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ABSTRACT

Semi-classical and Envelope Methods in Quantum Mechanics

J. Paul Duarte

The nature and quality of Schrédinger-eigenvalue
approximations obtained by the JWKB method are explored.
The relation between JWKB and the method of potential
envelopes is studied. The interesting connection between
the large-N approximation and the potential envelope method
is reviewed. Both the JWKB approximation and the method of
potential envelopes are employed to explore the bound state
spectrum of a single particle in the potential
v(r) = g + %e'hr, ¥ < B. These approximate energies are
compared with eigenvalues computed numerically by a
finite-element method, and also with the results of an

independent variational calculation.
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INTRODUCTION

The physics of the 1last few centuries has been
dominated by the mathematical construct Xknown as the
differential equation. 1In every field of modern physics one
encounters equations which often can best be expressed in
the language of the differential calculus. However, just as
equations in differential form are ubiquitous, exact
solutions of such equations are rare.

Of particular interest are differential equations of
the second order with variable coefficients, of the form

Q_% + p(x)gﬂ + g(x)y =0.
dx

dx

Such equations possess exact solutions only if p and g are
selected from a very small number of standard cases. A
special case of this general form occurs in nonrelativistic
quantum mechanics, and is known as the Schrodinger equation.

The time-independent version is given by

2 2
{— o4, V(x)}w(x) = ey (x).
2m dx

This eigenvalue equation describes the spatial

configuration of a stationary state. Yet, the Schrodinger
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equation can only be solved exactly for a small number of
potentials V. Of course, with the advent of the digital
computer numerical solutions can always be obtained.
However, it is sometimes desirable to have at our disposal
analytical methods of approximating the solutions. often,
only the energy levels & of the state of the system in
question are required and many approximation techniques have
been developed to nandle Jjust this problem. Two such
approaches are: the method of potential envelopes and the
JWKB approximation. The method of potential envelopes
provides bounds to the eigenvalues for a given potential.

In 1986 R.L. Hall'V

showed that these bounds can be
employed to deduce that the 1large-N approximation also
provider bounds to the eigenvalues which happen not to be as
tight as those of envelope theory. An interesting question
then arises, can a similar connection be found between the
potential envelope method and other semi-classical
approximation techniques? 1In this thesis we seek to answer
this question as it applies to the JWKB approximation.

In chapter 1 we examine the theory behind the method of
potential envelopes. To motivate the discussion on the JWKB
method in chapter 3 we present a synopsis of the results of

Hall’s work on the 1large-N approximation. Chapter 3 is

devoted to an in-depth analysis of the JWKB approximation



and its possible connection to the potential envelope
nethod. Finally, in chapter 4, the potential envelope
method and the JWKB approximation are employed to compute
the approximate bound-state energies of the
Coulomb-plus-Yukawa potential. This potential was the
subject of a paper by the present author and R.L. Hall
entitled: "Spectrum of the Coulomb-plus-Yukawa potential by
the Method of Potential Envelopes" (see appendix B). It is
found that although potential envelopes provide good
approximations to the energies, the results of the JWKB
method are even closer to the true energies, thus precluding
any possibility of a comparison of the type outlined in
chapter 2. Future research into potential envelope theory,
aimed at strengthening the energy bounds, may alter this

present state of affairs.



CHAPTER 1
THE METHOD OF
POTENTIAL ENVELOPES

Exact solutions of differential equations are in
general hard to come by. Thus, methods of approximating
such solutions are always of particular interest. Over the
last few decades much effort has been made to find
approximate solutions of the Schrédinger equation. Many
different schemes have been proposed. Recently, Hall'®¥
has developed one such technique for approximating the
bound-state spectrum of Schrédinger Hamiltonians. This new
approach, known as the metliod of potential envelopes, has
advantages over other methods; for a wide class of problems
it provides a simple formula for bounds to the eigenvalues.
A more general formulation of this geometrical theory,
described in ref.(3), allows also for sums of soluble
potential terms. The method of potential envelopes was
developed in 1980 as a means of approximating the

eigenvalues of the many body problem“). Since then it has

(2,3,5)

been refined and applied to a variety of

1,6-
problems( o,



The main purpose of this thesis is to compare the
relative quality of the results of the method of potential
envelopes and the JWKB approximation. We begin this study

with a discussion of envelope theory.

1.1 The theory of potential envelopes

For spherically symmetric  problems in R the

Schrodinger equation takes the following form

2
[-“—A+V(r)]¢(r> = 8y(r), (1.1)

2m

where €& 1is the energy and the central potential V(r)

(r = |?l) can be expressed as

v(r) =V f(r/a), Vv >0, a> 0. (1.2)

This way of representing V explicitly disentangles the
contributions made by the strength, V., and the shape,
f(r/a), of the potential. 1In order to simplify our notation
we make the following change of variables; r/a — r.

Thus, (1.1) becomes

[-8 +wf(r)]Y(r) = EY(r), = >0, (1.3)



with E and o respectively defined to be

2 2
E = 2m8a’/h°,
(1.4)

s = 2mV_a®/n’.

Therefore, w. see from (1.3) that for spherically
symmetric problems in nonrelativistic quantum mechanics the

Hamiltonian can be expressed in the form

H= -A+ nf(r)y, ~ >0, (1.5)

where f 1is a central potential and s a coupling constant.
In particular we will consider potentials which satisfy the
following conditions
(i) 1limirs(r)| = o,
r=>0

(1.6)
(ii) f’(r) > 0, r > 0.

Restricting f in this manner means that H is self-adjoint on
some domain D(H)c.ﬁﬂmﬁ, and also that, for s~ sufficiently
large, discrete eigenvalues are guaranteed to exist. We

assume that s is such that discrete eigenvalues E_, exist,

where ¢ =0,1,2,..., 1s the angular-momentum gquantum number
and n=1,2,3,..., counts the eigenvalues in each
angular-momentum subspace. These eigenenergies are ordered

according to .En,ez E o n’ >n, which implies that for a



given ¢ and n, En£ has degeneracy exactly 2¢ + 1. The
curves describing the dependence of the E_, on & we call the

energy trajectories of f, which can be written as

E (1.7)

ne = Fre*) -
The method of potential envelopes is a technique for
approximating the energy trajectories of Schrédinger
Hamiltonians which are not exactly soluble.

Having defined the nature of the problem &t hand we now
turn our attention to the particulars of envelope theory.
The foundations of the potential envelope method rely on two
central concepts: envelope representations and the
variational characterization of eigenvalues. We will deal
with each of these in turn beginning with the method of
functional representation known as the envelope

representation.

1.2 Envelope representations

Many varieties of functional representation exist. One
such technique relies on the fact that smooth functions
possess a unique tangent at every point. The family
consisting of all lines tangent to the curve defines the

function completely.



Consider an arbitrary smooth function V(r) defined on a

given interval. Any line tangent to V can be succinctly

expressed as

v (ry = 2 + Br, (1.8)

where t refers to the point of contact between the tangent
line and the curve V(r) and 4,B are constants which depend
on t (see fig.l.1). It is also clear that the following

relations hold

v(t) = A + Bt,
(1.9)
v'(t) = B,
which allows us to eliminate 4 and B in (1.8) as follows
v ry =v(t) -tV (t) + V' (t)r. (1.10)

We call V(r) the envelope (curve) of the collection of these

tangent lines, namely

v(r) = EIVEIoPE y ) (), (1.11)

For our purposes, it 1is necessary to generalize the
condition (1.8). That is, we must consider the case where
the curves tangent to V(r) are not straight lines. Thus, we

are interested in examining how (1.10) is transformed if the



Vix)

(t)

Fig.1l.1l Tangent basis potentials, V' ', to the potential V.



following change of variables is made:
v(r) = g(h(r)), (1.12)

where h(r) is now the curve tangent to ¥V and g is a smooth
increasing transformation. In a manner analogous to that
outlined above, g considered as a function of h, can be

expressed as the envelope of its tangents. Thus, we have

g(n) = Envelope o™y, (1.13)

where

g™ (h) = g(T) - Tg' (T) + g’ (T)h. (1.14)

If we select the variable T itself to be the tangent curve,
as follows

T = h(t), (1.15)

then the tangents to g can be written in an alternate

manner, namely

g (h(r)) = g(h(t)) - h(t)g’ (h(t)) + g’ (h(t))h(r),

(1.16)

10



which can be expressed more simply as
g’ (h(r)) = A(t) + w(t)n(r), (1.17)
with

A(t) = g(h(t)) - h(t)g’'(h(t)), &(t) =g'(h(t)), t € (0O,m),

(1.18)

where we have restricted the domain of t such that (1.18) is
applicable to the theory set out below. As a result of the
above manipulations, the function V(r) can then be expressed

as

v(r) = g(n(r)) = FVELOPE g O n(ry). (1.19)
where h(r) is any curve which is tangent to V(r) at a single
point.

We are of course interested in applying this theory to
the problem of approximating Schrodinger eigenvalues. The
reason for considering envelope representations in this
regard is that we wish to represent potentials for which the
Schrodinger equation is intractable by those for which it
has exact solutions — the backbone of potential envelope
theory is this exploitation of exact solutions. Thus, we
consider the function h(r) to be a potential for which the

energy trajectories Gng“” of the Schrodinger Hamiltonian

11



EETRS LT T T AT

-A + sh(r) are exactly known. The Hamiltonian whose energy
trajectories Fp(s) we are interested in approximating will
be given by -A + V(r). Here, the potential VvV = g(h(r)) is
erruivalent to the function V defined above and, naturally,
subject to the same constraints (eqgn. (1.6)). In addition,
we assume that g is either convex or concave, that is to say
either g” >0 or g” < 0. We will show below that these
cases give rise to lower or upper energy bounds

respectively.

1.3 The variational characterization of eigenvalues

Any eigenvalue of H can be expressed as the solution to
a certain variational problem. The following theorem states

this result succinctly:

Min-Max (Rayleigh-Ritz) Theorem:
For a given angular-momentum subspace labelled by ¢ the

eigenvalue Engof the self-adjoint operator H is equal to

E_, = inf sup(y,HyY), (1.20)

D_ yeD
n n
Ny =1

nt

where Dn ¢ D is a finite-dimensional subspace of fixed

dimension n given by Dn = Span{wl, wz,..., wn}.

12



A proof of this theorem is beyond the scope of this
thesis but can be found in a number of texts which deal with
the functional analysis of nonrelativistic quantum

(10-12)

mechanics The text by Epstein contains an

interesting discussion of the finite dimensional case''.
What the min-max theorem tells us is that by restricting the
domain of H in a particular way (Dn) we ensure that the

result of maximizing the Rayleigh-quotient is an upper-bound

to the eigenvalue EnF In fact, each 8k= sup(y,Hy) is an
upper bound to the corresponding eigenvalue
E k=1,2,3,...,n (fig.1.2) (An interesting analogy is

the general increase in vibrational frequencies that occurs
when more stringent constraints are imposed on an

. . (14)
oscillating membrane

). By searching all subspaces Dn of
fixed dimension n we find that the mirimum of all the maxima

is the exact eigenvalue Enc'

1.4 Wedding min-max to envelope representations

What makes the min-max theorem so valuable in the
present context is that it allows us to place bounds on the
eigenvalues E of the Hamiltonian given bounds on the
potential V(r). To bound the potential all that is required
is for the convexity of the function g (defined above) to be

definite. To make the present discussion more concrete we

13



The Min-Max Theorem

Fig.1.2 Illustration of the min-max theorem.

14



will assume that g 1is concave so that g” < 0. This
condition ensures that the tangent lines to g (as a function
of h) all lie above g. Thus, the relationship between the

potential V(r) and the basis potential h(r) becomes
V(r) = g(h(r)) = A(t) + s(t)h(r), (1.21)

where A(t) and s(t) are defined as in (1.18) and h(t) is the

“)(r), given by

point where V(r) and its tangent potential Vv
the right-hand side of (1.21), coincide. By substituting
the Hamiltonian H = -A + V(r) into the expression (1.20)
provided by the min-max theorem, we immediately obtain an
upper bound to the eigenvalues of H, namely

E , = A(t) + G ,(u(t)), (1.22)

né

which is equivalent to

E_, = g(h) = hg'(h) + G,(g’ (h)) . (1.23)
To find the best upper bound to E_, we minimize (1.23),
considering it a function of h. The critical point is

simply

h =6/ ,(g"(h). (1.24)

15



A very convenient way of writing this optimum upper bound
can be achieved by applying a Legendre +transformation.

Reordering the terms in (1.23) we can write

E_, %G (g'(h)) -g' (h)h + g(h). (1.25)

We then define the best upper bound to be

E, = ’ff’; { K ,(r) + v(r) } (1.26)

where
Kne(r) = Gne(s) - sG;ﬂ(s), h(r) = G;ﬂ,(s). (1.27)
It has been shown by Hall® that Gne is concave. As a

result, the functions Knc(r) are well defined by (1.27).
This implies that Gzl'w is monotone and is invertible. The
variable t has been replaced by r since due to the presence
of V(r), it seems a more natural way of expressing the
energy bounds. Thus, we have shown that bounds can be
imposed on the energies E if the potential V(r) can be
expressed as a transformation g(h(r)) of the potential h(r)
whose convexity 1s definite. When the transformation
g(h(r)) is concave we obtain an upper bound and when it is
convex the inequalities are reversed and (1.26) becomes a
lower bound. It should be noted that the formula (1.26)

also applies in the one-dimensional case, where of course

16



the energies depend only on n, that is, E ,— Eg.

To prepare the groundwork for later chapters we
consider two special cases: (a) potentials which can be
expressed as smooth transformations of the Coulomb potential
h(r) = -1/r, and (b) those potentials which are
representable as transformations of the simple harmonic

oscillator potential in one-dimension, h(x) = x°.

(a) The energy trajectories for this particular basis

potential are given by

Y = rs 2
Gne(b) = —[m] ; (1.28)

which, through (1.27), results in Kne(r)=[(n+£)/r]2.

Thus, the expression for the energy (eqn. (1.26)) becomes:

: 2
. min (n + {) _
En£'~r>o{———r2 + V(r) }. n=1,2,3,...,
(1.29)
where V(r) =g(-1/r); and == if g is concave, and » ==
if g is convex. If the transformation function g is slowly

varying, then, as we shall see, this simple formula is
remarkably useful for it answers the question, how does the
spectrum depend on the potential? It is also interesting
that the transformation function does not appear in (1.29);

g is only used to establish the energy bound.

17



(b) In this case the energy trajectories for h(r) are
G (s) = (2n - 1)V, (1.30)

which implies that the K (x) = ((n - 1/2)/x]2. The energies

associated with V(x) are then approximated by

2
E zmin{—(ul—z—)— +V(x)}, n=1,2,3,...,
n xz

where V(x) = g(xz); and ~ == if g is concave, and ~ =2 if
g is convex.

A specific application of the method of potential
envelopes 1s presented in chapter 4. We next explore how
the method of potential envelopes is related to the large-N

approximation.

18



CHAPTER 2
POTENTIAL ENVELOPES AND THE
LARGE-N APPROXIMATION

one of the most original approximation schemes for
Schrédinger eigenvalues to have been developed in the last
few years is the large-N approximation. By manipulating the
Schrédinger equation in N spatial dimensions it is possible
to derive a relation which allows one to approximate the
eigenvalues of a given Hamiltonian in R>. The technique is
perturbative in nature employing 1/N (or more precisely
1/(N + 28)) as the expansion parameter. In contrast to
perturbation theory however, this 1/N expansion is not
restricted to problems where the Hamiltonian is expressed as
the sum of two terms — one solvable and the other small in
some suitably defined sense. Our main intention in this
chapter is to relate how large-N and the method of potential
envelopes are connected. This was the subject of a 1986
paper by Hall‘?? in which the theory set out below was
developed. As stated in the introduction, this chapter is
intended to act as a bridge, motivating the attempt at
establishing a relationship between potential envelopes and

JWKB later on in chapter three.




Large-N theory was first developed in the area of

s (15) :
critical phenomena . Over the years it has seen many

applications in other fields, quantum field theory and

(16,17)

solid-state for example More recently it has been

employed to solve the Schrédinger equation“ah

2.1 Large-N theory

In this 1last branch of the theory, the Schrodinger

equation

[- %A+V(r):|w=E|// (2.1)

is written down in N spatial dimensions, the radial part of

which is given by

2r?

2
[ d ,N-1d }+e(2+N-2) + V(r) py(r)=Ey(r),
d
(2.2)

where the factor of % in front of the Laplacian in (2.1) is
in place so that the results of envelope theory can be
compared with those of large-N theory, which employs this

convention. If we rewrite the wave function as

20



w(r) = r'""2r(r) then (2.2) can be expressed in the form

ldzR + [lgr2 4 v R - ER 2.3
_'2':1—;2(r) SBr (r) |R(r) = ER(r) (2.3)

with

B = [e+%(1v— 1)][£+%-(N—3)]. (2.4)

In the limit of large N the ground state energy for each
angular-momentum subspace can be approximated by the minimum

of the effective potential

v_.(r) = %Br‘z + V(r). (2.5)

This is the result of V dominating in magnitude the

f

differential term - %R”(r) . Thus we can write

E,= E(B) = III}J;.Q[%BFz + V(r)]. (2.6)

Higher-order corrections to the ground-state energy can be

obtained by making the following transformations

r—r (1+ xX),
v(r) — v(9r/N%),

R(r) — expl[o(x)],

where r_ is the minimum of the effective potential Ve”(r)

and the last substitution transforms (2.3) into a Riccati

21



equation. Analytical techniques are then brought to bear to
find the coefficients of the resulting energy expansion.
Since our intention is to elucidate the connection between
large-N and potential envelopes however, we will restrict
our attention to the zeroth-order result, eqn.(2.6).

A recent significant improvement to the large-N
approximation is known as the shifted large-N

. . 1
approx1matlon(9{

Here the expansion parameter 1/k, where
k =N+ 2¢, is replaced by 1/k with k=k=-a=N+ 2L - q,
a being an appropriate shift. A much wider class of
problems is amenable to this new approach. Also the
accuracy of the results is higher than those produced with

the large-N approximation“gﬂ

There exist a few potentials for which the eigenvalues
are exactly known for any number of dimensions N, Two of

the most important are the hydrogenic atom

V(r) = -s/r — 8 ,(s) = -%«92[2 +n+ %(N -1)]3 nN=z2

(2.7)
and the harmonic oscillator potential
/2 1
v(r) = or® — 8 ,(v) = (20) %[t + 2n + N
(2.8)
where n =0,1,2,..., is the radial guantum number and

22



¢=0,1,2,..., is the angular-momentum gquantum number. The

square of the total angular-momentum is L= + N - 2).

2.2 The connection between potential envelopes and large-N

In chapter 1 it was demonstrated that the eigenvalues

of the Schrodinger Hamiltonian
- -;-A + V(r) (2.9)
can be approximated by the formula

E=min[K(r) +V(r)] (2.10)

r

where V(r) = g(h(r)), with g(h) monotone increasing and h(r)
a potential for which the Schroédinger equation resulting
from the Hamiltonian - %A + sh(r) can be solved exactly.

And also
K(r) = €(u) - 8’ (8) and h(r) = &' (v) (2.11)

with €(s) being the energy trajectory of the soluble

23



potential h(r). For power-law potentials of the form

h(r) = sgn(q)r?, g= -1, g=0, (2.12)

the energy trajectories are given by

g(u) = sgn(q)as”’ ®¥, 09> o, (2.13)

which by (2.11) implies that K(r) can be written as

2 (2+q)s2

K(r) = sar’®,  «=lql[20/(2 + )] (2.14)
Therefore (2.10) now becomes

. 1 -2 -

E = T;g[éar + V(r)], o > 0. (2.15)

The formula (2.10) is now of the form (2.6) which 1is the
main result of 1large-N theory. This allows a direct
comparison to be made between the energy results of the two
theories. Such comparisons revolve around the nature of the
parameters o and §f. An important result that must be

considered in this respect is how the approximate energies

24



are ordered in relation to a. From (2.15) it is easy to see

that

dE _ 1 -2

da — Er‘ >0 (2.16)
which in effect states that o« > o, E(a” > E(az). This

procedure for reformulating the eigenvalue formula (2.10)
from potential envelopes was devised by Hal1'!,

As an example of a comparison between the two theories
in question, consider the class of potentials which can be
expressed as convex transformations of the hydrogenic atom
potential (2.7), that is, V(r) = g(-1/r). An expression for

the corresponding a can be deduced by comparing (2.7) with

(2.14), that is
. 2
o =|:2+n+§N-—:|. (2.17)

Inspecting (2.4) and (2.17) for the case n = 0 we can deduce
that the parameters «, B8 are ordered as B < o, which due to
the ordering of the energies with «, (2.16), immediately

implies the inequalities
E(B) < E(a,) = E. (2.18)

Therefore, we see that the large-N approximation results in

a lower-bound to the true energy and that this bound is
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weaker than that provided by potential envelopes. A similar
analysis can be applied to those potentials which can be
written as convex transformations of the harmonic oscillator
potential (2.8). In this case it is found that the large-N
approximation is also a lower-bound to the exact energy but
that this bound is even weaker than that for convex-Coulomb
potentials. It will be shown in chapters 3 and 4 that a
similar comparison between the JWKB approximation and the
methcd of potential envelopes is not possible at the present

time.
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CHAPTER 3
THE JWKB APPROXIMATION

3.1 History

Among the many different approximation techniques
developed for solving differential equations, the JWKB
method stands out as one of the oldest, most powerful and
most elegant. It has found application in almost every
major field of modern physics, and continues to do so today.
A voluminous literature exists on the subject.

The method 1is named after some of the major

contributors to the theory in the twentieth century:

(20) (21) (22)

(1926), Kramers (1926),

Jeffreys (1923), Wentzel

(23)

and Brillouin (1926) . It is also known under various

other names: the L.R. approximation, after Liouville®

(25)

(1837) and Rayleigh (1912), the WKB approximation, the

semi-classical approximation or the phase-integral

methoa‘®®’ . Due to the historical development, some of

these titles have troubled some authors, for instance

@n has written: "The custom, based on historical

Bailey
ignorance, of using the titles ’B.K.W.’ or 'W.K.B.’ (or some

other permutation of these three letters) is wrong as it



S s e« e

does such flagrant injustice to the truth.” As a result of
the widespread usage of the label ‘WKB’ however, we will
simply employ the title JWKB which makes additional
reference to Jeffreys’ contribution.

Solutions of JWKB form (known as asymptotic solutions
for reasons to be discussed below) were used as far back as

(26)

1817 by cCarlini who solved approximately what is today

(24) (28)

known as Bessel’s equation. Liouville and Green
considered more general equations and found approximate
solutions for them in similar fashion. 1In this century many
workers have made contributions to the theory. In 1912

Rayleighma

published a paper which dealt with the
propagation of waves through a medium with varying index of
refraction; his approximate solution to the equation
involved in this investigation has a form very similar to
that of one of the standard JWKB solutions in use today
(egn. (3.15) below). Jeffreys, in 1923, was the first to
standardize the JWKB solutions. This was accomplished
during his investigations of approximate solutions to
Mathieu’s equation, which he had applied to the study of
the free oscillations of water in an elliptical lake®’.
During the early years of the quantum theory much
attention was devoted to obtaining solutions of
Schrédinger’s  equation. Approximate solutions were
essential and the JWKB method was one of the important

(21)

techniques applied to the problem. Wentzel and

28



' 3id the pioneering work in this area. Both

(2
Kramers

studied eigenvalue problems and problems dealing with
potential wells. In 1928 Gamow and, independently, Gurney
and Condon derived the transmission coefficient for the
penetration of the potential barrier of a nucleus by an
alpha particle wusing JWKB theory(zg). Other important
applications have included the propagation of

(30)

electro-magnetic waves in the atmosphere and acoustical

31 . . .
¢ ’. Certain historical

diffraction in inhomogeneous media
references are best presented in the context of a
theoretical development and will be cited below. A more

comprehensive historical review may be found in the book by

Heading(zm .
In the next section we present an exposition of the

theory behind the JWKB approximation.

3.2 JWKB theory

It is interesting to note that for an approximation
method with such a 1long history some controversy still
exists regarding its mathematical foundations. This has

® to comment: "...it is surprising that the

caused Heading(2
development of this technique has been the occasion of so
much error, criticism and dispute." In the present

discussion we will only elucidate the 1less contentious
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aspects of the theory. Any attempt to do otherwise and do
justice to the difficulties involved would require an
in-depth investigation, which is beyond the scope of this
thesis.

The JWKB approximation can most comfortably be applied
in quantum mechanics to problems where the Schrodinger
equation involves a single variable. This occurs when:
(i) we deal with one dimensional problems or, (ii) the
potential under scrutiny is spherically symmetric, and it is
possible to separate out a radial differential equation. We
will study these cases individually since each presents its

own set of problens.

3.2.1 The JWKB approximation in R

For this first case, we have adapted the presentations

9) 32)

of Bransden and Joachin® and that of Merzbacher'™ for
our discussion. The central result that will emerge from
this investigation is a relationship between the potential
and the eigenvalues of the particular Hamiltonian under
scrutiny (eqn. (3.38)). As a result, for potentials
satisfying certain criteria, it will be possible to

calculate approximate eigenvalues.
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Consider the one-dimensional Schrédinger equation

2

2
[—g-+2—':(E—V):|w(x) = 0. (3.1)
dx h

The solution to this differential equation is trivial if
V=V is a constant; for this special case the solutions

+ikx/h

are plane waves ¥ = e , Wwhere k is the constant

k = [2m(E - v )] (3.2)

Thus, if instead V is a slowly varying function of x, it is
reasonable to assume that the real and imaginary parts of y¥
will still oscillate as plane waves. This assumption should
at least be valid in an interval that is small relative to
the distance over which V(x) varies noticeably. The
de Broglie wavelength is then position dependent and given

locally by the relation

A(x) = 2nh 2nh . (3.3)

k(x) {Zm[E - V(x)]}”"‘

Under such cunditions we may adopt the same plane wave
form for Y with a more complex functional form for the

29,32
exponerxt(9 )

W(x) = euuﬂ/h' (3.4)

where S(x) is not a linear function of x. To simplify the
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notation the following definitions will be

assumed

I

172
k(x) {Zm E - V(x)]} if E > V(x), (3.5a)

il

1/2
K (x) -L{Zm[V(x) - E]} = -ik(x) if E<V(x).

(3.5b)

Equation (3.5a) is the classical momentum of a particle at
position x. The problem of solving (3.1) now shifts to
finding an explicit expression for the function S(x). We

substitute (3.4) into (3.1) and find that S(x) satisfies

2

d51” 4+ [k(x)]? - o.

dx

(3.6)

The Schrédinger equation has thus been transformed into
(3.6). This new equation is obviously nonlinear and
therefore even more complicated to solve than Schrodinger’s
equation. It is this nonlinearity, however, that allows the
approximation scheme of the JWKB method to succeed '™, We
now outline how an approximate solution to (3.6) can be
found. For the case V = constant, we have, S”" =0
(S(x) = tkx, see (3.2)). Also, in the classical 1limit,
h — 0, the first term of (3.6) drops out. So the classical
limit reproduces the result for S(x) in this case (when

¥V = constant). Therefore, when the potential 1is not
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constant but is slowly varying we can consider expressing
S(x) as a power series expansion in which i is the expansion

parameter. Thus:
S(x) =5 (x) + hS (x) + hZSZ(x) + o(n%) . (3.7)

Such series solutions to differential equations are known as
asymptotic series; They possess the rather special property
that although they represent the function in question they
are divergent. To place this statement on a more

guantitative footing consider the partial sum of the series

$_(1/h) = —EZ£fl . (3.8)
n (1/n)Y

V=0

(3.7)

If for the moment we think of h as a variable then for fixed
(1/h) and n — » we have Yn(l/h)-—am but for fixed n and
(1/h) — «» the sum ?n(l/h) gives an increasingly accurate

approximation to the function S(x):; that is,

1im z"[¢_(z) - S(2)] = o, (3.9)

zZ-w

where z = 1/h and we have considered S as a function of 1/h.
Due to the fact that the series ?n diverges for n — o there
is an optimum number of terms which best represents S(x).

Since 1/h is a very large number and we will be considering
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only a finite number of terms of the series (3.7), it is
reasonable to assume that this expansion will represent S(x)

adequately. Horn*

was the first investigator to analyze
asymptotic series associated with solutions of differential
equations. A lucid introduction to the theory of asymptotic

series can be found in Wwittaker V.

The very interesting
text by the Russian author Midgal contains a similar
presentation at a slightly lower level of
sophisticationmsn

Feeding (3.7) into (3.6) and neglecting terms of O(hﬂ

implies

{[s;jz - [k(x)]a} ‘ {23;5; - Lsg}h + {25;5'2 + [s1]° - LS"l’}h?‘
= 0.
(3.10)

Equating the coefficients of the various powers of h we

obtain
[s'1% - [x(0))* = o, (3.11a)
25'S) - is7 =0, (3.11b)
2s's) + [s:]* - isy = 0. (3.11c)

Solving these equations successively, results in the various

orders of approximation to S(x). The zeroth order is given
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by the solution of (3.1lla)

X
s =1t J k(x)dx. (3.12)
The second term (SiLx)) in the expansion (3.7) can then be
evaluated by making use of (3.11b), and (3.12), namely
S, (x) = -;—log[k(x)]. (3.13)

Lastly, by substituting (3.12) and (3.13) into (3.11lc), an

expression for Sz(x) is obtained

, o[ [ 07]?
S (x) =T (x) - m .E..___]_dx, (3.14)
2 ak3(x) 8 k® (x)

S, will be negligible if V'’ is small, assuming that |E - V|
is not too close to zero. Also, if all higher derivatives
of V(x) are small, then all higher order terms in the series
may safely be neglected.

In the JWKB approximation all terms in the series for
S(x) of higher order than the first are neglected. When
substituted into (3.4) equations (3.12) and (3.13) result in

the 1** order JWKB approximation to the wave function

v(x) uﬁ-(;)i]mexp[ti[ k(x)dx], (3.15)

where it is to be understood that the general solution to
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(3.1) is a linear combination of each of the waves implied
by the symbol * in (3.15), one travelling to the left and
the other to the right.

How well (3.15) approximates the true wave function
depends on the extent to which neglecting higher order terms
in the series (3.7) is Jjustified. As stated above, the

condition that should be satisfied is
IhZSZ(x)| « 1. (3.16)

That is, the third term in the series should be negligible.
Making use of the first term of eqn. (3.14), implies that

(3.16) can be expressed as

hmV” (x) « 1.

{2m[E—V(x)]}“2 (3.17)

The second term of eqn. (3.14) 1is of the same order of
magnitude, therefore it can be neglected in the present
discussion. Equation (3.17) can also be expressed in a more

physically revealing manner, namely

hk' (x)
k(x)

dk
dx

= X (x) « |k(x)|, (3.18)

with A(x) = h/k(x) = A(x)/2n (the reduced de Broglie

wavelength). The right-hand side of this equation tells us
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that for (3.15) to be a good approximation, the change in
momentum of the particle within one wavelength, must be
small compared to the momentum itself£®?, What this
implies is that the potential must change slowly enough so
as not to alter the momentum very much over an interval of

many wavelengths.

3.2.1.1 The connection formulae

Condition (3.18) will not hold if either one of two
situations exist, (i) the potential changes very quickly, or

(ii) k(x) vanishes. The second case will occur wherever
V(x) = E. (3.19)

A value of x which satisfies (3.19) is known as a classical
turning point (or transition point), for obvious reasons

(see fig.3.1). The JWKB solutions do not apply near such

turning points. As can be deduced from (3.15), Y is
singular when k(x) = 0. However, we know that the true wave
function does exist at a turning point. This implies that

some way must be found of taming the JWKB function at this
point so as to connect the two approximate JWKB solutions

which exist to the left and right of it. Gans'*®’

(1915)
seems to have been the firsc worker to resolve this dilemma.

His contribution was to replace the true potential V(x) by a
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Region [ Region II Region III

X

Fig.3.1 Turning points for a given
potential V and energy E.
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linear approximation derived from a second order Taylor
expansion. This is a reasonable step since we are assuming
throughout that V(x) varies only slowly with x. A solution
of the Schrédinger equation is thus obtained which contains
no singularity at the turning point, all three solutions are
then patched together to produce a global solution. The
expressions arising out of this procedure of matching the
solutions on either side of a turning point are known as the
connection formulae. It is from these relations that an
expression for the eigenvalues of a potential well can be
developed. We now derive the connection formulae.

Consider a turning point 1lying to the 1left of the
classical region (fig.3.1). In the neighborhood of the

turning point x = a we write

2
K3(x) =~ a(x - a), o= |FEX) , (3.20)
dx X = a
with o > 0. By defining a new independent variable 4 as
follows
#(x) = (F°0)*(x - a), (3.21)

and then substituting (3.20) and (3.21) into the Schrédinger
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equation (3.1) we get:

2

where V¥ (4(x)) = y(x), is Jjust the wave function expressed in

terms of the variable 3. Equation (3.22) is the Airy

equation which has the general solution®®”

Y(z) = clﬁi(-q) + czBi(—q), (3.23)
where ¢, €, are arbitrary constants. The functions Ai(-3)
and Bi(-g), known as the Airy functions, have simple
expressions for 1large and small values of g. These

asymptotic forms are as follows:

If Ai(~-3) 1s bounded and oscillatory then,

Ai(-7) ~ n'LQq-1/4cos[§ga/2 _ %}’ y —
(3.24)
1l -2 -174 2 sz
~ 5 %5 exp[--jlf;l ] 5 = -o.
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If Bi(-4) is unbounded in the limit 4 — -« we have,

- - (
Bi(-3) ~ m 1/2@ 1/4sinl% /;3/2 _ g_], y °
(3.25)
1l _-1/2 ~-1/4 2 3/2
~5m 74 exp[ilf;l ] B —> =,

We will now show that (3.22) is an approximation to the
Schrédinger equation (3.1) not only near a turning point but
in fact, vx € R, thus the approximate solution (3.23) holds
for all values of x. A comparison of the JWKB solutions for
(3.22) and the JWKB solutions of the original schrédinger

equation shows that Y (x) can be approximated by

2 174
7= [?—k—i‘—z—”—;} ¥(3(x)), (3.26)
X

with g(x) defined as

X

%‘[%’(X)]a/z = %J k(x)dx, X2 > 0 (3.27a)
a
X
= e %J k(x)dx, k* < 0. (3.27b)

a

Due to the fractional powers a phase factor appears in
(3.27b). This has been chosen such that im(g4) = 0 and 4 < 0

for k% < 0. By substituting (3.26) into (3.22), we find
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that § satisfies the equation:

2
[ ;—d—z + BT2K%(x) + £(x) ]g’&(x) =0, (3.28)
X

where

2 -1/2
e(x) =~ | & —9; dz (3.29)
dx dx” dx
If the third term in (3.28) is negligible, that is
Ih%e (x) /K2 (%)) « 1, (3.30)

then the function ¥ (x) is a good approximation to y(x). We
are now in a position to demonstrate that ¥(x) is indeed an
approximate solution to +the Schrodinger equation Vx e R
(with ¥(4(x)) given by (3.23)). When e£(x) = 0, (3.28) is
identical with the Schrédinger equation, this occurs at a
turning point. Also, far from such a point condition (3.30)
is a weaker bound than (3.17)mm' which is the criterion of
validity for the JWKB approximation (3.15). Therefore
(3.26) 1is equivalent to the JWKB solutions far from a
turning point and solves the Schrodinger equation exactly in
the neighborhood of and at a turning point.

For a solution to be bounded to the left of a turning

point the second term in the linear combination (3.23) must

be set to zero since this solution diverges in this
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interval: thus c2= 0. The wave function can then be

expressed v¥x € R as

2 174
v(x) = ci[ LX) ] Ai (~5(x)) - (3.31)
[x°(x) |

We have therefore succeeded in matching the JWKB solutions
across the turning point. Employing equations (3.24) and

(3.27) the connection formulae are'™®

a

-1/2 1
[k(x)] exp| - EJ k(x)dx | —
; (3.32a)
172 ("
2[k(x)]  cos %J k(x)dx - 7 ],
-1/2 *
[k ()] 51n[ %J k(x)dx - ]
’ (3.32b)
-1.s2 1 2
—[k(x)] exp EJ k(x)dx | «— .

There exist two cases to be considered corresponding to
(3.32a) and (3.32b) respectively:
(i) If the JWKB solution is known to decay
exponentially in the 1limit x — -o,

then (3.32a) is the correct connection
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formula to use. The left-hand side
applies in the interval x < a and the
right-hand side in the interval x > a.
(ii) On the other hand if the wave function
increases exponentially to the left of
the turning point then (3.32b) is the

appropriate form.

The above analysis assumes that we are dealing with a
potential barrier which lies to the left of a turning point.
If however the barrier is to the right of the turning point

then the connection formulae are altered and become:

[k(x)]-“?exp

(3.33a)
-1/72 1 b T
2[k(x)} cos[ EJ k(x)dx - E]e——— ,
and
-1/2 ®
(k)] sin[% k(x)dx - ] —
Tx (3.33b)
172 1 *
—[k(x)] exp| 1 k(x)dx |,
“b

with qualifications similar to (i) and (ii) applying in each
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case. The particular forms of (3.32) and (3.33) were first

(20)

set out by Jeffreys in 1923 This work was accomplished

without knowledge of Gans’ earlier work®® . Much of the
controversy associated with JWKB theory results from
differing opinions as to the proper interpretation of the

(38)
(arrow

unidirectional nature of (3.32) and (3.33)
symbols). The arrows indicate the direction in which these
formulae should be applied. For instance, consider the case
of a potential barrier 1lying to the left of the turning
point; if we know that for x < a the correct approximate
representaticn to the exact solution is one of exponential
growth we cannot assume that for x > a the sine represents ¥
satisfactorily. The exact solution may contain an
exponentially decreasing component which would be negligible
to the far right of the turning point but which might result
in a substantial admixture of cosine to the right of the
turning point, according to (3.33a). A similar argument can
be made against employing (3.33a) in the wrong direction.
Of course, if we can ascertain that the wave function is
composed of only one 1linearly independent component (e.g.
either only an exponentially decreasing or only an
exponentially increasing component exists far to the left or
far to the right of the turning point) then the above

argument does not apply(”’.
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3.2.1.2 JWKB quantization condition for bound states

The JWKB approximation has many applications. As
mentioned above however our main interest in discussing this
technique is in connection with the approximation of the
eigenenergies of bound states. For simplicity we will
consider a potential well with only two turning points.
Approximate solutions of JWKB form can immediately be
written down for each of the three regions indicated in
fig.3.1. Solutions which increase exponentially for x < a
or ¥ > b must eventually vanish since ¥ must be finite.

Thus, the appropriate JWKB solution in region I is

a

-1/2 1
wxz [k(x)] exp[— HJ k(x)dx ], for x < a. (3.24)

X

The connection formula (3.33a) automatically provides us

with tlhe solution in region II

Y

-1/2
_— Z[k(x)] cos[ %J k(x)dx - L ], for a < x < b.

(3.35)
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By a bit of algebraic manipulation it can be shown that

b

-1/2
w” ~ - 2[k(x)] cos[ %J.k(x)dx

a

" b \
. 1 T
sin EJ k(x)dx - y)

\ x J

b

-1/2
+ 2[k(x)] sin{ %l.k(x)dx

a

( b \
1 n
cos EJ k(x)dx - il

\ x J

(3.36)

However, by (3.33a) the first term does not result in a
decreasing exponential and it must therefore vanish in
order that the wave function satisfy the boundary condition
at infinity. This results in the expression which we have

been seeking

HJ kix)dx = (n - %]n ' n=13,2,3,..., (3.37)

or more explicitly

b

1 ,_ 172 1
FJ 14m[E - V(x)]} dx = [n - é}n , n 1,2,3,...
a (E: > V)

(3.38)

The JWKB method thus provides a means of approximating the
eigenvalues for a given potential. Note that the discrete
energies E appear not only in the integrand but also in the

limits of integration (e.g. V'(E) = a). This makes for a
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rather interesting problem when it comes to evaluating the
eigenvalues numerically. In deriving (3.38) we have
implicitly assumed that the potential at all times varies
smoothly. If the potential is an infinite square well with
walls at a and b or if it suffers an infinite discontinuity
at these points then this condition must be altered'”.

The correct recipe being

b

1 172
H[{Zm[E-V(x)]} dx = nn , n=12,3,...
a (B > V)
(3.39)

Since JWKB theory is a semi-classical theory (h — 0)
we expect that the eigenvalues E derived from (3.38) will be
good approximations to the exact energies for large values
of the guantum number n. We will show in chapter 4 that the
JWKB eigenvalues are indeed very good approximations to the
energies.

There also exists a relationship between JWKB and the
old quantum theory. According to the Bohr-Sommerfeld

. . (32)
guantization rules

{ pdq = (n - 1)h, (3.40)

where p,, q, are respectively the generalized momenta and

i

coordinates. The integral 1is evaluated over a complete
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period of the coordinate q,- Rearranging (3.37) we obtain

f p(x)dx = [n - %]h, (3.41)

where p(x) = k(x) 1is the classical momentum. The extra term
of h/2 in (3.41) provides for the zero-point energy, which
(3.40) lacks.

The left-hand side of (3.41) represents the change in
phase of wll from a to b. We can easily show that as a
result, %n +% wavelengths (quasi-wavelengths) fit between a
and b; n thus represents the number of nodes the wave
function contains.

Surprisingly, the spectrum of the harmonic oscillator
potential is exactly reproduced by (3.38), this feature
persists in the three-dimensional JWKB approximation. In
addition, for the R’ case to be discussed below, with V(x)
representing the hydrogenic atom, the JWKB approximation
once again produces the exact spectrum. This would seem not
to be a coincidence. In fact, a rather deep connection
exists between the two problems”ok

For general V(x) it is not possible to evaluate exactly
the integral occurring in (3.38) . One important exception

to this rule is the case of symmetric power-law potentials

v(x) =g|x|*, B>0, g>o0. (3.42)

(41)

Sukhatme has shown that in this case the integral can be
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performed exactly and results in

_ 1 1/q 3_ -1 2q/(q+2)
E = (n 2) h8 r(?- fa) (3.43)
n 4(2m)?r( g) r(a+q")

3.2.2 The JWKB Approximation in R’

For problems in R’ where separation of the variables is
possible, the radial part of the Schrodinger equation may be

expressed in the following form

2

d u, >
+ W (r)u, = 0, (3.44)
2 14
duE
with
2 1 2 (L + 1
W (r) =___2[k _ e+ 1) - ) ], K= 2m[E - v(r)],
h r
(3.45)
where u, is the radial part of the wave function. Equation

(3.44) will take on a form identical to the one-dimensional

Schrodinger equation if one makes the identification

2
P(ry = v(r) +£Q—+%—)l’—. (3.46)
2mr
Thus V can be considered an effective potential. As a

result, for potentials which are finite at the origin the
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JWKB quantization condition for ¢ >0 in R’ is almost

identical to that in R (egn.(3.38)) and is given by

ma x

2 172
J {2m[E - V(r) --ﬂli;igﬂ-]} dr = {n - %]nh :
r 2mr

min

n=1=,2,3,...,

(3.47)

here n is the principal quantum number in three-dimensions

(35)

and r , and r are defined by V(rm ) = V(rm“) = E .

min max in

Also, the «centrifugal term in this equation has been
altered; that is, we have replaced the quantity ¢({ + 1) by
(¢ + 1/2)2, this is known as the Langer correction’. If
this is not done the criterion of applicability (3.17) will
not be fulfilled near the origin and the JWKB solution will
not be wvalid. This change in the centrifugal term has a
negligible effect on the energies“ﬁ). When dealing with
S-states of potentials which exhibit a singularity at the
origin, the right hand side of the quantization condition
must be modified to compensate for the left-hand turning

point. For such cases this point now coincides with the

singularity. The correct equation is

r
max

1/2
J {Zm E - V(r)]} dr = nnh , n=1,2,3,...

© (3.48)

For the special case of power-law potentials (eqn.(3.42)
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with x everywhere replaced by r) closed form solutions once
again exist for all values of the angular momentum quantum
number ¢£. For potentials which are finite at the origin

these solutions can be expressed as follows‘*?

2q/(2+q)
Eﬁ _ 82/(2+q)(2m/h2)-q/(2+q){A(q)[n + % _ %]] q q
where (3.49)
A =[R2 va)] fraze . a0

For potentials which are singular at the origin exact

solutions of (3.48) are also forthcoming and are given by

IBIZ/(2+q)(zm/hz)-q/(2+q)
) 2q/s(2+q)
5 _ 1{1 + q - 2¢
UCUCEERS (s AN

A(q) = [2|q|\/ﬁ l"[l - 1/q]]/1"[-— :21- - 1], -2 < gq < 0,

IEnﬂl =

qg
(3.50)

(39)

which holds W As was stated above, this expression is

exact for the Coulomb potential.

In this dissertation we have considered three different
schemes for approximately solving bound-state eigenvalue

problems in guantum mechanics. As an illustration of these
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various approximation techniques in action and as a
comparison of their results, in the following chapter we
apply two of these techniques to a single fixed potential.
Thus approximate numerical results are obtained for the
eigenenergies of the Coulomb-plus-Yukawa potential via: the

method of potential envelopes, and the JWKB approximation.

t

3.3 Improvements to the 1°% order JWKB Approximation

In §3.2 the derivation of the quantization condition
for the energies E (eqgn.(3.38)) was predicated on the
truncation of the asymptotic series (3.7) after the first

two terms. This first order approximation has been improved

42)

upon by a number of workers. Dunhan' was the first to

extend the theory beyond the 1°' order; he obtained the

second and third nonzero terms in the JWKB quantization

condition. As an application of the three-term theory

(43)

Krieger et al explored the eigenvalues of potentials

with form V(x) = ax?V, Two groups of investigators;

. (44)

Kesarwani and Varshni and independently Kirschner and

LeRoyMS) have studied the Lennard-Jones potentials with the
three-term approximation. Expressions for the four-term and
the five-term JWKB dquantization conditions respectively have

. {46)

been derived by Kesarwani and Varshni Unfortunately,

the complexity of the resulting formulae grows gquickly as
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t
4

more terms are kept, involving not only V itself but also
higher derivatives. It is not at all clear that numerical
calculations would not be more efficient in most cases.

Many other improvements have been made over the years,

from the generalization of the theory“7h to the

establishment of error bounds' % %859,

3.4 JWKB scaling laws

Scaling arquments can be applied to the JWKB
guantization condition as they were to the Schrodinger
equation in Chapter 1. The question of JWKB scaling has not
been dealt with in the liturature before. The benefits of

such a procedure are twofold:

(i) elimination of the <clutter which
obscures the main aspects of the
theory,

(ii) from a practical perspective scaling
simplifies the calculations and
improves the accuracy in any numerical

investigation.
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Consider the one-dimensional Schrédinger equation in

the form of chapter 1, that is

[-D2 + uf(x)]w = E(s) Y, (3.51)

with V(x) =V _f(x/a), V. >0, a>0 and f(-x) = f(x) V¥x and

monotone increasing on the interval (0,=). The JWKB

guantization condition (3.38) can be rewritten in a simpler

form if the factor 2m/h2 is absorbed, namely

[R(=)
w(g) = | [E(n) - wf(x)]"%ax = [n - %]n, n=1,2,3,...
S5 (e ‘ (€ > 1)

(3.52)

where 6(s) = (2ma’/h*)E(s), s = 2mV_a’/h® is  the  JWKB

approximation to the eigenvalue. W(E€) is monotone

increasing, therefore W' exists. It is then easy to show

that the dependence of & on the coupling constant u is

€(s,n) = o [M] (3.53)

2,172
(s0™)

When f(x) is a power-law potential with form
\

sgn(q)lx|%, g = 0, the scaling law has a very simple form:

E(s) = 8(1)uY @Y, (3.54)
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Thus, we see that all we need to establish how £ relates to

the coupling constant is to know the approximate JWKB

eigenvalue &(1). It is interesting to note that this is the

same scaling law that applies to the Schrodinger equation
(51)

for power-law potentials . Also the dependence of ¥ on &

can be shown to be

(q+2)/2q

W(s) = W(l)wn (3.55)

3.5 Error bounds on JWKB eigenvalues

An important consideration for any approximation scheme
is the possibility of establishing error bounds. In
relationship to th= JWKB solutions this has been a problem
of concern to a number of researchers'®® 3% %8750

0f particular interest in the present context is the
work of Birx and Houk'*®. They have developed a means of
obtaining upper and lower bounds to the exact energies Cn by
employing the JWKB quantization condition (3.38). Their
technique centers on the simple fact that the amount by
which Sn is under or overestimated by (3.38) is determined
by how much Kk(x) 1is under or overestimated (see eqgn.
(3.37)). If we can set limits on these upper and lower

values, then upper and lower bounds to the energies can be

obtained.
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It is the shape of the wave function that leads to this
uncertainty in k(x), since for a given state the
quasi-wavelength A (x) of the wave function is related to
¥(x) through k(x) = 2nth/A(x). This means that a wave
function with a given number of nodes, which does not
penetrate into the classically forbidden region, will
possess the shortest possible wavelength for an oscillatory
solution in the region 8n > V(x). Such a constraint on y
implies that k takes on its maximum value, resulting in an
upper bound for k and consequently for 8n. For this to be

the case the potential can be of only one form

V=0wn, ¥ <aor x >b,
(3.56)
V=V(x) , a<yx<b,
thus ¢ must wvanish at the turning points. In §3.2.1.,2

(egn. (3.39)) we have already discussed how such a boundary
condition modifies the quantization condition
b

(3.39) — J [ - 5(x)]"%dx = nn = §,(n) ,

a

(3.57)
n=11,2,3,...

where the form introduced in §3.4 has been employed for the
LHS with «» = 1, implying, &(nx) = &(1).
How far can the wave function penetrate into the

classically forbidden region? The answer to this guestion
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dictates the maximum underestimation of k and therefore
establishes a lower bound on k and on Sn, the true energy.
Inspecting the Schrédinger eguation we see that ¥y must be
approaching the x axis on the forbidden side of the turning

point for the standard boundary condition at infinity,

It: w‘wdx < o, to apply. For the extreme case this means
that, IW’k=ab= 0. Of course, this 1limit can never be
attained, since for Y’ =0, ¥ itself must vanish everywhere.

However, it is still 1legitimate to utilize this limiting
boundary condition to derive our lower bound and doing so

results in a new quantization condition:

(3.58)

Equations (3.57) and (3.58) produce upper and lower bounds

respectively to 8n.

We can go one step further and demonstrate that these
bounds are tight enough to exclude all other adjoining
eigenvalues. To see this let us express Gn as a power
series in §,(n)

— U S
g = 2 c 57 (n), (3.59)

n
(V]

where §1==(n - 12)n1 refers to the original gquantization
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condition (3.38). For three neighboring eigenvalues that

are ordered as

&, <& <€ . (3.60)

we examine the lower bounds for en, & and the upper

I1+1

bounds for Sn, enq. Employing the above notation we have,
respectively
gt - Y c,[(n - 1)n]" gl =Y c,(nm)"
n L m ! n+1 & m
(3.61)
u _ 9 u _ 1
&, = Z C,(nm) "~ &, = Z cu[(n 1m]-.

This implies that

¥ =8£<8n<8u=8’e

n-1 n n n+'’ (3.62)

which proves the above statement.

As an illustration of this result consider the simple
harmonic oscillator potential f(x) = x%. The exact solution
to this problem is 8n = 2n - 1, which happens also to be the
result produced by the JWKB approximation (see §3.3).

Table 3.1 shows the upper and lower bounds of Birx’s and

Houk’s theory to the first five eigenvalues 8n.
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Table 3.1 Upper and lower bounds to the exact eigenenergies

%7 of the harmonic oscillator potential f(x)==x2 derived

from the JWKB approximation by the method of Birx and

48)
Houk( .

n gt & Gﬁ
1 0 1 2
| 2 2 3 4
3 4 5 6
4 6 7 8
5 8 9 10
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3.6 The connection between potertial envelopes and JWKB

In chapter 2 it was shown that the existence of a
relationship between the Large-N approximation and the
theory of potential envelopes made possible comparisons of
the results of the two theories. An interesting gquestion
then arises, does an analogous connection exist for the JWKB
method? This was the impetus for our excursion into JWKB
theory. To date this question remains open. It was
discovered by computer exploration that the bounds on the
eigenenergies produced by potential envelope theory in its
present form, are not in general as close to the true
energies as the JWKB values. This is not tc say that future
investigations will not alter this situation. But for the
present, all we can do is chronicle the progress that has
been made.

One possible avenue of approach to the problem is to
reformulate the potential envelope inequality (egn.(1.31))
such that it takes on the form of the JWKB quantization
condition (3.38). For the purposes of exposition we examine
only those potentials which can be represented as concave

transformations of the simple harmonic oscillator potential

f(x) = g(xz), g concave. (3.63)

As was shown in chapter 1, potential envelope theory sets
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bounds on the eigenvalues corresponding to such potentials,

namely
2
€ = min 12—:—%132- +uf(t) }, n=1,2,3,...
t>0 t
(3.64)
or
2
85(_“_"_%/_21 + sf(t), Vvt eR. (3.65)
t
Rearranging (3.65) we have
1/2
t[@ - uf(t)] =(n-~-1/2). (3.66)

For what follows it is assumed that, f(t) is symmetric and
f(b) = 6. To eliminate the factor of t on the LHS of (3.66)
we now consider a probability density p(t) on [0,b] such

that

b
p(tyz0, |[p(t)ae =1, (3.67)
0

which when introduced into (3.66) gives

b b

172
[p(t)t[&’ - uf(t)] dt = J (n - 1/2)p(t)dt = (n - 1/2).
0 0
(3.68)
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A possible choice for p(t) which satisfies the normalization

condition (3.67) is

1A
rt
A
o
A
o

0 ' 0

p(t) = (3.69)

1A
ﬁ
A
=5

[ten(b/a)]-l, a

Substituting this into (3.68) results in

|

-a

b 172
+ J [6 - uf(t) dt = 2(n - 1/2){n(b/a),

-b

(3.70)
which is equivalent to
b
12 b 12
[8 - uj(t)] dt = (2n - 1) + 258 , (3.71)
-b
where the parameter a has been fixed by setting ¢n(b/a) = 1.

The LHS of (3.71) is just the JWKB quantization condition
(3.38) for a symmetric potential. The JWKB condition itself

is

(2n - 1)m. (3.72)

b
J [9 - mf(t)]mdt

-b
For the case where f(t) 1is the harmonic oscillator

potential, a simple integration results in the following
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upper bound to €

g« | 289" (2n - 1) n=1,2,3 3.73
- e — 4 = 1Cpdg ey (3. )

which for s

1 gives

%]
1

£1.1976(2n - 1) n=1,2,3,... . (3.74)

As mentioned above, the bound on the energies €& is not
of much practical use in its present form. Its value is
primarily theoretical. It has nevertheless been shown that,
in principle, a comparison similar to that achieved between
potential envelopes and the lLarge-N approximation in chapter

2 is possible for the JWKB method.
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CHAPTER 4
NUMERICAL EXAMPLES

In the previous chapters we have explored the theory
behind three different approximation methods for solving the
Schrodinger eigenvalue problem: the method of potential
envelopes, the large-N approximation and  the JWKB
approximation. As a concrete illustration of two of these
techniques in action we now apply potential envelope theory
and the JWKB approximation to a specific problem.

An interesting choice of potential for study is that of

the Coulomb-plus-Yukawa potential (CY)

-Ar

V(r) = - = + e , B>0, ¥ <B, A>0. (4.1)

i)
il

This potential was the subject of a paper by the present

(52)

author and Richard Hall (see appendix B) in which the

spectrum of the corresponding Schrédinger Hamiltonian
(arrived at by numerical integration) was compared with the
spectrum computed by the method of potential envelopeswﬁ).
The use of (4.1) as a model for atomic interactions has a

long history. As far back as 1935 Hellmann'>

employed
V(r) as a model for the interaction between the outer

electron and the atomic core in alkali metals. Other



workers adopted this potential for similar applications'™',
More recently, it has been used to represent interactions
for a variety of physical problems: - in the study of the
thermodynamics of nonideal plasmas it was found that the
properties of the interaction between an electron and an
ion of the plasma can be described by a potential of the
form (l.l)mm; the two-particle interaction potential
between the charged particles in polar crystals is also well

approximated by such a potential(&”; Das and

Chakravartywﬂ

have proposed that the CY potential be used
in the form of a screened Coulomb potential in the study of
inner-shell ionization problems.

We next discuss the features of this potential in more

detail.

4,1 The Coulomb-plus-Yukawa potential

By making use of a simple transformation (scaling) one
of the parameters in (4.1) can be eliminated"® . Changing
the scale of the radial variable r — x = Ar and
representing the eigenvalues of the Hamiltonian H by

E(B, v, A) we arrive at the following relation
E(B, ¥, A) = A’E(B/A, /A, 1) , A > 0. (4.2)

As a result only the eigenvalues E(#, ¥, 1) = E(B, %)
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corresponding to the Hamiltonian

H=-8-B4+2¢r, (4.3)
need concern us here.

Not only is (4.1) a linear combination of two well
known potentials but it also has a simple shape. As can be
seen from fig.4.1, for values of the parameter 7 in the
interval ¥ <B, the CY potential 1is attractive and
Coulombic for small r. For ¥ > B, V(r) no 1longer looks
Coulombic but resembles a molecular potential of the Kratzer

(s8) (fig.4.2). We will restrict our attention to

variety
the case 7 < B3 since this makes the problem amenab = to
analysis by both of the approximation techniques of
interest. To apply the method of potential envelopes in
deducing the spectrum of (4.3), the theory of chapter 1 must

be invoked; an outline of this procedure is presented in the

next section.

4.2 Application of the method of potential envelopes

to the Coulomb-plus-Yukawa potential

In chapter 1 it was shown that the theory of potential
envelopes makes use of potentials for which the Schrodinger
equation is exactly soluble to approximate the spectrum of

problems which are immune to analytical methods. In the
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Vir) = (-8B + Yexp(-r))/r

r

Fig.4.1 The CY potential for 1<
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2.6

Vir) = (-8B +Yexp(-r))/r

2
"

1.1

r

Fig.4.2 The CY potential for 783
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case of potentials which can be expressed as smooth
transformations of potentials for which an exact solution is
available this is easily accomplished. All that is required
is that the transformation have a definite convexity. For
the CY potential an appropriate choice of basis potential is
the Coulomb potential h(r) = -1/r. We consequently

represent V(r) as a smooth transformation of h(r), that is

V(r) = g(-1/r). (4.4)

For this choice of h and vr > 0 the transformation
function g 1is concave for ¥ < 0, and convex for 0 < 7 < B.
By (1.29) we know therefore that Coulomb envelopes result in

either upper or lower bounds to the energies. Thus, we have

. 2
_ min (n+8)" _B
Ene ® 5o { -2 r ¥

"=

e’ } , (4.5)

where =2 if 0 < y < B and = = = if ¥ < 0.

Since this approximation 1is based on the Coulomb
potential, it implies that the approximate spectrum inherits
the degeneracies of the hydrogenic atom. Thus, even though
the actual spectrum {Ene} does not share this Coulomb
degeneracy, our approximate spectrum provides the same bound
for each set of eigenvalues with (n + {) = constant. It is
the formula (4.5) that is central to the whole discussion.
The simple minimization is quickly and easily carried out

with the help of a computer. The results of these
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computations, <carried out on a micocomputer, will be
presented in §4.4 along with the JWKB results.

We next formulate the JWKB approximation for the CY

potential.

4.3 The JWKB approximation and the Coulomb-plus-Yukawva

Eotential

The JWKB quantization condition in three-dimensions
(3.47) can be readily applied to the CY potential. To
simplify the calculation we will rescale (3.47) by the

method set out in chapter 3 (§3.4) which for S-states

becomes
r
[+
172
J [E - V()] "dr=nn, n=1,2,3,... (4.6)
0
where V(r) is given by (4.1) and r =V'1(E). For states
with £ > 0 the correct formula is
r
ma¥ 2 4172
J' E - V(r) -li;—’z)— dr = [n -%]n . (4.7)
r
min
n =1’2,3’...

with r , and r defined by V(r ) =V(r ) =E. Once
min max m ma

in X

again the implementation of these recipes requires the use

of a computer. The energies E are basically the zeros of
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—n e

(4.6) and (4.7) and E appears both in the integrand and in
the upper limit. This makes for a rather interesting
problem in computer programming involving both minimization
and inversion. To perform this calculation for any value of
n or £ a program was written in the FORTRAN language (see
Appendix A) and implemented on a microcomputer. The results
for E as a function of the potential parameters B, ¥ and the

quantum number n are presented in the next section.

4.4 Bound-state energies of the Coulomb-plus-Yukawa

potential by potential envelopes and the JWKB

approximation

To be able to compare the approximate eigenvalues with
the exact ones another program was written which makes use
of a finite-element method to integrate the Schrodinger
equation numerically. The results of these calculations for
a few eigenvalues of the spectrum are presented in Table 4.1
below. It is clear from these values that the energies
derived by potential envelope theory, while good
approximations, are not as close to the true energies as are
those derived by the JWKB method. Nonetheless the method of
potential envelopes ©provides a simple formula for
upper-bounds to the eigenvalues. This formula, consisting
basically of the minimization of a function, is also very

simple to encode, for computational purposes. Moreover, it
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is evident that in both cases the approximations improve in
the classical limit n — .

The special case B =0, ¥ = ~2aZ, A = 1.1302'®  where
o = (137.037)’1 is the fine-structure constant and Z the

atomic number, reduces the cY potential to

-Ar

V(r) = -2aZe /r(szﬂ

This is the form taken by the Yukawa
potential in atomic-physics applications and is appropriate
for modeling the energy levels of neutral atoms. The method

of potential envelopes has been applied to this potential by

Richard Hall in an earlier paperw). We now clarify how the

energies obtained from (4.5) are related to our results in
keV. For 2 =1 and A =0, V(r) — =-2a/r, resulting in the

hydrogenic spectrunm,

E , = —2% (4.8)

né (n+£)2

Thus, the conversion factor from Ehe to energies in kev

is given by the relation

Energy = (13.6047/1000a2)Ene keV = 255.485 E_, keV.
(4.9)

Employing the shifted large-N approximation (see ch. 2)

{(59)

Dutt et al. also calculated the bound state energies.

0)

McEnnan et.al. ®® used perturbation theory to do the same.

' bounds on E along with the results of

né
Dutt et.al. and those of McEnnan et.al. are presented in

Hall’s(9
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Table 4.2. Both Dutt et.al.’s and McEnnan et.al.’s results
are of higher accuracy than those which we have found with
the aid of potential envelopes, however the computational

effort required is correspondingly much more.

4.5 Comparison of potential envelopes and

a variational method

. (61)
Adamowski

was the first to undertake a systematinr
investigation of the bound-state energies of the
Coulomb-plus-Yukawa potential. Using a variational method,
he obtained very accurate results for a wide range of
potential parameters (B8, ¥, A) and quantum numbers (n,l).
To compare our results with those of Adamowski we adopt his

scale of units for the 1length (r) and energy. With

B=2, y<pB, and A > 0, we have :

-Ar

v(r) = - +%e . (4.10)

N

Adamowski obtained very accurate results by using a

ten-parameter trial wave function. In fact, to the

precision gquoted, his results are about as accurate as those

obtained by integrating the Schrédinger equation

numerically. Table 4.3 contrasts our results with those of
(52)

Adamowski ~'. As is evident, potential envelopes give good

results for a wide range of potential parameters. Though
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the accuracy of Adamowski’s results is in general superior
to that of the potential envelope method, this is not always
the case. For instance, for small values of the screening
parameter A of the Yukawa component, our results are just as
accurate. This is due to the similarity in shape of the
Coulomb-plus~Yukawa and the Coulomb potential (which we

employ as our basis potential), for this range of A.
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Table 4.1 a),b),c) Eigenvalue upper bounds for the

Schrodinger Hamiltonian H =~ A - B/r + 7e'r/r obtained by
the method of potential envelopes (EPE) , along with the
results of the JWKB approximation. The exact values (E )

obtained by numerical integration are presented for

NUN

comparison.

n ¢ EPE EJHKB ENUH

1 0 -0.25720 -0.26597 -0.26319
2 0 -0.06250 -0.06430 -0.06392
4 O -0.01563 -0.01584 -0.01580
5 0 -0.01000 -0.01011 -0.01009
1 1 -0.06250 ~0.06265 -0.06266
2 1 -0.02778 ~-0.02783 -0.02783
4 1 -0.01000 -0.01001 ~-0.01001
5 1 -0.00694 -0.00695 -0.00695
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—0.29752

-0.06252

-0.01563

-0.01000

-0.06252

~0.02778

-0.01000

-0.00694

~0.34357

-0.07173

~-0.01670

-0.01054

-0.06331

-0.028006

-0.01006

-0.00698

.33219

.07031

.01653

.01009

.06333

.02805

.01006

.00698
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B =1, vy =-1.0
EPE JWKB ENUH
—0.38989 -0.48447 ~0.46726
~-0.06254 -0.08172 -0.07952
-0.01563 -0.01775 -0.01751
-0.01000 -0.01106 ~-0.01095%
~-0.06254 -0.06431 -0.06430
-0.02778 -0.02839 -0.02836
~-0.01000 -0.01014 -0.01013
-0.00694 -0.00703 -0.00702
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Table 4 2 Bound-state eigenvalue upper bounds for the Yukawa potential

Viry = —2m2e'Ar/r in keV (neutral atoms), along with the results of the

shifted 1/N approximation of Dutt et.alwg). and those of McEnnan

(69 (labelled ’'Analytic perturbation’'); numerical results are

et.al
presented for comparison. The Yukawa potential corresponds to the case

8 =0 for the Coulomb - plus - Yukawa potential.

dnalytic

2 n 2 Envelope Shifted I/N ;erturbation Numerical
13 1 0 -1.450 -1.488 -1.484 -1.488
36 1 0 -14.16 -14.24 -14.24 ~14.24

2 0 =1.437 -1.676 -1.615 -1.692

11 -1.437 -1.566
79 10 -74.80 -74.91 -74.95 -74.95

2 0 -12.00 -12.49 -12.45 -12.50

1 1 -12.00 -12.25
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Tables 4.3(a) and 4.3(b) Some

eigenvalue

Csulomb - plus - Yukawa potential

Y

~-10, obtained with Eq. (1.29).

as functions

upper

For comparison,

from Fef.(el) are given in parentheses.

of

bounds

A,

the variationai

results

(a)
y = -1
v = 0.01 0.05 .1 0.2 ) 0
ot
8 -2.24003 -2.20082 -2.15326 -2.06278 -1,82531 -1 52578
(=2,24005) (-2.20122) (-2.15479) (-2.06840) (-1.85302) [(-..eD14%"
2 G -0 55263 ~-0.51569 ~-0.47478 -0. 40816 -0.29752 -3 25520
(-0.55270) (-0.51714) (-0.47984) (-0.42373) (-0.340%2) (-2.30213)
37 -0.13114 -0. 10204 ~-0. 08066 ~0. 06563 -0.06252 -0 06250
f-0.13133) (-0.10602) (-0.09015) (-0.07863) (-0.07139) (-3 N6230)
-0.55263 -0.515069 -0. 47478 -0. 40816 ~0.29752 -3, 28520
(-0.55270) (~-0.51714) (-0.47984) (-0.42373) (-0.34092; (-2 30213)
21 ~0. 24029 -0.20684 -0.17525 -0.13728 -0.11246 -2 11113
(-0.24040) (-0.20900) (-0.18172) (-0.15144) (-0.1259%96) (-9 11635)
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0.5
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CONCLUSION

The discrete part of the spectrum of the Schrédinger
operator H = K + V may be characterised as the set of minima
of the Rayleigh quotient (y,HyY)/(¥,¢¥). The eigenfunctions
Y, of H which solve this minimization problem optimize the
trade-off between the kinetic and potential energies. The
potential envelope formalism recasts this optimization
problem into the semi-classical form:

min

B = M0 { Kyt + v}, (1)

r>0

where Kne(r) represents the mean kinetic energy and Vv is a
smooth transformation V(r) = g(h(r)) of a soluble potential
h. If the transformation g possesses a definite convexity
then the formula (1) provides bounds to the energies.

The large-N approximation was reviewed and then
conveniently analysed in terms of the envelope method. It
was demonstrated that the latter technique provides tighter
bounds to the energies than does the large-N
approximation“).

One of the oldest and most interesting semi-classical
methods, the JWKB approximation, furnishes approximations to
the eigenvalues which are often very good. These
approximations are provided by an expression in integral

form. This is in contrast to the potential envelope method
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and the large-N approximation both of whose approximation
formulas involve differentiation. The problem of
determining what bounds (if any) JWKB approximate energies
provide to the true energies is a particularly interesting
and challenging one. It was discovered that the JWKB
approximate eigenvalues can be employed to establish loose
upper and lower bounds to the exact energies“a).
Meanwhile, the method does not immediately yield to an
analysis via the potential envelope method, as does the
large~N approximation.

The bound-state spectrum of a particle moving under the
influence of the Coulomb-plus-Yukawa potential was explored.
This was done with the aid of both the JWKB approximation
and the method of potential envelopes. Although the
implementation of the JWKB approximation can be difficult,
this limitation becomes less significant as the power of
computers increases.

The gquestion of JWKB error bounds is fascinating.
Eventually we may have at our disposal an analysis of JWKB
which will include error estimates, and therefore could

sharpen this important tool for elucidating the relation

between a potential and the spectrum it generates.
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APPENDIX A

COMPUTER PROGRAM

The nature of the JWKB eigenvalue approximation
formulae is such that in general a computer greatly
simplifies the problem of computation.

To evaluate the eigenenergies of the
Coulomb-plus-Yukawa potential a program was written in
FORTRAN. The algorithm basically consists of finding the
zeros of the JWKB function (the JWKB quantization condition)
in a single dimension. This function 1is expressed in
integral form which implies that within the context of the
general zero-finder a numerical integration must be
performed. An interesting feature of the problem is the
presence of the energies E ¢ both in the integrand and in
the 1limits of integration. This makes for a much more
challenging situation. The energies appearing in the limits
must first be numerically inverted in order that the radial
variable (the variable of integration) be made explicit.

The different subroutines required for the
implementation of this program were derived from a popular

text on applied numerical methods ‘%’ .

84



FUNC

FWKB

POT

FNC

Other

LIST OF ORIGINAL SUBROUTINES

subroutines

are

either

direct

or

(62)

versions of subroutines from NUMERICAL RECIPES .
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USSR ANOESRNSONBRENNNERNIRRSRECINSESRINENO G NSNS RRNANOSRRERRERNENEABRARBADES

PROGRAM: JWKB-C+Y

L
-
L
This program calculates the Eigenvalues of the Coulomb-plus-Yukawa .
potential by the JWKB quantization conditlion, it requires FUNC as .
well as FWKB, FNC and POT; FUNC defines the "JWKB" function for which .
the 2zero ls to be found, FWKB defines the JWKB integrand, FNC 1s used .
to find the lower and upper limits of the integral (must find the .
zero{es) of the integrand), POT defines the potential. .

»

L]

.« & & 2 3 3 S 3 = ®

SESERBUECNSNNREBUSUBURASNOSENENENOBNNURDINNSENNNENENNNINRBSENO LN OBNOEREIONS

* USES: FWKB, POT, FNC, FUNC, QROMB2, POLINT, TRAPZD2, ZBRENT2, ZBRENT3,
* MNBRAK, GOLDEN.

REAL E, L, N, EMIN, EMAX, TOL, STOEIG(100)
INTEGER NN, NCOUNT
CHARACTER®*1 C1, FIL, STARTC

PARAMETER (TOL=1. 0E~7)
EXTERNAL FUNC, ZBRENT2
COMMON STOEIG

define the bounds for the the energy E, ZBRENT2 uses these to
find the zero of FUNC which defines the JWKB quantization condition.

5 PRINT®, "ENTER QUANTUM # N’
READ*,N

PRINT®*,"ENTER QUANTUM # L’
READ*,L
IF( L .EQ. 0.0) THEN
EMIN=-0. 40
EMAX=-1.0E-3
C EMIN=-5.80
c EMAX=-1. OE-8
ELSE
EMIN=-0.10
EMAX=-~0. 0025
ENDIF

. Print eigenvalue.

E = ZBRENT2 (FUNC, EMIN, EMAX,N,L, TOL)
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60

10
20
40
45
SO

35

PRINT®," '

PRINT*, ' DESIRED EIGENVALUE IS’,E
PRINT®,' '

PRINT®,’ '

PRINT®, 'ONE MORE TIME ?’

READ 20, C1

PRINT*,C1

IF(C1.EQ.'N") THEN
GOTO 35

ELSE
GOTO 5

ENDIF

FORMAT(® *,30X,11,")’,3X,A10)
FORMAT (A1)

FORMAT(13, I3)

FORMAT (F10.6)

FORMAT (A4)

END

Defines the JWKB function to be minimized (LHS-RHS of quantization
relation).

FUNCTION FUNC(E,N,L)

REAL L, N, RMIN, RMAX, POTMIN, PI
EXTERNAL FWKB, FNC, POT
PARAMETER(TOL=1. Q0E-6)

PI=3.141592654

Establish the bounds for the root search for the 1limits of WKB integral.

RMIN = 1.0E-15
RMID = 1.0E2
RMAX = 1.0E15

Find root(s) for limit(s). If L = 0 then only one zero exists.
If L > 0 then MNBRAK brackets and GOLDEN finds the minimum of
the potential so that it is a simple matter to locate the two
limits which are simply the roots of the JWKB integrand. ZBRENT3
finds the root(s).

A and B are the limits for the JWKB integral.

NOTE: we cannot use ZBRENT2 since it has already been opened
in the call from the main program, therefore we make a copy
of ZBRENT2 and label it ZBRENT3 which we employ below.

IF ( L .EQ. 0.0 ) THEN
A=0.0
B = ZBRENT3(FNC,RMIN,RMAX,E,L, TOL)
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ELSE
CALL MNBRAK (RMIN, RMID, CX, FA, FB,FC, L, POT)
FMIN = GOLDEN(RMIN, RMID, CX, L, POT, TOL, POTMIN)

A = ZBRENT3(FNC, RMIN, POTMIN, E, L, TOL)
B = ZBRENT3 (FNC, POTMIN, RMAX,E,L, TOL)
ENDIF

* Evaluate JWKB integral.
CALL QROMB2(FWKB,A,B,E,L,S)
. Define the function (FUNC) to be minimized.

IF (L .EQ. 0.0 ) THEN
FUNC = 2.0%S - PI*N
ELSE
FUNC
ENDIF
END

S -PI*(N-05)

This function defines the JWKB integrand to be used with QSIMP
* and other integration routines.

REAL FUNCTION FWKB(E,L,r)
REALE, L, r

EXTERNAL POT

IF( L .EQ. 0.0 ) THEN

FWKB = SQRT(ABS(E*r®*r - POT(r,L)))
ELSE

FWKB = SQRT(ABS(E - POT(r,L)))
ENDIF
END

* This function defines a pot'l for use with JWKB functions.

REAL FUNCTION POT(r,L)

REAL L, r
B=1.0
G =0.1

IF { L .EQ. 0.0 ) THEN
POT = -B - G*EXP(-r*r) + L*(L + 1.0)
ELSE
POT = (-B/r) - (G*EXP(-r)/r) + ((L + 0.5)**2)/(r*r)
ENDIF
END

* FNC defines the part of the JWKB integrand within the square-root,
. it is used to find the limits for the JWKB integral (LHS »f the
* guantization condition) using ZBRENT3.
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FUNCTION FNC(r,E,L)

REAL r, E, L
B=1.0
G=0.1

IF (L .EQ. 0.0 ) THEN
FNC = E*r®*r + B + G*EXP(-r®r) - L*(L + 1.0)
ELSE
FNC = E + (B/r) + (G*EXP(~-r)/r) - ({L + 0.5)**2)/(r*r)
ENDIF
END

SUBROUTINE QROMB2(FUNC, A, B, E, L, SS)

This is amodiflec version of QROMB.

Returns as S the integral of the function FUNC from A to B.
Integration is performed by Romberg’'s method of order 2K, where
e.g., K=2 is Simpsons rule.

PARAMETER (EPS={.0E-7, JMAX=20, JMAXP=JMAX+1, K=5. KM=K-1)

Here EPS is the fractional accuracy desired, as determined by the
extrapolation error estimate; JMAX limits the total number of steps;
K is the number of points used in the extrapolation.

These store the successive trapezoldal approximations and thelr
relative step-sizes.

DIMENSION S(JMAXP), H{(JIMAXP)
REAL E, L
EXTERNAL FUNC
H{1)=1.0
DO J=1, JMAX
CALL TRAPZD2(FUNC, A,B,E,L,S(1),J)
IF(J .GE. K) THEN
CALL PCLINT(H{J-KM),S(J-KM),K,0.0,SS,DSS)
IF(ABS(DSS) .LT. EPS*ABS(SS)) RETURN
ENDIF
S(J+1)=S(J)

This is a key step: The factor is 0.25 even though the step-size
is decreased by only 0.5. This makes the extrapolation a polynomial
in h*h as allowed by equation (4.2.1), not just a polynomial in h.

H(J+1)=0.25*H(J)
ENDDO
PAUSE 'TOO MANY STEPS’
END



SUBROUTINE TRAPZD2(FUNC,A,B,E,L,S,N)

. This is altered version if TRAPZD (NUMERICAL RECIPES).
. This routine computes the Nth stage of refinement of an extended
b trapezoidal rule. FUNC is input as the name of the function to be
. integrated between limits A and B, also input. When called with N=1
* the routine returns as S the crudest estimate of INT(f(x)).
*  Subsequent calls with N=2,3,... (in that sequential order) will
. improve the accuracy of S by adding 2°(N-2) additional interior
d points. S should not be modified between sequential calls.
REAL E,L
IF (N.EQ.1) THEN
S=0.5*(B-A)*(FUNC(E, L, A)+FUNC(E,L,B))
IT=1
ELSE
TNM=IT
DEL=(B-A)/TNM
X=A+0.S5"DEL
SUM=0.
DO 11 J=1,1IT
SUM=SUM+FUNC(E, L, X)
X=X+DEL
11 CONTINUE
S=0.5*{S+(B-A) *SUM/TNM)
IT=2*IT
ENDIF
RETURN
END
SUBROUTINE POLINT(XA, YA,N,X,Y,DY)
. Given arrays XA and YA, each of length N, and given a value X,
* this routine returns a value of Y, and an error estimate DY.
* If P(x) is the polynomial of degree N-1 such that P(XAi)=YAl,
L ]

i=1,...,N, then the returned value Y=P(x).
. Change NMAX as desired to be the largest anticipated value of N.

PARAMETER (NMAX=10)

DIMENSION XA(N), YA(N), C(NMAX), D(NMAX)
NS=1

DIF=ABS(X-XA(1))

. Here we find the index NS of the closest table entry,

DO I=1,N
DIFT=ABS (X-XA(1))
IF(DIFT. LT. DIF) THEN
NS=1I
DIF=DIFT
ENDIF
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and initialize the tableau of C's and D's.

C(1)=YA(I)
D(I1)=YA(I)
ENDDO

This is the initial approximation to Y.

Y=YA(NS)

NS=NS-1
For each column of the tableau we loop over the current C's and D's
and update them.

DO M=1, N-1
DO I=1, N-M
HO=XA(I)-X
HP=XA(I+M)-X
W=C(I+1)-D(I)
DEN=HO-HP

This error can occur only if two input XA's are {(to within roundoff)
identical.

IF(DEN .EQ. 0.0) PAUSE
DEN=W/DEN

Here's the C's and D’s are updated.

D(I)=HP*DEN
C(I)=HO*DEN
ENDDO

After each column in the tableau is completed, we decide which
correction, C or D, we want to add to our accumulating value of Y,
i.e. which path to take through the tableau - forking up or down.
We do this in such a way as to take the most "straight line" route
throught the tableau to its apex, updating NS accordingly to keep
track of where we are. This route keeps the partial approximations
centered (insofar as possible) on the target X. The last DY added
is thus the error indication.

IF(2°NS .LT. N-M) THEN
DY=C(NS+1)
ELSE
DY=D(NS)
NS=NS-1
ENDIF
Y=Y+DY
ENDDO
RETURN
END



FUNCTION ZBRENT2(FUNC, X1,X2,N,L,TOL)

This is an altered version of ZBRENT {NUMERICAL RECIPES).

Using Brent's method, find the root of a function FUNC kno to lie
between X1 and X2. The root, returned as ZBRENT2, will be 1t fined
until its accuracy is TOL.

REAL N, L
PARAMETER (1TMAX=100, EPS=3, OE-8)
A=X1
B=X2
FA=FUNC(A,N,L)
FB=FUNC(B, N, L)
IF (FB*FA.GT.0) PAUSE 'ROOT MUST BE BRACKETED FOR ZBRENT2'
FC=FB
DO 11 ITER=1, ITMAX
IF (FB®FC.GT.0.) THEN
C=A
FC=FA
D=B-A
E=D
ENDIF
IF (ABS(FC).LT.ABS(FB)) THEN
A=B
B=C
C=A
FA=FB
FB=FC
FC=FA
ENDIF
TOL1=2. *EPS*ABS(B)+0. 5*TOL
XM=0.5"*(C-B)
IF(ABS(XM).LE. TOL1.0R. FB.EQ.0. ) THEN
ZBRENT2=B
RETURN
ENDIF
IF (ABS(E).GE.TOL1 .AND. ABS(FA).GT.ABS(FB)) THEN
S=FB/FA
IF (A.EQ.C) THEN
P=2, *XM*S
Q=1.-S
ELSE
Q=FA/FC
R=FB/FC
P=5* (2. *XM*Q* (Q-R)-(B-A)*(R-1.})
Q=(Q-1.)*(R-1.)"(s-1.)
ENDIF
IF (P.GT.0.) Q=-Q
P=ABS(P)
IF (2*P .LT. MIN(3.*XM*Q-ABS(TOL1*Q),ABS(E+Q))) THEN
=D
D=P/Q
ELSE

92



A=B
FA=FB )
IF (ABS(D) .GT. TOL1) THEN
B=B+D
ELSE
B=B+SIGN(TOL1, XM}
ENDIF
FB=FUNC(B, N, L)
11 CONTINUE
PAUSE 'ZBRENT2 EXCEEDING MAXIMUM # OF ITERATIONS.'
ZBRENT2=B
RETURN
END

FUNCTION ZBRENT3(FUNC, X1, X2,EE,L, TOL)

This is an altered version of ZBRENT {NUMERICAL RECIPES).

Using Brent’'s method, find the root of a function FUNC known to lie
between X1 and X2. The root, returned as ZBRENT2, will be refined
until its accuracy is TOL. We are including this copy of ZBRENT2 due
to conflicts inherent to FORTRAN (see FUNC above).

- & & = =

REAL EE, L
PARAMETER(ITMAX=100, EPS=3.0E-8)
A=X1
B=X2
FA=FUNC(A,EE, L)
FB=FUNC(B,EE,L)
IF (FB*FA.GT.0) PAUSE 'ROOT MUST BE BRACKETED FOR ZBRENT3’
FC=FB
DO 11 ITER=1, ITMAX
IF (FB*FC.GT.0.) THEN
C=A
FC=FA
D=B-A
E=D
ENDIF
IF (ABS(FC).LT.ABS(FB)) THEN
A=B
B=C
C=A
FA=FB
FB=FC
['C=FA
ENDIF



11

TOL1=2. *EPS*ABS (B)+0.5*TOL
XM=0.5*(C-B)
IF(ABS(XM).LE. TOL1.0OR.FB.EQ.0. ) THEN
ZBRENT3=B
RETURN
ENDIF
IF (ABS(E).GE.TOL! .AND. ABS(FA).GT.ABS(FB}) THEN
S=FB/FA
IF (A.EG.C) THEN
P=2, *XM*S
Q=1.-S
ELSE
Q=FA/FC
R=FB/FC
P=s* (2. *XM*Q*(Q-R)-(B-A)*(R-1.))
Q=(Q-1.)*(R-1.)*(s-1.)

CONTINUE

ENDIF
IF (P.GT.0.) Q=-Q
P=ABS(P)
IF (2*P .LT. MIN(3.*XM*Q-ABS(TOL1*Q), ABS(E+Q))) THEN
E=D
D=P/Q
ELSE
D=XM
=D
ENDIF
ELSE
D=XM
E=D
ENDIF
A=B
FA=FB
1IF (ABS(D) .GT., TOL1) THEN
B=B+D
ELSE
B=B+SIGN(TOL1, XM)
ENDIF
FB=FUNC(B, EE, L)
PAUSE ’ZBRENT3 EXCEEDING MAXIMUM # OF ITERATIONS.'

ZBRENT3=B
RETURN

SUBROUTINE MNBRAK (AX, BX, CX,FA,FB, FC, L, FUNC)

Given a function FUNC, and given distinct initial points AX and BX,
this routine searches in the downhill direction (defined by the
function as evaluated at the initlial points) and returns new points
AX, BX, CX which bracket a minimum of the function. Also returned
are the function values at the three points FA, FB, and FC.
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REAL L
PARAMETER (GOLD=1.618034, GLIMIT=100., TINY=1.0E-20)

The first parameter is the default ratio by which successive

intervals are magnified; the second is the maximium magnification
allowed for a parabolic-fit step.

FA=FUNC(AX, L)
FB=FUNC(BX, L)

Switch roles of A and B so that we can go downhill in the direction
from A to B.

IF(FB.GT.FA) THEN
DUM=AX
AX=BX
BX=DUM
DUM=FB
FB=FA
FA=DUM
ENDIF

First guess for C.

CX=BX+GOLD" (BX-AX)
FC=FUNC(CX, L)

“DO WHILE": keep returning here until we bracket.
IF(FB.GE.FC) THEN
R=(BX-AX)* (FB-FC)
Q=(BX-CX)* (FB-FA)

Compute U by parabolic extrapolation from A, B, C. TINY is used
to prevent any possible division by zero.

U=BX-( (BX~CX)*Q- (BX-AX)"R)/ (2. O*SIGN (MAX(ABS(Q-R), TINY),Q-R))
We won't go farther than this.

UL IM=BX+GLIMIT" (CX-BX)
Now to test varlious possibilities:

IF((BX-U)*(U-CX).GT.0.0) THEN
Parabolic U is between B and C: try it.

FU=FUNC(U, L)

Got a minimum between B and C.

IF(FU.LT.FC) THEN
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AX=BX
FA=FB
BX=U

FB=FU

*  Which will exit
GOTO 1
* Got a minimum between A and U.
ELSEIF (FU.GT.FB) THEN

CX=U
FC=FU

. Got a minimum between A and U.

GOTO 1
ENDIF

. Parabolic fit was no use. Use default magnification.

U=CX+GOLD* (CX-BX)
FU=FUNC(U,L)

. Parabolic fit is between C and its allowed limit.

ELSEIF((CX-U)* (U-ULIM).GT. 0. 0) THEN
FU=FUNC(U, L)
IF(FU.LT.FC) THEN
BX=CX
CX=U
U=CX+GOLD® (CX-BX)
FB=FC
FC=FU
FU=FUNC (U, L)
ENDIF

* Limit parabolic U to maximum allowed value.
ELSEIF((U-ULIM)® (ULIM-CX).GE.0.0) THEN
=ULIM
FU=FUNC(U, L)
ELSE
* Reject parabolic U, use dfault magnification.
U=CX+GOLD* (CX~BX)
FU=FUNC(U, L)
ENDIF

* Eliminate oldest point and continue.
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AX=BX
BX=CX
CX=U
FA=FB
FB=FC
FC=FU
GOTO 1
ENDIF
RETURN
END

FUNCTION GOLDEN(AX, BX,CX,L,F, TOL, XMIN)

Given a function F and given a bracketing triplet of abcissas AX,
BX, CX (such that BX is between AX and CX, and F(BX) is less than
both F(AX) and F{CX)), this routine performs a golden section
search for the minimum, lsolating it to a fractional precision of
about TOL. The abscissa of the minimum is returned as XMIN, and
the minimum function value is returned as GOLDEN, the returned
function value.

Golden ratios

REAL L
PARAMETER (R=0. 61803399, C=1.0-R)

At any glven time we will kep track of four points, X0, X1, X2, X3.

X0=AX
X3=CX

Make X0 to X1 the smaller segment,

IF (ABS(CX~-BX).GT. ABS(BX~AX)) THEN
X1=BX

and fill in the new point to be tried.

X2=BX+C* (CX-BX)
ELSE

X2=BX

X1=BX-C* (BX-AX)
ENDIF

The initial function evaluations. Note that we never need to
evaluate the function at the original endpoints.

F1=F(X1,L)
F2=F(X2,L)

DO-WHILE loop; we keep returning here.

IF (ABS(X3-X0).GT. TOL* (ABS(X1)+ABS{X2))) THEN

\U
=d



One possible outcome,
1IF(F2.LT.F1) THEN
Its housekeepling,

X0=X1
X1=X2
X2=R*X1+C*X3
FO=F1
Fl1=F2

and a new function evaluation.
F2=F(X2,L)
The other outcome,

ELSE
X3=X2
X2=X1
X1=R*X2+C*X0
F3=F2
F2=F1

and its new function evaluation.

F1=F(X1,L)
ENDIF

Back to see if we are done.

GOTO 1
ENDIF

We are done. Output the best of the two current values.

IF(F1.LT.F2) THEN
GOLDEN=F1
XMIN=X1

ELSE
GOLDEN=F2
XMIN=X2

ENDIF

RETURN

END
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Spectrum of the Coulomb-plus-Yukawa potential by the method of potential envelopes
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The method ot potenual envclopcs is used to analyse the bound-state spectrum of the Schrodinger Hamiltonian 4 = — 3
+ Vr), where Vir) = ~B.r = ye~"ir, v <B Its established that upper or lower bounds to the eigenenergies £ (B.y.A)
are generated by the simple formula, £, =% {(n = 37 = Vin}, where = = S gy < Oand ~ = ="ty > 0. The
results are cornpared with eigenvalues compuxed nu aencally by 3 finite-element method and also with the results of a vanational

calculation,

La methode des enveloppes de potentiel est utilisee pour analyser le spectre des etats hes de I'hamultonien de Schrodinger
H=~d«VinhouVinye - Bir + ye ™r,y<B. llest momrc que les hmites supenicure et infencure des energies
proposees £,(B3.v.A) sont abienues par la formule simple £,, =% {tn ~ (VX =~ Virh,ecu~™ s Ssiy< 0o~ = 2 g

¥ > 0 On compare les resultats avec les valeurs propres calcuié

numengq par une methode aux elements fins et

également avec les resultats d'un calcul par la methode des vanauons

Can 1 Phvs 69 1362(1991)

1. Introduction

The purpose of this aricle 15 to use the method of potenual
envelopes (1. 2) to derive a simple approximate formula for the
bound-stare spectrum of a single particle moving 1n the Cou-
lomb-pius-Yukawa potenual

Viry = —E - ze’}"
ror

{1.1)

g>0. vy <B. A>0
This central potential was first proposed by Hellmann (3) in
1935 to model the nteraction between the valence electron and
the atomic core 1n alkali metals. Other workers adopted this
potenaial for similar applications (4} More recently, it has been
used to represent interactions for a vanety of physical problems.
in the study of the thermodynamics ot nonideal plasmas. it was
found that the propernies of the interaction between an electron
and an 1on ot the plasma can be descnbed by a potenual ot the
form {1 1} (51 the two-particle interaction potential between
the churged particles in polar crvstals 1s also well approximated
by such a potential (61, Das and Chakravarty (7) proposed that
the Coulomb-pius-Yuhawa potential be used in the form ot a
screened Coulomb potential 1n the study ot inner-shell 1omiza-
non problems

The spectrum that con- erns us 1s that of the Schrodinger
Hamiitonwan H

(12l H= =31V

This eigenvalue problem has been studied bv other workers,
using vanous techntgues  Adamowshi 181 was the fint o under-
ke g systematic investigation of the bound-state energies

Lsing a 10-parameter variational method, he obtained verv
decurate reswty tor g wide “anye of potential parameters (8,% \)
amd quantum numbess o Dulterad S empioved the shitted
large-Vapproxanatien and producid food resuits 1or smaif val-
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ues of the screening parameter \, and weak coupling of the
Yukawa component (small v) More recently, Bag er ul. (10)
utlized Rayleigh-Schrodinger perturbation theory and dertved
an analyuc expression tor the bound-state energies While the
method ot potentiai envelopes 15 not 1n general capable of
achieving accuracies of the order ot those of Adamowshi (8),
1t provides a simple formuia for bounds to the eigenvalues.
The problem at hand can be simphified somewhat thiough the
use of elementary scaling arguments By represenung the
eigenvalues ot H by E(B.v.A) and changing the scale ot the
radial vanabie r — t = Ar we amve at the tollowing relation

(1.3]  ER.yA) = w:(\% K 1)-

This 1mplies that only the eigenyatues Lifi.y. 1) corresponding
to the Hamiitoman

N4 H=-1-2_Y.-
r r

need be considered. In Sect 4 we will adopt another scaling
scheme to compare our results with those ot Adamowshi

We will next motivate the main formula [1 6] trom which
all our results tollow iSect 2 of this paper consists of a shont
self-contained descrnipion of the method of potenual
envelopes)

The backbone ot envelope theary 1s its explontaton of exact
sofutions uf the Schrodinger equation to approximate solutions
ot niractable problens Wuth this in mund. we express the
potential Viry 4s a4 smooth transtormation of the Coulomb
potential. this Latter potential, of course 1s ¢xactly sotuble and
wilf be the gotentiaf on which we base our Jpproamations
We wrie Viry = g" = Loy canere oV satislies (X 7 O tor
Xy tnore Yo Do X« ) % -0 Virys then
the enselune 1 s I.lﬂ‘l" Ve on rang aatal Coulom poten-
tigis each ot wnich nas the torm
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18

! Viry = A = v ( -——1-) = Vi

r
where > = 2 f ¢ (=L <0und = = <if g~ > 0.
These inequalities ailow us to {ind upper and lower bounds to
the 2rgemvalues £, ot H. It will be shown ¢Sect. 2) that the
following compact expression may be written for these bounds

(18]

q-m.ieﬁow%
[
with = defined as tor [1.£] above Here. ! 1s the angular
momentum yuantum number and n = 1, 2. 3., . , counts the
eigenvalues in each angular -~ momentum subspace

The method of potential envelopes was developed in 1980
as a means of approvimanng the ergenvalues of the mans -body
problem (11} Since then 1t has been refined (1. 2, 12) and
applied to a vaniety of proolems (13-17).

2. The method of potential envelopes

We now present a bnet accouat of envelope theory suitable
for our application a more complete account may be found in
rets 1 and 2. We suppose that the energy trajectones H,,(v) of
the Schrocinger Hamiltonian = A = viitr) are known exactly.,
where h 1y the shape of a central potential: the trajectory func-
uons H,(v) are restncted. if necessary, to these values of the
coupling parameter v, which are sufficientlv large for the cor-
responding discrete eigenvalue to exist The quantum number
n counts the ergenvalues i, each anguiar-momentuin subspace:
e1genvalues so labelled have degeneracy exactly (2/ + 1)

We now consider a new Hamif*onian =3 = V(r) in which
the potenual V 1s a smooth increasing transtormation Vir) =
glhtr)) of the potentiat 1 We assume that g 1s etther convex or
concave. that 1s to say enher g” > 0 or ” < 0: these cases
give nise. respectively, to jower and upper energy bounds We
can summanze the situation by the following two expressions:

(21
221 =-A-VIin—E,

-3 =~ vAtry— H_(vi

For definiteness, we now suppose that g 1s concave so that
¢" <0 Because of the concavity ot g we know that the tangent
lines to ¢ (as a function ot A) ail lie above ¢, and we can there-
fore wnie

[23] Vin = gthurn s A = viur)

where, by calculus. we tind

3

= gihiny - htng'theey)
(T4
€0, =

-

s = g thie),
ks the point ot contact of Viry with 1s tangent potential
Uy = Al - anfen

Since the Hamultonuans ae consufer are self-adjoint and
bounded below , we can emplos the vanational charactenzaton
of eigenvalues 18<201 to deduce that the potential inequality
{2 31 amphes the corresponding speiral inequalbits

[N

E = wn = H 'unl

100

that 1s to say
[2.6]

where h = h(r). We now minimuze the upper bound (2.6)
by differentiating with respect to A and cancelling the factor
¢"1h) < 0 10 obtain the cnucal point

E, <y — hg'uy = H [g" )]

27 h=HJlgm)

In view of [2.6] and [2.7] and the known (1) concavity of tra-
Jjectory functions like M, (v), we can reformulate the expression
for the best upper bound by a Legendre transformation as
follows,

[28) E, = X, {K, - V(r}
where
[29] K., rn = H, 0 = uH (w), hry = H 0

The X, (r1 functions are well defined by {2.9] because H,, 1s
concave (1) so that M, 1s monotone and 1s invertible: they are
posiuve definite and represent mean kinetic energies 1n the
envelope approximation. We have used r in place of the param-
eter ¢ since 1n the enesgy picture. there can be no contusion.
What we have in [2.8] 15 a semuclassical approximaton that is
vahd whenever the potental V(r) 1s a concave transformation
glhiri] of the potenuial Atr), if the ransformation g 15 convex,
then the inequalities are reversed and one obtains lower bounds.
If the potenual Vir) depends on various parameters, then the
dependence of the energies on these parameters 1s automatically
given by the approximation {2.8] A more general formulation
of this geometncal theory descnbed in ret. 2 allows also for
sums ot soluble potential terms.

As an example. we consider smooth transformanons of the
Coulomb potential itry = - lir for which we have

-] v :
[2.10] Alr) = - —H ) = —[2(—"-_—”]

From [2.9] we find that

n=-n7
K."(n = [n_.—]
r

Consequently [2 8] becomes

nn;s-m{iiﬁ—wﬁ

where Vir) = g(— l/r);and = = = f g is concave, and = =
= 1f g 15 convex. If the transformation function g is slowly
varving, then, as we shall see, this simple formula s remark
ably useful for it answers approximately the general question
How does the spectrumi depend on the potennal” It s also mter
esting that the transtormation tunction ¢ does not iself appea
in {2 11]. g1s only used to establish the energy bounds.

3. The Coulomb-plus-Yukawa potential

For values of the parameter v in the mtersal v < B. th
Coulomb-plus- Yuhawa potentiai
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Taste . Eigenvalue upper bounds for the

Hamitoman ¥ = —~3 ~ B.r - ye™"robtaned by

the method of potential envelopes. [2.11], along

with accurate resuits computed numericaily (in
parentheses)

B =1
v
nl =0.! =05 -10
10 -0.25720 -0.29752 ~-038989
(=0.26319) (-0.33219) (—~0.467 16)
20 ~0062%0 -0.06252 -0.062 54
(=0.06292) (~007031) (~007952)
40 -0.01563 -00t563 -0.01563
{~0.01580) (-00t653) (-001751
50 -0.01000 ~001000 -001000
(-001000) (~0.01009 (~0.01095
11t -006250 -006252 ~006254
(=006266) (~0.06333) (-0.06430)
21 ~0.02778 -0.02778 -001778
(~002783) (-0.02805) (-0.028 36)
41  -0.01000 -0.01000 -001000
(~0.01001) (~0.0t006) (~0.0101
$1 -0.00694 ~0.00694 -—0.00694
(-000695 (-0.00698) (-0.00702)

—_I}..;.Z-'
(3.1 Vin= - e B>0

is attracuve and Coulombic for small r; for y > B. V(r) no
longer tooks Coulombic but resembles a molecular potenual of
the Kratzer vanety (21). In this paper, only the case y < wiil
be studied, we therefore select the Coulomb potential as our
basis potential A(r) = - l/r and consequently represent Vir)
as a smooth transformation ot #(r) (as described 1n Sect 2),
that is 20 say

32] vin= g(%)

It 1s a simple matter to venfy that for this choice of A(r) and
Vr > 0 the transformation function g s concave for y < 0,
and convex for 0 < vy < B. By [2.11] we know therefore that
the corresponding Coulomb envelopes result in either upper or
lower bounds to the energies. Thus we have

331 E, =~ {‘—"—1’— -B. Ie"}

r r r

where = = 2 if0<y<Band = = s ify<Q.

Since the approximation 1s based on the Coulomb potential,
however, this imphes that the approximate spectrum inherits
the degeneracies ot the hydrogenic atom. Thus. even though
the actual spectrum {£,,} does not share this Coulomb degen-
eracy. our cpproximute spectrurn provides Jhe same bound for
each set ot engenvalues with in = [) = constant

In Table | some results are Cisplayed for vanous values ot
the potential purameters and of ¢n./) dlong with some sccurate
numerical resuits, These latter results were obtained by a hinite-
clement method that was implemented un a microcomputer. As
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TasLe 2 Bound-state eivenvalue upper bounds tor the Yuhawa
potenual Viry = =2aZ ¢ *r.n hioelectronvolts ineutral atoms),
along with the results of the shisted 1'M approximation ot Dutt er af
(9)and those ot McEnnan ez ol 122) Uabelled *Analvae perturbanon’),
numenzal results are presented for companson The Yukawa
potennal corresponds to the case B > 0 tor the Coulomb-plus- Yukawa

potentsal
Analvtic
Z nl Envelope Shifted I/N perturbation  Numencal
13 10 - 1.450 - 1488 -1 484 ~-1.488
36 10 -14.16 ~-14.24 -1424 -4
20 - 1437 -1.676 -1618 -1.692
11! - 1,437 ~1 566
79 10 -74 30 =T491 ~7498 ~7495
20 -12.00 -1249 -12.45 -12%0
11 -1200 -1225

can be seen, our results are quite 2ood for small values of the
Yukawa coupling constant y. The accuracy ncreases with
increasing (n.0).

The special case (22) B = 0. vy = -2aZ A = | 302"
where o = (137 037) ™' 15 the fine-structure constant and Z the
atomic number, reduces Vir) to the Yuhawa potenual V(r) =
(= 2aZ e~ *)/r. This s the form taken by the Yuhawa potential
in atomic-physics applications and 1s appropnate for modeling
the encrgy levels of neutral atoms The method of potential
envelopes was applied to this potential by one of us in an earlier
paper t16). We now clanfy how the eneigies obtained from
[2.11] are related to our results in kiloelectronvolts For Z =
land A = 0, Vir) = = 2ar, resulting  the hydrogemc
spectrum,

-

-Q
(n=1)

34 E,=

Ll 2

Thus. the conversion factor from £, to energies n kiloelec-
trouvolts 1s given by the relation

1000a”
=255485E,  keV

47
{3.5] Energy = ([3 &0 ) E, keV

Emploving the shitted large-V approximation Duut er al. (9)
also calculated the bound-state energies McEnnan er al (22
used perturbation theory to do the same Hall's (16) bounds on
E,, along with the results of Dutt er a/ and those of McEnnan
et al are presented in Table 2. The resuits of Dutt et al. and
McEnnan eral are of hugher accuracy than those that we found
with the amid of potential envelopes. however the computational
effort required 1s corresponcingly much more

4. Comparison of potential envelopes and a variational
method

To compare our results with those of Adamowskt (8)
we adopt his scale of units for the length {r) and energy With
B =2 y<B.and A > 0, we have

,
M1 Vin= == = Xg-n
r r

Adamowsht obtatned ery accurate results by using 1 10-pa-
rameter trial wave tunction In fact, o the precision quoted.
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TasLe 3 Some ewgenvalue upper bounds for the Coulomb-plus-Yul ~wa potenual as functions of A.
tory = —landv = =10, ottained with {2.11] For comparison. the vanauonal resuits from ref. 8
are given in parentheses

y= -]
A

nl 00t 005 0.1 02 0.5 1o
10 =-22003 -220082 ~2.15326 =-2.06278 -182531 ~-1.52578
(=2.24005) (-220122) (-215479) (-2.068 300 (-1.85502r (—1.60149)
20 -055263 -051569 ~0474 78 -0.408 16 -0.29752 -0.25520
(-0.55270, (~0.517 14) (~04798%) (-0.42373) (-0.32092) (=-0.30213)
40 -013114 -0.10204 ~-0.08066 -006563 -0.06252 ~0.06250
(=013 38) (-0.10602) (-009015) (-007869) (-007139 (—0.06830)
11 ~055263 -051569 -047478 -0408 16 ~029751 -~0.25520
(-055270) (~0.517 1 (~047984) (~0.42373) (-0.34092) (-0.30213)
21 -024029 -020684 -017528 ~-0.13728 -01246 ~011113
(~=024040) (0209000 (=0.1817) (-0.151 &) (-01259) (—011635)

y= ~10
A

nl 001 0.05 0.1 0.2 0.5 0.85
10 -359001 —355021  -350083  -34.0330 -31.2050 - 28.0768
(=359001) (=355031) (-35.0129) (-34.0489) (-=312967) (-28.3300)
20 -3 5003 -8 5082 - 80326 -7.1281 -4.7613 -2.6037
(-8900%) (~8.5122 (~8.0482) (-7 1862) (-50617) (-3.2972)
40 =253 -1.7820 =1.3737 -0.7185 ~0 0627 =0.0625
(=2.15200  (=1.7966)  (-1.42%4)  (--0.88000 (~0.2431) (~0.1503)
1t -8 9003 -8.5082 -8 0300 -7 1280 ~4.7613 =2.6037
(—895004) (-8.5102) (~8.0404) (=7.1569) (-4.9109 (~2.9522)
21 ~3.9007 -3.5183 =-30N7 -2.2761 -0.5952 -0 1117
(-3.90100 (-3.5251)  (-3.0968) (=2.3638) (-09507) (-0.3367)

his results are about as accurate as those obtained by integrating
the Schrodinger equation numencally Table 3 contrasts our
results with those of Adamowski. As 1s evident, potential
envelopes give good results for a wide range of potenual param.
eters. Though the accuracy of Adamowski’s results 1s in generaf
superior to that of the potential-envelope method. this 1s not
always the case. For instance. for small values ot the screening
parameter X of the Yukawa component. our results are just as
accurate This 1s due to the sinuianty 1n shape ot the Coulomb-
pius-Yukawa and the Coulomb potential (which we employ as
our basis potential) for this range ol A.

5. Conclusion

The method of potennial envelopes was used to develop a
simple formula for approximating the bound state eigenvaiues
E., of the Coulomb-plus- Yukawa potennal. This formula yields
energy bounds that are functions of the potenual parameters
(B.y.A). Our resulis are good approximations to the true eigen-
values for a wide range of the potenual parameters and for all
values of tn.1). As n or [ increases the bounds improve Unfor-
wnately, the approximate spectrum shares the degeneracy
particular to the Coulomb potennial, that 1s to say, we get a
single bound for each set of eigenvalues with the same values
forwn = 1),

With each ergenvalue bound 18 associated a shitted Coulomb
potential

A1) + v(1) (:r—l)

\

Such a potential gives rise to a wave function, As a result, we
have at our disposal a collection of Coulomb wave functions
each of which 15 independently scaled in an opumal fashion.
These can be used either as the basis for a Rayleigh~Ruz com-
putation or o estimate other physical quanuties,

In this paper we have investigated the spectrum of the Cou-
lomb-plus-Yukawa potenual for the range ¥ < B of the poten-
ual parameters $ and vy. The range -y > {3 leads to potentials
V(r) with a positive pele at the ongin, as required by molecular
systems. In this regi n, the hydrogenic potential would only be
suitable as a basis potenual A(r) in cases where the coupling
was very weak. To use the method of potent.al envelopes effec-
tively one could perhaps use for A(r) a more appropnate poten-
tial such as the Krawzer molecular potential, which has a pole
at the ongin and for which exact eigenvalues are known (21).

The method of potenual envetopes 1s parucularly useful for
approximaung the eigenenergies corresponding to a potential
Viry = glh(r)] for which the convexity of the transformation
function g 1s deffmite (1.e . etther g” > Q or g” < 0V, In these
cases the approximate eigenvalues, which in general are given
simply by the mimimization ot a funcuon of one vanable. are
also bounds on the exact eigenvalues £, The main purpose of
this global approximation theory 15 to provide a tool for expior-
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ing the parameter space of the problem pnor to more specific

nu

an

mencal calculations

Acknowledgments

Parnal financial support of this work by the Natural Sciences
d Enginesnng Research Council of Canada under Grant No.,

0GP0003438 s gratefully acknowledged.

o WLIED —

. R. L. Hatu. ). Math, Phys. 24, 324 (1980

. R.L. HaLt.J Math. Phys. 25, 2708 (1984),

. H. Herimann, ] Chem Phys 3, 61 (1935),

. ] CatLaway, Phys. Rev 112, 322 (1958%: G. J. laFraTE. J.
Chem. Phys. 45, 1072 {1966); J. Catraway and P, S. LaGHOS,
Phys. Rev. 187, 192 (1969); G. McGinn. J. Chem, Phys. 53,
3635, 1970

. V K.Gryaznov, M V ZHerNoKLETOV, V. N. Zusarev, I. L.
losiLevsxil, and V. E. Tortov Zh Eksp. Teor. Fiz. 78, 573
(1980) [Sov. Phys. JETP §1.288(1980); V. A. ALEKSEEV.V E
Fortov, and [. T. Yakisov. Usp Fiz. Nauk. 139, 193 (1983)
{Sov. Phys. Usp. 26. 99 (1983)}.

. S. BEDNAREK, J. ADAMOwsK1, and M. SUFFCZY~sK! Solid State
Commun. 21, | (1977), ] PoiLmann and H. BuTTNer. Phys.
Rev B. Solid State. 16. 44380 (1977).

. J. N. Das and §. CHAKRABORTY. Phys. Rev. A. Gen. Phys. 32,

176 (1985).

8]
9
10.

1

l‘i

-

13

14

15.
16.
17.
18.

19.

103

CAN ] PHYS VOL 69 99|

J Apamuwsal. Phys. Rev A, Gen Phys 31, 43 (1985),
R.DuTT. U MukhERS, and Y P VaRrsHNL Phys Rev A Gen.
Phys. 34, 777 (1986)

M. Bag. R. Dutt. and Y P Varshni. J Phys B At Mol
Phys, 20. $267 (1987).

R.L. HatL. Phys Rev D. Pant. Fields. 22, 2062 (1980)

R.L HatL Phys Rev. D Pan. Fields. 23. 1421 (198])

R. L. Hact and M SatpaTthy. ] Phys. A. Math Gen. 14, 2645
(1981).

R L. HacL. Phys Rev. D: Part. Fields. 30, 433 (1984),

R. L. HatL. Can J. Phys. 63, 311 (1985)

R.L HatL. Phys. Rev A: Gen. Phvs 32, 14 (1985)

R. L. HatL. J. Math. Phys 27,1027 (1986).

E. PRucovEeCkt Quantum mechanics in Hilbert space. Academic
Press Inc., New York 1981,

M. Reep and B SinoN. Methods of modern mathematical phys-
1cs IV* Analysis of operators Acader...c Press Inc., New York
1981.

W THIRRING A course 1n mathematical physics 3. Quantum
mechanics of atoms and molecules Springer-Verlag, New York.
1981,

§ FLuGGE. Practical quantum mechamcs. Spnnger-Verlag, New
York. 1971.p 178.

] McExnan, L. Kisser, and R. H PRATT, Phvs. Rev. A Gen.
Phys. 13, 532 (1976).



10.

11.

12.

13.

14.

15.

REFERENCES

R.L. Hall, J. Math. Phys. 27, 1027 (1986).

R.L. Hall, J. Math. Phys. 24, 324 (1983).

R.L. Hall, J. Math. Phys. 25, 2708 (1984).

R.L. Hall, Phys. Rev. D 22, 2062 (1980).

R.L. Hall, Phys. Rev. D 23, 1421 (1981).

R.L. Hall and M. Satpathy, J. Phys. A: Math Gen. 14,
2645 (1981).

R.L. Hall, Phys. Rev. D 30, 433 (1984).

R.L. Hall, Can. J. Phys. 63, 311 (198>).

R.L. Hall, phys. Rev. A 32, 14 (1985).

M. Reed and B. Simon, Methods of Modern Mathematical
Physics IV: Analysis of Operators (Academic Press Inc.,
New York, 1981).

W. Thirring, A Course in Mathematical Physics 3:
Quantum Mechanics of Atoms and Molecules
(Springer-Verlag, New York, 1981).

E. Prugove ki, Quantum Mechanics in Hilbert Space
(Academic Press Inc., New York, 1981).

B. Epstein, Linear functional Analysis: Introduction to
Lebesgue integration and Finite-Dimensional Problems
pg. 166, (W.B. Saunders Company, Philadelphia, 1970).
Related by R.L. Hall in a personal communication.

T.H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952): H.E.

Stanley, ibid. 176, 718 1968).

104




le6.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

G. t’Hooft, Nucl. Phys. B 72, 461 (1974): G. Rossi and

G. Veneziano, ibid. 123, 507 (1977); L.G. Yaffe, Rev.

Mod. Phys. 54, 407 (1982).

P. Anderson, Phys. Rev. 86, 694 (1952); R. Kudo, ibid.

87, 568 (1952).

L.D. Mlodinow and N. Papanicolaou, Ann. Phys. 128, 314

(1980) ; L.D. Mlodinow, Prog. Part. Nucl. Phys. 8, 387

(1982); G. Moreno and A. Zepeda, J. Phys. B 17, 21

(1984) .

U. Sukhatme and T. Imbo, Phys. Rev. D 28, 418 (1983);

T. Imbo, A. Pagnamenta and U. Sukhatme, ibid. 29, 1669

(1984) .

B. Jeffreys, Proc. Lond. Math. Soc. 23, 428 (1923).

G. Wentzel, Zeit f. Phys. 38, 518 (1926).

H.A. Kramers, Zeit f. Phys. 39, 828 (1926).

L. Brillouin, C. R. Acad. Sci. Paris 183, 24 (1926).

J. Liouville, J. Math. Pures Appl. 2, 16 (1837).

Lord Rayleigh, Proc. Roy. Soc. A 86, 207 (1912).

J. Heading, An Introduction to Phase-Integral Methods
(Methuen & Co. Ltd., London, 1962).

V.A. Bailey, Scientific Report no. 67, Ionospheric

Research Laborotory, Pennsylvania State University

(1954) .

G. Green, Camb. Phil. Trans. 6, 457 (1837).

105



29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

B.H. Bransden and C.J. Joachain, Introduction to
Quantum Mechanics (Longman Scientific and Technical,
Essex, 1989).

T.L. Eckersley, Proc. Roy. Soc. A 132, 53 (1931); D.R.
Hartree, Proc. Roy. Soc. A 131, 428 (1931).

B.D. Seckler and J.B. Keller, J. Acoustical Soc. Amer.
31, 206 (1959).

E. Merzbacher, Quantum Mechanics (Wiley & Sons Inc.,
New york, 1970).

J. Horn, Math. Ann. 52, 271 (1899).

E.T. Wittaker, A course of Modern Analysis, (Cambridge
University Press, Cambridge, 1963).

A.B. Midgal, Qualitative methods in Quantum Theory,
(W.A. Benjamin Inc., Massachusetts, 1977).

R. Gans, Ann. Phys. Lpz. 47, 709 (1915).

M. Abramowitz an. I.A. Stegqun, Handbook of mathematical
functions (Dover Publications Inc., New York, 1970).

N. Froman and P.O. Fréman, JWKB  Approximation
Contributions to the theory (North-Holland publishing
Company, Amsterdam, 1965).

C. Quigg and J.L. Rosner, Phys. Reps. 56, 168 (1979).
R. Rockmore, Am. J. Phys. 43, 29 (1975).

U.P. Sukhatme, Am. J. Phys. 41, 1015 (1973).

J.L. Dunham, Phys. Rev. 41, 713 (1932); ibid. 41, 721

(1932).

106



43.

44,

45,

46.

47.

48

49.

50.

510

52.

53.

54.

55.

J.B Krieger, M.L. Lewis and C. Rosenzweig, J. Chen.
Phys. 47, 2942 (1967).

R.N. Kesarwani and Y.P. Varshni, Can. J. Phys. 56, 1488
(1978) .

S.M. Kirschner and R.J. Le Roy, J. Chem Phys. 68, 3139
(1978).

R.N. Kesarwani and Y.P. Varshni, Can. J. Phys. 58, 363
(1980); ibid., J. Math. Phys. 21, 90 (1980).

S. Giler, J. Phys. A: Math. Gen. 21, 909 (1988).

D.L. Birx and T.W. Houk, Am. J. Phys. 45, 1070 (1977).
G.D. Birkhoff, Bull. Amer. Math. Soc. 39, 681 (1933).
J.G. Taylor, J. Math. Anal. and Appl. 85, 79 (1982).
R.L. Hall, Phys. Rev. A 39, 5500 (1989).

J.P. Duarte and R.L. Hall, Can. J. Phys. 69, 1362
(1991) .

H. Hellmann, J. Chem. Phys. 3, 61 (1935).

J. Callaway, Phys. Rev. 112, 322 (1958); G.J. Iafrate,
J. Chem. Phys. 45, 1072 (1966); J. Callaway and P.S.
Laghos, Phys. Rev. 187, 192 (1969); G. McGinn, J. Chen.
Phys. 53, 3635, 1970.

V.K. Gryaznov, M.V. Zhernokletov, V.N. Zubarev, I. L.
Iosilevskii, and V.E. Tortov, Zh. Eksp. Teor. Fiz. 78,
573 (1980) [Sov. Phys. JETP 51, 288 (1980)]; V.A.
Alekseev, V.E. Fortov and I.T. Yakubov, Usp. Fiz. Nauk

139, 193 (1983) [Sov. Phys. Usp. 26, 99 (1983)].

107



56.

57.

58.

59

60.

61.

62.

S. Bednarek, J. Adamowski, and M. Suffczynski, Solid
State Commun. 21, 1 (1977):; J. Pollmann and H. Buttner,
Phys. Rev. B 16, 4480 (1977).

J.N. Das, S. Chakraborty, Phys. Rev. A 32, 176 (1985).
S. Flugge, Practical Quantum Mechanics pPg. 178
(Springer-Verlag, New York, 1971).

R. Dutt, U. Mukherji, Y.P. Varshni, Phys. Rev. A 34,
777 (1986).

J. McEnnan, L. Kissel, and R. H. Pratt, Phys. Rev. A
13, 532 (1976).

J. Adamowski, Phys. Rev. A 31, 43 (1985).

W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T.
Vetterling, Numerical Recipes: The Art of Scientific

Computing (Cambridge University Press, Cambridge, 1986).

108



