INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment

can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

®

UMI

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

NOTE TO USERS

This reproduction is the best copy available

UMl

TIMING AND SCHEDULING ANALYSIS OF REAL-TIME
OBJECT-ORIENTED MODELS

PAWEE RODZIEWICZ

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

SEPTEMBER 1998
© PAWEL RODZIEWICZ, 1998

i+l

National Library Bibliotheque nationale
of Canada du Canada
Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Weliington
Ottawa ON K1A ON4 Oftawa ON K1A ON4
Canada Canada
Your file Votre référence
Our fle Notre rétérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette theése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-39491-3

Canadi

NOTE TO USERS

Page(s) not included in the original manuscript
are unavailable from the author or university. The
manuscript was microfilmed as received.

This reproduction is the best copy available.

UMI

Abstract

Timing and Scheduling Analysis of Real-Time Object-Oriented Models

Pawel Rodziewicz

The increasing complexity of real-time software has led to a recent trend in the use of high-
level modelling languages for the development of real-time software. One representative
example is the Real-Time Object Oriented Modeling (ROOM) language, which provides
features such as encapsulation, polymorphism, inheritance, state machine descriptions of
system behavior, formal semantics for executability of models and the possibility of auto-
mated code generation. The full benefits of the ROOM language are obtained through the
use of the ObjecTime toolset, designed to support the ROOM language and its development
process in order to automatically create an executable for a target platform equipped with
a real-time operating system. However, the ROOM language and the ObjecTime toolset
largely ignore the temporal aspects of real-time systems, and fail to provide any guidance
to the designer about predicting and analyzing the temporal behavior of their intended ap-
plications.

The main objective of this thesis is to develop ways to perform such timing and schedul-
ing analysis for single- and multi-threaded ROOM models. This work builds on results
presented in [SFR97] and [SPFR98], where guidelines for the design and implementation
of real-time object oriented (ROOM) models were developed and tested.

In this thesis, we shall consider three orthogonal timing analysis methods: real-time
scheduling theory, symbolic model checking and discreet task simulation. We formulate
design guidelines for single- and multi-threaded ROOM executables. Then we develop and
validate canonical scheduling models for each type of executable. Finally, we present a case
study of an automobile cruise control system to further illustrate the concepts presented in
this thesis.

iii

Acknowledgments

The two most important people who helped me to put this thesis together are Manas Sak-
sena and Paul Freedman. Thanks to their incredible efforts, this thesis became something
of which I can be proud. I want to thank Manas for his invaluable comments, constant
guidance, and for his tremendous theoretical contributions reflected in his recent RTSS
publications. Without his help, I would have needed a decade to come up with the results
presented in this thesis. Great thanks go to Paul Freedman, whose insistence on getting the
structure right, while chasing the details, went a long way to make this thesis a reality. His
constant support and willingness to prolong the CRIM financial support carried me through
during the last three years. I would like to thank every member of my thesis committee for
providing me with a tremendous amount of feedback during the defense.

Secondly, thanks galore go to my friends at Concordia University and CRIM. Baldzs
Kégl, my tennis and skiing parmer, who kept me company during summer and winter
weekends. During the last month he lodged me at his place to help me finish my thesis
without leaving Montréal, thanks Baldzs. Next, I would like to thank Paul MacKenzie, who
kept things interesting with his karate stories; Alan Ptak, a co-author of one of our RTSS
publications; Nathalie Drouin and Judith Bracke for their administrative support — both of
whom were my first-class french mentors; Jean-Frangois Lapointe, my ex-co-worker; and
Emna Menif, who sacrificed almost a week to help me with the SOLA project at CRIM.
Space does not permit me to list all the nice people I met at Concordia and CRIM, but
a small sampling includes: John Linton, Serge Marelli, Virginie Pierrot, Roland Younes,
Tarlok Birdi, Shawn Delaney, Anna Czubik, Greg Bobrowski, Wojtek Ptaszyriski and Yves
Gonthier.

Specjaine podzigkowania przesylam mojej rodzinie w Polsce, szczegblnie mojemu tacie
i babci, oraz mojej rodzinie w Toronto, ktéra mnie motywowata do dalszego studiowania,
a péiniej dodawata mi sity i pewnosci siebie przez caly okres mojego pobytu w Montrealu.

And to my girlfriend, Amalita Rey, who went through a lot of heartaches to help me

iv

obtain my skiing certificate. Her support and understanding carried me through. Muchas
gracias Amalita. '

Contents

List of Figures

List of Tables

1

Introduction

1.1 Contributions . . . v vt v v vt 4 v v o st e e e s e e s e e e
1.2 Related WOTK . . v .t v o v v e e v o v o v v o s o s s s s o s s o o s o o
1.3 ThesisOuthline « v vt vt v v o v v ot oo s s s o s o o s oo oo

Real-Time Object Oriented Modeling

2.1 Overview of ROOMConcepts « ¢« ¢ o v o o o0 v v o e e e e e e
2.1.1 StructuralModel 0L oo e e e e e
212 BehavioralModel. ¢« . o it e e e

2.2 Message Sequence Charts and Transactions« .o v v v v v v o

2.3 TargetRun-TimeSystemo e v v v v v v v v oottt oo oo

Choosing a Scheduling Analysis Method for ROOM Models

3.1 Overview of Real-Time SchedulingTheoryo
3.1.1 WorstCaseResponseTime v vt v v v oo oo v v ot
3.1.2 Release Jitter v v v v v v v v e e e e e e e e e e
3.1.3 Timeand SpaceComplexity« .ot v oo

3.2 Overview of Symbolic Model Checkingo oo v e
3.2.1 Timing and Scheduling Analysisof Tasks

3.3 Overview of Discrete Task Simulationo v v v oo oo

3.4 Empirical ComplexityResults o0
341 IndependentTaskso,

vi

ix

342 TaskswithReleaselJittero
3.5 ConClUSIONS . . . « v« v v v ot o e e e ot e e e e s
ROOM Design Guidelines for Hard Real-Time Systems
4.1 Assigning ActorstoThreads
4,1.1 Single-ThreadedExecutable« ccc...
4,1.2 Multi-ThreadedExecutable
4.2 Assigning MessagePriorities o oo i e e
43 BlockingduetoMessagePassing.o oo
4.4 Blocking due to Run-to-Completion Semantics
Developing Canonical Scheduling Models for ROOM
5.1 Generic Resource SchedulingModel
5.1.1 Generic Overhead for Higher Priority Transactions
512 GenericBlockingttt i it e
513 GenericOverheadt
5.2 Single-Threaded Executable
5.2.1 Specific Overhead for Higher Priority Transactions
52.2 SpecificBlocking L 0 e i i
523 SpecificOverheadt
5.2.4 Canonical SchedulingModel, ..
5.3 Multi-ThreadedExecutablet
5.3.1 Specific Overhead for Higher Priority Transactions
53.2 SpecificBlocking0t e e
53.3 SpecificOverhead
5.3.4 Canonical SchedulingModelo
5.4 Validating Canonical SchedulingModels.
541 FirstROOMModel. i v vt v it it n e e s
542 SecondROOMModel ottt i v vt v e veeenen
Case Study of Automobile Cruise Control
6.1 StructuralModel i i e e e e e e e e
6.2 BehavioralModel v it e e e e e e
6.2.1 Description of Data Processing ACtors« .o oo .
6.2.2 Description of the Cruise Control Actor

vii

29
30
30
31
34
35
36

6.3 Transactionsand TimingConstraints« v oo v v v o v oo v 57

6.3.1 Closed-Loop FeedbackControlot 57

6.3.2 Entering and Preparing for Automatic Cruise Control 59

6.3.3 Exiting Automatic Cruise Control 59

6.4 Schedulability Analysis ¢ ittt e e 60

. 6.41 Response Time Analysiso 62

T 642 DISCUSSION .« v v v v v e et et e 63

7 Conclusions 65
7.1 ThesiSSUMMALY . . « « v ¢t ot v ot e v v oo o s s oo oo s o s oo 65
72 Future Work . . . v v vt o v o v ot o ot e v o s s o s o s st 66
Bibliography 68

viii

List of Figures

O 0 3 O i A W N =

[WY
- QO

[I N L e)
© O 0 N O v b W N

CompPULEr ACEOT . = v v v v v o v v o v o v v oo oo s s oo o s o v oo oo 10
Functional Aggregate: SyStemM ACIOr+ ¢ o v v o 0 v o o o v o v o 10
Functional Aggregate: Computer Actor ¢ c ¢ v e v v v o v 11
Message Sequence ChartforPrinting. 14
Schedulability Analysis withSMVtoolset 21
FSMModelofaTask « v v v v vt i ot vt it et e e e ie e e 22
SMV Execution Time for Three Independent Tasks 25
SMYV Execution Time for Tasks with Release Jitter 27
ROOM TransactionTree ¢t v vt v v vt o e v o v s oo s o 34
Cruise Control Structural Modelo 52
Accelerator, Brake and Lever Actor Behavior 53
Throttle ActorBehavior et i vt ittt i it e 53
Speedometer ActorBehavior 0 0o 54
Top-Level Behavior of Cruise ControlActor 55
Automatic Control Behavior of Cruise Control Actor 56
Resume Cruising Control Behavior 0. 56
Manual Control Behavior of Cruise Control Actor 57
Message Sequence Chart for ControlLoop Transaction 58
Message Sequence Chart for EnterCruise Transaction 60
Message Sequence Chart for BrakePressed Transaction 61

List of Tables

O 0 N9 O i A W NN =

— et
N = O

Temporal Characteristics of Three Independent Tasks 24
Empirical Results for. Three Independent Tasks 24
Temporal Characteristics of Tasks with Release Jitter 26
Empirical Results for Tasks with Release Jitter. 26
Scheduling Model Characteristics « « « « o v v o v 0 v v oo v ot 28
ImplementationOverheads oo v v v i i e e 46
Transaction Specifications for the First ROOMModel 47
Transition Specifications for the Seccond ROOM Model 48
Transaction Specifications for the Seccond ROOM Model 48
Description of Automobile Cruise Control Transactions 58
Transition ComputationTimes« c o v v v v v v v oo oo oo 60
Specifications of Automobile Cruise Control Transactions 63

Chapter 1
Introduction

With the rapid advances in computing and communications technology, computerized con-
trol is being widely employed in many real-time control applications. Digital control sys-
tems implemented in software have many advantages: they can perform complex control
operations in a responsive manner, and can dynamically adapt to changes in the operating
environment through the use of appropriate control structures. The increasing complexity
and the sophisticated demands of such systems in terms of safety, reliability, and perfor-
mance [Boa93] requires the use of rigorous methodologies, to ensure reliable software de-
velopment, along with analytical techniques to analyze and predict the temporal behavior
of applications.

It is not surprising that there is increasing interest in new generation methodologies
and CASE tools which make possible the modelling and analysis of computing systems in
terms of executable models [HG96]. One such product is the modelling language “ROOM”
(Real-Time Object Oriented Modeling) [SGW94] and its CASE tool, “ObjecTime”, which
grew out of more than ten years of internal development at Bell-Northern Research (now
Nortel). In addition to the analysis made possible by the simulation of executable models,
ObjecTime also provides a highly integrated software development environment and code
generation capabilities designed to bring some automation to the development process. In-
deed, we observe that the telecommunications community has widely accepted such new
generation of CASE tool support, e.g. ROOM [SGW94] and OCTOPUS [AKZ96]. We be-
lieve that such acceptance is due, in part, to the sheer size and complexity of new telecom-
munication products and their fundamentally event-driven nature.

In contrast, the embedded control systems community continues to be much more “con-
servative”. Once again this is due, in part, to the smaller size and complexity of these prod-
ucts and their dominating time-driven behavior. In the time-driven context, programming '
features, such as the task construct in Ada95, were developed to handle periodic behavior
of embedded control systems along with real-time scheduling theory [KRP+93] which pro-
vides guidance, at design time, about predicting the time-driven behavior of such systems.
Nevertheless, as embedded control systems become more complex in terms of their reactive
behavior, they become harder to implement with traditional programming features, such as
case and if ... else programming constructs. Because ROOM/ObjecTime supports
both time- and event-driven styles of software, it is particularly attractive as a potential de-
velopment methodology for embedded control systems, so long as appropriate timing and
scheduling analysis methods are developed.

1.1 Contributions

This thesis presents new results to help provide a priori timing and scheduling analysis of
real-time object oriented (ROOM) models. To perform this analysis, timing constraints are
imposed on end-to-end computations, i.e. deadlines are imposed on ROOM transactions
which are formally defined in Chapter 2, prior to system design and development. For
example, these timing constraints specify how quickly an automobile cruise control system
should be disabled when a break or accelerator pedal is pressed or how often a closed-loop
feedback control should be executed in order to maintain the speed of the automobile at the
desired cruising speed.

In our work, we assume that the timing constraints are already known. The results
presented in this thesis enable the software designer to test a ROOM model of a real-time
system against its timing constraints before its actual implementation. Although a general
structure of the ROOM model (actors, message sequence charts) must be completed as
well as transaction execution times must be estimated prior to performing the scheduling
analysis, the designer can detect timing problems early in the development cycle. If some
of the timing constraints are not met, either the ROOM model or the timing requirements
should be modified.

While our work was executed within the context of a specific software development
methodology, i.e. ROOM, we believe that our results and observations are more generally

applicable. In particular, the results developed here are equally applicable to the Unified
Modeling Language (UML) developed by a consortium of companies, including Rational,
i-Logix and ObjecTime, and recently standardized by Object Management Group (OMG).
Indeed, a recent white paper [SR98] from ObjecTime and Rational states that “Rational
and ObjecTime are defining a comprehensive approach for the application of UML to the
development of complex real-time systems”, in which modelling constructs defined in the
ROOM language are specified using the UML standard. Finally, we believe that our results
can also be applied to Statemate from i-Logix (http://www.ilogix. com), the Libero
toolset from iMatix (http://www.imatix.com/html/libero/index.htm) and
ObjectGeode from Verilog (http://www.verilogusa.com/og/og. htm), or any
other finite-state machine (FSM) based CASE toolset. Let us summarize the main contri-
butions of this thesis.

1. Selection of an appropriate timing and scheduling method for ROOM models.
(a) Overview of real-time scheduling theory, symbolic model checking and discreet
task simulation.

(b) Comparison of their time and space complexity results.
2. ROOM design and implementation guidelines.
(a) Overview and comparison of single- and multi-threaded implementations of

ROOM models.

(b) Specification of a suitable thread priority assignment for single- and multi-
threaded ROOM executables.

(c) Specification of é desirable message priority assignment.

(d) Bounding priority inversion of transactions due to inter-thread message passing

mechanism.

(e) Definition of an explicit rule which allows adding new functionality to an actor,
without affecting the schedulability of the higher priority transactions associ-
ated with that actor.

3. ROOM scheduling models.

(a) Development of a generic resource scheduling model.

3

(b) Specification and measurements of implementation cost parameters for the single-
and multi-threaded ROOM executables.

(c) Development and validation of canonical resource scheduling models for the
single- and multi-threaded ROOM executables.

1.2 Related Work

In 1995-1996 work began at the Centre de recherche informatique de Montréal (CRIM) to
investigate the suitability of ROOM/ObjecTime and its software development automation
for the development of embedded control systems, in cooperation with Bombardier’s Trans-
portation Equipment Group, one of the North America’s leading mass transport companies.
In [GF96], Gaudreau and Freedman described how ROOM models could be subjected to
Generalized Rate Monotonic Analysis (GRMA) [KRP+93], using a simplified cruise con-
trol example adopted from [Gom93]. They wanted to promote GRMA as a method for
the temporal analysis of ROOM models at design time, to the software development team.
Although, their work only applies to ROOM models with static thread priority assignments
and it does not take implementation costs such as context-switch between threads into con-
sideration, it was a solid starting point for the follow-up research.

In September 1996, another project began at CRIM jointly founded by Bombardier and
the Natural Sciences and Engineering Research Council (NSERC) to include the University
of Sherbrooke and Concordia University. As a result of CRIM-Concordia collaboration, an-
other paper [SFR97] was published. In [SFR97], Saksena et al. showed that it is possible to
perform scheduling analysis on ROOM models, based on the key insight that even though a
given application may be processing many external messages in a state-dependent manner,
only a relatively small number of transactions 1 are time-critical and need to be analyzed
for timeliness. The authors presented implementation guidelines that minimize priority
inversion of transactions due to lower priority transactions by managing thread priorities
dynamically, bound priority inversion of transactions due to inter-thread message passing
mechanism by using the Immediate Inheritance protocol [SRL90], and allow adding new
functionality to an actor ¢ without affecting the schedulability of higher priority transac-
tions associated with that actor. Also, another closely related paper [SPFR98], was written

1A transaction is a chained sequence of transition actions triggered by an external incoming (stimulus)
message and will be formally defined in Chapter 2.
2Actors are the primary structural element in ROOM and will be also described in Chapter 2.

4

as part of continuing CRIM-Concordia collaborative efforts which presented experimental
evidence of the soundness of the ideas described in [SFR97]. To do that, the ObjecTime
run-time system (TargetRTS) was modified in accordance with the guidelines presented
in [SFR97], a schedulability analysis model was developed taking into account implemen-
tation costs of TargetRTS, and the approach was validated using a simple instrumented
ROOM model implementing a set of periodic transactions through measurements. To il-
lustrate the generality of the scheduling analysis model, a case study was presented of
a train tilting system adopted from earlier work performed at CRIM with Bombardier’s
Transportation Equipment Group. The train tilting system represented a realistic comput-
erized control system and illustrated the scalability of the approach. Note that previous
work on the application of ROOM/ObjecTime for the development of the train tilting sys-
tem [Fre98] had revealed serious timing problems associated with TargetRTS and the
use of static thread priorities.

1.3 Thesis Outline

This thesis contains seven chapters. This chapter provides an overview of the problems as-
sociated with real-time embedded control applications, in particular the need for rigorous
development methodologies, for reliable software development, along with analytical tech-
niques to analyze and predict the temporal behavior of such applications. We mentioned
one such methodology (ROOM) along with its ObjecTime CASE tool, and explained why
it is widely accepted by telecommunications industry and why its use could be encouraged
within the more “conservative” embedded control systems industry.

Chapter 2 reviews the advantages of using the ROOM methodology and ObjecTime
toolset for the development of real-time computerized control systems over more traditional
approaches such as cyclic executives or task models. Then we present an overview of two
ROOM specification levels: the schematic level, subdivided into the structural model and
behavioral model, and the detailed level. The chapter formalizes the notion of transactions
and finally describes ObjecTime’s TargetRTS.

In Chapter 3, we examine and select a suitable timing and scheduling analysis method
for ROOM models among three orthogonal timing analysis methods: real-time scheduling
theory, symbolic model checking and discrete task simulation. In this chapter, we only
consider schedulability tests for fixed priority algorithms, as these are the most relevant to

the ROOM models presented in this thesis. We also present an overview of each method,
followed by a comparison of their time and space complexity results.

Chapter 4 develops guidelines to apply the real-time scheduling theory presented in
the previous chapter to ROOM models. As we shall see, the biggest challenge comes from
the various sources of priority inversion that can result in large and possible unbounded
blocking times. In this chapter, we describe single- and multi-threaded implementations
of ROOM models and we compare their relative advantages and disadvantages. For each
implementation, a guideline is formulated which specifies a suitable thread priority as-
signment. An additional guideline then defines a desirable message priority assignment.
Finally, we present implementation guidelines that bound priority inversion of transactions
due to inter-thread message passing mechanism and that allow adding new functionality to
an actor without affecting schedulability of the higher priority transactions associated with
that actor.

In Chapter 5, we develop a generic resource scheduling model for the scheduling anal-
ysis of ROOM models that includes the overhead and blocking costs of TargetRTS and
the underlying real-time operating system (RTOS) scheduler. Then we develop the specific
resource scheduling models for the single- and multi-threaded ROOM executables and fi-
nally we validate them, using a simple instrumented ROOM model through measurements.

Chapter 6 illustrates the concepts developed in earlier chapters by studying a variant
of the automobile cruise control system 3 presented in [GF96]. The chapter provides an
overview of the cruise control system, specifies its time-critical transactions and presents
schedulability analysis results for these transactions.

Finally, Chapter 7 summarizes the most significant results of this thesis and identifies
possible topics for future research.

3 Automobile cruise control is a well studied example which has been used to illustrate other real-time
. design methods such as Octopus, ADARTS and CODARTS.

6

Chapter 2

Real-Time Object Oriented Modeling

Developing real-time computerized control systems, and especially embedded systems, is
particularly challenging since the complexity of the physical environment has to be accom-
modated along with stringent time constraints. Until recently, the majority of real-time
applications have been developed with the cyclic executive model [Loc92], [BS89]. With
this model, real-time software engineers are forced to fit their computational tasks, i.e.
concurrent sets of sequential actions which can take place within a system, into a prede-
termined cycle. The cycle is repeated once per period and is called the major cycle. The
major cycle is in turn subdivided into a smaller period, called the minor cycle. This model
imposes several restrictions in terms of the development process of real-time applications.
The developer is burdened with fitting tasks into the minor cycle segments, sacrificing code
clarity, and making it more difficult to develop and maintain the software. Timing correct-
ness for the cyclic executive model is determined statically by the design of the timeline.
Clearly, there is a “tight coupling” between timing analysis and the design of the task set.

The increasing complexity and the sophisticated demands of real-time systems in terms
of development time, software maintenance and reliability gave rise to real-time scheduling
theory [LL73], which decouples the design of a task set from its timing or scheduling
analysis. With this method, real-time designers can develop a time-critical system as a set
of tasks, and then use a mathematical feasibility test to examine timing aspects of the task
set, such as comparing CPU utilization to its allowable upper bound, or comparing each
individual task’s worst case response time to its deadline.

Although, the use of real-time scheduling theory has greatly improved development
time and maintenance of real-time applications, there is still a need for a formal design

method. In the ROOM tutorial [Sel96], Selic presents arguments for using ROOM method-
ology along with its CASE toolset, ObjecTime, during design, implementation, mainte-
nance and evolutionary development phases of real-time applications. To do that, he de-
fines the term architectural decay, the phenomenon of successive deterioration of system
architecture during software implementation and maintenance phases. Because architec-
tures are typically specified informally using block diagrams supplemented by prose, such
specifications are often misunderstood or even neglected by real-time application program-
mers. This is amplified during the maintenance phase, which is often done by the least
experienced professionals who, faced with enormous amount of code, again, tend to disre-
gard high level concepts of real-time applications. Later on, we will describe how ROOM
addresses the architectural decay problem.

In a recent article entitled “The Challenges of Real-Time Software Design” [SW96],
Selic and Ward describe two basic “styles” of real-time software. The time-driven style
corresponds to using cyclic activities triggered by time and is well suited to the implemen-
tation of periodic activities, e.g. control loops within embedded systems. In contrast, the
event-driven software typically waits for an external event to occur (for a message to ar-
rive), performs an appropriate action, and enters another state waiting for the next event.
This style is well suited to the implementation of reactive behavior, associated with un-
predictable, discreet events which may occur in a non-deterministic way, e.g. sporadic
operator input, component failure, in the external system.

Various techniques such as rate-monotonic and deadline-monotonic scheduling, were
developed by real-time scheduling theory pioneers to perform timing and scheduling anal-
ysis of time-driven real-time systems. Unfortunately, little attention has been paid to the
integration of scheduling analysis into event-driven systems. Until now, these systems were
targeted to deal with the complexity arising from the asynchronous and concurrent nature
of event-driven applications, neglecting its temporal characteristics. Because ROOM sup-
ports both styles of real-time software, it appears to be a very attractive formal method
for the development of increasingly complex real-time systems. In the following sections,
we will describe the concepts used by ROOM to facilitate the implementation of reactive
systems (event-driven systems), and in Chapter S we will develop canonical scheduling
models to perform timing and scheduling analysis of ROOM models.

2.1 Overview of ROOM Concepts

To address the architectural decay problem, the ROOM language defines system specifi-
cations at two distinct, but formally related levels. The upper level, called the schematic
level, is used to specify the architectural aspects of the system and is subdivided into the
structural model and behavioral model. The lower level, called the detailed level, is used
to define the finer grained implementation detail. The detailed level specifications are then
passed to the C++ programming language code generator. An important characteristic of
ROOM is that it is an object-oriented modelling language, implementing encapsulation,
polymorphism and inheritance at both levels of its specifications.

2.1.1 Structural Model

The primary structural element in ROOM is an actor, which is an encapsulated, concurrent
object responsible for performing some specific function. Each actor object is an instance
of a corresponding actor class capable of utilizing polymorphism and inheritance, promi-
nent features of object-oriented methodology. Inter-actor communication is performed ex-
clusively by sending and receiving messages via interface objects called ports. A message
is a tuple consisting of a signal name, an optional message body and an optional message
priority. A port is an instance of a protocol class, which defines a reusable message pro-
tocol specification. The same protocol specification can be used by many different actors
by simply creating protocol class instances. Specifying protocols as classes also enables
real-time developers to relate them through inheritance, creating a protocol class hierarchy.
This provides the ability to define abstract protocols! that can be specialized in different
ways by subclassing. A simple actor representing a computer with three ports is depicted
in Figure 1. The LPT1 port is an instance of the Parallel protocol class and the COM1
and COM2 ports are instances of the Serial protocol class.

In ROOM, it is possible to combine one or more actors into more complex functional
aggregates, i.e. more complex actors, by means of three compositional mechanisms: bind-
ing, layer connections and containment. A binding models a communication channel be-
tween two compatible ports, where one of the ports is the inverse of its peer port (the white
fill on the port indicates that the port uses a conjugated protocol .class). In Figure 2 we show
how the binding mechanism can be used to add peripheral actors to our previous model of

! Abstract protocols represent general protocol specifications for which ports can not exist.

© v B AL,

<
:

]
the Computer actor.
E. e e -

Figure 2: Functional Aggregate: System Actor

*‘ In contrast to bindings, layer connections are directed relationships between actors in
the form of a client-server model, where actors in the lower layer provide a set of services
to the entities in the layer above. The linkage between layers is done at discrete contact
points, which are called service access points (SAPs) in the upper layer using the services,
and service provision points (SPPs) at the layer providing the services. Each SAP must be
connected to a SPP in the layer below (there can be many SAPs connected to a single SPP),
and the end points of each such connection must have matching service points. Like ports,.
SAPs and SPPs are instances of message protocol classes. The bottom layer in ROOM

10

models is called the ROOM virtual machine (which is implemented by the ObjecTime run-
time system). In addition to executing ROOM specifications, the virtual machine provides
a set of system services, among which there is a communication service and a timing ser-
vice. The communication service establishes and manages connections between actors.
The timing service is used to set and cancel timers, both one-shot and periodic [Sel95].
The system services are accessed through SAPs, like other services, however their corre-
sponding SPPs are implicit. The ROOM virtual machine is also responsible for interfacing
with other (non-ROOM) environments, such as specialized hardware or “foreign” software
systems that may be part of the computing environment.

The last compositional mechanism in ROOM is containment. It involves decomposing
an actor into aggregates of more elementary actors. As an example, Figure 3 shows the
decomposition of the Computer actor.

Figure 3: Functional Aggregate: Computer Actor

The actor structures that we have reviewed until now are static, i.e. they are created
once when the ROOM application is started and they exist throughout its entire execution.
To handle dynamic creation of actors, ROOM provides the concept of an optional actor,
indicated by the hashed actor component. Optional actors are not created automatically,
instead they are created and destroyed, with the help of the framing service, as the need
arises. Although, we do not need to create actors dynamically, we will define optional

11

actors to assign them to different logical threads?.

2.1.2 Behavioral Model

The actor’s behavior is represented by an extended state machine called a ROOMchart,
based on statechart formalism [Har87]. Each actor remains dormant in its current state until
a message is received by an actor. Incoming messages trigger transitions to new states as
defined by the actor’s finite state-machine. Actions may be associated with state transitions,
as well as entry and exit points of a state. The sending of messages to other actors is
initiated by an action. The finite state machine behavior model imposes that only one
transition at a time can be executed by each actor. As a consequence, a run-to-completion
paradigm applies to state transitions. This implies that the processing of a message cannot
be preempted by the arrival of a new (higher priority) message for the same actor. However,
as we will explain in Chapter 4, in a multi-threaded implementation, the processing may be
preempted by processing associated with actors in other higher priority threads.

ROOMcharts also support the object-oriented paradigm. As mentioned in the previous
section, each actor derived from its parent automatically inherits its parent’s structure, as
well as the extended finite state machine behavior. The encapsulation in ROOMcharts is
implemented with the notion of a composite state, which can be decomposed into substates.
Decomposition of a state into substates can be taken up to an arbitrary level in a recursive
manner. The current state of such a system is defined by a nested chain of states called a
state context. The actor is said to be simultaneously “in” all of these states. Transitions of
the innermost current scope take precedence over equivalent transitions in higher scopes. A
message for which no transition is triggered at all levels of the state hierarchy is discarded,
unless it is explicitly deferred.

2.2 Message Sequence Charts and Transactions

Interactions between selected ROOM actor instances can be specified at design time in
a Message Sequence Chart (MSC), conforming to a subset of CCITT recommendations
Z.120 [Int94]. ROOM MSCs may graphically depict message flow between actors, tran-
sition actions and changes in actor states. However, ROOM itself does not provide any
mechanisms to specify and enforce timing constraints imposed on each MSC scenario.

20nly optional actors may be placed in threads other than the main thread.

12

Thus, in order to perform our scheduling analysis, we will add additional annotations to in-
dicate these timing constraints [BAL97]. We will call these annotated MSCs transactions,
and we will use them to indicate time critical end-to-end computations, for which timing
constraints such as periodicity and deadlines may be specified. To deal with temporal re-
quirements of distributed real-time systems, Burns and Wellings also defined the notion of a
transaction [BW96] to link input and output activities that share associated deadlines. They
were used to reflect end-to-end properties, i.e. from an input event trigger to an output event
response, of a real-time system. These transactions were implemented using tasks and pro-
tected shared objects (PSOs) which ensured exclusive access to data shared between the
tasks. We shall also define a transaction tree as a chained sequence of transition actions
triggered by an external incoming (stimulus) message. The triggering messages may be
aperiodic (often corresponding to device interrupts or generated by the one-shot timer) or
periodic (generated by the periodic timer). Each branch in the transaction tree will rep-
resent a ROOM transaction. A transaction tree Y; has an associated activation period T;,
which represents either the inter-arrival time (period) of the periodic timer, or a minimum
inter-arrival time for aperiodically triggered (sporadic) interrupt.

The following timing constraints are specified for each transaction I'; (for each branch
in the transaction tree Y;) associated with the transaction tree ;.

e The worst case execution time C;, representing the sum of the worst case execution
times of its transition actions.

e An end-to-end deadline D; on the response time of the transaction.

e A transaction priority P;, assigned to each transaction according to its importance.

Then, a ROOM transaction tree set consisting of n transaction trees is Y1, 12,..., n.
If all the external incoming messages can be identified, then the ROOM transaction tree
set can be mechanically generated by starting from these messages, and then forming tran-
sition action sequences by recursively considering the output message set for the actors
handling the messages. The definition of a transaction tree allows two transactions to be
triggered by the same external incoming message, thus having a common initial transition
action sequence. Such transactions would then have the same activation period equal to the
activation period of their transaction tree, but may have different deadlines and different
priorities. On the other hand, two transactions can share a common final transition action

13

sequence. Such transactions may have different activation periods equal to the activation
periods of their transaction trees, end-to-end deadlines and different priorities.

As mentioned before, MSCs in ROOM are created at design time, i.e. they are generated
by the real-time designer as an additional way to spemfy system requirements. Thus, they
can diverge from the actual executable ROOM model In Flgure 4 we show a sample MSC
depicting interactions between the IDECard and CPUBoard actors (Note that time flows
from top to bottom).

msc Computer

IDECard CPUBoard

[DECard] | |
| I
'_—Ld:i—rsr;mt(mrg e >

| print | < WaitAck D
printAck

< Idle > < ide >
| E—— Pe——

Figure 4: Message Sequence Chart for Printing

2.3 Target Run-Timé System

The ObjecTime toolset provides a run-time system in the form of an implementation of the
ROOM virtual machine, responsible for providing the mechanisms that support the ROOM
paradigm as well as the services needed by ROOM models. The ObjecTime Developer
Toolset is a CASE tool that provides a fully integrated development environment to sup-
port the ROOM methodology, with features such as graphical and textual editing for actor
construction and C++ code generation from the model. The ObjecTime toolset includes a
target run-time system (TargetRTS) [Obj97], which is linked with the application code
to provide a stand-alone executable that may be executed on either a Unix workstation

14

environment, e.g. Solaris, or on a target environment with an underlying real-time oper-
ating system such as VxWorks, QNX, pSOS, and VRTX. In addition to executing ROOM
specifications, TargetRTS provides a set of system services, among which there is a
communication service and a timing service. The timing service is used to set and cancel
timers, both one-shot and periodic [Sel95].

In ROOM, actors are potentially concurrent objects having a private address space. In
implementing ROOM models, one must deal with the mapping of ROOM actors to the
underlying operating system’s execution abstractions. Operating systems typically provide
two such abstractions: a heavy weight process, which has a private address space, and
communicates with other processes using inter-process communication services such as
sockets, pipes or RPC calls, and a light weight thread, which shares memory with other
threads within the same process. Because communication between processes is expen-
sive, and ROOM models rely heavily on inter-actor communication, mapping actors to
processes would be inefficient in most cases. Therefore, a ROOM model is implemented
as a multi-threaded process, where actors are grouped into one or more lightweight threads.
TargetRTS implements each thread as a message handler, which executes a main loop
waiting for messages to arrive, and processes the arriving messages in priority order. This
implies that message processing cannot be preempted by another message arrival within
the same thread, and it is consistent with the run-to-completion semantics of ROOM. How-
ever, a thread may be preempted by other threads depending on thread priorities and the
scheduling of threads by the underlying operating system.

As mentioned before, the transaction period represents an inter-arrival time of the pe-
riodic timer, or a minimum inter-arrival time of the one-shot timer 3. The scheduling
of transactions in TargetRTS always happens following the arrival of a timing signal,
which represents an external incoming message. Because the timing service is a part of
the ROOM virtual machine, the transaction timing source is external to the CPU clock, i.e.
it is generated by the TargetRTS timing service and is asynchronous to the CPU clock.
In a ROOM/ObjecTime model, the TargetRTS timing service is polled by OS timing
services. Because of the asynchronous nature of these services, polling leads to the block-
ing affect we shall discuss in Chapter 3. This type of transaction scheduling is defined as
timer-driven scheduling and is further described in [Kat94].

3Restricting the transaction period to a minimum inter-arrival time of the one-shot timer is a limitation
necessary for our timing and scheduling analysis.

15

Chapter 3

Choosing a Scheduling Analysis Method
for ROOM Models

Task scheduling analysis is a fundamental issue in developing hard-real-time systems,
where all the tasks must finish executing before their corresponding deadlines. Examples
of hard-real-time systems are flight and traffic control, nuclear plant control, robotics and
automobile cruise control systems, the last one described in [Gom93] and further studied in
Chapter 6. When hard-real-time systems are employed to regulate physical environments
imposing computational resource constraints, such systems are called embedded control
systems. Because of the stringent constraints imposed on computing resources, it is nec-
essary to optimize their utilization while being able to predict task schedulability at design
time.

As mentioned in the previous chapter, the timing and scheduling analysis of ROOM
models is based on time critical end-to-end computations about which timing constraints
such as periodicity and deadlines may be specified. These end-to-end computations were
formally defined as transactions, thus they can be subjected to common timing analysis
methods such as the real-time scheduling theory [BW96] or symbolic model checking.

In this chapter, we will examine and select a suitable timing and scheduling analysis
method for ROOM models, where we will consider three orthogonal timing analysis meth-
ods: real-time scheduling theory, symbolic model checking and discrete task simulation.
We will only consider schedulability tests for fixed priority algorithms, as these are more
frequently used in embedded control systems than dynamic priority algorithms due to their
simpler scheduler and lower implementation overheads. We will present an overview of

16

each method, followed by the time and space complexity costs of using them, and we will
summarize the chapter with concluding remarks.

3.1 Overview of Real-Time Scheduling Theory

A first contribution to task scheduling analysis was made by Liu and Layland [LL73] who
developed optimal static and dynamic priority scheduling algorithms for hard-real-time sets
of independent tasks. They showed that the dynamic priority scheduling algorithms, i.e.
earliest deadline, can achieve 100% CPU schedulable utilization, while the rate-monotonic
algorithm has a least upper bound of 69% of CPU schedulable utilization. They provided
a necessary and sufficient utilization-based test for earliest deadline scheduling, and a suf-
ficient utilization-based test for rate-monotonic scheduling. The Liu and Layland’s rate-
monotonic test is sufficient in that the task set which does not pass the test can be still
schedulable, as long as the utilization is less than 100%. Since then, significant progress has
been made on generalizing and improving the schedulability analysis. Necessary and suffi-
cient conditions for fixed priority algorithms have also been developed [LSD87] and [JP86].
These conditions construct the worst case phasing for each task, i.e. task critical instance,
and test the task scheduling under this configuration. These conditions also release the
requirement that tasks are scheduled according to the rate-monotonic algorithm.

3.1.1 Worst Case Response Time

The Joseph and Pandya work [JP86] provided a necessary and sufficient timing analysis
test for a set of tasks scheduled by the deadline-monotonic or rate-monotonic algorithm.
They came up with the idea of calculating the worst case response time ! of a task. Once
we have the worst case response time for each task, the scheduling test is trivial: we just
look to see that R; < D; for each task. R; is computed by the following recursive equation:

'.1
R =G+ 5—] Cj)

Jjehp(i) [Tj

where hp(i) denotes the set of tasks of higher priority than task t;, and the term R}"“ is the
n+ 1 approximation to the worst case response time, R;, and is found in terms of the nth

IThe worst case response time R; of an independent periodic task t; (with D; < T;) occurs when all tasks
are released (i.e. become ready to run) at the critical instant ¢ = 0.

17

approximation. The recursive equation 1 either converges to R;’“"l = R} = R; or exceeds D;.
It can be solved by successive iteration starting from R? = C;. With this analysis, a value
of R; is valid only if D; < T;, which is what we have assumed while specifying the timing
constraints of a transaction in a ROOM model.

As mentioned before, by looking at the worst case response time of each task, we can
determine if the task set is schedulable. Moreover, if the worst case response time of each
task is smaller than its deadline, we know that the CPU is not fully utilized. Thus, the
above analysis allows us to test task schedulability and optimize the processor utilization
by considering the worst case scenario, when all the tasks become ready to run at the critical

instant.

3.1.2 Release Jitter

Another very important contribution to real-time scheduling theory was made by Audsley ez
al. [ABR193], who created a scheduling test for a hybrid event- and timer-driven scheduler
which was unique to the system they modelled. In this system, some tasks would undergo
the timer jitter effect, while others did not. The jitter effect was modelled as task release
Jitter, which is the difference between the earliest and latest releases 2 of a task relative to
the invocation 3 of the task. The worst case effects of release jitter were accounted for by
phasing tasks to maximize the worst case response time of each task. If the amount of jitter
for task T; is J;, then the time taken for the task to complete once it has been released is:

wi4-J;
wH=ct+ ¥ l-_z_ii-l .Cj 1))
Jjehp(i)
The notation ‘w’ is used because the task is constrained to execute within a time window

during which higher priority tasks can preempt it. The worst case response time for task 1;
is given by:

Ri=Ji+w; 3)

If no task has jitter, equations 2 and 3 reduce to equation 1 and model the worst case
response time for tasks scheduled by event-driven schedulers. If all tasks have equal jitter
J, the two equations model timer-driven schedulers with the timer jitter effect Jyimer = J.

2A task is released if it is placed by a scheduler in a priority queue of runnable tasks.
3A task is invoked if it could logically be made runnable at or after that time.

18

The above equation provides only a sufficient test for task scheduling, in that the task
1; for which R; > Dj; can still be schedulable. Notice that the equations do not contain
implementation costs, such as task context-switch overhead or priority inversion for the
active task when lower priority tasks are being scheduled. To include the implementation
costs of ROOM models, the generic resource scheduling model along with its canonical
scheduling models for single- and multi-threaded ROOM executables will be developed in

Chapter 5.

3.1.3 Time and Space Complexity

The complexity of the scheduling models described in this section were derived in a sim-
ilar way to [Kat94]. Let N be the number of application tasks, and L be the ratio of the
longest period to the shortest period of all tasks. The worst case response time algo-
rithms described above require that the response time of each task 7; be found in an interval
(0, T;). This is done by iterating a series of approximations for the worst case response time,
RO,R},...,RE, where K(i) is an upper bound on the number of approximations generated
for task T;, 1 < i < N. Each approximation is computed from the summation:

5]
jenpiy ! 7J

for equation 1, which itself is of O(N), or from the summation:

I' wi+J _,-] .C;
oy Ti

for equation 2, which is also O(NV). K (i) is no greater than the worst case number of task
releases in an interval (0, T;], so that K (i) is of O(N - L) for both scheduling tests. Therefore,
the time complexity for each task 7; is of O(N2- L), and the overall time complexity for both
scheduling models is of O(N3- L).

The space complexity for both scheduling models depends on the number of recursive
calls necessary to calculate the worst case response time R; for each task, and as we know it
is no greater than the worst case number of task invocations in an interval (0, 7;]. Therefore,
the space complexity for the two scheduling models is of O(N -L).

19

3.2 Overview of Symbolic Model Checking

Recently, a number of different methods have been proposed for verifying finite-state sys-
tems by examining state-graph models of system behavior. Most of these methods depend
on algorithms that explicitly represent a transition relation, using a list or table which grows
in proportion to the number of states. The symbolic model checking (SMC) technique, de-
veloped at Carnegie Mellon University by the Formal Methods - Model Checking group,
tries to resolves the “state explosion problem” by representing the transition relation “sym-
bolically” instead of explicitly. In their representation, they use ordered binary decision
diagrams (OBDD) [Bry86], which allow many practical systems with extremely large state
spaces to be verified. Using binary decision diagrams for transition relations, they were
able to verify some examples that had more than 1020 states [BCM90]. Since then, various
refinements of the OBDD-based techniques by other researchers at Carnegie Mellon have
pushed the state space up to more than 10'2° [BCL91].

3.2.1 Timing and Scheduling Analysis of Tasks

Symbolic Model Checking can also be used to verify the timing constraints of a set of tasks
scheduled with a fixed priority algorithm. For the analysis to be described here, we used the
Symbolic Model Verification (SMV) tool [McM92], which can check finite state systems
against their specifications expressed in the Computational Tree Logic (CTL) [CCM96]. To
test task schedulability, we create a Finite State Machine (FSM) model of a preemptive task,
transform the FSM model into a SMV module for each task, and test the timing constraints
of each SMV module against CTL and quantitative formulas within the framework of the
chosen fixed priority scheduler, i.e. rate-monotonic or deadline-monotonic. Figure 5 is a
schematic of the process representing SMC temporal verification of a set of real-time tasks.

Task FSM Model

The FSM model in Figure 6 represents all possible states, transitions and events (with their
corresponding actions) of an independent and preemptive task with no resource sharing
constraints. The states describe the task’s behavior. At any given time, the task is in one
of these states where a finite number of events may occur. The events result from internal
processing of each task, the scheduler decisions and the timer associated with the task
period. The actions associated with certain transitions keep track of how much CPU time

20

SMYV Model Checking Tool

/ SMYV scheduler \
lped'll‘l.:uom \ Internal representation of
\ initial states and transition
ad relation (BDDs)
Task SMV
/ modules |
Toda ‘True/False with a counter-
model SMC algorithm example and MIN/MAX
quantitative results
CTL formulas M~
™~ mternal representation of
Quantitati || task properties (BDDs)
uantitative
formulas]
Desiguner’s/Analyst’s feedback

Figure 5: Schedulability Analysis with SM'V toolset

(in clock units e.g. nﬁﬂjseconds) the task has used. The transitions indicate the actions to
be performed. They are “selected” according to the current state of the task and the event
type that is represented with values of boolean/scalar SMV defined symbols. In our task
model, we have three symbols comprising an event type:

task scalar symbol, indicating which task was scheduled by the fixed priority scheduler.
timeout boolean symbol, set when the task is released by the scheduler.

finish boolean symbol, set when the task completes its execution.

SMY Scheduler

The SMV scheduler accepts requests for execution and chooses the highest priority task re-
questing the CPU. If a request arrives from a higher priority task after execution of another
task has started, the scheduler preempts the executing task and starts the higher priority
one. When the task finishes executing it resets its request, and the scheduler chooses an-
other task. The scheduler implements a global timer that releases periodic tasks when
their period arrives. It is the “heart” of the SMV program as it simulates the smallest time
unit in our scheduling analysis. Another type of timer is also used, the local timer, which
stores the elapsed task execution time. The task priority can be determined either with the
deadline-monotonic or rate-monotonic algorithm.

21

Actions:

Al: timer=1
A2: timers=timer+1
A3: timer=0

(task=n): A2

(taskl=n,!finish)
(task!=n,finish,timeout): A3

(task=n,}finish): A2
(task=n,finish.timeout): Al

(task=n,timeout): A1

(task!=n,finish {timeout): A3

Figure 6: FSM Model of a Task

CTL Formulas

To test task schedulability, we create CTL formulas, imposing restrictions on our SMV
model. According to the Completion Time Theorem [LSD87], each task has to finish
before its deadline. For a set of three tasks, this notion can be expressed by the following
CTL formula:

START) & !T1.finish) |
START) & !T2.finish) |
START) & !T3.finish))

AG ! (deadlinel & (! (Tl.state
deadline2 & (! (T2.state
deadline3 & (!(T3.state

where deadlinel, deadline2 and deadline3 correspond to the deadlines of the
first, second and third task. If the CTL formula is not satisfied, the SMV toolset will
provide us with a counterexample, showing step-by-step execution of our SMV program
leading to violation of the formula. By examining the counterexample, we can identify
which task missed its deadline.

Quantitative Formulas

So far we have demonstrated how to test the schedulability of tasks using the SMC tech-
niques, but it is also possible to obtain some numerical results about the worst and the best

22

case execution times of each task within a specified “time window”, i.e. time interval de-
fined by the global timer in which tasks are scheduled. This is accomplished by using the
MIN and MAX quantitative algorithms [CCM96]). Because we are concerned here with tim-
ing and scheduling analysis of ROOM models which represent a family of hard real-time
systems, we will concentrate on MAX quantitative results. Thus, the quantitative formulas
calculating the maximum number of clock ticks a task needs to finish executing since its

invocation (start) time are as follows:

MAX[T1l.start, Tl.finish]
MAX[T2.start, T2.finish]
MAX[T3.start, T3.finish]

where start boolean symbol is set when the task is released by the fixed priority sched-

uler.

3.3 Overview of Discrete Task Simulation

Besides investigating real-time scheduling and symbolic model checking techniques, we
have also written a Java discrete task simulator, simulating a fixed priority scheduler for a
set of N independent preemptive tasks. With this simulator, we have also verified the worst
case response times of real-time tasks. If we examine the simulator complexity numbers,
we notice that for an event-driven scheduler, the time complexity is identical to that of the
RTST method, but the space complexity is equal to the size of the ready and sleep queues
and the number of tasks. Therefore, it is of O(R+ S+ N), where R and S are sizes of
the ready and sleep queues accordingly. For a timer-driven scheduler, the time complexity
is of O(N3.L- (Ty)N~1), because to guarantee a necessary and sufficient condition from
the simulator test we must construct all possible task phasings, whenever release jitter is

introduced.

3.4 Empirical Complexity Results

In this section, we will examine task’s worst case response time and empirical time/space
complexity results obtained from real-time scheduling theory and symbolic model checking
methods which were used to analyze the schedulability of independent and periodic tasks.

23

We will examine two task configurations, first one (see Table 1) representing a set of three
independent tasks and the other one (see Table 3) representing a set of three tasks, each
introducing release jitter. As mentioned before, the second task configuration implements
a timer-driven scheduler.

3.4.1 Independent Tasks

Task | T(ms) | C(ms) | D(ms)
100 20 100
150 30 150
350 125 350

O | >

Table 1: Temporal Characteristics of Three Independent Tasks

To obtain more meaningful results for the first task set we will gradually increase task
temporal characteristics, such as period, deadline and execution time by a scalar value. The
empirical results presented in Table 2 were obtained from using real-time scheduling theory
(RTST) and symbolic model checking (SMC) methods on the task set from Table 1.

RTST/SMV RTST SMV
Scalar | R4 | Rp Rc | Time | Space | Transition Time Space
(ms) | (ms) | (ms) | (sec) | (bytes) | BDD Nodes | (sec/min) | (Mbytes)
1 20 50 | 245 | <1 670 1566 8.8sec 1.13
2 40 | 100 | 490 | <1 670 1841 1.36min 1.56
3 60 | 150 | 735 | <1 670 2028 6min 1.94
4 80 | 200 | 980 | <1 670 2096 21.6min 2.31
5 100 | 250 1225 | <1 670 2318 45.78min 2.44

Table 2: Empirical Results for Three Independent Tasks

In the SMV manual [McM92], the overall time complexity of an SMV program is
derived from three factors: an increase in the transition relation BDD nodes, an increase
in the state set BDD nodes and an increase in the number of iterations. From Figure 7,
we can see that the overall empirical time complexity required to calculate the worst case
response times for all the tasks within our task set is of ®((Zy)?), where Ty is the longest

24

task period. Also, by looking at the transition BDD nodes and space columns in Table 2 we
can confirm this result, as the overall empirical time complexity of ®((Zy)?) results from
the linear increase in the state set BDD nodes 4 and the linear increase in the transition
relation BDD nodes. We can also deduce that the number of iterations required to obtain
SMYV output, i.e. true or false with a counterexample and MAX quantitative results, also
increases linearly with respect to Ty.

’i Example of a faster
B] Do cta meer
é o0 |
f(‘)-x
g 4 Curve obtained
210 + et .
Py SR
Y
ol x)=O(N’)
100 4 . < p
[) _.—O"
10* 4 >
[) "_«'
1 "'
10 + /s
35 7 10.5 14 s - - -

Figure 7: SMV Execution Time for Three Independent Tasks

Now, looking at the time and space results from the RTST columns, we notice that
the execution time and memory utilization is constant during the scheduling analysis per-
formed with real-time scheduling theory method on our task set. This result confirms our
earlier time and space complexity observations from Section 3.1.3. We know that the épace
complexity depends on the number of recursive calls necessary to calculate the worst case
response time R; for each task, and is equal to O(N - L). Because N and L are constant,
our memory utilization should be constant too. The overall time complexity is of O(N 3.L)
and, in a similar way, leads to the constant execution time for our task set.

‘We should also notice that both tests, real-time scheduling theory and symbolic model
checking, provide us with the necessary and sufficient timing analysis test for a set of

4State set BDD nodes is calculated by subtracting transition BDD nodes from total number of bytes
allocated divided by BDD size.

25

independent tasks (with no release jitter and no blocking effect) scheduled by the deadline-

monotonic or rate-monotonic algorithm.

3.4.2 Tasks with Release Jitter

Task | T(ms) | C(ms) | D(ms) J(ms)
A 50 10 50 | 0/5/10/15/20/25
B 75 15 75 0/5/10/15/20/25
C 175 60 175 | 0/5/10/15/20/25

Table 3: Temporal Characteristics of Tasks with Release Jitter

In a similar way as in the previous section, we gathered some empirical results (pre-
sented in Table 4) from using real-time scheduling theory and symbolic model checking
methods with the task set described in Table 3. For the symbolic model checking method
the assumption is made that all tasks are invoked at the time instant ¢ = 0 and they run for
the length of the longest task period. In contrast to tasks without release jitter, this initial
invocation does not represent the worst case phasing for each task.

RTST SMV RTST SMV
J | Ra | R | Rc | CTL formula | Time | Space | Transition Time Space
(ms) | (ms) | (ms) holds (sec) | (bytes) | BDD (bytes) | (sec/min) | (Mbytes)
0| 10 25 | 120 yes <1 720 1497 2sec 1.11
5 15 30 | 125 yes <1 720 2050 15sec 2.17
10| 20 35 | 130 yes <1 720 3008 7.32min 4.52
15| 25 40 | 135 yes <1 720 3366 35min 11.47
20] 30 45 | 140 yes <1 720 4902 92.8min 15.1
25| 35 50 | 145 yes <1 720 5538 209min 31.85

Table 4: Empirical Results for Tasks with Release Jitter

To examine the time complexity of the SMC method, we present the graph in Figure 8.
According to the SMV empirical time complexity results obtained in the previous section,
we can see that the overall empirical time complexity required to test the schedulability
of tasks from Table 3 is of ®((Zy)? - J), where J is the task release jitter. Similarly by
examining Table 4, we conclude that the SMV empirical space complexity is of @(Ty +J).

26

Example of a faster
increasing function

T e—e—e

Curve obtained from
5 4 theempirical results

10 G---6---0

Execution Time (sec.)
[

cmme---

-
-
-

0 5 10 15 20 25 30 Jitter

Figure 8: SMV Execution Time for Tasks with Release Jitter

The empirical time and space complexity results for real-time scheduling analysis are
identical to those from the previous section; and they confirm our earlier observations from
Section 3.1.3. Again, we should remind the reader that the real-time scheduling test is only
a sufficient condition for task schedulability when release jitter is introduced. On the other
hand, the symbolic model checking test with the assumptions made here (that all tasks are
invoked at the time instant z = 0, they run for the length of the longest task period and they
introduce release jitter), provides us with neither sufficient nor necessary conditions for
task schedulability. To guarantee a necessary and sufficient condition from the symbolic
model checking test, we must construct all possible task phasings whenever release jitter is
introduced. For the set of of N tasks, we have Tj - T5... Ty—3 - Ty—1 unique task phasings,
which gives rise to another complexity number O((Ty)V~!). Therefore, constructing a
necessary and sufficient scheduling test with symbolic model checking technique for our
task set has the empirical time complexity of @((Zy)N+2-J).

27

3.5 Conclusions

In this chapter, we reviewed three scheduling analysis techniques: real-time scheduling
theory, symbolic model checking and discrete task simulation. Because TargetRTS im-
plements a timer-driven scheduler, our choice of a scheduling analysis technique is heav-
ily based on the results obtained from the corresponding scheduling model. In Table 5
we present a summary of the relevant characteristics of the event-driven and timer-driven
scheduling models which do not take scheduler implementation costs (e.g. timer blocking
penalty, task context-switch overhead) into consideration.

Event-Driven Timer-Driven
Time O(N?L) ON3-L)
RTST Space O(N-L) O(N-L)
Condition N&S S
Time e((Tw)*) e((Iv)"**-J)
SMV Space O(Ty) O(Ty+J)
Condition N&S N&S
Time O(N°-L) o((Ty)Y~'-N°-L)
Simulator | Space | O(R+S+N) O(R+S+N)
Condition N&S N&S

Table 5: Scheduling Model Characteristics

Because of the timer-driven nature of the ROOM scheduler implemented by TargetRTS,
the best choice of the timing and scheduling analysis technique is the real-time scheduling
theory. Therefore, we will extend this théory to include implementation costs of ROOM
models in Chapter 5, where we will validate it and use it to test the temporal behavior of a
ROOM model of an automobile cruise control embedded system.

28

Chapter 4

ROOM Design Guidelines for Hard
Real-Time Systems

In this chapter we develop guidelines to apply the real-time scheduling theory presented in
the previous chapter to ROOM models. As we shall see, the biggest challenge comes from
various sources of priority inversion that can result in large and possibly unbounded block-
ing times. In ROOM models, two kinds of priorities may be defined: message priority and
thread priority. Recall that a ROOM model can be implemented as a single-threaded exe-
cutable, where all the actors are assigned to one thread, or it can be implemented as a multi-
threaded executable, where each thread implements one or more actors. In both cases, the
underlying real-time operating system is responsible for scheduling threads. We assume
that the operating system uses preemptive priority scheduling and allows application con-
trol over thread priorities. As mentioned in Chapter 2, the run-time system TargetRTS
implementing the ROOM virtual machine, is responsible for processing messages within
a thread according to the fixed-priority scheduling algorithm based on message priorities,
and the underlying operating system is responsible for scheduling threads based on thread
priorities. Thus, there are two-levels of priority scheduling:

e Within the context of a single thread, the processing of messages takes place in mes-
sage priority order. This ordering is enforced by the message handling loop provided
by TargetRTS.

e Across the whole system (i.e. across the complete ROOM model), the underlying
operating system schedules threads in thread priority order.

29

There are four sources of priority inversion which contribute to transaction blocking
times. In the following sections, we shall consider these sources of priority inversion and
suggest design and implementation guidelines to minimize their adverse effects.

4.1 Assigning Actors to Threads

The first potential source of blocking comes from inappropriate assignment of actors to
threads. In particular, the designer of a real-time system must assign actors to threads such
that the system is schedulable under the worst case conditions. In the following sections,
we will investigate two possible actor-thread assignments and we will elaborate on their
relative strengths and weaknesses.

4.1.1 Single-Threaded Executable

The simplest approach to implementing a real-time system designed in ROOM is to assign
all user actors to a single user thread. Thus, ROOM processing will take place in message
priority order and the only source of priority inversion is due to ROOM run-to-completion
semantics (as explained in Chapter 2). If we assume that all messages associated with a
given transaction are assigned the same priority, then the maximum blocking time of a
high-priority transaction is limited by the most “time-consuming” transition within lower
priority transactions. In many systems, this is perfectly tolerable or even preferable to
multi-threaded approaches, and leads to a simple, low overhead approach to implementa-
tion and low CPU utilization. Because of its low implementation costs, i.e. no inter-thread
message passing and no thread context-switch latencies, this simple approach is prefer-
able when all transactions can finish their processing before their respective deadlines. It
should be noticed that if the lowest-priority transaction is not schedulable under the single-
threaded executable, it will not be schedulable under a multi-threaded executable. The
single-threaded approach, however, ceases to be effective when a high-priority transaction
misses its deadline, due to “time-consuming” transitions within lower priority transactions.
To avoid these significant priority inversions for higher priority transactions, multi-threaded
configurations are used. In single-threaded ROOM executables, there is only one user
thread ! with all the actors assigned to it. Because there is only one user thread, we can

n practice, single-threaded ROOM models also contain system threads such as a timer and external layer
thread.

30

assign it a priority lower or higher than the priority of system threads. If we assign a higher
priority, the currently executing transaction within the user thread will block any system
thread including the timer thread, preventing any higher priority transaction from execut-
ing. However, if we assign a lower priority to the user thread than to any system thread, a
pending higher priority transaction will begin executing after the current transition runs to
completions. Accordingly, our first guideline suggests a possible thread priority assignment
for single-threaded ROOM models.

Guideline 1 In a single-threaded ROOM executable, the user thread (to which all actors
are assigned) should have a static priority which is lower than the priority of any system
thread,

Following this guideline implies that message send operations should never change the
priority of the feceiving thread, which is always constant. Also, within the context of a
single thread, the processing of messages takes place in message priority order under the
sole control of TargetRTS.

4.1.2 Multi-Threaded Executable

In a multi-threaded configuration, each actor is assigned to one of the application-defined
threads. Each thread then acts as a message handler for the associated actors. A thread may
then be preempted by another thread depending on thread priorities and the scheduling
algorithm of the underlying operating system. Threads are useful if a transition within a
lower priority transaction causes a higher priority transaction to miss its deadline e.g.. by
making a blocking call to external functions. Note however that a multi-threaded executable
has higher implementation costs and in some cases might be inferior to single-threaded
approaches. In particular, inter-thread message passing is an order of magnitude more
expensive than intra-thread message passing. Also, one must take into account the costs of
thread context-switch when considering multi-threaded executable performance. Because
of its higher implementation costs, it also leads to higher CPU utilization.

‘We mentioned in the introduction to this chapter that there are two kinds of priority-
based scheduling in ROOM models. This two-level priority scheduling can result in pri-
ority inversion or unnecessary preemption if thread priorities are not adequately defined.
As noted earlier, the transactions associated with external messages represent tasks in the
system and accordingly, external message priorities are the “real” application priorities.

31

Ideally (when there is no implementation cost), processing across the whole system should
be driven by the message priorities. Thread priorities, on the other hand, would then be the
artifacts of the implementation.

Static Thread Priorities

TargetRTS supplied by ObjecTime allows an application designer to define static thread
priorities (in addition to message priorities). This can lead to priority inversion or unnec-
essary preemption, since (in general) each actor, and hence each thread, may be processing
messages of different priorities. Still, many systems may be designed successfully, and
indeed are, with this capability. One way to use it effectively would be to design a system
such that the functionality of the system is partitioned into “control” actors (where most
message processing is non compute-intensive), and “data-processing” actors (where mes-
sage processing may be compute-intensive, but state machines are simple, and the actor
implements only one transaction) pai'ts. All control actors can then be mapped to a single
control thread, while other data processing actors may be mapped to separate threads to
allow preemption. Each data processing thread can be assigned a priority depending on the
time criticality of the function it implements. This implies that all messages associated with
an actor in the data processing thread have the same priority. The control thread can be as-
signed the priority of the highest or lowest message processed by the thread. If it is assigned
the priority of the highest priority message, then processing of a lower priority message, m;
with priority p(m;), by the thread may lead to priority inversion for transactions with prior-
ities p(m;) < P < p(thread). On the other hand, if it is assigned the priority of the lowest
message, then processing of a higher priority message m; with p(m;j) by the thread may
lead to unnecessary preemption by transactions with priorities p(thread) < P < p(m;).
Clearly, assigning the highest priority messages to the control thread is the wisest choice
and it may be acceptable if the aggregate low-priority workload in the control thread is not
large enough to cause missed transaction deadlines initiated by data processing actors. The
following guideline formalizes the above suggestions:

Guideline 2 In a multi-threaded ROOM executable with static thread priorities, each data
processing thread should be assigned the priority of the messages that it accepts, and the
control thread should be assigned the priority of the highest priority message to be pro-
cessed by this thread.

32

This guideline also implies that the message send operation should never change the
priority of the receiving thread. Because static thread priorities means no thread priority
changes, its implementation costs and consequently CPU utilization is lower in comparison
to dynamic thread priority assignment to be described in the next section.

Dynamic Thread Priorities

Lets begin by describing a system where a static thread priority approach fails to work. The
train tilting system presented in [SPFR98] is one such example. It may not be possible to
nicely separate the control and data processing functionalities into separate actors. Even
when it is possible, there may be sufficient low priority workload in the control thread that
can lead to missed transaction deadlines. This problem was identified in [SFR97], and it
was suggested that TargetRTS should automatically manage thread priorities to reflect
the priority of the messages to be processed by the thread. Thus, each thread can have a
dynamic priority which is immediately incremented whenever a higher priority message
arrives for one of the actors managed by the thread. Likewise, the priority of a thread can
be automatically adjusted to that of the highest priority queued message when the thread
finishes processing a message. Hence, we suggest that the thread priority should be a
dynamic attribute determined by the messages waiting to be handled, which is stated in the
following guideline:

Guideline 3 In a multi-threaded ROOM executable with dynamic thread priorities, a thread
priority should be equal to the highest priority pending message, including the message be-
ing currently processed, if any.

With a sufficient number of thread priorities, this scheme gives the advantage of pre-
emptability offered by multiple threads, without the problems of priority inversion as de-
scribed in the previous section. In fact, the application designer does not need to worry
about the thread priorities, as it is automatically taken care of by the run-time system. How-
ever, we should note that there is an overhead associated with dynamic priority changes,
and that this overhead must be accounted for during the timing and scheduling analysis of
ROOM multi-threaded executables with dynamic priority thread assignment.

33

4.2 Assigning Message Priorities

The previous discussion has presented guidelines based on the assumption that message
priorities are known. In reality, message priorities are themselves artifacts of ROOM and
more generally, real-time system design and should be derived in a systematic manner
from system requirements. Since system behavior and the timing constraints are described
in terms of transactions, we first assign priorities to transactions and then derive message
priorities. '

If we trace the sequence of transition actions triggered by an external message, we will
form a transaction tree. An example of the transaction tree is given in Figure 9 with each
directed path (branch) representing a ROOM transaction.

Legend:
O Transition actions 7a
— Messages
2 4a Sa
8a
1

Figure 9: ROOM Transaction Tree

Now we assign a priority to each transaction 2 according to its importance as defined in
the system requirements, i.e. an emergency transaction will get a higher priority than a data
logging transaction. Finally, each message within a transaction tree is assigned the dynamic
priority of the highest priority transaction to which this message belongs. Notice that this
dynamic message priority assignment allows the same message to be sent with different
priorities, according to different transactions the message belongs to. Also, looking at our
transaction tree in Figure 9, we can see that the messages triggered by transition actions 4a
and 4b belong to two different transactions, yet physically, i.e. within a ROOM model,

2A transaction priority must fall within the priority range of its transaction graph.

34

these messages may represent the same ROOM message. To assign message priorities
across the entire ROOM model, we must examine all transaction trees.

A number of factors must be considered in determining transaction priorities. First,
since scheduling occurs based on transaction priorities, they have a direct impact on re-
sponse times, and hence the respect of transaction deadlines. Thus, any assignment of
transaction priorities must take transaction deadlines or activation periods into considera-
tion. Since all the transactions within the same transaction tree have the same activation pe-
riod, we chose to assign rate-monotonic priorities to each transaction tree and correspond-
ing deadline-monotonic priorities to transactions within these transaction trees. Second,
transaction priorities should be assigned such that any unnecessary processing is avoided.
For example, in automobile cruise control, if the driver turns the cruise control off, the
closed loop control execution must be aborted. By assigning higher priority to the “Cruise-
Off” transaction (even though it has a “looser” deadline) we can abort the control loop
faster, and reduce the response time for the CruiseOff transaction.

4.3 Blocking due to Message Passing

The third source of blocking comes from priority inversion associated with access to shared
data structures. In the case of multi-threaded ROOM models, actors communicate via
inter-thread message passing mechanisms. The message passing itself requires the shar-
ing of message queues, and therefore, the processing associated with sending and receiv-
ing messages can incur unbounded blocking. Immediate Inheritance and Priority Ceiling
protocols [SRL90] can be used to bound the blocking time associated with such priority
inversion. We propose the use of a simpler Immediate Inheritance protocol and show that
using this protocol, such blocking may be bounded.

The protocol works as follows: let the ceiling priority of a message queue be the pri-
ority of the maximum priority transaction, i.e. of the highest priority message, that can
access it. When a thread accesses a message queue, its priority is raised to the level of the
ceiling priority. The priority returns to its previous value when the access is completed. In
addition to ensuring mutual exclusion (no explicit locks are needed), the protocol ensures
that a thread accessing its message queue can only be blocked once. In particular, when a
thread tries to access its message queue, a lower priority thread (having a static priority as-
signed according to Guideline 2 or inheriting its priority according to Guideline 3) may be

35

accessing the same message queue and executing with a ceiling priority of equal or higher
priority than the first thread. The thread will then have to wait for the lower priority thread
to finish before it may execute. Based on the above discussion, we suggest the following
implementation guideline for message passing using shared message queues.

Guideline 4 Each message queue should have a ceiling priority which is equal to the high-
est priority of transactions than may send messages to this queue. The send and receive
operations should be performed at the ceiling priority of the queue. No explicit locks are
needed in either the send or receive operation.

This guideline overrides Guidelines 2 and 3 in determining the priority at which the
send and receive operations are performed in a thread. Thus, the sender thread raises its
priority during a send operation when it accesses a queue with a higher ceiling priority.
Likewise, if a thread receives messages then it will execute at the ceiling priority of the
queue, and not at the static priority for the static thread priority assignment nor at the
priority of the highest priority pending message for the dynamic thread priority assignment.
Note that this priority change takes place when the actual message receive operation begins
and lasts until the receive operation completes. It is iportant to ensure that blocking due
to message passing is bounded, and this is presented as an explicit guideline.

Guideline § The execution time for the message send and receive operations must be less
than a specified bound determined by the time-scales of the timing constraints of the system.

4.4 Blocking due to Run-to-Completion Semantics

A final source of blocking is due to the run-to-completion semantics of ROOM models,
where the processing of a transition may be delayed if a previous transition within the
same thread has not finished. This blocking is inherent in ROOM execution semantics,
and therefore cannot be avoided. However, the scope of this blocking is limited to within
the actors mapped to the same thread, and equals the maximum of the processing times
associated with all of actor transitions over all of the actors. This is given as follows:

BRTC = max c;j : Thread(j) = Thread (i)

where BR7C denotes the blocking time due to run-to-completion for transition i and c;

denotes the execution time of transition j.

36

While it is impossible to completely eliminate run-to-completion blocking, it is possible
to minimize its adverse effects. Our next guideline makes explicit the rule with which
new functionality may be added to an actor, without affecting the schedulability of higher
priority transactions to which this actor is associated.

Guideline 6 For all of the actors within a thread, an upper bound on tolerable blocking
time must be specified and enforced so that the execution times of any transition within
these actors must not exceed this bound. If necessary, a transition may be divided into
multiple transitions to meet this bound.

Complementing the above guideline is the guideline about grouping actors into threads.
It is advantageous to have as few threads as possible since many computational resources
(e.g. message queues at the level of ROOM, thread execution stack) are allocated on a
per-thread basis and scheduler implementation costs (inter-thread message passing, thread
context-switch) are increased.

Guideline 7 Two actors may be safely assigned to the same thread if the transitions in
each actor associated with the lower priority transactions satisfy the blocking time bound
of the higher priority transactions in the other actor.

37

Chapter 5

Developing Canonical Scheduling
Models for ROOM

In Chapter 3, we presented an idealized scheduling equation for timer-driven schedulers
with the timer release jitter but without specifying other scheduler implementation costs,
such as the timer blocking penalty, task context-switch overhead or priority inversion for
the active task when lower priority tasks are being scheduled. In Chapter 2, we showed that
TargetRTS implements a timer-driven scheduler with the asynchronous TargetRTS
and OS timing services. In this chapter, we will present a generic resource scheduling
model for the scheduling analysis of single-threaded and multi-threaded ROOM executa-
bles that includes the common overhead and blocking costs of TargetRTS and the un-
derlying OS scheduler. Then we will develop a specific scheduling model for each exe-
cutable. The generic and canonical scheduling models are based on observations presented
in [SPFRY8].

5.1 Generic Resoﬁrce Scheduling Model

We let each transaction I'; with n transitions has the generic overhead cost O;, generic
blocking penalty B;, specific overhead for single- or multi-threaded ROOM executables
O:Peef¥e specific blocking penalty for single- or multi-threaded ROOM executables BSPecf
and total transaction execution time C; = 2",;'3'1 cx, Where cy is the worst case execution
time of the kth transition within the I'; transaction. Then, our generic resource scheduling
model for the worst case response time of transaction I'; scheduled by TargetRTS and

38

the underlying OS scheduler, is given by:

R;H-l =C;+0;+ o;flucific +Bi+ B.;pecific + Z [I;_:x -I . (Cj +0;+ O;peci fic) @
jehp(i) ! °J

where hp(i) denotes the set of transactions of higher priority than transaction I';. The above
equation is a simple extension of the scheduling equation [ABR*93] for a hybrid event-
and timer-driven scheduler. Notice that by replacing the execution time of each transaction
C; by C)j = Cj+ 0+ 0P/, by ignoring the blocking penalty B; and B7**/ and the
overhead costs O; and O;” ecific £or transaction I, the above equation reduces to the timer-
driven scheduling model presented in Chapter 3.

We mentioned in Chapter 4 that even a single-threaded ROOM executable contains two
additional threads: the timer thread and the external (interface) layer thread. In our generic
resource scheduling model, we will only include the implementation costs of the timer
thread, although implementation costs of the external layer thread can be easily added as
part of the blocking term. Before we can make precise the blocking and overhead terms
of equation 4, we must describe how the timer thread is implemented. In particular, it
controls a timer actor which implements the timing service provided by the ROOM virtual
machine. The timer actor receives a request for timing services sent through the timing
SAP to manage the timers set up by other actors. It blocks for the length of the shortest
timeout period or until a new timeout request is received. Upon return, it sends expired
timeout messages to the appropriate destination actors.

Thus, periodic activities can be implemented within any actor by setting a periodic timer
through the timing service. The system then delivers a timeout message once every
specified time period. For each periodic timeout, there are two messages: a timeout
message sent from the timer actor, and an informAt message sent to the timer actor.
Each informAt message contains the next timer expiration time, which is calculated
based on the previous expiration time and the period of the timer. In the remaining part of
this chapter, we will refer to the sending of the informAt message to the timer thread, the
context-switch to the timer thread, the processing of the informAt message by the timer
thread, and the context-switch back to the timeout requesting actor as timer re-arming.
Before re-arming, a check is made for missed timeouts (i.e. those timeouts whose expire
time has passed), and no messages are sent for the missed timeout intervals. A count of
these missed timeouts can be requested by the application.

Now let us define the following common implementation cost parameters of the single-

39

and multi-threaded ROOM executables.

1. Cimter—sena: It is an overhead associated with sending a message to an actor located in
a different thread and involves inserting a message into the destination actor’s thread

inbox queue.

2. ccs: This parameter is used to account for the context-switch overheads. We de-
fine the context-switch overhead to be the time it takes to change the priority of
a thread, suspend and save the hardware state (registers, stack-pointer, instruction-
pointer, page table pointers) of the running thread, select a new thread to run, load
the new thread’s saved hardware state, and then begin executing.

3. Crearm: This is a more coarse-grained parameter to associate with the entire overhead
of re-arming the timer. This overhead includes:

(a) The overhead of sending the informAt message to the timer
thread=cinter—send-

(b) The context-switch overhead to the timer thread=c_;.

(c) The processing associated with the informAt message in the timer
thread=cinformas-

(d) The context-switch overhead back to the timeout requesting actor=c;.

Because the timer actor runs in a separate thread, the timeout and informAt mes-
sage passing between the timer actor and any other actor, within a user-defined thread,
involves inter-thread sends. Also, to minimize the release jitter of the t imeout messages,
we run the timer thread at the highest priority and all of the informAt messages are sent
at the highest priority as well. On the other hand, the t imeout messages are sent at the
priority requested by the actor, which is in turn determined by the priority of its current

transaction.

5.1.1 Generic Overhead for Higher Priority Transactions

In this section, we specify the overhead term of equation 4 representing the generic transac-
tion implementation costs within single- and multi-threaded ROOM executables for higher
priority transactions. In particular, every time the timer expires for a higher priority trans-
action, a context-switch from the currently executing thread to the timer thread occurs, the

40

timer actor sends the timeout message to the appropriate actor, context-switch to this
actor (i.e. to the thread where the actor is located) occurs and finally the actor rearms the
timer. Thus, the generic implementation costs (O;) for each higher priority transaction
within a single- and multi-threaded ROOM executable can be calculated as follows:

o j = Cinter—send + Crearm + 2-Ces = 2 Cinter—send + 4 Ces + CinformAt

5.1.2 Generic Blocking

Now let us specify the blocking term of equation 4 representing the generic transaction
blocking penalty within single- and multi-threaded ROOM executables. The first source of
generic blocking for a transaction I'; comes from the ROOM run-to-completion semantics

and is given as follows:

BR’E‘%) = max c;: Thread(j) = Thread(init)

i

where B%((':.) denotes the blocking time due to run-to-completion semantics for the initial
transition within transaction I'; and c; denotes the worst case execution time of transition j.

The next source of generic blocking comes from the processing of timer expiration for
timers set for lower priority transactions. (This is because the timer expire activates the
timer thread, which runs at the highest priority in the system.) In particular, when the timer
expires for a lower priority transaction, a context-switch from the currently executing thread
to the timer thread occurs, the timer actor sends the t imeout message to the appropriate
actor and then there occurs another context-switch back to the original thread. We do
not take the re-arming of the timer into account, since the control must pass to the lower
priority transaction for that to occur. The timer re-arming will be accounted for as part of
the overhead for the currently executing transaction. Therefore, this generic blocking term

for a transaction I is given by the following equation:
B:irneaut = Z (Cinter—send + 2+ Ccs)
Jelp(i)

where !p(i) denotes the set of transactions of lower priority than transaction I';.
Finally, we must include the effect of timer blocking (Byimer) !, since the transaction’s
release may be delayed by the operating system due to the coarse granularity of its system

1The transaction release jitter overhead (Jumer) is a jitter effect caused by the timer thread processing
associated with the informAt message, and is included in our equations as the ¢jnformar term.

41

clock and the asynchronous nature of the TargetRTS timing service and the system clock.
Thus, the generic blocking penalty (B;) can be calculated as follows:
B; = BEITy + B + Brimer

ini

5.1.3 Generic Overhead

Finally, we specify the overhead term of equation 4 representing the generic implementa-
tion costs for currently executing transactions. This overhead includes sending a timeout
message from the timer thread and, as we mentioned before, timer re-arming.

O; = Cinter—send + Crearm = 2 * Cinter—send + 2 * Ces + CinformAt

5.2 Single-Threaded Executable

As we know the simplest way to implement a real-time system designed in ROOM is to
assign all user defined application actors to a single user thread. Before we define the
specific overhead and blocking terms for this model, we will present the reader with the
additional implementation cost occurring in the single-threaded ROOM executable.

1. Cimra—send: It is an overhead associated with sending a message to an actor within
the same thread and involves inserting the message into the thread message queues

according to the message priority without changing the thread’s priority.

5.2.1 Specific Overhead for Higher Priority Transactions

In this section we specify the overhead term of equation 4 representing the specific im-
plementation costs, within a single-threaded ROOM executable, for higher priority trans-
actions. Because all user defined actors are placed in one user defined thread, when a
higher priority transaction completes, there is no context-switching between threads. How-
ever, we have to account for delays associated with message passing between actors within
each transaction. Thus, the specific implementation costs (O ecifiy for each higher pri-
ority transaction I"; within a single-threaded ROOM executable is given by the following
equation:
O;PeCific = (size (M j) - 1) * Cintra—send

42

where M j = {mg,m;,...,ms_1} is the set of messages associated with each higher priority

transaction I ;.

'5.2.2 Specific Blocking

Here, we define the specific transaction blocking term within a single-threaded ROOM
executable. Because there is only one user thread, a transaction is blocked only once due to
run-to-completion semantics. In particular, when the transaction is released it can be only
preempted by a higher priority transaction and only after the currently executing transition
runs to completion. It is also possible that when a higher priority transaction is invoked,
a lower priority transaction is in the process of re-arming its timer. Therefore, the specific
blocking penalty (B:P*“/) for single-threaded ROOM executables is given by:

ecific
Bsp fie — Crearm = Cinter—send + 2 * Ccs =+ CinformAt

5.2.3 Specific Overhead

When we consider the specific overhead for currently executing transactions within a single-
threaded ROOM model, we only have to account for intra-thread message passing delays
between actors, as previously described for higher priority transactions.

O:Pecxfxc = (Size(Mi) —_ 1) * Cintra—send
where M; = {mp,m;,...,m,_1} is the set of messages associated with the current transac-

tion I';.

5.2.4 Canonical Scheduling Model

By combining all of the above specific implementation costs along with the generic im-
plementation costs presented in the previous section to the generic resource scheduling
model defined in equation 4, we obtain the following canonical scheduling model for the
single-threaded ROOM executable:

R:'H-l = C;+3-Cinter—send +4-Ccs+2- CinformAr + (Size(Mi) - 1) * Cintra—send

+ Bﬁut(z) + 2 (Cinter—send +2- Ces) + Btimer
Jjelp(i)

R?
(CJ +2- Cinter—send + 4 Ccs + Cinformar + (SIZe (M j) - 1) Cmtra—seﬁ)
| T

43

5.3 Multi-Threaded Executable

Based on our results for single-threaded ROOM executables, we now define the imple-
mentation costs specific to a multi-threaded ROOM model with dynamic thread priority
assignment, where according to guideline 3, thread priority will change so as to be equal to
the highest priority pending message.

5.3.1 Specific Overhead for Higher Priority Transactions

Let us specify the overhead term of equation 4 representing the specific implementation
costs within a multi-threaded ROOM executable with dynamic thread priority assignment
for higher priority transactions. In the worst case scenario, it is required that each user
defined actor is placed into a separate thread. In this configuration, each higher priority
transaction will undergo a thread context-switch when its processing is completed. Also,
we have to account for inter-thread message passing delays between actors within each
transaction. Thus, the specific implementation costs (077 ecificy for each higher priority
transaction I'j within a multi-threaded ROOM executable is given by the following equa-
tion:
O;pecific = Ccs+ (size(M) — 1) - Cinter—send

where Mj = {mp,m,...,m,_1} is the set of messages associated with each higher priority
transaction I';.

5.3.2 Specific Blocking

Let us also define the specific transaction blocking term within a multi-threaded ROOM
executable. Because in the worst case a ROOM model may consist of » threads corre-
sponding to n user defined actors, a higher priority transaction may be blocked by a lower
priority transaction each time a message is sent to another actor.

It is also possible that when a transaction is invoked, a lower priority transaction is in
the process of re-arming its timer. This blocking term is bounded by the processing time
(Crearm) associated with re-arming the timer thread as previously described.

Finally, there is also blocking due to shared access to message queues. The message
queues of each thread are accessed by other threads during inter-thread send operations.
Thus, blocking is incurred if a transaction is invoked when a lower priority transaction is

44

sending a message to the invoked transaction’s thread. We will refer to this blocking time as
Bf-" e Using the Immediate Inheritance Protocol [BW96], we access shared message queues
at the ceiling priority of the queue. This ensures that a higher priority transaction can be
blocked by either the timer re-arming or message queue access, but not both. Therefore,
the specific blocking penalty (B{P*“/) for multi-threaded ROOM executables is given by:
B.;'peci fie _ max(Crearm B‘MQ) + z B?TC
Jeall(i)A jiinit(i)
where BRTC denotes the blocking due to run-to-completion semantics for each transition I';,
except the initial transition triggered by the external (real world) message, of the current
transaction I';.

5.3.3 Specific Overhead

When we consider the specific overhead for currently executing transactions within a multi-
threaded ROOM model, we only have to account for inter-thread message passing delays

between actors.
O:fpec"f = (size(M;) — 1) - Cinter—send

where M; = {mgp,m,,...,mp—1} is the set of messages associated with the current transac-
tion I;.

5.3.4 Canonical Scheduling Model

Thus, the canonical scheduling model for multi-threaded ROOM executables with dynamic
thread priority assignment is given by the following equation:
R?'H = Ci+ (Size(Mi) + 1) * Cinter—send + 2 * Ces + CinformAt
+ z (Cinter—send + 2 Ces) + Btimer + z BI}TC +max(Crearm, valQ)

Jjetp(i) Jeall(i)
R? .
+ E [?l'-' ’ (Cj + (Slze(Mj) +1) - Cinser—send + 5 Ces + CinformAt) ©)
Jjehp(i) } °J

5.4 Validating Canonical Scheduling Models

In order to validate our canonical models, we have to estimate the implementation cost pa-
rameters defined in the two previous sections. We then have to use these canonical schedul-
ing models along with their estimated worst-case (maximum) implementation overheads to

45

predict the transaction response times of our sample ROOM models. We then compare the
predicted response times to the empirically measured results. All of our experiments were
performed on a Sun UltraSPARC-I work station, with a 167Hz clock and 128 MBytes of
main memory, running Solaris 2.5. All of our timing measurements were made using the
clock._gettime call provided by the real-time library of Solaris (the same call was used
in TargetRTS for the timing service). The overhead for the clock._gettime call was
measured to be between 3 and 4 microseconds ? The clock resolution, as provided by the
clock_getres function call, is 1 microsecond. The timer blocking term (Byimer) Was es-
timated to be as high as 10 milliseconds, according to the granularity of the system clock.
The measurements of other implementation cost parameters were as follows:

Overhead | Min Max Mean Std. Deviation
(usec) | (usec) | (msec) (usec)
Cintra—send | 19.848 | 25.708 | 20.368 0.844 (4.14%)
Cinter—send 106 | 141.368 | 120.619 | 7.301 (6.05%)
Ces 78.123 | 179.346 | 104.834 | 6.183 (5.90%)
Cinformar | 17.032 | 86.698 | 62.489 | 12.602 (20.17%)

Table 6: Implementation Overheads

Transition execution times of each transaction included in our sample ROOM models
were implemented with a spin loop, as given below, with the value of the loopCount
variable determined according to the desired transition execution time.

while (i<loopCount) {
j=6&i;
i++;

}

Using measurements, it was estimated that 10.3 loops were required for each microsecond
of execution time. Thus, for a task of 10ms or higher execution time, this resulted in less
than 1% difference in the actual measurement.

2The clock.gettime overhead was measured by inserting a time-stamp before and after this function
call,

54.1 First ROOM Model

In this section, we validate the canonical scheduling models using the set of periodic trans-
actions, as shown in Table 7, under the single- and multi-threaded ROOM executables. We
will assume that each periodic transaction is implemented using the ROOM timing service
and a periodic actor. The state machine of such a periodic actor is trivial and only responds
to timeout messages. When the timeout message arrives, the computation associated with
the periodic actor is performed on a single transition with the execution time equal to the
execution time of the corresponding transaction. In the multi-threaded configuration, each
periodic actor was identified as a data processing actor and was assigned to a separate
thread. We will further assume that the computation neither blocks nor sends a message to

another actor.

Single-Threaded Multi-Threaded

Transaction Ci T, Rlpredzcted R;neasured R ipredtcte? R;neasured
(ms) | (ms) | (ms) (ms) (ms) (ms)
I'y 5 50 44.402 21.687 19.581 9.744
I 8 50 46.902 28.583 28.347 12.940
I3 10 | 100 | 48.402 24.762 39.113 33.693
) 15 | 100 | 52.902 39.218 70.411 53.278
I's 25 | 200 | 52.402 61.635 96.177 85.808

Table 7: Transaction Specifications for the First ROOM Model

The above table shows that the measured multi-threaded worst-case response times
fall below the predicted multi-threaded worst-case response times as desired. The single-
threaded measurements are also consistent with the predicted single-threaded worst-case
response times, except the measurement for the I's transaction being approximately 9.2ms
larger than expected. This error was introduced by the TargetRTS timer jitter (approx-
imately 10ms), caused by missed “timeouts” due to the hardware interrupts such as net-
work, keyboard and mouse interrupts. The numbers also reveal the conservative nature of
the canonical scheduling models. The overestimation was found largely due to (a) over-
estimation of the timer blocking, and (b) overestimated implementation overheads 3. The

3When two transactions are released at the same time, the full overheads of the informAt message process-
ing are not applicable. This is because the timer thread processes all of the expired timeouts when it wakes

up.

47

measured and predicted results also reveal smaller processor utilization and longer response
times of higher priority transactions within the single-threaded ROOM model than within
the multi-threaded ROOM model.

5.4.2 Second ROOM Model

The transition and transaction specifications for the second validating model are shown
in Tables 8 and 9. Here, we will assume that each periodic transaction is implemented
using the ROOM timing service and two actors. The first actor responds to five timeout
messages (each with a different period), it executes transition T; and sends a message to
the appropriate second actor which executes its single transition. In the multi-threaded
configuration, actor; was identified as a control actor, while others were identified as data
processing actors; each actor was then assigned to a separate thread. The following ROOM
model also assumes no transition blocking.

Transition | c;(ms) | Actor;
T1 4 1
() 1 2
13 4 3
T4 6 4
T5 11 S
Ts 21 6

Table 8: Transition Specifications for the Second ROOM Model

Single-Threaded Multi-Threaded
Transaction C; T; R fredzcted R;neasured R fredzcted R;neasured

(ms) (ms) (ms) (ms) (ms) (ms)

| ¥ S(c1+¢2) | 50 23.428 21.255 23.863 25.247

Iz 8(c1+c3) 93 32.015 37.256 32.770 32.435

I3 10(c1+c4) | 100 | 42.602 25.338 43.677 32.610

| 15(c1+cs) | 100 | 64.276 39.801 65.991 47.621

Ts 25(c1+c6) | 200 | 85.863 64.256 87.898 78.363

Table 9: Transaction Specifications for the Second ROOM Model

48

The results obtained from the second ROOM model also show that the measured single-
threaded and multi-threaded worst-case transaction response times fall below the predicted
worst-case response times, as desired. As previously, some measured response times are
larger than expected due to the TargetRTS timer jitter of approximately 10ms not being
included in our canonical scheduling models. The overestimation of other predicted results
was found largely due to (a) overestimation of the timer blocking, (b) overestimated im-
plementation overheads, and (c) overestimated preemption of lower priority transactions
within the single-threaded ROOM executable 4. Because of the overestimated preemp-
tion of lower priority transactions within single-threaded ROOM executables, the predicted
response times for single- and multi-threaded executables vary largely due to the time dif-
ferences between intra- and inter-message passing mechanisms. However, the measured re-
sponse times for single- and multi-threaded ROOM executables still reveal smaller proces-
sor utilization and longer response times of higher priority transactions within the single-
threaded ROOM model than within the multi-threaded ROOM model.

“The single-threaded canonical model assumes that lower priority transactions can be preempted at any
time during their execution, but in reality they are only preempted during their message passing time intervals.

49

Chapter 6

Case Study of Automobile Cruise

Control

To illustrate the concepts developed earlier in this thesis, we will use a variant of an
automobile cruise control system, presented in [SFR97]. Here, we assume that the cur-
rent automobile speed is readily available within the Speedometer actor. In [SFR97],
the current automobile speed was calculated from an external interrupt event gener-
ated by the engine drive shaft. We also modified the behavior of the system under
driver control. In particular, our ManualControl state contains the Accelerating,
Braking and ReadytoCruise states; also the automobile cruise control can switch
to state AutomaticControl whenever the driver shifts the cruise control lever to
either the cruise or resume position while neither the brake nor the accelerator ped-
als are pressed. In [SFR97], the ManualControl state contained the Initial,
Accelerating, NotBraking and Braking states and the cruise control was
switched to AutomaticControl when the driver shifted the cruise control lever to either
the cruise or resume position when the brake pedal was not pressed, or the driver shifted
the cruise control level to the cruise position when the car was started, or he released the
accelerator pedal in the Accelerating state.

Automobile cruise control is a well studied example which has been used to illustrate
real-time designed methods such as Octopus [AKZ96], ADARTS and CODARTS [Gom93].
In order to keep the example manageable, we have selected only a subset of its functional-
ity. The cruise control system presented here includes simple closed-loop control behavior
(maintaining automobile speed at a desired cruising speed), and responds to external events

50

triggered by the driver (e.g. engaging the cruise control, pressing the brake, etc.). Thus, it
includes both time- and event-driven behaviors.

The primary function of the cruise control system is to perform automated speed con-
trol, which is achieved through a closed-loop feedback control system. The loop is initiated
whenever the driver enables the cruise control and it used to maintain the speed of the car
at the desired cruising speed. The closed-loop is also used to accelerate or decelerate to a
memorized cruising speed and it is initiated whenever the driver engages the cruise control
system. In either case, the closed-loop control is triggered by a periodic timeout mes-
sage. The closed-loop processing involves determining the current speed of the car and
updating the engine throttle value based on the current and desired speed. A subsidiary
function keeps track of the current speed of the car, and continually updates the speedome-
ter display. In addition to maintaining the speed of the car, the system must respond to
real-world events triggered by the driver.

6.1 Structural Model

‘We have created a ROOM model by first developing actors that serve as hardware wrappers
for the input and output devices. The main functionality of the system is embodied in the
CruiseControl actor. The structural model of the ROOM automobile cruise control
system is shown in Figure 101, As can be seen in the figure, the CruiseControl actor
interacts with all of the other actors through its interfaces. We have not shown the inter-
action of the system with with the external world, which is done through the timer SAP
using the timing service provided by the ROOM virtual machine. Although the interaction
of actors with the external world does not differ depending on the time- or event-driven be-
havior, the way in which these services are set up is different. In particular, the event-driven
behavior is specified through an interrupt file 2 and the time-driven behavior is simply ini-
tiated by a time-driven actor. Also, we will assume that the ROOM virtual machine will
handle all interrupts correctly and send them as messages to the hardware wrappers.

lcruiseControl actor encapsulates all of the other automobile cruise control actors.
2The interrupt file specifies time stamps of interrupts for each event-driven actor.

51

accelPort

speedometerPort

throttlePort speedometerPort

Figure 10: Cruise Control Structural Model

6.2 Behavioral Model

Because the response of the system depends on its internal state, i.e. when the system
receives a “break” event it could be in the process of maintaining the speed of the car at
the desired cruising speed or accelerating/decelerating to the memorized cruising speed,
the system behavior can be most easily specified with a finite state machine model. We
divided the behavior of the ROOM automobile cruise control actors into two groups: data-
processing and control actors. As we know from Chapter 4, the data processing actors
have compute-intensive message processing and simple state machines (each actor usually
accepts only one type of transaction), while control actors have non compute-intensive mes-
sage processing with more complex state machines. The Accelerator,Brake, Lever,
Speedometer and Throttle actors belong to the first group, while CruiseControl

belongs to the second group.

6.2.1 Description of Data Processing Actors

The behavior of these actors is very simple as shown in Figure 11. The brake, accelerator,
and the lever actors have only a single state. They receive a timeout message from the
underlying ROOM virtual machine when an interrupt is generated for the corresponding

52

device. For example, the brake actor sends a brakePressed or brakeReleased
message to the cruise control actor, depending on the event which occurred. These actors
are responsible for passing the appropriate message to the CruiseControl actor and
they are redundant in our system since their role is to simply relay the messages received
from the underlying ROOM virtual machine. However, in the context of a larger system
which may include an anti-lock brake system, they may be necessary and may incorporate
additional functionality. '

Figure 11: Accelerator, Brake and Lever Actor Behavior

As shown in Figure 12, the Throttle actor has a single input port on which it receives
a throttleValue message from the cruise control actor, and sends an update throttle
command to the throttle device.

@) throttleValue \

init

\ End)

Figure 12: Throttle Actor Behavior

The Speedometer actor is responsible for providing the current speed of the auto-
mobile to the closed-loop feedback control; see Figure 13. It receives a speedRequest

53

message from the cruise control actor, and returns the current speed of the automobile in a
speedValue message. Its behavior is not state dependent, and it includes a single state.
For clarity we assume that the current automobile speed is always readily available within
the Speedometer actor. In reality, we have to calculate the current speed from an exter-
nal interrupt event generated by the engine drive shaft. This new speed is then sent to the
external speedometer device.

(D speedRequest
it [

Figure 13: Speedometer Actor Behavior

6.2.2 Description of the Cruise Control Actor

The cruise control actor synchronizes cruise control system activities which are initially
triggered by the arrival of an external event, i.e. brake is pressed, accelerator is released,
cruise control is engaged, etc. The behavior of the cruise control actor is specified with a
hierarchical state machine.

Top Level Behavior of the Cruise Control actor

At the top level, the cruise control behavior is characterized by a hierarchical state machine
with two composite states: the ManualControl state specifying the manual (driver)
automobile control, and the AutomaticControl state specifying the automatic control
of the car. Figure 14 depicts the transitions between the two states. As can be seen, the
system initially starts in the ManualControl state, and the speed of the car is under the
driver’s control. The cruise control system is switched to the AutomaticControl state
whenever the driver shifts the cruise control lever to either the cruise or resume position
while neither the brake nor the accelerator pedals are pressed. On the other hand, the

54

automatic control of the vehicle can be disabled by the driver, whenever he presses the
brake or accelerator pedal, or explicitly turns the cruise control off.

(D accelPressed \

Init

cruise

timeout lg ManvalControl

. brakePressed J

Figure 14: Top-Level Behavior of Cruise Control Actor

Automatic Control Behavior

Figure 15 shows the top level of the hierarchical state machine for the behavior of the
car under automatic control. In particular, the Automatic state encompasses two other
composite states: the Resuming and Cruising state.

In the Resuming state, depicted in Figure 16, the car automatically accelerates or
decelerates to the last memorized cruising speed, and then switches to the Cruising
state, in which the desired cruising speed is maintained. The decomposition of these states
is similar and performs the operation of the closed-loop feedback control, triggered by a

periodic t imeout message.

Manual Control Behavior

In the ManualControl state, the speed of the car is under driver control, and the closed-
loop for the cruise control is inactive. We assume that the periodic timers necessary
for the closed-loop control operation are turned off when the cruise control leaves the
AutomaticControl state. The ManualControl state is decomposed into a num-
ber of sub-states, such as Accelerating, Braking and ReadytoCruise, to keep
track of whether the driver is accelerating, braking or the cruise control is ready to enter the

55

accelPressed

‘ brakePressed ‘

Figure 15: Automatic Control Behavior of Cruise Control Actor

speedValue

true

timeout

F

-
\ notReachedCruising reachéedCruising

Figure 16: Resume Cruising Control Behavior

56

AutomaticControl state. Figure 17 shows the state machine describing the behavior
of the system under driver control.

accelPressed

O

accelReleased

(o

timeout accelPressed
brakePressed
e
resume
tlmeout brakeReleased

brakePressed
~_resume

Figure 17: Manual Control Behavior of Cruise Control Actor

6.3 Transactions and Timing Constraints

During the cruise control operation, a number of transactions which we listed in Table 10
along with their timing constraints, take place. A description of these transactions is given
below.

6.3.1 Closed-Loop Feedback Control

There are two transactions (i.e. the CruiseControl actor is in the Cruising state
or it is in the Resuming state) that perform the closed-loop feedback control operation.
Because their behavior and requirements are identical, we grouped them together under
a single ControlLoop transaction. This transaction has an activation period of 100ms,
and a deadline of 100ms. It takes place when the system is in AutomaticControl state.
Figure 18 illustrates the message passing sequence for such a transaction. The transaction
is triggered by a periodic timeout message sent to the CruiseControl actor from

57

Transaction Stimulus Period | Deadline
ControlLoop (CL) timeout 100ms | 100ms
EnterCruise (EC) cruise - 200ms

ResumeCruise (RC) resume - 200ms
CruiseReached (CR) | speedReached - 200ms
BrakePressed (BP) | brakePressed - 50ms
AccelPressed (AP) | accelPressed - 50ms

CruiseOff (CO) cruiseOff - 150ms

Table 10: Description of Automobile Cruise Control Transactions

the timing service. The CruiseControl actor sends a speedRequest message to the
Speedometer actor, which returns the current speed in a speedValue message. The
CruiseControl actor then computes the throttle value by applying the control law, and
sends a throttleValue message to the Throttle actor, which outputs the updated
value to the external device.

msc ControllL.oop

Timer CruiseControl Speedometer Throttle
I 1 L | 1 | | L |
 WaitTimer » < Ready > Ready
timeout >

speedRequest _

24 Ready >
et

speedValue
throttieValue

throttle

 WaitTimer > { Ready >

] “ |

Figure 18: Message Sequence Chart for ControlLoop Transaction

58

6.3.2 Entering and Preparing for Automatic Cruise Control

As in the previous section, there are two transactions that mark a state change from the
ManualControl to AutomaticControl state, and they have similar behavior and
characteristics. In particular, when the lever is set to the cruise position and neither brake
nor accelerator pedals are pressed, a cruise message is sent to the CruiseControl
actor that triggers a transition to the AutomaticControl.Cruising.Ready state
and sends a message to the Speedometer actor to get the current speed. When the
speed value is returned, the CruiseControl actor updates the throttle device, the trans-
action is completed and we say that the cruise control is active. On the other hand,
when the lever is set to the resume position and neither brake nor accelerator pedals are
pressed, a resume message is set to the CruiseControl actor that triggers a transi-
tion to the AutomaticControl.Resuming.Ready state. Then, the following se-
quence of events is identical to the previous transaction until a cruising speed is reached.
When the cruising speed is reached, the automobile cruise control changes its state to
AutomaticControl.Cruising where it continues to execute the closed-loop con-
trol. All of these transactions are aperiodic, and therefore no activation rate is specified.
The deadline for these transactions is 200ms. Figure 19 depicts the message sequence chart
for the EnterCruise (EC) transaction.

6.3.3 Exiting Automatic Cruise Control

Finally, there are several transactions associated with leaving the AutomaticControl
state and entering the ManualControl state. These transactions are triggered by press-
ing the brake or accelerator pedal, or by switching the cruise control lever to the off
position. For example, the BrakePressed transaction, triggered by a brakePressed
message sent to the Brake actor, takes the CruiseControl actor out of the
AutomaticControl and into ManualControl state which marks the end of the
transaction, since the automobile speed is no longer under automatic control. All of these
transactions are aperiodic and have no specified arrival time. The deadline for the Brake-
Pressed transaction is very small and equals SOms, since it should reflect an urgent end
to the cruise control. The deadline for the transaction arising from the accelerator being
pressed is 100ms, since it is less urgent than the previous one. The CruiseOff transaction

59

CruiseControl

msc¢ EnterCruise

Speedometer

Throttle

al

| |

|1

cruise

speedRequest >l

< speedValue

throttleVaiue

| |]
{ReadyToCruise» < Ready > Ready

{ WaitTimer >

]
€ Ready >

:Ready:
& . |

throttle

Figure 19: Message Sequence Chart for EnterCruise Transaction

deadline was set at 150ms. Figure 20 depicts the message sequence chart for the Brake-

Pressed (BP) transaction.

6.4 Schedulability Analysis

In this section, we will further validate the ROOM canonical models developed in Chapter 5
on a real-life system using our automobile cruise control example. To perform the timing
and scheduling analysis, we will use the worst-case computation times of each transition

as presented in Table 11.

CruiseControl

Speedometer

Other Actors

Ctimeow = 2mS

CspeedRequest = 3ms

Cx = 2ms

CspeedValue = 10ms

Cx = Sms

Table 11: Transition Computation Times

60

msc ExitCruise

Brake CruiseControl

|
Ready > < WaliTimer >

brake -

brakePressed >
< Ready > < Braking >
* *

Figure 20: Message Sequence Chart for BrakePressed Transaction

Since the processing of the speedValue transition requires control law calculation, it
is assigned a high execution time of 10ms. All other processing in the CruiseControl
actor is given Sms computation time, since it may involve either starting or revoking the
cruise control’s periodic timer. The execution time of the speedRequest transition in
the Speedometer actor is assigned 3ms, since it involves speed calculation. An upper
bound of 2ms is placed on all other transitions.

The transaction graph priorities are initially assigned in a rate-monotonic manner. Also,
since there are no disjunctive transitions in our ROOM model of the automobile cruise
control (each external message initiates a unique transaction), the transactions are as-
signed the priorities of their transaction graphs. Then, since the transactions that exit the
AutomaticControl state (BP, AP and CO) terminate the closed-loop control trans-
actions (CL), we raise their priorities above the priority of the CL transaction. Message
priorities are assigned in accordance with the discussion in Section 4.2. Final transaction
priorities are shown in Table 12.

In the multi-threaded ROOM configuration, the CruiseControl actor was identi-
fied as a control actor and was assigned to a control thread; the Accelerator, Brake,
Lever, Speedometer and Throttle actors were identified as data processing actors

and assigned to separate data processing threads.

61

6.4.1 Response Time Analysis

We now proceed with the response time analysis of all of the transactions within our au-
tomobile cruise control system. In the computing of the blocking and interference terms
from other transactions, we take into account the enabling conditions for a transaction. '
For example, although the EnterCruise (EC) and ResumeCruise (RC) transactions which
mark entry into the AutomaticControl state are lower priority than the ControlLoop
transaction (CL), they can not be preempted by CL. Since the CL transaction is initiated
by either EC or RC, it is only active in the AutomaticControl state and it can not be
invoked while the EC or RC transaction executes.

TargetRTS and the underlying operating system (OS) implementation overheads
were measured in Chapter 5 and will be directly used in the timing and scheduling analysis
of the ROOM model of our cruise control system.

Closed-Loop Feedback Control. Let us turn our attention to the ControlLoop (CL) trans-
action. Although the BrakePressed (BP), AccelPressed (AP), and CruiseOff (CO)
transactions have higher priority than CL, we do not need to consider their preemp-
tion effect, since any of those transactions terminates the CL transaction. There are
four transitions in the CL transaction as shown in Figure 18 with the worst-case exe-
cution times (specified in Table 12) of 2ms, 3ms, 10ms and 2ms respectively.

Entering and Preparing for Automatic Cruise Control. The EnterCruise (EC) and Re-
sumeCruise (RC) transactions have identical behavior. They contain five transitions
as shown in Figure 19 with the bounded execution times of 2ms, Sms, 3ms, 10ms
and 2ms respectively. The CruiseReached (CR) transaction contains five transi-
tions of which the first transition cancels the cruise control’s periodic timer in the
Resuming state, and the second transition starts the cruise control’s periodic timer
in the Cruising state. The remaining three transitions are identical to those of EC
and RC. All of the above transactions are not preempted by any other transaction
within our ROOM model.

Exiting Automatic Cruise Control. Finally, we look at the transactions (BP, AP and CO)
that exit the AutomaticControl state. Each of them contains two transitions as
shown in Figure 20 with the worst-case execution times of 2ms and 5ms. As before,
the BP, AP and CO transactions are not preempted by other transactions within the
ROOM model of the automobile cruise control system.

62

Single-Threaded Multi-Threaded
Transaction C; T; | P | RP"e¥@ | Rmeasured | ppredicted | pmeasured
(ms) (ms) (ms) (ms) (ms) (ms)
ControlLoop 17 2+3+10+2) 100 | 3 { 28.392 20.912 28.739 20.864
EnterCruise | 22 2+5+3+10+2) | 200 | 4 | 33.418 24.511 33.880 31.815
ResumeCruise | 22 (2+5+3+10+2) | 200 | 4 | 33.418 33.128 33.880 30.984
CruiseReached | 25 (5+5+3+10+2) | 200 | 4 | 26.418 25.234 26.880 26.462
BrakePressed 7 (2+5) SO [1| 29.840 17.013 29.956 16.654
AccelPressed 7 (2+5) 50 | 1] 29.840 10.506 29.956 12.581
CruiseOff 7 (2+5) 150 | 2 | 28.840 9.482 28.956 17.584

Table 12: Specifications of Automobile Cruise Control Transactions

Since all of the measured worst-case transaction response times fall below the predicted
response times, the response time analysis of our automobile cruise control example further
validates the canonical scheduling models developed in Section 5. Note that the cruise con-
trol transactions are not preempted by higher priority transactions, and they are subjected to
the same blocking intervals within a single- and multi-threaded executable. Consequently,
the predicted response times for the single- and multi-threaded executables only vary due
to the time differences between intra- and inter-message passing delays.

The most accurate response was measured for the CruiseReached transaction,
since the response time analysis for this transaction does not introduce the TargetRTS
timer blocking term (Bsimer) 3. To calculate other predicted response times the timer
blocking term of 10ms was used. The least accurate response was measured for the
BrakePressed, AccelPressed and CruiseOff transactions due to their possible
run-to-completion blocking of 10ms within the CruiseControl actor. When the mea-
surements were taken none of these transactions was blocked by the speedVvalue transi-

tion of the CruiseControl actor.

6.4.2 Discussion

As the cruise control example illustrates, once the priorities are assigned to transactions,
it is relatively easy to apply ROOM canonical scheduling models to determine temporal
behavior of any single- and multi-threaded ROOM executable. The biggest difficulty we

3The CruiseReached transaction is invoked as a consequence of the ResumeCruise transaction
without introducing its own release timer.

63

encountered during the timing and scheduling analysis of the cruise control system, was
to determine the time critical transactions that should be considered. Another challenge
was to accurately compute the blocking and interference terms from other transactions
such that transaction state dependent behavior would be taken into consideration. This
process can get tedious in a complex system with large numbers of transactions. Also,
we believe that it is virtually impossible to fully automate this process without an external
feedback from a designer. One solution is to use a conservative approach where all higher
priority transactions always preempt a lower priority transaction and where the run-to-
completion blocking always occurs for a higher priority transaction, but this may yield
very pessimistic results. We believe that a good tool support is needed to assign appropriate
priorities to transactions and to accurately compute the blocking and interference terms for
each transaction.

64

Chapter 7
Conclusions

In this thesis, we developed guidelines for single- and multi-threaded ROOM executables
along with generic and canonical scheduling models for them, which were first validated
and then used to perform timing and scheduling analyses of a real-time ROOM model
of an automobile cruise control system characterized by both time-driven (periodic) and
event-driven (reactive) behaviors.

7.1 Thesis Summary

In Chapter 1, we provided motivation for the development of the timing and scheduling
analysis of real-time object oriented models. In particular, we identified problems asso-
ciated with the development of real-time embedded control applications and presented a
ROOM methodology which addresses these problems, so long as the appropriated schedu-
lability techniques are available.

In Chapter 2, we provided an overview of the ROOM methodology and the ObjecTime
toolset and listed their relative strengths for the development of real-time embedded control
systems. The chapter also defines ROOM transactions.

Chapter 3 presented an overview of three timing and scheduling analysis methods, fol-
lowed by a comparison of their time and space complexity results. We then selected a
suitable scheduling analysis method for ROOM models.

In Chapter 4, we developed guidelines for applying the real-time scheduling theory pre-
sented in the previous chapter to ROOM models. We described single- and multi-threaded

65

implementations of ROOM models and we compared their relative strengths and weak-
nesses. For each implementation, a guideline was formulated which specified a suitable
thread priority assignment. We also defined a guideline for desirable message priority as-
signment and two guidelines for bounding priority inversions of ROOM transactions.

In Chapter 5, we developed generic and canonical scheduling models for single- and
multi-threaded ROOM executables that included the the overhead and blocking costs of
TargetRTS and the underlying real-time operating system (RTOS) scheduler. Then we
validated our canonical models through measurements.

Chapter 6 illustrated the concepts developed in earlier chapters using a ROOM model of
an automobile cruise control system. The chapter provided an overview of the model, spec-
ified its time-critical transactions, and presented schedulability analysis results for these
transactions.

7.2 Future Work

With the help of the design and implementation guidelines presented here, along with ac-
curate ROOM canonical resource scheduling models, it is possible to easily determine tem-
poral behavior of embedded control applications developed with the ROOM methodology
and ObjecTime’s target run-time system (TargetRTS). To extend the results presented
in this thesis, several other areas deserve further investigation. They can be divided into
theory issues and CASE tool extensions and are listed as follows:

1. Theory issues

(a) Extending canonical scheduling models to handle distributed ROOM models,
where the message passing mechanism is implemented using a real-time net-
work and dedicated message-passing protocols.

(b) Investigation of dynamic priority algorithms for ROOM transactions. In this
thesis, we only examined fixed priority scheduling of transactions, thus fur-
ther investigation of other priority algorithms, e.g. earliest deadline scheduling,
would require a comparison between the fixed priority and dynamic priority al-
gorithms, development of new guidelines and new canonical scheduling models

for dynamic priority algorithms.

66

(c) The assignment of actors to threads in multi-threaded executables merits more
careful investigation. Here, we specified just one possible actor-thread assign-
ment for multi-threaded executables with easily distinguished control and data
processing actors, where all the control actors are mapped to a single control
thread and other data processing actors are mapped to separate threads. How-
ever, other multi-threaded ROOM models with different actor-thread configu-
rations might offer better performance.

2. CASE tool extensions

(a) Embedding support for the timing and scheduling analysis within the Objec-
Time toolset.

(b) Features to help the designer identify time-critical transactions to be considered
in the response time analysis, assign appropriate priorities to these transactions,
and accurately compute the blocking and interference terms for each transac-
tion.

(c) Changes to the TargetRTS system service to eliminate re-arming by properly
implementing a periodic timer service.

67

Bibliography

[ABR+93] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings. Apply-

[AKZ96]

[BAL97]

[BCL91]

[BCM90]

[Boa93]

[Bry86]

[BS89]

ing new scheduling theory to static priority preemptive scheduling. Software
Engineering Journal, pages 284-292, 1993.

M. Awad, J. Kuusela, and J. Ziegler. Object-Oriented Technology for Real-
Time Systems: A Practical Approach using OMT and Fusion. Prentice Hall,
1996.

H. Ben-Abdallah and S. Leue. Expressing and analyzing timing constraints in
message sequence chart specifications. Technical report, University of Water-
loo, Dept. of Electrical and Computer Engineering, April 1997.

J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic model checking with parti-
tioned transition relation. In A. Halaas and P.B. Denyer, editors, International
Conference on Very Large Scale Integration, August 1991. Winner of the Sid-
ney Michaelson Best Paper Award.

JR. Burch, E.M. Clarke, and K.L. McMillan. Symbolic model checking:
1020 states and beyond. In IEEE Symposium on Logic in Computer Science,
Philadelphia, June 1990.

M. Boasson. Control systems software. IEEE Transactions on Automatic Con-
trol, 38(7):1094-1106, July 1993.

R.E. Bryant. Graph-based algorithms for boolean function manipulation. JEEE
Transactions on Computers, C-35(8), 1986.

T.P. Baker and A. Shaw. The cyclic executive model and ada. Journal of Real-
Time Systems, 1(1):7-25, June 1989,

68

[BW96]

[CCM96]

[Fre98]

[GF96]

[Gom93]

[Har87]

[HG96]

[Int94]

[JP86]

[Kat94]

[KRP+93]

A. Burmns and A. Wellings. Advanced fixed priority scheduling. In Real-time
Systems: Specification, Verification and Analysis, pages 32-65. Prentice Hall,
1996.

S. Campos, E.M. Clarke, and M. Minea. Analysis of real-time systems using
symbolic techniques. In Formal Methods for Real-Time Computing. John Wiley
& Sons, 1996.

P. Freedman. Investigating the suitability of ObjecTime for the software devel-
opment of embedded control systems. In ObjecTime Workshop on Research in
Real-Time Object-Oriented Modeling. ObjecTime Limited, January 1998.

D. Gaudreau and P. Freedman. Temporal analysis and object-oriented real-time
software development: a case study with ROOM/ObjecTime. In IEEE Real-
Time Technology and Applications Symposium, Brookline, Massachusetts, June
1996.

H. Gomaa. Software Design Methods for Concurrent and Real-Time Systems.
Addison-Wesley Publishing Company, 1993.

D. Harel. Statecharts: A visual approach to complex systems. Science of
Computer Programming, 8, August 1987.

D. Harel and E. Gery. Executable object modeling with statecharts. In
ACM/IEEE 18th International Conference on Software Engineering, 1996.

International Telecommunication Union. Message sequence charts standard
(Z.120) reference, 1994.

M. Joseph and P. Pandya. Finding response times in a real-time system. Com-
puter Journal (British Computer Society), 29(5):390-395, 1986.

D. Katcher. Engineering and Analysis of Real-Time Operating Systems. PhD
thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, August 1994.

M.H. Klein, T. Ralya, B. Pollak, R. Obenza, and M.G. Harbour. A Prac-
titioner’s Handbook for Real-Time Analysis. Kluwer Academic Publishers,
1993,

69

[LL73]

[Loc92]

[LSD87]

[McM92]

[Obj97]

[Sel95]

[Sel96]

[SFR97]

[SGW94]

[SPFR98]

[SR98]

C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the Association for Computing
Machinery, 20(1):46-61, January 1973.

C. Douglas Locke. Software architectures for hard real-time applications:
Cyclic executives vs. fixed priority executives. Journal of Real-Time Systems,
4(1):37-53, March 1992.

J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm:
Exact characterization and average case behavior. In IEEE Real-Time Systems
Symposium, San Jose, CA, December 1987.

K.L. McMillan. The SMV system - DRAFT. Carnegie-Mellon University,
February 1992.

ObjecTime Limited, Kanata, Ontario. MicroRTS Guide - Product Release 5.0,
March 1997. ‘

B. Selic. Periodic tasks in ROOM. In Workshop on Object-Oriented Real-Time
Systems, October 1995.

B. Selic. Tutorial: Real-time object-oriented modeling (ROOM). In JEEE Real-
Time Technology and Applications Symposium, Brookline, Massachusetts, June
1996.

M. Saksena, P. Freedman, and P. Rodziewicz. Guidelines for automated imple-
mentation of executable object oriented models for real-time embedded control
systems. In IEEE Real-Time Systems Symposium, San Francisco, December
1997. '

B. Selic, G. Gullekson, and P.T. Ward. Real-Time Object Oriented Modeling.
John Wiley & Sons, 1994.

M. Saksena, A. Ptak, P. Freedman, and P. Rodziewicz. Schedulability analysis
for automated implementations of real-time object-oriented models. In IEEE
Real-Time Systems Symposium, Madrid, December 1998.

B. Selic and J. Rumbaugh. Using UML for modeling complex real-time sys-
tems. Available from www.objectime.com/uml/index.html, March 1998.

70

[SRL90] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: An
approach to real-time synchronization. IEEE Transactions on Computers,
39(9):1175-1185, September 1990.

[SW96] B. Selic and P. Ward. The challenges of real-time software design. Embedded
Systems Programming, pages 66—82, October 1996.

71

