .
4 g ® . d= : -
¥
1 ‘ . * s .
o C L1 20(r,Et) : | [
.. Y It # g Co . .
3 . -+ , -~
:r' o . ) + , . , e
A sl o\ aci(r.t) ‘
: P 2. I Bi Fl¢(x,E",t) A, Ci(r.t) = T J @?tz:?_%)u
& - va * ’ )
| 2% T , ’
* ]
- "AI T

. wh¥ch constitute the basis for 7
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"and is completed in a few milliseconds; after that the readjusted

v
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IIT.8.1 "  THE POINT KINETIC EQUATIONS

N
\

r ' ' . ’

o 4 °

Since mean~fze§#paths are fairly Jong and since the lifetimes of -

neutrons in a nuclear reactor are quite short, the effects of local
perturbations on ¢(r,E,t) will quickly spread throuéhout a reactor.

The immediate consequence of perturbing a reactor locally {for example
[ ’

by changing a control-rod position slightly) is thus a readjustment

in the shape of ghé flux. In many cases this readjustment is slight :

shape rises or falls as a whole depending on whether the initial’ v

- [

perturbation increased or decreased kogg- For reactors in which transients
proceed in this manner, merely being able to predict the ch%nge in the

. "

level (i.e. average-value) of’the flux is sufficient to permit a very

| .
accurate prediction of the consequénces of perturbation. Thus, instead
. . N

¢
of having to face the very difficult problem of solving the time-de- o

-~

pendent continuous energy diffusion equationfjn full detail, we shall-

_find a'simple,set of equations that specify how the overall magnitude .

of the flux changes with time. A measure of ﬁhe‘level of the fﬂax is ’ o
. - . . ~
the integral of ¢(r,E,t) over all energy and over the reactor volume.

N 4 [y

However to conform with convention, and becaﬁse,it is conceptually

°

simpler, Ge shall ﬁ%al with the integral of the number density , !

1 Qx:;#,t). Weighting this number demsity with a function W(r,E) ' .8
u(E) - ’ .o DR ;-

defined over the same spatial and energy domain as flux ¢(r,E,t) and

=

independent: of time, we intrpdupe‘a,quantity‘TWt). ‘sometimes called '

aﬁblitude function defined as: - : ’ ' 3 !
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function” S(r,E,t) by:

.

‘ ¢$(r,E,t) , (111.294)

"1
‘ Vv{(E)

T(t) = [ dv f: de W(r,E)

.

I -~

g

- Clearly T(t) is a weighted integral of the total number of neutrons .
'S " o

-

present in the reactor at any time. (If W(x,E) = 1, T(t) is exactly

the total number of neutfons present). \

~ ~
[y

. 4
To derive equations for the amplitude function we simply multiply the

: -
first equation of the time-dependent c-e-d-eq'n by W(r,t) and the

e

‘second by xi(E) %(r,E) and integrate them both over energy and volume.

It is convenient, however, to e a clearer distinetion between the’
. N ) » N “

shape of the flux and its amplitude. Accordingiy we define a "shape

S(r,E,t) = °(‘é?;f’ o - (111.295)

AN

and substitute the product S(r,E{t) T(t) rather than ¢(r,E,t) into the

time dependent c-e-d equation. Tlso to conform to convention, we add

-

and substract the term, S I

I I xi(E)Bi FJ¢(r,Bﬂt) - . (I11.296)
- J im=l e - ; . p

The result of this substitution Pna of the weighting and integrating

‘brocedurg is then:

‘

<

<
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Now because of (
. ) ¢ ) ® 1 (r,E, t)
= ‘ (111.299)
T(t) fv reactor-dY fo dE W(r,E) v (E) ¢ .
’ / . ?i I

A and K o , P
3 S(r,E/t) = 9‘—’5—&—’ (III.300) -

", ﬁ. 3
i\ s

o !
() L_ff’}vdvfo dE W(x,E)5 gy ¢ (F.EE), -

-

o ' 1 '
= Uvd"fo dEAW(r,E,t)—-v—-(Er- S(r,E,t)}_ T(t) (IT1.301)
s f . .
R n
Al ’ i
A
j )
] . 1
= II1.302) .
S ,8vS ) dE Wi, £)=F i S(r.Et) = 1 , ( R e )
M . hs
f?r all ¢ . .
s . .
A S That is, the normalization of the (;ime-depeh&ent) s&ape function is
such that the integral (11[.301) is a constant, independent of time.
®, ‘ 1".. R bl . [} , e
: R N %, B
4 - It follows ‘that we may rea;::aﬁv the RHS of time-dependent c-e-d-eq'n : * »
’ R N .
i \ as: . ~ i
3 ! ' . ' . 3
1 I/{’ N .
. ‘ . : : :
‘ &' ) ]
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. ' 4; | v
( 1 \
'3 {J/avS&E W(r,E) L s(r,E.t) T(t) v \
at V(E) \
‘ d T(t)
= {JAV/dE W(x,E)—— (E) S(x,E,t)} —ac (I11.303)
[
ﬁ\{fdvde W(r,E) x. (E) Ci(xr,t)} = . g . )
t - ! i ! -
/
= {/AQv/dE W(r,E)—— v(E) S(r:E,t)} x
< g_{ Jav/dE W(r,E)v)(.i (E) Ci(x,E) (III.304)

a4t Tav/aE W(r,E) 1_ S(T,E, L)

V(E) . !

-
i L4

Then if we divide the time dependent c-e-d-eq'n by

. I ‘ "‘11.
’ 2 o

. e I .
JAVSAE W(r,E) I {Xg (E) (1-87) + ¢ x4 (E) Bi} P s (x,E7E), (111.305).
‘ ] i=l '
and define: )
f
\\\~ .' I . 3 1
- N _ j —ad J P! ‘
olt) = Jdv/dE W{V.D VS 5 AS + I ;) {1-87) + L x,B] }Fis} _
. J (1I1.306)
saviae w £ {x3 @ -8 %) + 1x,8} Fs .
- 3 P ity N
1 /{ N N .
) 4 j J "
‘MaAvSAE W Z x, BY F’S ; " /
B, (t ) = i 4 (111.307) ° :
3 _ ad 3, .3 h k
favfdnwz{xp (1 -8+ Ly, Bi}F.S -

3 i ! o ‘
L | AU R | 1

1 ! : - Loy 3
B(t) =L B,(t) ' _ (1r1.308) | | S B
i-l ’ & \ ‘ ‘ . . b .




1
_ Jav/aE w S

heey = (II1.309)
: faviae w £ {xJ(1-83) + t x, B3I} FI s
\ . P . 1 1l
J i
PR
. ' ¢
f
: o
' . - JAv/AE W '
} @(t) = 9 C (I11.310)
. L ' -
. Jav/aE W = S . \
and ot / )
f; \ . . { , . o
3 cilt) = JAv/AE Wyi Ci(r,t) . ’ (III.311)
JAav/aE W L s
3
| Where all the space, energy and time dependency have been suppressed,
g ’ N
we obtain
rroo I ' r(t)’ g
(p = B) T(L) + AL Aici (t) + AQ(t) = A =% (I11.312)
X dat
. i=1l ,
:;, 2 T
J v : dci (t) ! ~
Bi T(£) - AiACi(t) = A TEL (1I1.313) ,
. v 7 ( T
si * or N R
- ' ) P !
kL ‘ “lare) = o-8 I ‘
e =e T(E) 4 I AL CL(E) + Q(t) (I1I.314) '
3 - dat A :
; iw=l -
\ o ’
k : . %
3 dei(e) = B T(t) = Al Ci(t) (III.315), -
b ’ . at’ A
E . (= 1,2,3,...1)
NS \ "
\ +
\ £ ' )
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The above equations are called "Point’ Kinetics Equations”. They form

the basis of almost all transient design analysis performed for reactors

- -

in operation today. ‘

They are derived without making any approximations. Therefore, if we

use the values of the kinetics parameters p(t), Bi(t), Q(t), A(t),

- 4 ~
Ci(t) as defined, the ’1ution of the point kinetics equations for T(t)

y will be exactly the same as if it had solved the time-dependent continuous " .

-
t v

4 . enercjy diffusion equation. for ¢(r,E,t) and applied the definition

.

“r 1 _

- © ,
! T(t) =2 fvdeodE W(r,E) V(E) Q(r,E,t)
"‘However, since we must know &(r,E,t) to get the kinetic parameters,
the pratical utility of the kinetics equatiovs depends on our ability
5
to obtain a reasonable accurate value of S(r,E,t) without actually !

solving the time-dependent c-e-d-eq'n. . .

.
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CHAPTER IV
V.0 FUEL DEPLETION ANALYSIS
1v.1 INTRODUCTION *

To S\.{stain a power level of one watt in a reactor requires that there
Q’é{ approximately 73 x 10:LO fission per second. Since only about 80 per-
cent of the neutrons ?bsorbed in fuel actually lead to fission, we con- !
clude that the'destruction rate of fissionabl-e-material in a reactor
operating at a power level of on; watt is approximately 3.75 x lOlo o
nuclei per second. Some simple arithmetic leads to the conclusion that .-
a thousand-megawatt (electric) power plant opei‘ating at a thermal
effi;' ncy of 30 percent burns fissionable material at a r;te of
approximately 0.8 gm/min. Compared with, say, the fuel burned to get
a jet transport into the air, this figuré is astonishingly low.

\

N .
Nevertheless it implies that, in a year of such power operation, a

nuclear reactor will burn abdut 1.5 metric tohnes of fissionable material.

Fuel depletion analysis is concgrned with predicting the long-term
;hanges in reactor fuel composition cau‘sed by exposure to neutron flux
‘during reactor operation. Such éhang‘es have an importa‘nt bearing on the
operating life of a re&ctor, as well as on its ?tability and control.
One must first ensure that the shift in the core power distribution that
accompanies fuel burnup does not result in the exceeding of core thermal

)

‘limitations. Sufficient excess reactivity must be provided in the fresh

\ .
core loading to achieve the desired fuel exposure, and, of course, a de-

tailed analysis of core composition is necessary in o:gdpr to oftimize

'
“

fuel exposure to achieve minimum power costs as well as' to determine the

Lo value of discharged fuel. :




I
A variety of nuclear processes must be monitored during a depletion study.
These include, of coures, the consumption of fissile nuclides (fuel burnup).
However, one must also account for the conversion of fertile isotopes

into fissile isotopes and the production of numerous fission products

The fuel depletion analysis is normally performed in three

(Chapter V).
steps.

4

. !
First we shall consider how the concentrations of nuclear materials are

changed in the presence of a neutron flux. Next we shallw examine how

3 to translate these changes( into the comput}t%é; of energy-group para-
| . s

- : meters. Finally we shall discuss problems of reactor design and con-

trol arising from depletion and its consequences. S
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‘

atomic number of the nucleus and the second being the last digit of the

mass number, the concentrations of tHe isotopes of ifiterest change

according to the equations

3n24~ _ o290, n24,

it ;

|

8 “24 25 L
an23 = Oy 01324 - ga %1 25,

Tt 3t ‘

26 25 25 _ 26 2
argt oy &in oy #1n%e,
0228 = o2%,,2°,

t
3n29 ==038¢1n28 - (U§9¢1 + A29)n29,

ot '
: i
. 9t

and9 = A39n39
ot

- 039 ¢,n49

-
a
fan

- -

Iv-7

iv-8

Iv-9

IV-106--

Iv-11

Iv-12

Iv-13

L4
3

It is important in these equations to distinguish the og, defined in

(Iv-2), which include fission, - from the 04 which are cross sections for

-’ the (n,y) reactions only. 25

iy <

(For example ©

»n n ’ e s
than 035). It should also be kept in mind that the o} in (Iv-6, -13), are
{ .

.

one-group cioss sections defined by (IV-6); they are only, approximately

S

a~ is about seven times greater ¥

»

equal to the 0.025-eV values displayed on the chain diagrams. In fact,

for isotopes that absorb strongly in the resonance range, they may be

several times larger than theTumbers shown on the chain diagrams. -
. / ‘

N\

6)1

[,

>

o M LG o s
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t“vertheless we can get a rough idea of the magnitudes of the one-
. group numbers 03 by using the 0.025-eV values of the corresponding
. energy-dependent cross sections.

1

E]

With good approximation we ctan say that for highly enriched fuel, at

most the first thrée equations of (IV-6 to~13)needtobe conside;ea; N

'a.nd for many cases it is legitimate to neglect the effect of u24
entirely._

! N
For slightly enriched reactors or reactors initially fuelled with

plutonium, the last four equations of (IV-6, to -lB)bec;)me gquite important
and, in fact, must be augmented by equations describing, the concentra~-
tions of the higher isotopes of plutonium appearing in Figure N1 .
Thus the equations regquired in addition to (IV-6 to -13) to desc'ribe the
fission chains in a slightly enriched reactor or one initially fueled.
with plutonium Are:

"

an40_ 0494’1“49 -Bgowbln‘lo,

T ‘
R 41 ‘ -
, an"" —of08)n40 ~(odle; - A4h)ntl, -14
P> . ) at )
) 42 41, 41 _ 42, 42 :
o ?'g'f oy #1n oxcenc. <

Something can be said about the solution of the fuel depletion
egquations and mostly to the solution of equations in}'rolving Pu?® which

1

}ntroduces non-linearity in the set of equations.

In fagt the pud0 absorption is almost entirely due to its 1.06 eV

b . PP S gy - . .- R I - e b ki s s 5 0
b S '

‘
S . W
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¥ resonance; approximately ‘ : “\ .
|9 - *
4
E ‘ 40 , @ ' ! \ /
3 40 —_— - '
X . od0 = (o5’ + ) . fv-15 | -«
¥ Y1 = #nd0 ‘ ‘ Vool
. ‘ \
[ Ve ‘\

t — \‘

% where ogo,a, B, are contants and n40 is the Pu40 concentration when \

.

solving the equation ‘

s . ’ '
- I
) a(40= o$901n49 - ogo¢ln40 Iv-le
- at k
the dependence of ogo on n40 cannot, in CANDU's and LWR's be ignored.

.

> The equation is therefore non-linear and is best intepreted numerically
with timesteps chosen so that the result does not change (within a

- : given tolerance) the calculation is repeated for halved timesteps. ®
+ - v a
, \ |

. | G . = _

ek B M. o o

" - s
‘ ’ —~e i . l"
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CHAPTER V . ¢ : , i

| ; S
A

V. FISSION PRODUCTS . / )

~' : 3 '\ - &

<

V.1l gptroduction

It was mentioned in chapter II that one)\pf the consequences of

fission process is the release of fission fragiients. The nuclear

reactor core is the area of a nuclear power station where fuel is
\ =

destroyed by the presence of the neutron flux and as a result a

L

variety of fission products are generated. Most (1f not all) of the

i fission products are radioactive giving rise to chains of isotopes as

b3

b .

: they decay to stable nuclei. .

¢ i : " . -

3 )

‘.‘ R ’v ’ Ay

2 The members of these chains have absorption cross sections for 0.025 eV
(C

neutrons which vary from a few tenths of a barn to over two millian .
’ »
= barns (xenon or samarium for example). Moreover, w;en neutrons are
G - N >

- :
5 \?ﬁporbed in these nuclei, other neutrons - absorbing isotopes are created.

. '

N3

Thus a detailed description of how [ {(r,t) changes with time because

. of the creation of fission products requires,fhat the concentrations
8 . of hundreds of nuclei be determined as functions of time. And these

‘ .
creation rates depend on both the magnitude and the energy/dependence

of ¢®(r,c,t) as well as on the time.

s - | “\
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: , ¥
% The behavior of the various isotopes toward neutrons is very complicated.
g J
‘ - !
- The complexity is mostly due to the fact that neutron absorption cross -
" » -

section 1is energy dependent. In case of neutrons born from fission in a
’ ¢
nuclear reactor we know that the mean fission neutron energy ranges up to

2 x l,,O6 eV. .In a thermal reactor, these neutrons are slowed down by
\Y ] N

s < .
> collision with the moderator atoms until they are in thermal equilibrium
- *
[ with the moderator and have an average -energy of .025 eV. Therefore, a
. " spectrum of neutron energi‘es exist in a reaétorl When neutrons reach

s thermal ¥equilibrium with the moderator, their energies are determined by

”

the thermal energies of the moderator atoms, and the neutron energy
E ) ,
3 * spectrum becomes a Maxwellian distribution at the temperature (T in k)
g

Yo
of the modj;.‘ator material.

. v \/

Setting the kinetic energy of neutron motion equal to the thermal energy

"of the moderator, wé can obtain the most probable velocity of the

A

s neutreon in thermal equilibrium.” For a moderator of room temperature,
‘e N

the neutron wvelocity is 2200 m/s&c. To obtain a reaction rate, one

.

would use the neutron density of neutrons, ;:'his most probaple velocity

H

N ' of”® 2200 m/sec, and the neutron cross section of the energy corresponding

. ‘to a 2200 m/sec velocity. .

, J

V. 2 FISSION YIELDS - "

*

: A .
The binary fission process can occur in many different modes. A very

‘v , -

™~
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. * bR
la.'rge number of fission products are known, ;angiﬁg in the thermal |
( eutron fg‘.‘ssion of U-235 from zinc' (;tomic number 2z = 30) to :
dysprosiu& (z = 66); and frommass number A = 72 to A = 161. Fission
int6 two qufl fragments is by no means the most probable mode in
. thermal neutron fission. Aiymmetric modes are much more favored,
the maximum fission product yields occurring at A = 95 and A = 138. , !
. (See Fig. V-1). The asymmetry appears to become less pronounced

-

with increasing bombarding energy of the neutron. 41 ’ '

‘5ince the neutron to proton ratio is about 1.6{€g‘r 233y and about 1.3
for the stable elements in the fisdion product;. region, the primary
product7 of fission are always on the neutrdn excess 'side of stabi-
lity.. Each such product decays by successi‘ve g-decay to a stable isobar.
Chains with as many as six B-deeay have beéh tablished, and undoubtedly
some fission products further removed from stability have escaped detec-
tion because of their very short half-lives. No ne:ztron—deficient

Q

nuclides have been found among the products of thermal neutron fission; .

- ’ - however, a few so-called shielded nuclides occur among‘the fission .
g prod%f::_s. A shielded nuclide is one that has a stabie isobar one unit
«. lower in 2 so that it is not formed as a daughter product in a 8-decay
chain. Examples are Rg-BG and Cs-136. The fission yield of such anuclide is

presumably due entirely to its direct formation as a primary product.

¢ -

If we add a third dimension (E) to the cha7t of nuclides then the line
. of stability lies at the bottom of a valley and the sides of the valley
are populated by fission products which, being unstable will decay (fallv)

’ to the bottom-of the valley becoming stable nuclides. One 'side of the

. ., .
' - - : \a
>
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valley would congi}n isotopes with an excess of neutrons, while the

other side o:." the. va would contain isotopes having an excess of protons.

. . ' \\s ) Cn
The total cumulative yield is the percentage of the total fissions

" ., that lead directly or indirectly to that nuclide. Since two fission
products are emitteéd for every binary fission, the total cumulative

yields of all the isobaric chains should ;dd up to 200%. Direct

or independent fission yields have been measured for a relatively few

*
nuclides in some isobaric chains.

S~ The independent yieTE of a partiaular fission product is the direct

or instantaneous yield of that nuclide without any contribution from

. ) TP, 2 L
decay of preceding members of the isobaric chain. The measured total

« cumulative yield of a particular fission product.represents the sum

k)

of its independent yield and of the independent yields of all its

precursors. : b

t . f
- | ,
\ ‘ In addition to binary fission, ternary fission, or break-up into 7
o

three products also occurs, but less frequently than binary fissioq.
! LE 1 . .

This process is a source of light-charged particles such as: H3. He3, .

4 7 .
He , Be etc... The long-lived, or stable, light nuclides can build

-

up inothé nuclear fueX of an operaiing reactor. zmé CANDU REACTORS

OPERATING with U-238-U-235. Theuternar§ thermal neutron fission has

!
. tritium H3 production yield in the range of .0068 to .0l4s%.

© ¢ ‘
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“ V.3  THE FISSION PRODUCT TIME BEHAVIOR
The-z splitting of 2330, 2350, 2380, 239m into lighter nuclei J
cannot; be predicted precisely because of its statistical behavior,
but we can analyse the time behavior of two complementary fission a
products, k and j of the decay chaius A and B {Ref. to figure (V-2)}.

A _ &

It was pointed out in chapter 1I that the consequences of fission

process are: . *
: . = Release of energy

- Release of fission fragments .

o ’

To summarize the release of fission fragments -we onl'y need to say
that as a result of fission we have .
- neutrons
- Y-rays * .
- neutrinos
- fission producté
» ) ;
Assuming that the neutron, y-rays, and neutrino ;amission are’ well
known and well established we concentrate on tiime behavior of fissien ’
products starting by illustratir}g/ the basic mechanism how fission

e

p’rbducts decay to stable nuclei (Figures V-3 and V-4).

-0

.
i

4 \

The reason of presenting figures V-3 and V-4 is that most of fission

o processes are binary events (e.g. two main fission products are released
a

) . .

N e
R e, ik g
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2358 o’ 2
from the splitting of 350, 23 Pu,”gu,l 380).

i

In figure V-3 wé give the production and 'decay possibilities for

isotopes havingmass number B, while in figure V-4 we give

» -

production and decay possibilities for isotopes havingmass number C.
It is obvious that -
\ ‘ B+C=A e.g.

235 233 238 239

\ should add to U, U, U or Pu depending which isotope

constitutes the fuel. N
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V-4 Fission Product Concentration and Definitions

I
Nuclear interactions in which neutrons are absorbed by fission
products and B-particles are emitted, change the identity of the
interacting nuclei. Tixus if we wish to tcompute the isotopic
concentration of isotopes 1;, and J for decay chain C or the isotopic
concentration of isotopes u.and w for decay chain D it is convenient

to establish a list of definitions characterizing the constants and

variables used in the analysis.

From figures V-3 and V-4 we can define: s

nk(r,t)E concentration of isotope k at location r, and
()

time t, in nuclei per unit volume.

AN
0 ., \\
nJ (r,t)= concentration of isotope j at location r and
C
time t, in nuclei per unit volume.
k_ . . -1
ATs B-decay constant for isotope k in sec .
A= B-decay constant for isotope j in sec—l .
) <&
yks effective fraction of fission product k. (yield)
YJE (effective fraction of fission product j (yield)
o: (E): “probability of absorption of one neutron with
energy E, by isofTope k per unit path length and

'

)
/ per unit numbexr density.
!

Ve
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oi(E)E probality of absorption of one neutron with energy E,

by isotope j, per unit path length and per unit number

density .

w = . : . \
nD(r,t.)= concentration of isotope w at location r, and time t,

\

. in nuclei per unit volume. .

| .
€ ; . . .
\nD(r,t)E concentration of isotope £ at location r, and at time

t, in nuclei per unit volume.
. L 3
« ]
PN R~decay constant for isotope w in sec ]
~r ’ §
€Y , N |
ATz B-decay constant for isotope e in sec 3
\
\
w . K3 . 3
yI effective fraction of fission product w (yield) 4
€ . . s s . !
y = \ effective fraction of fission product € (yield) . :
\ ! r
. \\ i
| ) ;
; c: (E)= probability that isotope w will absorb one neutron with 3
énergy E per unit path length, per unit number density.
4
\\
cz(E)E . pra\bality that isotope € will absorb one neutron with }

enex\gy E per unit path length, per unit number density.
Y .
\ T

Et (r,E,t)EMac-tol\copic cross section characterizing the probability that

i
A

a neutr‘?n will undergo any type of reaction per unit

path length,

!

Zf (r,E,t)Etime-depen‘dent macroscopic fission cross section def;Lned as:

'Zf(r,Ert)z (rlt)oF (rIE)'

~ )

B vas e i Bt L uaker e Sk neibder o AR WY
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Za(r,E,t)Etime-dependént macroscopic absbrption cross sectioi
defined as:

za(rlE:t): N\(r,t)ca(r,E) .

Is.r,E,t) =time~dependent macroscopic scattering cross section defined as:

N

Lg(r,E,t)- N(n,t)os(r,E). *»

®(r,E,t)= angle integrated flux:

» o (r,E, t)=f AW (x,E,Q,t)
. 4qr .

-

=y (r,E,Q,t) = vn(r,E,Q,t)d rdE,dQ

[y
Rl

n(r,E,Q,t)dard.QdEE ea;,pected number of neutrons in d3r

about r, energy dE about E, moving in direction Q in solid

angle 42, at time t. -

Generally microscopic and me;\cros opic cro‘ss sections are \ﬁépendent

on space, energy and time, howevér, whereas the "macro", I, may

vary heavily with time, because they are i)roportional to number
densities, the "micros”, o,. are usually time-dependent only through
the timgidependence of tj.he neutron spectrum .(eriergy distribution).

. -

- \tleutron spectrum variations are very slow and can be computed by
—Buccessive steady-state "snap shots", so that the o's do not require °

~

an ad hoc Ziynamic calculation.

A i Y, readn
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Among the definitions and in figures V-3, v-4, yk, yJ, yw, yc

are average fission yield of isotopes k, j, w, €........ To be precisq,
yk for example, is the average number of n-uclei of J;,?so.togie k created
per fission in the material present at location r at time t. It
is an average not only over :-:1 large number of fissions, b;t also over
the particular nuclei fissioning near point r and over the energies
of the neutron causing flssion. (We could break the term yk down into
a sum over fissionable isotopes‘and energy groups each having its own

. -

yield, but for notational simplicity we do not). Note that, since

almost all fissions yield two fragments, the sum of the yk over all® * ,
A}

.y

fragments is very close to 2.0.

: - | Y

w

o
V-5 Mathematical Descyription of Fission Products: Creation and|Description
L
f"‘
The steps in writing the rate of change of the various isotope
concentrations due to fission are very similiar to those used for fuek
¢ @
depletion analysis in Chapter 1IV. However, fission product time
behavior is much more complex due to the vagious processes by which
/! i .
fission products change their identity. L Except for the first and last

~
isotopes appearing in figures V-3, V-4, any isotope in the middle of

the chain decay has a very similar creation rate, providing the masses span

4

the relatively flat-topped peak of the mass yield curve (v-1). - i
The rate of change of isotope k along the chain decay C or the rate ; ! }S
of change of isotope“\al;xg the chain d;}?\D is dictated by the ;?l
same mathematical model. ' ’ , - %
§ L 2 k)

-
= Té ﬁ'a-‘gg
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Because of this similarity only one isotope in one of the chain

. decays is analyzed:a_ isotope k for example. From figure V-3 we
cagn see that the concentration of isotope k, defined as nk(r,t) .
4

in nuclei / cc changes with time because:

@ isotope k can be created directly from fission.

-
isotope k can be created by deca% of isotope j.
~

@ isotope k can be destroyed be absorbing one neutron he
v

ith E ) N
wit engrgy . \

isotope k can be destrpyed because of its B-decay
. . into isotope 1. /
S . N\ {

The net rate of change of isotope k is then given symbolically by:

\J ) .
B < Lt =®*®-®-'@.\ = (v-1) \

: ~ v at

[y

. The contribution to Equation V-1 from term@ is mathematically

.

expressed by:

®=Ysz(r,E,t)¢(z,E,t) .

TETRTRIVR @ VRGN OT O & e L e T

SO

The contribution to Equation V-1 from term@ is expressed by:
- @:Ajnj(r,t).é\ 4 t >

¢ e
The contribution from @ and @ is:

Rk At AR A SO
‘
{

]
1 @=0i(®) ¢(xEt) n¥(r,b).

: @=)\knk(r,t) . .

3 . . & : , .

/

Pt st s, i
“ r—'—v%kﬂ B AR o
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Hence equation V-1 takes the form: ’ .
LN ‘
, .
ank(r,t) _ y* fome(r,E,t)Mr,E,t)dE « A0 (x,0)
. ot v-2
' k_k @ .
‘A ’ - \ g
\ e - T o kEyg e, Bt Nz, e
, The same¢ procedure applies for isotope j in the decay chain C(with
" the only difference that k superscript is now j and j changes-to i.
With this change Equation v-2 g.pplied to isotope j takes the form:
3 U L ' dE ii
. In“(r,t) =y S L _(xr,E,t)d(r,E,t) + An (r,t)
—_— 0 £ .
at N
. - y . V-3
- 33, Ty s . :
AMetlet) =y o 3 Eond (e, t)aE
) ¥
1-; . In a similar fashion the rate of-change of isotopes U and w in the 0 )
'. -
- * decay chain D are given by: . )
4 ) ! v
& ¥ (r.e) = vV, el (rE 000 E D + 20,0 .
i, t - ’ [}
" “ ‘ i [+2] ' !
E: -\h(r,e) -/ aB0", (B)O(x,E,t)n" (x,t) v-4
e . - .
g S
and . .
.
g 4 v ®
% n"(r,t) =yl L (r,Et)é(x,E,t)dE + A%, t) 5
: ot
M . . N
- - I, a0, " ®¢(r,E 00" (r,) - v-5
4 L
) 4 - . .
Bl )

TP .
. % ¥
T 3 TTU O S DI T v T P S
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V-6 FICTITIOUS FISSION PRODUCTS i ’ -
Equations V-2, V-3, V~4, V-5 can be used to describe 'the behavior of
any two close isotopes in the decay chains shown in figures V-3 and v-4.

In practice we aré only interested in those fissiona- fnagﬁ nt chains

which have large y and large oa. The effect of the rest off the chains

on neutron absorption can be represented quite accurately by definin

a few fictitious isotopes having artificial neutron absorpti

sections and radiocactive -~ decay constants.

‘

{ ,
These fictitious isotopes are defined as obeying V-2 through V-5 (gene-

rally with decay temm set equal to zero). The\}lctitious parameter ana=-
lysis reduces the assumption that there is only one a;tificigl isotope, that
it does not decay, and that, when it absorEs a neutron in accord with

its subsequent absorption in the chain - aiso/ﬁas the fictitious cross
section £

This last ass tion implies that, in effect, when a neutron is absorbed

in the fictitious i;giope, the isotope is nét destroyed. Thus eguations
V-2 through V-5 for fictitious i;otopes become:

] v

e =™ T B v, E e (v-6) -
&t
Y

where the superscript f£f stands for “"fictitious fission fragments".

~e

‘ 7 . .
f£ ££ A . .
Yy Ua is the one-group microscopic absorption cross section for the

~
.
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} fictitious fission .fragment, the corresponding’microscopic cross
. . .
section at a time t in the life of the fuel is:

»

fo(r,t) = nff (r,’ oaff =

L -

‘ =y o T It L, E )00, E ) AE V-7 *

Y

PR

. GE I (r,E,t7)¢(r,E,t”) is the number of figsion per

3’ f
unit volume that have occurred at r in time t, and since we are assuming,,‘

'since | ¥ at
O

Y . .
in effect, that a fictitious nucleus of this type, once created, is never

. £ .
destroyed, the quantity y foaff is the approximate number of "barn per
; ‘ \

3 fission" introduced into the reactor due to fission fragments for whicht

Valves of yff Oaff for thermal reactors generally lie in the rapfe

]

40 - 50 barns per fission. Thus, if the average fission densj in the ,
fuel is 100 watts/cc, the value of fo(r,t) at the end of ffyf months

(10'7 sec), is in the range of %0012 - .0015 cm-l. A typil value for

n

- the one-group microscopic 'fission cross section in a therfnal reattor—is

.lcm-l. Thus the fraction of neutrons absorbed in the l§ss important

.tually accounts for a significant fraction of the neutrons \absorbed in

the reactor. Unless these figsion fragments are removed frol the fuel,

4

o« -
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v-7 FISSION PRODUCT POISONiNG IN CANDU REACTORS

+
o

The use of heavy water as moderator and as primary heat transport sys-
tem in CANDU reactors makes it possible to use natural uranium as fuel. ™

The reasons of this possibility have been outl%ned in éhapter II. How-
. -, 2

’ 235 238
ever, the splitting of U and some small fraction of U originates
a large number of fission products. Certain fission products possess

extremely large thermal neutron absorption cross sections. Of particu-

‘149 o . w .
Sm whose absorption cross sections are shown

lar concern are 135 Xe and
+ in figure V-4. The significance of these extremely strongly absorbing

fission products is compounded By their relatively large fission yiélds.

s o

The buildup of such fission product pclisons can appreciably affect core
ﬁu{tiplicatibn and hence reactor operation. It should be noted here
* (F;gure II-9 ) that since these absorption cross sections }all off |
quite rapidl§ for neutron energie§ above lev, fission product poiso-
ning is therefore primaFily of concern in CANDU reactors and other
thermal reactors. In o;der té illustrate the importance of this pheno-
ﬂenon,Alet us make a very simple estimate of the reactivity change in-
duced in a reactor core by the addition of a fission product poison.
To first orde;, éhe effects of such poisons enter th;ough the thermal

9

utilization factor f. If we imagine introducing a poison characterized
ﬂ‘

by a macroscopic cross section Zap uniformly throughout a homogeneous

reactor core, then we can write the thermal utilization characterizing

the "poisoned” core as:

+ e wrhe v - - e o
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' . - . £
N ¢
L3

Hence we can compute the reactivity change from a critical reactor

in which }:ap= 0 ’

Bz p(E7) - p(Z,7=0) = p"-p (v-9)

'

Now if we recall our earlier definition of reactivity as given by the

six - factor formula. oo

, k= n pef PFNL P'rNL - (V=10)

and note that

o

i

o
L}

(v-11)

bp = £°- £+ P rynn - Penn : (V-12)
£ P TNL
If we use (V-8) and V-11 we find . ‘ y T ,
7/ - l
S - - Z / .
£ £ = - 5 2 (V-13)
£ 4 " . ‘
. a' a
and /
) PO
A\
TNL - "TNL = L Bg Ta + lEx
P 2 ' ' -
P TNL 14’8y LZa Eep d o (v@‘”
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’ . Hence . |
. 2
. bp= 5aP ! -1’ 2 nl /P |
Za 1+ 1%p 2 g ~ =
g )
Ly / 22
g - \
: ' P w2
‘ 3 L, /I, ; -
T . (V-15) :
- . : ., ;
B 1+ Lzagz ;. \

Here we have noted that.the second term in brackets is usually quite

small (§103) and 'can be ignored. 1In fact for many large power reactor

e cores, leakage is sufficiently small thats Lngz <€ 1 and to first order,

the reéctivity change due to such a poison is :‘/ust the fraction of the
total ma scopic absorption cross section due to the poison. _

Now récall that the macroscopic cross section for the poison is given

ﬁy Eap = NP Oap, wHeere NP is the number density of the poison while

P, . . . . .
Oa is its thermal absorption cross section. Hence in order to estimate
- ' ' .

§ %he reactivity change due to fission product po,isonincj, we must calculate
the number density of the poisoning isotope NP at any time t.

4

- Pdl
To determine Np(t) , we must solve the rate equations'V-2 and V-3 or
‘ ¢

B

V-4 and V-5 describing the various productions and deéay processes that
can affect the poisoning concentration. We will illustrate the procedure
by takiné into consideration the two most important fission products:

. XeZI.35 and Pm149

e lwe.  caeeas

el on, b o
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135
v-8 THE XENON Xe AS FISSION PRODUCT POISONING
-
"o 135 NP s .
Xe is the most significant fission produgt because of its enormous

thermal neutron absofption cross section and its relatively large fission

-

;ield. .
The fact that most of the Xel35 is produced by decay with considerable
delay after the originating fission entails a very delicate prompt-posi-
tive, delayed-negative qux-to-reacEivity feedback; this feedback is

the cause of the so-called "Xenon oscillations", one of the most challen-
ging contrel problems in thermal reactors. (This topic will be fully ex-
panded in part II of thé Thesis (e.g. Ph.D.).

135 .
“Xe can be produced not only directly as a fission product but may

' 135 135 13
also result from the B-decay of Te to I and further decay to Xe 5.
; Iy -
. 13
The figure (V-5) gives all possible ways of Xe > production.

To start the analysis ofﬁkﬁsxe behavior in the reactor we define

a series of quantities. From figure V-5 and assuming the analy-

sis for one-group energy (thermal) we define: o
* X . , 135 3
- Sb(r,t) = Atomic number density of isotope 5b (atoms/cm_)
) - R . . 135 3 =
- Te{r,t) = Atomic number density of isotope Te (atoms/cm”)
3
¥ - .
. . . © 135 3
- ¥(r,t) = Atomic number density of isotope I (atoms/cm™)
{
' \t; ) .
. . . 135 - 3
-~ Xe(r,t) = Atomic number density of isotope Xe {atoms/cm )
T e
K.

e e i 2
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a1

- Cs(r,t)

Zf(r,t)

) ¢(rrt)

>‘Sb

ATe
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[

, < ' 135
Atomic number density of isotoge cs

!

13
Effective fraction of fissioq product Sb

Effective fraction of fission product Te135

135 <

Effective fraction of fission product I
' /
!
. . L. ‘ 135
Effective fract;on of fission produét Xe
. 135 2

Thermal .neutron absorption cross section for isotope Sb (cm™)

o

*

. i
Thermal neutron absorption cross section for isotope TE135 (cmZ)

135 2.

Thermal neutron absorption cross section for isotope I (cm )

2
Thermal neutron absorption cross section for iiotope Xe135(cm )

/ Y

. “ . . . o . s ‘l
Microscopic fission cross section in cm

B -

. 2
Thermal neutron flux in neutrons/cm sec.

B-decay constant for fission product Spr>°

s ’ 1
B-decay constant for fission product Te 35

v

35

' 1
B-decay constant for fission product I

v
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AXe B~decay constant for fission product Xe

~

'

Y

Based on rate eqk%tions(V-2)and(v—3)or(v—4)and(V—S)there would be five

rate equations to cover the decay chain for A=135 starting from Sb135

™~ 135 .
down to Cs . The five equations would be all coupled and very hard

N

1
to solve.

To by-pass this complexity and also to stay very close to practical

approach the following approximations are made:

135
a) From figure (V-5)we can see that the decay from Sb £ to et ind

135 135 : .
from Te to I ca% be taken to be instantaneous (i.e. we can

I

135
say that I is produced directly from fission. Furthermore we

, 135m .
will ignore the short-lived isomeric state Xe ; and assume

135 L 135 ’
that all 1 nuclei will decay to the ground state Xe . Because

135
Xe  is considered to be the most important isotope in the decay

.

135 : <
chain for A = 135, we can stop the chain & )é: . Also being

the thermal neutron absorption cross sections of the isotopes in

135 )
the chain, except for that of Xe which is very large, pf-no
A

significance we will neglect them in the analysis. Hence the

effective decay scheme for A = 135 simplifies to that shown in

fidule V-6 4

v

FISSION
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Under the assumptions we have just made equations (V-2 and {v-3}

applied to the actual decay scheme because:

aI(r,t) I ' ~ -3 y 16
Yy =Y fo Ef(r,E t)¢(r,E,t) dE - A~ I(r,t) (v-16)

B)Ee (r,td

e @ I w, Xe
T = yf fodE ):f(r,E,t)¢(r,E,t) 2 I(r,t)-fodan (E)$ (r,E,t)Xe(r,t)

r

Equations {Vv-16) and (v-17) are the );ey to study all phenomenong concerning
135 135 . j -
X and I behavior in the thermal reactors at startup, shutdown.and
various power changes.
(x)

¢ .
If we asswna]?}:fl(r), oa' (r), (the appropriate spectrum-averaged,

+ . . a
one-grouyp parameters } to be constant in time, and further we assume

the flux to be one-group type: then equations (V-16) and (V~17) reduce to:

/ %
BEE oy s b ) - A 1E ) 4 (v-18)

l\ - . .:
A

x X8 ye(r,t) - c;('e(r)q?(r(,t) X (£,t)

Me(r,t) = YXCI__ (210, (r.t) ¢ AT I(£it) - A
By . fl 1 .

(v-19)

-

‘Notice that in the equation(V-19) we have included a capture loss term

™, 135
for the fact that capture will deplete the Xe 3 concentration (as well ,
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I 4
as neutrons of course) .-

’

!

Equations (V-18) and (V-19) can only be solved if we assume the flux behavior

to be known as a function of space and time. If this is the case in-

tegration of equation (V-18) will give: [nPP. A] .

LY
¢

v I(r,t) = {Ir,0) + yr Jiae’ I_ (naf,0) expAle")} x exp(-re)
\ 0 £l

.o r (v-20}

B

Subst'i"cution of the soclution (V-20) into the Xenon equation and in~'
, . . . 13
tegration over the time interval (0,t) will give the Xe > concentra-

tion as a function of time at a particular position r:

5

“ ’ o

Xe(r,t) = {X(r,0) + [ at’ [(AI I(r,t') + yxezfl(r)q(r,t-)i}'. \
; o ‘i‘
exp {fg' acn (e fozi(r)ctl(r‘,t")) }exp {-{f at" (e +0§§r)¢l(r,t")} b
: - (v-21) 14
’ '®
A : of course for any complicated flux behavior, the solutions(v—zo) and (v—21) !
will require numerical integrations, and until we specify the form of ﬁz
¢1(r,t) this formal solution is of\ little use in understanding the behavior %
of the xenon copcen_tration in the reactor. ?z
&

?
!
1
i
]
i
1
%
|
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J 148
V-9 THE SAMARIUM Sm’." AS FISSION PRODUCT CHAIN-

[¥8

,“ *

12

/\The second most impoLtant reactor fuel poison is Sm“g'

' r %
-~ !

s

. 149 , .
The isotope Sm appears in a nuclear reactor as the résuly of the

chain events shown in figure (V-7).

14

From the figure|V-7)we can say that for practical purposes the 1.0 sec.

148 149 149,
2.3 m, and 1.73 h half-~lives of Ce , Pr , and Nd 4 ‘are so much

faster than the 53.1 h half-life

u .
’\\ <
ug Pm : ’ \%3 SM
Gof"‘ D) Pmlrit) Rk Do) Smltit)
Figure V.8 Ssimplified DPecay Scheme for A = 1‘49

of the promethium - 149 that we may adsume the later isotope appears
—~ .
directly from fission. Under ’this assumption the figure (V—7) reduces

tOg‘V—B)' s

B AT b imee i
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€,
Thus if we use Pm(r,t) and Sm(r,t) o denote the concentrations of Pmlqg
149 . . . :
and Sm nuclei at point r and time t and under the assumptions we have

just made the rate Equations (V-2) and (V—3) applied to the actual scheme

becone:
C MBS PR T (R ) 6 (x,EE) AT Bmix,t) -, AE oLt (E)é (x,E,t)Pm(r,t)
ot 9,\ f o) a\
b - .
' “(v-22)
ES_T%ELE) - ysmf:da Lo (/B )4 (x,E,E) = AP b, t) —f: dEoim(EM(r,E,t)Sm(r,t)

I4

(Vv~-23)

v

Equations (V-22)and (V-23) are the key to study all phenomena concerning
&

v

. . 149 |
time dependence of isotopes Pm149 and Sm 2 in thermal power reactors . E

following startup, shutdown and power changes.

f 3
If we assume I fl(r), c:T, the appropriately spectrum averaged cne-group

parameters to be constant in time, and if for practical application we
assume 01::\ (E) to be zero for flux levels encountered in modern power

reactor, and further we assume the flux to be a one-group type; then

*equations {V~ 2} and (V-23) reduce to: . N

4 ang;‘,t) me

Ly,

I, @6 () -\ "Pmir, ) (v-24)

aSm(x,t) = §£\ -
—E—ﬁ Yo L (1) ¢y (x) )\Pm?m(r,t)

- o™ 4y (x)mc,t)
!
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e . Equations(v—24)and(v-zs)can only be solved. if we assume the flux behqyior .

~ to be known as a funcion of space and time. If this is the case in-

am - .

tegraéion of equation (V-24)will give:

N
Pm(r,t) = (Pm(x,0) - Siat’ I (MaE,exp(Ae))} x exp(-A""t) n

(V-26)

Substitution of the solution (V-26)into the samarium equation and in-
. . <, 149- .
tegration over time interval (0,t) will«dive the Sm concentration ~

as a function of time at a particular point r: -

L ]
| o ! sm , ,
sm(r,t) = {Sm(r,0) *+ [ at [(lmem(r,t) w7 E e )]

”

\ '
exp(fz at" o:T.¢§r,t"))} exp (- f;dt" UiTQﬁr,t")

¢ Y

of course the same comments made for the solutions of I(r,t) aqd

‘ Xe (r,t) apply to the solutions qfogm(r,t) ard Sm(r,t). Hencejit is
A ' . 135 _ 135 _ 149

3 a good exercise to examihe the time behavior of I , Xe , Pm and

"5 +

p 149 , e . "
. Sm concentrations for several particularly simple e}amples of flux -

?‘ behavior.

-

- -
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— V-10 AT BEGINNING OF LIFE

i

N

v

S'i‘ARTUP OF A CLEAN CORE REACTOR -
Suppose we suddenly bring the reactor to a steady state flux level”
?0 at time t = 0. Assuming that prior to this time, the reactor core
3
has been in a shutdown state with zero fission product poisoning concen-
tration (i.e. a "clean core™. We need only: Substitute a time-indepen-

2

dent flux ¢(x,t) = ¢05g) into the general solutions (V-20)and (V-21) and

. . 0y + ]
use the identical cornditions:

\
'\‘,’ .
I(r,0) = ¥e(r,0) = O- o , : (v-28)
’ 1 4. . F
to find the time behavior of the fission product concentrations
following startup: {
. ¢ “‘
. 1 »;/,]t I
I(r,t) = I(t) = 5 v L, €5 [exp(x t, exp (=X't) = ,.
.)\I . C S
~ e I h
= - -2
. ;y Zfl ¢ol [exp (A7t) l] exp({-A"t)
S
° - I '
Ty z:fl(t’ol [l-exp(-AIt)] . ) . (v-29)
>\I . -

substitution of Eq. (V-29) into Eq. (V-21) will yield the following

result:

cy

Sy ~

-G
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- _ T e .
X(x, £)ZX(E) = {o+ /% at zﬁcbm {1 exp (-2t }‘

XI

’

t” ,,[Xe 4+ gXe ’
oo exp fo ae” | ‘ a1 ¢Ol] } * exp -f

s

Integratién of equation (+30)will yield the solution for xenon time

behavior following reactor startup

~ ]

I I
X(e) = v Igdy - Y Igdy [exp -(A’“‘m’;‘; ¢01)t]
)\Xé + c’Xe $ )‘Xe+ o Xé " )
a1 ® o1 a1 %01 ¢
1 I
_ "Iy dn exp (- ATe)+ ¥ Ley %o [exp 8‘1%1 [
Xe 1 e Xe I Xe
pm AT by AT+ O: o1 ’
er ¢ Xe‘ Xe * Xe i ‘
- = flxgl — &P [ (4o 01)t]+ ¥ Le%
AT+ 000 01 ' ’ Axemxel%l (#31)
'
X(t) = (v o+ vh I ¢ ) X
= s e
‘ f1 Y01 [1 - exp -(\ ol d)Ol)t] )
Ae Xe
MU A0, by '
A I e
N .
Y zf1¢01 [ exp _(Axe_'_qal}(e ¢01) -exp,(-)\It)}
. |
Xe I Xe
ATT =X+ 0, 90y | .

Pwg
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v-11 . SMl49 AT BEGINNING OF LIFE: STARTUP OF CLEAN REACTOR

-

Applying the same conditions as the previous section, in analogy

B

%

with Equation (V-28) we have

Pm(r,0) = Sm(r,0) = O. ‘ (V-33)

[

/
. With these assumptions, e;>ntions (V-26) and (v-27) to £find the time

/

behavior of fission product concentrations following reactor startup

become®

- g
Pm(r,t) =y L ()¢, (x) [1 - exp - ()\Pmt)] g (V-34)
A | ‘

Substitution of the solution (V-34) into (V-27) and performing the

desired integration applying the initial conditions (V~33) we get:

Pm

- P - _ _ o Pm
-Sm(xr,t) =sm(t) = fo dat zfl ¢Ol {1 exp (A t)] +

Sm ’ .
Le) exp [fot at" g Sm b0y } exp [- fot * ag” (oglsm ¢01]

~ 2

(V-35)
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~

149

Integfation of equation (V-355 will yield the solution for Sm time
behavior following reactor startup
_ Sm ,_ Pm
Sm(t) =l W) 2:fl ¢)Ol [1 - ex (_OSm b t).‘
‘ P "C1 P01 Y} -
Sm
%a1 %01
i *
R\
]
? Pm 3
?’ ty 2 ¢ .
f f1 "ol [exp /{— U:T ¢°l t} -exp {-)\Pmt }] (v-36)
‘ . cSm ¢ _ )\Pm . /. -
N al "01

In summary the time behavior of the most ‘important fission products follo-

4

’a, :

E

, wing reactor startup is giwen by the following table:

\

1 TABLE V-l
" ISOTOPE SOLUTION .
. L 4
' )1 = YIF‘ﬂ %01 1
. . [1 - exp(-A t)]
. 2
+y- A
135 _ o Xe . I -
Xe Xe(t) =0"" + V) Ly ég [,1 - exp {- X4 g Xe (1) ¢ }]
Xe e * . '
AT+ al qu
* ¥ 4 T s, xe R
o I % {exp[-()\e+0x’¢l] -exp (=A7t) }
AT AT 407 g al "0
al 01
149 Pm °
Pm Pm(t) =¥ L o.[l - exp (—Apmt)] )
hgm AT

. e e, ¥, .

P %W"ﬂ&hgb’ﬁ%‘c
f, e

v .

Pty - M,g,g

Y

SR T



317
&
) - — ~
149 = ySm eyt
Sm Sm(t) = (y +y ") L ‘%1 [l - exp ("’?{\ o1 t)]
- USm
' ! cral %1
\
Pm .
+ysmzfl¢’01 _ {exp -5 doy ©
%31 ¢01 A
* ! ' |
. - exp (-Apmt)] - ((' ’

The time behavior of the concentrations 'in table V -1 are shownin Figs.(V-i2)

to (V-2% )pages 317 -352 . 1In particular it should be noted that these

)

concentrations eventually level off at equilibrium levet for long times

£ 4
‘

following startup.

Iy )

aal

re e =Y %% , v
t + o o ©(v437)
\ 1 .
Xe (t) ~ Xe I | |
e -+ Xe _ e
= (vF + ¥¢ Ze %01
' . t +x Xe e
‘ e+ & 4y (V -38)
-~
Bn (t) -+ Pm Pm
’ . : =Y Lg 9, ) (v-39)
. ) ) £+ p\ -
° ©
Sm(t) +sm o (YT ¥ I
(V-40)
t-re Sm
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That is, the concentrations of these -fission product poisons in a
~

reactor operating at constant flux will eventually satugate at those

: !
equilibrium values for which the production of poisons from fission ,
&

is just balanced by the decay and neutron capture losses of the poi-

“ sons. These equilibrium concentrations could also have been determi~

ned directly from;the rate equations v~18, V-19, V-22 and V-23 them-

- N\ w .
x selves by me|re1y setting

F .
9I(xr,t) = 9 Xel(r,t) = oPm(r,t) = 3Sm(r,t)

ot ot ot \/a/tk‘

-

o (v-41)

(00 )

Note also the Sm value is independent of flux.

v-12 REACTOR SHUTDOWN

We have seen that when a nuclearx reactor power is raised from zero

to some steady-state value, time-dependent fission product concentra- b
q

tions Sm(r,t) dnd Xe(x,t) rise. We dlso saw that® the two poisons

{ ‘E level off at particular values [eqilation (v-30), and e%ation (V-31)J

.l

-l
t
for SmI‘19 aRd for Xe135 respectively. ‘

!

Now let us see what happens to Sm and Xe upon shutting the reactor

A down.

-, -

S

: v-12-1 XENON TRANSIENTS FOLLOWING REJ{CTOR SHUTDOWN

e w

\
For the sake of simplicity, we shall consider a reactor in which. ﬁ*
nuclear properties are and stay uniform (even if time-dependent); v
we shall also ignore flux shape distortions due to non-uniform xenon

? effects.
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‘Given the rate equations de;cribing the Iodine-135 and Xenon-135 con-

centration time behavior, i& is of particulér interest t9 look at time
. ~

behavior of these nuclides following reactor shutdown. ‘

e ' -

We suppose thét after operating -a reactor for a long period of time a%
// a constant flux level ¢o, we suddenly shut the reactor down. An exa-

mination of the rate equations (V-16) and (V-17) reveal several conse-

%)

quences of setting the flux ¢ suddenly equal to zero.

A N

»*
135 ”)
First the removal of Xe due to neutxén capture ceases, leaving the
135

Xe decay as the sole removal mechanism. However the production

135, 135 L) .
of Xe ! via decay of I will cqﬂiknue for sometime. Since the half-

‘135 135 135

life of I is shorter than that of the Xe , the Xe concentration
may initially build-up before decaying out. In this case, the increa=-

it
sing Xe load injects a negative reactivity for a number of hours.

Toystudy this mpre explicitly, we solve the rate equations (V-18) and

(v=19) characterizling the shutdown reactor:

Putting ¢1(r,t) < 0. Equations (v-18) and (V-19) became: \

v

4

31(r,t) = -AT1 (r,t) (v-42)
¥ ot
, - 11 Xe )
9 Xe(r,t) =.A* I(r,t) - A7 Xe(r,t). {(v-43)
at
! p 53 p
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.
subzect to the. initial conditions that at the time of shutdown

.(t = tg = 0), the iodine uand xenon concentrations havel‘alterned their
equilibrium valﬁes given by equations (V-37) and (V-38) respectively. |
The iodine equation (V-42) is easy to solve:

/
e

I{r,t) = I, (x) exp (-—)\It). l / ., ) (v-44)

We can now insert (V-44) into (V-43) and get:

9 Xe(f€,t) = AIIW(;) exp\ (-)\It) - Xe

at

Xe(r,t! (v-45)

-

The complete solution of (V-45) is

o

’
X(r,t) = {X(r,0) +J t dt’AI I(r,t Yexp (/ Yaer Xxe)}
[o) ' 0

Xe

* exp (-fotdt“ A

#

Ihtegrating of equation (V-46) term by term giveg:

X Xe

) = exp (-lxet)

i} s - -
1 <1
2z e exp (J’Ot 4at" A Xe, -

Xe :
£7) o

ey
rf
o1}
"
>
"

)y = exp(X
T(r,t") exp (W€t7)=

t ~ X I .-
= fo at” A7 1_(r) exp (- A7t7) exp Axet’ - 5

=

LB e
bl iy D

el > i




Al I, (R J’otdtti exp [—(AI- Axe)t‘] =

s
/ . =2l 1_(n) 1o 0 - ahe - 17 .
. e I "

and finally:

Xe Xe

{fot-dt' ?\I I{r,t”) exp fot’/dt" A } exp —fot ae" A =

. . I , - .
. =} I.(r) [ 1 - exp(}‘xe - )\I) t]‘ exp -(}\xet)=

Xe

AL a

I p
VI, (2 [exp(- 3y - exp (- ATt) J l L /!
. AI - AXe . A , ﬁ

{ } ’ &
Grouping of terms and substitution of Xe(r,tg) in (V-46) gives the

.

general solution for Xe(r,t) after shutdown:

I 4 Xe i
Xelr,t) = (y 4y ) L ¢ ‘
, £1 %1 ke, .
3
Xe Xe
J ' AT+ 0y 9010 ’
[ exe (-3*%t) - exp (-AIt)]' v-47 -
\ ’ T
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{ 1
\{;:§27~2 Sm 49 TRANSIENTS FOLLOWING REACTOR SHUTDOWN

If equilibirum conditions have been attained and the reactor has then

. . 149 149 L ™
been shutdown, the time behavior of Pm and Sm is given by equa-
tion (V-24) ang (V-25) with ¢ (xr) = O. \J
. /
The result is:
v - \,_—./—\\
Lot -
Pm
aPm(r,t) = « A" Pm(r,t) . (V-48)
ot - .
¥
asm (r,t) = X" Pm(r,t) (v-49)
ot ’ : ‘

Solution of equations V-48 and V-49 gives: B

-

Pm(r,t) = P(t) =Pm_ exp (=X ") (v-50)
\
s
One can now insert this into the samarium equation (V-49) to find:

- 9Sm(x,t) = AF® Pm_ exp (-Xpmt) _ (v-51)
ot '

\

Integration of equation (V-51) gives: ]
: e
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1

e, S5 el AT e

A

Sm(r,t) = sm(t)

= A" Pl [exp(-kpmt) -1] ‘

N (v-52)

r

= Pm_ [1:— exp (—Apmt)]
2 | A

~

- » -
Substitution of Pm_ given by (V-39) into (V-51) and (V-52) gives:
' L8
¢ .
Pm R
Pm(t) =q(y L
ol .
shutdown § o fll exp (-)\Pmt) (v-53) ———
AP :
. L)
and A \
sm(t)shutdown = ypm)l fl%]. Pm ,
_ [\1 - exp (-) t)] (v-54)
)\Pm

In summary; the time behavior of the most important fission products

(135}Ie and 149s:n) and their precursors following reactor shutdown is

given by Table V-2: -

-7

> N L et A




%

ISOTOPE SOLUTION AT SHUTDOWN
L*&-» 135. | I(t) = YIZ ¢
. 1 £1%1 exp (-1%e) | .
Iy h' I a
}\ S m
. (\\‘g\ \ J/ .S
o) ‘,
135 ) = (y- +y2I_ o () % Iy ¢
% JY Y e éy [exp A%+ Y i ]
Xe b, = \ I Xe
A + 0331 ¢01 A= A
”’ .
' [exp - 2%y - exp (—AIt)]
P - . "\\
149 P(t)=y Z_.¢
Pm m £1701 exp (_)‘Pmt)
AT
149 _ Pm
sm_ | Su(t) =Y T

f1¢01 [1 - exp (—)\Pmt)]

APl'n
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v-13 EFFECT OF Xe POISONING ON REACTIVITY

¢

The equilibrium concentration Xe® V-13 is of interest because we can .

[

. .
substitute it into (Eq.V-15) to determine the negative reactivity which

~

the xenon will contribute under’ steady-state power conditions and follo~

wing reactor shutdown. From section V-7 we know that

P

;\\ ' Za 1+ Lngz ' ,
’ : “
% 2

2 -3 .
If we neglect the term L Bg (<10 ") which is quite legitimate in:

N

large power reactor cores, the reactivity .change is just the fraction

\

' . ‘ -
of total macroscopic absorption cross section due to the poison then

we have
\\\ °
W : .
B¥ - T N
. v L o “
\ N
- \ °
and for i:heﬂ;tenon we have \
' ~
Ap= = 3, Xe‘ f,:— ner Xe \\\
Za Za S
P - ~
e Xe 1 Xe
g Wy IRy by , \ b
5, (AXe + UXe ¢ ) “
ay ‘ol

(v-55)

v-56)
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v

If we consider the fact that in a large, critical thermal reactor, -lea-

' !

kage can be ignored (approximate)

k= (v Zf/ E}/pe = 1 implies

gL =31 =1 , % : (v-57)
Za VpE \Y .
and therefore ) e X )
I
: - Xe T Xe .
B 0, W YT)ey DU , (v-58)
e Xe Xe:,
+
V(A o al/%l) .

~
>

Notice this reactivity will depend !on the flux level ¢01. However for

large flux levels, characteristic of large péwer reactors, (Ref. 1, 2, 3) .

-

i X 13 -2 -1
> = N
) d>01 A — .756 x 1077 cm . sec (V-59)
o .
al » .
1 Y -
and the Xenon reactivity will approach a maximum valve of - a
X
_ Ao+ =_(F +Y*®) (V-60)
v .
K . N 2 . t
This amount to Ap= .026 for both U 3% and 0235 - fueled reactors,

‘. & rather sizable reactivi'g:y. This of course, must be accounted for

\in determining excess reactivity and control system requirements.

~ ’

_ _At shutdown we have:

1




g e P ot S G
-

PR "

= s

Ap(t)/shutdown = Xe® exp ('-lxet) . [exp( A7t) —exp(-A"t) © ]
z I Xe
- AT -
. X ! i
v a
oI Xe _yXe I _yXe_ - I
={(y" +vy Zﬂ ¢Olexp( A t) . Y ?fl 4701 [exp(' A t- exp ( _)\ t)] }
Xe Xe, " c -
» * % %o R {

al . 5 . (V-61)
. .
. Xey s _exp(-AX ALy Xe # ¢ aXe ]
s 01 . 01 "al [exp(:_}kxet)-exp(—)\]-t)_!]f{}‘_
o Xy i - aXe I
a o1 :
I, Xe 1 U
- G +y e, ¥ 94,0 € &\ —axp (-Mt
b ! U exp(-a¥er) + L2 ;i( [ exp (X t)-exp ]
- e
< uep Xe ‘ A=A
, A - + ¢01
Y

typiéal values for |Ap (t)!Lare plotted at the end of the chapter. The
maximum value of negative reacéivity depends quite sgensitively on the

flux level prior to shutdown. In fact unless:

y Xe }‘Xe

YIOaf(e

>

¢Dl




¢
;
+
i
o
'
3
!
%

1

no buiidup of xenon following shutdown will -occur. However since the

ratio in (V-62) is quite small (4 X londnd 3X lt)lzc::m--2 sec'l in u-235
: : G

and U-233 fueled reactors, respectively), a xenon transient buildup

v
5

will occur following shutdown in most power reactors.

We can calculate the time at which the maximum negative reactivity

occurs as: {differentiating and equating to zero)

, .
(AI‘:Xem 1n (ixT')— }1.6 h

b <

»

(Note in {Fig. V-11) how /curves' maxima begin at t = 0 for small

o

fluxes, but approach this value (11.6 h.) at higher fluxes.)

€
[y

'~
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v-14 SPATIAL EFFECTS IN FISSION PRODUCT POISONING ~

\ In our earlier estimate of the reactivity change caused Py fission
product poisoning, we merely computed éhe changes in the thermal utiliza-
tion as the poison concentrl\'lon built up. However such an estimate is

actually only valid for a uniform concentration of poison in an infinite

core. More generally, we know that the poison concentration will depend _

- 4

on the spatial variation of the flux“np a finite core, and hence our

v

estimate of reactivity worth of the pois
u

is only of limited validity.

We can improve this estimate by using perturbation theory. 7/

~ ‘ T w

o TN PR e

let us compute the reactivity due to the equilibrium xenon concentration

in a core operating with a steady-state flux ¢O(r). Then we know '

AT AT IR, AT
Py

) z:‘?r) - ozﬁe%(r) J Wyt YPI(m) g, () (V-66)

/ Xe, Xe
W70%%4 ¢ (x) , . .

[

If we treat this as a perturbation in the absorption cross section,

_ cz;zfir) . then we can use the first-order perturbation result to find
the reactivity change-due to the xenon as (Ref. 4) * .
| L I (x) 2 (x) :
- . ’ f 0 ’
b - - TErel @5kt e B (V=67)
- - — We/o 4 ¢ ()

c via’re] (x) L, (x) -V

3,2
T . Jd r¢0(r)2f(r)

° [

v
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result for. an infinite medium [Eq V. 60]

-+
AOD -»k - - (YI yx) - Apm " (v-68)
¢0>>)‘ /°a v
+ ~/ o
g For low flux levels, ¢0<<)?‘e/0)ae, in an uniform core (e.g., a low-power
research reactor) - )
e

a3
(yI +)yx) fa r¢OSr)

Ap +Xe, _ (V-69)
Xe
O v 1a’e4? ()
*‘
For example, in a slab, one finds that in @his limit . .
Y ‘ ‘
bp /3 Ap_ . (v-70)

»

where Apm is the reactiyity change chaiacterizing an infinite meédium

_ model. That is, the.reactivity worth ie some 33% larger when the .
{

spacial variation of the flux'is taken into account. In a low-power

Jr G— .

i

x':f:actor core, this spatial weighting factor is more typically between .

2.5 and 3.0. ) ’

[
’

"v-14.1 _ XENON-INDUCED Pdfz’ER OSCILLATIONS IN LARGE POWER REACTORS:
3 ' CANDU ‘ N
; ' o : X

)
Thus far we have ignored the effect of the reactivity introduced by the
/

fission product poisons on the neutronic behavior of the core. The in-

-~ ., ’ .
teraction between xenon fissiongproduct buildup and the changes in the -

5

. »

o & el T O S S i 2 6 o
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b

neutron flux distribution that accompanies local changes.in reactivity
/
can lead to spatial oscjllations in the power distribution in a large

.74 s

thermal reactor core. .

Ly

To explain this phencﬁmeno\n, let us first consider a point-reactor n;odg.
in which the reactor has been operating at a steady-state flux level for
a peri:od of time. Then o}xr earlier st—uJy of xenon fission product poi-
soning has indicated that there will be a saturation in the %el35 concen-

tration resulting from the balance of xel35 production (via direct fission

135 135

and I decay) and loss due to decay to Cs and transmutation (via neu-

136 '
tron absorption) to Xe . Now suppose a small perturbation increase in

3
the flux occurs. Then Xel 3 will transmute more rapidly to Xe136 {ins~

v 135
tantaneously), depleting the Xe 3 concentration, hence decreasing the
absorption and increasing the reactivity and the flux. Howe(\er the in-

135

-

~ :
creased flux transmutes even more Xe , and hence the initial flux per-

turbation grows with time (unstable). Such an ix;stabid.ity can only exist

for power levels higher than a certain threshold value. For 0235 ~fueled

reactors, this threshold i& 3 X 10:Ll neutrons/cmz.sec. Below this thres-
LY
hold the stabilizing effect of the direct xenon yield from fission is more

important than the destabiiizing effect of the xenon decaying from 11435.

a

Actually this type of instability is relatively unimportant in practical

‘Teactor operations, since it is easily controlled by nSrmal coritrol rod

/

movement. A much more serious spatial xenon'instabi_lity calm arise, how- ¢
ever, which requires a more complex control rod program. To unde;stand " )
this, cénsiéér the very simple model illustrated in Figure (V-9) consisting
of two coupled xenon-unstable point reactors, separated by 4 region of
nonmultiplying material. Suppose further that there is a control system

-
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3

keeping the total power of all three core regions constant (although

the flux or power in an individual region is nqt constant).

A slight increase in the power level on one side of the core will give rise- -
to the unstable xenon process described for a point reactor. Since the
control system keeps the total power constant, the flux on the other

N\

side decreases. This process continues with an increasingly steeper

tilt in the fl; resulf;ing.- Two effects will limit this: tilt: (a)

%urnup of gﬁost of the xenon on the high flux side and (b) the 'steez.;

flux tilt which creates a flux gr?dient and hence a current that car-

ri‘es all the excess neutrons being produced to the other side. The

flux will remain tilted for gever;l hours. Eventually the high flux /

135

side will have created an I concentration such greater than that

originally present. Since the decay half-life of 1135 is 6.7 hours,
more xenon will be credted after this delay period. Similarly on the
low side less ‘xenon will be created. This'reverseg ;.he flux tilt even-
tually and produces a ;ide-to—aide oscillation with a per‘iod of 15-30

hours. Thus the xenon process tends to be self-limiting and\produces

\
the effect of a moving "hot spot"” to the reactor operator.

<

-

4 A simple model of xenon-induced power -

+ i oscillations. . -

— Figure V-9




The osciliation of the power distribution in a reactor can cause changes

in the power-peaking factor F:. (Ref. 2) However this can be easily
accounted for in désign to ensure that thermal performance constraints are
not exceeded. Such xenon-induced power oscillations are more of an

operational than a safety problem.

although such oscillations can be controlled by control rod motion, there

. [} N
’ &

- is strong motivation to design the reactor core in such a way that xenon

oscillations are minimized, since the load-following requirements of a

power reactor operating'on\a utili% power grid imply that such control

adjustinents may incur considerable economic penalty. In general, negative

feedback mechanisms such as mgderator void formation or the Doppler effect
4

will tend to suppress xenon-induced power oscillations.

~
f B R

Aokt vt Lb S vt e e R e

' . The stability of the spatial power distribution with respect to xenon-

induced oscillations will decrease with increasing core size or de~

creasing neutron migration length. As a rule of thumb, xenon oscil-
/

‘ lations will be a problem if the reactor core is over 30 migration

. “
. lengths in size (Ref. 5). Since this is the case with most large power
. & yeactor cores, xenon oscillations can represent a serious design and

control consideration that will be the topic for the extension of ;shis

I}

work .




V.15

1
PLOTS OF FISSION PRODUCT POISON CONCENTRATIONS

/
FIGURE TITLE Y
V.10 and V.11 Reactivity Change at Shutdown
V.12 and V.13 X% at Startup )
- "\
V.14 and V.15 RJ’ xe13% ‘at shutdown
‘ 135 ¢
V.16 and V.17 ' I at Startup \
V.18 and V.19 ' 1135 at Shutdown
V.20 and V.21 Sm149 at Startup
149
V.22 and Vv.23 o, Sm at Shutdown
V.24 and V.25 . Pm149 at Startup
149

V.26 and V.27 Pm at Shutdown

°

Data for these plots are taken from Appendix C. [RQF- 5]
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", VI.0  CONCLUSION

o

CHAPTER VI

1

As pointed out in the introductiion, this thesis is considered to be two-
fold. First, I have given the (basic elements pf-riﬁclear reactors in
Chapter I, the detailed approach to reactor physiq_s in Chapter II, the
challenging derivation of the BQltzmann trangport equation with its sim-
plifications and the derivation of the one~-group neutron diffusion equa- ’
tion in Chapter III.

4.
Second, T have made extensive use of the one~group neutron diffusion

equation to study the flux behavior in various reactor core geometries

giving particular attention to the cylindrical reactor core geometry

since the latter is one of the most economical and practical used in
power reactors.

kY

As an application %f all the material included in Chapters 1 through IV,
/

i . s . A .
- a detailed study of fission product poisoning in thermal reactors is

N

n;iven in Chapter V. Programs have been writ;ten to calculate and plot
theﬁdensity of the mos£ impor‘tant fission products4fy g low flux level
reactor (Slo':rpoke reactor), CANDU power reactors 5Darlington) , and
.general high flux level thermal reactors. Listing of progran;s axle found
in Appendix D. g
With the accomplishment of this thesis; I feel vefy confident to start

the most advanced analysis of fission product power-induced oscillations

mentioned at the end of Chapter V. .
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) . Solution of 1 ipear first order differential equation. ,
] ' ‘ , e
K- .
given - ) N - g
E y' - £(x)y = xrix) (A-1) .
. ‘«:x{%' , - - .
. » 2 ’ N ™
If x(x) , = 0 (A-1) is said to be homogeneous, otherwise is said to be
- - , . « + i N “
non~homogeneous. cor ‘. ) .
- )
: For homogeneous, case we have ‘ .
2 b o N
. - ' k ‘ !
. A Yy # f(x)y = O . v . o
- . - A . ) ’ N i
. or geparating variables we get n b . L .t )
. // * , ‘ .dj. - wf (x)dx
A\ - »
)
3 L
' -and thus C © ,
- Inly] = -sfx)ax+c) | ‘
1 * » * ) N
) or l ' N o.r \? "
.‘\‘\ \ ° - | n
Y(x) = c exp(-SE(x)ax) | - - T
with X R,
. . c = % .exp(c*) for ygol -
- Vooa e
. ’s
a , ‘ ¢ K
- . . . . %
b, - a -3
.o . . ™
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1 v EETUE , . S .
| N . u R \ i
.‘:; ( A .-u‘(,g
For nonhomogeneous cases we have: ' : .
y  + f(x}y = r(x) : {(a-2)
9 bR y d‘vb
. L o
Multiply (a-2) /by e and get (where h(x) = [f(x)dx) |
iy’ + £y = ) T3 ) L E
Ai ‘,
g Since
‘- - X ) ,
, h (x) = £(x) ‘ "
o -3 .
’ ' - * r -
\ we can’ write (A-3) as: . ) 2
.Q_‘[y eh(x)] - eh(x’r(x) - (2a-4) DA .
¢ ax*
B ‘
% v . ? “ N
S e _ Now, integrating bo‘ti:,_gides of (A-4) we jﬁll get: C - 7
. f ,eh ‘X) = I h()‘) r (X) dax 4 c t /(3—5)
. . . - ¥, |
‘ By dividing both sides of (A-5) by RICH v will get .
l " & . o s ! - / \\ [l
. the desired formula: . . . T
\ . . N . . . f
S - ~h(x) h(x) : oo o ‘1
- yx) =€ j(x) dx + c] S8 .
. ‘1 1) . ' g * N
¢ + with . 4
¥ ‘G. B /:‘\
o B = ffax T, RN a-n
. 'h ‘ - N ‘ . . ' ;-
which tepresent the igeneral solution of (A-z) in the fom ) ) .
g of "an intpgtal. ) ,,
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' APPENDIX B
3 o
4 Some Useful Mathematical Formulas
- - >
N
8 S &~
b . ¢
(1) Sclution c‘rf First-Order Linear Differential Eguations: v .
’ das - ) p ? ‘ . .
! — 4+ a(x)f(x) = g(x) i ‘ ©(B~1) )
3 ; v i l , i -

E(x) = e’“"’({"ax'e“"‘"g(x’)w A(x)s[" ax' a(x'). (8-2) \

o
¢

4

) (2) Representation of Laplacian V2 in Various Cqordinate” Systems: .

(a) Cartesian:
¥

- -t — . . (8-3)
Ax2 dy? 3z% .
: . s &
h o
! > v .
(b) Cylindricals ' \
\ 2. 1.2,.0,1 32 422 -4 #
a e - 7 T o 9r r2 362 3zZ (3-4)

B
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. )
o

" (c) Spherical: B
I S TS NOUNE G NN S S
‘ T r2 3 dr r2sin 6 36 20’ © r?ginZe  3¢Z
, ) v.
N %
{ ‘ \
] ) AN
"(4) Gauss' Divergence Theorem: - .
, L% \ 4 %
J VA « J asé_-a’
v - S s
, where &g is the unit vector normal to the surface element dS.
D . V{ ] ) B N
- X ' 3
- &{ oY [
' *
- /
. .
3 \ . 7. y ot .
. ~
. , S ‘
;x“ ’ . ¢ . ¢
" ) . //// .
(‘ . f
‘I \ .
* < ’ r * ’
S )

(B~5)
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List of Flux Levels, thermal absorbing cross.'sections, fission product

decay constants, aifid macroscopic fission cross sections, used in compu-

-~
a ¥ N ¥
‘

5 x 10'? neutrons/cm® sec. :

‘2 - “\ ' \
2 = 10 neutrons/cm’ sec. & ’

ting fission product poisoning concentrations.

L

1

13
= 10 neut:r:oxus/c:n2 sec.

\J

14 : 2 .
= 5 x 10, neutrons/cu‘ sec. ‘ ﬁ ,
i

' —18 .
= 3,5x 10 . cm?

¢Ll

¢I..2

¢L3

¢ ' 13 2

I4 = 9.7694 x 10 . neutrons/cm” sec.
¢L5

b . .15 2 f
L6 = 10 neutrons/cm” sec. “

e q
a .

¢ W‘

oo = 5,6 x"10. 2" cm?

I = .1112 cm !

£1
’ a%e = 2.09 x 1075 sec™? . | o -
' AT = 2.87 x 107° sec™? ' )
AP = 3.56 x 107 sec™? - , i e
, _ .

-

A\ \ & !
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0001 0%
00020X
00030%
00040 %
00050
00060
00070
00080
00090+
0100
0110
00120%
00130
00140
00150
00160
00170
00180
00190
% 00200
00210
00220
* 00230
00240
00250
00240
00270
00280

00310
00320
00330
00340
- 00350
. 00360
00370
003801+
00390
00400
00410
00420
00430
00440
. 33450
46
-
“00480%
- HOAP0
READY .

T

o

0

At .
o AL

O & & O 6 n n oo

i

L APPENPX - D

LI ;
THIS FPROGRAM RUNS- UNDER THE CFORT COMFILER ON A CRC \
CYRER 172 SYSTEM. IT GENERATES A FITLE Tﬂ BE ACCEPBSED
BY A FLOTTING FROGRAM.

D

PROGRAM REACT (INFUT. BUTPUTvTAFEerAPE“)
REAL DRHRyNUyFLUX(7)yQUOT1yQUOT2 ,

100 FORMAT(6X,E12,4) :

200 FORMAT(1H1,30X, KTIME REHAUIOUR OF REACTIVITY WITH FLUX=¥
E12,471Xy 1 1HN/CHXX2XSEC)
300 FORMAT(FA.1,E13,4)
CALL GET(SHTAFE1,7HREACTINGG,0) . i
INFUT TIATA IS ON FIME CALLFI' REACTIN..
READ(L1y1000NU :
READ(15100)EFS
REAL(1¢'100)F
REALDI(15100) YIEL DX
REAL(15100)YIELDI
READ(15100)HECAYX
READ(1y100)LECAY]T
REAI(1»100)8IGMA
FRINT 1011NU:EPS;P;YIF£DL:YIELDX;DECAYX;DECAYIvSIGHA
101 FORMAT(2X,B8E12
[0 10 I=1s6 :
READ(1y 100)FLUX(I) ~
10 CONTINUE
FRINT102s (FLUX(I)yI=1v6)

102 FORMAT(2Xs6E12.4)

FACT1=1./(NUXEFSXF)

00290% 50 HOUR FLOT FOR 6 FLUXES. :
00300 10 20 I=1,6

Do 30 K=1,41
T=(K~-1) %3600
EXF1=DECAYXXT
EXP1=EXP (- EXF1) toe
EXP2=DECAYIXT )
EXF2=EXF ¢~EXF2)
EXP3=EXF1-FXF2

QUOT1=( CYTELDI+YIEL DX)XFLUX (1) )/ (DECAYX/SIGMA+FLUX(I))
QUOT2=(YIELDIXFLUX(I)XSIGMA) / (DECAYI-DECAYX)
DRHR=-FACT1X(QUOT1XEXF1+QUOT2XEXFX) A %

T1=T/8600. ‘

WRITE(2,300)T1» DRHR | A\
30 CONTINUE - \ a
20 CONTINUE : L -
ENDFILE 2 S
REWIND 2 ™
CALL REPLACE (SHTAPE2y7HREACOUT»0,0). ¢

QUTPUT DATA FOR PLOTTING FROGRAM PLACED IN REACOUT. ’
END !

ﬁ‘»
L 4 ‘x
. ' '
* ‘ ’

® 6 & & © ¢ V6 O 0 @ ¢ O v O 9 VO Vv

_f

‘Y . ©
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00010 P‘R‘OGRAM XENONCINFUT yOUTFUT ¢ TAPEL s TARPER) . ‘[
00 X '
-00030% STARTUF. 50 HOUR PLOT; 1 HOUR “INCRENENTS, 6 -FLUXES., '

i

v
o e e ¢

00040% -

00050 DIMENSION FLUX(S500)

00060 REAL NUM1 s NUM2

00070 100 FORMATC(&XsEL12.4)

00080 200 FORMAT (1H1,35Xs KXENDN TIME REHAVIOUR AT REACTOR STARTUFX)

00090 300 FORMAT(IH »S5X»XTINECHOURS) Ky 10X s XXENONX)

00100 400 FORMAT(FA4.,0¢E13.4) .

00110% INFUT DATA IN FILE XENONIN.

00120 CALL GET(SHTAFELs7HXENONTN+0,0)

00130 READ(1,100)>YIELDX

00140 READ(1+100)YIELDT

00150 READ(1y100)DNECAYX

00160 REAN(1s100)DECAYI . :

00170 REALD(1,100)SIGMAF - , :

00180 READ(1y100)SIGMA - !

00190 READ(1,100)(FLUX(I)vI=1y4) QES |
» 00200 DO 10 J=1,6 ‘ . -
» +

i e
g e g

00210 NUM1=(YIELDX+YIELDII)¥SIGMAFXFLUX(J)
00220 DENOM1=DECAYX+SIGMAXFLUX(J)
00230- FACT1=NUM1/DENOM1 :
00240 NUM2=YIELDIXSIGMAFXFLUX(J) , ‘ !
, 00250 DENOM2=DECAYX~DECAYI+SIGMAXFLOX () i
00260 FACT2=NUM2/DENOM2
00270 DO 10 I=1,51 z .
00280 T=(I-1)%3600. -
00290 Ti=<I~1)
00300 EXP1=DENOM1XT
00310 EXP1i=EXP(-EXF1)
00320 EXP2=DECAYIXT .
00330 EXP2=EXF(-EXP2) / ( :
00340 XEN=FACT1%(1.-EXP1)+FACT2XCEXP1- EXF2)
00350 WRITE(2y400)T1sXEN
00360 10 CONTINUE
00370 ENDFILE 2 '
. 00380 REWIND-2 »~
. 00390% QUTFPUT ON FILE XENOUT. - :
© 00400 CALL REPLACE (SHTAFPEZ2s6HXENOUT0+0)

|

i

i

{

i

%

|

|

!

|

!

l

00410 STOP . |
00420 ENID , . ;
- *ﬁEADYv - i
|

|

|

;

I

!

!

|
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.. C 00010 EROGRAM XENONT‘(INF'lJTyDUTFUTvTAFF)pTaFF”) )
o )ooooo*
;. 00030%SHUTNOWN. 50 HOUR PLOTs 1 HOUR INCREMENTS: 6 FLUXES.
- C 00040% ~ S ‘ o )
: 00050 DIMENSION FLUX (500)
E, 00040 .REAL NUMINUMD ; ;
g & 00070 100 FORMAT(4X+E10.4) .
3 ‘ 00080 200 'FORMAT(1H1» 35Y ¥YENON, TIME BEHAVIOUR AT REACTOR SHUTIONNK )
2N 00090 300 FORMAT(1H »SX+XTIME CHOURS Y ¥ « 10X ¥XENONY)
;€ 00100 400 FORMAT(FAS0sE13,4> \
: 00110 CALL GET(SHTAFEL,7HXENONTN:0»0) .
4 00120 REANC1 <100 YIELDX .
. C 00130 READC1 » 100 YIELDI
[ ; 00140 REAU(1 s 100MNECAYY ‘
3 00150 READ(1,100)DECAYI
C 00140 REANC1 s 100)EIGMAF
00170 KEAD(1r100)SIGMA , .
2 00180 REAN(17100) (FLUX(I)rI=176)
& 00190 DO 10 J=1,6
00200 NUM1=(YTELDX+YTELII)XSIGHAFXFL UX(J)
00210 DENOM1=QDECAYX+SIGMAXFLUX ()
C 00220 FACT1=NUM1/DENOM! ) '
3 00230 NUM2=YIELDIKSIGMAFXFLUX ()}
] 00240 DENDM2=DECAYI-DIECAYX
. C o 00250 FACT2=NUM2/DENOM2 o1
3 ¥ 00260 DO 10 I=1,51 i
00270 T=(I-1)%3600. . .
C- 00280 T1=(I-1) 0 RAE T
1 00290 EXF1=DECAYXXT . .y ' i
: 00300 EXFI=EXP(-EXF1) - g
. C 00310 EXF2=DECAYI¥T R
. 00320 EXF2=EXF (-EXF2) :
‘ 00330 XEN=FACTIX(EXP1 )+FA(‘T2*(EXF‘J-EXF”) :
: 00340 WRITE(25A00)T1 » XEN X 3
_ 00350 10 CONTINUE . 3
" 00360 ENIFILE 2 ' i.‘
C 00370 REWIND 2 N ¢
00380 CALL REPLACE(SHTAPEZ2y ZHXENIOUT s 00)
: 00390 STOP s
C 00400 END .
~ “4READY . |
¢ .- . kS
- L ) 4
C
. " /(}; - e
C \ .
C ) - ' .
G - E Y
. . 9 , : o

.0




00010 FROGRAM SAMARCINFUTYOUTFUT,TAFELsTAFED)
00020%
00020% STARTUF. 500 HOUR PLOT: 10 HOUR INCREMENTSs & FLUXFS,
00040%
00050 DIMENSION FLUX(S00)
00040 REAL NUM1»NUMD
00070 100 FORMAT(AX»E12
00080 200 FORMAT(1 zywﬁr,rqannﬁrum TIME EERAVIOUF AT REACTOR q1q;rusx>
00090 300 FORMAT(IW » SXXTIME (HOURS)Y ¥ » 10¥» XEAMARI UMY ~
00100 400 FORMAT(F4.,0sF13.4)
00110 CALL GET(SHTAFE 1y ZHSAMARINGQs ()
00120 REAII(1,100)YIELDS
00130 REAN(1,100)YIELIF
00140 READ(1+100)DECAY
00150 REAN(1y100)SIGMAF
00160 REAN(1y100)816MA
“7700170 REANCI»100) (FLUXCI) 111 v6)
00180 IO 10 J=1+4
00190 NUMI=(YIELDNS+YIELDF)XSTGMAFREL LI (D
00200 DENOMI=SIGMAXFI UX (1)
00210 FACT1=NUM1/DENOM
00220 NUM2=YIELIF¥SIGMAFXFLUX (D
00230 nsmonv-~nzcav+sran#FLuxcJ>
00240 FACT2=NUM2/DENOM2
00250 IO 10 I=1+51
00260 T=(T-1)%X346000,
00245 T1=10.%(I-1) °
00270 EXF1=RENOM1XT
00280 EXF1=EXF(=EXF1)
00290 EXF2=DECAYXT
00300 EXF2=EXF(~EXF2)
00310 SAM=FACTIX(1,~EXF1)+FACT2X(EXF1-EXF2)
00320 WRITE(2:,400)T1,5AM
00330 10 CONTINUE :
00340 ENDFILE 2 ‘
00350 REWIND 2 :
00360 CALL REFLACE (SHTAPEZ2/7HSAMROUT/0»0.)
00370 STOF
00380 END ‘
READY. ‘ (f

W
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00010 FROGRAM SAMARU(INFUTrOUTPUT TAFE1»TAFE2)

0002
00030%
©00040% ..
00050
00070
00080
00070
00100
00110
00120
00130
00140
00150
00140
0170
00180
00190
00250
00260
00265
00270
00280
00310
00320
00330
00340
00350
00340
00370
00380
REQDY *

\

DIMENSION FLUX(S00)
100 FORMAT(6XsEL12.4)

200 FORHAT(IHIv?SX XSAMARIUM TIMF REHAUTOUR oY RF
300 FORMAT(1H »5X»XTIME CHOURS) % » 10X 9 ¥SAMARTUMY)

400 FORMAT(F4.0,E13.4)
CALL GET(%HTAPEIy7HqAMARINv0y0)
READ(1y100)YIELDS
READ(1y100)YIELDF
REAI(1y100)NECAY
J (1+3100)8IGMAF
READ(15100)SIGMA

READ(1s100)(FLUXC(IY 9 I=196)

00 10 J=1s6

( SHUTDOWN. - 500 HOUR PLOT, 10 HOUR INCREMENTSs

FACT=YTELDPXSIGMAFXFLUX ( J) /DECAY

RO 10 I=1,51
T=(I-1)%36000,
T1=10.%(I-1)
EXFL=DECAYXT
EXF1=EXF(-EXF1)

SAM=FACTX (1.-EXF1)
WRITE(2+400)TisSANM

10 CONTINUE
ENDFILE 2
REWIND 2

CALL REFLACE(SHTAFE2y 7HSAMIOYT O« «0)

STOP-
END

et

¢
b

TOR SHUTROWRNXY )
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00010 PRDGRAM-PRDHET(INPUT;OUTPUT:TA#EIvTAPE?)

- -.-\
READY., °

- PITEY e WA T . 1 e

1

00020%

00030% STARTUF .
00040%

00050
00060
00070
00080
00090
00100
00110

00120.

00130
00140
00150
00160
00170

00180

00190
00195
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290

READY .

DIMENSION FLUX(500)

"REAL NUM1 ¢ NLIM? k

100 FORMAT (6XyE12.4)

500 HOUR FLOTy 10 HOUR INCREMENTS, 6 FIUXFE.

200 FORMAT(1R1» 35X »¥kFROMFTHIUM TIME REHAVUTOUR AT RFACTOR STARTURX)

300 FORMAT (1H » SXAXTIME CHOURS Y %€ 10X e XFROMETHIUM® )

400 FORMAT(F4,0+E13.4)

CALL GET(SHTAFEL s SHFROMIN040)
REAL(1y100YYIELT
REAI(1+,100)DECAY
REALD(1y100)SIGMAF .
REAL(1r100) (FLUX(I)yI=1s6)

o 10 J=1+6

FACT=YIEL DXSIGMAFXFLUX(.)) /DECAY
0O 10 I=1+51

T=(I~1)%X3&000..

T1=10.%(T-1)

EXF1=NECAYXT

EXF1=EXF (—EXF1)

PROM=FACTX (1 ,~EXF1)
WRITE(2400)T1rFRON .

10 CONTINUE

ENDFILE 2

REWIND 2

CALL REFLACE(SHTAFEDy7HPROMOUT 90+ 0)
STOP :

END oo

e

'

o
.
<
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N

FIX 2.0 - BEGIN EDITING.

40

CONTINUE
PRINY 99
NI=NI+NF
N2=N2+NF
NG=NG~1

IF(NG)1+1s17
RES=YC+17.
CALL RESFT(RES)

STOF
END

12 CALL PLOQT(XJrYde1) #

]

SUKROUTINE HRAN(XyDX DY?IF)

DIMENSION X(3)

THIS ROUTINE LINKS.SIMEOL TO FLOT.
COUuLD RE USED' FOR ERROR CHECKTNGy

IT

DU b

TX=X(1)+DX
CTY=X(2)+NY
IF(TX.LT.~0.1.0R.TX.6T.10,0)60T0 1
SIFCTYLTe=0.1.0R.TY..GT.
"CALL PLOT(TXsTY?IF)

GOTO 2

FRINT 477X
FORMAT (XTX=X+F7.3)

GoTD 2

FRINT S,TY
FORMAT(XTY=%1F7.3)

RETURN
END

2000, OGOTg

-

E.

G.

NEGATIUE COORTIINATES.




XV ‘o

C FLOTME2, FLOTMR1L MODTFIED FOR SO0 HR. FLOT.
C GET»TAFE3=FNAME OF INFUT FILF (QAHROUT:ﬁﬂﬁHnUT’ETC )
€ SEE FORHATS $1005157 FOR DATA INFUTS T
Cc

9

™ _—

FROGRAM PLU%BB(INPUTvTAFE 2y TAFEZ»QUTFUT) -
* HIMENSION Y(4094) »KARAY (40) »yMARAY (113 sNARAY(11)
REAL LY,ILY .

98 FORMAT (XDAMNX) . . °

99 FORMAT OKOK*®) '

100 FORMAT(//XENTER NTsNFyNGrINC. (FORMAT(4I4)) . X

C/7x  1234123412341234%) ‘

101 FORMAT(////%TAFF3 | ONGER THNAN 1024 CHARACTERS...%77///)

120 FORMAT(X YMAX=XF12.4/% YMIN=XE12,4/%  YM=%F12.4)

121 FORMAT (X NXT=%I5) ‘

130 FORMAT (40H ATOMS . 'FER CC. -TIME IN HOURS )

140 FORMAT(I2)
" 141 FORMAT(E13.68)

- C © 142 FORMAT (/XCOUNTS/CHANNEL LARELSY)
4 150 FOKMAT(4X,E13.,4)

2 " 154 FORMAT(T4)

- ( 157 FORMAT(A4I4)

158 FORMAT(X NI NF NG NU INGCK/¥12341234123412341234%/514)
159 FORMAT (X EXPANSION FACTOR =%sF8.1)
190 FORMAT(EB.3)
CALL RESET(-1)
YC=-7.5
ILY=-3.5 :
1 PRINT 100 o
REAI' 157N, NFsNGs INC : L
IF(NF)223 . . :
3 EX=1.0
LG=2HNO :
OVR=2HNO . o n | &
NU=NF XNG =,
1 N2=NF . S
¢ C | DO 4 I=1,NU - ,
READ(37150)Y(1)
; IF(EOFK3))13,4
( . 4 YC(I)=ABS(Y(I))
‘ 13" REWIND 3

.
' |

IF(NU.GT.1024)PRINT 101

¢ NIi=NF -NT -
¢ NR=NI'+1 '
i IF(LG.NE.3HLOG)BOTO S
. ( DO SO I=1yNU

a

2 o IF(Y(I).ER.0.)Y(I)=1,0
1 ) Y(I)=1000.%ALOG1OCY (1))

i C _ ®--50 CONTINUE

"5 PRINT 158sNIsNFsNGyNU»INC :
1 -7 YMAX=0, )
E b * YMIN=10.XX6 ——

, _ D0 10 I=1yNU
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IF(YHéX.GE.Y:)))BOTO B
IF(YMAX.GE.Y(I))>GOTO 8
YMAX=Y(T) -

8 IF(YMIN.LT.Y(I))>GOTO 10 -
- YMIN=Y(I)
10 CONTINUE
; YM=YMAX~-YMIN
“ XT=1.0
€ IF ND:45 INCREASE XT AFCORDINF[Y
LX=8
LY=S
ILY=ILY+8.5
YL=1.25%YM
XF=LX/XL
YF:LY/YL
NRFSXLXXF
YMF=YLXYF
XC=1,5
YC=YC+B8.5
NXT=XT
XT=XTXXF
FRINT 120sYMAXs» YMINyYM
PRINT 121sNXT
YT=0,1%YM
NYT=YT
YT=YTXYF
XLY=0,20
yLY=YT+YC.
 XLX=3.,0 s "
YLX=YC—-1,0
XNX=XC—0 .4
YNX=YC-0.3
XMY=XC—1.1. ~
C X AXIS
CALL FLOT(XCsyYCr=-1)
XX=XC
L=6
DO 60 K=NIsNFyNXT
t=t-1 .
IF(L.ER.0)GOTD 221
GOTO 22
21 £nLL smr«ouxx,cho.,:zsy..yyo,—:z)

. =5

- GOT0 .59

- ":..-22 CALL SIMBOL(XX»YCr0.15r290,07-2)

P XAX=XX+XT

e IF(XX.GT.LX)BOTO 15
60 CONTINUE:
C Y axIs

4" 45 CALL PLOT(XC)YCy~1)
IF (LG+NE.3HLOG)>BOTO &
CALL PLOT(XCrILY»1)
GOT0 7

.
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DISFLAY OFF.
6 YY=YC » . )
- PO 70 K=1,10 S
YY=YY4YT
CALL SIMEOL(XC»YY70.17270.0r-2)
70 CONTINUE
€ SLARELYX -
“7 ENCODE(40,130,KARAY (1))
3% . CALL PLOT(XLYsYLYy=1)
CALL SIMEOL (XLY»YLY»0.2»KARAY(1)y50.0s20
C XLAREL XX
CALL PLOT(XLUXrYUXbatt)
CALL SIHBOL(XLXyYLX:O.hyKARhY(3)vO 0513)
C X LABELS...
' L=0 : _
NXT=5 -
XT=50 *Y‘T
- INCgNI-1
‘TI0 20 K=NIyNFrNXT
L=L+1
IF CXNX.GT.LX)GOTD 20
ENCODE(4,156NARAY (L)) INC
CALL SIMEOL (XNX+YNX10,15sNARAY(L)+0, 0r4)
PRINT 156 INC
INC=INC+50
XNX=XNX+XT o
20 CONTINUE
. C Y LARELS,., - "
‘ IF(LG.EQ.3HLOGYGO TO 14
e ¢ no 30 K=1»,11
L . * YMY=YM¥(K-1)/10.

: YMYF=YMYXYF+YC-0.075 \Ev
IF(OVR.EQ.3HYES)GO TO 1
YMY=YMY/EX+YMIN' .
GO TO 19 , -
e : 18 YMY=YMY4YMIN
- ‘ 19 PRINT 190, YMY
» 'EnconE(eyfﬁo.n$;AY<N>)an
. C CALL PLOT (XMYsYMYFs—1)

3 . CALL SIM30L<an;YHYF.o.15,HARAY<K),i{p v8)

’

. 30 CONTINUE
e 60 TO 17

L 14 IM=1

L - IN=2

& O w. - IF(YMAX.GT.2000.)IN=3

4 - o IFCYMAX.GT.3000,) IN=4

IF (CYMAR.GT. 4000, ) IN=5

- -TF (YMAX.6T . 5000, ) IN=6

: =" IFCYMAX.GT.6000,) IN=7

: — = = IF (YMAX.BT,7000.) IN=8 .
k. G B IF CYMIN.GT 2000, ) IM=2 ' S
i IF CYMIN.GT.3000,) IN=3 o,
IFCYMIN.GT . 4000.)>TM=4 ~
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. , IF (YMIN.GT.5000,) IM=S ) '
¢ IFCYMIN.GT.6000,) IM=6 ‘ e 2
- ITEN=10 " B
3 10 90 K=IM»IN : ,
e YMY=1000XALOGL0 (10 #¥K) ' . R
YMYE=CYMY-YMIN)XYF+YR %, , -
8 PRINT 405+ YMYF yYC . ,
g C 405 FORMAT(2F12:4) \ ‘ P
% IF(YMYF.LT,YC)GNTO & - \ ‘
SPRINT 1415 YMY : ‘ .

XMY=XC-0,2

CALL FLOT(XMY s YMYFs=1) \\\ \\\

CALL FLOT(XCvYMYFs1) : _

XMY=XC=0,7
YMYF=YMYF~0 ., 5%XYT ‘ | -
CALL PLOT(XMY»YMYFs—1)

ENCODIE (21140 » MARAY &% ) ) ITEN - o

CALL SIMEOL (XMYrYMYFrO.15:MARAY(E)»0.0y2)

XMYEXMY40., 2 ,

YMYE=YMYF40.22 ., B

ENCODIE (27140 » MARAY (K ) K

CALL PLOT(XMY»YMYFs—1) .

'CALL SIMEOL (XMYrYMYF ¢O.1sMARAY(K)»0.0s2) , S
9 XMY=XC—-0.1 )

DD 90 J=2+8.2 ¢ '

Y= v ;. ~ ‘ | 2

YMYF=(1000.,%ALOG10 (Y K10, X¥N ) —YNIN) KYF4YC -

v JIF(YMYF.BT.ILY)GOTD 17 ° .
IF(YMYF.LT,YC)GOTO 90 y N~ D
CALLNk%éngHYyYHYFy-i) ’ .

v CALL PLOT(XC»YMYFr1) , , I )

5 C 90 CONTINUE : 9

y , € RAW DATA. EX=EXPANSION FACTOR : g

3 17 PRINT 159:EX N

f ¢ IFCYCNI) BT, YMAXOY(NI)=Y(NI)/EX -~ , : RS

i ’ YFF=(Y(NI)-YMIN)XYF4YC . - -

- CALL FLOT(XCsYFFs-1) , ) .

b ( D0 40 J=NI+N2 . )

k., XJ=( J-NI)XXF+XC 4

E YJ=CY CJ)=YMIN) XEXXYF+YC ) . /’ffL""f

E X IF(EX.EQ.1.0060 TO 12 S - O

N ‘ “IF(YJ.LE.ILY)BO TO 11 o ‘

g~ IF (OVR.EQ.2HND)GO TO 16 VI

£ Y= (Y () -YMIN) XYFHYC - . . , L

G0 TO 11 . ./
‘16 YJ=YC , .
=5 CALL PLOT(XJs YJy-1) : o - R

e 80, TO 40 *\\ ‘

4 ~=-31 CALL PLOT(XJsYdr-1)

L C ,12 CALL PLOT(XJsYJs1) - >

s A0 CONTINUE. : : , S

PRINT 99 , , . - v
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RS -ow PR S S - — R PR — -y e T - -

NI=NI+NF ~ /
N2=N2+NF . : » )
NG=NG-1 ‘ ‘
IF(NG)1v1017 : o T\
2 RES=YC+17. ‘ : )
- CALL RESET(RES) 4 : : N\
_ sTOP : ) .
- END ~ - /-
SUEROUT INE DRAW ¢ X» DXy 1Y 5 TF)
3 DIMENSION X(3) : ‘
¢ THIS ROUTINE LINKS STMROL TO PLOT.

‘ € IT COULD RE USED FOR ERROR CHECKINGs E.G. NEGATIVE CODRDNINATES.
. TX=X(1)+DX *
TY=X(2)+DY . '
IF(TX.LT+~0.1.0R.TX.6T.10.0)69TO i :
IF(TY.LT+~0,1.8R.TY,6T.2000,)80T6 3 r- ‘
CALL FLOT(TX»TY» IF) : )
#G0T0 2 : !
1 PRINT 457X . ‘ -
4 FORMAT(XTX=XsF7.3) e J
GoTo 2 .
3 PRINT S»TY D o .
5 FORMAT(XTY=XsF7.3) -
2 REJURN | ‘ ~
?‘. D ' ' . L
-EOF- : .D
H : ’ \/
. NO FILE UFDATE. o \ '
g C CF . 0.456 SECSy D
' READY. ° ‘ -
& C . o
: , READY . N y
5 C- FIXx 2.0 - BEGIN EDITING. ’ - : ' )
] : ‘
‘ (i’ LY y ’ \ \.)
‘) . ( . o
E ¢ - ' , i
- , J ,
y ¢ ,
4 & Ak / ‘ t
F ¢ == s v \_-L 2
3 T A !
v,v’ h r_" ;‘."% - v . ) « "
c ‘ . [ ) A
. :':’- . / ,’ s
0 \ ;‘ \ ¢ ;
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XX
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C PLOTME1., PLOTMR WITH LABELY CHANGED AS IN FORMAT ‘130,

e rv e m fm 4 fem LI I

e gy oty ey

C GET,»TAPE3=FNAME OF INFUT FILE (XENOUT, IODJOUTy -ETC.) =

Q \SEE FORMATS ‘10({&7 FOR DATA INFUT.
c

PROdRAH PLOTMEL (INFUT»TAFE2 yTAPET;OUTPUT)
DPIMENSION Y(4096)vKARAY(40)vHARAY(ll)sNARAY(lI’

REAL LY»ILY
®8 FORMAT (XDAMNX)
© 99 FORMAT (XBKX)

100 FORMATC(//%ENTER NIsNFsNGyINC (FORMAT(414)). *

C7x  1234123412341234%)

101 FORMAT(////XTAFE3 LONGER THAN 1024 CHARACTERS...%X////)
«4) .

120 FORMAT (X YMAX=XE12.4/% YMIN=XE12.4/% YM=%E12
121 FORMAT (X NXT=%xI3) .
130 FORMAT (40H ATOMS PER CC. TIME IN HOURS

140 FORMAT(I2)
‘141 FORMAT(E13.64)

. A 142 FORMAT{/%COUNTS/CHANNEL LARELSX)
150 FORMAT(4XyE13.4)
156 FORMAT(I4)

157 FORMAT(414)

»

158 FORMAT(Xx NI NF NG NU INCX/%12341234123412341234%/514)
159 FORMAT (% EXPANSION FACTOR =XsFB.1)

190 FORMAT(ES.3)

-\ CALL RESET(-1)

YC=-7.5 : / _

ILY=~-3,5 . .

1 PRINT 100
READ 157sNIsNFrNGyINC
IF(NF)2+2+3
3 EX=1.0
LG=2HNO
OVR=2HND
NU=NFXNG .
. N2=NF -
' DO 4 I=1sNU
WREAD(32150)Y(I)
F(EOF(3))13,4 .
4 Y(I)=ABS(Y(I)) ,

.7 13 REWIND 3 r .
IF(NU.GT.1024)PRINT 101
ND=NF~NI
NR=ND+1

'-l JIF(LG+NE.3HLOG)GOTD S

..y - DO S50 I=1/NU
‘ IF(YGI)JEQ.0.)Y(I)=1.0

i fi‘ Y(I)BIOOO.*ALOGIO(Y(I))

.0 CONTINUE
T & PRINT 158.N1.NF,NG.NU,INC
YHAX"O . <,
YMIN=10 .%%&
D0 10 I=1,NU ~

- ‘. DISPLAY OFF.

’
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IF(YMAX.BE,.¥(I))GOTO 8
¥MAX=Y(I)
B IF(YMIN.LT. Y(I))GDTO 10 . -
. YMIN=Y(I)
" 10 CONTINUE .
YMzYMAX-YMIN .
XT=1n0
.L£ IF NI»é65 INCREASE XT ACCORDINGLY '
LX=8
LY=5
ILY=ILY+B.S . .
XL=1 30%NR
YL=1.25%YM -
XF=LX/XL
YF=LY/YL
NRF=XL XXF -
YMF=YLXYF, , T

Yxc‘1.d

YC=YC+8.5 RN i
NXT=XT = ‘
XT=XTXXF

PRINT 1207 YMAX» YNINy YM

YT=0,1%YN -
NYT=YT

YT=YTXYF

XLY=0.20

' YLY=YT4YC
; XLX=3
YLX=YC-Y .0

> XNX=XC-0.4 B
YNX=YC-0.3 "
XMY=XC-1.1
C X axIs
‘CALL PLOT(XCrYCy=1) _
XX=XC
L=6
no 60 K=NIsNFyNXT
L=L-1 .
IF(L.EQ. 016070 21 N
. GOTD 22
: . 21 CALL SIMBOL(XXyYCr0.25¢250. o.—ﬂ>
) L=S5 - ,
) GOTO S9
+ .~ -22 CALL SIMBOL(XXsYC10.1572+0.0y-2),
y S BF XX=XX+XT
g E S . IF (XX BT, LX)GOTO" 15

¢ --60 CONTINUE °
< % -axXIs » \\\4
15 CALL PLOTU(XCeYCy\1);

IF (LG, NE.3HLOG)GOTO &

CALL PLOT(XCrILY»1)

o

A g
A A . . .
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PRINT 121yNXT. .
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XXLL

.
° ? .. B

: y T Ct GOTO 7 \ - | o
N (’ 2 . 6 YY YC . \ - N -~ . \ N -
, D0 70 K=1+10 ' / - IR

; : YY=YY+YT - \s . .
¢ CALL SIMKOL(XCsYYr0.11210.05-2)] ~ U |
“s+ 0 CONTINUE Lo o
s € XLARELYX c ‘
. C .. . 7 ENCODE?40s1%0sKARAY (1)) <
g 1 CALL PLOTC(XLYrYLYyr—1) ' P
] CaLL SIMBOL(XLY:YLYrO.ﬁrhARAY(1)y?O 0+20)
e C XLARELXX ‘ :
. GALL PLOT(XLX»YLX>—1) .
] CALL SIHBOL(XLX:YLX;O.-rhARAY(*f}O 0r13)
C »C X LABELS... |
L=0 . PN
, NXT=INC : -
¢. XT=INCXXT . ' ' . '
INC=NI-1 - ‘ .

: : [0 20 K=NI»NFsNXT .
C L=L+1 ’ :
JIF (XNX.GT.LX>60T0 20°
. ENCODE (47156 NARAY (L)) INC ‘
C CALL SIMROL (XNX»YNX10.15sNARAY(L)s0.0s4)

, FRINT 156+INC ) ‘

p INC=INCHNXT, . u
¢ XNX=XNX+XT ‘ .

' 20 CONTINUE
€ Y LARELS... - =

IF(LG.EQ.3HLOG)GOD TO 14. . v ' _ : o
oo 30 K=1,11 - - ) ' .
; \ YHY=YMXC(K—1)/10., :
E C YMYF=YHYRYF+YC—0,075
E oo IF (OVR.FR.3HYESYGO TO 18 . -
y - YMY=YMY/EX+YMIN :
r C GO TO 19 T : ’
3 : © 1B YMYSYMY+YMIN .
: 19 FRINT 190, YMY
ENCODE (85190 MARAY (K) ) YMY
CALL PLOT(XMYsYMYFr—1)

Ty e R TR T e Ty TR TR
g 12 et AT e T RS o e .y
S ~

~

SATS o

~

Lk

CALL SIMEOL (XMYsYMYF 0. 15/MARAY (K) y0.0+8) , o
_ 0 CONTINUE o ) .
4 ~- GO TO 17
g , 14 IM=1 ° ) .,
F ( . IN=2 - . B

IF(YMAX.GT.2000.)IN=3

" o e e’ IFCYMAX.GBT+3000.)IN=4 ‘ \ . ’

b (¢ == i IF(YMAX.GT.4000.) IN=5 ST

A =+ IF(YMAX.BT.S000.)IN=6 ] . o ’
<D - - TE(YMAX.GT.6000.)IN=7 - .

¢ ¢ "~ IF(YNAX.GT.7000.)IN=8 .
- IF (YMIN,GT.2000.)IM=2  ¥.,
IF (YMIN.GT.3000.)IM=3

-~




o

?Q
€ RAW
17

“T a4

. e -
R R

v —

\ Xxuit

IFLYMIN.GT.4000,)IM=4
IF(YMIN.GT.6000.,)IM=6
ITEN=10
po 90 K=IH:IN
YMY=1000XALOG10¢(10.%X%XK)
YMYF= (YMY-YMIN)XYF4YC
PRINT 4055YMYF,YC ) y
FORMAT(2F12.4)
IF(YMYF.LT.YC)GOTO 9
PRINT 141,YMY °
XMY=XC-0,2 : g?
CALL FLOT(XMYyYMYFy—1)
CALL FLOT(XCyYMYFy1) -
XMY=XC-0.7 .
YMYF=YMYF~0.5%YT
CALL FLOTEXMY y YMYFs—1) .
ENCODE (27140 » MARAY(K) ) ITEN
CALL STMEOL (XMYsYMYF 20,159 MARAY(K)»0.0¢2
XMY=XMY+0.2
YMYF=YMYF+0.22
ENCODE (251409 MARAY(K) K
CALL PLOT(XMYsYMYFy~1) '
CALL STMEOL(XMY»YMYF20,1sMARAY(R)20.0+2)

]

XMY=XC=0.1
D0 90 J=2,8,2
Y=

YMYF=(1000.XALOG10CY k10, XK ) - YNIN)*YF+YC
IF(YMYF.GT.ILY)GOTO 17

IF(YMYF.LT.YC)GOTOD 90

CALL PLOT(XMYr»YHYFy—1) .

CALL PLOT(XCsYMYFs1)

CONTINUE

DATA. EX=EXFPANSION FACTOR

FRINT. 159,EX

IF(Y(NI) «GT. YMAX)Y(NI)=Y(NI)/EX
YFF=C(Y(NI)-YMIN)XYF+YC

CALL PLOT(XCsYFFy-1) . T

DD 40 J=NIsNZ R
Xd=(J-NI)kXF+XC ' )
Y=Y (I -YMIN)IKEXKYF+YC . hd

IF(EX.EQR.1.0560 TO 12

“IF(YJ.LE.ILY)GD TO 11

IF (OVR.EQ.2HNO)GO. TO 16
Y= (Y (J)-YMIN)XYF4+YC

GO TO 11 o
YJ=YC' -

CALL PLOT(XJsYJs=1)
GD TO 40

CALL PLOT(XJsYJr=1)
CALL PLOT(XJrYJs1) !
40 CONTINUE .
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